



# You'll find here everything Exactly What You Need.

Join to our Channel to find Academic to Admission

(Medical, Dental, Varsity & Engineering) All types of pdf.

Join to Our Telegram Channel: https://t.me/MedistrYa

The Horly

# A-ইউনিট (বিজ্ঞান শাখা)

GST গুচ্ছ বিশ্ববিদ্যালয় ভর্তি পরীক্ষার সহায়ক সর্বোত্তম বই





Part-1: প্রশ্নব্যাংক সকল প্রশ্নের নির্ভুল উত্তর, সঠিক ব্যাখ্যা ও প্রশ্ন সংশ্লিষ্ট গুরুত্বপূর্ণ তথ্য

Part-3: মডেল টেস্ট ভির্তি পরীক্ষার অনুরূপ Part-2: চড়ান্ত সাজেশন [বিষয়ভিত্তিক]

#### MCQ / Written / Both

- > একক / গুচ্ছ / সমন্বিত পদ্ধতি
- > এক কথায় / সংক্ষিপ্ত / বর্ণনামূলক প্রশ্ন
- > একাদশ/ঘাদশ / HSC পরীক্ষা
- - যেমনই হোক এডিমশন টেস্ট জয়কলি'র বই-ই বেস্ট।
- So, জয়কলি'র বই য়িস তো চাল য়িস

#### সাধারণ বিশ্ববিদ্যালয়-

- জগনাথ বিশ্ববিদ্যালয়, ঢাকা
- इमनाभी विश्वविদ्यानय, कृष्टिया

- ব্রুলামান্ত্রপ্রদ্যালয়, কুল্লা
   ব্রুণাল বিশ্ববিদ্যালয়, কুল্লা
   বরিশাল বিশ্ববিদ্যালয়, কুল্লা
   ক্মিলা বিশ্ববিদ্যালয়, কুল্লা
   রবীন্দ্র বিশ্ববিদ্যালয়, ক্রেল্লা
   লাখ হাসনা বিশ্ববিদ্যালয়, ক্রেক্রেলা
   বেগম রোকেয়া বিশ্ববিদ্যালয়, রংগুর
   ব্রুবজু শেখ মূজিবুর রহমান বিশ্ববিদ্যালয়, ক্রিলার্গ্র

#### বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়-

- বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়
  শাহজালাল বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, দিলেট

  নায়াখালী বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, নোলাখাশী

  মাওলানা ভাসানী বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, টালাইশ

  হাজী মোহাম্মদ দানেশ বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, দিনাজপুর

  বঙ্গবঙ্গু শেখ মুজিবুর রহমান বি. ও প্র. বিশ্ববিদ্যালয়, গোপালগা

  বঙ্গবঙ্গু শেখ মুজিবুর রহমান ডিজিটাল ইউনিভার্সিটি, গাজীপুর

  বঙ্গমাতা শেখ ফজিলাভুরেছা মুজিব বি. ও প্র. বিশ্ববিদ্যালয়, জানাপপুর

  যোর বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, যোর

  গাবনা বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, গাসামাটি

  রাঙ্গামাটি বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, গাসামাটি

  চাদপুর বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, গাসপুর

  সুনামগান্ত বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, গাসপুর

  সুনামগান্ত বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, গাসপুর

  সুনামগান্ত বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, গ্রাসামান্ত

- ছয়কলির বই মানেই নির্ভুল উত্তর, সঠিক ব্যাখ্যা, গুরুত্বপূর্ণ তথ্য, সর্ব্যাধিক MCQ & Written প্রশ্নোত্তর, সাজানো-গোছানো উপছাপন, শুর্ট টেকনিক, প্রুন্ন দেখেই দ্রুত উত্তর বের করার Magic কৌশল, মনে রাধার সহজ কৌশল, গাণিতিক সমস্যার দ্রুত সমাধান, জেনারেল মেবত, বিকল্প উপস্থাপন, মজার মজার ছন্দ, ছক্, ডাটা ও Quick Tips সমৃদ্ধ সবোতম বই।



বইটি যেভাবে সাজানো

#### পার্ট-১ : বিগত প্রশ্নোত্তর

- পার্ট-২ : বিষয়ভিত্তিক সাজেশগ

- श्रेमार्गिवेखांन त्रगाग्रन
   श्रीविखांन त्राह्माः
   (१४ विषय प्रियम्भितिकः পার্ট-ও : সম্ভে

🖪 পরীক্ষা পদ্ধতি–MCQ

- পর্ণমান-১০০ নম্বর
- 2nd Time-ভর্তি পরীক্ষা দিতে পারবে [HSC 2022 & 2023 এবং SSC 2019, 2020 & 2021 সালে উত্তীৰ্ণ]

SSC + HSC'র Total GPA-8.00 তিবে SSC / HSC তে GPA-3.50 এর কম নয়]

#### » মানব<sup>ন্</sup>টন :

- পদার্থবিজ্ঞান-২৫ নম্বর
- রসায়ন-২৫ নম্বর
- গণিত / জীববিজ্ঞান-২৫
- [গণিত / জীববিজ্ঞান বা উভয় বিষয়ে উত্তর দিতে পারবে]
- বাংলা / ইংরেজি-২৫ (৪র্থ বিষয় গণিত / জীববিজ্ঞানের পরিবর্তে বাংলা/ ইংরেজি বিষয়ে উত্তর দিতে পারবে)

চান্স পা<mark>ওয়ার কোনো শর্টকা</mark>ট উপায় নাই। তাই ভর্তি পুরীক্ষায় স্বল্পসময়ে পূর্ণাস প্রস্তুতির জন্য এদিক-সেদিক ছোটাছটি না করে বাসায় বৃদ্ধে জয়কলি র ১সেট বই নিয়ে প্রস্তুতি নাও, চান্স নিশ্চিত।

- ভর্তি প্রস্তুতিতে ছাত্রদের ১ম চয়েস- জয়কলির ১সেট বই।
- ভর্তি পরীক্ষার পূর্ণাঙ্গ প্রস্তুতিতে জয়কলি'র ১সেট বই-ই যথেষ্ট। ভর্তিযুদ্ধে জয়লাভের প্রধান হাতিয়ার জয়কলি'র ১সেট বই।
- 🛚 বেস্ট বুক 🕂 প্রশ্ন কমনের বস বই মানেই জয়কলি র বই।
- So, জয়কলির বই- ভর্তি গাইড বইয়ের বস; না পড়লে চাল লস।

বুয়েট-মেডিকেল-বিশ্ববিদ্যালয়ে ভর্তি তোমার ঘাতের মুঠোর ধুয়োজন সঠিক গাইডলাইন+জয়ুকলির ১সেট বই+নিয়মিত অধ্যয়ন

চ্যালেল দিয়ে বলছি, ভর্তি পরীক্ষার জন্য-

১. জ্য়াকলির চেয়ে নির্ভুল ও ভালো মানের বই আজও প্রকাশিত হয়নি। ২, জয়কলির চেয়ে বেশি প্রশ্ন কমন পড়ে এমন বইও প্রকাশিত হয়নি।





HSC পরীক্ষার পরে নয়; বরং একাদশ-দ্বাদশ শ্রোণি থেকেই জয়কলি'র ১সেট বই নিয়ে Advance ভর্তি প্রস্তুতি নাও, চান্স নিশ্চিত।

# সৃচিপত্ৰ

| Part-1 : প্রশ্নব্যাংক                                                                              |      | গণিত ১ম পত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|----------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| GST হৈছ বিশ্ববিদ্যালয় ভৰ্তি পৱীক্ষা (২০২২-২০২৩)                                                   | , ob | ১ম অধ্যায়- ম্যাট্রিক্স ও নির্ণায়ক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 980         |
| ্রের্য কাছ বিশ্ববিদ্যালয় ভর্তি পরীক্ষা (২০২১-২০২২)                                                | . 57 | ২য় অধায়- ভেক্টর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAR         |
| GST শ্রন্থ বিশ্ববিদ্যালয় ভর্তি পরীক্ষা (২০২০-২০২১)                                                | . 00 | ৩য় অধ্যায়- সরলরেখা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10:61       |
| Part-2 : চূড়ান্ত সাজেশল (বিষয়ভিত্তিক)                                                            |      | ৪র্থ অধ্যায়- বৃত্ত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ଅବଧ         |
| পদার্থবিজ্ঞান ১ম পত্র                                                                              |      | ৫ম অধ্যায়- विन्যाम ও সমাবেশ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5</b> 99 |
| অধ্যায়-০১ : ভৌতজ্ঞাৎ ও পরিমাপ                                                                     | ৩৯   | ৬ষ্ঠ অধ্যায়- ত্রিকোণমিতিক অনুপাত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 940         |
| মধ্যায়-০২ : ভেক্টর                                                                                | 88   | ৭ম অধ্যায়- সংযুক্ত কোণের ত্রিকোণমিতিক অনুপাত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 355         |
| অধ্যায়-০৩ : গতিবিদ্যা                                                                             | 62   | ৮ম অধ্যায়- ফাংশন ও ফাংশনের লেখচিত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 038         |
| অধ্যায়-০৪ : নিউটনিয়ান বলবিদ্যা                                                                   | 69   | ৯ম অধ্যায়- অন্তরীকরণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 088         |
| অধ্যায়-০৫ : কাজ ্ শক্তি ও ক্ষমতা                                                                  | ৬8   | ১০ম অধ্যায়- যোগজীকরণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 850         |
| অধ্যায়-০৬ : মহাকর্ষ ও অভিকর্ষ                                                                     | ৬৯   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| অধ্যায়-০৭ : পদার্থের গাঠনিক ধর্ম                                                                  | 90   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| অধ্যায়-০৮ : পর্যাবৃত্তিক <mark>গতি</mark>                                                         | 45   | গণিত ২য় পত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| অধ্যায়-০৯ : তরঙ্গ                                                                                 | क्र  | ১ম অধ্যায়- বান্তব সংখ্যা ও অসমতা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 839         |
| অধ্যায়-১০ : আদর্শ গ্যাস ও গ্যাসের গতিতত্ত্ব                                                       | ৯৭   | ২য় অধ্যায়- যোগাশ্রয়ী প্রোদ্রামিং                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 805         |
|                                                                                                    |      | ৩য় অধ্যায়- জটিল সংখ্যা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 800         |
| পদার্থবিজ্ঞান ২য় পত্র                                                                             |      | ৪র্থ অধ্যায়- বহুপদী ও বহুপদী সমীকরণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 881         |
| অধ্যায়-০১ : তাপগতিবিদ্যা                                                                          | 200  | ৫ম অধ্যায়– দ্বিপদী বিষ্টৃতি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 885         |
| অধ্যায়-০২ : ছির তড়িৎ                                                                             | 276  | ৬ষ্ঠ অধ্যায়- কনিক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 864         |
| অধ্যায়-০৩ : চল তড়িৎ                                                                              | 758  | ৭ম অধ্যায়- বিপরীত ত্রিকোণমিতিক ফাংশন ও ত্রিকোণমিতিক সমীকরশ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 850         |
| অধ্যায়-০৪ : তড়িৎ প্রবাহের চৌম্বক ক্রিয়া ও চুম্বকতৃ                                              | 200  | ৮ম অধ্যায়- ছিতিবিদ্যা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| অধ্যায়-০৫ : তাড়িটৌম্বকীয় আবেশ ও পরিবর্তী প্রবাহ                                                 | 786  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 894         |
| অধ্যায়-০৬ : জ্যামিতিক আলোকবিজ্ঞান                                                                 | 765  | ৯ম অধ্যায়- সমতলে বস্তুকণার গতি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 899         |
| অধ্যায়-০৭ : ভৌত আলোকবিজ্ঞান                                                                       | 360  | ১০ম অধ্যা <mark>য়- বিন্তা</mark> র পরিমাপ ও সম্ভাবনা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 850         |
| অধ্যায়-০৮ : আধুনিক পদার্থবিজ্ঞানের সূচনা                                                          | 240  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| অধ্যায়-০৯ : পরমাণুর মডেল এবং নিউক্লিয়ার পদার্থবিজ্ঞান<br>অধ্যায়-১০ : সেমিকভাক্টর ও ইলেবট্টনিক্স | 790  | জীববিজ্ঞান ১ম পত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| অধ্যায়-১০ : সোমকভান্তর ও থলেবড়ানক্শ<br>অধ্যায়-১১ : জ্যোতির্বিজ্ঞান                              | 200  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| ल्यास-२२ : व्याजित्यान                                                                             | 200  | অধ্যায়-০১ : কোষ ও এর গঠন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 854         |
| রসায়ন প্রথম পত্র                                                                                  |      | অধ্যায়-০২ : কোষ বিভাজন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| অধ্যায়-০১ : ল্যাবরেটরির নিরাপদ ব্যবহার                                                            | 250  | অধ্যায়-০৩ : কোষ রসায়ন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cop         |
| অধ্যায়-০২ : গুণগত রসায়ন                                                                          | 224  | অধ্যায়-০৪ : অণুজীব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 679         |
| অধ্যায়-০৩ : মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন                                             | 208  | অধ্যায়-০৫ : শৈবাল ও ছত্ৰাক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | æ26         |
| অধ্যায়-০৪ : রাসায়নিক পরিবর্তন                                                                    | 200  | অধ্যায়-০৬ : ব্রায়োফাইটা ও টেরিডোফাইটা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000         |
| অধ্যায়-০৫ : কর্মমুখী রসায়ন                                                                       | २७०  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ৫৩৯         |
|                                                                                                    |      | অধ্যায়-০৭: নম্বাবীজী ও আবৃতবীজী উদ্ভিদ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| রসায়ন ২য় পত্র                                                                                    |      | অধ্যায়-০৮ : টিস্যু ও টিস্যুত্ত্ব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | æ8¢         |
| ছবায়-০১ : পরিবেশ রসায়ন                                                                           | 290  | অধ্যায়-০৯ : উদ্ভিদ শারীরতত্ত্ব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ago         |
| ্ৰব্যায়-০২ : জৈব <u>রসায়</u> ন                                                                   | २४१  | অধ্যায়-১০ : উদ্ভিদ প্রজনন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 443         |
| শ্বধান-০৬ : পরিমাণগত রুসায়ন                                                                       | 975  | অধ্যায়-১১ : জীবপ্রযুক্তি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q34         |
| শ্ববাহে-০৪ : তড়িং রসায়ন                                                                          | ७३७  | অধ্যায়-১২ : জীবের পরিবেশ, বিস্তার ও সংরক্ষণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a9)         |
| ্ শ্বাম-০৫ : অর্থনৈতিক রসায়ন                                                                      | 906  | The state of the s |             |

অকলির ১ সেট বই থেকে বুয়েট-মেডিকেল-বিশ্ববিদ্যালয় ভর্তি পরীক্ষায় প্রায় ১০০% প্রশ্ন কমনের গ্যারান্টি প্রদান

| জীববিজ্ঞান ২য় পত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | বাংলা ২য় পত্র                                                          |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------|--------------------|
| অধ্যায়-০১ : প্রাণীর বিভিন্নতা ও শ্রেণিবিন্যাস                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | abo        |                                                                         | 560                |
| অধ্যায়-০২ : প্রাণীর পরিচিতি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 649        |                                                                         | 566                |
| অধ্যায়-০৩ : মানব শারীরতত্ত্ব : পরিপাক ও শোষণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | የጵ8        |                                                                         | ৬৮৬                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                         | 446                |
| অধ্যায়-০৪ : মানব শারীরতত্ত্ব : রক্ত ও সঞ্চালন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ७०५        | 1 - 4 . 1 11 1                                                          | ৬৮৯                |
| অধ্যায়-০৫ : মানব শারীরতত্ত্ব : শ্বসন ও শ্বাসক্রিয়া                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ৬০৯        | ০৬. বাক্য প্রকরণ                                                        | ৬৯০                |
| অধ্যায়-০৬ : মানব শারীরতত্ত্ব : বর্জ্য ও নিষ্কাশন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 976        | ০৭. বাংলা ভাষার অপপ্রয়োগ ও শুদ্ধ প্রয়োগ                               | ८४२                |
| অধ্যায়-০৭ : মানব শারীরতত্ত্ব : চলন ও অঙ্গচালনা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ७५४        | ০৮. পারিভাষিক শব্দ                                                      | ৬৯২<br>৬৯৩         |
| অধ্যায়-০৮ : মানব শারীরতত্ত্ব : সমন্বয় ও নিয়ন্ত্রণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ৬২৮        | ০৯. অনুবাদ<br>১০. বাংলা ভাষার ধ্বনি ও বর্ণ প্রকরণ                       | ৬৯৪                |
| অধ্যায়-০৯ : মানব জীবনের ধারাবাহিকতা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500        |                                                                         | ৬৯৫                |
| অধ্যায়-১০ : মানবদেহের প্রতিরক্ষা (ইমিউনিটি)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>680</b> |                                                                         | ৬৯৫                |
| অধ্যায়-১১ : জিনতত্ত্ব ও বিবর্তন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ৬৪৬        | ১৩. সন্ধি                                                               | ৬৯৬                |
| অধ্যায়-১২ : প্রাণীর আচরণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                         | ৬৯৯                |
| व्यक्षात्र-३२ : वानात्र वाण्यन                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ৬৫৪        | ১৫. প্রকৃতি ও প্রত্যয়<br>১৬. শব্দের শ্রেণিবিভাগ                        | 900                |
| বাংলা ১ম পত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | ১৬. শব্দের শ্রোণবিভাগ<br>১৭. কাল , পুরুষ এবং কালের বিশিষ্ট প্রয়োগ      | १०२<br>१० <i>६</i> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ১৭. কাল, পুরুষ এবং কালের বিশিষ্ট এয়েগ<br>১৮. সমার্থক শব্দ বা প্রতিশব্দ | 906                |
| ০১. অপরিচিতা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ৬৬১        | ১৯. বিপরীতার্থ <mark>ক শ</mark> ব্দ                                     | 909                |
| ০২. বিলাসী                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ৬৬১        | ২০, বাক্য সংক্ষেপণ বা বাক্য সংকোচন                                      | 906                |
| ০৩. আমার পথ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ৬৬২        | ২১. বাগ্ধারা                                                            | ৭০৯                |
| o8. মানব-কল্যাণ <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ৬৬৩        |                                                                         |                    |
| ০৫. মাসি-পিসি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ৬৬৪        | English                                                                 |                    |
| ০৬. বায়ান্নর দিনগুলো                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>668</b> | Chapter-01: Noun                                                        | 477                |
| ০৭. রেইনকোট                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ৬৬৫        | Chapter-02: Number & Gender                                             | 978                |
| ০৮. বাঙ্গালার নব্য লেখকদিগের প্রতি নিবেদন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ৬৬৬        | Chapter-03: Adjective                                                   | 478                |
| ०५. गृर                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ৬৬৭        | Chapter-04: Verb                                                        | 920                |
| ১০. আহ্বান                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ৬৬৭        | Chapter-05: Adverb                                                      | 926                |
| ১১. মহাজাগতিক কিউরেটর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ৬৬৮        | Chapter-06: Subject-Verb Agreement                                      | 929                |
| ১২. নেকলেস                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ৬৬৯        | Chapter-07: Preposition                                                 | ৭২৯<br>৭৩৩         |
| ১৩. সোনার তরী                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>690</b> | Chapter-09: Sentence                                                    | 906                |
| ১৪. বিদ্রোহী                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 590        | Chapter-10: Right form of Verbs                                         | ৭৩৯                |
| ১৫. প্রতিদান                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Chapter-11: Voice                                                       | 980                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ৬৭১        | Chapter-12: Narration                                                   | 989                |
| ১৬. তাহারেই পড়ে মনে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ७१२        | Chapter-13: Correction                                                  | 902                |
| ১৭. অঠারো বছর বয়স                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ৬৭৩        | Chapter-14: Miscellaneous                                               | 900                |
| ১৮. ফ্বেক্স্ব্যারি ১৯৬৯                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ৬৭৩        | Chapter-15: Synonym & Antonym                                           | 9৫৮                |
| ১৯. আমি কিংবদন্তির কথা বলছি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ৬৭৪        | Chapter-16: Analogy                                                     | 968                |
| ২০. বিভীষণে <mark>র</mark> প্রতি মেঘনাদ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ৬৭৫        | Chapter-17: Spelling                                                    | 950                |
| ২১. সুচেতনা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ७१८        | Chapter-18: Group Verbs                                                 | 966                |
| ২২. পদ্মা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ৬৭৬        | Chapter-19: Phrase & Idiom                                              | 990                |
| ২৩. নূরুদ্দীনের কথা মনে পড়ে যায়                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ৬৭৬        | Chapter-20: Translation and Proverbs                                    | 998                |
| ২৪. ছবি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Chapter-21: One Word Substitution                                       | 996                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ৬৭৭        | Chapter-22: English Literature                                          | 427                |
| २৫. नानमान्                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ৬৭৮        | Chapter-23: Comprehension                                               | 960                |
| ২৬. সিরাজউদ্দৌলা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ৬৭৯        | Don't 2                                                                 |                    |
| ২৭. বাংলা সাহিত্যের যুগ বিভাগ (প্রাচীন , মধ্য ও আধুনিক যুগ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ৬৭৯        | Part-3 : মডেল টেস্ট ভির্তি পরীক্ষার অনুরূপ                              |                    |
| ২৮. বাংলা সাহিত্যের শাখা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ৬৮২        | মডেল টেস্ট                                                              | નેક્ક              |
| And the second s |            |                                                                         |                    |

## Text Book-এর বিকল্প?

বুয়েট-মেডিকেল-বিশ্ববিদ্যালয় ভর্তি পরীক্ষায় Text Book-এর কোনো বিকল্প নেই। প্রতিটি বিষয়ে ১৫/২০টির অধিক Text Book রয়েছে। ভর্তি পরীক্ষায় যেকোনো লেখকের বই থেকে প্রশ্ন আসতে পারে। সেক্ষেত্রে তুমি কোন বইটি পড়ে প্রয়ুতি নিবে? একজন শিক্ষার্থীর পক্ষে এই বল্প সময়ে অনেক লেখকের বই সংগ্রহ করে তা একই সাথে সমন্বয় করে পড়া সম্ভব না। শিক্ষার্থীদের এসব সমস্যার কথা চিন্তা করে বিষয়ভিত্তিক সকল লেখকের বইয়ের গুরুত্বপূর্ণ সকল তথ্য, MCQ / Written প্রশ্ন ও গাণিতিক সমস্যাবলি এবং বিগত সালের সকল প্রশ্ন দিয়ে Step by Step-এ সাজানো হয়েছে জয়কলি'র প্রত্যেকটি বই। তাই ভর্তি পরীক্ষার সহায়ক সেরা Text Book-ই হচ্ছে জয়কলি'র বই। আর ভর্তি প্রস্তুতিতে জয়কলি'র ১সেট বই-ই যথেষ্ট। ভর্তি পরীক্ষার জন্য জয়কলি'র ১সেট [বুয়েট/ মেডিকেল/ বিজ্ঞান/ মানবিক/ ব্যবসায় শিক্ষা] বই পড়লে প্রায় ১০০% প্রশ্ন কমন ও চান্স নিশ্চিত।

#### বই-ই শেষ ভরসা!

সকাল থেকে দুপুর কলেজে,
এরপর ব্যাচে প্রাইভেট,
বিকালে কোচিং-এ,
সন্ধ্যায় আবার গৃহশিক্ষক,
এত্তো কিছু !!!
কিন্তু পড়ার টেবিলে?
কী পড়বে, কেন পড়বে,
কীভাবে পড়বে, কোন অংশটুকু পড়বে
সারা দিনের পড়া?
দরকার কিন্তু একটি ভালো মানের
সাজানো-গোছানো বই।
আর হাাঁ, ভর্তি পরীক্ষার জন্য জয়কলি
দিচ্ছে সেই ভালো মানের ও প্রায় ১০০%
প্রশ্ন কমনের গ্যারান্টেড বই।

# প্রশ্ব্যাংক

বুয়েট/মেডিকেল/ঢাকা/জাহাঙ্গীরনগর/রাজশাহী/ চট্টগ্রাম/ GST গুচ্ছ/ কৃষি গুচ্ছ/ প্রকৌশল গুচ্ছ বিশ্ববিদ্যালয়সহ সকল ভর্তি পরীক্ষার জন্য সকল ইউনিটের প্রশ্নব্যাংক বই জয়কলি পাবলিকেশঙ্গ থেকে প্রকাশিত হয়েছে। আজই সংগ্রহ করুন।

#### সতর্কবার্তা

জয়কলির বই সম্পর্কে যারা ভূল-ভাল বলে বিভ্রান্তি ছড়াচ্ছে তারা হয় জয়কলির বইটি পড়েনি কিংবা তাদের অজ্ঞতা। জয়কলির বইয়ের সাফল্যে ও গুণাগুণে ভীত-সম্রন্ত হয়ে তারা এরূপ অপপ্রচার চালাচ্ছে। তারা তোমার বন্ধু নয়; বরং শক্র। তাই জয়কলির বইটি পড়ে নিজেই সিদ্ধান্ত নাও।

বুয়েট-মেডিকেল-বিশ্ববিদ্যালয় ভর্তি প্রস্তুতিতে

# জয়কলি'র ১সেট বই পড়লে

প্রায় ১০০% প্রশ্ন কমন ও চান্স নিশ্চিত।

| বুয়েট সেট                                                                                                                                                                          | মেডিকেল সেট                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| বুয়েট গণিত     বুয়েট গণিত     বুয়েট পদার্থবিজ্ঞান     বুয়েট রসায়ন     বুয়েট আর্কিটেকচার     ৫. BUET প্রিলি & প্রকৌশল গুচছ     ৬. বুয়েট প্রশ্বব্যাংক     ৭. বুয়েট মডেল টেস্ট | মেডি বায়োলজি     ২. মেডি বসায়ন     ৩. মেডি বসায়ন     ৪. মেডি পদার্থবিজ্ঞান     ৪. মেডি English     ৫. মেডি GK [সাধারণ জ্ঞান]     ৬. মেডি প্রশ্নব্যাংক     ৭. মেডি মডেল টেস্ট     ৮. ডেন্টাল এইড     ৯. আর্মড ফোর্সেস মেডিক্যাল কলেজ |



# Part

## প্রয়োজনীয় সত্রাবাল

ছব সংখ্যার সেট,  $\mathbf{R} = (-\infty, \infty)$ 

র্কান সংখ্যার সেট, Q' বা  $Q^c = \{x : x \in \mathbb{R}, x \in \mathbb{Q}\} = \mathbb{R} - \mathbb{Q}$ 

কুল কুল সংখ্যার সেট, Z বা I = {0, ± 1, ± 2, ± 3, .....}

ক্ষে ছাভাবিক সংখ্যা বা ধনাত্মক পূর্ণ সংখ্যার সেট,

Nबा 1 वा Z+ = {1, 2, 3, 4.....}

ক্ষ্পান্তক পূর্ণসংখ্যার সেট {0, 1, 2, 3, 4......}

ন্তুক পূর্বসংখ্যার সেট, Z বা I = {-∞, ..., -10, ..., -2, -1}

R বার সেট যদে, NCZCQCR, QQ'=R,  $Q \cap Q$ ' = Ø (ফাঁকা সেট)

ক্র সংখ্যার সেট R এর খীকার্য ভিত্তিক ধর্ম:

বেৰতা (Closure): সকল a, b∈R এর জন্য

ঃ+b∈R [যোগের আবদ্ধতা] এবং ab ∈ R [গুণনের <mark>আবদ্ধ</mark>তা]

মিন্দ যোগতা (Commutativity) :  $a, b \in \mathbb{R}$  হলে, a+b=b+a

্বাগের বিনিময় যোগ্যতা) এবং ab = ba (গুণনের বিনিময় যোগ্যতা)

ক্ষবেজন যোগ্যতা (Associativity) : a, b, c ∈ R এর জন্য

a + (b + c) = (a + b) + c (যোগের সংযোজন যোগ্যতা) এবং

a(bc) = (ab)c [গুণনের সংযোজন যোগ্যতা]

ক্টন যোগ্যতা (distributivity) : সকল a, b, c ∈ R এর জন্য

a(b+c) = ab + ac অথবা (b+c) a = ba + ca

ম্ভেদক (Identity): a ∈ R এর জন্য i) a + 0 = 0 + a = a

য়েগের অভেদক] ii) a.l = l.a = a গুণনের অভেদক]

ম্বিরীতক (Inverse): a ∈ R এর জন্য i) a + (-a) = (-a) + a = 0

মেণের বিপরীতক] ii) a.a<sup>-1</sup> = a<sup>-1</sup>.a = 1 খিণনের বিপরীতক]

জন্যতা (Uniqueness): a, b, c, d ∈ R হলে, এবং a = b, c = d

হল, a + c = b + d [যোগের অনন্যতা] এবং ac = bd [গুণের অনন্যতা] 🛫 উভয় পাশে একই রাশি যোগ করা যোগের অনন্যতা, গুণ করা গুণের অনন্যতা। গীনত সেট (Bounded সেট): ধরি, S একটি বান্তব সংখ্যার সেট। S সেটটি

ব্যিত সেট হবে যদি এটি উর্ধ্বসীমিত সেট এবং নিমুসীমিত সেট হয়। অর্থাৎ S সেটটি

ক্ষিত হবে, যদি দুইটি বান্তব সংখ্যা k এক K এরপ হয় যেন,  $k \le x \le K$ ,  $\forall x \in S$ . শিসীমা (Upper bound): যদি S, বান্তব সংখ্যার সেট R এর একটি

শৈসেট এবং সকল x ∈ S এর জন্য একটি বাস্তব সংখ্যা M বিদ্যমান থাকে

যেন x < M হয়, তবে M কে S সেটের একটি উপসীয়া করা ক্রম 🗥 হলো একটি উপসীমিত (Upper bounded) সেট

निषिष्ठं উर्थनीमा वा नृतिमाम (Least apper bound/ Supremum): क्लान সেটের উর্ধসীমাহলির মধ্যে সবচেয়ে ছোট আছি, বুলুতম সংবাজে 🗷 🖟 সুপ্রিমাম (मधिष्ठं উপসীমা) বলা হয়। কোন সেট S এর সুপ্রিমাম বা নানিষ্ঠ উর্ধসীমাকে Sup S ৰারা প্রকাশ করা হয়।

निम्नीमा (Lower bound): यनि S, ताबन महनाति हो है अब अविधि উপসেট এবং সকল x ∈ S এর জন্য একটি বাছন সংখ্যা m निमामान খারে यन m ≤ x रग्न. তবে m क S সেটের একটি निम्नीमा नना स्म बना 🕏 महना একটি নিমুসীমিত সেট।

ইনফিমাম বা গরিষ্ঠ निम्नीमा (Infimum/Greatest lower bound): कार्ता (अटिंत निम्नीमाधनित मर्था अवरुद्ध वर्ष वर्षीय वृष्ट्य अर्थापत है সেটের ইনফিমাম (গরিষ্ঠ নিমুসীমা) বলা হয়। কোন সেট S এর ইনকিমাম Inf S ঘারা প্রকাশ করা হয়।

পর্মমান (Absolute value): সকল বান্তব সংখ্যার সেটকে R দারা প্রকাশ कता रता, यनि x∈R रय ठारान x এর পরমমান Modulus of x) দারা সূচিত করা হয়।

এর সংজ্ঞা নিমরূপ:

পরমমানের ধর্ম:

(1) a∈R এর জন্য |a| ≥ a

(2) x ∈ R এর জন্য (i) |x| ≤ a ⇒ -a ≤ x ≤ a

(ii)  $|\mathbf{a}| > |\mathbf{b}| \Rightarrow \mathbf{a}^2 > \mathbf{b}^2$ 

(3) a, b ∈ R এর জন্য (i) |a|<sup>2</sup> = a<sup>2</sup> = |-a|<sup>2</sup>

(ii) |ab| = |a| |b|

(iii) |abc| = |a| |b| |c|

(4) a, b ∈ R এর জন্য

(5) a, b ∈ R এর জন্য (i) |a| + |b| ≥ |a+b|

(ii) |a| + |b| > |a-b|

(6) a, b ∈ R এর জন্য |a| – |b| ≤ |a-b|

#### গাণিতিক সমস্যা ও সমাধান

 $A = \{ 2, 1.732, \sqrt{2, \pi, 1.101, \frac{\pi}{3}, e} \}$  সেটের অমূলদ ও মূলদ

উপাদানওলো চিহ্নিত কর।

লুদ উপাদানতলো হলো: 1, 1.732, 1.101, <del>সু</del>

 $\beta x + 21 < 7$  অসমতাটির সমাধান কি?

Solve  $|3x + 2| < 7 \Rightarrow -7 < 3x + 2 < 7$ 

 $\Rightarrow -9 < 3x < 5 \Rightarrow -3 < x < 5/3$ 

Solve  $|-7 \le x \le -1 \Rightarrow -7 + 4 \le x + 4 \le -1 + 4$ 

 $\Rightarrow -3 \le x + 4 \le 3$  :  $|x + 4| \le 3$ 

04. |-5|+2-3+|-5|-3=?

Solve -5 + 2 - 3 + -5 - 3 = 5 - 1 + 5 - 3 = 6

05. 2 ≤ |x - 4| ≤ 9 অসমতাটির সমাধান সেট কি?

Solve (x-4) অঝণাতাক হলে,  $2 \le x-4 \le 9 \Rightarrow 6 \le x \le 13$ 

(x-4) ঝণাত্মক হলে,  $2 \le -(x-4) \le 9$ 

 $\Rightarrow -2 \ge x - 4 \ge -9 \Rightarrow 2 \ge x \ge -5 \Rightarrow -5 \le x \le 2$  $[.6, 13] \cup [-5, 2]$ 

06.  $S = \{x : 5x^2 - 16x + 3 < 0\}$  and  $S = \{x : 5x^2 - 16x + 3 < 0\}$ 

Solve  $S = \{x : 5x^2 - 16x + 3 < 0\} = \{x : (5x - 1)(x - 3) < 0\}$ 

< x < 3} ∴ Sup S = 3 এবং Inf S =

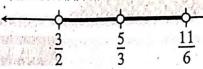
TOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS

Solve  $4x-1 > 2x+3 \Rightarrow 4x-1-2x > 2x+3-2x$ 

- $\Rightarrow 2x-1>3 \Rightarrow 2x-1+1>3+1$
- 08. [-3, 2) 🔾 (2, 5] ব্যবধিটি কে সেট আকারে প্রকাশ কর।

Solve [-3,2) U(2,5] THE PENCY 2 TO 14 FOR THE 14

- = {x ∈ R: -3 ≤ x < 2 অথবা 2 < x ≤ 5} (qcl) ভানিবিটা বীকান প্রত
- = {x ∈ R:=3 ≤ x ≤5, x ≠ 2} q (u 12 kb. l) 国网络东西 国的家员 有同学
- 09. {x ∈ R: x ≤ -5 जर्भवा x ≥ 2} राज्यि जाकात लर्भ।


Solve  $\{x \in \mathbb{R}: x \le -5$  অথবা  $x \ge 2\} = (-\infty, -5] \cup [2, \infty)$ 

 $\frac{1}{|3x-5|}>2$  অসমতাটি সমাধান কর এবং সমাধান সেট সংখ্যারেখায় দেখাও।

Solve  $\frac{1}{|3x-5|} > 2$  প্রদন্ত পরম মানের অসমতা

- $\frac{1}{|3x-5|} \ge 2; 3x-5 \ne 0 \Rightarrow x \ne \frac{5}{3} \text{ (i.i.d.)}$
- $|\mathbf{q}, |3x-5| < \frac{1}{2} |\mathbf{q}, -\frac{1}{2} < 3x-5 < \frac{1}{2}$
- বা,  $-\frac{1}{2} + 5 < 3x 5 + 5 < \frac{1}{2} + 5$  [উভয় পক্ষে 5 যোগ করে]
- ৰা,  $\frac{9}{2} < 3x < \frac{11}{2}$  ৰা,  $\frac{9}{6} < x < \frac{11}{6}$  [উভয় পক্ষকে 3 দারা ভাগ করে]
- ৰা,  $\left\{\frac{9}{6} < x < \frac{10}{6}\right\} \cup \left\{\frac{10}{6} < x < \frac{11}{6}\right\}$  (কারণ,  $x \neq \frac{5}{3}$  অর্থাৎ  $x \neq \frac{10}{6}$ )
- $\exists 1, \left\{ \frac{3}{2} < x < \frac{5}{3} \right\} \cup \left\{ \frac{5}{3} < x < \frac{11}{6} \right\} \exists 1, \left( \frac{3}{2}, \frac{5}{3} \right) \cup \left( \frac{5}{3}, \frac{11}{6} \right)$

নির্ণেয় সমাধান সেট :  $(\frac{3}{2}, \frac{5}{3}) \cup (\frac{5}{3}, \frac{11}{6})$ 



# For Practiec

- 01. পর্মমান ব্যতিত প্রকাশ কর: |2x + 3| < 7

- Ans: |2x 5| < 1
- 03. f(x) = ax + by + c, a = 1, b = c = 0 and  $|f(x) 1| < \frac{1}{11}$  and  $|f(x) 1| < \frac{1}{11}$

কর যে, |{f(x)}²-1|< 23

- 04. मान निर्भग्र करा: 13 + | -1 -4| -3 | -8 |
- 05.  $S = {3n+2 \over 2n+1} : n \in N$  এর InfS এবং SupS নির্ণয় কর।

- $07. \ (-\infty,1] \cup [3,\infty)$  ব্যব্ধিকে সেট আকারে প্রকাশ কর।  $-\infty$ 
  - Ans: {x ∈ R: x ≤ 1 অথবা x ≥ 3}
- 08. कान कुल 120 जन ছाज्यत्र मध्या 75 जन वाश्मा ভाষায় এবং 60 जन देशकी
- 09. |x 5| = |2x 3| এর সমাধান কত?
- d) 15,000 35 + Ans: {-2,5

## GST গুচ্ছ/গুচ্ছভুক্ত বিশ্ববিদ্যালয়ের বিগত বছরের প্রশ্নোত্তর

- 01. R এর একটি উপস্টে S = { \frac{1}{n}} : n∈N । এর বৃহত্তম নিম্নীমা কত? [GST-A: 20-21]
- **B** 0

- n∈N} একটি সীমিত সেট। লঘিষ্ট উর্ধ্বসীমা 1∈S

এবং বৃহত্তম নিম্নসীমা 0∈S.

- 02. বাছৰ সংখ্যায় |x 1| ≥ 1 অসমতার সমাধান সেট কোনটি? [GST-A: 20-21]
  - Ø [-1, 1]

- (B)  $[-\infty, -1] \cup [1, \infty)$
- $\mathbb{C}$   $(-\infty,0] \cup [2,\infty)$
- (d-10,12) of the SD H p d h (d)
- Solve  $-1 \le x 1 \le 1 \Rightarrow 0 \le x \le 2 \Rightarrow [0, 2]$
- 03. বাছৰ সংখ্যার |3 2x| ≤ 1 অসমতাটির সমাধান- [CoU-A: 18-19]
  - $\triangle 1 < x < 2$
- $\bigcirc x \le 1, x \ge 2$
- Solve  $|3-2x| \le 1 \Rightarrow -1 \le 3-2x \le 1$
- $\Rightarrow -1 3 \le -2x \le 1 3 \Rightarrow -4 \le -2x \le -2$
- $\Rightarrow 2 \ge x \ge 1 \Rightarrow 1 \le x \le 2$
- 04. |2x-5| < 1 ध्वत्र नमाधान (नाँ [IU-D: 19-20]
  - **(A)**  $\{x ∈ \mathbb{R}: 2 < x < 5\}$
- @2<x<5
- Solve  $|2x 5| < 1 \Rightarrow -1 < 2x 5 < 1$
- 1+5<2x<1+5

- 05. |x-1| = |3x-4| এর সমাধান- [IU-D: 19-20]

- Solve  $|x-1| = |3x-4| \Rightarrow |3x-4| = |x-1|$
- (-) বৌধক ধরে,  $3x-4=-x+1 \Rightarrow 4x=5 \Rightarrow x$
- $\therefore x = \frac{3}{2}, \frac{3}{4}$
- 06. (1, 2) ব্যবধির মধ্যে সবচেয়ে বড় সংখ্যা কোনটি? [JKKNIU-B : 19-20]

- 07. यिम x 5 = √2x² 18x + 37 दब्र , তবে x =? [BRUR-E: 19-20]

- Solve (A) (B) ও (C) Option এ 2, 3 অথবা 4 দারা সিদ্ধ হয় না।  $6 \text{ QFT}, \text{L.S.} = 1; \text{R.S.} = \sqrt{2 \times 36 - 18 \times 6 + 37} = 1 \therefore \text{L.S.} = \text{R.S.}$
- 1 log<sub>2</sub>36 log<sub>2</sub>3 এর মান- [BRUR-E: 19-20]

- B Solve  $\frac{1}{2} \log_2^{36} \log_2^{3} = \frac{1}{2} \times 2 \log_2^{6} \log_2^{3}$ 
  - $= \log_2^6 \log_2^3 = \log_2(\frac{6}{3}) = \log_2^2 = 1$

PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . mn < 0 are mp > 0 ar, oca- [BRUR-E: 19-20] 1 np > 0 O np = 1 Onp < 0 ि Solve : mn < 0 ज्वर mp > 0  $mn \times mp < 0 \quad [-5 \times 3 = -15 < 0]$  $\Rightarrow m^2 \times np < 0 \Rightarrow np < \frac{0}{m^2} \Rightarrow np < 0$  $\left[\frac{0.027 \times 10^3}{900 \times 10^{-3}} = 3 \times 10^{m}\right]$  TeVT, m =? [BRUR-E: 19-20]  $\Rightarrow \frac{27}{0} = 3 \times 10^{m} \Rightarrow 3 = 3 \times 10^{m} \Rightarrow 10^{m} = 1 = 10^{p} \Rightarrow m = 0$ 1. √2 + √2 + √2 + √2 + ...... এর সবচেয়ে কাছাকাছি মান- [BRUR-E: 19-20] Solve  $\sqrt{2} = 1.414$  $1+\sqrt{2}=2.414$ ভাষ্ট্রে, প্রদন্ত রাশির সবচেয়ে কাছাকাছি মান =  $2.414 = 1 + \sqrt{2}$ 12 বে কোনো বাৰুব সংখ্যা a এর জন্য কোনটি ঘতঃসিদ্ধ? [SUST-A: 19-20] @ |a| > 1 B |a| ≤ 0 @ |a| ≥ a Solve य कार्ता वास्व সংখ্যा a राल, |a|≥ 0 राव। 11. |x-2| < 5 RCT [MBSTU-A: 19-20] A - 5 < x < 5 B - 3 < x < 7 C 5 < z < -5 D - 5 < x + z < 5Solve |x-2| < 5 $\Rightarrow -5 < x - 2 < 5 \Rightarrow -5 + 2 < x < 5 + 2 \Rightarrow -3 < x < 7$ 11. x² + x - 2 > 0 অসমতাটির সমাধান- [NSTU-B: 19-20]  $\{ -2, 1 \}$  $\mathbb{B}\left\{-2,\infty\right\}$ Solve  $x^2 + x - 2 > 0 \Rightarrow x^2 + 2x - x - 2 > 0$  $\Rightarrow$  x (x + 2) - (x + 2) > 0  $\Rightarrow$  (x - 1) (x + 2) > 0 ⇒  $(x-1) \{x-(-2)\} > 0$  ∴ x > 1  $\exists x < -2$ L. 5√5 এর 5 ভিত্তিক লগ কত? [NSTU-À: 19-20] Solve 5√5 এর 5 ভিত্তিক লগাল নাত =  $\log_5 5\sqrt{5} = \log_5 5^{1+\frac{1}{2}} = \log_5 5^{\frac{3}{2}} = \frac{3}{2}\log_5 5 =$ 16. **ৰোনটি মৌলিক সংখ্যা?** [NSTU-A: 19-20] B Solve মৌলিক সংখ্যা = 101 পরণ, √101 = 10.04 শ্রিচন্ড ভালেন্ড লাতার

17. |5 - 2x| ≤ 4 অসমতাটির সমাধান কোনটি? [NSTU-A: 19-20]  $\oplus \frac{1}{2} < x < \frac{9}{2}$ (0)  $-1 \le x \le 9$ Solve  $|5-2x| \le 4$  $4 \le 5 - 2x \le 4 \Rightarrow -4 - 5 \le -2x \le 4 - 5$  $\Rightarrow \frac{9}{2} \ge x \ge \frac{1}{2} \Rightarrow \frac{1}{2} \le x \le \frac{9}{2}$ 18. a, b, c ∈ R पांदर a > b राज c पांत्र रकान मार्त्मत जना ac > bc बर्दा Bc>0 B Solve a > b হলে ac > bc হবে, যখন c > 0 হয় c ধনাত্মক, তা ঘারা কোন বৃহত্তম মানকে তণ করলে তা বৃহত্তম হবে 🗎 🔭 19.  $\log_x^{\frac{3}{2}} = -\frac{1}{2}$  হলে, x এর মান কতা [NSTU-B: 19-20] (a)  $\frac{4}{9}$  (b)  $\sqrt{\frac{2}{3}}$  (c)  $\sqrt{\frac{3}{2}}$  (d)  $\frac{9}{4}$ Solve  $\log_x^{\frac{3}{2}} = -\frac{1}{2} \Rightarrow x^{-\frac{1}{2}} = \frac{3}{2} \Rightarrow x^{\frac{1}{2}} = \frac{2}{3} \Rightarrow x = \frac{4}{9}$ 20. log  $^{400}_{2\sqrt{5}}$ = x হলে, x এর মান কত? [NSTU-B : 19-20] © 8 0 4√5 0 0 4√5 B Solve  $\log_2 \sqrt{5} 400 = x \Rightarrow \log_2 \sqrt{5} (2\sqrt{5})^4 = x$  $\Rightarrow 4 \log_2 \sqrt{5} = x \Rightarrow x = 4$ 21. R, N, Q & Z बाबा यथा<mark>करम् वाह्य সংখ্যा, बाठाविक सर्था, मूनम सर्था ४</mark> পূর্ণ সংখ্যার সেট বুঝানো হলে নিচের কোনটি সঠিক? [BSMRSTU-B: 19-20]  $\triangle R \subset N \subset Z \subset Q^{(1)}$  $BN \subset R \subset Z \subset Q$  $\bigcirc N \subset Z \subset Q \subset R$ Solve  $N \subset Z \subset Q \subset R$ 22. |5 - 2x| ≥ 4 জসমতাটির সমাধান সেট হবে-[BSFMSTU-A: 19-20]  $\mathbb{B}\left(-\infty,\frac{1}{2}\right)\cup\left[\frac{9}{2},\infty\right]$  $\mathbb{O}\left[\frac{1}{2},\frac{9}{2}\right] \cup \left[\frac{27}{2},\infty\right)$ Solve  $|5-2x| \ge 4 \Rightarrow -4 \ge 5-2x \ge 4$  $\Rightarrow 9 \le 2x \le 1 \Rightarrow \frac{9}{2} \le x \le \frac{1}{2} \Rightarrow \frac{1}{2} \ge x \ge \frac{9}{2} \Rightarrow x \le \frac{9}{2} \text{ weat } x \le \frac{1}{2}$  $\therefore$  সমাধান সেট =  $\left(-\infty, \frac{1}{2} \mid \cup \mid \frac{9}{2}, \infty\right)$ 23. কোনটি অমূলদ সংখ্যা? [BSFMSTU-A: 19-20]  $\mathbb{C}\sqrt{2}$ ি Solve  $\sqrt{25} = 5$ ,  $\sqrt{16} = 4$ , 2 মূলদ এবং  $\sqrt{2}$  অমূলদ

A 20

24. |2-5|-|-20-3| = ? [RSTU-C: 19-20]

Solve |2-5|-|-20-3|=|-3|-|-23|=3-23=-20

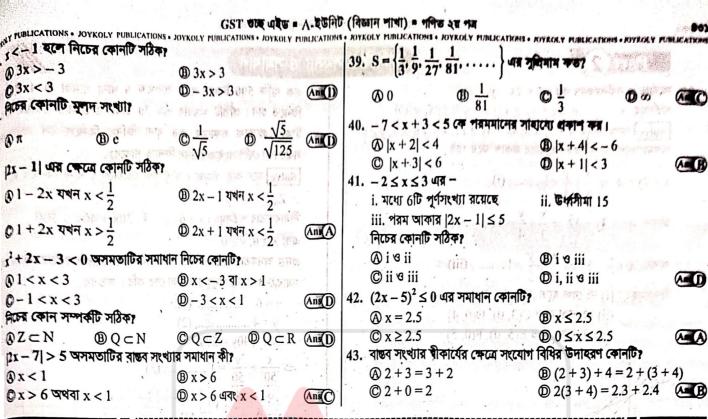
GST ७४६ इक विश्वविमाना छाउँ পরীক্ষার সর্বোত্তম বই ANTICET PUBLICATIONS - KOYKOLY PUBLICATIONS - JOYKOLY PUBLICATIONS -

| Paril 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | অধ্যায়ভিত্তিব                                                                 | ত গুরু              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|
| 01. $ 5-2x  \le 4$ অসমতাটির সমাধান-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0×x×1-6                                                                        |                     |
| <b>(0</b> −1≤ x ≤ 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                | Table of the School |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbb{O} - \frac{1}{2} < x < \frac{9}{2}$                                   | (Ans(B)             |
| 02.  2x - 5  < 3 অসমতাতির সমাধান c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | कानिए १८ १६ विनाक                                                              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 < x < 4                                                                      |                     |
| ©1 <x<2< td=""><td><math>\bigcirc 2 &gt; x &gt; 1</math></td><td>Ans B</td></x<2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\bigcirc 2 > x > 1$                                                           | Ans B               |
| 037 < x < -1 কে পরম্মানের সা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                            |                     |
| 0   x + 3   < 4<br>0   x + 4   < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                | (Ans(C)             |
| <ul> <li>044 ≤ x ≤ 2 কে পরম্মান চিহ্নের ম</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |                     |
| (A)  x + 1  ≤ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ®  x + 1  ≤ 1                                                                  | 140                 |
| ©  x+1 ≤5° == ,50° od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0  x + 1  \le 1$                                                              | (Ans(A)             |
| 05. বাছৰ সংখ্যায় 0 <  x - 3  < 4 অস                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | মতাটির সমাধান সেট্য                                                            | <u></u>             |
| $A \{x: -1 \le x \le 7\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) $\{x: -1 < x < 7\}$                                                        |                     |
| $\mathbb{O}\{x:-1 \le x \le 3\} \cap \{x:3 \le x \le 3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <x<7}< td=""><td>.MI</td></x<7}<>                                              | .MI                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | Ans(D)              |
| 06.   -16+3 + -1-4 -3- -1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7   এর মান কত্যু,                                                             | 1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | © 7                                                                            | AnsC                |
| 07. অসমতা $\frac{x(x+1)}{x-2} > 0$ এর সমাধান                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | সেট হলো-া িত কি                                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 1 × 0 × 2                                                                    | (Ans(D)             |
| $08.$ বাছৰ সংখ্যার উপসেট $S = \{x : 5x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | — 1 < x < 0, x > 2<br>— 16x + 3 < 0\ এব লঘিষ্ট উপ্ৰসীমা                        |                     |
| A - 5 (2/2) B - 3 - x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |                     |
| [3X-1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ \7 \Cs80 \7 \cdots                                                          | 4                   |
| $ \begin{array}{c} \text{Problem } \\ \text{OT } \text{OT } \\ \text{OT } \text$ | $\mathbb{B} \times \frac{1}{2}$                                                | 1                   |
| 101-61 विन्याराज्य है। सन्त्रात वालक हु                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | भून करने व देश हैं हैं। यह विस्तर मेर                                          |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbb{O}\left(0,\frac{1}{3}\right)\cup\left(\frac{1}{3},\frac{2}{3}\right)$ | Ans(D)              |
| 10.  x + 2  <  4x + 1  এর সমাধান ও                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | © N € Z € Q € रिग्रिनाक ग्रह                                                   |                     |
| $\mathbb{A}\left(-\infty,\frac{3}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = (S = 13) [1]                                                                 |                     |

18. 2x<sup>2</sup> - x + 2 এর ন্যূনতম মান কত? 19.  $\frac{1}{x(x-1)} < 0$  এর সমাধান নিচের কোনটি B x > 0 অথবা x < 1 © x > 0 অথবা x > 1 D x < 0 অথবা x < 1 20. পূর্ণসংখ্যার সেট Z আবদ্ধ - 01 🕳 "01 i. যোগের ক্ষেত্রে ii. বিয়োগের ক্ষেত্রে iii. গুণের ক্ষেত্রে নিচের কোন্টি সঠিক? B i & iii Ai &ii iii v ii 🔘 Di. ii Giii 21. ax - b > 0 এর সমাধানiii. কোনো সমাধান নেই, যখন a=0নিচের কোনটি সঠিক? গ্রামার হার্যমের মালীয়ে ছ Ai gii B ii g iii 22. |2x - 9| > 7 অসমতাটির সমাধান - $\triangle$   $(-\infty, 1)$ **B** (8, ∞)  $\mathbb{C}(-\infty,1)\cup(8,\infty)$  $\mathbb{D}(-\infty,1)\cap(8,\infty)$ 23.  $S = \{x : x \in \mathbb{Z} \text{ এবং } 8 \le x^2 \le 27\}$  এর গরিষ্ঠ নিমুসীমা নিচের কোনটিঃ  $\mathbb{B}-3$   $\mathbb{C}3$ 24. |2x - 7| ≤ 3 হলে নিচের কোনটি সঠিক?  $\bigcirc -7 \le x \le -3$  $\mathbb{B} - 5 \le x \le -2$  $\bigcirc 2 \le x \le 5$ (A=()  $\bigcirc 3 \le x \le 7$ 25. |2x + 1| < 3 অসমতার সমাধান সেট কোনটি?  $\triangle -2 \le x \le 1$  $\mathbb{B} - 2 < x < 1$  $\mathbb{C}-1 \leq x \leq 2$ And 26. S = {x ∈ ℝ : x - x² + 6 > 0} হলে, sup S = কত?  $\bigcirc 2^{-2}$   $\bigcirc 8^{-3}$   $\bigcirc 2$   $\bigcirc 2$ (12) 27. [1, 3) ব্যবধির অসমতা রূপ নিচের কোনটি?

11. |x + 1| ≤ |x - 1| এর সমাধান- $\triangle x \ge 0$  B x ≤ 1  $\bigcirc x \leq 0$ (Ans(C 12. |5x + 7| = 3 হলে, x এর মান কত্য

13. |x-5| = 5 হলে, x এর মান কত?


**(A)** 10  $\bigcirc 0, -10$   $\bigcirc 10, 0$   $\bigcirc 10$ 14. a ও b সহমৌশিক এবং  $\frac{a}{c}$ ∈  $\mathbb{N}$  হলে, b এর মান কত? 23. त्यानि प्रभान माचा


15.  $-3 \le 2x < 8$  এর সমাধানে পূর্ণ সংখ্যা কয়টি? 🚯 5 💮 🔞 4 💮 🔘 🔘 कारनार्टिर ना 🙉 16. यपि x > y ध्वर z < 0 হয়, তবে निक्त्र কোনটি সতা?

 $\mathbb{B}1 \leq x < 3$  $\bigcirc 1 < x \le 3$  $\bigcirc 1 \le x \le 3$ And 28. a = 3, b = -7 একং c = -9 হলে ||a - b| - c| এর মান কোনটি? **B** 5 A 29. S =  $\{x \in \mathbb{N}: 5 \le x^2 + 1 \le 82\}$  এর সুপ্রিমাম কত? **A** 2 B) 4 And © 9 30. (x – 4) (x – 5) > 0 এর সমাধান কোনটি? A x > 4 এবং x < 5 ® x < 4 অথবা x > 5 © x < 4 এवर x > 5

32.  $|x-3| \le 1$  অসমতার সমাধান কোনটি?

 $\triangle 1 < x < 3$ 





# 思幹知此他為為

প্রয়োজনায় সূত্রাবাল

বোগান্রমী প্রোমামের মৌলিক ধারণা: ১৯৩৯ সালে রাশিয়ার গণিতবিদ এল. ভি. কার্মিভিচ (Kantorovich) সর্বপ্রথম ব্যবসা প্রতিষ্ঠানের সমস্যাকে গাণিতিকভাবে 🗝 🗖 করে যোগাশ্রয়ী প্রোগ্রামের একটি মডেল তৈরি করেন। কোন ব্যবসা প্রতিষ্ঠানের সমস্যাকে তার সীমাবদ্ধতা ও শর্ত সাপেক্ষে একাধিক স্বাধীন চলকের বৈধিক অসমতা ও একটি অভিষ্ঠ ফাংশন গঠনই হল যোগাশ্রুয়ী প্রোগ্রাম।

মোগান্রায়ী শব্দের অর্থ রৈখিক (linear) এবং প্রোগ্রাম শব্দের অর্থ পরিকল্পনা, যা i) দারা কোন কর্মসম্পাদনের বিভিন্ন উপায়ের মধ্য হতে একটি উৎকৃষ্ট উপায় নির্ধারণ করা বুঝায়। ব্যক্তিগত জীবনে আমরা কাডিখত লক্ষ্য অর্জনের জন্য পরিকল্পনা করি। বৃহৎ শিল্প প্রতিষ্ঠান এবং উৎপাদন কারখানাগুলোতেও ii) मुन्तिकञ्चना घाता भर्वनिम्न विनिरग्राण करत भर्वाष्ठ मूनाका व्यर्जन करा मध्य। কোন উৎপাদন কারখানায় পুঁজি, শ্রম, কাঁচামাল, যদ্রপাতি ইত্যাদির কোনটি কি পরিমাণ সমাবেশ ঘটালে সীমিত ব্যয়ে সর্বোচ্চ উৎপাদন সম্ভব হতে পারে তা iii) সমস্যার জ<mark>ন্য</mark> অবশ্যই সীমিত সম্পদ থাকতে হবে। যেমন, একটি উৎপাদন নিরপদ করা যোগাশ্রয়ী প্রোগ্রামের উদ্দেশ্য। যোগাশ্রয়ী প্রোগ্রাম স্বল্প ব্যয়ে ইংপাদিত পণ্যের পরিমাণ, আকৃতি ও গুণগত মান নির্ধারণ করে।

বোগান্রয়ী প্রোমানের সমস্যা গঠন: নিম্নলিখিত ধাপগুলো অনুসরণ করে যোগাশ্রয়ী व्याधारमञ्ज सम्मा १० कता रहा।

বংম ধাপ: সিদ্ধান্তকারীকে সঠিক সিদ্ধান্ত এহণ এবং এর সাথে সম্পর্কযুক্ত **ज्नरूटला हिस्टि करत সমস্যাটিকে ह्निक्त भाषारम थेकान करा। यम्म**-দুইটি দ্রব্যের কোনটি কি পরিমাণ উৎপাদন করলে সর্বোচ্চ মুনাফা হবে তা x; y 3(11-3)學際(4.51)35 इन्द्र दाद्रा श्रकान क्रा।

বিঠীয় ধাপ: যার পরিমাণকে সর্বোচ্চ অথবা সর্বনিম করতে হবে তাকে উপরোজ চ্বৰ ঘারা, গাণিতিক ফাংশনে প্রকাশ করা, যাকে অভীষ্ট ফাংশন (objective function) वला । व्यक्ति सह कर र काली हा , नाम हाली

তৃতীর ধাপ: সীমাবদ্ধতাওলো চিহ্নিত করে তাদেরকে চলকের মাধ্যমে রৈথিক र्रेनीक्द्रम वा अनम्या आकारत थकाम कता। विश्वलारक नीमावक्रणात iv) (constraints) সেট বলে।

চতুর্ধ ধাপ: রৈখিক সমীকরণগুলোর লেখ অন্তন করে এদের সমাধান এলাকা বা বনুক্র এলাকা (Feasible Region যা ছায়া ঘেরা ক্ষেত্র) চিহ্নিত করা।

প্রথম ধাপ: ছায়া ঘেরা ক্ষেত্রের কৌণিক বিন্দুগুলোর ছানাঙ্ক অভীষ্ট ফাংশনে বসিয়ে এর সর্বোচ্চ অথবা সর্বনিম মান নির্ণয় করা।

- যোগাশ্রমী প্রোগ্রাম এর শর্তাবলি: কতকগুলো শর্তপূরণ সাপেক্ষে যে কোন সমস্যার (সর্বোচ্চ বা সর্বনিম মান নির্ণয় করণ) সমাধান করার জন্য যোগাশ্রয়ী প্রোঘাম প্রয়োগ করা হয়। নিমে শর্তগুলো উল্লেখ করা হল-
- সমস্যার একটি অভীষ্ট ফাংশন (Objective function) যেমন- মুনাফা বা উৎপাদন ব্যয়, অবশ্যই থাকতে হবে যার সর্বোচ্চ বা সর্বনিম মান নির্ণয় করতে হবে এবং তাকে সিদ্ধান্ত চলকের রৈথিক অপেক্ষক হিসেবে প্রকাশ করা যাবে।
- সমস্যার অবশ্য<mark>ই বিকল্প পদ্ধতির</mark> কার্যক্রম এর ব্যবস্থা থাকতে হবে। যেমন-একটি দ্রব্য দুইটি মেশিনে প্রস্তুত হতে পারে। এরপক্ষেত্রে সমস্যা হবে কোন মেশিনে ক<mark>ত একক দ্রব্য প্রস্তুত হবে তা নির্ণ</mark>য় করা।
- কারখানায় <mark>কাঁচা মালের যোগাড় সীমিত হতে বাধ্য।</mark>
- iv) প্রতিষ্ঠানের প্রদন্ত সীমা<mark>বদ্ধতা ও শর্তগুলো একাধিক রৈখিক অসমতায়</mark> প্রকাশযোগ্য হবে।
- সিদ্ধান্ত চলকগুলো অবশ্যই পর<mark>ম্পর</mark> সম্পর্কযুক্ত ও অঝণাতাক হতে হবে। যেমন, দুই প্রকার দ্রব্যের একটি x একক এবং অন্যটি y একক প্রস্তুত করা হলে x ও y অঝণাতাক হবে অর্থাৎ  $x \ge 0$ ,  $y \ge 0$ .
- যোগাশ্রুয়ী প্রো<mark>ঘাম এর সুবিধা: যো</mark>গাশ্রুয়ী প্রোঘামের উদ্দেশ্য সর্বনিম বিনিয়োগ ও সর্বোচ্চ লাভ। এর সুবিধাতলো নিমুরপ:
- উৎপাদন যোগ্য চলকের কাজ্ঞ্চিত মান নির্ধারণে সহায়ক। যেমন, প্রাতিষ্ঠানিক লোকবল, যদ্রপাতি এবং কাঁচামালের ন্যূনতম ব্যবহার করে লক্ষ্যমাত্রার পণ্য উৎপাদন সম্ভব।
- ii) ভবিষ্যতকালের ব্যবহাপকের উৎপাদনের জ্ঞান ও দক্ষতা বৃদ্ধি করে।
- iii) সকল প্রতিবন্ধকের সাথে পরিচিত হওয়া সম্ভব হয় এবং কা**ল্কি**ত পরিমাণ পণ্য উৎপাদন ও বিতরণের ষল্প ব্যয় নিশ্চিত করা যায়।
- অনাকাজ্মিত প্রতিবন্ধকতা ও শর্ত হাস পায়, যার ফলে সিদ্ধান্তের মাত্রা বৃদ্ধি করা সম্ভব হয়।
- বৃহৎ শিল্প কারখানায় উৎপাদিত পণ্যের আকৃতি ও তণ্যত মান নির্ধারণে একং সামরিক কার্যক্রমে যোগাশ্রয়ী প্রোগ্রামের ভূমিকা অপরিসীম।

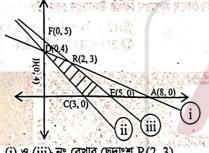
PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS

## গাণিতিক সমস্যা ও সমাধান

#### 01. সর্বোচ্চ ও সর্বনিমুক্রণ কর I Z = 2x - v

শতসমূহ  $x + 2y \le 8$ ;  $4x + 3y \ge 12$ ;  $x + y \le 5$ ;  $x, y \ge 0$ Solve \$\frac{\text{Solve}}{\text{Solve}} \frac{\text{Solve}}{\text{Solve}} \frac{\text{Solve}}{\text{Solve} অসমতাওলোকে সমীকরণ আকারে প্রকাশ করে পাই,

KONKOLY MININGATIONS . NOTICELY MININGATIONS . NOYKOLY MININGATIONS . NOTIC


$$x + 2y = 8 \Rightarrow \frac{x}{8} + \frac{y}{4} = 1$$
 .....(i)

আবার, 
$$4x + 3y = 12 \Rightarrow \frac{x}{3} + \frac{y}{4} = 1$$
.....(ii)

আবার, 
$$x + y = 5 \Rightarrow \frac{x}{5} + \frac{y}{5} = 1$$
.....(iii)

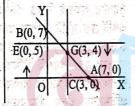
বিন্দুসমূহ- (i) নং রেখা হতে A(8, 0), B(0, 4)

- (ii) নং রেখা হতে C(3, 0), D(0, 4)
- (iii) লং রেখা হতে E(5, 0), F(0, 5)



(i) ও (iii) নং রেখার ছেদাংশ R(2, 3)

শর্তাধীন বিন্দুসমূহ: C(3, 0), B(0, 4), E(5, 0) ও R(2, 3)


- C(3, 0) বিন্দুতে Z = 6
- B(0, 4) বিন্দুতে Z = -4
- E(5, 0) বিন্দুতে Z = 10
- R(2,3) বিন্দুতে Z=1

$$Z_{min} = -4$$
 যেখানে  $x = 0$  এবং  $y = 4$ 

 $Z_{max} = 10$  যেখানে x = 5 এবং y = 0

02.  $x \ge 0, y \ge 0, x + y = 7, x \ge 3, y \le 5$  শঠসাপেন্দে z = 3x + 4y এর সর্বনিম মান নির্ণয় কর।

| 1 1     |                       |
|---------|-----------------------|
| -11215  | Solve $x + y = 7$ (i) |
| ang s   | x = 3 (ii)            |
|         | y = 5(iii)            |
| al medi | (i) ও (ii) থেকে পাই,  |
|         | y = 7 - 3 = 4         |



 $\therefore G \equiv (3,4)$ 

G = (3, 4) বিন্দতে,  $z = 3 \times 3 + 4 \times 4 = 25$ 

A = (7, 0) বিদ্যুতে,  $z = 3 \times 7 + 4 \times 0 = 21$ 

.: A(7, 0) বিন্দুতে অভিষ্ট ফাংশনটির সর্বনিম মান 21.

একটি বাগানে সর্বোচ্চ 23 বর্গমিটার জমিতে পেয়ারা এবং সুপারির চারা শাগাতে হবে। একটি পেয়ারার জন্য 2 বর্গমিটার এবং একটি সুপারির জন্য 1 বর্গমিটার জায়গা বরাদ। প্রতি পেয়ারার মূস্য 0.4 টাকা এবং প্রতি সুপারির मुन्छ 1.20 টাকা। यनि মোট 11.60 টাকার বেশি ব্যয় ना হয়, তবে সর্বোচ্চ কত সংখ্যক গাছ লাগানো যাবে?

Solve মনে করি, পেয়ারার চারার সংখ্যা x এবং সুপারির চারার সংখ্যা y। তাৎৰে Z = x + y; 2x + y ≤ 23; 40x + 120y ≤ 1160; ं अज्ञानक करनिनी तक्षेत्र अञ्चल भागाता भी

- $x, y \ge 0$ ∴ মনে করি, 2x + y = 23 ......(i)
  - এবং 40x + 120y = 1160 .....(ii)
  - (i) ও (ii) নং সমাধান করে, x = 8 এবং y = 7
  - পেয়ারার চারার সংখ্যা ৪ টি এবং সুপারির চারার সংখ্যা 7 টি

04. এক ব্যক্তি 500 টাকার মধ্যে কমপক্ষে 6 খানা গামছা ও 4 খানা জোক কিনতে চান। প্রতিটি গামছার দাম 30 টাকা ও প্রতিটি তোয়ালের দায় টাকা। প্রত্যেক প্রকারের কত খানা জিনিস কিনলে সে প্রদেশু শর্জা সর্বাপেক্ষা বেশি সংখ্যক জিনিস কিনতে পারবে?

Solve মনে করি, গামছা x খানা এবং তোয়ালে y খানা কিনতে হবে।

$$\therefore Z_{max} = x + y$$

সীমাবদ্ধতার শর্তসমূহ : x ≥ 6 ; y ≥ 4 ; 30x + 40y ≤ 500

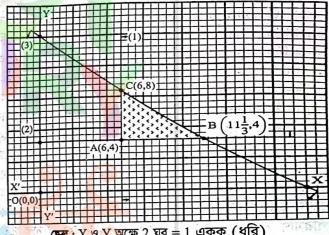
একং x ≥ 0, y ≥ 0

প্রদন্ত অসমতাগুলাকে সমতা ধরে সমীকরণগুলোর লেখচিত্র অঙ্কন করি 🛭 সমাধানের সম্ভাব্য অনুকূল এলাকা বের করি। অতএব ,

MOO (B) OCI

$$x = 6$$
 .....(1),

$$y = 4$$
 .....(2)


30x + 40y = 500

$$\Rightarrow \frac{x}{\frac{50}{3}} + \frac{y}{\frac{50}{4}} = 1 \dots (3)$$

$$x = 0$$
 .....(4)

 $y = 0 \dots (5)$ (1) নং রেখার যে পাশে মূলবিন্দু অবস্থিত সেই পাশের যেকোনো বিন্দু (5, এর জন্য (1) নং এর অসমতা x ≥ 6 সিদ্ধ নয়। তাই x ≥ 6 এর সম্ভাব্য এন উক্ত রেখাসহ মূলবিন্দু যে পাশে তার বিপরীত এলাকা। একইভাবে ছ

অসমতাগুলোর সম্ভাব্য এলাকা লেখচিত্রে দেখানো হলো :



ছেল: X ও Y অক্ষে 2 ঘর = 1 একক (ধরি)

লেখচিত্র হতে পাই সমাধানের সম্ভাব্য অনুকুল এলাকা ABC.

A বিন্দৃটি (1) এবং (2) এর ছেদবিন্দু ∴ A (6, 4)

B বিন্দৃটি (2) এবং (3) এর ছেদবিন্দু : B (111, 4)

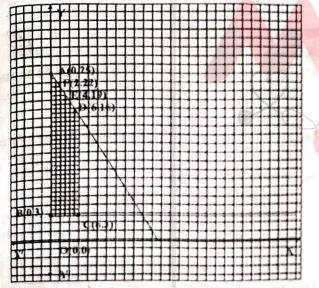
पवर C विमृष्टि (1) पवर (3) पत एक्निवन्न : C(6, 8) এখন, A(6, 4) এর জন্য Z = 6 + 4 = 10

$$B(11\frac{1}{3}, 4)$$
 এর জন্য  $Z = 11.33 + 4 = 15.33$ 

এখানে, B(11-, 14),বিন্দুতে Z এর মান সর্বোচ্চ হয় যা একটি ভগ্নাংশ।

জিনিসের সংখ্যা ভগ্নাংশ হবে না।

- তাই (3) নং এ y = 5 বসিয়ে পাই,  $3x + 4 \times 5 = 50 \implies x = 10$
- ∴ (10, 5) বিন্দুটি (3)নং সমীকরণের উপর অবস্থিত যা সকল শৈৰ্ত পুরণ <sup>রু</sup>
- গামছা 10 খানা এবং তোয়ালে 5 খানা । বিক্রমনী ক্রিক্তিক ক্রিক্তির ক্রিক্তি


MELICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY লাক সর্বাধিক 500 টাকা ব্যয়ে কয়েকটি কাপ ও প্লেট কিনতে চান। প্রতি ব্দুর দাম 30 টাকা ও প্লেটের দাম 20 টাকা। অন্যন 3টি প্লেট ও অন্ধিক 6টি ক্রু কেনার শর্তে ঐ টাকায় কোন প্রকারের কতন্তলো জিনিস কিনলে তিনি মোট প্রধিক জিনিস কিনতে গারবেনঃ

Solve মনে করি, লোকটি x টি কাপ এবং y টি প্লেট কিনতে পারবেন। क्रिमादा, 30x + 20y ≤ 500 धन x ≤ 6, y≥ 3, x > 0,y > 0 की कार्मन, Z<sub>max</sub> = x + y

র্নের অসমতাগুলোকে সমতা ধরে সমীকরণগুলোর লেখচিত্র অঙ্কন করি এবং র্মাধানের সম্ভাব্য অনুকূল এলাকা বের করি। অতএব.

$$30x + 20y = 500 \Rightarrow 3x + 2y = 50 \Rightarrow \frac{x}{50} + \frac{y}{25} = 1$$
 ....(1)

$$y = 6$$
 ......(2)  $y = 3$  ......(3)  $y = 0$  .....(5)



হৰ কাছে থেকে কৌণিক বিন্দুখলো A(0,25), B(0,3), C(6,3) এক D(6,16) এর (1) নং রেখার উপরক্ষ E(4,19), F(2,22) বিন্দু দুইটি নির্ণয় করি।

এখন, A(0, 25) এর জন্য Z = 0 + 25 = 25 B(0,3) এর জন্য Z = 0 + 3 = 3 C(6.3) এর জন্য Z = 6+3=9 D(6,16) এর জন্য Z = 6 + 16 = 22 E(4,19) এর জন্য Z = 4 + 19 = 23 F(2,22) এর জন্য Z = 2 + 22 = 24  $0 \le x \le 6$  ব্যবধিতে, F(2,22) বিন্দুতে Z এর মান সর্বোচ্চ সূতরাং, তিনি 2 টি কাপ এবং 22 টি প্লেট কিনতে পারবেন। Ans. 2 টি কাপ, 22 টি প্লেট।

## For Practice

01. Z = 3x + y যথন  $2x + y \le 8$ ,  $2x + 3y \le 12$ ,  $x \ge 0$ ,  $y \ge 0$ . শর্তাধীনে শবিষ্ঠ ও গরিষ্ঠ মান নির্ণয় কর। Ans:  $Z_{max} = 12$ ,  $Z_{min} = 4$ .

02. একজন ব্যবসায়ী তার দোকানের জন্য রেডিও এক টেলিভিশন মিলে 100 সেট কিনতে পারেন। রেডিও ও টেলিভিশন প্রতিটির ক্রয়স্ন্য ফাক্রমে 40 ডলার ও 120 ভলার। প্রতি রেচিও এবং টেলিভিশন সেটে লাভ যথাক্রমে 12 এবং 24 ভলার। সর্বোচ্চ 10400 ভলার বিনিয়োগ করে তিনি সর্বোচ্চ কত লাভ করতে Ans: 2160 ডলার। পারেন।

03. একজন ব্যবনায়ী তার দোকানের জন্য রেডিও একং টেলিভিশন মিলে 100 সেট কিনতে পারেন। রেডিও সেট একং টেলিচিশন সেট প্রত্যেকটির ক্রমমূল্য यपाकरम् 40 ७ 120 जनात । शकि उडिंग अन्य क्रिनिनिन स्मक्रे नाट यपाकरम 15 % 30 ছলার। সর্বোচ্চ 10800 ছলার বিনিয়োগ করে তিনি সর্বোচ্চ কত শান্ত করতে পারেন। Ans: 2775 ডলার

04. Z = 3x + y 작年 2x + y ≤ 8, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0.

Ans:  $Z_{max} = 12$ ,  $Z_{min} = 4$ 

05. x + y ≤ 5, x + y ≥ 8, x, y ≥ 0 भएई 2x - y ब्रानिधित्र जविनेस मान कठा

06. আধনিক উৎপাদন ও কটন ব্যব্যায় যোগাল্ডয়ী শ্লোমাম একটি অপরিহার্য द्याधिवार - याचा कर।

07. मार्नाफकरण करा Z = 2x + 3y मार्डनम्बः x + 2y ≤ 10; x + y ≤ 6; x 5 4, x, y 2 0

08. x + y ≤ 5, x + 2y ≥ 4,2x + y≥ 4, x, y ≥ 0 मर्स्ट 3x + 2y ब्रानिण्डि

09. x + y ≤ 6, x - y ≤ 2,3y - x ≤ 10 x , y ≥ 0 শঠসমূহ সামে x = 2y - x ৱালিটির স্বনিমু মান নির্ণয় কর। Ans: x = 2,y = 0, Z<sub>min</sub> = -2

## Part 3

# GST ভচ্ছ/ভচ্ছভুক্ত বিশ্ববিদ্যালয়ের বিগত বছরের প্রশ্নোত্তর

मान कानिए। [CoU-A: 19-20]

08

B 10

Solve

B(0,2)D(0,1)

(i) ও (ii) ছেদবিন্দু  $E\left(\frac{4}{3}, \frac{2}{3}\right)$ 

A दिनुष्ठ,  $z = 3 \times 2 + 6 \times 0 = 6$ 

Degree, z = 3 × 0 + 6 × 1 = 6

Element  $z = 3 \times \frac{4}{3} + 6 \times \frac{2}{3} = 8$ 

 $x+y \le 2, x+4y \le 4, x, y>0$  শর্তসাপেন্দে z-3x+6y এর সর্বনিম্ন  $02, z=3x+4y, x+y \le 7, 2x+5y \le 20, x, y \ge 0$  বোগাল্লী লোলামিতির সবোচে মান কতা [CoU-A: 18-19]

A 30

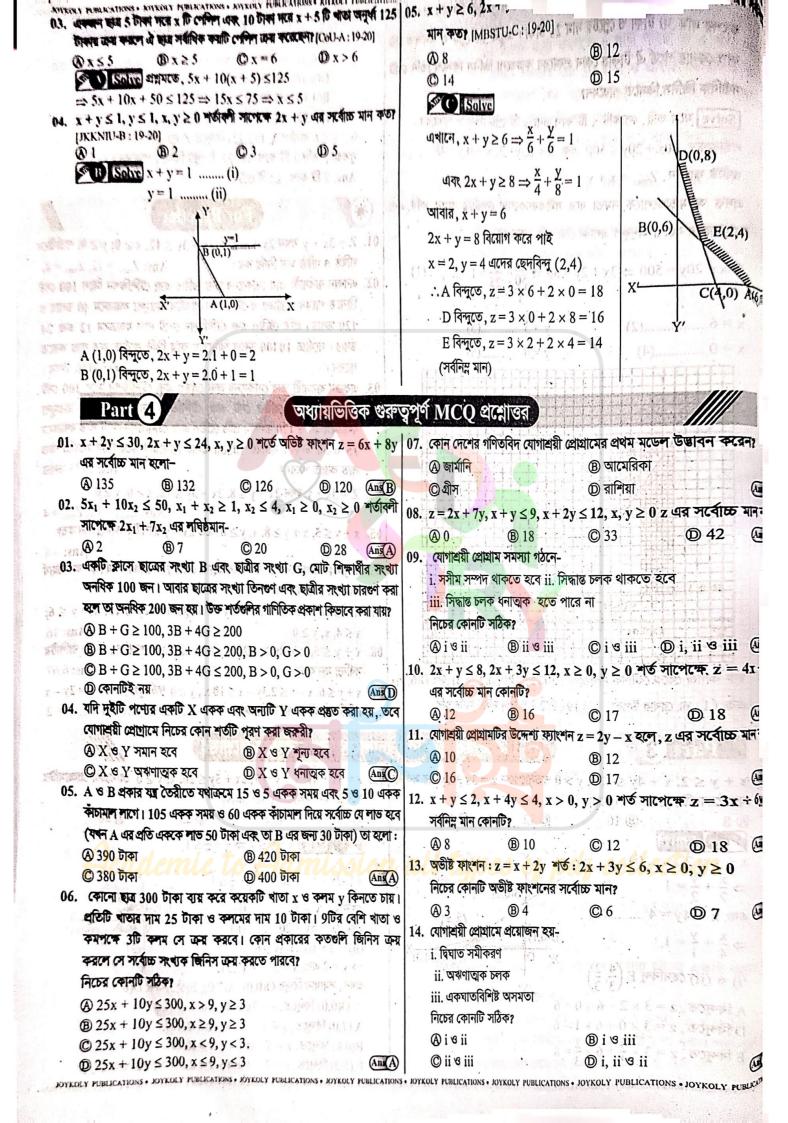
Solve  $x + y \le 7 \Rightarrow \frac{x}{7} + \frac{y}{7} \le 1$ 

এবং  $2x + 5y \le 20 \Rightarrow \frac{x}{10} + \frac{y}{5} \le 1$ 

এখন x + y = 7 .....(i)

এবং 2x + 5y = 20.....(ii)

 $(ii) - 2 \times (i) \Rightarrow 3y = 6$ 


 $\Rightarrow$  y = 2 একং x = 5 ∴ E (5,2)

এখন, সমাধান বিন্দুর O(0,0), A(7,0), E(5,2) এবং D(0,5) ∴ O(0,0) বিন্দতে, z = 3x + 4y = 0

A (7,0) বিন্দুতে,  $z = 3 \times 7 + 4 \times 0 = 21$ 

B(0,5) বিন্দুতে,  $z = 3 \times 0 + 4 \times 5 = 20$ 

E(5,2) বিন্দুতে,  $z = 3 \times 5 + 4 \times 2 = 23$  সর্বোচ্চ মান = 23



# জটিল সংখ্যা

# Part 1

#### প্রয়োজনীয় সূত্রাবলি

্রানি:  $x, y \in R$  এ থাকলে x + iy কে জটিল সংখ্যা (Complex pumber) বলা হয় এবং z বা C ঘারা সূচিত করা হয়। y = 0 হলে, ধাটি বান্তব এবং x = 0 হলে, সংখ্যাটি কাল্পনিক। x কে z এর বান্তব অংশ Real part of z = Re(z) এবং y কে z এর কাল্পনিক অংশ [Imaginary of z = Im(z)] বলা হয়।

্রা + 1 = 0 এবং  $x^2 - 2x + 3 = 0$  সমীকরণছয়ের কোন বাস্তব সমাধান হো ঐতিহাসিকভাবে এ ধরণের সমীকরণের অস্তিত্বের জন্য কাল্পনিক সংখ্যা বারণা সৃষ্টি করা হয়েছে। বিশিষ্ট গণিতবিদ অয়লার (Leonhard Euler:1707–1783) এমন একটি প্রতীক ব্যবহার করেন যার কা –1 হবে। এই প্রতীকটিকে i দ্বারা সূচীত করা হয়; অর্থাৎ  $i^2 = -1$ . i কে imaginary number নাম দেওয়া হয়। অবশ্য ইটালীয় গণিত শান্তবিদ হার্চানোর অবদানের কথাও এখানে উল্লেখ্য। কার্ডানো i কে 'Fictitious' or Sophistic' সংখ্যা নামে অভিহিত করেন।

্বার একটি জ্যামিতিক ব্যাখ্যা আছে। জার্মান গণিতবিদ গাউস প্রথমে এই ব্যাখ্যা দেন, i কে সংঘটন হিসাবে বিবেচনা করে এটি x অক্ষের উপর সংঘটিত করনে, x অক্ষের ধনাত্মক দিকে (Anti Clockwise) 90° কোণে আবর্তিত

ন্ধ এবং —i ঋণাতাক দিকে 90° কোণে আবর্তিত হয়। De Moiver's Formula:

 $z^n = r^n e^{in\theta} = r^n (\cos n\theta + i \sin n\theta)$ 

 $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta$ 

মৃতরাং, z = x + iy এর মঙুলাস  $r = \sqrt{x^2 + y^2}$  হলে,  $y \neq i + x = x \cdot \epsilon$ 

 $z^n=(x+iy)$  এর মড়ুলাস হবে  $(\sqrt{x^2+y^2})^n$ । আর্গুমেন্ট হবে  $n\theta$  । নিত্ত দিন রাশির ধর্ম:

a+ib=0 হল, a = 0, b = 0

a+ib = c + id হলে, a = c এক b = d

a+ib त्रानित अनुवन्धी वा मिथून (Conjugate) त्रानि a – ib । জिंग त्रानित्क

र **पाता প্রকাশ** করা হলে অনুবন্ধী জটিল রাশিকে 🗾 पाता প্রকাশ করা হয়।

-3-i5 এর অনুবন্ধী -3 + i5xl == \ - \ \ + e + e + e = e |

षम्वकी पृष्टि জটিল রাশির যোগফল এবং গুণফল বান্তব হয়।

যেমন- (a + ib) + (a − ib) = 2a; বান্তব।

(a + ib).(a - ib) = a<sup>2</sup> - i<sup>2</sup>b<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup>; বান্তব।

জনুবন্ধী নয় এরূপ দুটি জটিল রাশির যোগফল, বিয়োগফল, গুণফল এবং গগফল প্রত্যেকটিই জটিল হয়।

**নেন ধনাত্মক অখণ্ড সূচকবিশিষ্ট জটিল সংখ্যা একটি জটিল** সংখ্যা।

মেন-  $(a + ib)^n = একটি জটিল সংখ্যা।$ 

পোন জটিল সংখ্যার মূল একটি জটিল সংখ্যা।

प्रमन- एa + ib 'वकि जिन मर्था।

বঙ্গে বান্তব সংখ্যা এক প্রকার জটিল সংখ্যা। কারণ যে কোন বান্তর সংখ্যা x

দ x + i.0 আকারে প্রকাশ করা যায়।

(a) z = x + iy হলে,

(i)  $|z| = \sqrt{x^2 + y^2}$ 

(ii)  $|z| = |\bar{z}| = |-z| = |-\bar{z}|$ 

(iii)  $|z|^2 = |\overline{z}|^2 = |-z|^2 = |-\overline{z}|^2 = z\overline{z}$ 

(iv)  $z_1$  ও  $z_2$  দুইটি জটিল সংখ্যা হলে ,  $|z_1z_2| = |z_1| \times |z_2|$ 

$$(v) \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}; z_2 \neq 0$$

(vi)  $|z_1 + z_2| \le |z_1| + |z_2| + |z_3| + |z_4| + |z_5| + |$ 

(vii)  $|z_1 - z_2| \ge |z_1| - |z_2|$ 

(viii)  $(x_1 + iy_1)(x_2 + iy_2)(x_3 + iy_3)$  আকারের জটিল সংখ্যার মতুলাস  $\mathbf{r} = \sqrt{(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2).....}$ 

(ix)  $\frac{(x_1+iy_1)(x_2+iy_2)(x_3+iy_3)....}{(x_4+iy_4)(x_5+iy_5)(x_6+iy_6).....}$  আকারের জটিল সংখ্যার মঙূলাল,

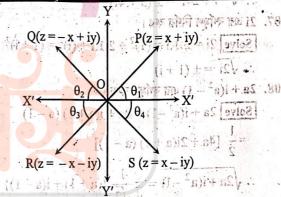
$$r = \sqrt{\frac{(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2)...}{(x_4^2 + y_4^2)(x_5^2 + y_5^2)(x_6^2 + y_6^2)...}}$$

 $\Rightarrow$  (b) z = x + iy হলে আগুমেন্ট  $\theta = \tan^{-1} \frac{y}{x^2}$   $\left| z \right| = 0$  (i +

(i)  $z^n = (x + iy)^n$  হলে আর্গুমেন্ট হবে n $\theta$ 

 $\frac{x_1+iy_1}{x_2+iy_2}$  আকারের জটিল সংখ্যার আর্থুমেন্ট,

$$\theta = \tan^{-1} \left( \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2} \right) = \tan^{-1} \frac{y_1}{x_1} - \tan^{-1} \frac{y_2}{x_2} i + \lambda = \frac{1 - \zeta}{i\xi - \zeta}$$
 30


-(iii) (x<sub>1</sub>+iy<sub>1</sub>)(x<sub>2</sub>+iy<sub>2</sub>) আকারের জটিল সংখ্যার আর্গুমেন্ট,

$$\theta = \tan^{-1} \left( \frac{x_1 y_2 + x_2 y_1}{x_1 x_2 - y_1 y_2} \right) = \tan^{-1} \frac{y_1}{x_1} + \tan^{-1} \frac{y_2}{x_2}$$

(iv)  $Arg(z_1z_2) = Arg z_1 + Arg z_2$ 

(v)  $\operatorname{Arg}(z_1/z_2) = \operatorname{Arg}(z_1 - \operatorname{Arg}(z_2)) = \operatorname{Arg}(z_1 - \operatorname{Arg}(z_2))$ 

## চতুর্ভাগ অনুযায়ী <mark>জটিল সংখ্যার আর্গুমেন্ট নির্ণয় :</mark>



i. z = x + iy এর জন্য অর্থাৎ ১ম চতুর্ভাগের বিন্দু (x, y)

$$\theta_1 = \tan^{-1}\left(\frac{y}{x}\right); -\pi \le \theta_1 \le \pi, \ 0 \le \theta_1 \le 2\pi$$

ii. z=-x+iy এর জন্য অর্থাৎ, ২য় চতুর্ভাগের বিন্দু (-x,y)  $\theta_2=\pi- an^{-i}\frac{y}{x}; -\pi \leq \theta_2 \leq \pi, 0 \leq \theta_2 \leq 2\pi$ 

iii. z = -x - iy এর জন্য অর্থাৎ , ৩য় চতুর্ভাগের বিন্দু (- x, - y)

$$\theta_3 = \pi + \tan^{-1}\frac{y}{x}$$
;  $[0 < \theta_3 < 2\pi] = -\pi + \tan^{-1}\frac{y}{x}$ ;  $[-\pi < \theta_3 \le \pi]$ 

iv. z = x – iy এর জন্য অর্থাৎ, ৪র্থ চতুর্ভাগের বিন্দু (x, – y)

$$\theta_4 = 2\pi - \tan^{-1}\frac{Y}{X}$$
,  $[0 \le \theta_4 < 2\pi] = -\tan^{-1}\frac{Y}{X}$ ;  $[-\pi < \theta_4 \le \pi]$ 

KINETRA PUBLICATIONS - ATTECH PUBLICATIONS - ANY PU

# Part 2

#### গাণিতিক সমস্যা ও সমাধা

01. 4 + 31 जब महनान ७ जागूरमणे निर्वत कत ।

Solve মছুলাস, 
$$r = \sqrt{4^2 + 3^2} = 5$$
; আর্থমেট,  $\theta = \tan^{-1}\left(\frac{3}{4}\right)$ 

02. 
$$|a-ib|=7$$

**Solve** 
$$|a-ib| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2}$$

03. 
$$z_1 = \sqrt{5+i}$$
 এবং  $z_2 = \sqrt{5-i}$  হলে,  $z_1 z_2$  এর মডুলাস কতা

Solve 
$$|z_1| = \sqrt{5^2 + 1^2} = \sqrt{26};$$
  $|z_2| = \sqrt{5^2 + (-1)^2} = \sqrt{26}$   
 $\therefore z_1 z_2$  এর মন্ত্রাস,  $|z_1 z_2| = |z_1| \times |z_2| = \sqrt{26} \times \sqrt{26} = 26$ 

04. 
$$\left(\sqrt{3}+\mathrm{i}\right)^{10}$$
 কে শোলার আকৃতিতে প্রকাশ কর।

Solve 
$$r = \sqrt{3+1} = 2$$
,  $\theta = \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$ 

$$\therefore \left(\sqrt{3} + i\right)^{10} = \left\{2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\right\}^{10}$$

$$=2^{10}\left(\cos\frac{10\pi}{6}+i\sin\frac{10\pi}{6}\right)$$
 [By De Moivre's Formula]

05. 
$$\frac{5-i}{2-3i} = A + iB$$
 হলে, A ও B এর মান কতঃ

Solve 
$$A + iB = \frac{5-i}{2-3i} = \frac{(5-i)(2+3i)}{(2-3i)(2+3i)} = \frac{10+15i-2i-3i^2}{4+9}$$
  
=  $\frac{13+13i}{13} = 1+i$   $\therefore$   $A = 1 B = 1$ 

06. -7 + 24i এর বর্গমূল কতা

Solve 
$$-7 + 24i = -7 + 2.3.4i = 3^2 + 2.3.4i + (4i)^2 = (3 + 4i)^2$$
  

$$\therefore \sqrt{-7 + 24i} = \pm (3 + 4i)$$

07. 2i धात्र वर्गमुन निर्गय कर्त्र।

Solve 
$$2i = 2.1.i = (1)^2 + 2.1.i + (i)^2 = (1+i)^2$$
  
 $2i = \pm (1+i)$ 

08. 2a + i(a² - 1) এর বর্গমূল কত?

Solve 
$$2a + i(a^2 - 1) = 2a + i(a + 1)(a - 1)$$
  
=  $\frac{1}{2} [4a + 2i(a + 1)(a - 1)]$ 

$$\therefore \sqrt{2a+i(a^2-1)} = \pm \frac{1}{\sqrt{2}} \{(a+1)+i(a-1)\}$$

09. 
$$1 - \frac{i}{1 - \frac{1}{1 + i}}$$
 as  $\frac{1}{1 - \frac{1}{1 + i}}$ 

Solve 
$$1 - \frac{i}{1 - \frac{1}{1 + i}} = 1 - \frac{i}{\frac{1 + i - 1}{1 + i}} = 1 - \frac{i(1 + i)}{i} = 1 - (1 + i) = -i$$

10. 
$$p = \frac{1+\sqrt{-1}}{\sqrt{2}}$$
 হলে,  $p^6 + p^4 + p^2 + 1$  এর মান কত?

Solve 
$$p = \frac{1 + \sqrt{-1}}{\sqrt{2}} \Rightarrow p^2 = \frac{1 + 2i + i^2}{2} = i$$
  
 $\therefore p^6 + p^4 + p^2 + 1 = i^3 + i^2 + i + 1 = 0$ 

11. এককের একটি জটিল ঘনমূল ω হলে, মান নির্ণয় কর-

(1) 
$$\frac{(1 - \omega + \omega^{2})^{2} + (1 + \omega - \omega^{2})^{2}}{[\text{Solve}](1 - \omega + \omega^{2})^{2} + (1 + \omega - \omega^{2})^{2}}$$

$$= (-2\omega)^{2} + (-2\omega^{2})^{2} = 4(\omega^{2} + \omega) = -4$$

(ii) 
$$(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)$$
  
[Solve]  $(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)$   
 $= (1-\omega)^2(1-\omega^2)^2 = \{(1-\omega)(1-\omega^2)\}^2$   
 $= (1-\omega^2-\omega+\omega^3)^2 = 9$ 

(iii) 
$$(1 + \omega^4 - \omega^2)^3 - (1 - \omega^4 + \omega^2)^3$$
  
Solve  $(1 + \omega^4 - \omega^2)^3 - (1 - \omega^4 + \omega^2)^3$   
 $= (-2\omega^2)^3 - (-2\omega)^3 = -8\omega^6 + 8\omega^3 = 0$ 

(iv) 
$$(a + b)^2 + (a\omega + b\omega^2)^2 + (a\omega^2 + b\omega)^2$$
  
[Solve]  $(a + b)^2 + (a\omega + b\omega^2)^2 + (a\omega^2 + b\omega)^2$   
 $= a^2 (1 + \omega^2 + \omega^4) + b^2 (1 + \omega^4 + \omega^2) + 2ab (1 + \omega^3 + \omega^3)$   
 $= 2ab.3 = 6ab$ 

(v) 
$$\left(-1+\sqrt{-3}\right)^4 + \left(-1-\sqrt{-3}\right)^4$$
  
Solve  $\left(-1+\sqrt{-3}\right)^4 + \left(-1-\sqrt{-3}\right)^4$   
 $= 2^4 \left\{ \left(\frac{-1+\sqrt{-3}}{2}\right)^4 + \left(\frac{-1-\sqrt{-3}}{2}\right)^4 \right\} = 2^4 \left(\omega^4 + \omega^8\right) = -16$ 

12.  $x^4 + 81 = 0$  সমীকরণের মূলগুলো নির্ণয় কর।

Solve 
$$x^4 = -81 \Rightarrow x^4 = (9i)^2$$
  

$$\Rightarrow x^2 = \pm 9i = \frac{9}{2}(\pm 2i) = \frac{9}{2}(1^2 \pm 2.1.i + i^2) \therefore x = \pm \frac{3}{\sqrt{2}}(1\pm i)$$

13.z = x + iy হলে, |z - 5| = x সমীকরণটি কি নির্দেশ করে?

Solve 
$$|z-5| = x \Rightarrow \sqrt{(x-5)^2 + y^2} = x$$
  
 $\Rightarrow x^2 - 10x + 25 + y^2 = x^2 \Rightarrow y^2 = 10x - 25$   
যা পরাবৃত্ত নির্দেশ করে।

14. z = x + iy হলে, |2z - 3| = y সমীকরণটি কি নির্দেশ করে?

Solve 
$$|2z-3| = y \Rightarrow \sqrt{(2x-3)^2 + (2y)^2} = y$$
  
 $\Rightarrow 4x^2 - 12x + 9 + 4y^2 = y^2 \Rightarrow 4x^2 - 12x + 3y^2 + 9 = 0$   
যা উপৰত্ত নিৰ্দেশ কৰে।

16. একের ঘনমূল তিনটি লিখ এবং দেখাও যে কাল্পনিক ঘনমূল দুইটি । অপরটির বর্গ।

Solve এককের ঘনমূল তিনটি হচেছ, 
$$1, \frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}$$
 ১য় জংশ

$$\left(\frac{-1+\sqrt{3}}{2}\right)^2 = \frac{(1)^2+2\cdot(-1)\cdot(\sqrt{3})+(\sqrt{-3})^2}{4} = \frac{1-2\sqrt{-3}-3}{4}$$
$$=\frac{-2-2\sqrt{-3}}{4} = \frac{-1-\sqrt{-3}}{2}$$

আবার, 
$$\left(\frac{-1-\sqrt{-3}}{2}\right)^2 = \frac{1+2\sqrt{-3}-3}{4} = \frac{-1+\sqrt{-3}}{2}$$

অতএব, যদি একটি কাল্পনিক ঘনমূল ω হয় তাহলে অন্যটি হবে ω². (Show

 $3x^2 + y^2 = 1^2$  যা একক ব্যাসার্ধ বিশিষ্ট বৃত্ত বা এককবৃত্ত।

 $|az + k_1| = |bz + k_2|$  হলে সঞ্চার পথটি বৃত্ত নির্দেশ করবে।

 $= (-\omega^2 - \omega^2)^3 - (-\omega - \omega)^3 = (-2\omega^2)^3 - (-2\omega)^3$  $= -8(\omega^3)^2 + 8\omega^3 = -8 + 8 = 0$ MELICATIONS . JOYKOLY PUBLICATIONS . energy warestons, entiry madications, potent americans, potent american ankory publications. Hoykoly publications. Joykoly publications. Joykoly Pla

\* 1 EE, ECT n are relian are win- [BRUR-E: 19-20]

 $\left(\frac{1+i}{1-i}\right)^n = 1 \Rightarrow \left(\frac{1+2i+i^2}{1^2-i^2}\right)^n = 1$  $\Rightarrow \left(\frac{21}{2}\right)^n = 1 \Rightarrow i^b = 1 \Rightarrow (i^b)^{\frac{n}{4}} = 1 \Rightarrow 1^{\frac{n}{4}} = 1 \Rightarrow n = 4$ 

14. 1 =7 [BRUR-E: 19-20] - THE TO BE MININ TOWN AS A SECOND

15. विम = 1+1 हर, छद a =? [BRUR-E: 19-20]

Oi.  $\Rightarrow a^2 = i \Rightarrow a^6 = i^3 = -i$ 

16. (√i + √−i) এর মান কতা [BU-A: 19-20]

©√i – √-i D 2i Ans(A)

17. এককের একটি কাল্পনিক ঘনমূল  $\omega$  হলে,  $(1 + \omega - \omega^2)^4 + \omega^2$ 

 $(1 - \omega + \omega^2)^4$  এর মান্য [BU-A: 19-20]

D-16 (Ans(D)

18. x + iy = i<sup>2</sup> হলে, <sup>X</sup> এর মান কত? [JKKNIU-B: 19-20]

Solve Solve

(D) অসংজ্ঞায়িত

 $x + iy = i^2 \Rightarrow x + iy = -1$ 

∴ x = -1 वक् y = 0  $\frac{x}{v} = \frac{-1}{0} = \infty =$  সমংজ্ঞায়িত

19. এককের কাল্পনিক ঘনমূল  $\omega$  হলে,  $(1-\omega+\omega^2)(1+\omega-\omega^2)$  এর মান কত? [JKKNIU-B: 19-20]

**A** 4

© 6

Solve  $(1 - \omega + \omega^2)(1 + \omega - \omega^2) = (-2\omega)(-2\omega^2) = 4\omega^3 = 4\omega^3$ 20. i<sup>999</sup> এর মান কত্য [এখানে i কাল্পনিক সংখ্যা] [JKKNIU-B: 19-20]

Solve  $i^{999} = (i^2)^{499}$ ,  $i = (-1)^{499}$ , i = -i

21. জটিল সংখ্যা - 3i এর পোলার রূপ হবে- [MBSTU-C: 19-20]

 $\triangle$  3e<sup>2 $\pi$ i</sup>

Solve -3i = 0 - i3

পোলাররূপ  $=3\cos^3\frac{3\pi}{2}+i3\sin^3\frac{3\pi}{2}$ 

 $=3(\cos^3\frac{3\pi}{2}+i\sin^3\frac{3\pi}{2})$ 

ধরি,  $0 = r \cos \theta$ ,  $-3 = r \sin \theta$ তাহলে, r = 3 এবং .

22. i=√-1 হলে, 1+i+i²+i³+.....+i³९ এর মান কজা [MBSTU-A:19-20]

® −1 Solve  $1 + i + i^2 + i^3 + \dots i^{39} = 0$ 

্রেপ্রতি চারটি পদের যোগফল = 0;

 $1 + i + i^2 + i^3 = 1 + i - 1 - i = 0$ 

23. z = x + iy হলে, |z - 5| = 3 বৃদ্ধের আসার্ধ কতা [NSTU-B: 19-20]

**B**2 **C**3 Solve  $|x + iy - 5| = 3 \Rightarrow (x + 5)^2 + y^2 = 3^2$  : चात्रार्थ = 3 24. 1- I এর মুখ্য আর্গুমেন্ট কত্য [NSTU-B: 19-20]

Solve আগুমেন্ট =  $-\tan^{-1}\left|\frac{-1}{1}\right| = -\tan^{-1}1 = -\frac{\pi}{4}$ 

25. (-1+√3 I) এর মড়ুশাস কত? [NSTU-A: 19-20]

**1 0 5 0 0 1** 

💇 🕽 Solve (−1 + √3i) এর মড়ুলাস 🙏 💮 💮

$$=\sqrt{(-1)^2+(\sqrt{3})^2}=\sqrt{1+3}=\sqrt{4}=2.$$

26. z = 3 + 2i হলে,  $|z|^2 + 2\overline{z}\overline{z} + |\overline{z}||z| =$ কত? [PUST-A : 19-20]

**(B)** 39

© 23

Solve  $z = 3 + 2i \Rightarrow \overline{z} = 3 - 2i$ 

 $|z|^2 + 2\overline{z}\overline{z} + |\overline{z}| |z| = |3 + 2i|^2 + 2\overline{z}z + |3 - 2i| |3 + 2i|$ =  $(\sqrt{3^2+2^2})^2 + 2(3+2i)(3-2i) + (\sqrt{3^2+2^2})(\sqrt{3^2+2^2})$  $= 13 + 2(9 - 4i^{2}) + 13 = 26 + 2(9 + 4) = 52$ 

27. z=x+iy হলে  $|\overline{z}|=0$  এর সঞ্চারপথ বৃত্তের ব্যাসার্ধ কত? [PUST-A = 19-24] i @ 127 + 9 x y 0 0 81 - 1/3+1 @ 1(3)

Solve  $z = x + iy \Rightarrow \overline{z} = x - iy : \overline{z} = 0$  $\Rightarrow |x - iy| = 0 \Rightarrow \sqrt{x^2 + y^2} = 0 \Rightarrow x^2 + y^2 = 0$ 

: বৃত্তের কেন্দ্র (0, 0) এবং ব্যাসার্ধ = 0

28.  $\frac{3-1}{1-2i}$  জটিল সংখ্যাটির মড়ুলাস কত্য [BSMRSTU-B : 19-20]

**Solve** 3-i এর মড়ুলাস ়

 $= \left| \frac{3 - i}{1 - 2i} \right| = \left| \frac{3 - i}{1 - 2i} \right| = \frac{\sqrt{9 + 1}}{\sqrt{1 + 4}} = \frac{\sqrt{10}}{\sqrt{5}} = \frac{\sqrt{5} \cdot \sqrt{2}}{\sqrt{5}} = \sqrt{2}$ 

29.  $\omega^{97} = ?$  [BSMRSTU-B: 19-20]

Bω

 $\bigcirc \omega^2$ 

Solve  $\omega^{97} = (\omega^3)^{32}.\omega = 1.\omega = \omega \ [\omega^3 = 1]$ 

30. যদি  $z_1 = 2 + i$  এবং  $z_2 = 3 + i$  হয়, তাহলে  $z_1, \overline{z_2}$  এর মঙুলাস হ [BSFMSTU-A: 19-20]

0.6  $0.5\sqrt{3}$ 

Solve  $|z_1 z_2| = |z_1| |z_2| = \sqrt{4+1} \sqrt{9+1} = \sqrt{50} = 5\sqrt{2}$ 

31. -1-i এর আর্থমেন্ট কৃত? [BSFMSTU-A: 19-20] ↓ @

B Solve আর্থমেন্ট =  $-\pi + \tan^{-1} 1 = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$ 

32. 1 – i এর আর্থমেন্ট কত? [RSTU-C: 19-20]

**∆**-45° **№**-90° **№** 135° **№ №** 180°

Solve  $1 - \hat{i}$  এর আর্গুমেন্ট  $= -\tan^{-1} \left| \frac{-1}{1} \right| = -\tan^{-1} 1 =$ 

33.  $(1-\omega^2)(1-\omega^4)(1-\omega^8)(1-\omega^{10}) = ?$  [RSTU-C: 19-20] 

C 10.

(D)-10

Solve  $(1 - \omega^2) (1 - \omega^4) (1 - \omega^8) (1 - \omega^{10})$  $= (1 - \omega^2) (1 - \omega) (1 - \omega^2) (1 - \omega)$  $= \{(1 - \omega^2) (1 - \omega)\}^2 = (1 - \omega - \omega^2 + \omega^3)^2$  $= \{1 - (-1) + 1\}^2 = 3^2 = 9$ 

| part 4                                                                                                                     | ্ৰ অধ্যায়ভিত্তিক গুরুত্বপূর্ণ MC(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1+1 হলে, x <sup>8</sup> এর মান কোনটি?                                                                                      | 20. a + ib =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| J2 10 150                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ®-i                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1}{6} + \frac{2}{\sqrt{3}}$ i ect, $z\overline{z}$ as $z\overline{z}$ as $z\overline{z}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{cases} \sqrt{3} & \sqrt{3} & \text{ord} \\ \frac{3}{5} & \text{ord} \end{cases} = \frac{3}{5} \qquad \text{ord} $ | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                            | - 10 x 16 x x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ্ <sub>s+iy</sub> হ <b>েল</b>  z+1 - z-1 =0 স্থ<br>ক্রেন্ডরেখা By অক্ষরেখা © ব্                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (बर्क्स, वर्ष) कि पूर्व मिर्देश कि प्राप्त कि स्मित्र (                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8−i ©1                                                                                                                     | $\mathbb{A} - \frac{\pi}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| প্রকাল্পনিক ঘনমূল কয়টি?                                                                                                   | 24. x+iy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| B 1 © 2                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $y = 3 - 2i$ er, $x^2 + 3$                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 B 23 C 2                                                                                                                 | 06 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{1}{\cos \theta - i \sin \theta}$ এর কাল্পনিক অংশ নিরে                                                               | म्ब द्यानाएं?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{1}{2}\tan\frac{\theta}{2}        \frac{1}{2}\cot\frac{\theta}{2}          \frac{1}{2}$                              | $\frac{1}{2}\tan\frac{\theta}{2}  \textcircled{D} \ 2\tan\frac{\theta}{2}  \boxed{27.  \frac{1}{3+i}}  \boxed{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| রের একটি কাল্পনিক ঘনমূল ω হলে ω                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                            | $\omega$ $\otimes$ $\omega^2$ Ans $\omega$ $ 28.  2-3i  =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$ জটিল সংখ্যার মড়ুলা                                                          | [7] CAD-HU? (+ 1-) \(\frac{1}{2} = B \)   10 \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\  |
| ®-1 © <sup>2</sup>                                                                                                         | $\frac{\sqrt{3}}{2} \qquad \boxed{0} \frac{2}{\sqrt{3}} \qquad \boxed{29.  \mathbf{z_1} = 2 + \mathbf{i}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                            | $(1 + \omega - \omega^2) \times (1 - \omega + \omega^2)$ 30. 3 – 7i জিটি $\triangle$ চতুৰ্থ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| মান কোনটি?<br>) 1                                                                                                          | 100 May 100 Ma |
| = x + iy জটিল সংখার মুখ্য আর্থমেন্ট $\theta$ হক                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9-π<θ≤π)(1 (σ.δ.δ.)(3 (σ.δ.δ.)(3 (σ.δ.δ.))                                                                                 | $0 < \theta < \pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\theta - \pi < \theta < \frac{\pi}{2}$                                                                                    | 0 < θ < 2π Ans(A) 33. 1 + i জিটি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>+√-2 এর অনুবন্ধী জটিশ সংখ্যা নিম্নের                                                                                  | - 1. 1. July . 33. 1 T 1 910.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $0-3+\sqrt{2}$ <b>B</b> $3-\sqrt{2}$                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= x + iy$ হলে $\frac{1}{i}(z + \overline{z})(z - \overline{z})$ এর ম                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 04xy                                                                                                                       | 0 - 4ixy  (Ans(A)) 35, z = -i + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ০ বিশ্বর (১৯৮৮ চি পরাবৃত্ত (১৯৮৮ চি চি                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <sup>2</sup> = x + iy <mark>জটিশ</mark> রাশির আর্গুমেন্ট — <sup>7</sup>                                                    | 37 1/i = 3/52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                            | 20十分1十分,图20171-1717111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\emptyset x + y = 0$ ® $x - y = 0$ © $x + y$ পর মান কত? যেখানে $n$ যেকোনো পূ                                              | $y = 1$ $\text{(Ans.A)}$ $\sqrt{2}$ (—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0-i ®i ° ⊚-                                                                                                                | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| l+i এর মড়ুশাস কত?                                                                                                         | © -2i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $0-\sqrt{2}$ $\mathbb{B}\sqrt{2}$ $\mathbb{O}$ 2                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| l+1 <b>%1 – i এর জনফল কত</b> ্য 💮<br>🖟 – 2 — (B) – 1 — (C) 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O-2 TORB-12 NO PO                                                                                                          | 18 c x 19 C 2 = All C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| ЭYK          | OLY PUBLICATIONS • 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DYKOLY PUBLICATION                                                                                            | S TO KULT FUBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Managassan des Barr                                     | Pages                                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|
| Ą            | f MCQ প্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | শ্বতির                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                             |
| 0.           | a + ib = 0 季季                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | न मध्याः                                                                                                      | 18/01/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FIG BULL                                                | 4) er e 1                                   |
| 1            | $\triangle$ a = 0, b $\neq$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )<br>New (5)                                                                                                  | ⊕ a ≠ 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b = 0                                                   |                                             |
|              | (a) $a = 0, b \neq 0$<br>(c) $a = 0, b = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ger (a) v                                                                                                     | $\bigcirc$ a $\neq$ 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b ≠ 0                                                   | Anc                                         |
| 1.           | $\frac{1+i}{1+i} = \frac{1}{4} \frac{1}{2} \frac{1}{2$ | Fill Sign Hits A                                                                                              | F 阿勃南 田                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | off = [2] pales file                                    | dres Es                                     |
| -            | <b>№</b> 1-i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bi-1                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()·(i) (Ø 1 + i                                         |                                             |
| 2.           | z = 2 + i হলে,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $z + \overline{z}$ এর মান ক                                                                                   | 107 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IL - I POP I                                            | 1 2 3 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| -            | <b>A</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>®</b> 4 + 2i                                                                                               | © 4 – 2i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ्र क्षा क्षा क्षा है।<br>इन्हें भूक स्थाप है            | Am(A)                                       |
| 3.           | <ul><li>⊕ 4</li><li>-1 - i√3 এর আ</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | মার্ডমেন্ট কতঃ                                                                                                | 171 F   WO   T   131 F   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                             |
|              | $\triangle -\frac{\pi}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\bigcirc$ | $\mathbb{Q}^{\frac{\pi}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sum_{x \in \mathbb{R}^{3}} \mathbb{D} \frac{3\pi}{3}$ | (Ans(B)                                     |
|              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                             | 96% M3 8th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ -1,1999:13 ±                                         | 1 -3 .04                                    |
| 1            | $ \mathbf{x} + \mathbf{i}\mathbf{y} - 5  = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D) 300                                                                                                       | O THE WAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | क्रिक्टिंग कि                                           | T ATT                                       |
| _            | (ম) সরলরেখা<br>2i জটিশ সংখ্যার                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ত্যাল কোনটিং                                                                                                  | ान्य कर्ते वर्ष                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ু <b>উপবৃ</b><br>তি উপবৃষ্                              | IV = I .TA                                  |
| J.           | (A ± (1 − i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | @ (1 - i)                                                                                                     | 0-0+(1+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i) @ @ (1 ±                                             | i) Ans C                                    |
| 6.           | ω এককের কাল্পনি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | क घनमुन दरन (1-                                                                                               | $-\omega^2$ ) $(1-\omega^4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(1-\omega^8)(1-\omega^1)$                              | (0) = 주 <b>아</b> 등                          |
| . 1          | <b>A</b> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ® 7                                                                                                           | © 9 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | Ans                                         |
| 7            | ां किला अश्री                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | াব A + iB আক                                                                                                  | ্র<br>ব্ল কোনটিং                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (®) Z                                                   | OD                                          |
| 1            | $\frac{\mathbf{i}}{3+\mathbf{i}}$ জটিল সংখ্য<br>$\mathbf{A} \frac{1}{10} + \mathbf{i} \frac{3}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - THE PR                                                                                                      | 4 PSV 18F 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-1, 2, = /3+                                           | 49. 南瓜                                      |
| 1:           | $A = \frac{1}{10} + i \frac{3}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{B}^{\frac{1}{3}} + 1$                                                                                | $^{1}$ $^{\circ}$ $^{\circ}$ $\frac{1}{10}$ + i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{(-3)}{10} \cdot \oplus \frac{1}{4} + i$          | 3 Ans A                                     |
|              | 2 - 3i  = क्ज?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A STATE                                                                                                       | 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9<br>= (g)                                              | \$10                                        |
|              | $\bigcirc \sqrt{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B 13 19 0                                                                                                     | © 2√13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | € - s @ 5 vi                                            | (Ans(B)                                     |
|              | $z_1 = 2 + i \operatorname{QR} z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. 1                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | miO(i)                                      |
|              | A 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ® 7                                                                                                           | $\bigcirc 5\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | © 5√3                                                   | AnsC                                        |
| 0.           | 3 – 7i জটিল সংখ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIRE PARTY                                              |                                             |
| 1            | (A) চতুর্থ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | A STATE OF THE STA |                                                         | Ans(A)                                      |
|              | – 5i – 4 জটিল স                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         | 1(6)                                        |
|              | (-5, -4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>®</b> (−5, 4)                                                                                              | © (-4,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5) (-4,5                                                | ):Ans(C) . S.E.                             |
| 2.           | $\mathbf{x} = \mathbf{i}\mathbf{y} = -1_{\mathbf{x}}\mathbf{i}\mathbf{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | হলে y এর মান ব                                                                                                | PO?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                      | (A-2)                                       |
| 1            | <ul><li>⋒ − 1</li><li>1 + i জিটিল সংখ্য</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 1                                                                                                         | O THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | प्रकृतिहर्भ चार्चिक                                     | Ana B                                       |
|              | <b>A</b> −1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (R) ()                                                                                                        | <b>0</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m \\ \frac{1}{2}                                        | And                                         |
|              | – 1 – √3i এর মৃ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAJAS SELECTION TO                                                                                            | © 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         | 0102                                        |
| 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | जारे हे जार मि                                                                                                | $2\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | villa                                                   | 54.                                         |
| 1            | $\triangle - \pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{3}{3}$                                                                                                 | $C = \frac{3}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <b>Φ</b> π 1                                          | Ans                                         |
| <u> </u><br> | z = - i + 1 হলে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{z} = 2$                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE PART OF STATE OF                                    | aut Py                                      |
| 1            | <b>A</b> − i, − 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bi+1                                                                                                          | 0 i - 1 🔾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (∰ (∰ + i +                                             | l(Ans(B)                                    |
| 5.           | কোন জটিল সংখ্যা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ও তার অনুবন্ধী ভ                                                                                              | দটিল সংখ্যার স                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | নমষ্টি কিন্ধপ সংখ্যা                                    | 1-1-1                                       |
|              | (A) কাল্পনিক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B) জাটল                                                                                                      | ু বান্তব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>ি</b> অবান্তৰ                                        | AnsC                                        |
| 1            | √i = কত?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A BEACH                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHARLES SEE                                             | 0.000                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbb{B}^{\frac{1}{2}}(-1-i)$                                                                              | $\mathbb{O}\frac{1}{\sqrt{2}}(1-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-i) \oplus \frac{1}{2}(1-i)$                           | Ans                                         |
| <b>}.</b>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ্র মান কত?                                                                                                    | 5 tg12/521-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +1位代 22=3-                                              | 56. 21=2                                    |
| 1            | $\triangle -2i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) 0                                                                                                         | © 2i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\bigcirc 2 + 2$                                        | (Ans(C)                                     |
|              | এককের কাল্পনিক<br>এর মান কত?<br>(A) 0 (1- a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | घनमृन ω হলে (1                                                                                                | 1 + ω) (1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\omega^2$ ) $(1 + \omega^4)$ (                         | 1 + ω <sup>8</sup> ). \ c                   |
|              | এর মান কত?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .05 an - 45 (                                                                                                 | Y); = Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-(0+1)+5(0)                                            | -ω-1)                                       |
| 1            | (A) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9-3                                                                                                           | ® 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L(8)                                                    | P- (A)                                      |
| 100          | © ω ω (1− ω<br>1 _ ; αα ভাগসেন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TW) ('00-011)                                                                                                 | $\mathbf{D} \omega^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to Leafin Child at                                      | (Ans (B)                                    |

POYKOLY PUBLICATIONS . DOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . DOYKOLY PUBLICATIONS . DOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS .

# প্রধ্যায় **৪**

# বহুপদী ও বহুপদী সমীকরণ

# Part 1

## প্রয়োজনীয় সূত্রাবলি

**দ্রুল সহগ সম্পর্ক:** যদি বহুপদী সমীকরণ-

 $f(x) = P_0 x^n + P_1 x^{n-1} + P_2 x^{n-2} + \dots + P_n = 0$  এর n সংখ্যক মূলগুলো হ্যাক্রমে  $a_1, a_2, a_3, \dots a_n$  হয় তাহলে-

- (i) সব মূলগুলোর যোগফল , অর্থাৎ  $\sum a_1 = -\frac{P_1}{P_0}$
- (ji) মূলগুলোর দু'টি করে নিয়ে সম্ভাব্য সকল জোড়ার গুণফলের যোগফল, অর্থাৎ  $\sum a_1 \, a_2 = (-1)^2 \, \frac{P_2}{P_2}$
- (iii) মূলগুলোর তিনটি করে নিয়ে সম্ভাবা সকল জোড়ার গুণফলের যোগফল , ভর্মাৎ  $\sum a_1 \ a_2 \ a_3 = (-1)^3 \ \frac{P_3}{P_2}$
- (iv) সব মূলগুলোর গুণফল, অর্থাৎ  $a_1 \, a_2 \, a_3 \, .... \, a_n = (-1)^n \, \frac{P_n}{P_n}$
- ্য বিঘাত সমীকরণের মূল: ax² + bx + c = 0 এর মূল দুটি হল α ও β বারা সূচিত করা হলে,
  - (i)  $\alpha + \beta = \frac{-b}{a}$  (ii)  $\alpha\beta = \frac{c}{a}$  (iii)  $\alpha \beta = \pm \frac{\sqrt{b^2 4ac}}{a}$
- হিবাত সমীকরণটির বৈশিষ্ট্য:
- ।। ৪=0 হলে, সমীকরণটি একঘাত হয়।
  - হিঘাত সৃচিত করার শর্ভ ৪ ≠ 0
- b = 0 এবং c < 0 ফলে, ফুলছর সমান বিন্ধ বিপরীত চিহ্ন যুক্ত হয়।</p>
- B. c = 0 হলে, একটি মূল শূনা।
- H b = c = 0 सान, छेखा मृनदे भूना।
- b. c = a হলে, সমীকরণটির একটি মূল অপরটির টল্টা।
- 6. ৪ ও c ধনাত্মক এবং b খণাত্মক হলে সমীকরণটির দুটি মূলই যোগবোধক হয়।
- ৪ 6 ৫ ঋণাত্তক এবং b ধনাত্তক হলে সমীকরণটির দৃটি ফুলই বিয়োগবোধক হয়।
- ii. a+b+c=0 साम এकि भूम । जन्म जनारि  $\frac{c}{s}$  सार ।
- ) নিভায়ক ও তার বৈশিষ্ট্য:

 $ax^2 + bx + c = 0$  সমীকরণের নিরূপক/ পুধায়ক/ নিকার্যক  $b^2 - 4ac$  একে D দ্বারা প্রকাশ করা হয়। বিঘাত সমীকরণের মূলহরের প্রকৃতি D এর উপর নির্ভৱ করে।

- ll. D=0 হলে, মূল দুটি বান্তব, মূলদ ও সমান এবং মূলঘট  $=rac{b}{2a}$
- l. D > 0 হলে, মূলছয় বান্তব ও অসমান হয়।
- B. D भूर्व दर्श रहन, मूनवरा मूनम ७ अममान रहा।
- H. D<0 रुटन, मूनवर व्यवख्य, व्यममान ७ भराष्यात्र व्यन्तकी क्रिन भर्या। रहा।
- । সমीक्त्रण गर्रनः
- 🏿 একটি ছিঘাত সমীকরণের মূলদ্বয় α, β হলে, দ্বিত্যত সমীকরণটি
- $(x-\alpha)(x-\beta) = 0 \Rightarrow x^2 (\alpha + \beta)x + \alpha\beta = 0$
- ী  $\alpha$ ,  $\beta$ ,  $\gamma$  ফু বিশিষ্ট ত্রিঘাত সমীকরণ  $(x-\alpha)(x-\beta)(x-\gamma)=0$
- $\Rightarrow x^3 (\alpha + \beta + \gamma) x^2 + (\alpha \beta + \beta \gamma + \gamma \alpha) x \alpha \beta \gamma = 0$
- ্রি)  $a_1x^2 + b_1x + c_1 = 0$  এবং  $a_2x^2 + b_2x + c_2 = 0$  সমীকরণছয়ের একটি সাধারণ মূল থাকার শর্ড,  $(a_1b_2 a_2b_1)(b_1c_2 b_2c_1) = (c_1a_2 c_2a_1)^2$ 
  - দুইটি সাধারণ মূল থাকার শর্ত  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

্র বিঘাত সমীকরণ:  $ax^3 + bx^2 + cx + d = 0$  এর মূলগুলো  $\alpha$  , $\beta$  , $\gamma$  হলে,  $\alpha + \beta + \gamma = -\frac{b}{a}$  , $\alpha\beta + \beta\gamma + \gamma\alpha = -\frac{c}{a}$  ,  $\alpha\beta\gamma = -\frac{d}{a}$ 

# Shortcut Technique only for MCQ

l echnique-01:  $ax^2 + bx + c$  द्रानित गर्ताक वा गर्नन्स मारनत क्लाब  $x = -\frac{b}{2a}$ 

এবং গরিষ্ঠ/সর্বোচ্চ মান অথবা পবিষ্ট/ সর্বনিম্ন মান =  $c - rac{b^2}{4a}$ 

Note:a > 0 হলে,  $ax^2 + bx + c$  রাশির সর্বানিম্ন মান এবং a < 0 হলে সর্বোচ্চ মান পাওয়া যায়।

[Prob-01] x এর কোন মানের জন্য  $7x^2 - 8x + 1$  রাশিটির মান সর্বনিম্ন হবে?

Solve  $x = -\frac{b}{2a} = -\frac{(-8)}{2 \times 7} = \frac{4}{7}$ 

[Prob-02] 3 + 2x - x 4 बाद मार्तीक मान कठा

Solve PRATE WITH =  $c - \frac{b^2}{4a} = 3 - \frac{2^2}{4(-1)} = 3 + 1 = 4$ 

<u>Probabilities 02</u> ax<sup>1</sup> + bx + c = 0 এঃ মূশৰম পরস্পর উশ্চা(গৌণিক বিশরীত) যদে a = c.

[Prob-01]  $(m^2 - 4)x^2 + 4mx + (4m + 1) = 0$  সমীকরণতির মূলবলো গরস্পের গৌশিক বিশরীত হলে m এর মান কত?

Solve  $a = c \Rightarrow m^2 - 4 = 4m + 1 \Rightarrow m^2 - 4m - 5 = 0$   $\Rightarrow m^2 - 5m + m - 5 = 0 \Rightarrow m(m - 5) + 1(m - 5) = 0$  $\Rightarrow (m + 1)(m - 5) = 0 \Rightarrow m = -1,5$ 

িবেন্নিন্নিন্দেহে ax² + bx + c = 0 এর মূলবন্ন পরন্পর উন্টা কিন্তু বিপরীত চিহ্নবিশিষ্ট হলে a = − c

Prob-01 4x² + 2x + k = 0 এর মূলবর পরস্পর উস্টা কিন্তু বিশরীত চিহ্নবিশিষ্ট হলে k এর মান কত্য

Solve a = 4, b = 2, c = k মূলন্বয় পরম্পর উল্টা কিন্তু বিপরীত চিহ্নবিশিষ্ট হত্যায়,  $a = -c \Rightarrow 4 = -k$  . k = -4

Feehnique-04 $x^2 + bx + c = 0$  এর মূলবয়ের যোগ্যকল ও তণ্যকল সমান হলে c = -b.

 $\frac{\text{Prob-01}}{\text{ext}} 9x^2 + 8x + (k + 4) = 0$  এর মূল্বারের যোগফল ও ত্র্ণকল সমান হলে k এর মান কত্য

Solve  $c = -b \Rightarrow k + 4 = -8$  : k = -12

 $\frac{1}{1}$  Technique-05:  $ax^2 + bx + c = 0$  এর একটি মূল অপরটির n তণ হলে,

 $\frac{(1+n)^2}{n} = \frac{b^2}{ac}$  or,  $nb^2 = ac(1+n)^2$ 

[Prob-01]  $3x^2 - kx + 4 = 0$  এর একটি মূল অপরটির 3 তপ ফলে, k এর মান কত্য

Solve  $nb^2 = ac(1+n)^2 \Rightarrow 3(-k)^2 = 3 \times 4(1+3)^2$  $\Rightarrow 3k^2 = 192 \Rightarrow k^2 = 64 : k = \pm 8$ 

FEBLICATIONS • JOYKOLY PUBLICATIONS • JOYKOLY

```
Technique-12: ax # L-
                                                                                     মূলবিশিষ্ট সমীকরণ, ax^2 - bx + c = 0
                                                                                [Prob-01] x^2 + x + 3 = 0 সমীকরণের মূলদ্ম \alpha ও \beta হলে, -\alpha, -\beta
     मुन्दिनिक्रे जमीक्त्रण, cx2 + bx + a = 0
[Prob-01] 6x^2 - 5x + 1 = 0 সমীকরণের মূলদার \alpha \lor \beta হলে, \frac{1}{\alpha}, \frac{1}{\beta} মূলবিশিষ্ট
                                                                                     मृनविनिष्ठं সমीकत्रपं निर्पग्रं कत्र।
                                                                                     \boxed{\text{Solve}} \ ax^2 - bx + c = 0 \implies x^2 - (1)x + 3 = 0 \ \therefore \ x^2 - x + 3 = 0
                                                                                Solve সমীকরণ, cx2 + bx + a = 0 : x2 - 5x + 6 = 0
                                                                                     মুশবিশিষ্ট \alpha\beta সমীকরণ, a^2x^2 + a(b-c)x - bc = 0
 1 celinique-07: ax^2 + bx + c = 0 সমীকরনের মূলদ্বয় \alpha ও \beta অনে, -\frac{1}{\alpha}, -\frac{1}{\beta}
                                                                                Prob-01 x^2-3x+2=0 সমীকরণের মূলদায় \alpha ও \beta ফলে, \alpha+\beta মূলবিশিষ্ট
     ফুলবিশিষ্ট সমীকরণ, cx^2 - bx + a = 0
                                                                                     αβ স্মীকরণ নির্ণয় কর।
6x^2 - 5x + 1 = 0 সমীকরণের মূলদায় \alpha \, \, \Theta \, \, \beta হলে, -\frac{1}{\alpha}, -\frac{1}{\beta}
                                                                                     Solve সমীকরণ, a^2x^2 + a(b-c)x - bc = 0
                                                                                      \Rightarrow 1^2 x^2 + 1(-3 - 2)x - (-3) \cdot 2 = 0 : x^2 - 5x + 6 = 0
     भूगविनिष्ठ সমीकत्रमं निर्गग्न कत्र।
                                                                                Technique-14: ax^2 + bx + c = 0 সমীকরণের মূলদ্য় \alpha ও \beta হলে , \alpha^2 ও \beta^2
      Solve সমীকরণ, cx^2 - bx + a = 0 \Rightarrow x^2 - (-5)x + 6 = 0
                                                                                     মূলবিশিষ্ট সমীকরণ, a^2x^2 - (b^2 - 2ac)x + c^2 = 0
      x^2 + 5x + 6 = 0
                                                                                Prob-01 2x^2 - 5x + 1 = 0 সমীকরণের মূলদ্ম \alpha ও \beta হলে, \alpha^2
  Technique-08: ax^2 + bx + c = 0 স্মীকরণের মূলদ্বয় \alpha \cdot \theta হলে, \alpha + \frac{1}{\alpha}
                                                                                     मृनविभिष्ठे अभीकत्रण निर्गग्न कत्र।
                                                                                     Solve সমীকরণ, a^2x^2 - (b^2 - 2ac)x + c^2 = 0
      , \beta + \frac{1}{x} ফুলবিশিষ্ট মূলবিশিষ্ট সমীকরণ, acx^2 + b(a+c)x + (c+a)^2 = 0
                                                                                     \Rightarrow 2^2x^2 + (5^2 - 2 \times 2 \times 1)x + 1^2 = 0 : 4x^2 - 21x + 1 = 0
 Prob-01 4x^2 - 6x + 1 = 0 সমীকরণের মূলদ্ব \alpha ও \beta হলে, \alpha + \frac{1}{\beta}, \beta + \frac{1}{\alpha}
                                                                                মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
                                                                                     ও \beta^2 + \alpha মূলবিশিষ্ট সমীকরণ,
      Solve সমীকরণ, acx^2 + b(a+c)x + (c+a)^2 = 0
                                                                                     a^{3}x^{2} + a(ab - b^{2} + 2ac)x + c^{2}a - b^{3} + 3abc + a^{2}c = 0
       \Rightarrow 4 \times 1 \times x^2 + (-6)(4+1)x + (1+4)^2 = 0 : 4x^2 - 30x + 25 = 0
                                                                                Prob-01 2x^2-5x+1=0 সমীকরণের মূলদ্বয় \alpha ও \beta হলে, \alpha^2 ও \beta^2
                                                                                     মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
  Technique-09: ax^2 + bx + c = 0 সমীকরণের মূশদ্ম \alpha ও \beta হলে, \frac{1}{\alpha^2}, \frac{1}{\beta^2}
                                                                                     Solve a^3x^2 + a(ab - b^2 + 2ac)x + c^2a - b^3 + 3abc + a^2c = 0
       মূলবিশিষ্ট সমীকরণ, c^2x^2 - (b^2 - 2ac)x + a^2 = 0
                                                                                     \Rightarrow 2^{3}x^{2} + 2\{2 \times (-5) - (-5)^{2} + 2 \times 2 \times 1\}x + 1^{2} \times 2 - (-5)^{3} \div
  2 - 3x + 5 = 0 সমীকরণের মূলদ্ব α ও β হলে, \frac{1}{\alpha^2}, \frac{1}{\beta^2} মূলবিশিষ্ট
                                                                                     3 \times 2 \times (-5) \times 1 + 2^2 \times 1 = 0 : 8x^2 - 62x + 101 = 0
                                                                                Technique-16: x^2 + ax + b = 0 সমীকরণের মূলদ্বয় \alpha \, \, \otimes \, \beta হলে, (\alpha - \beta)^2
       সমীকরণ নির্ণয় কর
       Solve সমীকরণ, c^2x^2 - (b^2 - 2ac)x + a^2 = 0
                                                                                     ও (\alpha + \beta)^2 মূলবিশিষ্ট সমীকরণ, x^2 - 2(a^2 - 2b)x + a^4 - 4a^2b = 0
       \Rightarrow 5^2 x^2 - (9 - 2 \times 1 \times 5)x + 1^2 = 0 : .25x^2 + x + 1 = 0
                                                                                 মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
  Solve সমীকরণ, x^2 - 2\{(-2)^2 - 2 \times 1\}x + (-2)^4 - 4(-2)^2 \times 1 = 0
       মূলবিশিষ্ট মূলবিশিষ্ট সমীকরণ, c^3x^2 + (b^3 - 3abc)x + a^3 = 0
                                                                                      \Rightarrow x^2 - 4x = 0
  Prob-01 2x^2 + 3x + 5 = 0 সমীকরণের ফুলদ্বয় \alpha ও \beta হলে, \frac{1}{\alpha^3}, \frac{1}{\beta^3} ফুলবিশিষ্ট
                                                                                 Technique-17: ax² + bx + c = 0 সমীকরণের মূলদ্বয় α ও β হলে, α + n,
       সমীকরণ নির্ণয় কর।
                                                                                     -\beta + n মূলবিশিষ্ট মূলবিশিষ্ট সমীকরণ, a(x-n)^2 + b(x-n) + c = 0
       Solve সমীকরণ, c^3x^2 + (b^3 - 3abc)x + a^3 = 0
                                                                                  Prob-01 5x^2 - 4x + 1 = 0 সমীকরণের মূলদুয় α ও β হলে, α + 2, β +2
       \Rightarrow 5<sup>3</sup> × x<sup>2</sup> + (3<sup>3</sup> - 3×2×3×5) x + 2<sup>3</sup> = 0 : 125x<sup>2</sup> - 630x + 8 = 0
                                                                                      মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
 Technique-II: ax^2 + bx + c = 0 সমীকরণের মূলধ্য় \alpha ও \beta হলে, \frac{\alpha^2}{R} এবং \frac{\beta^2}{\alpha}
                                                                                      Solve সমীকরণ, a(x-n)^2 + b(x-n) + c = 0
                                                                                      \Rightarrow 5(x-2)^2 + (-4)(x-2) + 1 = 0 : .5x^2 - 24x + 29 = 0
      দারা গঠিত সমীকরণটি a^2cx^2 - (-b^3 + 3abc)x + ac^2 = 0
                                                                                 Prob-01 5x^2 - 13x + 7 = 0 সমীকরণের মূশঘর \alpha ও \beta হলে, \frac{\alpha^2}{\beta} এবং \frac{\beta^2}{\alpha}
                                                                                      \beta-n মূলবিশিষ্ট মূলবিশিষ্ট সমীকরণ, a(x+n)^2+b(x+n)+c=0
     দ্বারা গঠিত সমীকরণটি নির্ণয় কর।
                                                                                 Prob-01 x^2 + 5x + 1 = 0 সমীকরণের মূলদ্বয় α ও β হলে, α – 2, β – 2
     Solve a^2cx^2 - (-b^3 + 3abc)x + ac^2 = 0
                                                                                      মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
     \Rightarrow 5^2 \times 7 \times 7 \times 7 - (-(-13)^3 + 3 \times 5 \times (-13) \times 7) \times 7 \times 7 = 0
                                                                                      Solve সমীকরণ, a(x+n)^2 + b(x+n) + c = 0
      175x^2 - 832x + 245 = 0
                                                                                      \Rightarrow 1(x+2)^2 + 5(x+2) + 1 = 0 : x^2 + 9x + 15 = 0
                                                                                                            BLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS
```

্রাম্ব্র একটি মূল  $\frac{1}{a+ib}$  হলে বিঘাত সমীকরণ

ি (বাছৰ অংশ)<sup>2</sup> + (অবাছৰ অংশ)<sup>2</sup>}  $x^2 - 2$ (বাছৰ অংশ) x + 1 = 0

ছিবাত সমীকরণের একটি মূল 1 3+i হলে সমীকরণ নির্ণয় কর।

মাকরণ,  $(a^2 + b^2) x^2 - 2ax + 1 = 0$ 

$$(3^2+1^2) x^2 - 2 \times 3 \times x + 1 = 0$$

 $10x^2 - 6x + 1 = 0$ 

## YKOLY PUBLICATIONS . MYKOLY PUBLICATIONS . MYKOLY PUBLICATIONS . MYKOLY PUBLICATIONS . MYKOLY PUBLICATIONS 1 echnique = 20: $ax^2 + bx + c = 0$ সমীকরনো ফুবের $\alpha$ ও $\beta$ যদে, $\frac{C_2}{6^2}$ এক $\frac{D}{6^2}$ মুলবিশিষ্ট মূলবিশিষ্ট সমীকরণ, ac<sup>2</sup>x<sup>2</sup> — (-- b<sup>3</sup> + 3abc)x + a<sup>2</sup>c = 0

Prob-01  $2x^2 - 3x + 3 = 0$  সমীকরণের মূশবর  $\alpha$  ও  $\beta$  बर्टन,  $\frac{\alpha}{\alpha^2}$  आपर  $\frac{\beta}{\alpha^2}$ 

ঘারা গঠিত সমীকরণটি নির্ণয় কর।

Solve সমীকরণ, 
$$ac^2x^2 - (-b^3 + 3abc)x + a^2c = 0$$

$$\Rightarrow 2 \times 3^2 x^2 - \{-(-3)^3 + 3 \times 2 \times (-3) \times 3\}x + 2^2 \times 3 = 0$$
  
\(\therefore\) 18x^2 + 27x + 12 = 0

 $\therefore 18x^2 + 27x + 12 = 0$ 

# Part 2

ৰু মান কত হলে,  $kx^2+3x+4=0$  সমীকরণের মূল্বয় জটিল হবে?

whe म्नदम जिंग रत यि b² - 4ac < 0 रम।

$$1-4ac = 9 - 4.k.4 < 0 \Rightarrow k > \frac{9}{16}$$

ব্ল কোন মানের জন্য  $(k+1)x^2+4(k-2)x+2k=0$  এর মূল্যু

when 
$$D = \{4(k-2)\}^2 - 4(k+1).2k = 0$$

$$_{316}(k^2-4k+4)-8k^2-8k=0$$

$$16k^2 - 64k + 64 - 8k^2 - 8k = 0$$

$$8k^2 - 72k + 64 = 0 \Rightarrow k^2 - 9k + 8 = 0$$

$$k^2 - 8k - k + 8 = 0$$

$$k(k-8)-1(k-8)=0$$
.  $0=1.12$ 

$$(k-1)(k-8)=0$$

 $1+5x^2+6x-7=0$  সমীকরণের মূলগুলো  $lpha,eta,\gamma,\delta$  হলে,  $\sum_{oldsymbol{lpha}}$ ও

Solve 
$$\sum \alpha = \alpha + \beta + \gamma + \delta = -\frac{a_1}{a_0} = \frac{-0}{4} = 0$$

$$\hat{c}\alpha\beta = \alpha\beta + \beta\gamma + \gamma\beta + \delta\alpha = \frac{a_2}{a_0} = \frac{5}{4}$$

 $a^2-2ax+a^2-b^2=0$  সমীকরণের মূল্বয়  $lpha,\,eta$  হলে, কোন সমীকরণের

 $M(\alpha+\beta)$   $\Theta(\alpha-\beta)$   $\overline{Q}$ 

he 
$$\alpha + \beta = 2a$$
 এবং  $\alpha\beta = a^2 - b^2$ 

িগ্ন সমীকরণ : 
$$x^2 - (\alpha + \beta + \alpha - \beta) x + (\alpha + \beta) (\alpha - \beta) = 0$$

$$\Rightarrow x^2 - \{(\alpha + \beta) + \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}\} \times + (\alpha + \beta)$$

 $\sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = 0$ 

 $3x^2 - 2(a + b)x + 4ab = 0$ 

 $6x^2 + bx + c = 0$  এবং  $12x^2 + 6x + 4 = 0$  সমীকরণ দুটির মূল সাধারণ জ্মার শর্ত কোনটি?

তি মূল সাধারণ হওয়ার শর্ত,  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ 

$$\Rightarrow \frac{6}{12} = \frac{b}{6} = \frac{c}{4} \Rightarrow \frac{1}{2} = \frac{c}{4} \Rightarrow c = 2$$

$$\sqrt[b]{a}, \frac{1}{2} = \frac{b}{6} \implies b = 3$$

 $06. 2x^2 + 3x + 7$  রাশিটির সর্বনিম মান কত্য কিট মান্টি মান্টি মান্টি মান্টি

Solve আমরা জানি,  $[ax^2 + bx + c = 0]$  এর ক্ষেত্রে দিঘাত রাশির সহগ धनाजुक ट्रांन, तानित नर्वनिम मान शाख्या याद्व व्यवः नर्वनिम मान

$$=\frac{4ca-b^2}{4a}=\frac{4ca-b^2}{4a}=\frac{4\times 7\times 2-3^2}{4\times 2}=\frac{47}{8}$$
 Ans.

07.  $3x^2-2x-1=0$  স্মীকরণের মূশবয়  $\alpha, \beta$  হলে, (E/S, E/S-1)

i. 
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
 ii.  $\frac{1}{\alpha^2} - \frac{1}{\beta^2}$  iii.  $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$  (as with the second second

Solve 
$$\alpha + \beta = \frac{2}{3}$$
;  $\alpha\beta = -\frac{1}{3}$ 

Solve 
$$\alpha + \beta = \frac{2}{3}$$
;  $\alpha\beta = -\frac{1}{3}$ ;  $\alpha\beta = 0$   $\beta = 0$   $\beta$ 

$$i, \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{2/3}{-1/3} = \frac{2}{-2}$$

ii. 
$$\frac{1}{\alpha^2} - \frac{1}{\beta^2} = \frac{\beta^2 - \alpha^2}{\alpha^2 \beta^2} = \frac{(\beta + \alpha)(\beta - \alpha)}{(\alpha \beta)^2} = \frac{2/3(\pm 4/3)}{(-1/3)^2} = \pm 8$$
  
iii.  $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{(\alpha \beta)^2}$ 

iii. 
$$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{(\alpha\beta)^2}$$

$$=\frac{(2/3)^2 - 3(-1/3)(2/3)}{(-1/3)^2} = \frac{26}{3}$$

 $3x^2 - bx - 12 = 0$  সমীকরণের মূল্বারের অন্তর 4 হলে b = ?

Solve শর্তমতে, 
$$\frac{\sqrt{b^2 - 4.3 (-12)}}{3} = 4 \Rightarrow b^2 + 144 = 12^2 \Rightarrow b = 0$$

09.  $2x^2 - 5x + 20 = 0$  স্মীকরণের মূল দৃটি  $\frac{1}{\alpha}$  এবং  $\frac{1}{\beta}$  হলে  $(\alpha + \beta)$  এর মান

Solve 
$$\frac{1}{\alpha} \frac{1}{\beta} = \frac{20}{2} = 10 \Rightarrow \alpha\beta = \frac{1}{10}$$

$$\underbrace{\alpha_{R}}_{\alpha} + \frac{1}{\beta} = \underbrace{\frac{5}{2}}_{\alpha} \Rightarrow \underbrace{\frac{\alpha + \beta}{\alpha \beta}}_{\alpha\beta} = \underbrace{\frac{5}{2}}_{\alpha\beta}$$

$$\Rightarrow \alpha + \beta = \frac{5}{2} \times \alpha \beta = \frac{5}{2} \times \frac{1}{10} = \frac{1}{4}$$

10. মূলদ সহগবিশিষ্ট একটি ত্রিঘাত সমীকরণ গঠন কর যার দুইটি মূল 1 এবং 1 + i.

Solve भूनवा 1, 1 + i ও 1 - i

$$1+1+i+1-i=3$$

$$1(1+i)+(1+i)(1-i)+(1-i)1$$

$$= 1 + i + 1 + 1 + 1 - i = 4$$

$$x^3 - 3$$
.  $x^2 + 4$ .  $x - 2 = 0 \Rightarrow x^3 - 3x^2 + 4x - 2 = 0$ 

JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS

#### For Practice

- 01.  $(a^2 hc)x^2 + 2(b^2 ca) + c^2 ab$  नभीक्त्रणित भूनावरा नमान घरन ल्यांड त्व, (i) b = 0 ज्यांचा a<sup>3</sup> + b<sup>3</sup> + c<sup>3</sup> = 3abc (ii) a + b + c = 0 जर्बा a = b = c
- 02. যদি  $ax^2+bx+c=0$  সমীকরনের মূল দুইটির অনুপাত  $a_1x^2+b_1x+c_1=0$
- 03.  $ax^2 + bx + c = 0$  এবং  $cx^2 + bx + a = 0$  সমীকরণ ব্যের একটি সাধারণ भून श्रीकरन (मधां य, c+a=±b
- 04.  $x^2 + kx 6k = 0$  এবং  $x^2 2x k = 0$  সমীকরণৰ্যের একটি সাধারণ মূল जारह। k अत्र मान निर्मग्र कत्र। क्या हार प्रविद्या प्रविद्यार प्रविद्यार प्रविद्यार प्रविद्यार स्थापन

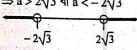
05. 5 + 3x - x2 এর সর্বোচ্চ মান কত?

- 06.  $c^{4x} 4c^x + 2 = 0$  সমীকরণের মূলহার  $x_1$ ও  $x_2$ হালে, দেখাও যে,  $x_1 + x_2 = 0$
- 07.  $f(x) = x^3 3x^2 + 4x 10$  কে (x 1) ছারা ভাগ করলে ভাগলেব ক্ रूप जा निर्णग्न कत्र।
- 08.  $x^4 + 4x^3 + 6x^2 + 4x + 5 = 0$  সমীকরণটির একটি মূল  $\sqrt{-1}$ ; जैमीक Ans:  $\pm \sqrt{-1}, -2 \pm \sqrt{-1}$
- 09.  $x^3 + qx + r = 0$  সমীকরণের মূলগুলো  $\alpha$ ,  $\beta$ ,  $\gamma$  হলে  $\Sigma(\alpha \beta)^2$  জ্ব
- 10. মুলগুলো সমান্তর শ্রেণীভুক্ত হলে  $32x^3 48x^2 + 22x 3 = 0$  সমীন্ত্র

সমাধান কর।

#### GST গুচ্ছ/গুচ্ছভূক্ত বিশ্ববিদ্যালয়ের বিগত বছরের প্রশ্নোত্তর

01. a ध्यत्र कोन (छोट्मात्मद्र छन्।  $x^2 + ax + 3 = 0$  ध्यत्र मुन्यस्य वास्त्र ७ ध्यनमान रहित?


[GST-A: 22-23]

(a)  $(-2\sqrt{3}, 2\sqrt{3})$  (b)  $(-\infty, -2\sqrt{3})$ 

 $\mathbb{O}(-\infty, -2\sqrt{3}) \cup (2\sqrt{3}, \infty) \quad \mathbb{O}(2\sqrt{3}, \infty)$ 

Solve  $D > 0 \Rightarrow (a)^2 - 4.1.3 > 0 \Rightarrow a^2 - 12 > 0$ 

 $\Rightarrow$  (a)<sup>2</sup> -  $(2\sqrt{3})^2 > 0 \Rightarrow (a + 2\sqrt{3}) (a - 2\sqrt{3}) > 0$ ⇒ a > 2√3 বা a < - 2√3



 $\therefore \operatorname{ভোমেন} = (-\infty, -2\sqrt{3}) \cup (2\sqrt{3}, \infty)$ 

02. কোন সমীকরনের একটি মূপ 2 + i√3?[GST-A:21-22]

(B)  $x^2 - 3x + 2 = 0$ 

Solve भूमि x राम,

 $x = 2 + i\sqrt{3} \Rightarrow x - 2 = i\sqrt{3} \Rightarrow x^2 - 4x + 4 = -3$  $\Rightarrow$   $x^2 - 4x + 7 = 0$  নির্ণেয় স্মীকরণ

03. k এর মান কত হলে  $(k+1) x^2 + (k+1) x + 1 = 0$  সমীকরণের মূলগুলো কাল্পনিক হবে? [GST-A: 21-22]

 $\textcircled{0}-1 < k < 3 \ \textcircled{0}-3 < k < 1 \ \textcircled{0}-1 \le k \le 3 \ \textcircled{0}1 < k < 3$ Solve সমীকরণের মূল্ঘ্য কাল্পনিক

 $(k+1)^2-4(k+1)\cdot 1<0$ 

 $\Rightarrow$  (k+1) (k+1-4) < 0  $\Rightarrow$  (k+1) (k-3) < 0  $\Rightarrow \{k-(-1)\}\ (k-3) < 0 : -1 < k < 3$ 

04. কোন শর্ডে  $x^3 - mx^2 + nx + r = 0$  সমীকরণের দুইটি মূলের সমষ্টি শূন্য হবে? [GST-A: 20-21]

 $\bigcirc$  mr + n = 0

**B** Solve ধরি, মূল এর α, – α, β

 $\therefore \alpha + (-\alpha) + \beta = m \Rightarrow \beta = m$ 

: β = m, প্রদন্ত সমীকরণের একটি মূল।

 $x^3 - mx^2 + nx + r = 0$ 

 $\Rightarrow m^3 - m \cdot m^2 + n \cdot m + r = 0$ 

 $\Rightarrow m^3 - m^3 + mn + r = 0 \Rightarrow mn + r = 0$ 

05.  $(k+3)x^2 + (6-2k)x + (k-1) = 0$  সমীকরণের মূশঘর একটি সমান কিন্তু বিপরীত চিহ্ন যুক্ত হলে, k = ? [KU-A: 19-20]

**B** 2

জি C Solve প্রমতে ধরি মূলদয়, lpha ও -lpha তাহলে,

 $\alpha - \alpha = -\frac{6-2k}{k+3} \Rightarrow 0 = \frac{6-2k}{k+3} \Rightarrow 6-2k = 0 \Rightarrow k = 3$ 

 $06. 3x^2 - kx + 4 = 0$  সমীকরণের মূল একটি অপরটির 3 তুপ হলে, k [CoU-A: 19-20]  $\bigcirc \pm \sqrt{8}$   $\bigcirc \pm 8$ 

 $\mathbb{B}-8$ A 8

Solve  $3x^2 - kx + 4 = 0$ 

😲 এর একটি মূল অপরটির 3 গুণ,

 $07. \ x^2 + kx + 1 = 0$  সমীকরণে k এর মান কত হলে মূলম্ম জটিল হবে? [CoU-A:19 A-4 < k B-1 < k < 1 C-2 < k < 2 D 0 < k < 0

চি C Solve মূলদ্বয় জটিল হবে,

यशन,  $k^2 - 4.1.1 < 0 \Rightarrow k^2 < 4 \Rightarrow |k| < 2 \Rightarrow -2 < k < 2$ 

08. x বাছৰ হলে, x² – 3x + 5 রাশিটির ক্ষুদ্রতম মান কত? [CoU-A: 18-19]

Solve  $x^2 - 3x + 5 = x^2 - 2 \cdot \frac{3}{2} \cdot x + \frac{9}{4} + 5 - \frac{9}{4}$ 

 $=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}$ ,  $x=\frac{3}{2}$  হলে এর মান ক্ষুদ্রতম হবে। : ক্ষুদ্রতম মান=

09.  $x^2 + 6x + r = 0$  সমীকরণের দুটি মূলই -3 হলে, r এর মান- [IU-D:19

A 6

 $oxed{B}$  Solve মূলদ্বয়ের গুণফল,  $(-3)(-3)=rac{r}{1} \Rightarrow r=9$ 

10. 3x²-2x+27=0 এর তিন্টি মূল α, β ও γ হলে, αβγ এর মান- Γιυρ: B 24 ·  $\bigcirc -12$   $\bigcirc -9$ 

Solve  $3x^3 - 2x + 27 = 0 \Rightarrow 3x^3 + 0.x^2 - 2x + 27 = 0$ 

11.  $x^3 - 3x^2 + 4x - 10$  কে x + 2 ঘারা ভাগ করলে ভাগশেষ- [IU-D:  $x^3 - 3x^2 + 4x - 10$  $\mathbf{B} - 38$ 

 $\bigcirc -28$ 

Solve  $x^3 - 3x^2 + 4x - 10 = f(x)$  ধরলে ভাগশেষ হবেঃ  $\overline{((-2))} = (-2)^3 - 3(-2)^2 + 4(-2) - 10 = -8 - 12 - 8 - 10^{-5}$ 

LOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS .

 $= 1.1 + 1.(-1) + (-1).1 = -a \Rightarrow 1 - 1 - 1 = -a$ :

 $-5.\frac{1}{y}+1=0 \Rightarrow x^2-5x+6=0$ 

$$> \frac{9}{16}$$

$$0 < \frac{9}{16}$$

Solve মৃশতলো জটিল হলে, (3)2 – 4.P.4 < 0

$$\Rightarrow 9 - 16P < 0 \Rightarrow P > \frac{9}{16}$$

27. যদি  $3x^3 - 1 = 0$  স্মীকরণের মূলতলো  $\alpha$ ,  $\beta$ ,  $\gamma$  হয় তাহলে  $\alpha^3 + \beta^3 + \gamma^3$ **पत्र मान रूर्व-[BSFMSTU-A: 19-20]** 

$$\mathbb{Q}^{\frac{1}{3}}$$

Solve  $3x^3 - 1 = 0 \Rightarrow 3x^3 + 0.x^2 + 0.x$ 

= 0 + 1 = 1

$$\mathbb{B} - \sqrt{2}i$$

$$\bigcirc -3$$

D কোনোটিই নয়

প্র  $\blacksquare$  Solve একটি মূল  $\sqrt{2}i$  হলে অপর মূল  $-\sqrt{2}i$ 

29.  $x^3 - 5x^2 + 17x - 13 = 0$  সমীকরণের একটি মূল 1 হলে, অন্য দুইটি কত হবে? [RSTU-C: 19-20]

$$\triangle -1, 2+3i$$

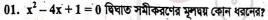
$$(B)-1,2-3$$

$$\bigcirc$$
 2 + 3i, 2 - 3i

Solve  $x^3 - x^2 - 4x^2 + 4x + 13x - 13 = 0$ 

$$\Rightarrow x^{2}(x-1) - 4x(x-1) + 13(x-1) = 0$$
  
\Rightarrow (x-1)(x^{2} - 4x + 13) = 0

$$\Rightarrow x - 1 = 0 : x = 1$$


$$x^2 - 4x + 13 = 0$$

$$\therefore x = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i$$

Shortcut: 1 বাছব, তাই অপর মূলদ্বয় A ও B অপশন হবে না , যদি D হয় হ  $1 \times (-1)(2) \neq 13$ :. Option (c) Ans.

# Part 4

#### অধ্যায়ভিত্তিক গুরুতুপূর্ণ MCO প্রশ্নোত্তর



A) বান্তব ও সমান © অসমান ও জটিল

भक्षी क्षेत्राचन कर जीवन

- ® বান্তব ও মূলদ D বান্তব ও অমূলদ
- 02.  $x^2 2x + 3 = 0$  সমীকরণের মূল্বয়  $\alpha$  এবং  $\beta$  হলে  $\alpha + 1$  এবং  $\beta + 1$ মূলবিশিষ্ট দ্বিঘাত সমীকরণ কোনটি?
  - $(A) x^2 + 4x 6 = 0$  $\bigcirc x^2 - 4x + 6 = 0$
- (B)  $x^2 4x 6 = 0$
- 03.  $x^3 5x^2 + 17x 13 = 0$  সমীকরণের একটি মূল 1 হলে, অপর মূল কোন দুইটি?
  - $\triangle 2 3i, 2 + 3i$  $\bigcirc -2 + 3i, -2 - 3i$
- (B) 2 + 3i, 2 + 3i

(A) 
$$2 + \sqrt{3}$$

$$^{\circ}$$
 B 2 −  $\sqrt{3}$ 

$$\bigcirc \frac{1}{-2+\sqrt{3}}$$

$$\frac{1}{-2-\sqrt{3}}$$

05.  $(k+1)x^2 + 2(k+3)x + k - 1$  রাশিটির পূর্ণকর্ণ হলে, k এর মান কোনটি?

06.  $2x^2 + ax + 6 = 0$  সমীকরণের মূল দুইটির যোগফল 5 হলে, a এর মান কোনটি?

- (Ans(B)

07.  $x^2 + 2x + 4 = 0$  সমীকরণের মূশব্য  $\alpha$  এবং  $\beta$  হলে, –

নিম্নের কোনটিং

 $08. \ 12x^2 + mx + 5 = 0$  সমীকরনের মূলহয়ের অনুপাত 2:3 হলে m এর মান কোনটি?

- $\triangle \pm 6\sqrt{10}$ © ±  $3\sqrt{10}$
- $\oplus$  ± 5√10

- 09.  $\alpha + \beta = 4$  धवर  $\alpha^3 + \beta^3 = 44$  श्राम  $\alpha$  धवर  $\beta$  य সমীকরণের সূপ সমীকরণ নিম্নের কোনটি?
  - $\triangle 3x^2 + 9x + 11 = 0$
- $3x^2 12x + 5 = 0$
- $\bigcirc 3x^2 + 12x + 5 = 0$

10.  $2x^2 - 3x - 2 = 0$  এবং  $2x^2 - x - 6 = 0$  দ্বিঘাত সমীকরণদ্বয়ের সাধারণ নিম্নের কোনটি?

 $A - \frac{1}{2}$ 

- 11.  $2x^2 x 1 = 0$  দিঘাত সমীকরণের মূলদ্বয় কোন ধ্রনের?
  - (A) বাস্তব ও সমান
- (B) বাস্তব ও অসমান
- © অসমান ও জটিল
- D বাস্তব ও অমূলদ
- 12. 1, 1, 2 মূলবিশিষ্ট ত্রিঘাত সমীকরণ নিম্নের কোনটি?
- $\bigcirc x^3 + 2x^2 x 2 = 0$
- 13. কোন দ্বিদাত সমীকরণের একটি মূল 2 + 3i হলে, দ্বিঘাত সমীকরণ নিম্নের কেনি
- $Bx^2 + 4x + 13 = 0$
- 14.  $2x^2 7x + b = 0$  সমীকরণের মূল দুইটির গুণফল -3 হলে, b এর মান রেণ

And

A

- 15.  $x^2 + ax + b = 0$  স্মীকরণের একটি মূল 1 i হলে a এবং b এর নিম্নের কোন দুইটি?
  - $\triangle$  a = 2, b = 1
- (B) a = -2, b = 2
- $\bigcirc$  a = 2, b = 2 16.  $2x^2 = 0$  দ্বিঘাত সমীকরণের পৃথায়ক কত?
  - (B) 1 © 2

AB 17. kx²+x+1=0 সমীকরণে k এর মান কত হলে মূলদম বাস্তব ও স্মান ক্

JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS

 $\bigoplus pq - r = 0$ 

 $\mathbb{C}$  qr = p

81. কি শর্চে  $x^3 - px^2 + qx - r = 0$  সমীকরণের দুইটি মূলের সমষ্টি শূন্য হবে

 $. \oplus pr = q$ 

(D) কোনটিই নয়

67.  $9x^2 - 12x + 4 = 0$  विघाज সমীকরণের মূলবয়  $\alpha$ ,  $\beta$  হলে মূলবয়ের অনুপাত

(α : β) কত?





# Part 1

#### প্রয়োজনীয় সূত্রাবলি

নিদী উপপাদ্য (Binomial Theorem): যে বীজগণিতীয় সূত্রের সাহায্যে ুক্ট ছিপদ রাশির যে কোন শক্তি বা মূলকে একটি ধারায় প্রকাশ করা যায় রুকে ছিপদী উপপাদ্য বলা হয়। ইহাকে নিমুরূপে প্রকাশ করা যায়।  $(a+x)^n$  $= a^{n} + {^{n}C_{1}}a^{n-1}x + {^{n}C_{2}}a^{n-2}x^{2} + \dots + {^{n}C_{r}}a^{n-r}x^{r} + \dots + x^{n}$ 

$$a^{n} + na^{n-1}x + \frac{n(n-1)}{2!} a^{n-2}x^{2} + \dots$$

$$+\frac{n(n-1)....(n-r+1)}{r!}$$
  $a^{n-r}x^r+....+x^n$ ;  $n \in \mathbb{N}$ 

ব্লাকা পদ:  $(a+x)^n$  এর বিস্তৃতিতে (r+1) তম পদকে সাধারণ পদ বলা হয় কে T+1 ছারা প্রকাশ করা হয়। এখানে

$$I_{r+1} = {}^{n}C_{r}a^{n-r}x^{r} = \frac{n(n-1)...(n-r+1)}{r!}a^{n-r}x^{r}$$

$$= \frac{n!}{r! (n-r)!} a^{n-r} x^r$$

্রাধ্রকটি বিয়োগবোধক পূর্ণসংখ্যা অথবা ভগ্নাংশ এবং  $|\mathbf{x}| < |\mathbf{a}|$  হলে ,

$$(a+x)^n = a^n + na^{n-1}x + \frac{n(n-1)}{2!}a^{n-2}x^2....$$

$$+\frac{n(n-1).....(n-r+1)}{r!}a^{n-r}x^r+.....+\infty$$

্রক্টিতিতে পদের সংখ্যা অসীম হবে।

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots$$

$$+rac{n(n-1)(n-2)....\;(n-r+1)}{r!}\;\; x^r+\ldots\ldots \infty$$
 যখন  $|x|<1$ 

 $_{1}$ জোড় সংখ্যা হলে মধ্যপদ হবে  $(\frac{n}{2}+1)$  তম পদ

্রাবিজোড় সংখ্যা হলে মধ্যপদ হবে  $(\frac{n+1}{2})$  এবং  $(\frac{n+1}{2}+1)$  তম পদ

#### ক্রতুপূর্ব বিপদী উপপাদ্যসমূহ-

$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$$

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots + (-1)^r x^r + \dots$$

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots + (-1)^r x^r + \dots + (1-x)^{-2} = 1 + 2x + 3x^2 + \dots + (r+1)x^r + \dots + (1+x)^{-2} = 1 - 2x + 3x^2 - \dots + (-1)^r (r+1)x^r + \dots$$

$$(1+x)^{-2} = 1 - 2x + 3x^2 - \dots + (-1)^{n}(r+1)x^{n} + \dots$$

$$(1-x)^{-3} = 1 + 3x + 6x^2 + 10x^3 \dots + \frac{1}{2}(r+1)(r+2)x^r + \dots$$

$$(1+x)^{-3}=1-3x+6x^2-10x^3....+(-1)^r\frac{1}{2}, (r+1)(r+2)x^r+...$$

$$e^{x} = 1 + \frac{x}{11} + \frac{x^{2}}{21} + \frac{x^{3}}{31} + \frac{x^{4}}{41} + \dots$$

$$e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} + \dots$$

$$e^{-1} = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots$$

$$h(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{r=1}^{\infty} (-1)^{r-1} \cdot \frac{x^r}{r}$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} + \dots = -\sum_{r=1}^{\infty} \frac{x^r}{r}$$

12. 
$$\frac{1}{2} \ln \frac{1+x}{1-x} = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$$

13. 
$$\frac{1}{2} \ln \frac{1-x}{1+x} = -\left(\frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6}\right)$$
.....

14. 
$$\frac{1}{2}(e + \frac{1}{e}) = 1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$$

15. 
$$\frac{1}{2}(e-\frac{1}{e}) = 1 + \frac{1}{3!} + \frac{1}{5!} + \frac{1}{7!} + \dots$$

16. 
$$\frac{1}{2} \left( e^{x} + e^{-x} \right) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots$$

17. 
$$\frac{1}{2}(e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

দ্বিপদী রাশির সহগসমূহের গুণাবলি:  $(1 + x)^n$  এর বিস্তৃতিতে সহগগুলো যথাক্রমে "C<sub>0</sub>, "C<sub>1</sub>, "C<sub>2</sub>, "C<sub>3</sub>, ..."C<sub>n</sub> কৈ কোন সময় C<sub>0</sub>, C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, ...  $\frac{C_n}{2}$ ত্যাদি দ্বারা প্রকাশ করা হয়। তাই  $(1+x)^n = C_0 + C_1x + C_2x^2$  $+... ... + C_n x^n ... ... (A)$ 

(i) 
$$C_0 + C_1 + C_2 + \dots + C_n = 2^n$$

(ii) 
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 \dots = 2^{n-1}$$

(iii) 
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{(2n)!}{(n)!}$$

(iv) 
$$C_0C_n + C_1C_{n-1} + \dots + C_nC_0 = \frac{(2n)!}{n!n!}$$

## Shortcut Technique only for MCQ

Technique 01:  $(ax^p + bx^q)^n$  এর বিস্তৃতিতে (r+1) তম পদে  $x^m$  এর সহগ

থাকলে, 
$$r = \frac{np-m}{p-q}$$
 এবং  $x^m$  এর সহগ =  ${}^nC_r$   $a^{n-r}b^r$ 

Ex-01  $\left(3x^2-\frac{1}{3x}\right)^9$  <mark>এর বিহুতিতে x</mark> মুক্তপদ এবং পদের মান কত?

Solve 
$$r = \frac{np - m}{p - q} = \frac{9 \times 2 - 0}{2 - (-1)} = \frac{18}{3} = 6$$

6 + 1 = 7 তম পদটি x মুক্তপদ

$$\therefore \text{ পদের মান} = {}^{9}C_{6} 3^{9-6} \left(-\frac{1}{2}\right)^{6} = \frac{567}{16}$$

Ex-02  $\left(x^4-rac{1}{x^3}
ight)^8$ এর বিষ্কৃতিতে  $x^{11}$ সহগ কত?

Solve 
$$r = \frac{np - m}{p - q} = \frac{8 \times 4 - 11}{4 - (-3)} = \frac{21}{7} = 3$$

3 + 1 = 4 তম পদটিতে  $x^{11}$  এর সহগ আছে।

∴ পদের মান = 
$${}^{8}C_{3} 1^{8-3} (-1)^{3} = -56$$

Technique 02:  $(1+ax)^n$  এর বিষ্কৃতিতে r এবং (r+1) তম পদ পরস্পর

সমান হলে, 
$$x = \frac{r}{a(n-r+1)}$$

JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . Ex-01  $(1+x)^{44}$  এর বিষ্ণুতিতে 21 এবং 22 তম পদ পরম্পর সমান হলে

x এর মান কতা

Solve 
$$r = 21$$
,  $a = 1$ ,  $n = 44$ 

$$x = \frac{r}{a(n-r+1)} = \frac{21}{1(44-21+1)} = \frac{21}{24} = \frac{7}{8}$$

l'echnique 03: (1 + ax)" এর বিষ্কৃতিতে x' এবং x<sup>(r+1)</sup> এর সহগ পরস্পর

সমান হলে,  $a = \frac{r+1}{r}$ 

Ex-01  $\left(3+\frac{x}{2}\right)^n$  এর বিষ্কৃতিতে  $x^7$  এবং  $x^8$  এর সহগ পরন্পর সমান হলে,

$$\boxed{\text{Solve}} \left( 3 + \frac{x}{2} \right)^n = 3^n \left( 1 + \frac{x}{6} \right)^n \Rightarrow a = \frac{r+1}{n-r} \Rightarrow \frac{1}{6} = \frac{7+1}{n-7}.$$

Technique 04: (1 + x) এর বিচ্চতিতে / তম পদ এবং m তম পদ এর সহা পরম্পর সমান হলে, l+m=n+2

Ex-01  $(1+x)^{20}$  এর বিষ্ণুতিতে r তম পদ এবং (r+4) তম পদ এর সহগ পরস্পর সমান হলে, r এর মান কত?

Solve 
$$l = r, m = r + 4, n = 20$$

$$\therefore 1 + m = n + 2 \Rightarrow r + r + 4 = 20 + 2 \Rightarrow 2r = 18 \therefore r = 9$$

Technique 05:  $\frac{x}{(1-ax)(1-bx)}$  এর বিস্কৃতিতে  $x^n$  এর সহগ =  $\frac{a^n-b^n}{a-b}$ 

 $\frac{x}{(1-4x)(1-5x)}$  এর বিষ্কৃতিতে  $x^4$  সহগ কত?

Solve 
$$\frac{x}{(1-4x)(1-5x)}$$
 এর বিস্থৃতিতে  $x^4$  এর সহগ  $=\frac{4^4-5^4}{4-5}=369$ 

Technique 06:  $\frac{1}{(1-ax)(1-bx)}$  এর কিছুতিতে  $x^n$  এর সহগ =  $\frac{a^{n+1}-b^{n+1}}{a-b}$ 

 $\frac{1}{(1-x)(3-x)}$  এর বিষ্কৃতিতে  $x^{10}$  এর সহগ কত?

Solve 
$$\frac{1}{(1-x)(3-x)} = \frac{1}{3} \cdot \frac{1}{(1-x)(1-\frac{x}{3})}$$

$$x$$
.  $x^{10}$  এর সহগ =  $\frac{1}{3} \frac{1^{10+1} - \left(\frac{1}{3}\right)^{10+1}}{1 - \frac{1}{3}} = \frac{1}{3} \cdot \frac{1 - \left(\frac{1}{3}\right)}{\frac{2}{3}} = \frac{1}{2} \cdot \left(1 - 3\right)$ 

Technique 07:  $\left(rac{1+x}{1-x}
ight)^2$  এর বিস্কৃতিতে  $x^n$  এর সহগ =4n

 $\frac{(1+x)^2}{(1-x)^2}$  এর বিস্থৃতিতে  $x^{10}$  এর সহগ কত?

Solve  $x^{10}$  এর সহগ =  $4n = 4 \times 10 = 40$ 

Technique 08:  $\dfrac{1+x}{\left(1-x
ight)^2}$ এর বিস্কৃতিতে  $x^n$ এর সহগ =2n+1

 $\frac{1+x}{(1-x)^2}$  এর বিস্কৃতিতে  $x^{10}$  এর সহগ কত?

Solve  $x^{10}$  এর সহগ =  $2n + 1 = 2 \times 10^{-} + 1 = 21^{-}$ 

Technique 09:  $\frac{1+x}{(1-x)^3}$  এর বিভূতিতে  $x^n$  এর সহগ =  $(n+1)^2$ 

 $\frac{1+x}{(1-x)^3}$  এর ক্রিডিতে  $x^{10}$  এর সহগ কত?

Solve  $x^{10}$  এর সহগ =  $(n+1)^2 = (10+1)^2 = 121$ 

Technique 10:  $\frac{1+x}{1-x}$  এর বিভৃতিতে  $x^n$  এর সহগ =2

Ex-01  $\frac{1+x}{1-x}$  এর কিছুতিতে  $x^7$  এর সহগ কত?

Solve x<sup>7</sup> এর সহগ = 2

 $\frac{(1+x)^n}{1-x}$  এর বিভৃতিতে  $x^n$  এর সহগ  $=2^n$ 

 $\frac{(1+x)'}{1-x}$  এর বিস্কৃতিতে  $x^7$  এর সহগ কত?

Solve  $x^7$  এর সহগ =  $2^7$ 

Technique 12:  $\frac{1-x}{1+x}$  এর বিভূতিতে  $x^n$  এর সহগ = 2  $(-1)^n$ 

Ex-01  $\frac{1-x}{1+x}$  এর বিষ্কৃতিতে  $x^9$  এর সহগ কত? Solve  $x^9$  এর সহগ =  $2(-1)^9 = -2$ 

## Part 2

## গাণিতিক সমস্যা ও সমাধান

01.  $\left(x^2 + \frac{2}{x}\right)^6$  এর সম্প্রসারণে x মৃক্ত পদটি কত?

Solve 
$$(r+1)$$
 তম পদ =  ${}^6C_r(x^2)^{6-r}\left(\frac{2}{x}\right)^r$   
=  ${}^6C_r \times x^{12-2r} \times x^{-r} \times 2^r = {}^6C_r \times 2^r \times x^{12-3r}$   
প্রামতে,  $x^{12-3r} = x^0 \Rightarrow 12-3r = 0 \Rightarrow r = 4$ 

∴ 5 তম পদটি x বর্জিত

নির্ণেয় x বর্জিত পদটির মান =  ${}^{6}C_{4} \times 2^{4} = 240$ 

 $02. \quad \left(x^4 - \frac{1}{x^3}\right)^8$  এর বিষ্কৃতিতে  $x^{11}$  এর সহগ কতঃ

Solve 
$$r + 1$$
 তম পদ  $= (-1)^r$ .  ${}^8C_r$ .  $(x^4)^{8-r} \left(\frac{1}{x^3}\right)^r$ 
 $= (-1)^r$ .  ${}^8C_r$ .  $x^{32-4r-3r} = (-1)^r$ .  ${}^8C_r$ .  $x^{32-7r}$ 
প্রশাসতে,  $x^{32-7r} = x^{11}$ 
 $\Rightarrow 32 - 7r = 11 \Rightarrow 7r = 21 \Rightarrow r = 3$ 
 $\therefore x^{11}$  এর সহগ  $= (-1)^3$ .  ${}^8C_3$ .  $= -56$ 

03.  $\left(\frac{x}{y} + \frac{y}{x}\right)^{10}$  এর বিষ্কৃতিতে মধ্যপদটি নির্ণয় কর।

$$\frac{|S_0|_{V}}{|V|_{X}} \left(\frac{x}{y} + \frac{y}{x}\right)^{10}$$
 এর বিস্তৃতিতে

মধ্যপদ = 
$$\left(\frac{10}{2} + 1\right) = (5 + 1)$$
 তম,পদ

$$= {}^{10}C_5 \left(\frac{x}{y}\right)^5 \cdot \left(\frac{y}{x}\right)^5 = {}^{10}C_5 \cdot \frac{x^5}{y^5} \times \frac{y^5}{x^5} = {}^{10}C_5 = 252 \text{ (Ans.)}.$$

04.  $\frac{x}{(1-4x)(1-5x)}$  এর বিছৃতিতে  $x^4$  এবং  $x^n$  এর সহগ কত হবে?

Solve 
$$\frac{x}{(1-4x)(1-5x)} = \frac{x}{(1-5x)(1-4x)}$$

$$\therefore x^4$$
 এর সংগ =  $\frac{a^n - b^n}{a - b} = \frac{5^4 - 4^4}{5 - 4} = 625 - 256 = 369$ 

আবার, 
$$x^n$$
 এর সহগ =  $\frac{5^n - 4^n}{5 - 4} = 5^n - 4^n$ 

(r + 1)<sup>20</sup> এর বিষ্ণুতিতে r তম পদের সহণ এবং (r + 4) তম পদের সহণ রালর সমান হলে r এর মান কতা

Sahre (x + 1)<sup>20</sup> এর বিষ্ণতিতে r তম পদ ও (r + 4) তম পদের সহগ পরস্পর

त्वान != r, m = r + 4 धवर n = 20

बाने, /+m=n+2

 $\Rightarrow r+r+4=20+2 \Rightarrow 2r=18 : r=9$ 

(1+x) -এর বিষ্ঠিতে 21 তম ও 22 তম পদ দুটি সমান হলে x =?

Sohre (1917, r = 21 (197 n = 44

$$x = \frac{r}{n - (r - 1)} = \frac{21}{44 - (21 - 1)} = \frac{21}{24} = \frac{7}{8}$$

 $\left(x^{2}-\frac{1}{x^{2}}\right)^{11}$  এর বিষ্কৃতিতে মধ্যপদ দুটির মান কতঃ

Solve মধ্যপদ দুটি হল 
$$\left(\frac{11+1}{2}\right)$$
তম ও  $\left(\frac{11+1}{2}+1\right)$ তম = 6 তম ও 7

∴ 6 তম = (5 + 1) তম পদ = 
$${}^{11}C_5 (x^4)^6 \left(-\frac{1}{x^3}\right)^5 = -462 x^9$$

$$\gamma$$
 ভম =  $(6+1)$  তম পদ =  ${}^{11}C_6 (x^4)^5 \left(\frac{-1}{x^3}\right)^6 = 462 x^2$ 

 $x = \frac{2}{3}$  হলে  $(1+x)^{\frac{31}{2}}$  এর কিছতিতে সংখ্যামান বৃহত্তম পদটি নির্ণয় কর।

Solve 
$$n = \frac{21}{2}$$
,  $x = \frac{2}{3}$ ,  $a = 1$ ,  $(1+x)^{\frac{21}{2}}$  এর বিষ্ণৃতিতে সংখ্যামান বৃহত্তম পদ

$$T_{\max} = \frac{(n+1)x}{a+x} = \frac{\left(\frac{21}{2}+1\right)\frac{2}{3}}{1+\frac{2}{3}} = \frac{\frac{23}{2}\times\frac{2}{3}}{\frac{5}{3}} = \frac{23}{5} = 4.6$$

: T<sub>max</sub> = 4.6 ভগ্নাংশ যুক্ত। : বৃহত্তম মান = 4 + 1 = 5 তম পদ।

র্ঘনি y = x − x² + x³ − x⁴ + ....... ∞ হয়, তবে x কে y এর শক্তির টর্মক্রম ধারায় প্রকাশ কর।

Solve  $y = x - x^2 + x^3 - x^4 + \dots$ 

$$\Rightarrow -y = -x + x^2 - x^3 + x^4 - \dots$$

$$\Rightarrow 1 - y = 1 - x + x^2 - x^3 + x^4 - \dots$$

$$\Rightarrow 1 - y = (1+x)^{-1} \Rightarrow 1 - y = \frac{1}{1+x}$$

$$\Rightarrow 1 + x = \frac{1}{1 - y} \Rightarrow 1 + x = (1 - y)^{-1}$$

$$\Rightarrow 1 + x = 1 + y + y^2 + y^3 + y^4 + \dots$$
  
$$\Rightarrow x = y + y^2 + y^3 + y^4 + \dots$$

$$\Rightarrow x = y + y^2 + y^3 + y^4 + \dots$$

ৰ্দন |y| < 1 হয় , তবে দেখাও যে ,  $(1-y)^{\frac{1}{2}}$  বিস্তার করে যে দিপদী ধারাটি গাব্যা যায় তা অভিসৃত (Convergent)।

<u>Solve</u>  $(1-y)^{\frac{1}{2}}$  এর অসীম ধারায় দিপদী বিস্তৃতি  $(1-y)^{\frac{1}{2}}$ 

$$=1-\frac{1}{2}y+\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}y^2-\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}y^3+\dots\dots\dots\dots\dots\dots\dots$$

+ 
$$(-1)^{r} \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2).....(\frac{1}{2}-r+1)}{r!} y^{r} + ...$$

নৈ করি,  $r 
ightarrow \infty$  এবং  $u_r$  ও  $u_{r+1}$  দ্বারা যথাক্রমে ধারাটির r তম ও (r+1) তম পদ সূচিত করা হলো।

$$u_{r} = (-1)^{r-1} \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2) \dots \dots (\frac{1}{2}-r+2)}{(r-1)!} y^{r-1} \dots \dots \dots (i)$$

$$u_{r+1} = (-1)^{r} \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2) \dots \dots (\frac{1}{2}-r+1)}{r!} y^{r} \dots \dots \dots (ii)$$

(ii) কে (i) দারা ভাগ করে পাই,

$$\frac{u_{r+1}}{u_r} = \frac{-\left(\frac{1}{2} - r + 1\right)(r - 1)!}{r!} y = \frac{-\left(\frac{3}{2} - r\right)}{r} y = -\left(\frac{3}{2r} - 1\right) y$$

$$\therefore \lim_{r \to \infty} \left| \frac{u_{r+1}}{u_r} \right| = |y| < 1$$

∴ প্রদত্ত ধারাটি অভিসৃত (Convergent)

11.  $(1+x)^n$  এর বিষ্ণৃতিতে  $S_1$  বিজ্ঞোড় এবং  $S_2$  জ্ঞোড় ছানীয় পদের সমষ্টি হলে, দেখাও যে,  $(1-x^2)^n = S_1^2 - S_2^2$ 

Solve 
$$(1+x)^n = 1 + 4x + C_2x^2 + C_3x^3 + C_4x^4 + \dots$$
  
=  $(1+C_1x^2 + C_4x^4 + \dots) + (C_1x + C_3x^3 + \dots)$   
=  $S_1 + S_2$ 

এখন,  $(1+x)^n (1-x)^n = (S_1+S_2)(S_1-S_2)$ 

∴  $(1-x^2)^n = \frac{S_1}{2} - S_2^2$  (Showed)

12.  $(1-x)^8 (1+x)^7$  এর বিস্কৃতি থেকে  $x^7$  এর সহগ নির্ণয় কর।

Solve 
$$(1-x)(1-x)^7(1+x)^7=(1-x)(1-x^2)^7$$
  
=  $(1-x)\{1+^7C_1(-x^2)+^7C_2(-x^2)^2+^7C_3(-x^2)^3+....\}$   
 $\therefore x^7$  এর সহগ =  $^7C_3=35$ 

 $13. \ 1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \dots \infty$  ধারাটির যোগফশ কত? Solve  $(1+x)^n$  লবের ১ম সংখ্যাদ্বয়ের পার্থক্য = 3-1=5-3=2

∴ 
$$n = -\frac{1}{2}$$
 আবার,  $\frac{1}{3} = nx$  ∴  $x = \frac{1}{3n} = -\frac{2}{3}$ 

$$\therefore \text{ যোগফল } = \left(1 - \frac{2}{3}\right)^{-\frac{1}{2}} = \left(\frac{2}{3}\right)^{-\frac{1}{2}} = \sqrt{3}$$

14.  $1 + \frac{1}{2} + \frac{1}{2.4} + \frac{1}{2.4.6} + \dots = ?$ 

Solve 
$$1 + \frac{1}{2} + \frac{1}{2.4} + \frac{1}{2.4.6} + \dots$$

$$=1+\frac{1}{1!}\left(\frac{1}{2}\right)+\frac{1}{1.2}\left(\frac{1}{2}\right)^2+\frac{1}{1.23}\left(\frac{1}{2}\right)^3+\dots$$

$$=1+\frac{1}{1!}\left(\frac{1}{2}\right)^2+\frac{1}{2!}\left(\frac{1}{2}\right)^2+\frac{1}{3!}\left(\frac{1}{2}\right)^3+\dots=e^{\frac{1}{2}}=\sqrt{e}$$

 $15. \ \frac{14}{1.4.2.5} + \frac{68}{4.7.5.8} + \frac{158}{7.10.8.11} \dots n$  তম পদ পর্যন্ত যোগফল নির্ণয় কর

Solve 
$$U_n = \frac{(3n-2)(3n+1) + (3n-1)(3n+2)}{(3n-2)(3n+1)(3n-1)(3n+2)}$$

$$= \frac{1}{(3n-2)(3n+1)} + \frac{1}{(3n-1)(3n+2)}$$

$$\therefore S_n = C - \frac{1}{3(3n-2)} = \frac{1}{3(3n+2)}$$

$$S_n = S_1 = \frac{14}{1.4.2.5} = \frac{7}{20}$$

$$\therefore n = 1, \sqrt[3]{7}, \frac{7}{20} = C - \frac{1}{5.3} - \frac{1}{3} \Rightarrow C = \frac{7}{20} + \frac{1}{15} + \frac{1}{3} = \frac{3}{4}$$

$$\therefore S_n = \frac{3}{4} - \frac{1}{3(3n+2)} - \frac{1}{3(3n-2)}$$

JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS

16.  $\left(1-\frac{X}{R}\right)^{\frac{1}{2}}$  কে x এর শক্তির উর্ফকেম অনুসারে 5তম পদ পর্যন্ত কির একং

লেখাও যে, 
$$1 - \frac{1}{8} - \frac{1}{8} \cdot \frac{1}{16} - \frac{1}{8} \cdot \frac{1}{16} \cdot \frac{3}{24} - \dots = \frac{\sqrt{3}}{2}$$

Solve 
$$\left(1-\frac{x}{8}\right)^{\frac{1}{2}} = \left\{1+\left(-\frac{x}{8}\right)\right\}^{\frac{1}{2}}$$

$$=1+\frac{1}{2}\left(-\frac{x}{8}\right)+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}\left(-\frac{x}{8}\right)^2+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}\left(-\frac{x}{8}\right)^2+...$$

$$=1-\frac{1}{2}\cdot\frac{x}{2^{3}}-\frac{\frac{1}{2}\cdot\frac{1}{2}}{2!}\cdot\frac{x^{2}}{2^{6}}-\frac{\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{3}{2}}{2\cdot3}\cdot\frac{x^{3}}{2^{6}}-\dots$$

$$\therefore \left(1 - \frac{x}{8}\right)^{\frac{1}{2}} = 1 - \frac{x}{2^4} - \frac{x^2}{2^3} - \frac{x^3}{2^{13}} - \dots$$

x = 2 বিসিয়ে আমরা পাই,  $\left(1 - \frac{2}{8}\right)^{\frac{1}{2}} = 1 - \frac{1}{2^3} - \frac{1}{2^7} - \frac{1}{2^{10}} - \dots$ 

$$\Rightarrow \left(\frac{3}{4}\right)^{\frac{1}{2}} = 1 - \frac{1}{2^3} - \frac{1}{2^3} \cdot \frac{1}{2^4} - \frac{1}{2^3 \cdot 2^4 \cdot 2^3} - \dots$$

$$\Rightarrow \frac{\sqrt{3}}{2} = 1 - \frac{1}{8} - \frac{1}{8} \cdot \frac{1}{16} - \frac{1}{8} \cdot \frac{1}{16} \cdot \frac{3}{24} - \dots \infty$$

$$\therefore \frac{1}{8} - \frac{1}{8}, \frac{1}{16} - \frac{1}{8}, \frac{1}{16}, \frac{3}{24} - \dots = \frac{\sqrt{3}}{2}$$

# For Practiec

 $01. \, \left(rac{1}{x^2} - x
ight)^{18}$  এর বিছুতি থেকে x বর্জিত পদের মান নির্ণয় কর । Ans. 185ি $_{
m M}$ 

02. (a+3x)" এর বিভূতিতে প্রথম তিনটি পদ b,  $\frac{21}{2}$  x ও  $\frac{189}{4}$  bx² হয় তাক

a,b ও n এর মান বের কর। Ans. a = 2; n = 7; b = y

03. (1+x)" এর ক্ছিতিতে তিনটি ক্রমিক পদের অনুপাত 1:7:42 হলে n এর 🚡

$$04. \left(2x + \frac{1}{6x}\right)^{10}$$
 এর কিছুতিতে  $x$  বর্জিত পদটি—

 $05.\left(x^{2}+\frac{1}{x^{3}}\right)^{7}$  এব কিয়ুতি থেকে মধ্যপদ নির্ণয় কর। Ans.  $\frac{35}{x}$  এবং  $\frac{3}{x}$ 

06. (7a + 4x) এব ক্ষিডিডে বিজ্ঞাড় পদসমূহের সমষ্টি So এবং জ্বে প্ৰদ্ৰুহের সমষ্টি  $S_z$  বাবা প্ৰকাশ করা হলে, দেখাও যে, যখন  $a=5/7, \chi$ 1/2, with  $S_x - S_x = 243$ 

07.  $(3-41)\left(\frac{2-x}{2}\right)^2$  and Appleto  $x^3$  and precing the  $x = \frac{-27!}{8}$ 

# Part 3

## दिश्रदिमानिसात विभेज বছরের প্রশ্নোন্ডর

01.  $y = x - x^2 + x^3 - x^4 + \dots = \infty$  Ten x = 7 [GST-A: 22-23]

$$\oplus \frac{y}{1+y}$$

$$0 \frac{y}{y-1}$$

Solve  $y = x - x^2 + x^3 - x^4 + \dots = \infty$ 

$$\Rightarrow -y = -x + x^2 - x^3 + x^4 \dots \infty$$

$$\Rightarrow 1 - y = 1 - x + x^2 - x^3 + x^4 \dots \infty$$

$$\Rightarrow 1 - y = (1 + x)^{-1} = \frac{1}{1 + x} \Rightarrow 1 + x = \frac{1}{1 - y}$$

$$\Rightarrow x = \frac{1}{1-y} - 1 = \frac{1-1+y}{1-y} = \frac{y}{1-y}$$

02.  $\sqrt[3]{2-5x}$  দিশদী রাশিটির বিবৃতি কোন ব্যবহিতে অভিস্তা [0.51-A:21-22]

- $\mathbb{Q} \frac{5}{2} \le x \le \frac{5}{2}$

Solve  $\sqrt[3]{2-5x} = (2-5x)^{\frac{1}{3}} = 2^{\frac{1}{3}} \left(1-\frac{5}{2}x\right)^{\frac{1}{3}}$  at finites

ৰিছতিতে অভিস্ত হবে যখন  $\left|\frac{5}{2}x\right| < 1 \Rightarrow |x| < \frac{2}{5} \Rightarrow -\frac{2}{5} < x < \frac{2}{5}$ 

03. x > 0 and with  $1 + 2\frac{x}{1+x} + 3\left(\frac{x}{1+x}\right)^2 + 4\left(\frac{x}{1+x}\right)^3 + \dots ? [CST-A:20:21]$ 

Solve 1+2.  $\frac{x}{1+x}+3\left(\frac{x}{1+x}\right)^2+4\left(\frac{x}{1+x}\right)^3+\dots$ 

 $= \left(1 - \frac{x}{1+x}\right)^{-2} = \left(\frac{1+x-x}{1+x}\right)^{-2} = \left(\frac{1}{1+x}\right)^{-2} = (1+x)^{2}$ 

64.  $\left(x^3-J_1+\frac{J}{x}-\frac{1}{x^3}\right)^2$  এন নিমুখিয়েড x বাৰ্জিড পাদটি কতঃ [GST-A : 20-21]

(3 + 1) where  ${}^{0}C_{3} \times {}^{3}\left(\frac{-1}{x}\right)^{3} = -{}^{0}C_{3} = -20$ 

05. (1+x)<sup>1)</sup> এর নিযুতিতে (r+1)তম শদ এবং (2r-1)তম **শদস্বরের স**হ মান সমান হলে, r এর মান কোনটিঃ [KU-A: 19-20]

ি তিনার  $(1+x)^{1'}$  এর ক্রিতিতে (r+1) তম পদের সহগ =  ${}^{19}$ C একং  $(1+x)^9$  এর বিষ্ণুতিতে (2x-1) বা,  $\{(2x-2)+1\}$ তম পদের

বল্পতে,  ${}^{19}C_{20-2} = {}^{19}C_r \Rightarrow 2r - 2 + r = 19 \Rightarrow 3r = 21 \Rightarrow r = 7$ 06. (1 ্র 21) এর ব্রিটিতে 2 এর কেল মানের জন্য এর তৃতীয় পদের সহস্য 84 হরে?

Solve (1 – ax) এর বিশ্বতিতে তৃতীয় পদ = (2+1) তম পদ =  ${}^{7}C_{2}(-ax)^{2}$  =  ${}^{7}C_{2}$   $a^{2}x^{2}$  এর সহগ =  ${}^{7}C_{2}$   $a^{2}$ ধান্নমতে,  ${}^{7}C_{2}$   $a^{2} = 84 \Rightarrow a^{2} = \frac{84}{{}^{7}C_{2}} \Rightarrow a^{2} = 4 \Rightarrow a = \pm 2$ 

 $07. \ (1+x)^{20}$  এর বিষ্কৃতিতে r তম পদের সহগ ও (r+4)তম পদের সহগ $^{37}$ হলে, r এর মান কত? [CoU-A: 18-19]

© 11 **B** 10 Solve  $(1+x)^{20}$  এর (r+1) তম পদের সহগ =  $^{20}$ C<sub>r</sub>

∴ r তম বা  $\{(r-1)+1\}$  তম পদের সহগ =  ${}^{20}C_{r-1}$  এবং (r+4) তম বা  $\{(r+3)+1\}$  তম পদের সহগ =  ${}^{20}C_{r+3}$ 

প্রমতে,  ${}^{20}C_{r+3} = {}^{20}C_{r-1} \Rightarrow r+3+r-1 = 20 \Rightarrow 2r = 18 \Rightarrow r = 9$ 

ক্ষী y = x - x² + x³ - x⁴ + ......∞ হয়, তবে x কে y এর শক্তির উর্ধক্রম ধারার থকাশ করলে হবে- [CoU-A: 18-19]  $\mathfrak{D}1 + y + y^2 + y^3 + \dots$   $\mathfrak{B}1 - y + y^2 - y^3 + \dots$  $\bigcirc$  y + y<sup>2</sup> + y<sup>3</sup> + y<sup>4</sup> + ..... Solve  $y = x - x^2 + x^3 - x^4 + \dots \infty$  $\Rightarrow -1 + y = -1 + x - x^2 + x^3 - x^4 + \dots$  $\Rightarrow -(1-y) = -(1-x+x^2-x^3+x^4....\infty)$  $\Rightarrow 1 + x = \frac{1}{1 - y} \Rightarrow 1 + x = (1 - y)^{-1}$  $\Rightarrow 1 + x = 1 + y + y^2 + y^3 + y^4 + \dots$  $\Rightarrow x = y + y^2 + y^3 + y^4 + ...$ ি (1-x)(3-x) এর বিষ্ণুতিতে  $x^{10}$  এর সহগ হবে- [BRUR-E: 19-20]  $\odot \frac{1}{2}(1+3^{-11})$  $\oplus \frac{1}{2}(1+3^{10})$  $\frac{1}{1 - \frac{1}{2}} = \frac{1}{3} \times \frac{3}{2} (1 - 3^{-11}) = \frac{1}{2} (1 - 3^{-11})$ II.  $(1+x)^{10}$  এর বিষ্কৃতিতে 7-তম ও ৪-তম পদ্ধর পরস্পর সমান হলে, x এর মান কোনটি? [JKKNIU-B: 19-20] জ C Solve (6+1) তমপদ =  ${}^{10}C_6 x^6$  $\therefore {}^{10}C_7 x^7 = {}^{10}C_6 x^6$   $\Rightarrow x = {}^{10}C_6 = \frac{10 - 4 + 1}{4} = \frac{7}{4}$ ॥  $(2x + \frac{1}{6x})^6$  এর বিষ্কৃতি কোন পদটি x বর্জিত? [JKKNIU-B : 19-20] Solve  $r = \frac{1 \times 6 - 0}{1 - (-1)} = 3$ ∴ (3 + 1) বা 4 তম পদ x বর্জিত।  $\left[\frac{12}{2}\left(2x^2+\frac{1}{x^2}-2\sqrt{2}\right)^{12}\right]$  এর কিছতিতে ধ্রবক পদটি কত? [SUST-B: 19-20] B Solve  $\left(2x^2 + \frac{1}{x^2} - 2\sqrt{2}\right)^{12} = \left(\sqrt{2}x - \frac{1}{x}\right)^2$  $r = \frac{1 \times 24}{1 - (-1)} = 12$ : ধ্রুবক পদটি =  ${}^{24}C_{12}(\sqrt{2})^{12} = {}^{24}C_{12}$  $0. \left(3x - \frac{2}{2}\right)^{15}$  এর বিস্কৃতিতে r-তম পদটি x বর্জিত হলে- [MBSTU-A: 19-20]

AT PUBLICATIONS - JOYKOLY PUBLICATIONS - JOYK 15.  $\left(x - \frac{1}{x^2}\right)^3$  এর বিছৃতিতে মধ্যপদের মান কত? [NSTU-B : 19-20] Solve মধ্যপদ =  $\frac{9+1}{2}+1=(5+1)$  তমপদ এর মান =  ${}^{9}C_{5}(-1)^{5} = -126$ 16.  $(x^2-2+rac{1}{x^2})^6$  এর সম্প্রসারণে x বর্জিত পদটির মান কত? [NSTU-A : 19-20] Solve  $(x^2 - 2 + \frac{1}{x^2})^6 = \{(x - \frac{1}{x})^2\}^6 = (x - \frac{1}{x})^{12}$ এখানে,  $r = \frac{12-0}{1-(-1)} = \frac{12}{2} = 6$ 1 \ah €1 \rangle ± (f) ... বর্জিত পদটি = 12 C<sub>6</sub> = 924 17.  $y = 2x + 3x^2 + 4x^2 + ....$  হলে, নিচের কোনটি সত্য? [PUST-A: 19-20] (a)  $(1+x)^2 = (1-y)^{-1}$  (b)  $(1+y)^2 = (1+x)^{-2}$  $\Rightarrow$  1 + y = 1 + 2x + 3x<sup>2</sup> + 4x<sup>3</sup> + .....  $\Rightarrow$   $(1 + y) = (1 - x)^{-2} \Rightarrow (1 - x)^{2} = (1 + y)^{-1}$ 18.  $\left(2x + \frac{1}{2x}\right)^5$  এর বিষ্ণতিতে x এর সর্বোচ্চ ঘাতের সহগ কতা [BSMRSTU-B: 19-20] Solve  $\left(2x + \frac{1}{2x}\right)^5 = {}^5C_0(2x)^5 : \left(\frac{1}{2x}\right)^0 + {}^5C_1 \cdot (2x)^4 \cdot \frac{1}{2x} + \dots$ ∴ x এর সর্বোচ্চ ঘাত এর সহগ = <sup>5</sup>C<sub>0</sub>2<sup>5</sup> = 2<sup>5</sup> 19.  $\left(\frac{1}{x^2} - x\right)^{18}$  এর বিভূতিতে কততম পদটি ধ্রুব? [BSFMSTU-A: 19-20] Solve  $r = \frac{18 \times (-2) - 0}{-2 - 1} = 12$ :: (12 +1) তম বা 13 তম পদ ধ্রুবপদ। 20.  $\left(x + \frac{1}{2x^3}\right)^{20}$  এর ক্রিতিতে x বর্জিত পদের মান কতা [BSFMSTU-A: 19-20] : বর্জিত পদের মান =  ${}^{20}C_5 \left(\frac{1}{2}\right)^5 = 484.5$  $(x^2 + \frac{k}{v})^5$  এর বিষ্কৃতিতে x এর সহগ 270 হলে K এর মান কত? [RSTU-C: 19-20]Solve এখানে  $r = \frac{2 \times 5 - 1}{2 - (-1)} = \frac{9}{3} = 3$ ∴ x এর সহগ =  ${}^5C_3k^3 \Rightarrow {}^5C_3k^3 = 270$ 

JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY

75.  $(1+x)^{\frac{1}{2}}$  এর বিষ্ণুতিতে  $x^3$  সহগা

(Ans(C)

(Ans(A

(D) 2<sup>10</sup> - 11 (Ans(D)

+x $^{13}$  এর বিভারে 6 তম ও 7 তম পদের সহগ সমান হলে a এর মান-

 $(1+x)^n$  এর বিষ্ণৃতিতে সাধারণ পদ  $(-1)^r (r+1)x^r$  হলে n এর মান

 $\bigcirc 2^{10} - 1$ 

 $^{10}C_2 + ^{10}C_3 + ^{10}C_4 + .... + ^{10}C_{10}$  এর মান কোনটি?

(1+x)8 এর বিষ্ণুতিতে ৪র্থ ও মে পদ সমান বলে, x এর মান কত?

কোনটি? (যথন |x| <1)

045

# কনিক

# Part 1

## প্রয়োজনীয় সূত্রাবলি

#### া পরাকৃতের উপাদানের নাম

|                                                  | y'=dax<br>जाकारक नवावस | x² ≈ 4ay<br>जाकारवर नवाक्ष |
|--------------------------------------------------|------------------------|----------------------------|
| )1. भीर्ष विन्मूत <b>ज्ञाना</b> ड                | (0, 0)                 | (0, 0)                     |
| )2. উপকেন্দ্রের <del>ছানাঙ্ক</del>               | (a, 0)                 | (0, a)                     |
| 03. উপকেন্দ্রিক দম্বের দৈর্ঘ্য                   | 4a একক '               | 4a একক                     |
| 04. উপকেন্দ্রিক লম্বের সমীকরণ                    | x-a=0                  | y - a = 0                  |
| 05. অক্ষের সমীকরণ                                | y = 0                  | x = 0                      |
| 06. শীর্ষে স্পর্শকের সমীকরণ 🕓                    | x = 0                  | y = 0                      |
| 07. নিয়ামকের সমীকরণ                             | x + a = 0              | y + a = 0                  |
| 08. উপকেন্দ্রিক লম্বের ধন<br>দিকের প্রান্তবিন্দু | (a, 2a)                | (2a, a)                    |
| 09. উপকেন্দ্রিক লম্বের ঋণ<br>দিকের প্রান্তবিন্দু | (a, -2a)               | (- 2a, a)                  |
| 10. অক্ষ ও দ্বিকাক্ষের ছেদবিন্দু                 | (-a, 0)                | (0, -a)                    |
| 11. নিয়ামক/দ্বিকাক্ষের সমীকরণ:                  | x + a = 0              | y + a = 0                  |
| 12. ফোকাস দূরত্ব                                 | SP = x + a             | SP = y + a                 |
| 13. উপকেন্দ্র ও শীর্ষের দূরত্ব                   | a                      | a                          |
| 14. নিয়ামকরেখার পাদবিন্দু                       | (-a, 0)                | (0, -a)                    |
| 15. উপকেন্দ্র ও নিয়ামকরেখার<br>দূরত্ব           | [2a]                   | 2 2a  • (A                 |

- $y = ax^2 + bx + c$ , (a, b, c বাস্তব সংখ্যা এবং a ≠ 0) সমীকরণটি পরাবৃত্ত নির্দেশ করে।
- নির্দেশ করে।
  (i) এর শীর্ষের ছানান্ধ  $\left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$ 
  - (ii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য  $\frac{1}{a}$
  - (iii) অক্ষরেখা Y অক্ষের সমান্তরাল।
- y²= 4ax পরাবৃত্তের (x<sub>1</sub>, y<sub>1</sub>) বিন্দৃতে স্পর্শক yy<sub>1</sub> = 2a(x + x<sub>1</sub>)
- y = mx + c রেখাটি  $y^2 = 4ax$  পরাবৃত্তকে স্পর্শ করলে  $c = \frac{a}{m}$  হবে এবং স্পর্শবিন্দুর স্থানাম্ক  $= \left(\frac{a}{m^2}, \frac{2a}{m}\right)$ ।
- y = mx + c রেখাটি x² = 4ay পরাবৃত্তের স্পর্শক হবে যদি c = - am² এবং স্পর্শবিন্দু (2am, am²)।
- অক্ষরেখা হতে পরাবৃত্তের যে কোন বিন্দুর দ্রত্ত্বের বর্গের ও শীর্ষ স্পর্শক হতে ঐ বিন্দুর দ্রত্ত্বের অনুপাত উপকেন্দ্রিক লব্দের দৈর্ঘ্যের সমান। অর্থাৎ y² = 4ax
  - পরাবৃত্তে শুরু ক্ষ হতে দূরত্ব = 4|a|
- ightharpoonup ফোকাস  $(\alpha, \beta)$ , দ্বিকাক্ষ ax + by + c = 0 এবং e উৎকেন্দ্রিকতা বিশিষ্ট উপবৃত্তের সমীকরণ,  $(x \alpha)^2 + (y \beta)^2 = e^2 \frac{(ax + by + c)^2}{a^2 + b^2}$  ইহা উপবৃত্তের সাধারণ সমীকরণ।

- >  $(x_1, y_1)$  বিন্দৃটি  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ উপবৃত্তের বাইরে বা উপরে বা চিচ্
  থাকবে, যদি  $\frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2} 1 > 0$  বা = 0 বা < 0 হয়।
- 🕨 উপবৃত্তের একটি দিতীয় উপকেন্দ্র ও একটি দিতীয় নিয়ামক আছে।
- উপবৃত্তের উপরিছিত কোন বিন্দুর ফোকাস দ্রত্বসমূত্রের সমষ্টি প্রশিক্ত 

   তা বৃহৎ অক্ষের সমান। অর্থাৎ SP + S'P = 2a
- ho  $(\alpha, \beta)$  কেন্দ্রবিশিষ্ট উপবৃত্তের সমীকরণ,  $\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$
- $y=mx\pm\sqrt{a^2m^2+b^2}$  সব সময় m এর সকল মানের জেল্য উপরুষ্ট্র স্থানাঙ্ক নির্দেশ করে। স্পর্শবিন্দুর স্থানাঙ্ক  $\left(\pm\frac{a^2m}{\sqrt{a^2m^2+b^2}},\pm\frac{b^2m}{\sqrt{a^2m^2+b^2}}
  ight)$
- ightharpoonup যদি y = mx + c,  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  উপবৃত্তকে স্পূর্ণ  $c = \pm \sqrt{a^2 m^2 + b^2}$ 
  - $(x_1,y_1)$  বিন্দুতে স্পর্শকের সমীকরণ ,  $rac{xx_1}{a^2}+rac{y_1}{b^2}$

| আদর্শ সমীকরণ                                | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; a > b$ | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;b$                    |
|---------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
| <u>1. কেন্দ্র</u>                           | (0,0)                                          | $\begin{array}{ccc} a^2 & b^2 \\ \hline & (0,0) \end{array}$ |
| 2. বৃহৎ অক্ষের দৈর্ঘ্য                      | 2a                                             | 2b                                                           |
|                                             | 2b                                             |                                                              |
| 3. ক্ষু <mark>দ্র</mark> অক্ষের দৈর্ঘ্য     | CANADA WAT STANISHMEN                          | 2a                                                           |
| 4. <mark>উপ</mark> কেন্দ্ৰ/ফোকাস            | (±ae, 0)                                       | $(0, \pm be)$                                                |
| 5. বৃহৎ অক্ষের সমীকরণ                       | y = 0                                          | x = 0                                                        |
| 6. ক্ষুদ্র অক্ষের সমীকরণ                    | x.= 0                                          | y = 0                                                        |
| 7. দ্বিকাক্ষ/নিয়ামকের সমীকরণ               | $x = \pm \frac{a}{e}  (a)$                     | $y = \pm \frac{b}{e}$                                        |
| ৪. উ. লম্বের দৈর্ঘ্য ক্রিন্ত চ্চত্র         | $\frac{2b^2}{a} \qquad .$                      | $\frac{2a^2}{b}$                                             |
| 9. উ. <mark>লম্বের সমীকরণ</mark>            | $x = \pm ae$                                   | $y = \pm be$                                                 |
| 10. বকেন্দ্ৰিকতা/ উৎকেন্দ্ৰিতা              | $e = \sqrt{1 - \frac{b^2}{a^2}}$               | $e = \sqrt{1 - \frac{a^2}{b^2}}$                             |
| 11. বৃহৎ অক্ষের প্রান্তবিন্দু               | (± a, 0)                                       | $(0, \pm b)$                                                 |
| 12. ক্ষুদ্র অক্ষের প্রান্তবিন্দু            | $(0,\pm b)$                                    | $(\pm a, 0)$                                                 |
| 13. ফোকাসদ্বয়ের দূরত্ব                     | 2ae                                            | 2be                                                          |
| 14. নিয়ামকদ্বয়ের দূরত্ব                   | $\frac{2a}{e}$                                 | $\frac{2b}{e}$ .                                             |
| 15. ক্ষেত্রফল                               | πab                                            | πab                                                          |
| 16. উপকেন্দ্র ও অনুরূপ<br>নিয়ামকের দ্রত্ব- | $\frac{a}{e}$ ae                               | $\frac{b}{e}$ - be                                           |
| 17. উপকেন্দ্রের প্রান্তবিন্দু               | $\left(\pm ae, \pm \frac{b^2}{a}\right)$       | $\left(\pm \frac{a^2}{b}, \pm be\right)$                     |

LY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS

(h, k) কেন্দ্র বিশিষ্ট অধিবৃত্ত,  $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{h^2} = 1$ 

 $(x_1, y_1)$  বিন্দুতে স্পর্শক,  $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$ 

P(x, y) পরাবৃত্তের উপর যেকোন বিন্দু হলে এবং S.ও S' যদি উপকেন্দ্র হয়, X PS' - PS = 2a

বায়তাকার অধিবৃত্তের উৎকেন্দ্রিকতা e = √2

ক্রেবেখার সাথে সরলরেখার স্পর্শক (স্পর্শক বা ছেদক)

1x + my + n = 0 সরলরেখাটি  $ax^2 + by^2 + 2hxy + 2yx + 2fy + c = 0$ क्कारतथात न्मर्भक ना एहमक निर्मराह जना সद्गमरतथा २ए७ y এর মাन ক্রেকেখায় বসাতে হবে। এতে বক্ররেখার আকৃতি  $Ax^2 + Bx + c = 0$  হবে। এই ছিঘাত সমীকরণটির নিশ্চায়ক D হলে,

i. D = 0 হলে সরলরেখাটি বক্ররেখার স্পর্শক

ii. D > 0 হলে সরলরেখাটি বক্ররেখার ছেদক

iii. D < 0 হলে সরলরেখাটি বক্ররেখার স্পর্শক/ছেদক কোনটিই নয়।

= mx + c রেখাটি  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  অধিবৃত্তে স্পর্শক  $c = \pm \sqrt{a^2 m^2 - b^2}$ 

| जागर्न त्रमिकक्ष                      | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$                       | $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$                     |
|---------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|
| 1. কেন্দ্ৰ                            | (0, 0)                                                        | (0, 0)                                                      |
| 2. भीर्यविन्त्                        | (± a, 0)                                                      | $(0, \pm b)$                                                |
| 3. वृष्ट् प्रत्कत रेमर्घा             | 2n Property                                                   | 26'00                                                       |
| 4. क्षु जिंदि दिया ।                  | 2b                                                            | 2a                                                          |
| 5. উপকেন্দ্র / ফোকাস                  | (± ae, 0)                                                     | (0, ± be)                                                   |
| 6. বৃহৎ অক্ষের সমীকরণ                 | y = 0                                                         | x = 0                                                       |
| 7. ক্ষুদ্র অক্ষের সমীকরণ              | $(\mathbf{x} = 0)$                                            | y = 0                                                       |
| ৪. <b>ঘিকাক্ষ/নিয়ামকের</b><br>সমীকরণ | $\mathbf{x} = \pm \mathbf{a}/\mathbf{e}$                      | $y = \pm b/e$                                               |
| 9. উ. শম্বের দৈর্ঘ্য                  | 2b2/a 5 500                                                   | 2a²/b                                                       |
| 10. উ. লম্বের সমীকরণ                  |                                                               | . y=±be                                                     |
| 11.বিকেন্দ্রিকতা/<br>উৎকেন্দ্রিকতা    | $e = \sqrt{\frac{a^2 + b_1^2}{a^2}}$ $= \sqrt{1 + b^2 / a^2}$ | $e = \sqrt{\frac{a^2 + b^2}{b^2}}$ $= \sqrt{a^2 / b^2 + 1}$ |

## গাণিতিক সমস্যা ও সমাধান

 $y^2-4x-2y-7=0$  এই পরাবৃত্তের শীর্ধবিন্দু এবং উপকেন্দ্রের ছানান্ধ নির্ণয় কর । 05. যদি  $y^2=18x$  কোন পরাবৃত্ত হয়, তাহলে  $\mathbf{p}(2,4)$  বিন্দুর ফোকাস দূরত্ব নির্ণয় কর ।

Solve  $y^2 - 4x - 2y - 7 = 0 \Rightarrow (y^2 - 2y + 1) = 4x + 8$  $\Rightarrow (y-1)^2 = 4.1.(x+2) \Rightarrow a = 1$ 

় শীর্ষবিন্দু (-2, 1)

উপকেন্দ্রের স্থানাঙ্ক: (a, 0)

ordine,  $X = a \Rightarrow x + 2 = 1 \Rightarrow x = -1$ 

এবং  $Y = 0 \Rightarrow y - 1 = 0 \Rightarrow y = 1$ 

: উপকেন্দ্র (-1, 1)

 $y^2 - 4y = 4x - 16$  পরাবৃত্তের উপকেন্দ্রিক শব্দের দৈর্ঘ্য এবং উপকেন্দ্রিক नरस्त्र श्रीष्ठ विन्त्र्षरग्रत्र श्रानाक निर्गग्र कत्र।

**Solve**  $(y-2)^2 = 4(x-3)$ 

উপকেন্দ্রিক লম্বের দৈর্ঘা = 4a = 4.1 = 4.81 - Vol. 20 (১৮/০১)

ঋণাত্মক দিকের প্রান্তবিন্দু,  $x + 3 = 1 \Rightarrow x = 4$ 

 $y-2=-2 \Rightarrow y=0$ 

ধনাত্মক দিকের প্রান্তবিন্দু,  $x - 3 = 1 \Rightarrow x = 4$ 

 $y-2=2 \Rightarrow y=4$ 

∴ প্রান্ত বিন্দুছয়, (4, 0) এবং (4, 4)

 $4y^2 - 20x - 8y + 39 = 0$  পরাবৃত্তের অক্ষ ও ধিকাক্ষের সমীকরণ নির্ণয় কর।

Solve  $4y^2 - 20x - 8y + 39 = 0$ 

 $\Rightarrow (y-1)^2 = 5\left(x - \frac{7}{4}\right) = 4 \times \frac{5}{4}\left(x - \frac{7}{4}\right) \Leftrightarrow a = \frac{5}{4} \tag{a}$ 

পতএব, অক্ষরেখার সমীকরণ,  $Y = 0 \Rightarrow y - 1 = 0$ 

দিকান্দের সমীকরণ,  $X + a = 0 \Rightarrow x - \frac{7}{4} + \frac{5}{4} = 0 \Rightarrow x - \frac{1}{2} = 0$ 

4. **पकि** भेतावृंखित भीर्विन्द्र (3, 2) धवा धित कि x=1 राम भेतावृंखित नभीकत्रन निर्गय कत्र।

Solve যেহেতু দ্বিকাক্ষ x = 1, অর্থাৎ y অক্ষের সমান্তরাল, তাই পরাবৃত্তটির পক্ষরেখা x অক্ষের সমান্তরাল

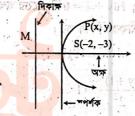
∴ পরাবৃত্তের সমীকরণ,  $(y-2)^2 = 4a(x-3)$ 

এখানে a = শীর্ষ হতে উপকেন্দ্রের দূরত্ব 🛒 🕳 🎾 🖟 🕹 🗀 🚉

= শীর্ষ হতে দ্বিকান্দের দূরত্ব = 3 – 1 = 2 হ – সাম । = 7 = 2

∴ পরাবৃত্তের সমীকরণ,  $(y-2)^2 = 8(x-3)$ 

Solve প্ৰদত্ত প্ৰাবৃত্ত  $y^2 = 18x = 4 \times \frac{18}{4} \times x$  :  $a = \frac{18}{4}$  (1)


সূতরাং p(2, 4) বিন্দুর ফোকাস দূরত্ব =  $\frac{18}{4} + 2 = \frac{26}{4}$  (11)

06. একটি পরাব্যের উপকেন্দ্র (-2, -3) এবং শীর্ষে স্পর্শক x+y+4=0 এর गमीकत्रण निर्णग्र कत्र।

Solve উপকেন্দ্র ও স্পর্শকের মধ্যবর্তী দূরত্ব: =  $\frac{-2-3+4}{\sqrt{1^2+1^2}} = -\frac{1}{\sqrt{2}}$ 

∴ দিকান্দের সমীকরণ, x + y + k = 0 🕛 🔠 🖓 🧢 🕖

[: দ্বিকাক্ষ শীর্ষবিন্দুতে স্পর্শকের সমান্তরাল]



এখন, দ্বিকাক্ষ ও স্পর্শকের দূরত্ব =

∴ দ্বিকাক্ষের সমীকরণ x + y + 3 = 0 [∵ x + y + 5 = 0 (-2, -3) কে সিদ্ধ করে, অর্থাৎ তা উপক্রেন্দ্রিক লম্ব

∴ न्यर्भारकत्र अभोकत्रण,

$$(x+2)^2 + (y+3)^2 = \left\{ \frac{x+y+3}{\sqrt{1^2+1^2}} \right\}^2$$

 $\Rightarrow (x^2 + y^2 + 4x + 6y + 13) \times 2 = x^2 + y^2 + 2xy + 6x + 6y + 9$ 

07. একটি উপকৃতের সমীকরণ নির্ণয় কর যার উপকেন্দ্র (1, -1) এবং নিয়ামকের

সমীকরণ x-y+2=0 এবং  $c=\frac{1}{\sqrt{2}}$ 

Solve উপবৃত্তের সমীকরণ SP = e PM

$$\Rightarrow (x-1)^2 + (y+1)^2 = \frac{1}{2} \times \frac{(x-y+2)^2}{1^2 + (-1)^2}$$

$$\Rightarrow (x-1)^2 + (y+1)^2 = \frac{(x-y+2)^2}{4}$$

08.  $4x^2 + 5y^2 - 16x + 10y + 1 = 0$  উপবৃন্তের উৎকেন্দ্রিকতা, কেন্দ্র এবং উপকেন্দ্রের ছানাম্ব নির্ণয় কর।

Solve 
$$4x^2 + 5y^2 - 16x + 10y + 1 = 0$$

$$\Rightarrow \frac{(x-2)^2}{5} + \frac{(y+1)^2}{4} = 1$$

$$\Rightarrow \frac{(x-2)^2}{\left(\sqrt{5}\right)^2} + \frac{(y+1)^2}{2^2} = 1$$

এখানে, x = x - 2, y = y + 1 এবং  $a = \sqrt{5}$ , b = 2; অর্থাৎ a > b.

(i) উৎকেন্দ্রিকতা e = 
$$\sqrt{1 - \frac{b^2}{a^2}} = \frac{1}{\sqrt{5}}$$

- (ii) কেন্দ্রের স্থানাঙ্ক (2, -1)
- (iii) উপকেন্দ্রের হানাঙ্ক: (± ae, 0)

অর্থাৎ, 
$$X = \pm ae \Rightarrow x - 2 = \pm \sqrt{5} \times \frac{1}{\sqrt{5}}$$

$$\Rightarrow$$
 x = ± 1 + 2  $\Rightarrow$  x = 3 এবং 1

এবং, 
$$Y = 0 \Rightarrow y + 1 = 0 \Rightarrow y = -1$$

সুতরাং উপকেন্দ্রদয়ের ছানাঙ্ক (3, -1) এবং (1, -1)

09.  $4x^2 + 5y^2 - 16x + 10y + 1 = 0$  উপবৃত্তের অক্ষ, ক্ষুদ্র অক্ষ, দ্বিকাক্ষ এবং উপকেন্দ্রিক শব্দের সমীকরণ নির্ণয় কর।

Solve 
$$4x^2 + 5y^2 - 16x + 10y + 1 = 0$$

$$\Rightarrow \frac{(x-2)^2}{\left(\sqrt{5}\right)^2} + \frac{(y+1)^2}{2^2} = 1$$

সূতরাং X = x - 2, Y = y + 1,  $a = \sqrt{5}$ , b = 2 এবং  $e = \frac{1}{\sqrt{5}}$ 

- (i) আমরা জানি বৃহৎ অক্ষের সমীকরণ  $Y=0 \Rightarrow y+1=0$
- (ii) ক্ষুদ্র অক্ষের সমীকরণ,  $X = 0 \Rightarrow x 2 = 0$

(iii) দ্বিকাম্পের সমীকরণ, 
$$X = \pm \frac{a}{e} \implies x - 2 = \pm \frac{\sqrt{5}}{\frac{1}{\sqrt{5}}} = \pm 5$$

 $\Rightarrow$  x = 7 এবং x = -3 হল দ্বিকান্দের সমীকরণ।

(iv) উপকেন্দ্রিক লম্বের সমীকরণ, X = ± ae

$$\Rightarrow x - 2 = \pm \sqrt{5} \times \frac{1}{\sqrt{5}} = \pm 1$$

 $\Rightarrow x = 3$  এবং x = 1 হল উপকেন্দ্রিক লমের সমীকরণ

10.  $\frac{x^4}{9} + \frac{y}{4} = 1$  ডপ্রুডেম কর্মান্যবিদ্যার শতাশ্লা দূরত্ব কতঃ

Solve 
$$\frac{x^2}{9} + \frac{y^2}{4} = 1 \implies \frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$

$$c = \sqrt{\frac{a^2 - b^2}{a^2}} = \sqrt{\frac{9 - 4}{9}} = \sqrt{\frac{5}{9}}$$

ফোকাসঘয়ের মধ্যবর্তী দূরত্ব =  $2ae = 2 \times 3 \times \sqrt{\frac{5}{9}} = 2\sqrt{5}$ 

11.  $9x^2 + 4y^2 = 36$  উপবৃস্তটির উপকেন্দ্রিক শম্বের দৈর্ঘ্য কত?

Solve 
$$9x^2 + 4y^2 = 36 \Rightarrow \frac{x^2}{4} + \frac{y^2}{9} = 1$$
 would,  $a^2 = 4$ ,  $b^2 = 9$ 

সূতরাং, উপকেন্দ্রিক লম্বের দৈর্ঘ্য =  $\frac{2a^2}{b}$  =  $\frac{2\times4}{3}$  =  $\frac{8}{3}$ 

12. y = 2x + c রেখাটি  $\frac{x^2}{4} + \frac{y^2}{3} = 1$  উপকৃত্তের স্পর্শক হলে c এর মান নির্ণয় ক

Solve 
$$\frac{x^2}{4} + \frac{y^2}{3} = 1 \Rightarrow 3x^2 + 4y^2 = 12$$

$$\Rightarrow 3x^2 + 4(4x^2 + 4cx + c^2) = 12$$

$$\Rightarrow 19x^2 + 16cx + 4c^2 - 12 = 0$$

এখন, নিশ্চায়ক = 0

$$\Rightarrow (16c)^2 - 4 \times 19 \times (4c^2 - 12) = 0$$

$$\Rightarrow 64c^2 - 76c^2 + 228 = 0 \Rightarrow c^2 = 19$$

$$\Rightarrow c = \sqrt{19}$$

13. 9x² – 16y² – 18x – <mark>64y – 1</mark>99 = **0** অধিবৃত্তের উৎকেন্দ্রিকতা **, উপ**ক্ষে

Solve 
$$9x^2 - 16y^2 - 18x - 64y - 199 = 0$$

$$\Rightarrow 9(x^2 - 2x + 1) - 16(y^2 + 4y + 4) - 144 = 0$$

$$\Rightarrow \frac{(x-1)^2}{4^2} - \frac{(y+2)^2}{3^2} = 1$$

সূতরাং এক্ষেত্রে, X = x - 1, Y = y + 2 এবং a = 4, b = 3

(i) উৎকেন্দ্রিকতা: 
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{9}{16}} = \sqrt{\frac{25}{16}} = \frac{5}{4}$$

(ii) উপকেন্দ্রের স্থানাঙ্ক: (± ae, 0)

অর্থাৎ, 
$$X = \pm ae$$
 এবং  $Y = 0$ 

$$\Rightarrow x - 1 = \pm 4 \times \frac{5}{4} \, \text{এবং} \qquad \Rightarrow y + 2 = 0$$

∴ উপকেন্দ্রঘয় (6, -2) এবং (-4, -2)

(ii) भीर्यविन्पूत ञ्चानाष्ठः (± a, 0)

$$\Rightarrow$$
 x - 1 =  $\pm$  4 এবং  $\Rightarrow$  y + 2 = 0

$$\Rightarrow$$
 x = 5 এবং  $-3$  এবং  $\Rightarrow$  y =  $-2$ 

∴ শীর্ষবিন্দুর ছানায় (5, -2) এবং (-3, -2)

FUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . = 1 অধিবৃত্তের উপরছ (3,3.3541) এবং (-3, -3.3541)

🙀 দুইটির পরামিতিক ছানান্ধ নির্ণয় কর।

Solve (3,3.3541) বিন্দৃটি প্রথম চতুর্ভাগে অবছিত বিধায় 🛭 সুন্ধকোণ।  $\tan \theta = \frac{y}{b} = \frac{3.3541}{3} = 1.118033$ 

 $\theta = \tan^{-1} (1.118033) : \theta = 48^{\circ}11'22''$ 

বুরুরাং (3,3.3541) বিন্দুটির পরামিতিক ছানাঙ্ক (2sec0, 3tan0)

্ৰোনে, θ = 48°11'22"

(-3,-3.3541) বিন্দুটি তৃতীয় চতুর্ভাগে অবছিত বলে 🖯 প্রবৃদ্ধ কোণ

 $\theta = (180^{\circ} + 48^{\circ}11'22'') = 228^{\circ}11'22''$ 

গুরাং (-3, -3.3541) বিন্দুটির পরামিতিক ছানাঙ্ক

(2sec0, 3tan0)

त्रन, θ = 228°11′22″

্রেকটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র (1,1), উৎকেন্দ্রতা  $\sqrt{3}$ নে নিয়ামকের সমীকরণ 2x + y = 1.

Solve অধিবৃত্তের সংজ্ঞানুসারে, SP = e. PM

$$\Rightarrow \sqrt{(x-1)^2 + (y-1)^2} = \sqrt{3} \left| \frac{2x + y - 1}{\sqrt{2^2 + 1^2}} \right|$$

$$\Rightarrow (x-1)^2 + (y-1)^2 = 3 \frac{(2x+y-1)^2}{5}$$

$$5(x^2 + y^2 - 2x - 2y + 2) = 3(4x^2 + 4xy + y^2 - 4x - 2y + 1)$$
  
$$7x^2 - 2y^2 + 12xy - 2x + 4y - 7 = 0$$

#### For Practiec

y = 2x + 2 সরলরেখাটি  $y^2 = 4ax$  বক্রবেখার স্পর্শক হলে a এর মান,উপকেন্দ্রিক লব্দের দৈর্ঘ্য ও স্পর্শ বিন্দু নির্ণয় কর। Ans: 4; 16; (1,4) y<sup>1</sup> = 8x পরাবৃত্তের উপরিছিত কোন বিন্দুর উপকেন্দ্রিক দূরত্ব ৪ হলে ঐ বিন্দুর वानुसीय स्थापन प्रमासने स्थापन Ans.  $(6, \pm 4\sqrt{3})$  $x^2 + 4x + 2y = 0$  পরাবৃত্তের উপকেন্দ্রিক লন্দের দৈর্ঘ্য কত্য y<sup>2</sup> = 9x পরাবৃত্তের নিয়ামক রেখার সমীক্ষণ কতা Ans. 4x + 9 = 0बर्की नित्रावृष्टित जन्म x जन्म धवर छा (3, 2) ও (-2, - 1) विन्तृगामी। ন্মাপৃন্ডের সমীকরণ নির্ণয় কর। Ans.  $5y^2 = 3x + 11$ y<sup>1</sup> + 8x - 2y -, 23 = 0 পরাবৃচ্ছের শীর্ঘবিন্দু ও উপকেন্দ্রের ছানাম্ব নির্ণয় Ans. (3, 1), (1, 1)

JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS 07.  $(y + \sqrt{3})^2 = 8(x + 3)$  পরাবৃত্তের উপকেন্দ্রের পোলার ছানান্ধ নির্ণয় কর।

08.  $11x^2 + 14y^2 - 4xy - 48x - 24y + 66 = 0$  সমীকরণটি কী নির্দেশ করে? Ans: উপবৃত্ত

09. x = 2cosφ + 1, 2y = sinφ + 2 উপবৃভের ক্ষেত্রফল কত বর্গ একক? Ans: π

10.  $25x^2 + 16y^2 = 400$  উপবৃত্তটির অক্ষদমের সমীকরণ, বৃহৎ অক্ষ, ক্ষুদ্র অক্ষ ও উপকেন্দ্রদয়ের ছানাম এবং উৎকেন্দ্রিকতা নির্ণয় কর।

**Ans:** x = 0, y = 0; 10; 8;  $(0, \pm 3)$ ;  $\frac{5}{5}$ 

11.  $25x^2 + 16y^2 = 400$  উপবৃত্তের উৎকেন্দ্রিকতা কত?

12. k এর মান কত হলে, y = -x + k সরলরেখাটি  $\frac{x}{20} + \frac{y}{5} = 1$  উপবৃত্তের

13.  $4x^2 + y^2 = 2$  উপবৃত্তটির বৃহৎ ও ক্ষুদ্র অক্ষের দৈর্ঘ্য নির্ণয় কর।

Ans:  $2\sqrt{2}$  and  $\sqrt{2}$ 

14. একটি উপবৃত্তের উপরন্থ কোনো বিন্দুর পরামিতিক ছানান্ধ (2cosθ,5 sinθ ) হলে তার প্রমিত সমীকরণ নির্ণয় কর। Ans:  $25x^2 + 4y^2 = 100$ 

15.  $x^2 - y^2 = 1$  অধিবৃত্তের অসীমতট নির্ণয় কর।

16. x = 3 tanθ, y = 2secθ অধিবৃত্তের কার্তেসীয় সমীকরণ নির্ণয় কর।

17.  $4x^2 + 11y^2 - 24xy - 50x - 225 = 0$  সমীকরণটির জ্যামিতিক পরিচয় ? Ans: অধিবৃত্ত

18. k এর মান কত হলে, 2y = 2k - 4x সরলরেখাটি xy = 1 অধিবৃত্তের

19. একটি অধিবৃত্ত (6, 4) ও (–3, 1) বিন্দু দিয়ে অতিক্রম করে। এর কেন্দ্র मृनक्निन्रु विवाद आफ अक x-अक द्यादत रहन, अधिवृद्यित সমीकर्तन रहन-

Ans:  $5x^2 - 9y^2 = 36$ 

20.  $y^2 - 2x^2 = 2$  অধিবৃত্তের উৎকেন্দ্রিকতা কত?

21.  $9x^2 - 4y^2 + 36 = 0$  একটি অধিবৃত্তের সমীকরণ। অধিবৃত্তটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত্য

### GST গুচ্ছ/গুচ্ছভুক্ত বিশ্ববিদ্যালয়ের বিগত বছরের প্রশ্নোত্তর

 $x^2 - 8x + 4y - 4 = 0$  কণিকটির দিকান্দের পাদবিন্দুর ছানাঙ্ক [GST-A: 22-23]

(4, -6) $\mathbb{O}(-4,-6)$   $\mathbb{O}(6,4)$ Solve  $x^2 - 8x = -4y + 4$ 

$$\Rightarrow x^2 - 8x + 16 = -4y + 4 + 16$$
$$\Rightarrow (x - 4)^2 = -4(y - 5)$$

$$\Rightarrow (x-4)^2 = 4.(-1).(y-5) \Rightarrow a = -1$$

দিকাক্ষের পাদবিন্দু = (0, - a)

x - 4 = 0 : x = 4

পাবার,  $y - 5 = -a \Rightarrow y - 5 = -(-1) \Rightarrow y = 1 + 5 = -$ 

্ৰ পাদবিন্দু = (4, 6)

**এ ক্রিকের প্যারামিতিক সমীকরণ x = 3 + at², y = 2at সেটার শীর্যবিন্দুর ছানান্ধ** 

[GST-A: 22-23] 0(0,0)

(2,3)

Solve  $x = 3 + at^2 \Rightarrow x - 3 = at^2$ 

 $y = 2at \implies y^2 = 4a^2t^2 \implies y^2 = 4a.at^2 \implies y^2 = 4a(x-3)$ ⇒  $(y-0)^2 = 4a (x-3)$  ∴ শীর্ষবিন্দু = (3,0)

 $03. 2x^2 + y^2 - 8x - 2y + 1 = 0$  উপ্রুটির কেন্দ্রের ছানাঙ্ক কোনটি? [GST-A: 22-23]

· (2, 1)

(-2,1)

 $\mathbb{O}(1,2)$ 

Solve  $2x^2 + y^2 - 8x - 2y + 1 = 0$ 

 $\Rightarrow 2(x-2)^2 + (y-1)^2 = 8$ 

.. কেন্দ্ৰ = (2, 1)

x এর সহগ y এর সহগ  $-2) \times x^2$  এর সহগ  $(-2) \times y^2$  এর সহগ

PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY

∴ নিয়ামকের মধ্যবর্তী দূরত্ব = 
$$\left| \frac{2a}{e} \right| = \frac{2 \times \sqrt{30}}{\frac{4}{\sqrt{30}}} = \frac{2 \times 30}{4} = 15$$

05.  $2x^2 + 3y^2 - 12x + 12y + 29 = 0$  কনিকটির উপকেন্দ্রিক লখের দৈর্ঘ্য কতা

$$\Theta \frac{\sqrt{2}}{3}$$

$$\mathbb{B}^{\sqrt{3}}$$

$$\mathbb{C}^{\frac{2\sqrt{2}}{3}}$$

$$\bigcirc 2\sqrt{\frac{2}{3}}$$

Solve  $2x^2 + 3y^2 - 12x + 12y + 29 = 0$ 

$$\Rightarrow 2x^2 - 12x + 3y^2 + 12y = -29$$

$$\Rightarrow$$
 2(x<sup>2</sup> - 6x + 9) + 3 (y<sup>2</sup> + 4y + 4) = -29 + 18 + 12

$$\Rightarrow 2 (x-3)^2 + 3 (y+2)^2 = 1 \Rightarrow \frac{(x-3)^2}{\left(\frac{1}{\sqrt{2}}\right)^2} + \frac{(y-3)^2}{\left(\frac{1}{\sqrt{3}}\right)^2} =$$

∴ উপকেন্দ্রিক লম্বের দৈর্ঘ্য = 
$$\frac{2\frac{1}{3}}{\frac{1}{\sqrt{2}}} = \frac{2\sqrt{2}}{3}$$

06.  $y^2 = 3x$  এবং  $x^2 = 3y$  পরাবৃত্তক্ষরের ছেদবিলু দিয়ে গমনকারী সরলরেখার ঢাল কত্য [GST-A:21-22]

$$x^2 = 3y \Rightarrow y = \frac{x^2}{2}$$

তাবলৈ, 
$$\frac{x^4}{9} = 3x \Rightarrow x^4 - 27x = 0 \Rightarrow x(x^3 - 27) = 0$$

$$\Rightarrow$$
 x (x<sup>3</sup>-3) = 0  $\Rightarrow$  x = 0, 3

$$\therefore$$
 y = 0, 3

∴ নির্ণেয় রেখার ঢাল = 
$$\frac{3-0}{3-0} = 1$$

07.  $(y + \sqrt{3})^2 = 8 (x + 3)$  পরাবৃত্তের উপকেন্দ্রের পোলার ছানান্ধ কোনটি? [GST-A: 20-21]

$$\mathfrak{B}\left(2\sqrt{3},\frac{\pi}{3}\right)$$

$$\mathbb{C}\left(2,\frac{4\pi}{3}\right)$$

$$\mathbb{O}\left(2\sqrt{3},\frac{\pi}{6}\right)$$

Solve  $(y + \sqrt{3})^2 = 8(x + 3)$ 

$$\Rightarrow (y + \sqrt{3})^2 = 4.2.(x + 3) \Rightarrow Y^2 = 4.2X$$

∴ উপকেন্দ্রের জন্য X = 2, Y = 0

$$x+3=2 \Rightarrow x=-1$$
  $y+\sqrt{3}=0 \Rightarrow y=-\sqrt{3}$ 

$$r = \sqrt{(-1)^2 + (-\sqrt{3})^2} = \sqrt{1+3} = 2$$

$$\theta = \pi + \tan^{-1} \left| \frac{-\sqrt{3}}{-1} \right| = \pi + \tan^{-1} (\sqrt{3}) = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$$

∴ উপকেন্দ্রের পোলার ছানাদ্দ = 
$$\left(2, \frac{4\pi}{3}\right)$$

08. y² = 4P(x-2) পরাবৃত্তটি (3, -4) বিন্দু দিয়ে অতিক্রম করলে P এর

Solve 
$$y^2 = 4P(x-2)$$

$$(-4)^2 = 4P(3-2) \Rightarrow 16 = 4P \Rightarrow P = 4$$

09. কোন পরাবৃত্তের উপকেন্দ্রের ছানাম্ব (4, 0) এবং দিকাক্ষের সমীকরণ হলে, পরাবৃত্তটির সমীকরণ কোনটি? [CoU-A: 18-19]

(B) 
$$y^2 = 6(x-2)$$

$$\bigcirc y^2 = 10(x-3)$$
  $\bigcirc y^2 = 12(x-1)$ 

ি Solve পরাবৃত্তের সমীকরণ 
$$(x-4)^2 + (y-0)^2 = (x+2)^2$$

$$\Rightarrow x^2 - 8x + 16 + y^2 = x^2 = x^2 + 4x + 4$$

$$\Rightarrow x - 8x + 10 + y = x = x + 4x + 4x + 5$$

$$\Rightarrow y^2 = 12x - 12 \Rightarrow y^2 = 12(x - 1)$$

$$10. \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
;  $(a < b)$  উপবৃত্তের ক্ষুদ্র অক্ষের দৈর্ঘ্য- [IU-D : 19-20]

Solve ক্ষুদ্র অক্ষের দৈর্ঘ্য = 2a

11. x² = 4ay, (a > 0) পরাবৃত্তের উপকেন্দ্রের ছানান্ধ- [IU-D: 19-20]

12.  $\frac{Y}{h^2} - \frac{X}{a^2} = 1$  অধিবৃত্তের অসীমতট রেখার দৈর্ঘ্য- [IU-D : 19-20]

$$\triangle x = \pm \frac{b}{a}$$

ি Solve 
$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$
 অধিবৃত্তের অসীমতট রেখার দৈর্ঘ্য ,  $y = \pm \frac{b}{a}$  স

13.  $y^2 - 9x = 0$  পরাবৃত্তের <mark>নিয়া</mark>মক রেখার সমীকরণ কোনটি? [JKKNIU-B: 19-20]

$$\textcircled{9} 4x + 9 = 0$$
  $\textcircled{9} 4x - 9 = 0$   $\textcircled{0} x + 9 = 0$   $\textcircled{0} 2x + 3 = 0$ 

নিয়ামক রেখার সমীকরণ, 
$$x+a=0 \Rightarrow x+\frac{9}{2}=0 \Rightarrow 4x+9=0$$

14. 2x² - y² = 4 অধিবৃত্তের উৎকেন্দ্রিকতা কত? [JKKNIU-B : 19-20]

Solve 
$$2x^2 - y^2 = 4 \Rightarrow \frac{x^2}{2} - \frac{y^2}{4} = 1$$
;  $b > a$ 

$$\therefore$$
 উৎকেন্দ্রিকতা,  $e = \sqrt{\frac{2+4}{2}} = \sqrt{3}$ 

15. y²-6x+4y+11=0 প্রাবৃত্তের অক্ষের সমীকরণ কোনটি? [JKKNIU-B: 19-20]

$$\mathbf{A}\mathbf{y}=\mathbf{0}$$

$$\mathbf{B} \mathbf{y} + 2 = 0$$

(B) 
$$y + 2 = 0$$
 (C)  $6x - 7 = 0$ 

$$\mathbf{D} \mathbf{x} = \mathbf{0}$$

B Solve 
$$y^2 - 6x + 4y + 11 = 0$$

$$\Rightarrow y^2 + 4y + 4 = 6x - 7 \Rightarrow (y + 2)^2 = 6 (x - \frac{7}{6})$$

16.  $\frac{y}{h^2} - \frac{x}{c^2} = 1$  অধিবৃত্তের শীর্ষবিন্দুধয়ের ছানাম্ক কত? [JKKNIU-B: 19-20]

$$(\pm a, 0)$$

$$\mathfrak{B}(0,\pm b)$$

$$(0, \pm b)$$
  $(0, 0)$ 

MERCATIONS . JOYKOLY PUBLICATIONS . JOYKOLY P (1-3y - 8x + 18y - 41 = 0 কনিকের জনীমতট্মের চালের জনকন কতা? 22, y² - 2y - 4x + 9 = 0 পরাবৃত্তের শীর্ষ বিন্দু ববে− (MBSTU-A: 19-20) ptsT-B: 19-20]

Solve  $4x^2 - 9y^2 - 8x + 18y - 41 = 0$ 

 $4(x^2-2x+1)-9(y^2-2y+1)=41+4-9$ 

 $4(x-1)^2 - 9(y-1)^2 = 36 \Rightarrow \frac{(x-1)^2}{3^2} - \frac{(y-1)^2}{2^2} = 1$ 

্রসীমতটের সমীকরণ,  $(y-1) = \pm \frac{2}{3}(x-1)$ 

 $m_1 = \frac{2}{3} \text{ with } m_2 = -\frac{2}{3}$ 

্চলের তথ্যস্প,  $m_1 m_2 = \frac{2}{3} \times (-\frac{2}{3}) = -\frac{4}{9}$ 

 $y^2 - 4xy + 3y^2 - x + y - 1 = 0$  সমীকরণের জ্যামিতিকরূপ কোনটি? श्राहार विश्वास के श्रीस्थात है । जिल्ला कि स्थाप के अधिक अर्थ कि स्थाप अर्थ कि स्थाप अर्थ कि स्थाप अर्थ कि स

**B** বৃত্ত

n ব্যবিবৃত্ত (E) জোড়া সরলরেখা

Solve  $2x^2 - 4xy + 3y^2 - x + y - 1 = 0$ 

 $g = 2, h = -2, b = 3, g = -\frac{1}{2}, f = \frac{1}{2}, c = -1$ 

 $\Delta = |h| b |f| = |-2| 3 |1/2| \neq 0$ g f c - 1/2 1/2 - 1 - 1 - 1 - 1 - 1 - 1 - 1

 $h^2$  < ab  $\Rightarrow$  4 < 6 · A

 $\Delta \neq 0$  এবং  $h^2 < ab$  সমীকরণটি উপবৃত্ত হবে।

1=3 tanθ, y = 2secθ অধিবৃত্তের কার্তেসীয় সমীকরণ হবে- [MBSTU-C: 19-20]

 $\bigcirc x^2 - y^2 = 1$   $\bigcirc \frac{y^2}{4} - \frac{x^2}{9} = 1$   $\bigcirc \frac{y^2}{4} - \frac{x^2}{4} = 1$   $\bigcirc \frac{y^2}{4^2} - \frac{x^2}{3^2} = 1$ 

Solve  $x = 3\tan\theta \Rightarrow x^2 = 9\tan^2\theta \Rightarrow \frac{x^2}{9} = \tan^2\theta$ 

দাবার,  $y = 2\sec\theta \Rightarrow y^2 = 4\sec^2\theta \Rightarrow \frac{y^2}{4} = \sec^2\theta = 1 + \tan^2\theta$ 

 $\therefore$  অধিবৃত্তের সমীকরণ,  $\frac{y^2}{4} - \frac{x^2}{9} = 1 + \tan^2\theta - \tan^2\theta \Rightarrow \frac{y^2}{4} - \frac{x^2}{9} = 1$ 

e বদি  $\frac{\chi^2}{a^2} + \frac{\chi^2}{b^2} = 1$  উপবৃত্তের উৎকেন্দ্রিকতা হয়, যেখানে a > b, তবে নিচের

নেনিট সত্য [MBSTU-A: 19-20]

 $\emptyset a^2(e^2-1)=b^2$ 

(B)  $b^2(1-e^2) = a^2$ 

 $1^2 + 4y^2 = 1$  উপবৃত্তির উৎকেন্দ্রিকতা কোনটি? [MBSTU-A: 19-20]

Ø (1, 2)

(2, 1)

Solve  $y^2 - 2y + 1 = 4x - 8 \Rightarrow (y - 1)^2 = 4(x - 2)$ 

: भीर्ष विम्पू y - 1 = 0, x - 2 = 0 ⇒ y = 1, x = 2

वर्षार (2, 1)

23. পরাবৃত্তের সাধারণ সমীকরণ কোনটিঃ [NSTU-B : 19-20]

ি Solve পরাবতের সমীকরণ  $y^2 = 4ax$  এবং  $x^2 = 4ay$ 

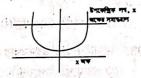
24.  $y^2 - 6x + 4y + 11 = 0$  পরাবৃত্তের অক্লের সমীক্রণ কোনটি? [NSTU-A: 19-20]

Solve  $y^2 - 6x + 4y + 11 = 0 \Rightarrow y^2 + 4y + 4 = 6x - 7$ 

$$\Rightarrow (y+2)^2 = 6(x-\frac{7}{6})$$

পরাবৃত্তের অক্ষের সমীকরণ, y + 2 = 0

25.  $x^2 + 4x + 2y = 0$  এর উপকেন্দ্রিক লম অনুভূমিকের সাথে কত কোণ উৎপ্র করবে? [BSMRSTU-B: 19-20]


@ 0°

Solve  $x^2 + 4x + 2y = 0$ 

 $\Rightarrow x^2 + 4x + 4 = 4 - 2y$ 

 $\Rightarrow$   $(x + 2)^2 = 2(2-y) \Rightarrow x^2 = 4ay$ 

এর উপকেন্দ্রিক লম্ব x-অক্ষের সমান্তরাল



: অন্তবৰ্তী কোণ = 0°

 $26. 25x^2 + 16y^2 = 400$  ঘারা সূচিত উপবৃন্তের উৎকেন্দ্রিকতার মান -[BSFMSTU-A: 19-20]

Solve  $25x^2 + 16y^2 = 400 \Rightarrow \frac{x^2}{16} + \frac{y^2}{25} = 1$ 

 $\Rightarrow \frac{x^2}{4^2} + \frac{y^2}{5^2} = 1$ 

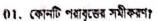
$$\therefore e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{4^2}{5^2}} = \frac{3}{5}$$

27.  $2x^2 + 3y^2 = 1$  উপবৃত্তের উপকেন্দ্র-[BSFMSTU-A : 19-20]

 $\textcircled{A}\left(\frac{1}{2},0\right) \qquad \textcircled{B}\left(\frac{1}{3},0\right) \qquad \textcircled{C}\left(\frac{1}{\sqrt{6}},0\right) \qquad \textcircled{D}\left(\pm\frac{1}{\sqrt{6}},0\right)$ 

Solve  $2x^2 + 3y^2 = 1 \Rightarrow \frac{x^2}{\left(\frac{1}{\sqrt{2}}\right)^2} + \frac{y^2}{\left(\frac{1}{\sqrt{2}}\right)^2} = 1$ ; a > b

 $\therefore$  উপকেন্দ্র  $\equiv (\pm \text{ ae},0) \equiv \left(\pm \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{3}},0\right) \equiv \left(\pm \frac{1}{\sqrt{6}},0\right)$ 


28. অধিবৃত্তের উৎকেন্দ্রিকতার জন্য কোনটি সঠিক [RSTU-C: 19-20]

@ e < 1

B Solve অধিবত্তের উৎকেন্দ্রিকতা, e > 1

উপবৃত্তের উৎকেন্দ্রিকতা, e < 1 পরাবত্তের উৎকেন্দ্রিকতা, e

# অধ্যায়ভিত্তিক গুরুত্বপূর্ণ MCQ প্রশ্নো<u>ত্ত</u>র



$$x^2 + y^2 = 36$$

(B) 
$$(y-2)^2 = 12(x-9)$$

$$\bigcirc \frac{(x+3)^2}{9} + \frac{(y+6)^2}{4} = 1$$

02.  $\left(x + \frac{3}{2}\right)^2 = 2\left(y + \frac{61}{40}\right)$  পরাবৃত্তের শীর্ষবিন্দু কোনটিয

$$\left(-\frac{3}{2}, -\frac{61}{40}\right) \left(\frac{1}{2}, 0\right)$$

$$\mathbb{O}\left(\frac{3}{2},\frac{61}{40}\right)$$
 And A

03. y+2=0 নিয়ামক রেখা এবং (0,2) ফোকাস বিশিষ্ট পরাবৃত্তের সমীকরণ কোনটি? (B)  $y^2 = 4x$  $\triangle x^2 = 4y$ 

$$\bigcirc 3x + 4y + 25 = 0$$

$$3x + 4y + 25 = 0$$

① 
$$3x - 4y - 25 = 0$$

05.  $x^2 = -10y$  পরাবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত?

$$\mathbb{A}^{\frac{5}{2}}$$
  $\mathbb{C}^{\frac{5}{2}}$   $\mathbb{C}^{\frac{5}{2}}$   $\mathbb{C}^{\frac{5}{2}}$   $\mathbb{C}^{\frac{5}{2}}$ 

(Ans(C)

06.  $y^2 = 4(x-2)$  পরাবৃত্তির নিয়ামক রেখার সমীকর্দ কোনিটি?

$$\triangle x = 1$$

**(B)** x = 2

$$\mathbb{D} x = -2 \text{ Ans } A$$

07.  $x^2 = -2y$  পরাবৃত্তের উপকেন্দ্রের ছানাঙ্ক কোনটি?

(0, -2)

 $\mathbb{O}\left(0,-\frac{1}{2}\right)$ 

 $\mathbb{D}\left(0,\frac{1}{2}\right)$  Ans  $\mathbb{C}$ 

08. পরাবৃত্ত ও এর অক্ষরেখার ছেদবিন্দকে কী বল হয়ং

পরাবৃত্তের উপকেন্দ্র

B পরাবৃত্তের শীর্ষবিন্দু

© পরাবৃত্তের কেন্দ্র 💮 💿 উপকেন্দ্রিক লম্বের প্রান্তবিন্দু 🙉 🕒

09.  $y^2 = -8x$  পরাবৃন্তের উপকেন্দ্রের ছানাঙ্ক কোনটি?

$$(-2,0)$$

(0, -2)

(0,0)(0, 2) (Ans(A)

10.  $y^2 = 2(x + 3)$  পরাবৃত্তের শীর্ষবিন্দুর ছানাম্ভ কোনটি?

(0,3) (-3,0) (0,-3) (-3,0)

11.  $x^2 - 8x + 2y + 7 = 0$  পরাবৃত্তের শীর্ষবিন্দুর ছানাঙ্ক কোনটি?

(1, 2) (Ans(B)

12.  $x^2 = 6 \mathrm{ky}$  পরাবৃস্তটি (9,2) বিন্দুগামী হলে, পরাবৃত্তটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত্য

$$\triangle \frac{81}{2}$$

13.  $y^2 - 4y - 4x + 16 = 0$  পরাবৃত্তির উপকেন্দ্রের ছানাম্ব কোনটি?

(-4, -2)

(-2, -4) (4, 2)

(2, 4) (Ans(C)

14.  $y^2 = 4ax$  পরাবৃত্তটি y = mx + c রেখাকে স্পর্শ করলে-

i. 
$$c = \frac{a}{m}$$

ii. পরাবৃত্ত ও সরলরেখার সমীকরণদ্বয় উভয়েই মূল বিন্দুগামী

iii. স্পর্শ বিন্দুর স্থানাঙ্ক  $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ 

নিচের কোনটি সঠিক?

ii v i 💫

Bi &iii

Cii viii

Di, ii & iii (Ans(B)

15.  $y^2 - 4y - 4x + 16 = 0$  পরাবৃত্তের অক্ষরেখার সমীকরণ কোনটি?

(B) y-2=0 (C) x=0 (D) y=0 (Ans(B) (A) x - 3 = 0

16.  $x^2 + 8x + 12y + 4 = 0$  পরাবৃত্তটির শীর্ষবিন্দুর ছানাঙ্ক কোনটি?

 $\triangle$  (-4, 1)

(0, -1) (0, -4, -1)(1) (4, 1) (Ans(A)

17.  $x^2 + 8x + 12y + 4 = 0$  পরাবৃত্তের উপকেন্দ্রিক শব্দের সমীকরণ?

(A) y - 4 = 0

(B) y + 2 = 0 (C) x + 7 = 0 (D) x + 1 = 0 (And B)

18.  $x^2 - 2x + 1 = 5y$  সমীকরণটি কী নির্দেশ করে?

(১) বৃত্ত

**®পরাবৃত্ত** 

@উপবৃত্ত

**D**অধিবৃত্ত 🛺

19.  $y^2 - 9x = 0$  পরাবৃত্তের শিয়ামৃক রেখার সমীকরণ-

04x + 9 = 0 04x - 9 = 0 0x + 9 = 0 02x + 3 = 0

20.  $5x^2 + 15x - 10y - 4 = 0$  পরাবৃত্তের নিয়ামকের সমীকরণ-

 $\triangle 40x + 81 = 0$  $\bigcirc 40y + 81 = 0$ 

B2x + 3 = 0

D40y + 41 = 0

40

21.  $x^2 + 4x + 2y = 0$  পরাবৃত্তের শীর্ষবিন্দু হবে-

(2, -2)

(-2, -2)

 $\mathbb{C}(-2,2)$ 

(2, 2)22.  $x^2 - 4x + 12y - 40 = 0$  পরাবৃত্তের উপকেন্দ্রিক শব্দের দৈর্ঘ্য-

40

®8 . 23.  $x^2 - x + 4y - 4 = 0$  পরাবৃত্তের শীর্ষবিন্দুর ছানাংক-

(A(-4,2)) (B(4,-2))

 $\mathbb{C}(4,5)$ 

(5, 4) (A)

24. যে পরাবৃত্তের উপকেন্দ্রের ছানাঙ্ক (4,0) এবং নিয়ামক x+2=0 তার সমীক্ষ্যু

(A)  $y^2 = 4(x-1)$ 

 $\bigcirc y^2 = 10(x-3)$ 

(B)  $v^2 = 6(x-2)$ 

25.  $2x = y^2 + 8y + 22$  পরাবৃত্তটির শীর্ষবিন্দুর ছানাঙ্ক—

(3, -4)

 $\mathbb{B}(-3,4)$ 

 $\mathbb{C}(-3, -4)$ 

(3, 4) (An)

26. y² = 9x পরাবতের (4, 6) বিন্দুতে স্পর্শকের সমীকরণ-

3x - 4y + 12 = 0 34x - 3y - 12 = 0 $\mathfrak{D}7x - 3y + 6 = 0$ 

(An (A)

 $\bigcirc 7x + 3y - 5 = 0$ 27. যদি y = 2x + b রেখাটি  $y^2 = 16x$  প্যারাবোলাকে স্পর্শ করে তবে b = ?

**B**2

©−1

An B

28.  $y = 4x^2 - 8x + 7$  প্যারাবোলার ফোকাস কত?

(1,3) $\mathbb{C}(1,4)$ 

 $\mathbb{D}(2,3)$ 

 $\mathbb{B}(2,4)$ 

29. y=ax−1 রেখাটি y=x²+3 পরাবৃত্তের স্পর্শক হলে, a এর মান কোনটি?  $\mathbb{C}$  - 4 $\sqrt{2}$ 

 $\bigcirc$   $\sqrt{2}$  $30. x^2 - 2y - 8x + 6 = 0$  পরাবৃত্তের শীর্ষবিন্দু কোনটি?

 $\mathbb{B}(-4,5)$ 

 $\mathbb{O}(4, -5)$   $\mathbb{O}(-5, 4)$ 

31. যদি y = 2x + 2 রেখাটি  $y^2 = 4ax$  পরাবৃত্তকে স্পর্শ করে, তবে পরাবৃত্তটি উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত? (A)4

©2

**©**16

32. y = ax² + bx + c পরাবৃত্তির শীর্ষ (- 2, 3) বিন্দুতে অবছিত এবং এটি (0, 5)

(AI I)

 $33. v^2 = 8x - 8y$  হলে, পরাবৃত্তের উপকেন্দ্রের ছানাঙ্ক কত?

 $\mathbb{B}(0,-2)$ 

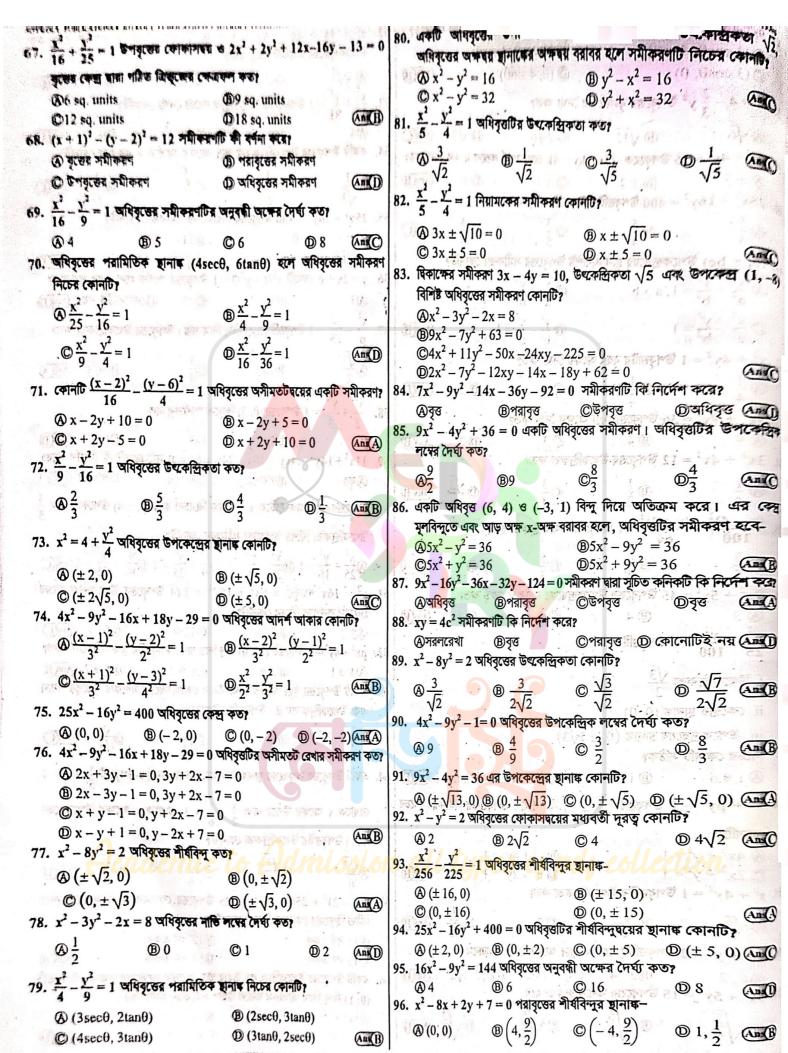
বিন্দু দিয়ে অতিক্রম করে। b এর মান কত?

 $\mathbb{C}(0,4)$ 

 $\mathbb{O}(0,-4)$ 34. y² = 8px পরাবৃন্ডটি (4, - 8) বিন্দু দিয়ে অতিক্রম করে। পরাবৃন্ডটি

উপকেন্দ্রের ছানাঙ্ক হবে-(A(16,0))

 $\mathbb{B}(0, 16)$ 


 $\mathbb{C}(4,0)$ 

 $\mathbb{D}(0,4)$ 

35. x = pt², y = 2pt পরিমিতিক সমীকরণ দ্বারা সূচিত কনিক-

(B)উপবৃত্ত ©পরাবৃত্ত @অধিবৃত্ত (AEC) 36.  $\frac{(x+2)^2}{2} + \frac{(y-6)^2}{2} = 1$  উপবৃত্তের উপকেন্দ্রের ছানান্ধ কোনটি?

 $\textcircled{8} \ 2,6 \pm \sqrt{3} \ \textcircled{8} - 2,6 \pm \sqrt{3} \ \textcircled{0} - 2,6 \pm \frac{1}{\sqrt{3}} \ \textcircled{0} \ 2,6 \pm \frac{1}{\sqrt{3}} \ \textcircled{0}$ 





# বিপরীত ত্রিকোণমিতিক ফাংশন ও ত্রিকোণমিতিক সমীকরণ



#### প্রয়োজনীয় সূত্রবিলি

|       | = cose | $c^{-1}$ |
|-------|--------|----------|
| sin ~ |        | X        |

$$ns^{-1}x = sec^{-1}\frac{1}{x}$$

$$\sin^{-1} x = \cot^{-1} \frac{1}{x}$$

$$\sin^{-1}x \pm \sin^{-1}y = \sin^{-1}\left\{x\sqrt{1-y^2} \pm \sqrt{1-x^2}\right\}$$

$$\cos^{-1}x \pm \cos^{-1}y = \cos^{-1}\left\{xy \pm \sqrt{(1-x^2)(1-y^2)}\right\}$$

$$\min^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$$

$$\tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{\left(\frac{x^2 \cos y}{x^2 y}\right)^{-1} \cos - \left(\frac{x^2 \sin y}{x^2 y}\right)^{-1} \cos - \left(\frac{x^2 \cos y}{x^2 y}\right)^{-1} \sin y}{1 + \left(\frac{x^2 \cos y}{y^2 y}\right)^{-1} \cos - \left(\frac{x^2 \cos y}{y^2 y}\right)^{-1} \sin y} = \tan^{-1}\frac{1}{x^2 y}$$

$$\begin{cases} (0)_{\text{tian}} \frac{x + y}{1 - xy}, xy < 1 < x < 1 \end{cases}$$

$$\frac{\pi}{2} = \frac{\pi}{2} \quad \text{and} \quad \frac$$

$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\frac{x + y + z - xyz}{1 - yz - zx - xy}$$

$$2\tan^{-1}x = \tan^{-1}\frac{2x^{\frac{1}{2}}}{1-x^{2}} = \sin^{-1}\frac{(2x^{2})(1-x^{2})}{1+x^{2}}\cos^{\frac{1}{2}}\frac{1-x^{2}}{1+x^{2}} \times (1-x^{2})$$

4 sin 
$$\theta$$
 cos  $\theta = 1 - 2$  sin  $\theta + 2$  cos  $\theta$  with  $\theta = 2^{1} \cos \theta + x^{1} - \sin \theta$ 

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$\sec^{-1}\mathbf{x} + \csc^{-1}\mathbf{x} = \frac{\pi}{2}$$
 Original (1 - 0)  $\cot^{-1}\mathbf{x} = 0$ 

$$2\sin^{-1}x = \sin^{-1}\left(2x\sqrt{1-x^2}\right) \log x$$

$$2\cos^{-1}x = \cos^{-1}(2x^2 - 1)$$

$$\frac{1-x^2}{1-x^2} = x \delta x \epsilon_0 + 2 \delta x \delta x \epsilon_0 + x \delta x \epsilon_0$$

- 16.  $3\sin^{-1}x = \sin^{-1}(3x 4x^3)$
- 17.  $3\cos^{-1}x = \cos^{-1}(4x^3 3x)$ 18.  $3\tan^{-1}x = \tan^{-1}\frac{3x x^3}{1 3x^2}$  of  $\frac{1}{1 3x^2}$

$$\frac{1 - 3x^{2}}{x} = \cos^{-1} \frac{1 - 3x^{2}}{x^{2} - 1} = \cos^{-1} \frac{1 - 3x^{2}$$

20. 
$$\frac{1}{2}\sin^{-1}x = \tan^{-1}\frac{1-\sqrt{1-x^2}}{x^{1/2}} = x = x^{1/2} = \frac{d-x}{dx+1}$$

21. 
$$\frac{1}{2}\cos^{-1}x = \cos^{-1}\sqrt{\frac{1+x}{2}} = \sin^{-1}\sqrt{\frac{1-x}{2}} = \tan^{-1}\sqrt{\frac{1-x}{1+x}}$$

22. 
$$\cos^{-1} \frac{2x}{1+x^2} = \frac{\pi}{2} - 2\tan^{-1} x = \sec^{-1} \frac{1+x^2}{2x}$$

23. 
$$\sin^{-1} \frac{1-x^2}{1+x^2} = \frac{\pi}{2} - 2\tan^{-1} x = \csc^{-1} \frac{1+x^2}{1-x^2}$$

24. 
$$\cot^{-1} \frac{2x}{1-x^2} = \frac{\pi}{2} - 2\tan^{-1} x = \csc^{-1} \frac{1+x^2}{1-x^2} + \cdots + \frac{1}{2}$$

25. 
$$\cos^{-1}(2x\sqrt{1-x^2}) = \frac{\pi}{2} - 2\sin^{-1}x + \sin^{-1}x + (\frac{1}{E} - \sin^{-1}x) + \cos^{-1}x + (\frac{1}{E} - \cos^{-1}x) + \cos^{-1}x + \cos^{1$$

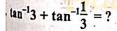
$$\sin\theta = 0$$
 হলে,  $\theta = n\pi$ 

$$\frac{1}{2} \cot \theta = 0$$
 ver,  $\theta = n\pi$   $\frac{1}{2} \cot \theta = 0$   $\cot \theta = 0$ 

$$\cos\theta = 0$$
 হলে,  $\theta = (2n+1)\frac{\pi}{2\xi}$   $\tan\theta = \cot\theta = 0$  হলে,  $\theta = (2n+1)\frac{\pi}{2}$ 

$$\cot\theta = 0$$
 হলে,  $\theta = (2n+1)\frac{\pi}{2}$ 

• 
$$\sin\theta = \sin\alpha$$
 হলে,  $\theta = n\pi + (-1)^n \alpha^{-1555} \times \frac{1}{2} = \frac{x-1}{x+1}$  ্রে ১৪৫


• 
$$\cos\theta = 1$$
 হলে,  $\theta = 2n\pi$   
•  $\cos\theta = 1$  হলে,  $\theta = (2n + 1)^{\frac{n}{2}}$   $\pi$ 

$$\sin \theta = 1$$
 হলে,  $\theta = (4n+1)\frac{\pi}{2}$ 
 $\sin \theta = -1$  হলে,  $\theta = (4n+1)\frac{\pi}{2}$ 
 $\sin \theta = -1$  হলে,  $\theta = (4n+1)\frac{\pi}{2}$ 

$$\sin\theta = -1$$
 হলে,  $\theta = (4n - 1)\frac{\pi}{2}$   $\frac{(x-1)}{(x+1)}$ 

#### $\cos\theta = \cos\alpha$ হলে, $\theta = 2n\pi \pm \alpha$

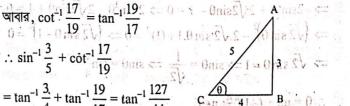
[সকল ক্ষেত্রে  $\mathbf{n}$  এর মান শূন্য <mark>অথ</mark>বা যেকোন পূর্ণ সংখ্যা ।] অর্থাৎ  $\mathbf{n} \in \mathbf{Z}$ 



Solve 
$$\tan^{-1} 3 + \tan^{-1} \frac{1}{3} = \tan^{-1} \frac{3 + \frac{1}{3}}{1 - 3 \cdot 1} = \tan^{-1} \frac{\pi}{2}$$
 (solve)

 $\sin \cot^{-1} \tan \cos^{-1} x = ?$  (nex)  $\sin (1 - 0 \cot) \sin (1 - 0 \cot)$ 

Solve 
$$\operatorname{sincot}^{-1} \cot \left( \frac{\pi}{2} - \cos^{-1} x \right)$$


$$\sin\left(\frac{\pi}{2}-\cos^{-1}x\right)=\cos\cos^{-1}x=x$$

03. 
$$\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{17}{19} = ?$$
  $\frac{\pi}{\epsilon} + \tan \xi = \theta \iff 1 = (\frac{3\xi}{\epsilon} - \theta) \cos \xi$ 

Solve থিভূজ ABC হতে পাই,  $\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3\cos 2}{4}$  inia  $2\sqrt{2} + (0\cos 2) = 2\cos 2\sqrt{2} + (0\cos 2)$ 

আবার, 
$$\cot^{-1} \frac{17}{19} = \tan^{-1} \frac{19}{17}$$
  
 $\therefore \sin^{-1} \frac{3}{19} + \cot^{-1} \frac{17}{19}$ 

$$= \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{19}{17} = \tan^{-1} \frac{127}{11}$$



DOTKOLY PUBLICATIONS - DOTKOLY PUBLICATIONS -

04. 
$$\tan\left(\frac{1}{2}\sin^{-1}\frac{2x}{1+x^2} + \frac{1}{2}\cos^{-1}\frac{1-x^2}{1+x^2}\right) = ?$$

Solve 
$$\tan \left( \frac{1}{2} \sin^{-1} \frac{2x}{1+x^2} + \frac{1}{2} \cos^{-1} \frac{1-x^2}{1+x^2} \right)$$

$$= \tan(\tan^{-1} x + \tan^{-1} x) = \tan \tan^{-1} \frac{2x}{1 - x^2} = \frac{2x}{1 - x^2}$$

05. 
$$\sin^{-1}\frac{2a}{1+a^2} - \cos^{-1}\frac{1-b^2}{1+b^2} = 2\tan^{-1}x$$
 Reg.  $x = ?$ 

Solve 
$$\sin^{-1} \frac{2a}{1+a^2} - \cos^{-1} \frac{1-b^2}{1+b^2} = 2\tan^{-1} x$$

$$\Rightarrow$$
  $2\tan^{-1}a - 2\tan^{-1}b = 2\tan^{-1}x$ 

$$\Rightarrow \tan^{-1} \frac{a-b}{1+ab} = \tan^{-1} x \Rightarrow x = \frac{a-b}{1+ab}$$

06. 
$$\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$$
 হলে,  $x^2 + y^2 + 2xyz$  এর মান কত?

Solve 
$$\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$$

$$\cos^{-1}x = 60^{\circ}$$
 ::  $x = \frac{1}{2}$ ,  $\cos^{-1}y = 60^{\circ}$  ::  $y = \frac{1}{2}$ 

$$\cos^{-1}z = 60^{\circ} : z = \frac{1}{2}$$

$$\therefore x^2 + y^2 + z^2 + 2xyz = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + 2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = 1$$

07. 
$$\sec^2\left(\tan^{-1}\frac{1}{3}\right) + \tan^2\left(\tan^{-1}\frac{3}{5}\right) = ?$$

Solve 
$$\sec^2\left(\tan^{-1}\frac{1}{3}\right) + \tan^2\left(\tan^{-1}\frac{3}{5}\right)$$

$$= 1 + \left(\tan \tan^{-1} \frac{1}{3}\right)^2 + \left(\tan \tan^{-1} \frac{3}{5}\right)^2 = 1 + \frac{1}{9} + \frac{9}{25} = \frac{331}{225}$$

08. 
$$\tan^{-1}\frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$$
  $< x = ?$ 

Solve 
$$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x \implies 2 \tan^{-1} \frac{1-x}{1+x} = \tan^{-1} x$$

$$\Rightarrow \tan^{-1} \frac{2\left(\frac{1-x}{1+x}\right)}{1 - \frac{(1-x)^2}{(1+x)^2}} = \tan^{-1} x \Rightarrow \frac{2(1-x^2)}{4x} = x \Rightarrow x = \pm \frac{1}{\sqrt{3}}$$

09. 
$$\cos\theta + \sqrt{3} \sin\theta = 2$$
 এর সমাধান কত?

Solve 
$$\cos\theta + \sqrt{3}\sin\theta = 2 \Rightarrow \frac{1}{2}\cos\theta + \frac{\sqrt{3}}{2}\sin\theta = 1$$

$$\Rightarrow \cos \frac{\pi}{3} \cdot \cos \theta + \sin \frac{\pi}{3} \cdot \sin \theta = 1$$

$$\Rightarrow \cos \left(\theta - \frac{\pi}{3}\right) = 1 \Rightarrow \theta = 2n\pi + \frac{\pi}{3}$$

#### 10. $2\cos^2\theta + 2\sqrt{2}\sin\theta = 3$

Solve 
$$2(1-\sin^2\theta) + 2\sqrt{2}\sin\theta = 3 \Rightarrow 2-2\sin^2\theta + 2\sqrt{2}\sin\theta = 3$$

$$\Rightarrow -2\sin^2\theta + 2\sqrt{2}\sin\theta - 1 = 0 \Rightarrow 2\sin^2\theta - 2\sqrt{2}\sin\theta + 1 = 0$$

$$\Rightarrow \left(\sqrt{2}\sin\theta\right)^2 - 2\sqrt{2}\sin\theta \cdot 1 + (1)^2 = 0 \Rightarrow \left(\sqrt{2}\sin\theta - 1\right)^2 = 0$$

$$\Rightarrow \sqrt{2} \sin \theta = 1 \Rightarrow \sin \theta = \frac{1}{\sqrt{2}} \Rightarrow \sin \theta = \sin \frac{\pi}{4}$$

$$\therefore \theta = n\pi + (-1)^n \frac{\pi}{4}; n \in \mathbb{Z}$$

11.  $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$  (7),  $x^2 + y^2 + 2xyz$  (3) All 70

Solve 
$$\cos^{-1} x + \cos^{-1} y = \pi - \cos^{-1} z$$

$$\Rightarrow \cos^{-1}(xy - \sqrt{1 - x^2} \cdot \sqrt{1 - y^2}) = \pi - \cos^{-1}z$$

$$\Rightarrow xy - \sqrt{1 - x^2} \sqrt{1 - y^2} = \cos(\pi - \cos^{-1}z)$$

$$\Rightarrow xy - \sqrt{1 - x^2} \sqrt{1 - y^2} = z \Rightarrow \sqrt{1 - x^2} \sqrt{1 - y^2} = zy - z$$

$$\Rightarrow (1 - x^2) (1 - y^2) = x^2 y^2 - 2xyz + z^2 [ বৰ্গ করে]$$

$$\Rightarrow 1 + x^2 + y^2 + x^2 y^2 = x^2 y^2 - 2xyz + z^2$$

$$\Rightarrow x^2 + y^2 + z^2 + 2xyz = 1$$

12. সমাধান কর : 
$$tan^{-1}x + 2cot^{-1}x = \frac{2\pi}{3}$$

Solve 
$$\tan^{-1}x + 2 \cot^{-1}x = \frac{2\pi}{3} \Rightarrow \tan^{-1}x + \cot^{-1}x + \cot^{-1}x = \frac{2\pi}{3}$$

$$\Rightarrow \frac{\pi}{2} + \cot^{-1} x = \frac{2\pi}{3} \Rightarrow \cot^{-1} x = \frac{\pi}{6} \Rightarrow x = \cot \frac{\pi}{6} = \sqrt{3}$$

13. দেখাও যে, 
$$\sin^{-1}(\sqrt{2}\sin\theta) - \cos^{-1}(\sqrt{\cos 2\theta}) = 0$$

Solve 
$$\sin^{-1}(\sqrt{2}\sin\theta) - \cos^{-1}(\sqrt{\cos 2\theta})$$

$$= \sin^{-1}(\sqrt{2}\sin\theta) - \cos^{-1}\left(\sqrt{1 - 2\sin^{-1}\theta}\right)$$
$$= \sin^{-1}(\sqrt{2}\sin\theta) - \sin^{-1}(\sqrt{2}\sin\theta)$$

$$= \sin^{-1}(\sqrt{2}\sin\theta) - \sin^{-1}(\sqrt{2}\sin\theta)$$
$$= 0 \text{ (Showed)}$$

$$\sqrt{1-2\sin^2\theta}$$

14. সমাধান কর: 
$$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$

Solve 
$$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4} \Rightarrow \tan^{-1} \frac{\frac{x-1}{x-2} + \frac{x+1}{x+2}}{1 - \frac{x-1}{x-2} \cdot \frac{x+1}{x+2}} = \frac{\pi}{4}$$

$$\Rightarrow \frac{(x-1)(x+2)+(x-2)(x+1)}{(x-2)(x+2)-(x-1)(x+1)} = \tan \frac{\pi}{4}$$

$$\Rightarrow \frac{2x^2 - 4}{-3} = 1 \Rightarrow 2x^2 = 1 \therefore x = \pm \frac{1}{\sqrt{2}}$$

15. 
$$4 \sin\theta \cos\theta = 1 - 2 \sin\theta + 2 \cos\theta$$
 (4),  $\theta = ?$ 

Solve 
$$4\sin\theta\cos\theta + 2\sin\theta - 1 - 2\cos\theta = 0$$

$$\Rightarrow 2\sin\theta (2\cos\theta + 1) - 1(2\cos\theta + 1) = 0$$

$$\Rightarrow (2\sin\theta - 1)(2\cos\theta + 1) = 0 \Rightarrow \sin\theta = \frac{1}{2} : \theta = n\pi + (-1)^n \frac{\pi}{6}$$

$$\cos\theta = -\frac{1}{2}$$
  $\theta = 2\pi n \pm \frac{2\pi}{3}$  [যেখানে  $n \in \mathbb{Z}$ ]

#### 16. সমাধান কর: cos9x cos7x = cos5x cos3x

Solve 
$$\cos 9x \cdot \cos 7x = \cos 5x \cos 3x$$

$$\Rightarrow$$
 cos16x + cos2x = cos8x + cos2x

$$\Rightarrow \cos 8x - \cos 16x = 0 \Rightarrow 2\sin 12x \sin 4x = 0$$

∴ 
$$\sin 12x = 0 \Rightarrow x = \frac{n\pi}{12}$$
 অথবা  $\sin 4x = 0 \Rightarrow x = \frac{n\pi}{4}$ 

#### 17. সমাধান কর : 2sin0 tan0 + 1 = tan0 + 2sin0

Solve 
$$2\sin\theta \tan\theta + 1 = \tan\theta + 2\sin\theta$$

$$\Rightarrow 2\sin\theta \tan\theta - 2\sin\theta = \tan\theta - 1$$

$$\Rightarrow 2\sin\theta (\tan\theta - 1) - 1(\tan\theta - 1) = 0$$

$$\Rightarrow$$
  $(\tan\theta - 1)(2\sin\theta - 1) = 0$ 

$$\therefore$$
 হয়  $\tan\theta = 1 = \tan\frac{\pi}{4}$   $\therefore \theta = n\pi + \frac{\pi}{4}$ 

অথবা 
$$\sin\theta = \frac{1}{2} = \sin\frac{\pi}{6}$$
  $\therefore \theta = n\pi + (-1)^n \frac{\pi}{6}$ , [যেখানে  $n \in \mathbb{Z}$ ]

CATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICAT  $\cos x \cos 2x \cos 3x = 1$ ;  $0 < x < \pi$ 

 $= 4\cos x \cos 2x \cos 3x = 1 \Rightarrow (2\cos x \cos 3x) 2\cos 2x = 1$ 

 $2\cos 2x \cos 4x + 2\cos^2 2x - 1 = 0$ 

 $2\cos 2x \cos 4x + \cos 4x = 0 \Rightarrow \cos 4x(2\cos 2x + 1) = 0$ 

 $\pi \cos 4x = 0$  :  $x = (2n+1)\frac{\pi}{8}$  .... (1)

 $\cos 2x = -\frac{1}{2} = \cos \frac{2\pi}{3} \Rightarrow 2x = 2n\pi \pm \frac{2\pi}{3}$ 

 $x = n\pi \pm \frac{\pi}{3}$  .... (2) [राषाल  $n \in Z$ ]

1) e(2) नः হতে পাই,

$$n = 0, x = \frac{\pi}{8}, \frac{\pi}{3}$$

$$n = 1, x = \frac{3\pi}{8}, \frac{2\pi}{3}$$

$$n=2, x=\frac{5\pi}{8}$$

$$n = 3, x = \frac{7\pi}{8}$$

 $x = \frac{\pi}{8}, \frac{\pi}{3}, \frac{3\pi}{8}, \frac{2\pi}{3}, \frac{5\pi}{8}, \frac{7\pi}{8}$  Ans:

কাধান ৰুৱ :  $\sin(x) + \sin\left(\frac{x}{2}\right) = 0$ , যখন  $0 \le x \le 2\pi$ 

Solve  $\sin x + \sin \frac{x}{2} = 0 \Rightarrow 2 \sin \frac{x}{2} \cos \frac{x}{2} + \sin \frac{x}{2} = 0$ 

 $\Rightarrow \sin \frac{x}{2} \left( 2\cos \frac{x}{2} + 1 \right) = 0$ 

 $\lim_{x \to 0} \frac{x}{2} = 0 \Rightarrow \frac{x}{2} = n\pi \Rightarrow x = 2n\pi$ 

 $0 \le x \le 2\pi$  ব্যবধিতে, n = 0, 1 .:  $x = 0, 2\pi$ 

 $\frac{x}{2} = \frac{x}{2} + 1 = 0 + \frac{1}{100} = 0 = 0$ 

 $\Rightarrow \cos \frac{x}{2} = -\frac{1}{2} = \cos \frac{2\pi}{3} \Rightarrow \frac{x}{2} = 2n\pi \pm \frac{2\pi}{3} \therefore x = 4n\pi \pm \frac{4\pi}{3}$ 

 $\therefore 0 \le x \le 2\pi$  ব্যবধিতে, n = 0  $\therefore (x = \frac{4\pi}{3})$  ১০১০২০০ = ৪১০১০০ ...

প্রদন্ত সীমার মধ্যে মানসমূহ :  $x = 0, \frac{4\pi}{3}, 2\pi$ 

#### For Practiec

 $Rec = (a - 1)^{-1}(1 - a + a^2) = tan^{-1}a - tan^{-1}(a - 1)$ 

লোভ বে,  $tan^{-1}(1+a) - tan^{-1}a = cot^{-1}(1+a+a^2)$  ইহার সাহাযে

 $\mathbf{746} \ \mathbf{C7}, \cot^{-1}3 + \cot^{-1}7 + \cot^{-1}13 + \cot^{-1}21 = \cot^{-1}\frac{3}{2}$ 

বাপ কর বে,  $tan^{-1}x = 2tan^{-1}$  [cosec  $tan^{-1}x - tan \cot^{-1}x$ ]

 $2\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + 2\tan^{-1}\frac{1}{8} = ? = 0 \ge 4, 1 = 0 \text{ and } 0 \le n \text{ a.s.}$ 

जिल का द्य, tan<sup>-15</sup>/<sub>7</sub> + cot<sup>-18</sup>/<sub>5</sub> = cot<sup>-1</sup>/<sub>75 ind</sub> OS and Order

प्रांच कद (य,  $2\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{4} = \tan^{-1}\frac{32}{43}$ 

ै प्राप्त कर त्य,  $\tan^{-1}\frac{3}{4} - 2\tan^{-1}\frac{1}{5} = \cos^{-1}\frac{63}{65}$  (102)

08. बामान क्स त्य,  $\frac{1}{2}\sin^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \cot^{-1}2 + \cot^{-1}\frac{29}{28}$ 

09.  $\sin^{-1}(\sqrt{2}\sin\theta) + \sin^{-1}(\sqrt{\cos 2\theta}) = \frac{\pi}{2}$  दांगांच क्ना ।

10.  $\sec^2(\cot^{-1}3) + \csc^2(\tan^{-1}2) = ?$ 

Ans: 2 13

11. সমাধান কর :  $\sec^{-1}\frac{x}{2} - \sec^{-1}\frac{x}{3} = \sec^{-1}3 - \sec^{-1}2$ 

12. sin-1x + tan-1x + cot-1x + cos-1x এর মান কত?

13. यिन  $\tan^{-1}a + \frac{1}{2}\sec^{-1}\frac{1+b^2}{1-b^2} + \frac{1}{2}\csc^{-1}\frac{1+c^2}{2c} = \pi$  इस छद्द दम्बाब  $\alpha$ , a+b+c=abc

14. প্রমাণ কর যে,  $\cos^{-1}\frac{1}{\sqrt{5}} - \frac{1}{2}\sin^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{3} = \tan^{-1}2$ 

15. সমাধান কর:  $2\sin x \sin 3x = 1$  যখন  $0 < x < 2\pi$  Ans.  $n\pi \pm \frac{\pi}{6}$ ;  $(2n+1)\frac{\pi}{4}$ 

16.  $tan\theta + cot\theta = 2$  হলে,  $\theta = \overline{\phi}$ 

Ans.  $(4n + 1) \frac{\pi}{4}$ 

17.  $\cos\theta + \sqrt{3}\sin\theta = \sqrt{2}$  সমাধান কর। Ans.  $2n\pi + \frac{7\pi}{12}$ ,  $2n\pi + \frac{\pi}{12}$ 

18.  $\tan^2 x + \sec^2 x = 3$  < (4). x = ?

19. সমাধান কর:  $\cos x + \sin x = \cos 2x + \sin 2x$  Ans:  $2n\pi, \frac{2n\pi}{3} + \frac{\pi}{6}$ 

21. সমাধান কর:  $1 + \sin^2 x - 2\cos^2 x + 3\cos x = 3\cos^2 x$  Ans:  $2n\pi$ ,  $2n\pi \pm \frac{\pi}{3}$ 

22. সমাধান কর :  $\sin 7\theta - \sqrt{3}\cos 4\theta = \sin \theta$ 

Ans:  $(2n+1)\frac{\pi}{9}, \frac{n\pi}{3} + (-1)^n \frac{\pi}{9}$ 

23. সমাধান কর :  $\cot\theta + \tan\theta = 2\sec\theta, -2\pi < \theta < 2\pi$ 

Ans:  $-\frac{11\pi}{6}$ ,  $-\frac{7\pi}{6}$ ,  $\frac{\pi}{6}$ ,  $\frac{5\pi}{6}$ 

24. সমাধান কর :  $2 \sin 2\theta + 2(\sin \theta + \cos \theta) + 1 = 0$ 

Ans:  $2n\pi \pm \frac{2\pi}{3}$ .  $n\pi + (-1)^n \frac{7\pi}{6}$ 

25. সমাধান কর:  $\frac{\cos\theta}{1 + \sin\theta} + \tan\theta = 2$ 

26.  $\cos\theta + \sqrt{3} \sin\theta = 2$ ,  $\theta$  (0° <  $\theta$  < 360°) এর মান কত? Ans: 60°

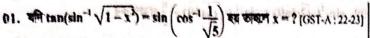
27. সমাধান কর:  $\sec^2 \frac{x}{2} = 2\sqrt{2} \tan \frac{x}{2}$  Ans:  $n\pi + (-1)^n \frac{\pi}{4}$ 

28. সমাধান কর:  $\sin^2 2\theta - 3\cos^2 \theta = 0$  Ans:  $n\pi \pm \frac{\pi}{2}$ 

29. সমাধান কর: cos3θ = cos2θ) (((১) ০০০)) Ans: 2nπ বা 2nπ

30. সমাধান কর:  $\sin \theta - 2 = \cos 2\theta$ 

31. সমাধান কর:  $\tan 2\theta \cdot \tan \theta = 1$ 


32. সমাধান কর :  $\sec^2\theta + \tan^2\theta = \frac{5}{3}$ ,  $0 < \theta < \pi$  Ans:  $\frac{\pi}{6}$ ,  $\frac{5\pi}{6}$ 

33. সমাধান কর:  $\cot\theta + \tan\theta = 2\sec\theta$ ,  $-2\pi < \theta < 2\pi$ 

Ans:  $-\frac{11\pi}{6}$ ,  $-\frac{7\pi}{6}$ ,  $\frac{\pi}{6}$ ,  $\frac{5\pi}{6}$ 

UBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS

### SST গুচ্ছ/গুচ্ছভুক্ত বিশ্ববিদ্যালয়ের বিগত বছরের প্রশ্নৌত্তর



$$Q = \frac{\sqrt{3}}{3}$$

 $tan (sin^{-1}\sqrt{1-x^2}) = sin(cos^{-1}\frac{1}{\sqrt{5}})$ 

$$\Rightarrow \tan \tan^{-1} \frac{\sqrt{1-x^2}}{x^{3/2}} = \sin \sin^{-1} \frac{2}{\sqrt{5}}$$

$$\Rightarrow \frac{\sqrt{1-x^2}}{x^{\frac{1}{2}}} = \frac{2}{\sqrt{5}} \stackrel{!}{\rightleftharpoons} \frac{1-x^2}{\sqrt{5}} \stackrel{!}{\rightleftharpoons} \frac{4}{5} f_{1/2} \stackrel{!}{\searrow}$$

$$\Rightarrow 5 - 5x^2 = 4x^2 \Rightarrow 9x^2 = 5 \Rightarrow x^2 = \frac{5}{9}$$

$$\therefore x = \pm \frac{\sqrt{5}}{3}$$



$$\otimes \left\{ \frac{\pi}{3}, \frac{5\pi}{3} \right\}$$

$$\mathbb{B}\left\{\frac{\pi}{3},\pi\right\}$$

$$\mathbb{C}\left\{\frac{\pi}{3},\frac{2\pi}{3}\right\}$$

#### Solve $2\cos^2 x + 3\cos x - 2 = 0$

$$\Rightarrow 2\cos^2 x + 4\cos x - \cos x - 2 = 0$$

$$\Rightarrow$$
 2cosx (cosx + 2) -1 (cosx + 2) = 0

$$\Rightarrow$$
  $(2\cos x - 1)(\cos x + 2) = 0 \Rightarrow \cos x + 2 = 0 : \cos x \neq -2$ 

$$2\cos x - 1 = 0 \Rightarrow \cos x = \frac{1}{2} = \cos \frac{\pi}{3} \Rightarrow x = 2n\pi \pm \frac{\pi}{3}$$

$$n = 0$$
 च्यन,  $x = \pm \frac{\pi}{3} = \frac{\pi}{3}$ ;  $[0 < \theta < 2\pi]$ 

$$n = 1$$
 Ref.,  $x = 2\pi \pm \frac{\pi}{3} = \frac{5\pi}{3}$ ;  $[0 \le \theta \le 2\pi]_+ + 0$  for the property (2)

$$\therefore$$
 সমাধান সেট =  $\left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$ 

#### 03. $[-\pi, 2\pi]$ ব্যবধিতে $\cos\theta + 1 = 0$ এর সমাধান সেট কোনটি? [GST-A:21-22]

$$\bigcirc$$
  $\{-\pi,\pi\}$ 

$$\mathbb{B}\{\pi,2\pi\}$$

$$\mathbb{C}\left\{\pi,\frac{3\pi}{2}\right\}$$

$$\mathbb{O}\left\{-\pi,\frac{3\pi}{2}\right\}$$

### Solve $\cos\theta + 1 = 0 \Rightarrow \cos\theta = -1 \Rightarrow \theta = (2n + 1) \pi$

3 sind = 2, 0 (0° < 8 < 360°) an=0, center = 2, 0 (0° < 8 < 160°)

n=1, হলে  $\theta=3\pi>2\pi$  গ্রহণযোগ্য নয়

n=-1, হলে,  $\theta=-\pi$ 

 $\theta = 0$  কামাধান সেটটি  $\{-\pi,\pi\}$   $\theta = 0$  কেন্দ্র  $\theta = 0$  মাহ কেন্দ্র  $\theta = 0$ 

# $04. \cos^3(\cot^3(\cot(\cos^{-1}\frac{\sqrt{3}}{2}))) = \overline{\Phi}$ [GST-A: 21-22]

$$\Theta^{\frac{1}{8}}$$

$$\Theta \frac{1}{8}$$

$$0^{\frac{\sqrt{3}}{8}}$$

$$\bigcirc \frac{\sqrt{3}}{8} = 2 - 10003 \frac{\sqrt{3}}{8}$$
 (1)

# B Solve $\cos^3(\cot^{-1}(\cot(\cos^{-1}\frac{\sqrt{3}}{2})))$ in the second of

$$=\cos^3(\cot^{-1}(\cot(\cos^{-1}\cos\frac{\pi}{6})))$$

$$=\cos^3\cot^{-1}\left(\cot\frac{\pi}{6}\right)=\cos^3\frac{\pi}{6}=\left(\frac{\sqrt{3}}{2}\right)^3=\frac{3\sqrt{3}}{8}$$

### 05. यमि sec-13 = tan-1x रग्न, छटन x अत्र मान क्छा [GST-A : 20-21]

$$\odot \sqrt{3}$$

$$\Phi_{2}\sqrt{2}$$

Solve 
$$\sec^{-1}3 = \tan^{-1}x \Rightarrow 3 = \sec \tan^{-1}x$$

$$\Rightarrow 9 = \sec^2 \tan^{-1} x \Rightarrow 9 = 1 + \tan^2 \tan^{-1} x$$

$$\Rightarrow 9 = 1 + x^2 \Rightarrow x^2 = 8 \therefore x = 2\sqrt{2}$$

06. 
$$2\sin^{-1}x = \sin^{-1}y$$
 সমীকরণে  $x = \frac{\sqrt{3}}{2}$  হলে, y এর মান কত? [KU-A: 19.2]

$$\triangle \frac{1}{2}$$

$$\mathbb{B}\frac{1}{\sqrt{2}}$$

$$\bigcirc \frac{\sqrt{3}}{2}$$
  $\bigcirc 1$ 

Solve 
$$2\sin^{-1}x = \sin^{-1}y \Rightarrow 2\sin^{-1}\frac{\sqrt{3}}{2} = \sin^{-1}y$$

$$\Rightarrow 2 \sin^{-1}(\sin \frac{\pi}{3}) = \sin^{-1} y \Rightarrow \sin^{-1} y = \frac{2\pi}{3}$$

$$\Rightarrow y = \sin \frac{2\pi}{3} = \sin 120^{\circ} = \frac{\sqrt{3}}{2}$$

#### 07. নিচের কোন সম্পর্কটি সত্য নয়? [CoU-A: 19-20]

$$\mathbb{B}\sin\theta = \sin(2n\pi + \theta)$$

Solve 
$$\sin^2 x = (\sin x)^2$$
, সত্য;  $\sin \theta = \sin(2n\pi + \theta)$ , সত্য  $\sin(\sin^{-1} x) = x$ , সত্য;  $\sin^{-1} x = (\sin x)^{-1}$  সত্য নর।

08. 
$$\sin^{-1}x + \sin^{-1}y = \frac{\pi}{2}$$
 হলে,  $x^2 + y^2$  এর মান কত? [CoU-A : 18–19]

$$\mathbb{C}^{\frac{1}{2}}$$

# Solve $\sin^{-1}x + \sin^{-1}y = \frac{\pi}{2} \Rightarrow \sin^{-1}x = \frac{\pi}{2} - \sin^{-1}x$

$$\Rightarrow x = \sin\left(\frac{\pi}{2} - \sin^{-1}y\right) \Rightarrow x = \cos\left(\sin^{-1}y\right)$$

$$\Rightarrow x^{2} = \cos^{2}(\sin^{-1}y) \Rightarrow x^{2} = 1 - \sin^{2}(\sin^{-1}y)$$

$$\Rightarrow x^2 = 1 - y^2 \Rightarrow x^2 + y^2 = 1$$

$$\triangle n\pi + (-1)^n \alpha$$

$$(4n + 1)\pi$$

$$\bigcirc 4n\pi + \alpha$$

$$\bigcirc 2n\pi + \alpha$$

Solve 
$$\cos \cot \theta = \csc \alpha \Rightarrow \sin \theta = \sin \alpha : \theta = n\pi + (-1)^2 \alpha$$

(4n + 1) 
$$\frac{\pi}{2}$$

(B) 
$$(4n-1)\frac{\pi}{2}$$

$$\mathbb{O}(2n+1)\frac{\pi}{2}$$

$$\mathbb{O}(2n+1)\frac{\pi}{2}$$

B Solve 
$$\sin\theta = -1 \Rightarrow \theta = (4n-1)\frac{\pi}{2}$$

11. यमि 
$$\tan 2\theta \tan \theta = 1, 0 \le \theta < \frac{\pi}{2}$$
 ह्य,  $\theta = ?$  [BRUR-E : 19-20]

1. 
$$\frac{1}{2}$$
  $\frac{1}{2}$   $\frac$ 

Solve 
$$\tan 2\theta \tan \theta = 1$$

$$\Rightarrow \frac{2 \tan^2 \theta}{1 - \tan^2 \theta} = 1 \Rightarrow 2 \tan^2 \theta = 1 - \tan^2 \theta$$

$$\Rightarrow 3 \tan^2 \theta = 1 \Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \tan \theta = \tan 30^\circ \therefore \theta = 30^\circ$$

ध्य cos sin tan sin

ptet-B: 19-20]

Solve  $\cos \sin^{-1} \tan \sin^{-1} \frac{1}{\sqrt{1+1}}$ 

 $= \cos \sin^{-1} \frac{1}{\sqrt{2}} = \cos \sin^{-1} \sin 45^{\circ}$  $\sin^{-1}\frac{1}{\sqrt{3}} = \tan^{-1}\frac{1}{\sqrt{3}}$ 

= cos45° =

29. sin.

ক্লী  $\sin\theta + \cos\theta = \sqrt{2}, 0 \le \theta \le \frac{\pi}{2}$  হয় তবে  $\theta$  এর মান হাবে- [MBSTU-C: 19-20]

Solve  $\sin\theta + \cos\theta = \sqrt{2}$ 

 $\Rightarrow \sin\theta$ .  $\frac{1}{\sqrt{2}} + \cos\theta$ .  $\frac{1}{\sqrt{2}} = 1 \Rightarrow \cos\theta \cos\frac{\pi}{4} + \sin\theta \sin\frac{\pi}{4} = 1$ 

 $\Rightarrow \cos (\theta - \frac{\pi}{4}) = \cos \theta \Rightarrow \theta - \frac{\pi}{4} = 0 \Rightarrow \theta = \frac{\pi}{4}$ 

 $\mu \sec^2(\tan^{-1}5) + \tan^2(\sec^{-1}2) = ? [NSTU-B: 19-20]$ 

**Solve**  $\sec^2(\tan^{-1}5) + \tan^2(\sec^{-1}2)$ 

 $= 1 + \tan^2(\tan^{-1}5) + \sec^2(\sec^{-1}2) - 1$  $=5^2 + 2^2 = 29$ 

15. tan-11 + tan-12 + tan-13 = ? [NSTU-B : 19-20]

(7 202 ) | Solve tan-1 1 + tan-1 2 + tan-1 3

 $\frac{1+2+3-1\times2\times3}{1-1\times2-2\times3-3\times1}$  $=\pi + \tan^{-1}$  $=\pi+\tan^{-1}$ 

16.  $\sin\theta + \sin 2\theta + \sin 3\theta = 1 + \cos 2\theta + \cos \theta$ ,  $0 < \theta < \frac{\pi}{2}$  and  $\theta$  and

মান কতা [NSTU-A : 19-20]

© 60°

B Solve  $\sin\theta + \sin 2\theta + \sin 3\theta = 1 + \cos 2\theta + \cos \theta$ 

 $\theta = 0$  ধরলে সত্য হয় না।

∴ L.S = R.S 17. tan<sup>-1</sup>2 + tan<sup>-1</sup>3 + tan<sup>-1</sup>4 = θ হলে, tanθ এর মান কড়া

[NSTU-A: 19-20, PUST-A: 19-20]

Solve  $tan^{-1}2 + tan^{-1}3 + tan^{-1}4 = \theta$ 

 $\frac{2+3+4 \Rightarrow 2 \times 3 \times 4}{1-2 \times 3-3 \times 4-4 \times 2} = \theta \Rightarrow \pi + \tan^{-1}$ 

 $= \theta - \pi \Rightarrow \tan (\theta - \pi) = \frac{3}{5} \Rightarrow \tan \theta = \frac{3}{5}$  and have = 3

18.  $\tan^{-13}$  +  $\cot^{-1}\frac{3}{2}$  = 2 [RSTU-C: 19-20]  $\sqrt{20}$ 

# Part 4

l cot cos<sup>-1</sup> 1 এর মান কতা

## অধ্যায়ভিত্তিক গুরুত্বপূর্ণ MCQ প্রশ্নোত্তর

ও tan<sup>-1</sup> 4 এর মৃখ্যমানের সমষ্টি কত?

06.  $\sin \left| \cos^{-1} \left( -\frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) \right|$  এর মান, কত?

07.  $tan^{-1} sin^{1}tan^{-1} x = cos^{-1} \sqrt{\frac{3}{5}}$  সমীকরণের সমাধান কোন্টি n = 1

l sin cot<sup>-1</sup> tan cos<sup>-1</sup> - এর মান নিচের কোনটি?

00

 $\mathbb{D}\sqrt{3}$  Ans  $\mathbb{C}$ 

 $\theta = \sin^{-1}\left(\frac{3}{5}\right)$  Real  $\tan \theta = ?$ 

 $=\frac{\pi}{2}$  erg x=  $\Rightarrow$ 0?

net + D 3/4 all m (Ans(D)

 $\triangle$  [-1, 1]

 $\mathbb{O}(-\infty,\infty)$ 

 $\textcircled{B}(0,\pi)$ 

**Φ** [0, π] 10. sin cot<sup>-1</sup> tan cos<sup>-1</sup>x এর মান কতা

 $08. \ \theta = \cos^{-1}\frac{4}{5} \sqrt[3]{\cot^2\theta - 1} = \sqrt[3]{\cot^2\theta + 1}$ 

09.  $y = \cot^{-1}x$  ফাংশনের ডোমেন কত?

| $\frac{16 + \tan^{-1} \frac{1}{5} \sqrt{3} \pi }{6} = \frac{3\pi}{2} \qquad \frac{3\pi}{4} \qquad \frac{3\pi}{3} \qquad \frac{\pi}{3} \qquad \frac{\pi}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATC)                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| 05 03 003 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.                          |
| $1 + \tan^{-1}2 + \tan^{-1}3$ un $1 + \tan^{-1}3$ un $1 + \tan^{-1}3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ten 17                       |
| $\mathfrak{D}^{\frac{\pi}{2}}$ $\mathfrak{D}^{\pi}$ $\mathfrak{D}^{2\pi}$ $\mathfrak{D}^{2\pi}$ $\mathfrak{D}^{2\pi}$ $\mathfrak{D}^{2\pi}$ $\mathfrak{D}^{2\pi}$ $\mathfrak{D}^{2\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (EC)                         |
| $\sin^{-1}1 + \tan^{-\frac{1}{2}} + \tan^{-\frac{1}{3}}$ এর মান—  59. $\sin\theta = \frac{\sqrt{3}}{2}$ সমীকরণের কোন সমাধানটি বিতীয় চতুর্ভাগে অবহিত্য                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A R                          |
| $\cos \left( \sin^{-1} \frac{1}{4} + \cos^{-1} \frac{1}{4} \right)$ এর মান কত? $60. \   \cosh x + \sin 2x + \sin 3x = 0 \   $ সমীকরণকে সিদ্ধ করে?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| $(\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{2})$ প্ৰের মান ক্ষেত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | শশীকরণের                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| $\mathbb{O}_{4}^{\underline{\pi}}$ \begin{align*} \text{ \mathbb{B}} & \text{ \mathbb{D}} & \text{ \mathbb{D}} & \text{ \mathbb{O}} & \text{ \mathbb{O}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AND                          |
| $4(\sin^{-1}\frac{1}{\sqrt{5}}+\cot^{-1}3)=$ কত?  62. $2\sin^2x=\cos x$ ত্রিকোণমিতিক সমীকরণটির চল্বরাশি কোনটি?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1***-1.75*                   |
| $\sqrt{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (A)                          |
| $\mathbb{Q}^{\frac{\pi}{4}}$ $\mathbb{Q}^{\frac{\pi}{2}}$ $\mathbb{Q}^{\pi}$ $\mathbb{Q}^{\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0 < \theta < \frac{\pi}{2}$ |
| gincot <sup>-1</sup> tancos <sup>-1</sup> x = ?  (B) $\sqrt{x}$ (C) $\frac{\pi}{3}$ (D) $\frac{8\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | And B                        |
| $\mathbb{Q}^{\chi}$ $\mathbb{B}\sqrt{\chi}$ $\mathbb{Q}^{\frac{1}{\chi}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
| $\tan^{-1}\sin\cos^{-1}\sqrt{\frac{2}{3}}$ লাল চন্দ্র ভাল জ্ঞান চন্দ্র ভাল জ্ঞান চন্দ্র ভাল                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pr C                         |
| $\mathbb{Q}\pi/4$ $\mathbb{B}\pi/6$ $\mathbb{Q}\pi/8$ $\mathbb{D}\pi/9$ $\mathbb{A}$ ii. $\cos x + \sin x = \sqrt{2}$ এর একটি সমাধান $\frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                          |
| নি $A + B + C = \pi$ , $tan^{-1}2 = A$ এবং $tan^{-1}3 = B$ হয়, তবে $C$ এর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v Ç)                         |
| মান কত্য iii. $\cos x - \sin x = 1$ এর একটি সমাধান $\frac{\pi}{3}$ ্বাচ্চ ক্ষ্যান্ত ক্রিয়ালন .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WE C.                        |
| ®π/4 ©3π/4 Φ π/4 (An B)  2tan -12 = কত?  Δi ও ii  ® i ও iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A.                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Ans (A)                     |
| Otan-1 (-4/3)       ® tan-1 3       © cot-1 1/3       Otan-1 3       Otan-1 3 <td>(1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                          |
| sec <sup>2</sup> (tan <sup>-1</sup> 2) + sin cot <sup>-1</sup> tan cos <sup>-1</sup> x এর মান হবে–<br>$0x$ $0x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Anc                          |
| tanx কাংশনটি কোন ব্যবধিতে এক এক?  66. tan20 tan0 = 1 স্মীক্রণে 0 এর মান হবে-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (117)                        |
| $\mathbb{O}(0,\pi)$ $\mathbb{O}\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ $\mathbb{O}\left[0,\pi\right]$ $\mathbb{O}\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ Ans $\mathbb{O}\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ Ans $\mathbb{O}\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (vi)                         |
| tand 0 + 40 × 20 = 0 (GR > c 7 pres 0 (GR ) tand the condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (M)                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | And A)                       |
| $\sqrt{3}\sin\theta + \cos\theta = \sqrt{2}$ সমীকরণের অবান্তর মূল কোনটি? $\sqrt{3}\sin\theta + \cot^2\theta + \csc\theta - 5 = 0$ হয় তখন $\theta$ ধনাত্মক, তাহলে,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0 < \theta < \frac{\pi}{2}$ |
| $0.7\pi$ B $\pi$ C $-7\pi$ D $-17\pi$ And C এর জন্য $\theta$ এর মান হবে-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| 12 $12$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | An B                         |
| Company traffic participate traffic at the company traffic at the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.4                         |
| $\bigcirc n\pi - \alpha \qquad \bigcirc n\pi + \alpha \qquad \boxed{\triangle n\pi - \alpha} \qquad \bigcirc n\pi + \alpha \qquad \boxed{\triangle n\pi - \alpha} \qquad \triangle n\pi - $ | 1-2                          |
| $     \ln^2 x + \sec^2 x = 3   $ হলে সমীকরণটির সমাধান কতঃ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (AB)                         |
| $\emptyset x = n\pi \pm \frac{\pi}{2}$ $\emptyset x = n\pi + \frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.10                         |
| $\mathbb{O} x = n\pi \pm \frac{\pi}{4}$ $\mathbb{D} x = n\pi + \frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y) we                        |
| 4 4 (Q45°, 45° (D22.5°, 45° (D22.5°, 45° (D45°, 45° (D45°), 45° (D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UBLICATIONS                  |

 $\bigcirc \frac{\pi}{6}, -\frac{5\pi}{6}$   $\bigcirc \frac{\pi}{6}, \frac{5\pi}{6}$ 

71.  $\cot\theta + \sqrt{3} = 2 \csc\theta$  সমীকরণের সমাধান

 $\Theta\theta = 2n\pi - \frac{\Lambda}{3}$ 

 $\mathfrak{B}0 = 2n\pi + \frac{\pi}{2}$ 

 $\mathbb{C}\theta = 2n\pi + \frac{\pi}{6}$ 

 $00 = 2n\pi - \frac{\pi}{6}$ 

(Ans B)

72.  $\cos\theta + \sqrt{3}\sin\theta = 2$  হলে  $\theta$  এর মান কতা

@30°

®45°

त्ती. विमान प्रामिति इति

73.  $\sin^2 2\theta - 3\cos^2 \theta = 0$  সমীকরণের সাধারণ সমাধান-

 $\triangle 2n\pi \pm \pi/3$ 

 $\mathfrak{B}$ n $\pi \pm \pi/3$ 

 $On\pi \pm \pi/6$  $\Omega 2n\pi \pm \pi/6$ 

(Ans(B)

74.  $2\cos\theta = 1$  স্মীকরণের সাধারণ স্মাধান-

 $\Theta\theta = n\pi + \frac{\pi}{2}$ 

 $\mathbb{B}\theta = 2n\pi \pm \frac{\pi}{6}$ 

 $\Theta = 2n\pi + \frac{\pi}{3}$ 

 $\mathfrak{D}\theta = 2n\pi \pm \frac{\pi}{2}$ 

75.  $\sin\theta - \cos 2\theta = 2$  এর সাধারণ সমাধান কোনটিঃ

 $\sqrt[3]{2}$ 

 $\mathbb{B}(4n+1)\frac{\pi}{2}$ 

 $\mathbb{C}(2n+1)\frac{\pi}{2}$ 

 $(2n+1)^{\frac{n}{2}}$ 

76. 0<0<90° তে tan0 + cot0 = 2 হলে, 0 এর মান কত্য

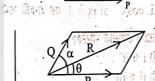
@30°

₿60° 77.  $\sqrt{3}$  tan60 –  $\sqrt{3}$  tan40 + tan60 tan40 + 1 = 0 এর সমাধ  $\triangle 60^{\circ}$ 

78.  $2(\sin\theta\cos\theta + \sqrt{3}) = \sqrt{3}\cos\theta + 4\sin\theta$ ;  $0 < \theta < \frac{\pi}{2}$  अप्र जनायान कर

®π/6

79. যদি tan² θ + secθ = -1; 0 < θ < 2π হয়, তবে θ এর নাল হবে-


80. 2(cos x + secx) = 5 সমীকরণের সাধারণ সমাধান-

 $\bigcirc 2n\pi \pm \frac{\pi}{2}$ 

# গণিত ২য় পত্র

প্রয়োজনীয় সূত্রবিলি

- লঘাংশক: দুইটি অংশক বলের মধ্যবর্তী কোণ ৢ 90<sup>0</sup> হলে তাদেরকে লম্বাংশক বলে।
  - P এর লম্বাংশক = Rcos θ
  - Q এর লম্বাংশক = Rsin θ বলের সামান্তরিকের সূত্রানুযায়ী-
- $R^2 = P^2 + Q^2 + 2PQ \cos\alpha$



- (i)  $\alpha=0^\circ$  হলে লব্ধির মান সর্বোচ্চ হয় এবং  $R_{max}=P+Q$
- (ii)  $\alpha = 60^{\circ}$  হলে,  $R = \sqrt{P^2 + Q^2 + PQ}$
- (iii)  $\alpha = 90^{\circ}$  হলে,  $R = \sqrt{P^2 + Q^2}$ ,  $\tan\theta = \frac{2}{P_1}$
- (iv)  $\alpha = 120^{\circ}$  হলে,  $R = \sqrt{P^2 + Q^2 PQ}$
- (v) α = 180° হলে লব্ধির মান সর্বনিম মান  $R_{min} = \pm (P Q)$
- (vi) P=2Q এবং শব্ধি লম্ব ব্যাব্য ক্রিয়া করলে  $\alpha=120^\circ$ 
  - (vii) P = Q এবং  $\alpha = 90^\circ$  হলে  $R = \sqrt{2} P = \sqrt{2} Q$
- ্ (viii) P = Q এক α = 120° হলে R = P = Q 1000 + 0 100 মাদ্
  - (ix) P = Q হলে  $R = 2P\cos\frac{\alpha}{2}$  এবং  $\tan\theta = \tan\frac{\alpha}{2}$  ...  $\theta = \frac{\alpha}{2}$
- 🎤 দুইটি বলের লব্ধি বৃহত্তম বলটির সাথে যে কোণ উৎপন্ন করে, বৃহত্তম বলটিকে **দিওণ করায় আগের কোণটি অর্ধেক হলে, বলদ্বয়ের অন্তর্ভুক্ত কোণ** 120°। 🗞
- P ও Q বলদ্বয় (P > Q) α কোণে ক্রিয়ারত। P কে যদি m দিয়ে গুণ করা হয় এবং লব্ধি যদি m তণ হয়, তাহলে,  $\cos\alpha = -\frac{(m+1)Q}{n}$ 
  - আবার, Q কে m গুণ করায় লি m গুণ হলে,  $\cos\alpha = -\frac{(m+1)P}{2}$
- বলদ্বয়ের মধ্যবর্তী কোণ a হলে,  $\cos \alpha =$

- দুইটি বলের লব্ধির দিক বলদ্বয়ের মান পরিবর্তন করার পরও অপরিবর্তী থাকলে প্রাথমিক বলদ্বয়ের অনুপাত অপরিবর্তিত ও পরিবর্তিত বলব্বয়ের জুনু সমান হয় অৰ্থাৎ 💍 🗕 🥡
- দৃটি সমান বল P এবং এদের লব্ধিরও P এর সমান হলে বলহুত্তের মধ্য কোণ 120°.
- দুটি অসমান বলের (P > Q) মধ্যবর্তী কোণ 120° এবং লব্ধি (R) বলটি এ বলটির সাথে সমকোণ তৈরি করলে বড় বলটি ছোট বলটির দ্বিশুণ (P = 20)
- দৃটি সমান বলদ্বয়ের লব্ধির বর্গ বলদ্বয়ের গুণফলের তিনগুণ হলে বলক্ষ্র মধ্যবর্তী কোণ 60°.
- এক <mark>বিন্দৃতে ক্রিয়াশীল দু'টি সমা</mark>ন ও বিপরীতমুখী বল ভারসাম্য সৃষ্টি করে।
- এক<mark>ই রেখায় ক্রিয়ারত দু'টি বলে</mark>র লব্ধি তাদের বীজগাণিতিক যোগফলের সমান
- এক<mark>ই রেখায় বিপরীত দিকের ক্রিয়া</mark>রত দুটি বলের লব্ধি তাদের বিয়োগফলের সমন
- এক<mark>ই বিন্দুতে ক্রিয়াশীল দু</mark>ইটি সমান বলের লব্ধি তাদের **অন্তর্গত কো**ন সমদ্বিখণ্ডিত করবে।

#### বহুভূজ সংক্রান্ত সূত্রসমূহ

- 180° অগুস্থকোণ
- সুষম বহুভূজের কোণগুলোর সমষ্টি =  $(2n-4) \times 90 = (n-2) \times 180^\circ$
- সুষম বহুভূজের জন্তঃ কোণের পরিমাপ  $= \frac{(n-2) \times 180^\circ}$

CATTONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . অংশক সূত্রের সাহায্যে সমতশীয় বল জোটের লক্ষি নির্ণয়ঃ

 $\rho_{\text{n}} = P_1 \cos \theta_1 + P_2 \cos \theta_2 + \cdots + P_n \cos \theta_n = X$ 

$$\frac{\rho^{\text{red}}}{\sin\theta} = P_1 \sin\theta_1 + P_2 \sin\theta_2 + \dots + P_n \sin\theta_n = Y$$

$$\int_{X}^{\infty} \sqrt{X^2 + Y^2}, \quad \theta = \tan^{-1} \left(\frac{Y}{X}\right)$$

🙀 **ভললাদ্যঃ** কোন বিন্দুতে কার্যরত তিনটি 🕠 🗼 🔥 নার বল সাম্যাবছায় থাকিলে, ইহাদের ্রকটি কল অপর দুইটি বলের ক্রিয়া রেখার 🔑 🛇 🎗 ্বিক্ট কোণের সাইনের সমানুপাতিক হবে।



#### OLY PUBLICATIONS . JOYROLY PUBLICATIONS . JOYROLY PUBLICATIONS . JOYROLY PUBLICATIONS সম্মুখী সমান্তরাল বলের ক্ষেত্রে-


- P, Q, R वन छिनि प्रधायात्म ABC विञ्रू एकत BC, CA ७ AB वाष्ट्र वजावत किया कतरम जारमत मित्र कियारतथा विश्वरक्त-
  - (i) অজ্ঞকেন্দ্র দিয়ে গেশে, P + Q + R = 0.

(ii) ভরকেন্দ্র " " 
$$\frac{P}{\sin A} + \frac{Q}{\sin B} + \frac{R}{\sin C} = 0$$

- (iii) পরিকেন্দ্র " "  $P\cos A + Q\cos B + R\cos C = 0$
- (iv) লমকেন্দ্র " "  $\frac{P}{\cos A} + \frac{Q}{\cos B} + \frac{R}{\cos C} = 0$

# Part 2

### গাণিতিক সমস্যা ও সমাধান



🚾 যেহেতু সমবিন্দুগামী তিনটি বল সাম্যাবছায় থাকলে যেকোন একটি বল ন্ধ দুইটি বলের লব্ধির সমান হয়।

$$\sqrt{(\sqrt{3})^2 + 2^2 + 2 \times \sqrt{3} \times 2\cos\theta} = 1 \Rightarrow 3 + 4 + 4\sqrt{3}\cos\theta = 1$$

$$4\sqrt{3}\cos\theta = -6 \Rightarrow \cos\theta = -\frac{\sqrt{3}}{2} \Rightarrow \theta = 150^{\circ}$$

 $\mathbf{r}$  বিশৃতে দুইটি বল  $120^{0}$  কোণে ক্রিয়াশীল। বৃহন্তর উপাংশ  $10\mathrm{N}$  এবং তাদের 🙀 🕶 🕏 भीरम्बर मार्थ मगरकार्ग जैल्लात करत् । कृत्युक्त जैलार्ग ७ मिति निर्मग्र कर्त्र ।

$$Q = -10\cos 120^\circ = 5$$

$$R = \sqrt{P^2 - Q^2}$$

$$R = \sqrt{100 - 25} = 5\sqrt{3}N$$

। একটি সমবাহ ত্রিভুজ এবং 3P, 7P ও 11P মানের তিনটি বলের দিক হমে AB, BC ও CA এর দিকে। বল তিনটির লব্ধির মান কত?

are যেহেত্ 3P, 7P ও 11P বলত্রর সমান্তর ধারা গঠন করে যার সাধারণ 配4P

হেতৃ বল তিনটির লব্ধি = 
$$\sqrt{\text{বাহুর সংখ্যা}}$$
 × বলের পার্থক্য   
=  $\sqrt{3}$  × 4P = 4 $\sqrt{3}$  P.

নবিন্দুতে একই সময়ে P ও 2P এককের বল্বয় 30° কোণে ক্রিয়ারত হলে ति निक निर्पय कत्र।

$$= \tan^{-1} \frac{2P \sin 30^{\circ}}{P + 2P \cos 30^{\circ}} = \tan^{-1} \frac{P}{P + 2P \cdot \frac{\sqrt{3}}{2}} = \tan^{-1} \frac{1}{(1 + \sqrt{3})} = 20^{\circ}$$

ন বিন্দুতে ক্রিয়ার<mark>ত</mark> তিনটি বল ভারসাম্য সৃষ্টি করে। তাদের প্রথমটিও মিটির মধ্যে কোন 90° এবং বিতীয়টি ও তৃতীয়টি মধ্যে 120° হলে 10. 16N ও 11N বিসাদৃশ সমান্তরাল বল্দয় 5m দূরত্বে অবছিত। যদি পরবর্তীতে শোর অনুপাত কত।

$$\frac{P}{\sin 120^{\circ}} = \frac{Q}{\sin (360 - 210^{\circ})} = \frac{R}{\sin 90}$$

$$\frac{P}{\sin 90} = \frac{Q}{\sin 90} = \frac{R}{\sin 90}$$

$$\frac{P}{\sqrt{3}} = \frac{Q}{1} = \frac{R}{1}$$
  $P: Q: R = \sqrt{3}: 1: 2$ 

উ এবং ৪ ফুট দীর্ঘ বাছবিশিষ্ট কোন ত্রিভুজের বাহুগুলি ঘারা দিকে, মানে প্ৰক্ষক্ৰমে সূচিত বল্যয়ের দক্ষি হয়-

Solve 
$$R\cos\theta = 5\cos0^\circ + 5\cos 120^\circ + 8\cos 240^\circ$$

$$R\sin\theta = 5\sin0^{\circ} + 5\sin 120^{\circ} + 8\sin 240^{\circ}$$

R=3 fV1b

07. কোন বিন্দুতে ক্রিয়ারত P ও Q মানের দুটি বলের লব্ধি, তাদের অন্তর্গত কোণকে এক তৃতীয়াংশে বিভক্ত করে। তাদের অন্তর্গত কোণের মান কত?

(d + arv

Solve মনে করি অন্তর্গত কোণ = 3α

বলের উপাংশের সাইন এর সূত্র মতে, 
$$\frac{P}{\sin 2\alpha} = \frac{Q}{\sin \alpha} = \frac{R}{\sin 3\alpha}$$

$$\frac{P}{2\sin\alpha.\cos\alpha} = \frac{Q}{\sin\alpha} \Rightarrow \cos\alpha = \frac{P}{2Q}$$

$$\Rightarrow \alpha = \cos^{-1} \frac{P}{2Q} \therefore 3\alpha = 3\cos^{-1} \frac{P}{2Q}$$

08. একটি দণ্ডের একপ্রান্ত হতে 2, 8, 6 মিটার দূরত্বে অবস্থিত তিনটি বিন্দুতে यथोक्टरम P, Q, R मारनंत िनिष्ठि समाख्तान वन किया कत्रहा पर्छि সাম্যাবছায় থাকলে শর্ত কোনটি?

Solve এখানে,OA = 2m

$$OB = 8m$$

$$OC = 6m$$

$$\therefore \frac{P}{BC} = \frac{Q}{AC} = \frac{R}{AB}$$

$$\Rightarrow \frac{P}{8-6} = \frac{Q}{6-2} = \frac{R}{8-2} \Rightarrow \frac{P}{2} = \frac{Q}{4} = \frac{R}{6}$$

$$P:Q:R=1:2:3$$

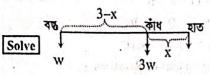
09. দুইটি বিপরীতমুখী স<mark>মান্তরাল বলের লব্ধি 12 ডাইন তাদের একটি হতে 3 cm</mark> ও অপরটি হতে 4 cm দুরে ক্রিয়া করে। বল্বয়ের মান কত?

Solve 
$$P - Q = 12$$
 $BC = 4$ 
 $AC = 3$ 
 $Q$ 
 $AC = 3$ 
 $AC =$ 

এখন, P.AC = Q.BC

$$\Rightarrow$$
 3P = 4Q  $\Rightarrow \frac{4Q}{3} - Q = 12$ 

18N ও 13N হয়, তাহলে লব্ধির সরণ কত?


$$\therefore$$
 লব্বির সরণ,  $x = \frac{5 \times 2}{5} = 2m$ 

11. 15 পাউন্ড ওজনের একটি বল 20 ইঞ্চি দীর্ঘ একটি দন্ডের প্রান্তে প্রয়োগ করা হলো অপর প্রান্ত বিন্দুর চতুর্দিকে বলটির ভ্রামক কত? যখন ইহার ক্রিয়ারেখা দভের উপর শ্ব। ১৫০৫ টি ১৫০১ টি ১৫৮৯১

Solve আমক = বল 
$$\times$$
 দ্রজ্  $\times \sin \theta = 15 \times 20 \times \sin 90^\circ$ 

$$= 15 \times \frac{20}{12} \times \sin 90^\circ = 25$$

RELCATIONS - JOYKOLY PUBLICATIONS - JOYKOLY PUBLICATIONS



ধরি, কাঁধ হতে হাতের দূরত্ব, b = x m

∴ কাঁধ হতে বন্তুর দূরত্ব, a = (3 – x) m

∴ কাঁধের উপর প্রযুক্ত বল = 
$$\frac{w(a+b)}{b}$$

$$\Rightarrow 3w = \frac{w(3-x+x)}{x} \Rightarrow x = 1 : a = 3-1 = 2 m$$

∴ কাঁধ হতে বস্তুর দূরত্ব 2 মিটার।

13. কোন বিন্দুতে ক্রিয়ারত P, Q, R ব্ল তিনটি ভারসাম্য সৃষ্টি করেছে। P ও Q এর অন্তর্গত কোলা  $P ext{ 's } R$  এর অন্তর্গত কোলের বিশুল হলে প্রমাণ কর যে,  $R^2 = Q (Q - P)$ .

Solve মনে করি, P ও R এর মধ্যবর্তী কোণ = α P ও Q এর Q ও R এর  $" = 360^{\circ} - 3\alpha$ লামির সূত্রানুসারে,

$$\frac{P}{\sin(360^{\circ} - 3\alpha)} = \frac{Q}{\sin\alpha} = \frac{R}{\sin 2\alpha}$$

$$\Rightarrow \frac{P}{-\sin 3\alpha} = \frac{Q}{\sin \alpha} = \frac{R}{\sin 2\alpha}$$

$$\Rightarrow \frac{P}{-3\sin\alpha + 4\sin^3\alpha} = \frac{Q}{\sin\alpha} = \frac{R}{2\sin\alpha\cos\alpha}$$

$$\Rightarrow \frac{P}{\sin\alpha (-3 + 4\sin^2\alpha)} = \frac{Q}{\sin\alpha} = \frac{R}{2\sin\alpha \cos\alpha}$$

$$\Rightarrow \frac{P}{-3 + 4\sin^2\alpha} = Q = \frac{P}{2\cos\alpha} : \frac{P}{-3 + 4\sin^2\alpha} = Q$$

$$\Rightarrow 4\cos^2\alpha = 1 - \frac{P}{Q} = \frac{Q - P}{Q}$$
.....(i)

$$Q = \frac{R}{2\cos\alpha} \Rightarrow R^2 = 4Q^2\cos^2\alpha \Rightarrow R^2 = Q^2. \frac{Q - P}{Q}$$
 [(i) নং এর সাহায্যে)]

$$\Rightarrow R^2 = Q(Q - P)$$
 (Proved)

### For Practiec

01. কোন বিন্দৃতে ক্রিয়ারত P ও Q মানের দুইটি বলের লব্ধি P বলের দিকের সাহ  $60^{\circ}$  কোণ উৎপন্ন করে  ${f P}$  বলটিকে বিশুন করলে উক্ত কোণ  ${f 30^{\circ}}$  হয় ।  ${f P}$  দ্ব $_{0}$ এর অন্তর্গত কোণ নির্ণয় কর।

02. কোন বিন্দুতে ক্রিয়ারত দুইটি বলের বৃহত্তম ও ক্ষুদ্রতম বলের লব্বির মান 🗜 ও 🖁 প্রমাণ কর যে, বল্বয়ের ক্রিয়ারেখার মধ্যবর্তী কোণ 🌣 হলে তাদের শব্দির 🖡

$$\sqrt{F^2\cos^2\!\!\frac{\alpha}{2}+G^2\sin^2\!\!\frac{\alpha}{2}}$$
 रदन।

JOYKOLY PUBLICATIONS

03. △ABC-এর ∠A=90°; এর AB ও AC বরাবর দৃটি বশ K এবং ১ কার্যরত। দেখাও যে,এদের লব্ধি A হতে BC-এর উপর অংকিত লাম A বরাবর কার্যরত এবং এর মান  $rac{\mathbf{K}}{\mathbf{A}\mathbf{D}}$ ।

04. একজন লোক তার কাঁধে অনুভূমিকভাবে ছাপিত 9 ফুট দীর্ঘ একটি সাঠির আ যাত রেখে অপর প্রান্তে W ওজনের একটি বস্তু বহন করছেন। কাঁধের 🕏 চাপের পরিমান বন্ধটির ওজনের তিনগুণ হলে কাঁধ থেকে হাতের দূরত্ব কতা

05. 30 cm ব্যবধানে দুইটি বিদ্যুতে 16 kg এবং 10 kg ওজনের দুইটি সমান্তরাল কার্যরত আছে। এদের লব্ধি ও তার প্রয়োগ বিন্দু নির্ণয় কর**,** যখন **বল দুইটি বিস**দৃষ Ans: লব্ধির ক্রিয়া বিন্দু ক্ষুদ্রতম ওজন হতে 80 cm বাইরে

06. 16 cm ব্যবধানে ক্রিয়াশীল দুইটি বিপরীতমুখী সমান্তরাল বলের লব্ধি 32 kc wt, যা বৃহত্ত<mark>ম ব</mark>ল থেকে 8 cm দূরে ক্রিয়া করে। বল দুটি নির্ণয় করে।

Ans: 48 kg-wt, 16 kg-w

07. 12N ও 9N বিসাদৃশ সমান্তরাল বল্বয় 4m দূরত্বে অবস্থিত। যদি পরবর্তী 15N ও 12N হয়, তাহলে লব্ধির সরণ কত?

08. P, Q, R ব্দাত্রের যথাকুমে OA, OB, OC বরাবর ক্রিস্মারত। O, 🗚 BCa ভারকেন্দ্র। বলগুলি ছিতাবন্ধায় থাকলে দেখাও যে,

$$\frac{P^2}{2(b^2+c^2)-a^2} = \frac{Q^2}{2(c^2+a^2)-b^2} = \frac{R^2}{2(a^2+b^2)-c^2}$$

09. ABC ত্রিভূজের অন্ত : কেন্দ্র I বিন্দুতে IA, IB, IC বরাবর P, Q, R ि कियात्र राय जात्रमामा मुष्टि कताम श्रमान कत त्य.  $P^2: Q^2: R^2 = a(b+c-a): b(c+a-b): c(a+b-c)$ 

10. ABC ঞিচুজের পরিকেন্দ্র O হতে OA, OB, OC বরাবর P, Q, R ব তিনটি ক্রিয়া<mark>রত থেকে ভারসাম্য</mark> সৃষ্টি করছে। প্রমাণ করতে হবে যে,

$$\frac{P}{\sin 2A} = \frac{Q}{\sin 2B} = \frac{R}{\sin 2C}$$

11. 6' দীর্<mark>থ 3</mark> পা. ও. -এর <mark>একটি সম</mark>রপ দন্ড , এর দুই প্রান্তন্থ দুটি খুঁটির উপর সুর্থ আছে। <mark>প্রতিটি খুঁটি সর্বোচ্চ 13 পা</mark>. ও. বহন করতে পারে। 16 পা. ও. এর এর বস্তুকে <mark>দভে</mark>র <mark>কোন অংশে ঝুলা</mark>লে কোন খুঁটিই ভাঙ্গবে না?  ${
m Ans:} {21\over 16}$ গুঁ

### GST গুচ্ছ/গুচ্ছভুক্ত বিশ্ববিদ্যালয়ের বিগত বছরের প্রশ্নোত্তর

01. তিনটি সমতলীয় বল P, Q এবং R কোনো বিন্দুতে ক্রিয়া করে সাম্যাবছায় আছে। যদি  $\mathbf P$  এবং  $\mathbf Q$  এর মান যুধাক্রমে  $5\sqrt{3}\mathbf N$  ও  $5\mathbf N$  এবং তাদের মধ্যবর্তী কোণ  $\frac{\pi}{2}$  হয়, তাহলে  $\mathbf{R}$ ,  $\mathbf{Q}$  এর সঙ্গে কত কোণ তৈরি করবে? [GST-A : 22-23]

আবার, 
$$P \sin 0^\circ + Q \sin 90^\circ + R \sin (90^\circ + \alpha) = 0$$
  
 $\Rightarrow Q + R \cos \alpha = 0 \Rightarrow R \cos \alpha = -Q \dots (ii)$ 

$$(i) \div (ii) \Rightarrow \tan \alpha = -\frac{P}{Q} \Rightarrow \tan \alpha = -\frac{5\sqrt{3}}{5}$$

$$\Rightarrow \tan \alpha = \tan \left(-\frac{\pi}{3}\right) \Rightarrow \tan \alpha = \tan \left(\pi - \frac{\pi}{3}\right) \therefore \alpha = \frac{2\pi}{3}$$

02. F এবং 2F মানের দুটি সমবিন্দু বলের লব্ধির ক্রিয়াদিক এবং একই ক্রিট

ক্রিয়ারত 2F এবং 2F + 2 মানের বলদ্বয়ের লব্ধির ক্রিয়াদিক একই হলে F মান কত একক? [GST-A: 21-22]

Solve express, 
$$\frac{F}{2F} = \frac{2F}{2F+2} \Rightarrow 4F = 2F+2 \Rightarrow 2F = 2 \therefore F = 1$$

\* WEREATENS . ANXINT POPULCATIONS . DIXOLY PUBLICATIONS . ্রহ্ম ও 11N বিসদৃশ সমান্তরাল বলহয় 5m দ্বত্তে অবহিত। যদি পরবর্তীতে | 07. কোনো এক বিশ্বতে 45° কোনো কিয়াশীল p ও √2N বলের লব্ধি √10N 🚙 18N ও 13N হয়, ভাহলে শব্ধির সরণ কড m? [KU-A : 10-20] S R Schr 15-16 = 2N এক 13 - 11 = 2N : উভয় বলের কেতে, 2N বৃদ্ধি  $\frac{AB.x}{P-Q} = \frac{5 \times 2}{16-11} = 2m$ প্রকার বাহুতারের লয় সমষ্টিরপ্রকারের ছেদ বিন্দুকে বলে- [IU-D: 19-20] **(B) वाह्यदक्छ** Solve তিত্তের বাহ্বয়ের লম্ ক্রিকের ছেদবিলুকে গরিকেন্দ্র বলে। ক্ষু সমান বলের লজি বলহুয়ের তথফলের বর্গমূল হলে বলহুয়ের মধ্যবর্তী কোণ-TUD: 19-20] @ 120° RO ® 30° √ © 60° Solve धरित, रुनष्य P, P निक्क, R =  $\sqrt{P.P} = P$ ক্ষায়ের মধ্যবতী কোণ = α হলে  $P^2 = P^2 + P^2 + 2P^2 \cos \alpha \Rightarrow \cos \alpha = -\frac{1}{2} = \cos 120^\circ \Rightarrow \alpha = 120^\circ$ ক্রী সমবান্থ অিভুজের একটি কৌণিক বিন্দুতে P ও 2P মানের দুটি বল ক্রিয়া करा अपने निक रद- [BRUR-E: 19-20] **B** 7P Solve निक =  $\sqrt{P^2 + (2P)^2 + 2.P.2P \cos 60^\circ} = P\sqrt{7}$ Part 4

RCT. D WE WIT TOT LIKKNIU B : 19-201 (D) IN D 2N Solve  $(\sqrt{10}N)^2 = p^2 + (\sqrt{2}N)^2 + 2.p.\sqrt{2}\cos 45$  $\Rightarrow 10 = p^2 + 2 + 2p \Rightarrow p^2 + 2p - 8 = 0$  $\Rightarrow$  (p + 4) (p - 2) = 0  $\Rightarrow$  p = 2, -4

08. 13cm रावधारम मुद्रेष्टि विभूदछ 12N अनर 8N मुद्रेष्टि क्ल ममास्त्राहन कार्यकर আছে। এদের শক্তি কন্ত হবে যখন বল দুইটি বিলদুশা (JKKNIU-B : 19-10). @ 12N (B) 8N O 20N

Solve गिर्क = (12 - 8) = 4N

09. এক বিন্দৃতে 45° কোণে क्रियांनीन p ও  $\sqrt{2}N$  বলেব শন্ধি  $\sqrt{10}N$  बल्न. p**ध्वत्र मान रूद- [MBSTU-C: 19-20]** 

@ 2 N 05 N Solve  $(\sqrt{10})^2 = p^2 + (\sqrt{2})^2 + 2.p.\sqrt{2} \cos 45^\circ$ 

 $\Rightarrow 10 = p^2 + 2 + 2.p.\sqrt{2}.\frac{1}{\sqrt{2}}$  $\Rightarrow 10 = p^2 + 2 + 2p \Rightarrow p^2 + 2p - 8 = 0$  s ⇒ (p-2) (p+4) = 0 ⇒ p = 2, p = -4 (মহন্যোগ্য নয়)  $\therefore p = 2N$ 

 3P এক 2P মনের কা দৃটির শব্বির মান R, যদি এখন বলের পরিমাণ বিভণ করা হয়, তবে দন্ধির মানও বিষধ হয়। বলম্বনের মধ্যবর্তী কোশ মবে- [NSTU-B: 19-20]

@ 120° ® 60° © 50° Solve প্রশ্নমতে প্রথম বলকে দিওণ করা হলে লব্ধি দিওণ হবে, তাই

বদ্ধয়ের মধ্যবতী কোণ = 120°

### অধ্যায়ভিত্তিক গুরুত্বপূর্ণ MCQ প্রশ্নোত্তর

08. 7N, 13N ও 19N এর তিনটি বল পরস্পরের সাথে 120° কোণ উৎপন্ন করে। 7N বলের দিকে লব্ধির লঘাংশ কত?

স্মান্তরাল বল ক্রিয়ারত। যদি বলঘয় পরম্পরের অবছান বিনিময়ে করে , তবে ক্ট্রর ক্রিয়াবিন্দু AB রেখা বরাবর কতদূর সরে যাবে?

্রেন বছর A ও B বিন্দুতে যথাক্রমে 5 একক ও 3 একক মানের দুইটি সদৃশ

LIN এবং 5N মানের দুইটি বল একই রেখায় একই দিকে ক্রিয়ারত। উহাদের र्स्टिक निक्ष रूप - व्याप्त विकास

©√29 N Ø 5 N Ans A @7 N ! <ক্টি সমবাহ ত্রিভূজের বাহ্ত্তয়ের সমান্তরালে একইক্রমে সমবিন্দুতে কার্যরত 6, 11, 14 একক মানের তিনটি বেগের লব্ধির মান হবে -

 $\mathbb{D}7\sqrt{3}$  units  $\mathbb{O}10\sqrt{3}$  units  $\mathbb{D}15\sqrt{3}$  units  $\mathbb{A}$ । 🖎 🔫 3.N দুইটি বল একটি বিন্দুতে 60° কোণে একটি বস্তুতে ক্রিয়ারত।

প্ৰয়ের দক্তির মান-

6V73N  $\mathbb{B}\sqrt{97}\,\mathrm{N}$   $\mathbb{C}\sqrt{55}\,\mathrm{N}$ DIIN (Ans B) 3P 속 2P মানের বল দুইটির লব্ধির মান R. যদি প্রথম বলের পরিমাণ বিতণ প্রা হয়, তবে পদ্ধির মানও বিখণ হয়। বলদ্বয়ের মধ্যবর্তী কোণ হবে- 🐇 🗀

150° (Ans(C) ©120° क्लि क्लिट्ट P धनः 2P माजित पूरेंगि वन किसानीन। अधमिकि विश्न करत মিঠারটির মান ৪ একক বৃদ্ধি করলে পরির দিক অপরিবর্তিত থাকে। P এর মান কতা D कारनाण्डि नग्न (Ans(C)

ি নিচের কোন তিনটি বল কখণো সাম্যাবছা সৃষ্টি করবে নাঃ

B 3, 4, 7 C 2, 3, 5 (D) 2, 3, 6(Ans(D)

B 0 O 4

09. P, Q यथन P = 1, Q = 2 দুইটি সমবিন্দু বলের লব্ধি R । P এর দিকে R এর লঘাংশ Q। বলবয়ের মধ্যবর্তী কোণ কোনটি?

® 30° © 120° 150° (Mas (A)

10. 4 মিটার দীর্ঘ এবং 15 কেন্সি ডজনের একটি সুষম তকা দুইটি খুঁটির উপর আনুভূমিকভাবে ছির আছে। একটি খুঁটি A প্রান্ত এবং অন্যটি B প্রান্ত হতে 🥇 মিটার ভিতরে অবন্থিত। একটি বালক অন্তাটিকে না উল্টিয়ে এর উপর দিয়ে B প্রান্তে পৌছতে সক্ষম হলে বালক্টির ওজন কত্য

A 35 কেজি B 45 কেজি © 55 (本國 ) 0 65 (本國 (m) B)

11. √2 মানের দুইটি সমান বল 150° কোণে এক বিন্দুতে ট্রেন্মা করে। এদের শব্ধির মান কোনটি?

 $\textcircled{8} \sqrt{4} + 2\sqrt{3} \textcircled{8} \sqrt{6} \textcircled{0} \sqrt{3} - 1 \textcircled{0} \sqrt{2} + 2\sqrt{3} \textcircled{0}$ 

12. পরম্পর সমভাবে অবন্থিত দৃটি সূতা একটি বস্তকে ধরে রাখলে এবং তাদের একটি খাড়া রেখার সাথে 30° কোণ উৎপন্ন করলে সূতাধয়ের টানের অনুপাত কজা  $\triangle \sqrt{2}:1$  $\mathbb{B}\sqrt{3}:1$  $\bigcirc \sqrt{3}:\sqrt{2}$ 1: 14 (11) (B)

13. 3P ও 4P মানের দুইটি বল একটি কনার উপর ৫ কোণে ক্রিয়া করে। তালের निक्ति √13P घरन α अत्र मान करा

@ 30° @ 120°

JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS

JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS .

# সমতলে বস্তুকণার গাত



### Part (

### প্রয়োজনীয় সূত্রাবাল

ক্রোজনীয় সমীকরণ: ধরি , আদি বেগ = u, শেষ বেগ = v , সময় = t, দূরত্ব = s, এবং তুরণ = a

(i) 
$$v = u \pm at$$

(ii) 
$$s = ut \pm \frac{1}{2}at^2$$

(iii) 
$$v^2 = u^2 \pm 2as$$
.

(iv) 
$$s = \left(\frac{u+v}{2}\right) \times t$$

(v) t-তম সেকেন্ডে অতিক্রান্ত দূরত্  $s_t = u + \frac{1}{2} f(2t - 1)$ 

(vi) সমবেগের ক্ষেত্রে, অতিক্রান্ত দূরত s =

(vii) ত্বরণ = 
$$\frac{c^n u c a v - u l c a v}{v - u}$$
  $\therefore$  অর্থাৎ,  $f = \frac{v - u}{v}$ 

y একটি বস্তু আদিবেগসহ। তম সেকেন্ডে Sta এবং n তম সেকেন্ডে Sna দূরত্ব অতিক্রম করলে, ত্রণ,  $f = \frac{St_{th} - Sn_{th}}{1 - n}$ 

্ব রন্দুকের গুলি x দূরতু প্রবেশ করার পর বেগ অর্থেক হলে, এটি আরও 🕺 দূরত্ श्रातम कद्रात ।

। डेळ द्यान रूट अधिकर्संह अधीरन शब्द वह :

$$i$$
,  $y=u+gt$ 

$$ii.h = ut + \frac{1}{2}gt^2$$

iii. 
$$v^2 = u^2 + 2gh$$

iv. 
$$h_{th} = u + \frac{1}{2}g(2t-1) = v - \frac{E}{2}$$

গাডাভাবে উর্ধে নিশ্বিত্ত বছর গতি:

i. 
$$v = u - gt$$
;

ii. 
$$h = ut - \frac{1}{2} gt^2$$
;

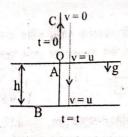
iii. 
$$v^2 = u^2 - 2gh$$

$$v = u$$

iv. t ভম second এ সরণ,  $h_{th} = u - \frac{1}{2}g(2t - 1) = v + \frac{1}{2}g(2t - 1)$ 

সর্বাধিক উচ্চতা,  $H = \frac{u}{2\sigma}$ 

vi. উত্থানকাল বা পতনকাল,  $t = \frac{u}{c}$ 


vii. বিচয়ণকাল,  $T = \frac{2u}{g}$ 

h উচ্চতা হতে উর্ফো নিক্ষিপ্ত বন্ধর গতি:

$$i. \quad h = -ut + \frac{1}{2}gt^2$$

ii. 
$$v = -u + gt$$

iii. 
$$h_{th} = -u + \frac{1}{2}g(2t-1)$$



- বেগের সামান্তরিক সূত্র: α কোণে আনত u ও v মানের দৃটি সমবিন্দু বেগের লব্ধি w হলে,  $w = \sqrt{u^2 + v^2 + 2uv \cos\alpha}$  এবং v বেগের সাথে w এর আনতি  $\theta$  হলে,  $\tan \theta = \frac{v \sin \alpha}{u + v \cos \alpha}$
- $\Box$   $\alpha = 0^{\circ}$  হলে,  $R = R_{max} = u + v$  $\alpha = 180^{\circ}$  হলে,  $R_{min} = u \sim v$  $\alpha = 90^{\circ}$  erg,  $R = \sqrt{u^2 + v^2}$  are  $\tan \theta = \frac{u}{v}$
- কোন বন্ধকে u আদিবেগ অনুভূমিক তলের সহিত α কোণে নিক্ষিপ্ত করা হইল-
  - (i) সর্বোচ্চ উচ্চতা,  $H = \frac{u^2 \sin^2 \alpha}{2\pi}$
  - (ii) অনুভূমিক দূরত্ব, d = u cos α.t
  - (iii) উলম্ দূরত্ব, h = u sin a.t 1/2 gt2
  - (iv) সর্বোচ্চ উচ্চতায় পৌছানোর সময়, t = usinα
  - (v) खभगकान/विष्वप्रकान/जिज्ज्यानकान.

 $T = 2 \times दृष्ट्यम উक्राज्या शोधात्मात नमग्र = <math>\frac{2u\sin\alpha}{\alpha}$ 

- (vi) অনুভূমিক পালা, R = u²sin²α
- (vii) সর্বাধিক অনুভূমিক পালা,  $R_{max} = \frac{u^2}{a}$
- मुद्देशि किस मुद्दं भाग्नात एकद्व भादे

$$i. \frac{R_1}{R_2} = \frac{g_1}{g_2}$$

ii, 
$$\tan \alpha = \frac{4H}{R} = \frac{gT^2}{2R} = \frac{g(2t)^2}{2R} = \frac{2gt^2}{R}$$

ili, R = u cos a.T

iv.  $R_{max} = R \sin 2\alpha$ , यथन  $\alpha = 45^\circ$ 

v. একই অনুভূমি পাল্লা ও একই আদিবেগের জন্য দুইটি প্রক্ষেপকের একটি নিক্ষেপণ কোণ  $\alpha$  হলে, অপরটি  $\left(\frac{\pi}{2} - \alpha\right)$ হবে।

- - (i) উলম্ দ্রত্ব, h = -u sin α.t + \frac{1}{2} gt 2
  - (ii) পতন বেগ v হলে,  $v\cos\theta = u\cos\alpha$ ,  $v\sin\theta = -u\sin\alpha + g$
  - (iii) অনুভূমিক দূরত্ব, d = ucosa.t
- প্রক্ষেপকের সাধারণ সমীকরণ:

$$y = x \tan \alpha \frac{gx^2}{2u^2 \cos^2 \alpha} = x \tan \alpha \left(1 - \frac{x}{R}\right)$$

অর্থাৎ  $\tan \alpha = \frac{y}{x} \left( \frac{R}{R} \right)$ 

### Part 2

### গাণিতিক সমস্যা ও সমাধান

01. স্থি অব্যাহতে 5 ms হলণে লেখান কণাটি : সেকেতে কত দূরত্ব অভিনেম করবো

**Solve** 
$$5 = ut + \frac{1}{2}at^2 = \frac{1}{2} \times 5 \times 9 = 22.5 \text{ m}$$

02. 60 ft/sec গতিবেশে চল্ল একটি গাড়িকে 5 ft/sec<sup>2</sup> মন্দন সৃষ্টি করে স্টেশনে আমানো হল। ত্রেক প্রয়োগের ছান হতে টেশনের দূরত্ব-

**Solve** 
$$v^2 = u^2 - 2as [\because v = 0] \therefore s = \frac{u^2}{2a} = 360 \text{ ft}$$

এই. একটি বছ ছির অবছা থেকে চলতে আরু করে 625m দ্রত্ অতিক্রম করে বছটির ত্রুব 12.5ms<sup>-2</sup> এ পৌছালে, বছটির বেগ কতা

Solve 
$$v^2 = u^2 + 2as$$
  
 $v^2 = 2as = 2 \times 12.5 \times 625 \Rightarrow v = 125ms^{-1}$ 

04. একটি বিমান প্রতি ঘন্টায় 300km বেগে মাটি স্পর্শ করে 114m দ্রত্ অতিক্রম করে থেমে যায়। মন্দনের ক্রিয়াকান কতা

Solve 
$$a = \frac{v^2 - u^2}{2s} = -30.45 \text{ms}^{-2}$$

$$\therefore t = \frac{v - u}{a} = \frac{0 - \frac{300 \times 1000}{3600}}{-30.45} = 2.73s$$

05. একটি বুশেট একটি ভন্ধা ভেদ করতে তার বেগের  $\frac{1}{20}$  অংশ হারায়। থেমে যাওয়ার পূর্বে কতকগুলো ভন্ধা ভেদ করতে পারবে?

প্রদত্ত সমস্যায়, বুলেটের আদি বেগ 1 অংশ, শেষ বেগ = 
$$1 - \frac{1}{20} = \frac{19}{20}$$

∴ ভেদকৃত তক্তা = 
$$\frac{(20)^2}{(20)^2 - (19)^2} = 10$$
িট

06. একটি গাড়ী সমত্রণে 30 km/hour আদিবেগ 100km পথ অতিক্রম করে 50 km/hour চূড়ান্ত বেগ প্রাপ্ত হয়। গাড়ীটির তুরণ-

Solve আমরা জানি, 
$$v^2 = u^2 + 2as$$

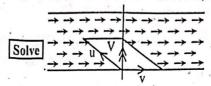
$$\Rightarrow a = \frac{v^2 - u^2}{2s} \Rightarrow a = \frac{50^2 - 30^2}{2 \times 100} \therefore a = 8 \text{ km/h}^2$$

07. একটি বিন্দু সমত্রনে সরদরেখা বরাবর চলে 12 তম সেকেন্ডে 72 cm এবং 20 তম সেকেন্ডে 120 cm দূরত্ব অতিক্রম করে। বিন্দুটির তুরণ কত?

Solve ত্বল 
$$a = \frac{S_m - S_n}{t_m - t_n} = \frac{120 - 72}{20 - 12} = 6 \text{ cm/s}^2$$

08. একটি বুলেট একটি নির্দিষ্ট পুরুত্বের তন্তা ভেদ করতে পারে। যদি 49টি তন্তা ভেদ করতে পারে তবে তার বেগ কত ত্ব করতে হবে?

09. একটি রাইফেলের তলি 15m দেয়াল ভেদ করার পর তার বেগ অর্থেক হল। কতদূর অতিক্রম করার পর তার বেগ শূন্য হবে?


Solve সরণ = S' = 
$$\frac{S(n-1)^2}{2n-1} = \frac{15(2-1)^2}{2.2-1} = 5m$$

অথবা , সরণ = S' = 
$$\frac{S}{3} = \frac{15}{3} = 5m$$

10. রহিম ঢাকা থেকে সাভারে 20km/hr বেগে গেল এবং 40 km/hr প্রদায় ঢাকায় পৌছাল। তার গড় বেগ কত?

Solve গড় বেগ = 
$$\frac{\text{বেগের সংখ্যা}}{\frac{1}{2\pi} \text{ বেগ} + \frac{1}{2\pi} \text{ বেগ}} = \frac{2}{\frac{1}{20} + \frac{1}{40}} = \frac{80}{3} \text{ km/hr}$$

শ্রোতহীন অবছায় 100m প্রশন্ত একটি নদী একজন সাঁতার 4 বিশ্ব
সোজাসুজি নদী পার হতে পারে। কিন্ত স্রোত থাকলে ঐ একই পরে।
নদীটি 5 মিনিটে অতিক্রম করতে পারেন। স্রোতের গতিবেশ নির্পয় কর।



মনে করি, ব্যক্তির বেগ 
$$u = \frac{100}{4} = 25 \text{ m/min}$$

শ্রোতের বেগ = v; লব্ধি বেগ 
$$V = \frac{100}{5} = 20 \text{ m/min}$$

∴ স্রোতের বেগ 
$$v = \sqrt{u^2 - V^2} = \sqrt{25^2 - 20^2}$$
  
=  $\sqrt{625 - 400} = \sqrt{225} = 15$ m/min

12. একটি বাস ছির অবস্থা থেকে 16ms<sup>-2</sup> ত্বরণে চললে 4 তম সেক্সেক্ত দ্রত্ব অতিক্রম করবে?

Solve 
$$S_4 = 0 + \frac{1}{2} \times 16 (2 \times 4 - 1) = 8 \times 7 = 56 \text{ m}$$

13. 15ms<sup>-1</sup> বেগে খাড়া উপরের দিকে চলস্ত একটি রকেট থেকে একন্য ফেলে দেওয়া হল। বস্তুটি যদি 20s পর ভূমিতে পতিত হয় তাহলে ব ফেলার সময় রকেটটি কত উচ্চতায় ছিল?

Solve উচ্চতা, 
$$h = -ut + \frac{1}{2} gt^2$$

$$= -15 \times 20 + \frac{1}{2} \times 9.8 \times 20^2 = 1660 \text{m}$$

14. খাড়া উপরের দিকে নিক্ষিপ্ত একটি পাথরখন্ত 3 ও 8 সেকেণ্ড পরে এ ভবনের সমান উচ্চতায় পৌছে। ভবনের উচ্চতা কত?

Solve 
$$h = \frac{1}{2} gt_1t_2 = \frac{1}{2} 9.8 \times 3 \times 8 = 117.6 \text{ m}$$

15. 9.8 m/s গতিবেগে <mark>একটি পা</mark>থর খাড়া উপরের দিকে নিক্ষেপ করা হল কত সময় পর ভূপৃষ্ঠে পতিত হবে?

Solve approximately 
$$\frac{2u}{g} = \frac{2 \times 9.8}{9.8} = 2.8$$

16. একটি বলকে খাড়া 40m <mark>উর্</mark>ধে নিক্ষেপ করা হল। শূন্যে বলটির বিচরনকার

. Solve বিচরণকাল, 
$$T = \frac{2u}{g}$$
 আবার,  $v^2 = u^2 - 2gh$   $\Rightarrow u^2 = 2gh$  [ $\because v = 0$ ]

 $\Rightarrow$  u =  $\sqrt{2gh}$  =  $\sqrt{2 \times 40 \times 9.8}$  = 28 ms<sup>-1</sup>

$$T = \frac{2 \times 28}{0.8} = 5.71 \text{ s}$$

17. একটি পাথরকে 50m গভীর একটি কুয়ার মধ্যে ফেলা হল। পানিতে গ্র্পার শব্দ কতক্ষণ পর শোনা যাবে?

Solve 
$$t = \sqrt{\frac{2h}{g}} + \frac{h}{v} = \sqrt{\frac{2 \times 50}{9.8}} + \frac{50}{327} = 3.34 \text{ s}$$

ু পানিতে শব্দের বেগ , v = 327 ms<sup>-1</sup>

REATIONS - JOYKOLY PUBLICATIONS ্র কুলে একটি পাথরের টুকরা ফেলা হলো। 3.5 s পরে কুপের তলদেশে নি পতনের শব্দ শোনা গেলো। শব্দের বেগ 327 ms । এবং g = 9.81 ms <sup>2</sup>

জিমাং গভীরতা, 
$$h = \frac{gt^2}{2\left(1 + \frac{gt}{v}\right)} = \frac{9.8 \times (3.5)^2}{2\left(1 + \frac{9.8 \times 3.5}{327}\right)} = 54.3 \text{ m}$$

ক্রি প্রক্লেপক 21 মি/সে. বেগে এবং অনুভূমিকের সাথে 30° কোণে শূন্যে 🚁 रूता रून। এর পাল্লা, সর্বাধিক উচ্চতা এবং শূন্যে বিচরণকাল নির্ণয় কর।

Solve 
$$R = \frac{21^2 \times \sin 60^\circ}{9.8} = 38.97 \text{ m}$$

র্কাক্ষ অনুভূমিক পাল্লা = 
$$\frac{21^2}{9.8}$$
 = 45 [যখন  $\alpha$  = 45°]

$$H = \frac{21^2 \sin^2 30^\circ}{2 \times 9.8} = 5.625 \text{ m}$$

$$T = \frac{2 \times 21 \sin 30^{\circ}}{9.8} = 2.14 \sec$$

30m উচু একটি টাওয়ার হতে একটি বস্তু 45ms<sup>-1</sup> বেগে অনুভূমিকের সাথে ্রা<sup>০</sup> কোণে নিক্ষিপ্ত করা হল। বস্তুটি টাওয়ারের পাদদেশ হতে কত দূরে হ্মিতে পড়বে?

Solve মনে করি, পতনকাল = t pos de y ১০০ বিশ

$$h = -u \sin \alpha \times t + \frac{1}{2}gt^2 \Rightarrow 30 = -45 \times \sin 30^\circ \times t + \frac{1}{2}9.8 t^2$$

⇒ 
$$30 = -45 \times \frac{1}{2} \times t + 4.9 t^2$$
 ⇒  $9.8 t^2 - 45t - 60 = 0$  ⇒  $t = 5.65$ 

:  $d = u \cos \alpha \times t = 45 \times \cos 30^{\circ} \times 5.65 = 220.97 \text{ m}$ 

্ব কটি পাহাড়ের চূড়া থেকে  $60\,\mathrm{ms}^{-1}$  বেগে অনুভূমিক দিকে নিক্ষিপ্ত একখণ্ড কুর পাহাড়ের পাদদেশ হতে 45m দূরত্বে মাটিতে পড়ে। পাহাড়ের উচ্চতা কত্য Solve পাহাড়ের উচ্চতা, h

জনুভূমিক দ্রত্ব, d = ut 
$$\Rightarrow$$
 45 = 60t  $\Rightarrow$  t =  $\frac{45}{60}$  = 0.75 s

পাহাড়ের উচ্চতা , 
$$h = \frac{1}{2} gt^2 = \frac{1}{2} \times 9.8 \times (0.75)^2 = 2.75625 m$$

্র একটি বাঘ এর সম্মুখে 15m দূরত্বে একটি হরিণ দেখতে পেয়ে তাকে ধরার ছন্য 2ms<sup>-2</sup> সমত্বরণে দৌঁড়াতে ওক করল। হরিণ্টি 14ms<sup>-1</sup> সমবেগে সর্বাপর্যে চলতে থাকলে কোথায় এবং কখন বাঘটি হরিণটিকে ধরতে পারবে?

Solve 
$$15m \rightarrow 4 \times 3$$
  
Tiger Deer Catching  $2m^{-2}$   $14ms^{-1}$  t time

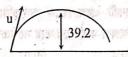
$$1+15=0+\frac{1}{2}2t^2$$
.....(ii)

(ii) – (i) 
$$\Rightarrow$$
  $t^2 - 14t - 15 = 0 \Rightarrow t = 15, t = -1, t \neq -1$ 

 $x = 14 \times 15 = 210$ m

x + 15 = 210 + 15 = 225m

: 15s পর এবং 225 m দূরে।


🖔 একটি পাধরকে খাড়া উপরের দিকে নিক্ষেপ করা হলে তা সর্বোচ্চ 39.2 মিটার উঠে ভূমিতে ফেরত আসে। পাথরটি কত বেগে নিক্ষেপ করা হয়েছিল।

Solve আমরা জানি, 
$$H = \frac{u^2}{2g}$$

$$\Rightarrow u = \sqrt{2gH}$$

$$\Rightarrow u = \sqrt{2 \times 9.8 \times 39.2}$$

া : u = 27.27 মিটার (Ans)



### For Practice

01. একটি কণার উপর ক্রিয়াশীল দুইটি বলের লব্ধি একটি বলের উপর লম্ব এবং এর মান অপরটির অর্থেকের সমান। তাদের মধ্যবর্তী কোণ কত?

02. একটি বাস 40 km/h বেণে পূর্বদিকে এবং আরেকটি বাস 30 km/h বেণে উত্তর দিকে চলছে। প্রথম বাসের যাত্রী বিতীয় বাসটি কত বেলে চলছে মনে করবে? Ans:50km/h

03. প্রোত না থাকলে একটি ছেলে 5 মিনিটে সাঁতার কেটে সোভাস্তিভাবে 80 মিটার প্রশন্থ একটি খাল পার হতে পারে এবং স্রোত পাকলে তার বিভগ সময় লাগে। শ্রোতের বেগা Ans: 13.86 m/min

04. একটি ক্রিকেট বলকে 40 m/sec বেগে এবং ভূমির সাথে 60° কোলে ব্যাট দারা আঘাত করা হলো। সর্বোচ্চ উচ্চতায় বলটির বেগ কত্য Ans:20 m/sec

05. একটি ট্রেন ছিরাবছা হতে 4ft/sec² তুরণে চলা তরু করার পর ঘটায় 30 মাইল বেগে যেতে তার কত second শাগবে?

06. একটি বুলেট কোন দেয়ালের ভিতর 2 ইঞ্চি ঢুকবার পর উত্থর অর্ধেক বেশ হারায়। বুলেটটির দেয়ালের ভিতর আরো কত ইঞ্চি ঢুকবে? Ans:2/3

07. একটি গাড়ী সমত্ব্রণে 30 km/hour আদিবেগে 100km পথ অতিক্রম করে 50 km/hour চূড়ান্ত বেগ প্রাপ্ত হয়। গাড়ীটির ত্বরণ-Ans:8 km/h<sup>2</sup>

08. একটি বস্তু উপর থেকে মুক্তভাবে 4 সেকেন্ডে পড়ল। বস্তুটি শেষের 2 সেকেন্ডে কত ফুট পড়েছিল?

09. এক ব্যক্তি কোন ছানে যাওয়ার সময় ঘণ্টায় 4 মাইল বেগে যায় এবং আসার সময় মুন্টায় 3 মাইল বেগে ফেরত আঁসে। তার গতিবেগ হবে?  $Ans: \frac{24}{7}$  মাইল/ঘন্টা

10. একটি বাস ছির অবছা থেকে  $6 {
m m s}^{-2}$  সুষম তুরণে সরল পথে যাত্রা করার সাথে সাথে এর 40 m পিছন হতে 23 ms<sup>-1</sup> সমবেগে একজন সাইকেল চালক বাসটির দিকে চলতে ওরু করল। কখন এরা মিলিত হবে?

11. 10 m/sec বেগে উর্ধ্বগামী কোন বেশুন হতে একটি পাধরের টুকরো ফেলে দেয়ার 10 sec পর মাটিতে পড়ে। পাধরটি ফেলে দেয়ার সময় বেশুনের উচ্চতা

12. একটি পাথর 64ft/sec বেগে ভূমি হতে খাড়া উপরের দিকে ছোড়া হলে, উহা কতক্ষণ ভূমির উপরে থাকবে? Ans:4 সেকেড

13. বিল্ডিং এর ছাদের উপর থেকে একটি পাথর ফেলা হল এবং 3.5 সেকেন্ড পর পাথরটি ভূমিতে পড়ার শব্দ শোনা গেল। বিল্ডিংটির উচ্চতা কত? (g = 9.8 মি./সে<sup>২</sup>, শব্দের বেগ 327 মি./সে)।

14. একটি <mark>কপিকলের</mark> উপর <mark>দিয়ে একটি রশির দুইপ্রান্তে সংযুক্ত দুইটি বস্তুর মধ্যে m</mark> ভরের <mark>বৃহত্তরটি f ত্বরণে</mark> নিচে নামে। একই ত্বরণে ঐ বস্তুকে উর্ধ্বগামী করতে হলে দে<mark>খাও যে তার ভর  $rac{4 ext{ fmg.}}{\left( ext{f}+ ext{g}
ight)^2}$  পরিমাণে কমাতে কমাতে হবে।</mark>

15. যদি u বেগে অনুভূমিকের সাথে  $\alpha$  কোণে প্রক্ষিপ্ত বস্তু 'T' সময়ে তার গতিপথের সর্বোচ্চ উচ্চতা f H এ পৌছায়, তবে  $rac{H}{T^2}$  হবে?

16. একটি মিনারের চূড়া থেকে একখণ্ড পাথর অনুভূমিকের সাথে 30° কোণে ় নিক্ষিপ্ত হল। যদি মিনারের উচ্চতা 80m এবং পাথরের বেগ 128 ms<sup>-1</sup> হয় তবে পাথর খণ্ডটি পাদদেশ হতে কত দূরে ভূমিতে পড়বে? Ans. 1575.2 m

17. একটি টাওয়ারের শীর্ষবিন্দু থেকে ভূমির সমান্তরাশে 50ms<sup>-1</sup> বেগে নিক্ষিপ্ত একটি বন্ধ এর পাদদেশ হতে 335m দূরে ভূমিতে পতিত হয়। টাওয়ারের

18. একজন যাত্রী তার 120 মিটার সামনে ছির অবছান হতে সুষম তুরণে একটি বাসকে ছাড়তে দেখে একে ধরার জন্য সমবেগে দৌড় শুরু করল। যদি সে এক মিনিটে কোন রকমে বাসটি ধরতে সক্ষম হয়, তবে লোকটির বেগ ও বাসের Ans: 4 মিটার/ সেকেন্ড ,  $f = \frac{1}{15}$  মি./সে. ।

FIDELY PUBLICATIONS . JOYKOLY PUBLICATIONS .

1 tan 1 2

 $\textcircled{B} \cos^{-1}\left(\frac{4}{5}\right) \qquad \textcircled{O} \sin^{-1}\left(\frac{5}{3}\right)$ 

Solve  $\tan \alpha = \frac{4H}{R} \Rightarrow \tan \alpha = -\frac{4H}{R}$ 

 $\Rightarrow \tan \alpha = \frac{75}{100} = \frac{3}{4}$ .

 $\Rightarrow \alpha = \tan^{-1}\frac{3}{4} = \sin^{-1}\frac{3}{5} = \cos^{-1}\frac{4}{5}$ 



02. 64 মিটার উঁচু দালানের ছাদ থেকে একটি পাথর ছেড়ে দিলে ভূমিতে পড়তে কৃত সময় লাগবে? [KU-A: 19-20]

**A** 3.5 sec

B 3.6 sec © 3.7 sec D 3.8 sec

Solve  $h = \frac{1}{2} gt^2 \Rightarrow t = \sqrt{\frac{2 \times 64}{9.8}} = 3.6 \text{ sec.}$ 

03. একটি বুলেট কোন দেওয়ালের মধ্যে 2 ইঞ্চি ঢুকার পর উহার অর্ধেক বেগ হারায়। বুলেটটি দেওয়ালের মধ্যে আরও কর্তটুকু ঢুকবে? [CoU-A:18-19]

(2)"

 $m{B}$  Solve দেওয়ালের মধ্যে ঢুকবে  $= \frac{\sin(n-1)^2}{2} = \frac{2(2-1)^2}{2} = 2$  ইঞ্জি

 $1 : S = 2'' = \left(\frac{2}{3}\right)''$ , write  $1 - \frac{1}{2} = \frac{1}{2}$ 

04. কোন বস্তুকণা  $\mathbf O$  বিন্দু হতে  $\mathbf u$  আদিবেগে অনুভূমিকের সাথে heta কোণে প্রক্ষিপ্ত হলে এবং অভিকর্ষজ তুরণ g হলে এর মোট বিচরণকাল- [IU-D: 19-20]

**Solve** বিচরণকাল =  $\frac{2 \text{ usin } \theta}{2 \text{ usin } \theta}$ 

05. বায়ুশুন্য অবছায় উন্নদ তলে প্রক্রিণ্ড বস্তুকণার গতিপথ একটি- [IU-D: 19.3

(A) 30

**(B)** অধিবত্ত

© পরাবৃত্ত

D সরলরেখা

তি Solve বন্ধ কণার প্রক্ষেপকের গতি পথ একটি পরাবৃত্ত। 06. একটি গাড়ি 5 m/s বেগে সুযম ত্রেগে সোজা পথে চলে 100 m প্রেপ্ ক

 $\triangle 1.5 \text{ m/s}^2$ 

 $\oplus$  2 m/s<sup>2</sup>

 $\bigcirc 3 \text{ m/s}^2$ 

Solve  $v^2 = u^2 + 2f_S \Rightarrow f = \frac{v^2 - u^2}{2s} = \frac{25^2 - 5^2}{2 \times 100} = 3 \text{ m/s}^2$ 

করার পর বেগ 25 m/s হলে, গাড়িটির তুরণ হবে – IMBSTU-C: 19-201

07. ভূমি হতে u আদি বেগে একটি বস্তু উপম্ভাবে উপরের দিকে নিক্পে ন বস্তুটি সর্বাধিক কত উপরে উঠবে? [NSTU-B: 19-20]

 $\bigcirc u$ 

Solve সর্বোচ্চতা H =

08. 100 মিটার উঁচু পাহাড় থেকে একটি পাথর ছেড়ে দিলে ভূমিতে পড়ে সময় লাগবে? [NSTU-A: 19-20]

A 3.19

B 3.91

C 4.25

D 4.52

09. শ্রাতের কো u এক নৌকার কো v। নৌকাটি শ্রোতের বিপরীত দিকে চ শ্রোতের সাপেক্ষে নৌকাটির আপেক্ষিক বেগ কত? [NSTU-A: 19-20]

05. একটি কণার একাদশ ও পঞ্চদশ সেকেন্ডে অতিক্রান্ত দূরত্ব যথাক্রমে

সে.মি. ও 960 সে.মি. হলে তুরণ কত সে.মি./সে.<sup>2</sup>?

06. অসম ত্রণের ক্ষেত্রে বেগ বনাম সময় লেখ এর প্রকৃতি কির্মপ?

© 14.7

**B** 30

**B** পরাবৃত্ত

Au+v Solve

নৌকার আপেক্ষিক বেগ

### অধ্যায়ভিত্তিক গুরুত্বপূর্ণ MCO প্রশোত্তর

01. 32m উচু একটি টাওয়ার হতে একটি বল ফেলা হল। একই সময় অপর একটি বল ভূমি হতে খাড়া উপরের দিকে 8ms<sup>-1</sup> বেগে নিক্ষেপ করা হল। বল দুইটি কতক্ষণ পর মিলিত হবে?

8 4s A 4s B 6s

D 16s

(Ans(A)

02. একজন সাইকেল আরোহী সমতলে রান্তার উপর দিয়ে কত বেগে চললে 6 মি./সে. বেগে খাড়াভাবে পড়ন্ত বৃষ্টি তার গায়ে উলম্বের সাথে 30° কোণে পড়বে?

A 2√3 মি./সে.
 B 6√3 মি./সে.

© 3.5 মি./সে:

® 8√3 মি./সে.

03. 1.5 মি/সে মন্দনে সরল পথে চলম্ভ একটি গাড়ি 150 মিটার দূরত্ত্ব থেমে গেলে আদিবেগ কত মি/সে?

 $\triangle 10\sqrt{2}$ 

(B)  $15\sqrt{2}$ 

©  $20\sqrt{2}$  ©  $25\sqrt{2}$ 

(Ans(B)

হলে 3 সেকেন্ড পর এর উচ্চতা কত ফুট হবে? A 180 **B** 240

(A) বক্ররেখা

উচ্চতায় উঠবে?

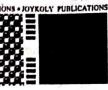
A 4.9

© 216

08. একটি বস্তুকে 240 ফুট/সে. বেগে নিক্ষেপ করলে এবং নিক্ষেপ্তা কোণ!

B 9.8

© উপবৃত্ত


07. কত মি./সে. বেগে বস্তুকে নিক্ষেপ করলে অভিকর্মজ তুরণের মানের বি

09. একটি প্রক্ষেপককে আনুভূমিকের সাথে  $30^\circ$  কোণে  $\sqrt{8g}$  মি./সে. নিক্ষেপ করা হলে তার সর্বোচ্চ উচ্চতা হবে কত মিটার?

04. গড়বেগ =  $\frac{u+v}{2}$  এর পরিবর্তিত রূপ কোনটি?

 $\mathbb{B} v + f$   $\mathbb{C} f + \frac{1}{2}u$ 





| ভাৰখান নি<br>ভাৰখান<br>ভাৰখান | অশ্রেণিকৃত উপান্তের ক্ষেত্রে                                          | শ্রেণিকৃত উপান্তের ক্ষেত্রে                                                     |
|-------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                               | $MD_{\overline{x}} = \frac{1}{n} \sum_{i=1}^{n}  X_i - \overline{x} $ | $MD_{\overline{x}} = \frac{1}{N} \sum_{i=1}^{n} f_{i}   x_{i} - \overline{x}  $ |
| ত নিশীত                       | $MD_{me} = \frac{1}{n} \sum_{i=1}^{n}  x_i - M_e $                    | $MD_{mc} = \frac{1}{N} \sum_{i=1}^{n} f_i  x_i - M_e .$                         |

| শ্বিত ব্যবধান নিণয়:<br>অশ্রেণিকৃত উপাত্তের                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | েক্ষত্রে পরিমিত ব্যবধান                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| পরিমিত ব্যবধান $\sigma = \sqrt{\frac{1}{n}\sum_{i=1}^{n}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |
| $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} $                                                                                                                                              | $\left( \sqrt{\frac{1}{2}} \right)^2$ (গণনা সূত্ৰ)         |
| শ্রেণিকৃত উপারে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | রর ক্ষেত্রে পরিমিত ব্যবধান                                 |
| পরিমিত ব্যবধান $\sigma = \sqrt{\frac{1}{N}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sum_{i=1}^n f_i(x_i - \overline{x})^2$ (তান্ত্ৰিক সূত্ৰ) |
| $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{n} f_i x_i^2} - \left(\frac{1}{N} \sum_{i=1}^{n} f_i x_i^2 -$ | $\sum_{i=1}^{n} f_i X_i$ গণনা সূত্ৰ)                       |

চূর্থক ব্যবধান নির্ণয়:

চহুৰ্থক ব্যবধান 
$$QD = \left(\frac{Q_3 - Q_1}{2}\right)$$
 মশ্রেনিকৃত কোনো নিবেশনের i-তম চতুর্থক ,  $Q_i = \left(\frac{N \times i}{4}\right)$  তম পদ  $+\left(\frac{N \times i}{4} + 1\right)$  তম পদ  $\frac{Q_3 - Q_1}{4}$  যখন  $\frac{Q_3 - Q_1}{4}$ 

(N+1) × i তম পদ 4 ; যখন N বিজোড়

ি 4 প্রদিকৃত কোনো নিবেশনের i-তম চতুর্থক,

$$Q_{i} = L_{i} + \frac{\frac{N \times i}{4} - f_{c}}{f_{a}} \times c$$

রেবানে, Li = i-তম চতুর্থক শ্রেণির নিমুসীমা।

🗜=i-তম চতুর্থক শ্রেণির পূর্ব শ্রেণির ক্রমযোজিত গণসংখ্যা।

f = i-তম চতুর্থক শ্রেণির গণসংখ্যা। C = চতুর্থক শ্রেণির শ্রেণি ব্যবধান।

শ্রাণিকৃত উপান্তের ক্ষেত্রে বৃহত্তম মান  $x_n$  এবং ক্ষুদ্রতম মান  $x_1$  হলে পরিনরাঙ্ক,  $CR = \left(\frac{x_2 - x_1}{x_n + x_1}\right) \times 100$ 

শার, শ্রেণিকৃত উপাত্তের ক্ষেত্রে সর্বপ্রথম শ্রেণির নিমুসীমা L<sub>1</sub> এবং সর্বশেষ র্ণের উচ্চসীমা  $L_n$  হলে পরিস্রাঙ্ক ,  $CR = \frac{L_n - L_1}{L_n + L_1} \times 100$ 

- গড় ব্যবধানাম্ব নির্ণয়: কোন উপাত্তের কেন্দ্রীয় মানের গড়, মধ্যমা ও প্রচুরক থেকে নিনীত গড় ব্যবধান যথাক্রমে MD(x), MD (me) ও  $MD(m_o)$  হলে, গড় হতে নিনীত গড় ব্যবধানাঙ্ক,  $CMD(x) = \frac{MD(x)}{x} \times 100$ মধ্যমা হতে নিনীত গড় ব্যবধানাক্ক, CMD (me) =  $\frac{\text{MD (me)}}{\text{Me}} \times 100$ প্রচরক হতে নির্নীত গড় ব্যবধানান্ধ , CMD  $(m_o) = \frac{\mathrm{MD} \; (m_o)}{M_o} \times 100$ 
  - বিভেদাঙ্ক =  $\left(\frac{\sigma}{\overline{x}} \times 100\right)$   $\overline{x} =$ গাণিতিক গড়  $\sigma =$ পরিমিত ব্যবধান

বিভেদাঙ্ক বা ব্যবধানাঙ্ক নির্ণয়:

 চতুর্থক ব্যবধানান্ধ নির্ণয়ঃ  $CQD = \left(\frac{Q_3 - Q_1}{Q_1 + Q_2} \times 100\right)$   $Q_1 = প্রথম চতুর্থক।$ 

| 7 .                                      | $Q_3 = \overline{Q}$ তার চতুর্থক।                                                                                       |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                          | অশ্রেণিকৃত উপাত্তের ক্ষেত্রে ভেদাঙ্ক নির্ণয়:                                                                           |
|                                          | ভেদান্ধ, $\sigma^2=\frac{1}{n}\sum_{i=1}^n \left(x_i-\overline{x}\right)^2$ (ভাত্ত্বিক সূত্ৰ) $\sigma^2=\frac{1}{n}$    |
| 窓び端、岩                                    | ভেদাঙ্ক, $\sigma^2=rac{1}{n}{\sum_{i=1}^n}{x_i}^2-\left(rac{1}{n}{\sum_{i=1}^n}{x_i}\right)^2$ (গণনা সূত্ৰ)           |
| 1                                        | শ্রেণি <mark>কৃত</mark> উপান্তের ক্ষেত্রে ভেদাঙ্ক                                                                       |
|                                          | ভেদাঙ্ক, $\sigma^2=\frac{1}{N}\sum_{i=1}^n f_i(x_i-\overline{x})^2$ (ভান্তিক সূত্র)                                     |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | ভেদান্ধ, $\sigma^2 = \frac{1}{N} \sum_{i=1}^n f_i x_i^2 - \left(\frac{1}{N} \sum_{i=1}^n f_i x_i\right)^2$ (গণনা সূত্ৰ) |

সম্ভাবনার আরোহী সংজ্ঞাঃ

প্যাসকেল গণিতবিদ।

কোন এক<mark>টি চেষ্টা অনেকবার পুনরা</mark>বৃত্তি করা হলে এর নমুনাক্ষেত্র মোট ফলাফলের সংখ্যা  $\mathbf{n}(\mathbf{S})$  খুব বেশি বা অসীম এবং ঐ নমুনাক্ষেত্রের কোন ঘটনা A এর অ<mark>নুক্</mark>লে <mark>ফলাফলের সংখ্যা</mark>  $\operatorname{n}(A)$  হলে  $\dfrac{\operatorname{n}(A)}{\operatorname{n}(S)}$  একটি ছির রাশি হবে। এ ছির রাশিটির সীমান্ত মানকে এ ঘটনার আরোহী সম্ভাবনা বলে। এক্ষেত্রে ঘটনা A এর সম্ভাবনা হবে,  $P(A) = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$ 

- <u>ু সপ্তদশ শতকে সম্ভাবনা তত্ত্বের উন্নতিশীল করে এর গাণিতিক ভিডি</u> দেন
- যে সকল ক্ষেত্রে ঘটনা ঘটতে পারে তাকে ঘটনজগত (Event space) বলে এবং পরীক্ষণে প্রাপ্ত সকল সম্ভাব্য স্বতন্ত্র ফলাফলের সেটকে নমুনা ক্ষেত্র (Sample space) বলে। নমুনা ক্ষেত্রের উপসেটকে ঘটনা বলা হয়।
- $\square$  সম্ভাব্যতার মান 0 থেকে 1 এর মধ্যে সীমাবদ্ধ। অর্থাৎ  $0 \le P(A) \le 1$ । কোন নিশ্চিত ঘটনার সম্ভাব্যতা ১ (যেমন- মানুষ মরণশীল) এবং একেবারেই অনিশ্চিত বা কখনোই ঘটবে না এরকম ঘটনার সম্ভাব্যতা 0 (যেমন- মানুষ অমর)।
- বর্জনশীল ঘটনার ক্ষেত্রে সম্ভাব্যতার যোগসূত্র:  $P(A \cup B) = P(A) + P(B)$
- সম্ভাব্যতার গুণন সূত্র: P(A∩B) = P(A) × P(B)

B while while again A abuse and animals  $\Gamma(A/B) = \frac{P(B)}{P(B)}$ 

- ति । किना चीना ज्ञानांका p अवर मा चीन ज्ञानाका q सत्त . p + q ≈ 1 स्टर ।
- D Card Helife
- D1. Total number of cards = 52
- आरमद हाह त्यंगी जारह
   संस्कृत → 13 → Heart ii. क्रिकृत → 13 → Diamond
   संस्कृत → 13 → spade iv. हिजाबन → 13 → club
- 04. 13ि कार्ड धर नमक्यः

टिका वा Tecca → 1

ब्राङ्गा दा King → 1

द्राणी वा Queen → 1

গোলাম বা Jack → I

নম্বযুক্ত কার্ড

- ু একটি মুলা n বার বা n টি মুলা 1 বার নিক্ষেপ কররে মোট নমুনা ক্ষেত্রের সংখ্যা = 2<sup>n</sup>
- একটি মুদ্রা п বার নিক্ষেপ করলে Р বার টেইল পাওয়ার অনুকৃল ঘটনা = "Ср
- ্রত একটি ছব্বা m বার বা m টি ছব্বা 1 বার নিক্ষেপ করনে মোট ন্যুনা ক্রের সংখ্যা =  $6^m$

#### भू अखादा जा

া বামেসের সূত্র: একটি ঘটনা X ঘটতে পারে যদি n সংখ্যক সকল (Mutually exclusive) ও সম্পূর্ণ (Exhaustive) ঘটনা A<sub>1</sub>, A<sub>2</sub> এর মধ্যে একটি ঘটে। ধরা যাক, P(A<sub>1</sub>), P(A<sub>2</sub>), ...., P(A<sub>4</sub>)

সমূহ এবং 
$$P\left(\frac{X}{\Lambda_1}\right)$$
,  $P\left(\frac{X}{\Lambda_2}\right)$ ,...,  $P\left(\frac{X}{\Lambda_n}\right)$  শঠাধীন সম্ভাবনাসমূহ

জানা আছে। তাহলে X ঘটনা ঘটেছে এই শর্ডে কোন 🗛 ফটনার 🦮

সম্ভাব্যতা বা  $P\left(\frac{A_i}{X}\right)$  এর মান নিমুরূপঃ

$$P\left(\frac{A_i}{X}\right) = \frac{P(A_i)P\left(\frac{X}{A_i}\right)}{P(A_1)P\left(\frac{X}{A_1}\right) + P(A_2)P\left(\frac{X}{A_2}\right) + ... + P(A_n)P\left(\frac{X}{A_n}\right)}$$

[যেখানে i = 1, 2 ..... n]

া মৌলিক সংখ্যা: (1 থেকে 100 এর মধ্যে) 25টি

| মৌলিক<br>সংখ্যা | 0-10 | 11-20 | 21-30 | 31-<br>40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90 | 91 |
|-----------------|------|-------|-------|-----------|-------|-------|-------|-------|-------|----|
|                 | 4    | . 4   | 2     | 2         | 3     | . 2   | 2     | 3     | 2     |    |

### Part 2

#### গাণিতিক সমস্যা ও সমাধান

নিমের উপাত্ত হতে মধ্যমা ও প্রচুরক হতে গড় ব্যবধান ও গড় ব্যবধানাত্ব নির্ণিয় কর।

| 1 1444 - 110 | 40 101 | 12-41 | 40.14 0 | 111101 | Y Dinni |
|--------------|--------|-------|---------|--------|---------|
| x            | 2      | 4     | 6       | 8      | 10      |
| f            | 1      | 4     | 6       | 4      | 1       |

Solve মধ্যমা ও প্রচুরক নির্ণয় সারণিঃ

| x  | f | ক্রমযোজিত গণসংখ্যা |  |
|----|---|--------------------|--|
| 2  | 1 | 1                  |  |
| 4  | 4 | 5                  |  |
| 6  | 6 | -11                |  |
| 8  | 4 | 15                 |  |
| 10 | 1 | 16                 |  |

এখানে, n=16 অর্থাৎ, মধ্যমা  $=\frac{16}{2}$ -তম পদের বিগরীত মান =6 এবং প্রচ্*র*ক =6.

বিহেতু 6 সংখ্যাটি বেশিবার ঘটেছে

এক্ষেত্রে মধ্যমা ও প্রচুরক উভয়ই সমান অর্থাৎ গড় ব্যবধান উভয় ক্ষেত্রে একই হরে।

∴ গড় ব্যবধান, MD = 
$$\frac{1}{16} \left( \sum_{i=1}^{16} f_i \mid x_i - 6 \mid \right)$$
  
=  $\frac{1}{16} (1|2 - 6| + 4|4 - 6| + ..... + 1|10 - 6|) = \frac{24}{16} = 1.5$   
MD 1.5

এবং গড় ব্যবধানাহ,  $CMD = \frac{MD}{6} \times 100 = \frac{1.5}{6} \times 100 = 25\%$ 

02. কোনো কারখানার 32 জন শ্রমিকের বাৎসরিক অনুপছিতির আদর্শ বিচ্চাতির মান 5 দিন। শ্রমিকদের অনুপছিতির বর্গের সমষ্টি 1000 হলে, বিভেদাছের মান কত? Salve ধরি, সংখ্যাগুলির চলক, x

$$\sigma_x = 5$$
,  $\Sigma x_i^2 = 100$ ,  $n = 32$ 

ভামরা জানি,  $\sigma_x^2 = \frac{\sum x_i^2}{n} - x^2 \Rightarrow (5)^2 = \frac{1000}{32} - x^2$ 

$$\Rightarrow \overline{x}^2 = \frac{1000 - 800}{32} \Rightarrow \overline{x} = 2.5$$

∴বিভেদাঙ্ক, 
$$CV(x) = \frac{\sigma_x}{\overline{x}} \times 100 = \frac{5}{2.5} \times 100 = 200\%$$

03. 5, 7, 0, – 3, 11, 2<mark>5, 17</mark>, 4, 20, 26 উপাত্ত হতে চতুৰ্থক ব্যবধানাত্ক নিৰ্ণয় <mark>কর</mark>।

Solve সংখ্যাগুলিকে মানের উর্ধ্বক্রমে সাজিয়ে পাই, — 3, 0, 4, 5, 17, 20, 25, 26

আমরা জানি, চতুর্থক ব্যবধান  $\frac{Q_3 - Q_1}{2}$ 

এবং চতুর্থক ব্যবধানাম্ভ = 
$$\frac{Q_3 - Q_1}{Q_3 - Q_1} \times 100$$

এরপ<mark>র Q<sub>1</sub> ও Q<sub>3</sub> হলো প্রথম</mark> ও তৃতীয় চতুর্থক।

যেহেতু, n = 10, জোড় সংখ্যা এবং ইহা 4 দারা বিভাজ্য নর। তথ্যসারিটিকে সমান দুইটি অংশে বিভক্ত করে নিয়ে প্রত্যেক **অংশে** নিয়ে নিবেশনটির চতুর্থক নির্ণয় করা হলো।

∴ 
$$Q_1 = 3$$
ম অংশের  $\frac{5+1}{2}$  তম পদ =  $3$ ম অংশের ৩য় পদ =  $4$ 

$$Q_3 = ২য় অংশের  $\frac{5+1}{2}$  তম পদ = ২য় অংশের ৩য় পদ = 20$$

∴ চতুর্থক ব্যবধান = 
$$\frac{20-4}{2} = \frac{16}{2} = 8$$
 এবং

চতুর্থক ব্যবধানাঙ্ক = 
$$\frac{20-4}{20+4} \times 100$$

= 
$$\frac{16}{24}$$
 × 100 = 66.67% (প্রায়)।

ATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS . भित्रवादात 5 ज्यानत वराम घटना यथीकरम 55, 45, 15, 7 ७ 30

লে, বন্ধসের বিচ্যতির পরিমাণ নির্ণয় কর।

াথরি, বয়সের চলক, xi = 55, 45, 15, 7, 30

মোট সদস্য , n = 5

 $\Sigma = 55 + 45 + 15 + 7 + 30 = 152$  বছর এবং  $\Sigma x_i^2 = 55^2 + 45^2$ 

 $17^2 + 30^2 = 6224$  বছর

हिन, उनाह,  $\sigma^2 = \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2 = \frac{6224}{5} - \left(\frac{152}{5}\right)^2$ 

হুখার গড় 7 ও পরিমিত ব্যবধান 1 হলে সংখ্যা দুইটি কত? ্রামনে করি, সংখ্যা দুইটি x1 ও x2 তাহলে,

$$x_1 + x_2 = 7$$

মুক্ত ব্যবধান = 
$$\sqrt{\frac{\Sigma x^2}{n} - (\overline{x})^2} = 1$$

$$\sqrt{\frac{x_1^2 + x_2^2}{2} - 7^2} = 1 \Rightarrow \frac{x_1^2 + x_2^2}{2} - 49 = 1$$

$$\frac{x_1^2 + x_2^2}{2} = 50 \Rightarrow x_1^2 + x_2^2 = 100$$

$$196 - 28x_2 + x_2^2 + x_2^2 = 100$$

$$x_1^2 - 28x_2 + 96 = 0 \Rightarrow x_2^2 - 14x_2 + 48 = 0$$

$$(x_2-8)(x_2-6)=0 \Rightarrow x_2=8, 6$$

নিৰ্দেয় সংখ্যা দুইটি 6 ও 8

দ্রা 3 বার নিক্ষেপ করলে কমপক্ষে 2টি হেড পাওয়ার সম্ভাবনা কত? Mre এখানে মুদ্রাটি মোট 3 বার নিক্ষেপ করা হয়েছে। এ কারণে সর্বাধিক

हरू পারে 3 বার।

নহে 2টি হেড মানে 2টি বা 3টি (সর্বাধিক) হেড হতে পারে।

িহে পারার সম্ভাব্যতা = 
$$\frac{{}^{3}\text{C}_{2}}{2^{3}} = \frac{3}{8}$$

ছৈছ পাবার সম্ভাব্যতা = 
$$\frac{{}^3C_3}{2^3} = \frac{1}{8}$$

ন্ধাৰ্তা = 
$$\frac{3}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2}$$
 Ans.

<mark>র গ্যাকেট তাস থেকে পরপর তিনখানা তাস পুনঃছাপন না করে নেয়া হলে</mark> দ চিনটি টেক্কা হবার সম্ভাবনা কত?

52 খানা তাস থেকে পরপর তিনখানা তাস পুনঃছাপন না করে নেয়া

হৈস তিনটি টেক্কা হবার সম্ভাবনা = 
$$\frac{{}^4C_1 \times {}^3C_1 \times {}^2C_1}{{}^{52}C_1 \times {}^{51}C_1 \times {}^{50}C_1} = \frac{11}{5525}$$

की बाद्य 20 जामा जन् 30 काला वन ७ जन्न नाज्व 30 जामा जन **িলালো বল আছে। পাত্র দুটি হতে একটি করে বল উঠানো হলে** 

ি লাখনো একই রঙের (ii) ভিন্ন রঙের হবার সম্ভাব্যতা কত?

Whe বলগুলো একই রং এর

(a) ১ম বাক্স হতে কালো ও ২য় বাক্স হতে কালো =  $\frac{3}{5} \times \frac{4}{7} = \frac{12}{35}$ 

ী খ বাক্স হতে সাদা ও ২ঘ বাক্স হতে সাদা =  $\frac{2}{5} \times \frac{3}{7} = \frac{6}{35}$ 

িনির্দেয় সম্ভাবনা = 
$$\frac{12}{35} + \frac{6}{35} = \frac{18}{35}$$

(b) ১ম বাক্স হতে সাদা ও ২য় বাক্স হতে কালো =  $\frac{2}{5} \times \frac{4}{7} = \frac{8}{35}$ 

 $\therefore \text{ নির্ণেয় সম্ভাবনা} = \frac{9}{35} + \frac{8}{35} = \frac{17}{35}$ 

একটি বাজে 15টি সাদা ও 10টি কালো রঙের মার্কেন আছে। একটি বালক বাক্সটি থেকে নিরপেক্ষভাবে দুইটি মার্কেল উঠিয়ে নিলে প্রতিবারে দুইটি একই রঙের ও ভিন্ন রঙের মার্কেল হওয়ার সমাব্যতা নির্ণয় কর।

Solve সাদা রঙের মর্বেল, a = 15টি

কালো রঙের মার্বেল, b = 10টি, n = 25

(i) একই রঙের মার্বেল হওয়ার সম্ভাবনা

$$=\frac{a(a-1)+b(b-1)}{n(n-1)}=\frac{15\times14+10\times9}{25\times24}=\frac{1}{2}$$
 Ans.

(ii) বল দুটি ভিন্ন রঙের হওয়ার সম্ভাবনা

= বলের বিভিন্ন রঙের সংখ্যা 
$$\times \frac{ab}{n(n-1)} = 2 \times \frac{15 \times 10}{25 \times 24} = \frac{1}{2}$$
 Ans.

10. কোন জরীপে দেখা গেল 70% লোক ইত্তেফাক পড়ে 60% লোক সংবাদ পড়ে এবং 40% লোক উভয় পত্রিকা পড়ে। নিরপেক্ষভাবে বাছাই করলে একজন লোকের ইত্তেফাক বা সংবাদ পড়ার সম্ভাব্যতা কত?

Solve 
$$P(A) = \frac{70}{100}$$
,  $P(B) = \frac{60}{100}$ ,  $P(A \cap B) = \frac{40}{100}$ .  
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$   
 $= \frac{70}{100} + \frac{60}{100} - \frac{40}{100} = \frac{90}{100} = \frac{9}{10}$  Ans.

11. P(AB) = 0.48, P(A) = 0.6 হয়, তবে P(B) এর মান কত হলে A ও B শ্বাধীন হবে?

Solve A & B স্বাধীন হলে,

$$P(AB) = P(A) \times P(B) \Rightarrow 0.48 = 0.6 \times P(B)$$

 $\Rightarrow$  P(B) = 0.8 Ans.

12.  $P(A) = \frac{1}{2}$ ,  $P(B) = \frac{1}{3}$  এবং  $P(B \mid A) = \frac{3}{5}$  হলে  $P(A \mid B)$  এর মান কত?

Solve আমরা জানি, 
$$P(A \cap B) = P(B)$$
.  $P(A \mid B)$  ... (i) এখন,  $P(A \cap B) = P(A)$ .  $P(B \mid A) = \frac{1}{2} \cdot \frac{3}{5} = \frac{3}{10}$ 

(i) নং সমীকরণ থেকে , 
$$\frac{3}{10} = \frac{1}{3}$$
. P (A | B) :. P (A | B) =  $\frac{9}{10}$ 

13. A ও B মাধীন ঘটনা এবং  $P(A) = \frac{1}{2}$ ,  $P(B) = \frac{1}{3}$  হলে,  $P(A \cup B)$  এর

Solve 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
  
=  $P(A) + P(B) - P(A) \times P(B) = \frac{1}{2} + \frac{1}{3} - \frac{1}{2} \times \frac{1}{3} = \frac{2}{3}$ 

14. দু'টি সংখ্যার গাণিতিক গড় 14 এবং ভেদাঙ্ক 4 হলে, সংখ্যা দু'টি কী?

Solve ধরি, সংখ্যা দুটি x1, x2

প্রশ্নতে, 
$$\frac{x_1 + x_2}{2} = 14 \Rightarrow x_1 + x_2 = 28$$
 ......(i)

আবার, পরিমিত ব্যবধান =  $\sqrt{\text{ভেদাঙ্ক}} = \sqrt{4} = 2$ 

$$\Rightarrow \frac{x_1 - x_2}{2} = 2$$
 [যখন  $x_1 > x_2$ ]  $\Rightarrow x_1 - x_2 = 4$  ...... (ii)

(i) + (ii) 
$$\Rightarrow 2x_1 = 32 : x_1 = 16$$

$$(i)-(ii)\Rightarrow 2x_2=24\ \therefore x_2=12$$

#### For Practice

01. - 2ค. - ค. 0. ค. วิล সংখ্যা ซनित गफ् वावधान निर्पग्न कत ।

02. 1, 3, 4, 5, 7, 9, 20 এর উপাদানগুলোর পরিমিতি ব্যব্ধান নির্ণয় কর।

Ans: 5.831

03. मुर्वेि वानित गेफ ७ एकमाब यथीकरम 10 व्यवर 38 व्रत्न मरश्रीषर व्यवर বিভেদাত নির্ণয় কর। Ans: 16.16, 3.84, 61.6%

04. প্রথম 7টি খাভাবিক সংখ্যার পরিমিত ব্যবধান কতঃ

05. নিচের উপান্ত হতে ভেদাঙ্ক নির্ণয় কর।

| শ্ৰেণিব্যান্তি | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90  | 91-100 |
|----------------|-------|-------|-------|-------|-------|--------|--------|
| गणमः খ्যा      | 3     | 7     | 15    | 20 🐼  | 12    | 9 . [] | 4)15   |

Ans: 219.673

06. সুজনের পরিবারের 5 জনের বয়স যথাক্রমে 55, 45, 15, 7 ও 30 বছর হলে বয়সের ভেদাঙ্ক নির্ণয় কর। Ans:320.64 বছর

07. 16, 8, 15, 25, 13, 10, 17, 14, 12, 13, 20, 22 তথ্যসারির ১ম ও ৩য় ুচতুর্থক নির্ণয় কর language । ১৯১৮ বিজ্ঞান করা ক্রিক্ত Ans: 12.5, 18.5

08. 6150, 6200, 6175, 6190, 6170, 6180 এর পরিসর এবং পরিসরা<del>ছ নির্ণয়</del> Ans: 50, 0.41%

09. প্রমাণ কর যে, দুইটি অসম সংখ্যার পরিমিত ব্যবধান তাদের পরিসরের অর্ধেক অৰ্থাৎ  $\delta = \frac{R}{2}$ 

10. প্রমাণ কর যে, প্রথম n সংখ্যক জোড় মাভাবিক সংখ্যার ভেদাঙ্ক =

11. 10 জন শ্রমিকের বাৎসরিক অনুপন্থিতির আর্দশ বিচ্যুতির মান 3 দিন শ্রমিকদের অনুপন্থিতির বর্গের সমষ্টি 500 হলে বিভেদাক কত? Ans: 46.85%

12. 11, 13, 15, ...... 25 সংখ্যাগুলোর ভেদাঙ্ক 21 হলে, পরিমিত ব্যবধান কত?

13. 6 টি সংখ্যার ভেদান্ধ 36 হলে, পরিমিত ব্যবধান কত? Ans: 6

14. প্রথম n সংখ্যক বিজোড় মাভাবিক সংখ্যার ভেদাঙ্ক 85 হলে, n এর মান কত্য

15. 32 টি সংখ্যার পরিমিত বিচাতি 5। যদি সংখ্যাগুলোর সমষ্টি 80 হয়, তবে সংখ্যাওলোর বর্গের সমষ্টি কত ? Ans:1000

16. দুইটি অসম রাশির গাণিতিক গড় ও ভেদাঙ্ক যথাক্রমে 6 ও 9 হলে, রাশি দুইটি নির্ণয় কর।

17. একটি শিল্প প্রতিষ্ঠানের পুরুষ ও মহিলা শ্রমিকদের বেতনের পরিমিত ব্যবধান यथाक्ट्रिय 20 টाका ७ 15 টाका এवर विराजनाह यथाक्ट्रिय 50% ७ 70% । यनि ঐ প্রতিষ্ঠানে 60% পুরুষ শ্রমিক থাকে তবে শ্রমিকদের গড় বেতন কত্য

Ans: 32.57 টাকা

18. নিচের উপাত্ত হতে পরিমিত ব্যবধান নির্ণয় কর।

| শ্ৰেণিব্যাপ্তি | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
|----------------|---------|---------|---------|---------|---------|---------|
| গণসংখ্যা       | 12      | 18      | 36      | 24      | 10      | 8       |

Ans: 134.6259

19. पृरेि छथाजातित्र वावधानाम यथाकरम 75% वनः 90% वनः পतिमिछ वावधान যথাক্রমে 15 এবং 18 হলে, তাদের গাণিতিক গড় কত?

NYKOLY PUBLICATIONS - NYKOLY PUBLICATIONS - NOYKOLY PUBLICATIONS - N 20. কোনো একটি এলাকা জরিপ করে দেখা গোলো সেখানকার 35% 🚗 ধুমপানে আসক , 30% শোক মাদকাসক্ত এবং 12% উভয়াসক । ঐ ক্রেক্স থেকে নির্বাচিত একজন শোকের (i) আসন্তি থাকার সম্ভাবনা, (ii) আসন্তি ৰ থাকার এবং (III) তথু একটিতে আসন্তি থাকার সম্ভাবনা নির্ণয় কর।

Ans: 0.53 ,0.47,041

21. কোনো পরীক্ষায় 200 জন পরীক্ষার্থীর মধ্যে 80 জ্বন বাংলায়,60 🛼 ইংরেজিতে এবং 25 জন অঙ্কে পাস করেছে। বাংলা ও ইংরেজিতে 40 🤛 ইংরেজি ও অঙ্কে 6 জন, অঙ্ক ও বাংশায় 10 জন পাস করেছে এবং ঠিক বিষয়ে 4 জন পাস করেছে। নিরপেক্ষভাবে যেকোনো একজ্ঞনকে বাছাই 🌄 তার সকল বিষয়ে ফেল হওয়ার সম্ভাবনা নির্ণয় কর।

22. একটি বাক্সে 5 টি সাদা ও 7 টি নীল বল আছে। নিরপেক্ষভাবে একটি 📦 Ans:  $\frac{5}{12}$ উঠানো হলে বলটি সাদা হওয়ার সম্ভাবনা কত?

23. SOCIETY শব্দতির বর্ণগুলো এলোমেলো সারিতে সাজানো *হলে স্বরবর্ণগু*স

একত্রে থাকার সম্ভাবনা নির্ণয় কর।

24. 1 থেকে 350 প<mark>র্যন্ত</mark> সংখ্যাগুলি হতে দৈব্চয়নের মাধ্যমে একটি সংখ্যা নেজ হলো। সংখ্যাটি ঘনসংখ্যা হওয়ার সম্ভাবনা কত?

25. তিন্টি ছক্কা একই সময়ে নিক্ষেপ করলে প্রাপ্ত সংখ্যাগুলির যোগফল 17 হওৱা

Ans:  $\frac{1}{72}$ 

Ans∷

Ans: 3 26.  $P(A) = \frac{1}{3}$  এক  $P(A \cap B) = \frac{1}{5}$  হলে,  $P(B \mid A) = \overline{\Phi}$ ত?

27. 30 দিনের একটি মাসে 5টি রবিবার থাকার সম্ভাবনা কত?

Ans:

28. 1 থেকে 520 পর্যন্ত সংখ্যাগুলি থেকে দৈবচয়ন পদ্ধতিতে একটি সংখ্যা সং

করা হলে সংখ্যাটি ঘনসংখ্যা হওয়ার সম্ভাবনা কত?  $\mathbf{Ans:} \frac{1}{65}$ 

29. 3টি অনপেক্ষ মুদ্রা <mark>একত্রে নিক্ষেপ</mark> করা হলো। প্রত্যেক মুদ্রাতে Head(H)

দেখাবে তার সম্ভাবনা কত?

30. একটি বাক্সে 10 টি নীল ও 1<mark>5 টি লাল মার্বেল আছে। একটি বালক বেমন ই</mark> টেনে প্রতিবারে একটি করে পর পর দুইটি মার্বেল উঠালে দুটি একই রয়ে Ans: মার্বেল হবার সম্ভাবনা কত?

क्षा नेन बारहा नाम मुठि घर उत्पर्ध पर 31.  $P(A) = \frac{1}{3}$  এবং  $P(A \cap B) = \frac{1}{5}$  হলে,  $P(B \mid A)$  এর মান কত? Ans:

32. একটি শ্রেণিতে 30 জন ছাত্র ও 20 জন ছাত্রী আছে। বার্ষিক পরীক্ষায় এক Ans:49 ছাত্রের প্রথম ও একজন ছাত্রীর দ্বিতীয় হওয়ার সম্ভাবনা কত?

33. একটি বাক্সে বিভিন্ন আকারের 6টি সাদা বল, 7টি লাল বল এবং ৪টি কাল ব আছে। দৈবভাবে একটি বল তুলে নেয়া হল। বলটি লাল বা সাদা হবার সম্ভাব

#### LY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY PUBLICATIONS GST গুচ্ছ/গুচ্ছভুক্ত বিশ্ববিদ্যালয়ের বিগত বছরের প্রশ্নোত্তর

ছাত্রের কোন একটি কাজ সম্পন্ন করার সম্ভাবনা 🔓 এবং 🔒 ; তাদের

Solve  $P(A) = \frac{1}{2}, P(B) = \frac{1}{3}$ 

হানি যাধীন,  $P(A \cap B) = P(A) \times P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ 

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
  
=  $\frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{3+2-1}{6} = \frac{4}{6} = \frac{4}{6}$ 

👔 🛪 খার গাণিতিক গড় 26 এবং গড় ব্যবধান 5 হলে, সংখ্যা দুটি কী?

\$16,36

**®** 12, 40

© 20, 32

 $\bigcirc$  21, 31.

Solve ধরি, সংখ্যা দুটি x1, x2

$$\frac{x_1 + x_2}{2} = 26 \Rightarrow x_1 + x_2 = 52 \dots (i)$$

হার , 
$$\frac{|\mathbf{x}_1 - 26| + |\mathbf{x}_2 - 26|}{2} = 5$$
 [যখন  $\mathbf{x}_1 > \mathbf{x}_2$ ]

$$\Rightarrow \frac{x_1 - x_2}{2} = 5 \Rightarrow x_1 - x_2 = 10 \dots (ii)$$

(i) + (ii) 
$$\Rightarrow$$
 2x<sub>1</sub> = 62  $\Rightarrow$  x<sub>1</sub> = 31

ুন্ধা দুইটি 31, 21 টক টাল চকটি প্রকৃতি কার্কিটি চা

হোমার 15 জন বন্ধুর বয়সের গড় ও পরিমিত ব্যবধান যথাক্রমে 10 ও 2 হলে, ম্বনের বিভেদাঙ্ক কত? [KU-A: 19-20]

B 10% © 15%

তি Solve প্রমতে,  $\bar{x}=10$ , পরিমিত ব্যবধান,  $\sigma=2$ 

হাহলে, বিভেদাঙ্ক = 
$$\frac{\sigma}{x} \times 100\% = \frac{2}{10} \times 100\% = 20\%$$

নুট অসম রাশির গাণিতিক গড় এবং ভেদাঙ্ক যথাক্রমে 12 এবং 36 হলে রাশি

দুটির মান কৃত? [KU-A: 19-20]

**B** 15, 9 **C** 16, 8

D 18, 6

D Solve ধরি সংখ্যাদ্বয়, x<sub>1</sub> ও x<sub>2</sub>

$$: \frac{x_1 + x_2}{2} = 12 \Rightarrow x_1 + x_2 = 24$$

$$\frac{(12-x_1)^2+(12-x_2)^2}{2}=36$$

$$\Rightarrow (x_1 - 12)^2 + (x_2 - 12)^2 = 72 \text{ Figs. Product in the product of the produ$$

$$\Rightarrow (x_1 - 12)^2 + (24 - x_1 - 12)^2 = 72$$

$$\Rightarrow (x_1 - 12)^2 + (x_1 - 12)^2 = 72$$

$$\Rightarrow (x_1 - 12)^2 = 36 \Rightarrow x_1 - 12 = 6$$

$$\Rightarrow x_1 = 18, x_2 = 24 - 18 = 6$$

 $\Rightarrow x_1 = 18, x_2 = 24 - 18 = 6$  $^{(1)}P(A) = \frac{1}{2}, P(B) = \frac{1}{5}$  এবং  $P(A \cup B) = \frac{7}{10}$  হলে, A ও B কিরূপ ঘটনা?

[CoU-A: 19-20]

B বর্জনশীল © অবর্জনশীল D নির্ভরশীল

B Solve 
$$P(A) + P(B) = \frac{1}{2} + \frac{1}{5} = \frac{5+2}{10} = \frac{7}{10}$$

খাবার, 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\Rightarrow \frac{7}{10} = \frac{7}{10} - P(A \cap B) = 0 \Rightarrow P(A \cap B) = 0 \therefore A \lor B$$
 বৰ্জনশীল।

06. দুইটি ছক্লা একই সাথে নিক্ষেপ করা হলো। দুইটি ছক্কার উপরের ফোঁটার মোট

ৰু B Solve নম্না কেল = 62 = 36

1+6=7; 4+3=7; 6+1=7; 5+2=7; 2+5=7; 3+4=7্ৰ দুইটি ছক্কার ফোটার যোগফশ 7 হবে 6 টি।

$$\therefore$$
 निर्द्शा मधावना =  $\frac{6}{36} = \frac{1}{6}$ 

07. পরিমিত ব্যবধানকে বর্গ করলে যা পাওয়া যায়, তা হলো- [IU-D: 19-20]

(B) ব্যবধানান্ধ (C) ভেদান্ধ

D চতুর্পক ব্যবধান

🤡 C Solve পরিমিত ব্যবধানের বর্গকে ভেদাঙ্ক বলে। 08. 4, 6, 7, 10 তথ্য সারির গড় ব্যবধান- [IU-D: 19-20]

A 3.15

B 2.75

Solve গড় = 
$$\frac{4+6+7+10}{4} = \frac{27}{4} = 6.75$$

:: তথ্য সারি গড় ব্যবধান

$$=\frac{|4-6.75|+|6-6.75|+|7-6.75|+|10-6.75|}{4}=1.75$$

09. প্রথম 7টি দ্বাভাবিক সংখ্যার পরিমিত ব্যবধান হবে- [BRUR-E: 19-20]

🕉 \Lambda Solve n সংখ্যক স্বাভাবিক সংখ্যার পরিমিত ব্যবধান :

$$= \sqrt{\frac{7^2 - 1}{12}} = \sqrt{4} = 2$$

10. =5, =3, 0, 3, 5 উপাত্তলোর পরিমিত ব্যবধান কত? [JKKNIU-B : 19-20]

© 3.68

$$= \sqrt{\frac{(-5-0)^2 + (-3-0)^2 + (0-0)^2 + (3-0)^2 + (5-0)^2}{5}} = \sqrt{\frac{25+9+0+9+25}{5}} = 3.68$$

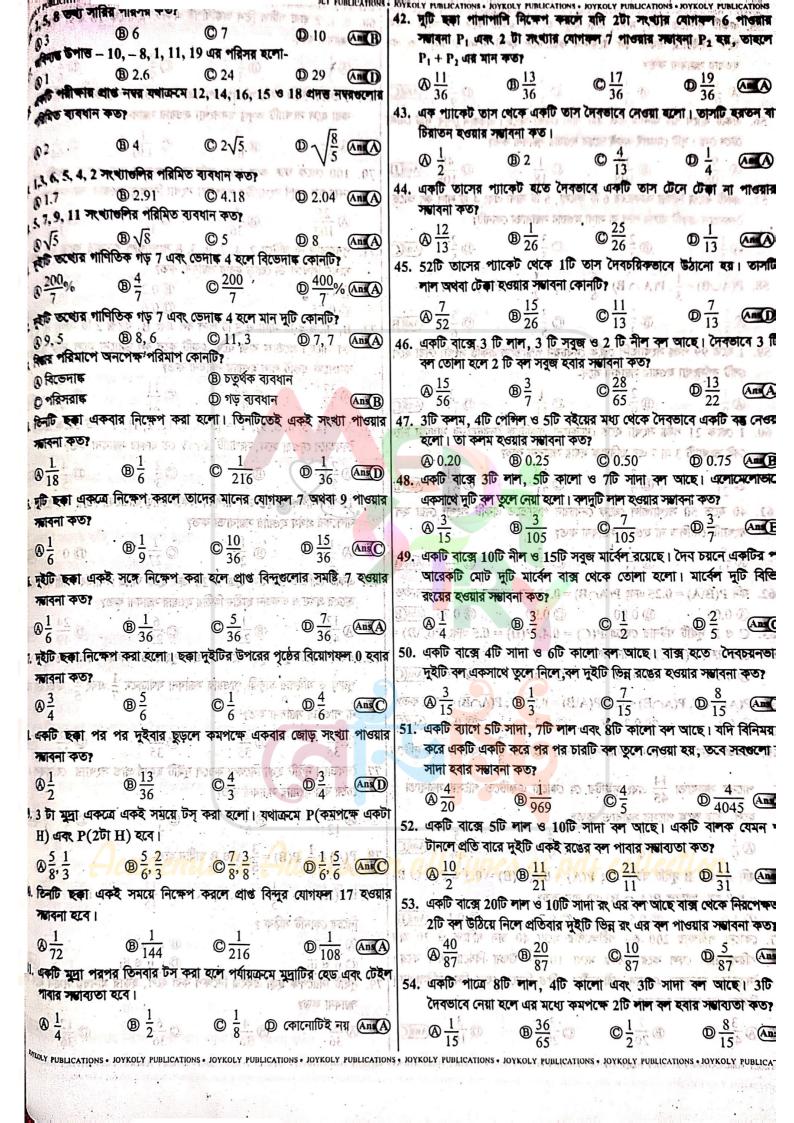
তিনটি পাশা একত্রে নিক্ষেপ করা হলে তিনটিতে একই সংখ্যা পড়ার সম্ভাবনা  $\frac{1}{36} \text{ and } 0 \text{ in } \frac{1}{6} \text{ and } 0 \frac{35}{36} \text{ and } 0$ 

**B** Solve নমুনাক্ষেত্ৰ = 6<sup>3</sup> প্ৰতিষ্ঠ সামিল কৰিব টি এই

<u>একই সংখ্যার নমুনাক্ষেত্র</u> : (1,1,1), (2,2,2), (3,3,3), (4,4,4), (5 (6,6,6) অর্থাৎ 6 টি  $\therefore$  সম্ভাবনা  $=\frac{6}{6^3} = \frac{1}{36}$ 

12. যদি A এবং B দুটি দ্বাধীন ঘটনা হয় যেখানে P(A) = 0.4, P(B) = 0.5 P(A'∩B) এর মান কত (এখানে A', A এর পূরক ঘটনা)? [SUST-B: 19-: A 0.2 **B** 0.1 © 0.3

Solve P(A') = 1 - P(A) = 1 - 0.4 = 0.6


A ও B দুটি স্বাধীন হলে,  $P(A' \cap B) = P(A') \times P(B) = 0.6 \times 0.5$ 

13: একটি থলেতে 4টি লাল, 3টি সবুজ এবং 5টি কালো বল রয়েছে। ঐ পবে একটি বল দৈবভাবে বের করলে, বলটির লাল হবার সম্ভাব্যতা কত? [MBSTU-A:

Solve মোট বল = 4 + 3 + 5 = 12 টি সম্প্রামান বল বল

বলটি লাল হবার সম্ভাবনা =  $\frac{4}{12} = \frac{1}{3}$ 

TOY PUBLICATIONS . JOYKOLY PUBLICATIONS . JOY



POYEOLY PUBLICATIONS . POYKOLY PUBLICATIONS .

সুতরাং (64)10 = (10,00000)2

Ans B

TUBLICATIONS . JOYKOLY PUBLICATIONS . JOYKOLY





### You'll find here everything Exactly What You Need.

Join to our Channel to find Academic to Admission preparation

(Medical, Dental, Varsity & Engineering) All types of pdf.

