
HSC 2025

উচ্চতর গণিত ২য় পত্র প্রশ্নব্যাংক

শর্ট সিলেবাস

उपाण

একাডেমিক এন্ড এডমিশন কেয়ার

HSC 2025 উচ্চতর গণিত ২য় পত্র প্রশ্নব্যাংক

সার্বিক ব্যবস্থাপনায় ব্দ্যাম ম্যাথ টিম

অনুপ্রেরণা ও সহযোগিতায়

মাহমুদুল হাসান সোহাগ

মুহাম্মদ আবুল হাসান লিটন

কৃতজ্ঞতা

র্ডদ্রাম-উন্মেষ-উত্তরণ শিক্ষা পরিবারের সকল সদস্য

प्रकामताय

র্দ্রাম একাডেমিক এন্ড এডমিশন কেয়ার

প্রকাশকাল

সর্বশেষ সংস্করণ: নভেম্বর, ২০২৪ ইং

কপিরাইট © ব্দ্রাম

সমস্ত অধিকার সংরক্ষিত। এই বইয়ের কোনো অংশই প্রতিষ্ঠানের লিখিত অনুমতি ব্যতীত ফটোকপি, রেকর্ডিং, বৈদ্যুতিক বা যান্ত্রিক পদ্ধতিসহ কোনো উপায়ে পুনরুৎপাদন বা প্রতিলিপি, বিতরণ বা প্রেরণ করা যাবে না। এই শর্ত লক্ষিত হলে উপযুক্ত আইনি ব্যবস্থা গ্রহণ করা হবে।

শর্ট সিলেবাস ২০২৫

क.नर 🐇	বিষয়বস্তু	পৃষ্ঠা
02	অধ্যায়-০৩ : জটিল সংখ্যা	০৩-২৭
०२ 🐇	অধ্যায়-০৪ : বহুপদী ও বহুপদী সমীকরণ	২৮-৬৯
00 (অধ্যায়-০৬ : কনিক	40-776
08	অধ্যায়-০৭ : বিপরীত ত্রিকোণমিতিক ফাংশন ও ত্রিকোণমিতিক সমীকরণ	\$\$\\\-\$@9
00	অধ্যায়-০৮ : স্থিতিবিদ্যা	764-500
ou (অধ্যায়-০৯ : সমতলে বস্তুকণার গতি	২০৪-২৪৪
09	মডেল টেস্ট	₹8৫-₹8৮

Educationblog24.com উচ্চতর গণিত ২য় পত্র : বোর্ড প্রম্নের বিম্লেষণ

বিগত বিভিন্ন বোর্ড পরীক্ষায় আগত প্রশ্নের পরিসংখ্যান:

CY CY		(E.)	Se	16	1110	711	20	99	N.		20	95			30	82		1	10	95	323	211		13	1
Selection	क्रमीय		CQ		M		CQ		M		CQ		M		CQ	-	M	-	CQ	F	M		CQ		M
	В	a	b	c	C Q	а	b	c	C Q	a	b	c	C Q	a	b	c	C Q	а	b	c	C	a	b	c	Q
	02					1	1	1						1	1		2		1	_	3	1	1	1	1
	03															1	1	1	1	1	1			-	2
	00	1	1	1	4	1	1	1	4					1			3	1		1	3				3
_	58	2	2	2	4	1	1	1	5	2	2	2	6		1	1	5	1	1		3	1	1	1	3
<u>।</u>	00	-	_	_		_								1	1	1	2			1	1	1	1	1	4
2	0.9	2	2	2	5	2	2	2	5	2	2	2	6	1	1	1	3	1	1	1	4	1	1	1	3
	09	1	1	1	3	1	1	1	5	2	2	2	6	1	1	1	3	1	1	1	3	1	1	1	3
	02	1	1	1	4	1	1	1	2	2	2	2	6	1	1	1	2	1	1	1	2	1	1	1	!
	20	1	1	1	5	1	1	1	4	_			1	1	1	1	2	1	1	1	2	1	1	1	2
	02	-		-	-	-	-				_			1	1	1	2	1	1	1	3	1	1	1	3
	-			-		-	-		_	_					1		3	1	1		3	1	1		1
	03	١,	-		-	-	-	-			_	_				1	2			1	1			1	2
_	00	1	2	1	4	2	1	1	5					1		1		1	1	1	3	1	1		3
রাজশাহী	08	2	1	2	6	1	2	2	3	2	2	2	6	1	1	1	1			1	3	1_		1	13
55	00	2	1	-	-	-	-	-	-			_		1	1		2	1	1		1		1	1	2
1	09	1	1	2	6	2	2	2	5	2	2	2	8	1	1	1	7	1	1	1	4	1	1	1	3
	07	1	1	1	4	1	1	1	5	2	2	2	6	1	1	1	2	1	1	1	3	1	1	1	3
	60	1	1	1	3	1	1	1	5	2	2	2	5	1	1	1	3	1	1	1	2	1	1	1	1
	70	÷	<u> </u>	<u> </u>	13	++	+-	1	3	-			-	1	1	1	3	1	1	1	3	1	1	1	
	62	-	-	-	-	+	-		-		-	-	-	1	1	-	2	1	1	1	3	1	1	1	1
	03		1	-	1	1					-	-	-	<u> </u>	-	1	1	-	-	1	1		-	-	1
	00	1	1	1	4	2	2	2	4				-	2	-	i -	3	1	ī	i	3	1	1	-	1
	98	2	2	2	4	1	1	1	5	2	2	2	7		1	1	3		-	1	3	1	1	1	1
룓	00														1	1	3	1	1		1	1	1	1	1
চট্টগ্রাম	95	2	2	2	4	2	2	2	5	2	2	2	6	1	ı	1	3	1	1	1	4	1	1	1	1
р	09	1	1	1	4	1	1	1	5	2	2	2	5	1	1	1	2	1	1	1	3	1	1	1	T
	09	1	1	1	5	1	1	1	2	2	2	2	7	1	1	1	4	1	1	1	2	1	1	1	
	60	1	1	1	4	1	1	1	4					1	1	1	2	1	1	1	2	1	1	1	
	30						_		_	_	_			1	1	1	2	1	1	1	3	1	1	1	
	0)			_	_	1_	1_		_	_				1	1	_	2	-	1	_	3	1	1	_	1
	05	_	-		<u>_</u>	+-	-	ļ.,	ļ.,	-	-	_		-	1	-	-	1	1	1	1	-	-	1	-
	99	1	1	2	4	1	2	1	4	-	-	-	7	1	٠.	2	2	1	<u>.</u>	1	3	1	1	-	1
do	08	1	2	1	5	2	1	2	4	2	2	2	7	1	1	1	3	1	1	-	3		 	1	1
िमत्नि	00	1 -	12	1	-	12	2	2	6	2	2	2	6	1	1	1	3	1	1	1	4	1	1	1	+
压	06	2	2	1	5	1	1	1	5	2	2	2	7	1	1	1	3	1	1	1	3	1	1	1	+
	54	2	1	1	3	+	1	1	3	2	2	2	5	2	1	1	3	1	1	1	2	1	ti	1	+
	ov	1	1 1	1	4	+	1	1	3	-	1	-	1	-	i	1	3	1	1	1	2	1	+	1	-
	69	1-	1	-	-	+	·	<u> </u>	-	-	1	-	1	1	1	i	3	1	1	ti	3	i	1	i	+
	30	1	-	-	-	-	-	1		-	-	-	1	1	ti	1	3	1	i	† ·	3	-	i	T-	+
	03	-	1	1	-	1	1			-	-			1	1	1	2	1	1	1	1	1	Ti	1	+
	00	1	1	1	4	T	1	2	3	1	1		1	1	ī	1	2	1	1	1	3	2	1	1	+
	68	2	2	2	5	2	2	1	4	2	2	2	6	1	1		4	Tonine	-	1	3	1	1	1	+
5	01	1	1	1	1	1	1									1	2	1	1		1		1	1	1
विद्यान	09	2	2	2	5	2	2	2	5	2	2	2	7	1	1	1	2	1	1	1	4	1	1	1	1
V	04	1	1	1	5	1	1	1	7	2	2	2	6	1	1	1	2	1	1	1	3	1	1	1	T
	04	1	1	T	3	1	1	1	3	2	2	2	6	1	1	1	2	1	1	1	2	1	1	1	T
	oh	1	1	1	3	1	1	1	3					1	1	1	3	1	1	1	2	1	1	1	T
	30	1	1	1		1	1					1		1	1	1	3	1	1	1	3	1	1	1	

HSC इसवारक २०२०

Education blog 24. com

		-	9.	20			1	34	1		- 5	023				999	15			71		4		15
13	12	And in	CQ	Section in contrast	M	100	CQ	NAME OF TAXABLE PARTY.	M		C)	M		CQ		M		CQ		M		CQ	
e,		a	b	le	C	a	b	c	CQ	a	ь	c	CQ	a	b	c	C Q	a	b	c	C Q	a	b	0
	63	-	-	-	Q	-	-	-	V	+	+	+	-	1	1		2		1		3	1	1	1
	03	+	-	+-	-	+-	-	-	-		\top							1	1	1	1		+	+
	00	1	1	1	5	1	1	1	4	1						1	4	1		1	3	1	1	1
2	0.8	1	1	1	4	2	2	2	4	2	2	2	7	1	1	1	3	1	1	_	3		1	
<u> </u>	02									_	-	-	-	1	1	1	3	1	-	1	1	1		1
यद्गीत्र	90	2	2	2	4	1	1	1	5	2	2	2	6	1	1	1	2	1	1	1	3	1	1	1
	09	2	2	2	4	1	1	1	4	2	2	2	5	1	1	1	3	1	1	1	2	1	+	1
	09	1	1	1	4	1	1	1	4	1-	-	-	-	1	1	1	3	1	1	1	2	1	1	+
	30	1	1	1	+	+	+	<u> </u>	+	+	+			1	1	1	3	1	1	1	3	1	1	+
	03	-	-	+	+	+	-	-		1	1	1		1		1	2	1	1		3	1	1	
		-	-	-	-	-	-	-	-	-	+	\vdash	+-	-	-		2	-		1	1		<u> </u>	-
	00	2	1	12	4	1	1	1	5	\vdash	-	+	1	2	1	1	3	1	1	1	3	1	1	1
	08	1	2	1	4	2	2	2	3	2	2	2	7		1		3			1	3	1	1	
22	02	·	1	÷	+	-	-							1	1	2	3	1	1		1			1
কৃমিল্লা	08	2	2	2	5	2	2	2	4	2	2	2	6	1	1	1	3	1	1	1	4	1	1	1
10.	09	1	1	1	4	1	1	1	4	2	2	2	6		1		2	1	1	1	3	1	1	1
	03-	1	1	1	4	1	1	1	4	2	2	2	6	1	1	1	2	1	1	1	2	1	1	1
	0%	1	1	1	4	1	1	1	5	_	_	_	-	1	1	1	2	1	1	1	2	1	1	1
	70		_	_		-	_			_	-	-	-	1	1	1	2	1	1	1	3	1	ı	1
	0)			-	_	-	_	_	_	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1
	00	2	1	1	4	I	1	1	4	-	-	-	-	1		1	3	1	·	1	3	_		
krz	98	1	2	2	4	2	2	2	4	2	2	2	6	1	1	1	3	1	1		3	1	1	1
5	04		-		_										1		2			1	1	1	1	1
	00	1	1	1	5	2	2	2	5	2	2	2	7	1	1	1	4	1	1	1	4	1	1	1
দিনাজপুর	09	1	1	1	5	1	1	1	4	2	2	2	6	1	1	1	3	1	1	1	3	1	1	1
	62	1	2	1	2	1	1	1	4	2	2	2	6	1	1	1	2	1	1	1	2	1	1	1
	99	2	1	2	5	1	1	1	4		_			1	1	1	2	1	1	1	2	1	1	÷
	30						-			_				1	1	1	3	1	1	1	3	1	-	-
	0)										_	_				-			-				-	
	00	2	1	1	5	2	1	1	4	-						-		-						
W.	98	1	2	2	5	1	2	2	4	2	2	2	6		-	-	-	-						
ময়মনাসংহ	98		-	-	-	-	-	-		-				-	-	-		-						
4	09	1	1	T	5	2	2	2	5	2	2	2	9	-	-	-								
7	09	1	1	1	4	1	1	1	4	2	2	2	5		-			-	-					1
	54	1	1	1	3	1	1	1	4	2	2	2	5	-										-
	oh	2	2	2	3	1	1	1	4								-							-
	30			1																				-
1	65		_	-			1																-	-
1	05		-	-	-	-	4	_	_	-														-
i	05		-		5		-	-			_												-	
F	04	-	-	-	-	-		-+-						_								أجالمان		
भाषाभा	95	-	+	-	5	-	-	+	-	-	-			_								and the same	-	
7	09		-		4	-	-	-	-			-		-	_	1						THE PARTY		
İ	04		1	-	3	+	+	-	+	-		-			-	_	_							-
İ	03		1		3		1	+	-	-					-	-		-						-
	30				1			1	-	+	-+	-		-				-						-

[বি.দ্র.- ২০২৪ ও ২০২০ সালে বোর্ড পরীক্ষা অনুষ্ঠিত হয় নাই।]

উচ্চতর গণিত ২য় পত্র : অধ্যয়-০৩

জটিল সংখ্যা

সৃজনশীল (ক), (খ) ও (গ) নং প্রশ্নের জন্য এ অধ্যায়ের গুরুত্বপূর্ণ টাইপসমূহ:

৩রত্	টাইপ	টাইপের নাম		তবার এসেট		যে ৰোৰ্ডে যে বছর এসেছে
			क	4	4	CQ
00	T-01	A+iB ও পোলার আকারে প্রকাশ	04			Ctg B'23; CB'23; RB'22; Din.B'22
000	T-02	জটিল সংখ্যার মডুলাস ও আর্গ্তমেন্ট সংক্রান্ত সমস্যা	09	06	02	RB'23, 22; BB'23, 22; JB'23; CB'23; Din.B'23, 19; DB'22; Ctg.B'22, 19; SB'22, 17; CB'22, 17; MB'22
0	T-03	অনুবদ্ধী জটিল সংখ্যা সংক্রান্ত	01		01	MB'23; CB'19
000	T-04	মূল নির্ণয় সংক্রান্ত	13	09	02	RB'23, 22, 19, 17; SB'23, 19, 22; BB'23, 22, 17; CB'23, 22, 17; Din.B'23, 19, 22; MB'23, 22; Ctg.B'22, 19; JB'22;
0	T-05	i এর ঘাত এবং ধারা সংক্রান্ত	01	01		CB'23
00	T-06	ω এর ঘাত এবং ধারা সংক্রান্ত	02		07	DB'23; SB'23; BB'23, 19; Din.B'23; MB'23; RB'19, 17
000	T-07	মান নির্ণয় ও প্রমাণ সংক্রান্ত	02	07	09	DB'23, 22; RB'23; Ctg.B'23, 22; SB'22, 17; BB'22, 17, 19; JB'22, 17; MB'22
000	T-08	জটিল সংখ্যার লেখচিত্র ও জ্যামিতিক প্রয়োগ সংক্রান্ত	03	05	11	RB'23; SB'23, 17, 19, 22' JB'23, 19, 17; Din.B'23, 22 18; MB'23; DB'22; Ctg.B'22; BB'22; CB'22; DB'17

CQ প্রশ্ন ও সমাধান (ক, খ ও গ)

Type-01: A+iB ও পোলার আকারে প্রকাশ

Concept Concept

বাস্তব অংশগুলোকে A ও কাষ্পনিক অংশগুলোকে B আকারে প্রকাশ করতে হবে।

- যদি দুইটি জটিল সংখ্যা গুণ আকারে থাকে তবে সাধারণ নিয়মে গুণ করে A + iB আকারে প্রকাশ করতে হবে।
- যদি দুইটি জটিল সংখ্যা ভাগ আকারে থাকে তবে হরের জটিল সংখ্যার অনুবন্ধী জটিল সংখ্যা দ্বারা লব ও হরকে গুণ করে A + iB আকারে প্রকাশ করতে হবে।

Shortcut for MCQ:
$$\frac{a+ib}{c+id} = \frac{ac+bd}{c^2+d^2} + 1 \frac{bc-ad}{c^2+d^2}$$

where
$$\frac{a+ib}{c+id} = \frac{a+b}{c^2+d^2} + i \frac{ab+ab}{c^2+d^2}$$

 $A \pm iB$ আকারে প্রকাশিত জটিল সংখ্যার পোলার আকার হবে: $r(\cos\theta \pm i\sin\theta)$; যেখানে, $r = \sqrt{A^2 + B^2}$; [θ এর মান সংক্রান্ত বিস্তারিত তথ্য Type-02 তে আছে]

RB'y

সৃজনশীল প্রশ্ন (ক, খ ও গ)

 $\mathbf{D}\mathbf{I} \quad \mathbf{Z}_1 = \mathbf{1} - \mathbf{i}\mathbf{x}$

[Ctg.B'23]

(ক) $x = \sqrt{3}$ হলে Z_1 কে পোলার আকারে প্রকাশ কর।

(ক) Solⁿ:
$$x = \sqrt{3}$$
 হলে, $Z_1 = 1 - ix = 1 - \sqrt{3}i$

$$\therefore r = \sqrt{(1)^2 + (-\sqrt{3})^2} = \sqrt{1+3} = 2$$
এবং $\theta = -\tan^{-1}\left|\frac{-\sqrt{3}}{1}\right| = -\frac{\pi}{3}$

$$\therefore Z_1 = 2\left\{\cos\left(\frac{-\pi}{3}\right) + i \cdot \sin\left(\frac{-\pi}{3}\right)\right\} \text{ (Ans.)}$$

(ক) 3 + 4i কে পোলার আকারে প্রকাশ করো। [CB'23]

(ক) Soln: ধরি, Z₁ = 3 + 4i যেখানে x = 3, y = 4 $r = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = 5$ এবং $\theta = \tan^{-1} \left| \frac{4}{3} \right| = \tan^{-1} \frac{4}{3}$ $\therefore Z_1 = re^{i\theta} = 5(\cos\theta + i\sin\theta)$

 $\frac{1}{4}$ (ক) $\frac{2-3i}{4-4i}$ কে A+iB আকারে প্রকাশ কর।

(
$$\Phi$$
) Sol^a: $\frac{2-3i}{4-4i} = \frac{(2-3i)(4+4i)}{(4-4i)(4+4i)} = \frac{8-12i+8i-12i^2}{4^2+4^2}$
= $\frac{20-4i}{32} = \frac{5-i}{8} = \frac{5}{8} - \frac{1}{8}i$ (Ans.)

(ক) (2 + i)(x + iy) = 1 + 3i হলে x, y নির্ণয় কর। 04.[Din.B'2]

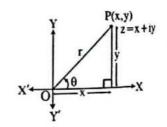
(
$$\Phi$$
) Solⁿ: $(2 + i)(x + iy) = (1 + 3i)$

$$\Rightarrow x + iy = \frac{1+3i}{2+i} = \frac{(1+3i)(2-i)}{(2+i)(2-i)} = \frac{2+6i-i-3i^2}{4+1}$$

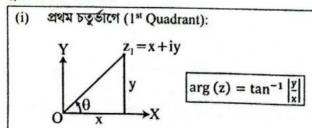
$$= \frac{5+5i}{5} = 1 + i \therefore x = 1; y = 1 \text{ (Ans.)}$$

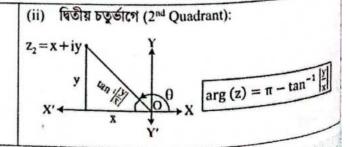
Type-02: জটিল সংখ্যার মড়লাস ও আর্গ্রমেন্ট সংক্রান্ত সমস্যা

Concept


- মডুলাস: মডুলাস হলো মূলবিন্দু থেকে কোনো জটিল সংখ্যার প্রতিরূপী বিন্দুর দূরত্ব। প্রকাশ: mod(z), |z|, r।
- **আর্গুমেন্ট**: কোনো জটিল সংখ্যা x-অক্ষের ধনাত্মক দিকের সাথে যে কোণ উৎপন্ন করে, তাকে ঐ জটিল সংখ্যার আর্গুমেন্ট বলে। প্রকাশ: θ, arg(z)

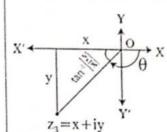
চিত্র হতে, মডুলাস, $r = \sqrt{x^2 + y^2}$


অর্থাৎ, z = x + iy একটি জটিল সংখ্যা হলে, এর মডুলাস, $|z| = \sqrt{x^2 + y^2} = r$


আর্ডমেন্ট ২ প্রকার: (i) মুখ্য আর্ডমেন্ট (Principal argument)

(ii) সাধারণ আর্গ্তমেন্ট (General argument)

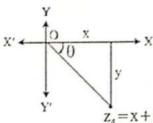
- (i) মুখ্য আর্গুমেন্ট (Principal argument): x-অক্ষের ধনাত্মক দিকের সাথে কোনো জটিল সংখ্যা যে ক্ষুদ্রতম কোণ উৎপন্ন ^{করে ডারে} মুখ্য আর্গুমেন্ট বলে। সীমা: $-\pi < x \le \pi$ (আমরা আর্গুমেন্ট নির্ণয় করতে বললে মুখ্য আর্গুমেন্টই নির্ণয় করবো)
- (ii) সাধারণ আর্গ্তমেন্ট (General argument): মুখ্য আর্গ্তমেন্টসহ বাকি সব আর্গ্তমেন্টই সাধারণ আর্গ্তমেন্ট। মুখ্য আর্গ্তমেন্ট θρ এবং সাধারণ আর্গ্রমেন্ট θ_g হলে, $\theta_g = 2n\pi + \theta_p[n \in \mathbb{Z}]$
- মুখ্য আর্গুমেন্ট নির্ণয়:



HSC श्रम्बगारक २०२०

Educationblog24

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৩


(iii) তৃতীয় চতুর্ভাগে (3rd Quadrant):

 $\arg(z) = -\pi + \tan^{-1} \left| \frac{y}{z} \right|$

the state

(v) অকদ্বয়ের উপরে থাকলে:

a > 0 হলে.

a এর মুখ্য আর্তমেন্ট = 0

ai এর মুখ্য আর্গ্রমেন্ট = 🚆

-a এর মুখ্য আর্গ্রমেন্ট = π

−ai এর মুখ্য আর্গ্রমেন্ট = − 🕆

Note: (i) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$; $\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$

(ii)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
; $\arg\left(\frac{z_1}{z_2} \right) = \arg(z_1) - \arg(z_2)$

(iii) $|z^n| = |z|^n$; $arg(z^n) = n arg(z)$

[আর্গুমেন্ট লগের মতো কাজ করে]

সজনশীল প্রশ্ন (ক, খ ও গ)

্যা দুশ্যকপ্প-১: $z_1 = -1 + \sqrt{3}i$ এবং $z_2 = 1 - \sqrt{3}i$ [RB'23]

(খ) প্রমাণ কর যে, $arg(z_1z_2) = arg(z_1) + arg(z_2)$

(খ) Sol": দেওয়া আছে, $z_1 = -1 + \sqrt{3}i$; $z_2 = 1 - \sqrt{3}i$

এখন,
$$z_1 z_2 = (-1 + \sqrt{3}i)(1 - \sqrt{3}i)$$

$$= -1 + \sqrt{3}i + \sqrt{3}i - 3i^2 = 2 + 2\sqrt{3}i$$

এখন,
$$\arg(z_1)=\pi-\tan^{-1}\left|\frac{\sqrt{3}}{1}\right|=\pi-\tan^{-1}(\sqrt{3})$$

$$=\pi - \frac{\pi}{3} = \frac{2\pi}{3}$$
 এবং $\arg(z_2) = -\tan\left|\frac{-\sqrt{3}}{1}\right| = -\frac{\pi}{3}$

L. H. S =
$$arg(z_1z_2) = tan^{-1} \left| \frac{2\sqrt{3}}{2} \right| = \frac{\pi}{3}$$

R. H. S =
$$arg(z_1) + arg(z_2) = \frac{2\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3}$$

:. L. H. S = R. H. S (প্রমাণিত)

 $\mathbf{z_1} = -1 - \sqrt{3}\,\mathbf{i}, \mathbf{z_2} = \sqrt{3} - \mathbf{i}$

[BB'23]

(খ) দেখাও যে, $\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$

(7) Solⁿ:
$$\frac{z_1}{z_2} = \frac{-1 - \sqrt{3}i}{\sqrt{3} - i} = \frac{\left(-1 - \sqrt{3}i\right)\left(\sqrt{3} + i\right)}{\left(\sqrt{3} + i\right)\left(\sqrt{3} - i\right)} = \frac{-\sqrt{3} - i - 3i + \sqrt{3}}{\left(\sqrt{3}\right)^2 + \left(1\right)^2}$$

$$=\frac{-4i}{4}=-i$$
 : $arg\left(\frac{z_1}{z_2}\right)=-tan^{-1}\left(\frac{1}{0}\right)=-\frac{\pi}{2}......(i)$

আবার,
$$\arg(z_1) = -\pi + \tan^{-1} \left| \frac{-\sqrt{3}}{-1} \right| = -\pi + \frac{\pi}{3} = -\frac{2\pi}{3}$$

$$\arg(z_2) = -\tan^{-1}\left|-\frac{1}{\sqrt{3}}\right| = -\frac{\pi}{6}$$

 $\arg z_1 - \arg z_2 = -\frac{2\pi}{2} - \left(-\frac{\pi}{6}\right) = -\frac{\pi}{2} \dots \dots \dots (ii)$

(i) ও (ii) থেকে বলা যায়, $\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$

(দেখানো হলো)

(ক) (-1 - √3i) সংখ্যাটির আর্ডমেন্ট নির্ণয় কর। [JB'23]

(4) Solⁿ: arg
$$\left(-1 - \sqrt{3}i\right) = -\pi + \tan^{-1}\left|\frac{-\sqrt{3}}{-1}\right| = -\pi + \frac{\pi}{3}$$

 $=-\frac{2\pi}{3}$ (Ans.)

দুশ্যকলপ: z = r cos θ + ir sin θ.

[CB'23]

(গ) দৃশ্যকম্প হতে প্রমাণ কর যে, Arg(z²) = 2Arg(z).

(গ) Sol": দেওয়া আছে, z = r cos θ + ir sin θ

$$z^2 = r^2 \cos^2 \theta + i^2 r^2 \sin^2 \theta + 2i \cdot r^2 \sin \theta \cos \theta$$

$$= r^2(\cos^2\theta - \sin^2\theta) + ir^2(2\sin\theta\cos\theta)$$

$$= r^2 \cos 2\theta + ir^2 \sin 2\theta$$

এখন, L. H. S = Arg(z²) =
$$\tan^{-1}\left(\frac{r^2\sin 2\theta}{r^2\cos 2\theta}\right)$$

$$= \tan^{-1}(\tan 2\theta) = 2\theta$$

আবার, R. H. S = 2Arg (z) =
$$2 \tan^{-1} \left(\frac{r \sin \theta}{r \cos \theta} \right)$$

$$= 2 \tan^{-1}(\tan \theta) = 2\theta$$

$$\therefore$$
 L. H. S = R. H. S \Rightarrow Arg(z²) = 2 Arg(z) (প্রমাণিত)

HSC প্রস্নব্যাংক ২০২৫

$$P = \frac{1+5i}{1+i}, Q = 3-2i$$

[Din.B'23]

(খ) $\overline{\mathbf{Q}} - 2\mathbf{P}$ এর মড়লাস ও আর্গুমেন্ট নির্ণয় কর।

(খ) Seln: দেওয়া আছে,
$$Q=3-2i$$
; $\overline{Q}=3+2i$
এবং $P=\frac{1+5i}{1+i}=\frac{(1+5i)(1-i)}{1^2-i^2}=\frac{1-i+5i-5i^2}{2}=3+2i=\overline{Q}$

$$\therefore \overline{Q} - 2P = \overline{Q} - 2\overline{Q} = -\overline{Q} = -3 - 2i$$

$$\therefore \overline{Q} - 2P$$
 এর মডুলাস = $|\overline{Q} - 2P| = |-3 - 2i|$ (Ans.)

$$=\sqrt{(-3)^2+(-2)^2}=\sqrt{13}$$

$$\therefore (\overline{Q} - 2P)$$
 এর আর্গ্তমেন্ট = $arg(\overline{Q} - 2P)$

$$= -\pi + \tan^{-1} \left| \frac{-2}{-3} \right| = -\pi + \tan^{-1} \left(\frac{2}{3} \right)$$
 (Ans.)

06. (ক)
$$z = \frac{1+2i}{1-3i}$$
 এর মড়লাস বের কর।

[SB'22]

(
$$\overline{\Phi}$$
) Solⁿ: $z = \frac{1+2i}{1-3i} = \frac{(1+2i)(1+3i)}{(1-3i)(1+3i)} = \frac{1+2i+3i+6i^2}{1^2+3^2}$

$$= \frac{-5+5i}{10} = -\frac{1}{2} + \frac{1}{2}i : |z| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{\sqrt{2}}$$

विकल्प:
$$|z| = \left| \frac{1+2i}{1-3i} \right| = \frac{|1+2i|}{|1-3i|} = \frac{\sqrt{1^2+2^2}}{\sqrt{1^2+(-3)^2}} = \frac{\sqrt{5}}{\sqrt{10}} = \frac{1}{\sqrt{2}}$$

$$= x^3, b = 8.$$

(গ) a - b = 0 সমীকরণের জটিল মূলদ্বয় z_1 ও z_2 হলে প্রমাণ কর যে, $arg(z_1z_2) = arg(z_1) + arg(z_2)$ ।

(1) Solo: $a - b = 0 \Rightarrow x^3 - 8 = 0 \Rightarrow x^3 = 2^3$

$$\Rightarrow \left(\frac{x}{2}\right)^3 = 1 \Rightarrow \frac{x}{2} = 1, \omega, \omega^2$$

$$x = 2, 2\omega, 2\omega^2 = 2, -1 + \sqrt{3}i, -1 - \sqrt{3}i$$

$$z_1 = -1 + \sqrt{3}i$$
; $z_2 = -1 - \sqrt{3}i$

$$z_1 z_2 = (-1 + i\sqrt{3})(-1 - i\sqrt{3})$$

$$= (1 + i\sqrt{3})(1 - i\sqrt{3}) = 1 - i^2 \cdot 3 = 4$$

$$\therefore \arg(z_1 z_2) = 0$$

আবার
$$arg(z_1) = tan^{-1} \frac{\sqrt{3}}{-1} = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

এবং
$$arg(z_2) = tan^{-1} \frac{-\sqrt{3}}{-1} = -\pi + \frac{\pi}{3} = -\frac{2\pi}{3}$$

$$\therefore \arg(z_1) + \arg(z_2) = \frac{2\pi}{3} - \frac{2\pi}{3} = 0$$

$$\therefore \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \text{ (Proved)}$$

 $z=-2-2\sqrt{3}i$ একটি জটিল রাশি।

[SB'17]

(খ) Arg(√z) নির্ণয় কর।

(\forall) Solⁿ: Arg(z) = Arg($-2 - 2\sqrt{3}i$)

$$= \tan^{-1} \left| \frac{-2\sqrt{3}}{-2} \right| - \pi = \frac{\pi}{3} - \pi = -\frac{2\pi}{3}$$

$$\therefore \operatorname{Arg}(\sqrt{z}) = \operatorname{Arg}\left(z^{\frac{1}{2}}\right) = \frac{1}{2}\operatorname{Arg}(z) = \frac{1}{2} \times \left(\frac{-2\pi}{3}\right)$$

 $=\frac{-\pi}{3}$ (Ans.)

নিজে করো

09. উদ্দীপকে: z = x + iy

[DB'22]

(ক) -1 + √3i এর মডুলাস ও আর্গ্তমেন্ট নির্ণয় কর।

[Ans: $2, \frac{2\pi}{3}$]

10. (ক) $6-2\sqrt{3}$ i জটিল সংখ্যার মডুলাস ও আর্গুমেন্ট নির্ণয় কর।

[Ctg.B'22] [Ans: $4\sqrt{3}, -\frac{\pi}{6}$]

11. (ক) z = -4 + 4i এর মড়ুলাস ও মুখ্য আর্গুমেন্ট নির্ণয় কর।

[RB'22] [Ans: $4\sqrt{2}, \frac{3\pi}{4}$]

12. $z_1 = 1 + ia, z_2 = a + i;$

[BB'22]

(খ) $a=\sqrt{3}$ হলে দেখাও যে, $\arg\left(\frac{z_1}{z_2}\right)=\arg(z_1)-\arg(z_2)$.

 উদ্দীপক-১: z = −1 + i একটি জটিল সংখ্যা। [CB'22]

(খ) উদ্দীপক-১ এ উল্লিখিত জটিল সংখ্যার মডুলাস ও আর্গুমেন্ট [Ans: $\sqrt{2}, \frac{3\pi}{4}$]

আর্গন্ড চিত্রে দেখাও।

14. (ক) i – √3 এর আর্গ্রমেন্ট নির্ণয় কর।

[MB'22] [Ans: $\frac{5\pi}{4}$]

15. (ক) −4 − 4i জটিল সংখ্যার আর্গুমেন্ট নির্ণয় কর।[Ctg.B'19]

 $[Ans: -\frac{3\pi}{4}]$

16. উদ্দীপক: z = -2 + 2i একটি জটিল সংখ্যা [CB'19]

[Ans: $\frac{3\pi}{4}$] (ক) z এর মুখ্য আর্গুমেন্ট বের কর।

17. (ক) $\frac{1}{2-i}$ এর আর্গুমেন্ট নির্ণয় কর। [CB'17] [Ans: $\tan^{-1}\left(\frac{1}{2}\right)$]

Type-03: অনুবন্ধী জটিল সংখ্যা সংক্রান্ত

* Concept

z = x + iy জটিল সংখ্যার অনুবন্ধী, $\bar{z} = x - iy$

অনুবন্ধী জটিল সংখ্যার কিছু গুরুত্বপূর্ণ গাণিতিক ধর্ম:

কোনো জটিল সংখ্যা z এবং এর অনুবন্ধী জটিল সংখ্যা z এর বাস্তব অংশদ্বয় পরস্পর সমান হবে এবং কাম্পনিক অংশদ্বয় পরস্পর একই মান কিন্তু বিপরীত চিহ্নবিশিষ্ট হবে। অর্থাৎ Re(z) = Re(z) এবং Im(z) = — Im(z)

Educationblog2

- কোনো জটিল সংখ্যা z এর অনুবন্ধী জটিল সংখ্যা \overline{z} হলে, \overline{z} এর অনুবন্ধী জটিল সংখ্যা হবে z। অর্থাৎ, $\overline{(\overline{z})}=z$ (ii)
- $z=\bar{z}$ হলে, $z\in\mathbb{R}$ । অর্থাৎ, z কে অবশাই সম্পূর্ণ বাস্তব হতে হবে। (111)
- (iv) $z=-\bar{z}$ বা $z+\bar{z}=0$ হলে, z হয় 0 হবে, নতুবা সম্পূর্ণ কাম্পনিক সংখ্যা হবে। $[z\in i\mathbb{R}]$
- $\overline{(z_1+z_2)}=\overline{z_1}+\overline{z_2}$; যেখানে z_1 ও z_2 দুইটি জটিল সংখ্যা। (v)
- (vi) $z + \overline{z} = 2Re(z) = 2Re(\overline{z})$
- (vii) $z \overline{z} = 2lm(z) = -2lm(\overline{z})$

সূজনশীল প্রশ্ন (ক, খ ও গ)

্রা (ক) $z_1 = 3 + 3i, z_2 = 4 + 5i$ হলে দেখাও যে,

 $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

(ক) Solⁿ: দেওয়া আছে, $z_1 = 3 + 3i$ এবং $z_2 = 4 + 5i$

 $\therefore \bar{z}_1 = 3 - 3i \dots \dots (i)$ এবং $\bar{z}_2 = 4 - 5i \dots \dots (ii)$ \therefore L. H. S = $\overline{z_1 + z_2} = \overline{(3+4) + (3+5)i}$

 $= \overline{7 + 8i} = 7 - 8i = (3 - 3i) + (4 - 5i)$

 $=\overline{z_1} + \overline{z_2}$ [(i) ও (ii) হতে] = R. H. S [Showed]

📭 উদ্দীপক: z = -2 + 2i একটি জটিল সংখ্যা

(গ) $\bar{z} = (a^2 + 2) + ib$ সমীকরণটির মৃশ a এবং b এর প্রকৃতি নিরূপণ কর।

(1) Solⁿ: $\bar{z} = (a^2 + 2) + ib \Rightarrow -2 - 2i = (a^2 + 2) + ib$

 $a^2 + 2 = -2$, b = -2; $a^2 = -4$ $a = \pm 2i$;

কাজেই a জটিল মূল, b বাস্তব মূল। (Ans.)

Type-04: মূল নির্ণয় সংক্রান্ত

Concept

Case - (a): বর্গমূল নির্ণয় সংক্রান্ত সমস্যা

জটিল সংখ্যার বর্গমূল নির্ণয়ের পদ্ধতি:

Step-01: যেখানে i থাকবে সেখানে 2 নিয়ে আসতে হবে।

Step-02: 2 এর সাথে যা থাকবে তাকে দুইটি উৎপাদকের গুণফল আকারে এমনভাবে প্রকাশ করতে হবে যেন তাদের বর্গের যোগফল

Step-03: প্রদত্ত জটিল সংখ্যার বাস্তব অংশ যদি ধনাত্মক [+ve] হয় তবে ছোট উৎপাদকের সাথে i আর যদি বাস্তব অংশ ঋণাত্মক [-ve] হয় তবে বড় উৎপাদকের সাথে i নিতে হবে। [বাস্তব অংশ শূন্য হলে সেক্ষেত্রে যেকোনোটির সাথে i নিলে হবে, কারণ উৎপাদকদ্বয় সমান

Step-04: উৎপাদক দূটির মধ্যে যার সাথে i থাকবে না সেটাকে a এবং যার সাথে i থাকবে সেটাকে b বিবেচনা করে $(a+b)^2$ বা, (a − b)2 এর সূত্র প্রয়োগ হবে।

Shortcut for MCQ: b > 0 হলে, a + ib এর বর্গমূল = $\pm \frac{1}{\sqrt{2}}(\sqrt{r+a}+i\sqrt{r-a})$ [যেখানে, $r=\sqrt{a^2+b^2}$]

b > 0 হলে, a - ib এর বর্গমূল $= \pm \frac{1}{\sqrt{2}} (\sqrt{r + a} - i\sqrt{r - a})$ [যেখানে, $r = \sqrt{a^2 + b^2}$]

Case – (b): ঘনমূল সম্বলিত

 $\sqrt[3]{$ রাশি = x ধরে সমাধান করতে হবে।

Note: এককের 3 টি ঘনমূল $1,\omega,\omega^2$ [যেখানে, $\omega=\frac{-1+\sqrt{3}i}{2}$, $\omega^2=\frac{-1-\sqrt{3}i}{2}$]

(i) $\omega^3 = 1$

(ii) $1 + \omega + \omega^2 = 0$

Shortcut for MCQ: a > 0 হলে,

- (i) $\sqrt[3]{a^3} = a, a\omega, a\omega^2$
- (ii) $\sqrt[3]{-a^3} = -a, -a\omega, -a\omega^2$
- (iii) $\sqrt[3]{-a^3i} = ai$, $ai\omega$, $ai\omega^2$
- (iv) $\sqrt[3]{a^3i} = -ai$, $-ai\omega$, $-ai\omega^2$

HSC প্রমুব্যাংক ২০২৫

Educationblog24.com

উচ্চত্তর গণিত ২য় পত্র : অধ্যায়-০৩

Case - (c): চতুৰ্মূল সম্বলিত

⁴√রাশি = x ধরে করতে হবে।

Shortcut for MCQ: a > 0 হলে, (i) $\sqrt[4]{-a^4} = \pm \frac{a}{\sqrt{2}} (1 \pm i)$

(ii) $\sqrt[4]{a^4} = \pm a, \pm ai$

Case – (d): ষষ্ঠমূল সম্বলিত

⁶√রাশি = x ধরে করতে হবে।

Note: $\sqrt[6]{1} = \pm 1, \pm \omega, \pm \omega^2$;

Shortcut for MCQ: a > 0 হলে, (i) $\sqrt[6]{a^6} = \pm a, \pm a\omega, \pm a\omega^2$

(ii) $\sqrt[6]{-a^6} = \pm a, \pm ai\omega, \pm ai\omega^2$

সূজনশীল প্রশ্ন (ক, খ ও গ)

🞹 (ক) i এর বর্গমূল নির্ণয় কর।

[RB'23]

(ক) Solⁿ:
$$\sqrt{i} = \sqrt{\frac{2i}{2}} = \frac{1}{\sqrt{2}}\sqrt{1 + 2i - 1}$$

 $= \frac{1}{\sqrt{2}} \times \sqrt{1^2 + 2 \times 1 \times i + i^2}$
WINGT, $\frac{1}{\sqrt{2}} \times \sqrt{(-1)^2 + 2(-1)(-i) + (-i)^2}$
 $= \frac{1}{\sqrt{2}}\sqrt{\{\pm(1+i)\}^2} = \pm \frac{1}{\sqrt{2}}(1+i)$ (Ans.)

$\mathbf{z} = \mathbf{x} + \mathbf{i} \mathbf{y}$ জটিল সংখ্যাটির অনুবন্ধী জটিল সংখ্যা $\mathbf{\bar{z}}$ ।

[SB'23]

- (ক) ∜-49 এর মান নির্ণয় কর।
- (খ) x = 2 এবং y = 2 হলে, z এর বর্গমূল নির্ণয় কর।

(
$$\mathfrak{F}$$
) Solⁿ: $\sqrt[4]{-49} = \sqrt[4]{(\pm 7i)^2} = (\pm 7i)^{\frac{1}{2}} = \sqrt{\frac{7}{2}}(\pm 2i)$
$$= \sqrt{\frac{7}{2}}(1 \pm 2i + i^2) [\because i^2 = -1]$$
$$= \sqrt{\frac{7}{2}} \cdot \sqrt{\{\pm (1 \pm i)\}^2} = \pm \sqrt{\frac{7}{2}}(1 \pm i) \text{ (Ans.)}$$

(খ) Soln: দেওয়া আছে,
$$z = x + iy$$

⇒ $z = 2 + 2i$ [$x = 2, y = 2$]

ধিরি, $\sqrt{2 + 2i} = a + ib$ ⇒ $2 + 2i = a^2 + i \cdot 2ab + i^2b^2$

⇒ $2 + 2i = a^2 - b^2 + i \cdot 2ab$

বাস্তব ও কম্পনিক অংশ সমীকৃত করে পাই,

 $a^2 - b^2 = 2 \dots \dots (i)$ ও $2ab = 2 \dots (ii)$

∴ $(a^2 + b^2)^2 = (a^2 - b^2)^2 + 4a^2b^2 = 2^2 + 2^2 = 8$

∴ $a^2 + b^2 = 2\sqrt{2} \dots (iii)$

[∴ a^2 এবং b^2 এর প্রত্যেকটি ধনাত্মক]

$$\therefore a = \pm \sqrt{1 + \sqrt{2}}$$
 এবং $2b^2 = 2\sqrt{2} - 2$

$$\therefore b = \pm \sqrt{\sqrt{2} - 1}$$

: ab ধনাত্মক, সূতরাং a এবং b একই চিহ্নযুক্ত হবে।

$$\therefore \sqrt{2+2i} = \pm \left(\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1i}\right) \text{ (Ans.)}$$

$$\mathbf{z_1} = -1 - \sqrt{3}\mathbf{i}$$

[BB'23]

(ক) z1 এর বর্গমূল নির্ণয় কর।

(ক) Solⁿ:
$$z_1 = -1 - \sqrt{3}i = 2 \times \frac{-1 - \sqrt{3}i}{2} = 2\omega^2$$

 $\therefore z_1$ এর বর্গমূল $= \pm \sqrt{2\omega^2} = \pm \sqrt{2}\omega$
 $= \pm \sqrt{2} \times \frac{-1 + \sqrt{3}i}{2} = \pm \left(\frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2}i\right)$ (Ans.)

🎹 দৃশ্যকম্প-১: q = 729

[CB'23]

(গ) ⁶√-q এর মান নির্ণয় কর।

ধরি,
$$\sqrt[6]{-q} = x \Rightarrow -729 = x^6 \Rightarrow x^6 = 729i^2$$

$$\Rightarrow (x^3)^2 = (27i)^2 \Rightarrow x^3 = \pm 27i \Rightarrow \frac{x^3}{\pm 27i} = 1$$

$$\Rightarrow \left(\frac{x}{+2i}\right)^3 = 1 \Rightarrow \frac{x}{+3i} = \sqrt[3]{1}$$

$$\Rightarrow \frac{x}{\pm 3i} = 1, \omega, \omega^2 \left[\omega = \frac{-1+\sqrt{-3}}{2}; \omega^2 = \frac{-1-\sqrt{-3}}{2} \right]$$

$$\therefore x = \pm 3i, \pm 3\omega i, \pm 3\omega^2 i \text{ (Ans.)}$$

[Ctg.B'22]

(খ) দৃশ্যকম্প-১ থেকে z + ই এর ঘনমূল নির্ণয় কর।

(খ) Solⁿ:
$$z + \overline{z} = 32 + i + 32 - i = 64$$

ধরি, $z + \bar{z}$ এর ঘনমূল x

$$3\sqrt{z+z} = x \Rightarrow \sqrt[3]{64} = x \Rightarrow x^3 - 64 = 0$$

$$\Rightarrow \frac{x^3}{64} = 1 \Rightarrow \left(\frac{x}{4}\right)^3 = 1 \Rightarrow \frac{x}{4} = 1, \omega, \omega^2$$

 $\therefore x = 4, 4\omega, 4\omega^2$

∴ নির্ণেয় ঘনমূল: 4, 4ω, 4ω² (Ans.)

06.
$$a = 4, b = \sqrt{-4}, z = \frac{1}{n}(l + im)$$
 একটি জটিল সংখ্যা।

(খ) √a + b निर्ণয় কর।

IRB'22

(গ) $l = m = 3, n = \sqrt{18}$ হলে |z| এর ঘনমূলগুলোর যোগফল নির্ণয় কর।

HSC প্রবার্যাংক ২০২৫

- (4) Sol^a: 4f3, $\sqrt{a+b} = \sqrt{4+\sqrt{-4}} = \sqrt{4+2i} = x+iy$ $(x + iy)^2 = 4 + 2i \Rightarrow x^2 - y^2 + 2xyi = 4 + 2i$ $x^2 - y^2 = 4 \dots (i)$; $2xy = 2 \dots (ii)$ $x^2 + y^2 = \sqrt{(x^2 - y^2)^2 + 4x^2y^2} = \sqrt{16 + 4}$ $= 2\sqrt{5} \dots \dots (iii)$
 - (i) ও (iii) যোগ করে পাই, 2x² = 4 + 2√5 \Rightarrow x² = 2 + $\sqrt{5}$ \Rightarrow x = $\pm\sqrt{2}$ + $\sqrt{5}$ (iii) হতে (i) বিয়োগ করে পাই, $2y^2 = 2\sqrt{5} - 4$ \Rightarrow $v^2 = \sqrt{5} - 2 \Rightarrow v = \pm \sqrt{\sqrt{5} - 2}$ $\therefore \sqrt{a+ib} = \pm \sqrt{\sqrt{5}+2} + \left(\pm \sqrt{\sqrt{5}-2}\right)i$ $= \pm \left(\sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5} - 2i}\right) \text{ (Ans.)}$
- (f) $Sol^n: Z = \frac{1}{n}(l + im) = \frac{1}{\sqrt{18}}(3 + 3i) = \frac{1}{3\sqrt{2}}(3 + 3i)$ $=\frac{1}{\sqrt{2}}(1+i)$: $|z|=\frac{1}{\sqrt{2}}\sqrt{1^2+1^2}=1$ ধরি, $\sqrt[3]{|z|} = x \Rightarrow x^3 - |z| = 0 \Rightarrow x^3 = 1$ \Rightarrow x = 1, ω , $\omega^2 : 1 + \omega + \omega^2 = 0$: নির্ণেয় যোগফল 0 (Ans.)
- $f(x) = \frac{2x}{1+x^2}$

ISB'221

- (খ) f(1) এর ঘনমূল নির্ণয় কর।
- (4) $Sol^n: f(1) = \frac{2}{1+1} = \frac{2}{2} = 1$ এখন, ধরি, $\sqrt[3]{f(1)} = x \Rightarrow \sqrt[3]{1} = x$ $\Rightarrow 1 = x^3 \Rightarrow x^3 - 1 = 0 \Rightarrow (x - 1)(x^2 + x + 1) = 0$ এখন, x - 1 = 0বা, $x^2 + x + 1 = 0$ $\therefore x = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{-3}}{2}$ ∴ f(1) এর ঘনমূলসমূহ: $1, \frac{-1 \pm \sqrt{3}i}{2}$ (Ans.)
- y দুশ্যকপ্প-১: $z_1 = 1 3i, z_2 = 1 i$ [Din.B'22] (थ) मृश्यक्ल-> इर्ड √2122 निर्भय कत्र।
- (v) $S_0I^n: Z_1Z_2 = (1-3i)(1-i) = 1-3i-i+3i^2$ = -2 - 4iধরি, $\sqrt{z_1 z_2} = x + iy$ $\Rightarrow z_1 z_2 = (x + iy)^2 = x^2 - y^2 + 2xyi$ \Rightarrow -2 - 4i = $x^2 - y^2 + 2xyi$ $x^2 - y^2 = -2 \dots (i)$ এবং 2xy = -4 (ii) $x^2 + y^2 = \sqrt{(x^2 - y^2)^2 + 4x^2y^2}$ $=\sqrt{4+16}=\sqrt{20}$ (iii) (iii) ও (i) যোগ করে পাই. $2x^2 = -2 + 2\sqrt{5} \Rightarrow x = \pm \sqrt{-1 + \sqrt{5}}$ (iii) হতে (i) বিয়োগ করে পাই, 2y² = 2 + 2√5

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৩

$$\Rightarrow y = \pm \sqrt{1 + \sqrt{5}}$$

$$\therefore \sqrt{z_1 z_2} = x + iy = \left(\pm \sqrt{-1 + \sqrt{5}}\right) - \left(\pm \sqrt{1 + \sqrt{5}}\right) i$$

$$= \pm \left(\sqrt{-1 + \sqrt{5}} - i\sqrt{1 + \sqrt{5}}\right) \text{ (Ans.)}$$

- ্যাক প্ৰাকল্প ১: z = 2 + 4i i² (খ) দৃশ্যকম্প-১ এ z এর বর্গমূলের মড়ুলাস সর্বদা √5 সঠিক কী না যাচাই কর। যেখানে z হচ্ছে z এর অনুবদ্ধী জটিল সংখ্যা।
- (খ) Sol দেওয়া আছে, z = 2 + 4i i2 = 2 + 4i + 1 = 3 + 4i \bar{z} , z এর অনুবন্ধী জটিল সংখ্যা $|\cdot|$ $\bar{z}=3-4i$ এখন, 3 - 4i = 22 - 4i + (i)2 = (2 - i)2 $\sqrt{z} = \sqrt{3-4i} = \pm(2-i) = 2-i, -2+i$ 2 - i এর মড়লাস = $\sqrt{2^2 + (-1)^2} = \sqrt{5}$ -2 + i এর মড়লাস = $\sqrt{(-2)^2 + 1^2} = \sqrt{5}$ মন্তব্যটি সঠিক।
- $A = \sqrt[3]{-1} + \sqrt[3]{-i}$ যেখানে, i একটি কাষ্পনিক সংখ্যার [মর্মনসিংহ গার্লস ক্যাভেট কলেজ] (খ) A এর মান নির্ণয় কর।
- (খ) Soln-দেওয়া আছে, A = ³√-1 + ³√-i ধরি. $a = \sqrt[3]{-1} \Rightarrow a^3 = -1 \Rightarrow a^3 + 1 = 0$ \Rightarrow (a + 1)(a² - a + 1) = 0 হয়, a + 1 = 0 : a = -1 অথবা a2 - a + 1 = 0 $\therefore a = \frac{-(-1)\pm\sqrt{(-1)^2-4}}{2} = \frac{1\pm\sqrt{-3}}{2} = \frac{1\pm\sqrt{3}i}{2}$ আবার, ধরি, $b = \sqrt[3]{-i} \Rightarrow b^3 = -i = i^3$ \Rightarrow b³ - i³ = 0 \Rightarrow (b - i)(b² + ib + i²) = 0 $\Rightarrow (b-i)(b^2+ib-1)=0$ হয়, b - i = 0 ∴ b = i অথবা, b² + ib - 1 = 0 $\therefore b = \frac{-i \pm \sqrt{i^2 + 4}}{2} = \frac{-i \pm \sqrt{-1 + 4}}{2} = \frac{-i \pm \sqrt{3}}{2}$ এখন, a = -1 হলে, $b = i, \frac{-i \pm \sqrt{3}}{2}$ $A = -1 + i, -1 + \frac{-i \pm \sqrt{3}}{2}$ (Ans.) আবার, $a = \frac{1 \pm \sqrt{3}i}{2}$ হলে, b = i, $\frac{-i \pm \sqrt{3}}{2}$ $\therefore A = \frac{1 \pm \sqrt{3}i}{2} + i, \frac{1 \pm \sqrt{3}i}{2} + \frac{-i \pm \sqrt{3}}{2} \text{ (Ans.)}$
- f(x,y) = x + iy[আদমজী ক্যান্টনমেন্ট কলেজ, ঢাকা] (क) f(0, i2) এর বর্গমূল নির্ণয় কর।
- (ক) Soln:দেওয়া আছে, f(x, y) = x + iy $f(0, i^2) = i^3 = -i [: i^2 = -1]$ $=\frac{1}{2}(-2i)=\frac{1}{2}(1-2i-1)$ $=\frac{1}{2}(1-2i+i^2)=\frac{1}{2}(1-i)^2$ অভএব, $\sqrt{t(0,i^2)} = \pm \frac{1}{\sqrt{2}}(1-i)$ (Ans.)

নিজে করো

12. (Φ) $-3 + 4√{-1}$ এর বর্গমূল নির্ণয় কর। [Din.B'23]

[Ans: $\pm (1 + 2i)$]

(ক) ¹√-2401 এর মান নির্ণয় কর।

[MB'23]

[Ans: $\pm \frac{7}{\sqrt{2}} (1 \pm i)$]

(ক) √-1 এর বর্গমূল নির্ণয় কর।

[BB'22]

[Ans: $\pm \frac{1}{\sqrt{2}} (1+i)$]

15. $M = -5 + 12\sqrt{-1}$

[JB'22, RB'19]

(খ) M এর বর্গমূল নির্ণয় কর।

[Ans: $\pm 2 + 3i$]

ক) z = i হলে z এর বর্গমূল নির্ণয় কর।

[CB'22]

- [Ans: $\pm \frac{1}{\sqrt{2}}(1-i)$]
- 17. (ক) −2i এর বর্গমূল নির্ণয় কর।[MB'22] [Ans: ±(1 − i)]

18. (ক) মান নির্ণয় কর: ∛i

[Ctg.B'19]

[Ans: -i, $-i\omega$, $-i\omega^2$]

- 19. (ক) 5i এর বর্গমূল নির্ণয় কর।[SB'19] [Ans: $\pm \sqrt{\frac{5}{2}} (1+i)$]
- 20. b = 8.

[Din.B'19] [Ans: $\pm (2 + 2i)$]

- (ক) bi এর বর্গমূল নির্ণয় কর।
- 21. (ক) 15 + 8i বর্গমূল নির্ণয় কর। [BB'17] [Ans: ±(4+i)]
- 22. (क) 1 এর ঘনমূল নির্ণয় কর। [BB'17] [Ans:1, ω, ω2]
- 23. $z_1 = 2 + 3i, z_2 = 1 + 2i$ [CB'17] (খ) উদ্দীপকের আলোকে $\overline{z_1}-\overline{z_2}$ এর বর্গমূল নির্ণয় কর।
 - [Ans: $\pm \frac{1}{\sqrt{2}} \left(\sqrt{\sqrt{2}+1} i\sqrt{\sqrt{2}-1} \right)$]

Type-05: i এর ঘাত এবং ধারা সংক্রান্ত

Concept

- $(i) \quad i^{4n+1}=i^1=i, \, i^{4n+2}=i^2=-1, \, i^{4n+3}=i^3=-i, \, i^{4n}=i^4=1$
- (ii) a, b, c, d চারটি ক্রমিক পূর্ণ সংখ্যা হলে, $i^a + i^b + i^c + i^d = 0$
- (iii) a ও b দুইটি ক্রমিক বিজোড় সংখ্যা হলে, $i^a + i^b = 0$
- (iv) a ও b দুইটি ক্রমিক জোড় সংখ্যা হলে, $i^a + i^b = 0$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

गृन्। कृनाकल्ल: z = r cos θ + i r sin θ.

[CB'23]

(ক) $(1-i)^{-2} - (1+i)^{-2}$ এর মান নির্ণয় কর।

(খ) দৃশ্যকম্পে $\theta = 45^{\circ}$ ও r = 1 হলে,

 ${f z}^8 + {f z}^6 + {f z}^4 + {f z}^2 + {f 1}$ এর মান নির্ণয় কর।

(Φ) Solⁿ: $(1-i)^{-2} - (1+i)^{-2} = \frac{1}{(1-i)^2} - \frac{1}{(1+i)^2}$ $= \frac{1}{1 - 2i + i^2} - \frac{1}{1 + 2i + i^2} = \frac{1}{-2i} - \frac{1}{2i} = \frac{-1 - 1}{2i} = -i^{-1}$

 $=\frac{-1}{i}=\frac{(-1)\times i}{i\times i}=-(-i)=i$ (Ans.)

Solⁿ: দেওয়া আছে, $z = r \cos \theta + i r \sin \theta$ যদি, $\theta = 45^{\circ}$ এবং r = 1 হয়, $z = 1 \cos 45^\circ + i \times 1 \sin 45^\circ = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$

$$\therefore z^{2} = \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{2} = \frac{1}{2} + 2 \times \frac{i}{2} + \frac{i^{2}}{2} = i$$

- $z^{8} + z^{6} + z^{4} + z^{2} + 1 = i^{8} + i^{6} + i^{4} + i^{2} + 1$
- $=(i^4)^2+(i^3)^2+(i^2)^2+i^2+1$
- $=(1)^2+(-i)^2+(-1)^2+(-1)+1$
- = 1 + (-1) + 1 = 1 (Ans.)

Type-06: ω এর ঘাত এবং ধারা সংক্রান্ত

(Concept

- (i) $\omega^{3n} = (\omega^3)^n = 1^n = 1$
- (ii) $\omega^{3n+1} = \omega^{3n} \cdot \omega^1 = (\omega^3)^n \cdot \omega^1 = 1^n \cdot \omega = \omega$
- (iii) $\omega^{3n+2} = \omega^{3n} \cdot \omega^2 = 1 \cdot \omega^2 = \omega^2$
- ∴ ω এর ঘাতকে 3 দ্বারা ভাগ করলে ভাগশেষ থাকলে, ω এর ঘাতের মান = ω^{ভাগশেষ}
- ω এর তিনটি ক্রমিক ঘাতের যোগফল =0 অর্থাৎ, a,b,c তিনটি ক্রমিক সংখ্যা হলে, $\omega^a+\omega^b+\omega^c=0$

সুজনশীল প্ৰশ্ন (ক, খ ও গ)

- (৯) এককের একটি কাম্পানিক ঘনমূল ω হলে, দেখাও যে, $\left(1+\omega+\frac{3}{2}\right)^{\circ}=64$ [DB'23]
- (ক) Sol*: এককের একটি কাম্পানিক ঘনমূল ω হলে, আমরা জানি, $1 + \omega + \omega^2 = 0$ এবং $\omega^3 = 1$ L.H.S = $\left(1 + \omega + \frac{3}{\omega}\right)^6 = \left(-\omega^2 + \frac{1}{\omega}\right)^6 = \left(\frac{-\omega^3 + 3}{\omega}\right)^6$ = $\left(\frac{-1+3}{\omega}\right)^6 = \left(\frac{2}{\omega}\right)^6 = \frac{2^6}{\omega^6} = \frac{64}{(\omega^3)^2} = \frac{64}{1^2}$ = 64 = R.H.S (Showed)
- দৃশাকম্প: x³ 1 = 0 সমীকরণের জটিল মূল্যয় a ও b.
 (গ) দৃশাকম্প হতে প্রমাণ কর যে, an + bn = 2 অথবা -1,
 যখন n এর মান যথাক্রমে 3 ঘারা বিভাজ্য অথবা অন্য
 কোনো পূর্ণ সংখ্যা। [SB'23: BB'23, 19]
- পো Sell: $x^3-1=0$; $x=1,\omega,\omega^2$ x এর দৃটি মূল $a=\omega,b=\omega^2$ অর্থাং, $a^n+b^n=2$; $\omega^n+\omega^{2n}=2\dots\dots$ (i)
 এখন, প্রশ্নমতে, n হলো 3 ছারা বিভাজা, m যদি কোনো
 পূর্ণসংখ্যা হয় তাহলে n=3m $\therefore \omega^n+(\omega^2)^n=\omega^{3m}+(\omega^2)^{3m}$ $=\omega^{3m}+\omega^{6m}=1+1=2$ [$m\in\mathbb{Z}$]
 আবার, $m\in\mathbb{Z}$, $n\in\mathbb{Z}$ এবং n যদি 3 ছারা বিভাজা না হয়, $n=3m+1\Rightarrow\omega^n+(\omega^2)^n=\omega^{3m+1}+\omega^{6m+2}$ $=\omega^{3m}\cdot\omega+\omega^{6m}\cdot\omega^2=\omega+\omega^2$ [$m\in\mathbb{Z}$] =-1 [যেহেডু $1+\omega+\omega^2=0$]
 অথবা, $n=3m+2\Rightarrow\omega^n+(\omega^2)^n=\omega^{3m+2}+\omega^{6m+4}$ $=\omega^2+\omega^4=\omega^2+\omega$ [$m\in\mathbb{Z}$] =-1 [প্রমাণিত]
- 2x = -1 + $\sqrt{-3}$, 2y = -1 $\sqrt{-3}$. [Din.B'23] (গ) প্রমাণ কর যে, 3x⁴ + x³y + xy² + y⁴ = -3.
- (গ) প্রমাণ কর যে, $3x^4 + x^3y + xy^2 + y^4 = -3$. (গ) Sol®: দেওয়া আছে, $2x = -1 + \sqrt{-3} \Rightarrow x = \frac{-1 + \sqrt{-3}}{2} = \omega$ এবং $2y = -1 - \sqrt{-3} \Rightarrow y = \frac{-1 - \sqrt{-3}}{2} = \omega^2$ এবন, $3x^4 + x^3y + xy^2 + y^4$ $= 3(\omega)^4 + \omega^3\omega^2 + \omega(\omega^2)^2 + (\omega^2)^4$ $= 3\omega^4 + \omega^5 + \omega^5 + \omega^6$ $= 3\omega + 2\omega^2 + \omega^2 = 3\omega + 3\omega^2 = 3(\omega + \omega^2)$ $= 3 \times -1 = -3$ [$\therefore 1 + \omega^2 + \omega = 0 \Rightarrow \omega^2 + \omega = -1$] (প্রমাণিত)

- $p^2 + p + 1 = 0$ সমীকরণের মূলঘ্য় $\alpha \otimes \beta$ । [MB'23 (গ) প্রমাণ কর যে, $\alpha^S + \beta^S = -1$, যখন S এর মান S ঘারা বিভাজ্য নয় এরূপ পূর্ণসংখ্যা।
- (গ) Sol": দেওয়া আছে, p² + p + 1 = 0 সমীকরণের মূলদ্বয় α ও β অর্থাৎ, α + β = −1 (i); αβ = 1 (ii) p² + p + 1 = 0 সমীকরণের মূলদ্বয় α ও β হলে, α = ω এবং β = ω² ∴ ω + ω² + 1 = 0 ধিরি, S = 3m + 1; L. H. S = α⁵ + β⁵ = (ω)³m+1 + (ω²)³m+1 = ω³m ⋅ ω + ω²³m ⋅ ω² = 1 ⋅ ω + 1 ⋅ ω² = −1 = R. H. S আবার, S = 3m + 2; L. H. S = α⁵ + β⁵ = (ω)³m+2 + (ω²)³m+2 = ω³m ⋅ ω² + ω²m ⋅ ω⁴ = 1 ⋅ ω² + 1 ⋅ ω = −1 = R. H. S ∴ α⁵ + β⁵ = −1 হেবে, যখন S এর মান 3 দ্বারা বিভাজ্য নয়, এমন কোনো পূর্ণসংখ্যা। (প্রমাণিত)
- (ক) এককের জটিল ঘনমূল ω, ω^2 হলে $\left(-1+\sqrt{-3}\right)^7+\left(-1-\sqrt{-3}\right)^7$ এর মান নির্ণয় কর। [RB'17]
- (ক) Solⁿ: আমরা জানি, এককের কাম্পনিক মূলদ্বয়, $\omega = \frac{-1+\sqrt{-3}}{2}$ এবং $\omega^2 = \frac{-1-\sqrt{-3}}{2}$ অর্থাৎ, $2\omega = -1 + \sqrt{-3}$ এবং $2\omega^2 = -1 \sqrt{-3}$ $\therefore \left(-1+\sqrt{-3}\right)^7 + \left(-1-\sqrt{-3}\right)^7 = (2\omega)^7 + (2\omega^2)^7 = 2^7\omega^7 + 2^7\omega^{14} = 128(\omega^7 + \omega^{14}) = 128(\omega + \omega^2) = 128 \times (-1) = -128 \text{ (Ans.)}$
- (ক) প্রমাণ কর যে, 1 + ω + ω² = 0 যেখানে, ω এককের ঘনমূল। [ময়য়নসিংহ গার্লস ক্যাডেট কলেজ]
- (ক) Sol": আমরা জানি, ω এককের ঘনমূল হলে, $\omega = \frac{-1+\sqrt{3}i}{2}$ এবং $\omega^2 = \frac{-1-\sqrt{3}i}{2}$ এখন, L.H.S = $1+\omega+\omega^2=1+\frac{-1+\sqrt{3}i}{2}+\frac{-1-\sqrt{3}i}{2}$ = $\frac{2-1+\sqrt{3}i-1-\sqrt{3}i}{2}=\frac{0}{2}=0=\text{R.H.S}$ $\therefore 1+\omega+\omega^2=0$ (Proved)

निष्ण करत्रा

- 07. দুশ্যকম্প-২: $2x = -1 + \sqrt{-3}$ এবং $2y = -1 \sqrt{-3}$
 - (1) $\sqrt{100}$ $\sqrt{100}$
- 08. দৃশ্যকম্প-২: এককের একটি কাম্পনিক ঘনমূল ω। [BB'19]
 - (গ) দৃশ্যকল্প-২ হতে প্রমাণ কর যে, $1 + \omega + \omega^2 = 0$.

Type-07: মান নিৰ্ণয় ও প্ৰমাণ সংক্ৰাৰ

@ Concept

একেন্তর জটিল সংখ্যার ধর্মগুলো ব্যবহার করতে হবে।

সৃজ্নশীল প্রশ্ন (ক, খ ও গ)

[RB'23] \mathbf{q} पुनाकल्प-२: $\mathbf{g}(\mathbf{x}) = \mathbf{l} + \mathbf{m}\mathbf{x} + \mathbf{n}\mathbf{x}^2$ (গ) দৃশ্যকল্প-২-এ, l+m+n=0 হলে প্রমাণ কর যে, $\{g(\omega)\}^3 + \{g(\omega^2)\}^3 = 27lmn$

$$Z_1=1-ix$$
 এবং $Z_2=a+ib$ যেখানে $a,b\in\mathbb{R}$ [Ctg.B'23]

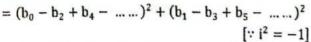
(খ) প্রমাণ কর যে, x এর একটি বাস্তব মান $\frac{z_1}{\overline{z}_4}=\overline{Z}_2$ সমীকরণকে সিদ্ধ করে যেখানে $a^2+b^2=1$

(খ) Soln:দেওয়া আছে,
$$Z_1 = 1 - ix$$

$$Z_2 = a + ib এবং $a^2 + b^2 = 1$
এখন, প্রশ্নেতে $\frac{Z_1}{\overline{Z}_1} = \overline{Z}_2 \Rightarrow \frac{1-ix}{1+ix} = a - ib \Rightarrow \frac{1+ix}{1-ix} = \frac{1}{a-ib}$

$$\Rightarrow \frac{1+ix-1+ix}{1+ix+1-ix} = \frac{1-a+ib}{1+a-ib} \Rightarrow ix = \frac{(1-a+ib)(1+a+ib)}{(1+a-ib)(1+a+ib)}$$

$$\Rightarrow ix = \frac{(1+ib)^2-a^2}{(1+a)^2-(ib)^2} \Rightarrow ix = \frac{1+2ib-a^2-b^2}{1+2a+a^2+b^2}$$


$$\Rightarrow ix = \frac{1+2ib-1}{1+2a+1} \Rightarrow ix = \frac{2ib}{2(1+a)} \Rightarrow x = \frac{b}{1+a}$$
যা একটি বাস্তব সংখ্যা [যেহেতু $a,b, \in \mathbb{R}$] (প্রমাণিত)$$

f(x) =
$$x^2 + x + 1$$
 [Ctg.B'23]
(খ) $\{f(x)\}^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$
হলে প্রমাণ কর যে, $a_0 + a_3 + a_6 + \dots = 3^{n-1}$

- ্রাকল্প-২: $(1+y)^n = b_0 + b_1 y + b_2 y^2 + b_3 y^3 + b_3 y^3 + b_4 y^3 + b_5 y^3$ $\cdots + b_n y^n$. (গ) দৃশ্যকম্প-২ এর সমীকরণ হতে দেখাও যে, $(b_0 - b_2 + b_4 - \dots)^2 = (b_0 + b_1 + b_2 + \dots)^2$ $b_3 + \dots \dots) - (b_1 - b_3 + b_5 - \dots)^2$
- (1) Solⁿ: $(1 + y)^n = b_0 + b_1 y + b_2 y^2 + b_3 y^3 + \dots b_n y^n$ y = 1, i ও - i বসিয়ে পাই, $(1+1)^n = b_0 + b_1 + b_2 + b_3 + \dots + b_n \dots + b_n \dots$ $(1+1)^n = (1-i^2)^n = (1+i)^n (1-i)^n \dots (ii)$ এখন, $(1+i)^n = b_0 + b_1 i + b_2 i^2 + b_3 i^3 + b_4 i^4 +$ $b_5 i^5 + \dots \dots$ $= b_0 + b_1 i - b_2 - b_3 i + b_4 + b_5 i + \dots \dots$ $= (b_0 - b_2 + b_4 - \dots) + (b_1 - b_3 + b_5 - \dots)$ আবার, $(1-i)^n = b_0 + b_1(-i) + b_2(-i)^2 + b_3(-i)^3$ $+b_4(-i)^4+b_5(-i)^5+\cdots$ $= b_0 - b_1 i - b_2 + b_3 i + b_4 - b_5 i + \dots \cdots$ $= (b_0 - b_2 + b_4 - \dots) - (b_1 - b_3 + b_5 - \dots)$ $\therefore (1 + 1)$ $(b_1 - b_3 + b_5 \dots)i$ $\{(b_0 - b_2 + b_4 - \dots)i\}$

 $(b_1 - b_3 + b_5 - \dots)i$

HSC প্রশ্নব্যাংক ২০২৫

$$\Rightarrow (1+1)^{n} = (b_{0} - b_{2} + b_{4} - \dots \dots)^{2} \\ + (b_{1} - b_{3} + b_{5} - \dots \dots)^{2} [(ii) \text{ Evs}]$$

$$\Rightarrow b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots = (b_{0} - b_{2} + b_{4} - \dots \dots)^{2} + (b_{1} - b_{3} + b_{5} - \dots \dots)^{2} [(i) \text{ Evs}]$$

$$\therefore (b_{0} - b_{2} + b_{4} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + b_{3} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + b_{2} + \dots \dots)^{2} = (b_{0} + b_{1} + \dots \dots)^{2} = (b_{0} + \dots \dots)^{2} = ($$

......) - $(b_1 - b_3 + b_5 -)^2$ (Showed) (ক) $a + ib = e^{i\theta}$ হলে দেখাও যে, $a^2 + b^2 = 1$ 05.

[Ctg.B'22]

08.

- (\mathfrak{F}) Solⁿ: $a + ib = e^{i\theta} \Rightarrow a + ib = \cos\theta + i\sin\theta$ \Rightarrow |a + ib| = |cos θ + i sin θ | $\Rightarrow \sqrt{a^2 + b^2} = \sqrt{\cos^2 \theta + \sin^2 \theta} \Rightarrow \sqrt{a^2 + b^2} = 1$ $a^2 + b^2 = 1$ (Showed)
 - $\mathbf{z}_2 = \mathbf{a} + \mathbf{i}\mathbf{b}$ এবং $\mathbf{z}_3 = \mathbf{x} + \mathbf{i}\mathbf{y}$ দুইটি জটিল সংখ্যা। [MB'22]
- (গ) $\sqrt[3]{z_2} = z_3$ হলে প্রমাণ কর যে, $|z_3| = \sqrt{\frac{b}{2v} \frac{a}{2x}}$. (গ) Soln: দেওয়া আছে, z₂ = a + ib, z₃ = x + iy
- প্রশ্নতে, $\sqrt[3]{z_2} = z_3 \Rightarrow z_2 = (z_3)^3$ \Rightarrow a + ib = $(x + iy)^3 = x^3 + 3x^2yi + 3xy^2i^2 + y^3i^3$ $= x^3 + 3x^2yi - 3xy^2 - y^3i = (x^3 - 3xy^2) +$ $(3x^2y - y^3)i$ $\therefore a = x^3 - 3xy^2 \therefore b = 3x^2y - y^3$ $=x^2+y^2=(\sqrt{x^2+y^2})^2=(|x+iy|)^2=(|z_3|)^2$ $\therefore |z_3| = \sqrt{\frac{b}{2y} - \frac{a}{2x}} \text{ (Proved)}$
- দৃশ্যকম্প-১: $p(x) = a + bx + cx^2$ 07. (খ) দৃশ্যকম্প-১ এর সাহায্যে যদি $\{p(\omega)\}^3 + \left\{p\left(\frac{1}{\omega}\right)\right\}^3 = 0$ হয়, তবে দেখাও যে, $a = \frac{1}{2}(b + c)$ অথবা $c = \frac{1}{2}(a + b)$.

Soln: এখানে, $\{p(\omega)\}^3 = \{a + b\omega + c\omega^2\}^3$

আর, $\left\{p\left(\frac{1}{\omega}\right)\right\}^3 = \left(a + \frac{b}{\omega} + \frac{c}{\omega^2}\right)^3 = (a\omega^2 + b\omega + c)^3$ প্রশাতে, $(a + b\omega + c\omega^2)^3 + (a\omega^2 + b\omega + c)^3 = 0$ $\Rightarrow (a + b\omega + c\omega^2)^3 = -(a\omega^2 + b\omega + c)^3$ $\Rightarrow -\frac{a+b\omega+c\omega^2}{a\omega^2+b\omega+c} = 1, \omega, \omega^2$ 1 হলে, $-a - b\omega - c\omega^2 = a\omega^2 + b\omega + c$ $\Rightarrow a(1+\omega^2) + 2b\omega + c(1+\omega^2) = 0$ $\Rightarrow -a\omega + 2b\omega - c\omega = 0 \Rightarrow 2b = c + a : b = \frac{c+a}{2}$ $\omega \in \mathbb{R}, -a - b\omega - c\omega^2 = a + b\omega^2 + c\omega : a = \frac{b+c}{a}$ ω^2 হলে, $-a - b\omega - c\omega^2 = a\omega + b + c\omega^2$ $\therefore c = \frac{a+b}{a}$ (Showed)

(ক) $x + iy = \sqrt{\frac{p+iq}{r+is}}$ হলে দেখাও, $(x^2 + y^2)^2 = \frac{p^2+q^2}{r^2+s^2}$

- (ক) Sol": x + iy এর জটিল অনুবন্ধী $x iy : x iy = \sqrt{\frac{p iq}{r is}}$ $\therefore (x + iy)(x - iy) = \sqrt{\frac{p + iq}{r + is}} \sqrt{\frac{p - iq}{r - is}}$ $\Rightarrow x^2 + y^2 = \sqrt{\frac{p^2 - i^2 q^2}{r^2 - i^2 s^2}}$ $\Rightarrow x^2 + y^2 = \sqrt{\frac{p^2 + q^2}{r^2 + s^2}} \quad [\because i^2 = -1]$
- 09. দৃশ্যকল্প-১: $x + iy = 2e^{-i\theta}$. (খ) দৃশ্যকল্প-১ হতে প্রমাণ কর যে, $x^2 + y^2 = 4$

 $(x^2 + y^2)^2 = \frac{p^2 + q^2}{r^2 + r^2}$ (দেখানো হল)

- (খ) Soln: দেওয়া আছে, x + iy = 2e⁻ⁱ⁰ \Rightarrow x + iy = 2(cos θ - i sin θ) \Rightarrow x + iy = $2\cos\theta - 2i\sin\theta$ বাস্তব ও কাম্পনিক সংখ্যা সমীকৃত করে পাই, x = 2cosθ এবং $y = -2\sin\theta$ এখন, $x^2 + y^2 = (2\cos\theta)^2 + (2\sin\theta)^2$ $\Rightarrow x^2 + y^2 = 4(\cos^2\theta + \sin^2\theta)$ $x^2 + y^2 = 4$ (প্রমাণিত)।
- 10. (ক) $z = \cos \theta + i \sin \theta$ হলে দেখাও যে, $\frac{2}{1+r} = 1 - i \tan \frac{\theta}{2}$ [চট্টগ্রাম সরকারি মহিলা কলেজ]
- (ক) Soln: দেওয়া আছে, z = cos θ + i sin θ L.H.S = $\frac{2}{1+z}$ = $\frac{2}{1+\cos\theta+i\sin\theta}$ = $\frac{2}{2\cos^2\frac{\theta}{2}+i2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$
 $$\begin{split} &=\frac{1}{\cos^2\frac{\theta}{2}+i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}=\frac{1}{\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)}\\ &=\frac{\frac{1}{\cos\frac{\theta}{2}}\times\left(\cos\frac{\theta}{2}-i\sin\frac{\theta}{2}\right)}{\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)\left(\cos\frac{\theta}{2}-i\sin\frac{\theta}{2}\right)}=\frac{1-i\tan\frac{\theta}{2}}{\cos^2\frac{\theta}{2}+\sin^2\frac{\theta}{2}} \end{split}$$
 $= 1 - i \tan \frac{\theta}{2} = R.H.S$ $\therefore \frac{2}{1+z} = 1 - i \tan \frac{\theta}{2}$ (দেখানো হলো)
- 11. P = (a - ib)(a + ib)(c + id)[ময়মনসিংহ গার্লস ক্যাডেট কলেজ] (গ) P = x + iy হলে, প্রমাণ কর যে, dx = cy
- Sol*: দেওয়া আছে, P = x + iy \Rightarrow (a - ib)(a + ib)(c + id) = x + iy $\Rightarrow \{a^2 - (ib)^2\}(c + id) = x + iy$ \Rightarrow (a² + b²)(c + id) = x + iy [: i² = -1] $c(a^2 + b^2) + id(a^2 + b^2) = x + iy$ এখন, বাস্তব ও কাল্পনিক অংশ সমীকৃত করে পাই, $c(a^2 + b^2) = x \dots \dots (i); d(a^2 + b^2) = y \dots \dots (ii)$ (i) ÷ (ii) করে পাই, $\frac{c(a^2+b^2)}{d(a^2+b^2)} = \frac{x}{y} \Rightarrow \frac{c}{d} = \frac{x}{y}$ ∴ dx = cy (প্রমাণিত)

06.

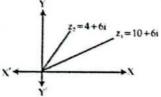
HSC প্রস্নব্যাংক ২০২৫

(ক) a = 2 + √-3 হলে, 3a⁴ − 17a³ + 41a² − 35a + 5 এর মান কত? [নটর ডেম কলেজ, ঢাকা]

(ক) Sel*: দেওয়া আছে,
$$a = 2 + \sqrt{-3} \Rightarrow a - 2 = \sqrt{-3}$$

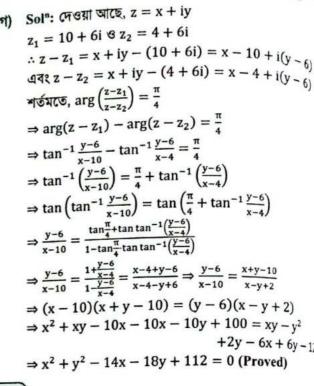
$$\Rightarrow a^2 - 4a + 4 = -3 [বর্গ করে]$$

$$\therefore a^2 - 4a + 7 = 0$$
প্রদন্ত রাশি = $3a^4 - 17a^3 + 41a^2 - 35a + 5$


$$= 3a^4 - 12a^3 + 21a^2 - 5a^3 + 20a^2 - 35a + 5$$

$$= 3a^2(a^2 - 4a + 7) - 5a(a^2 - 4a + 7) + 5$$

$$= 3a^2 \cdot 0 - 5a \cdot 0 + 5 = 5 \text{ (Ans.)}$$


13.

[সরকারি বিজ্ঞান কলেজ, ঢাকা]

(গ) z = x + iy এবং $arg\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$ হলে, প্রমাণ কর যে, $x^2 + y^2 - 14x - 18y + 112 = 0$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৩

নিজে করো

- 14. উদ্দীপক-১: $x = (a + b\omega + c\omega^2)$, $y = (a + b\omega^2 + c\omega)$ উদ্দীপক-২: $7 + i8 = (p + iq)^3$. [DB'23]
 - (খ) উদ্দীপক-১ এর সাহায্যে, যদি $x^3 + y^3 = 0$ হয়, তবে দেখাও যে, $b = \frac{1}{2}(c + a)$
 - (গ) উন্দীপক-২ এর সাহায্যে প্রমাণ কর যে, $p^2-q^2=\frac{7}{4p}+\frac{2}{q}$.
- 15. Z₂ = a + ib যেখানে a, b ∈ ℝ [Ctg.B'23]
 - (গ) $\sqrt[3]{Z_2} = p + iq$ হলে প্রমাণ কর যে, $-2(p^2 + q^2) = \frac{a}{p} - \frac{b}{q}$
- 16. উন্দীপকে: z = x + iy [DB'22]
 - (খ) $\sqrt[3]{p+iq}=z$ হলে, দেখাও যে, $\sqrt[3]{p-iq}=\overline{z}$
- 17. $g(x) = p + qx + rx^2$ একটি ফাংশন। [SB'22]
 - (গ) p+q+r=0 হলে প্রমাণ কর যে, $\{g(\omega)\}^2+\{g(\omega^2)\}^2=3(p^2+2qr),\quad যেখানে\quad \omega$ এককের ঘনমূলগুলোর একটি জটিল মূল।

- 18. উদ্দীপক-২: (y + ix) = a + ib একটি সমীকরণ। [BB'22
 - (গ) উদ্দীপক-২ এর সাহায্যে দেখাও যে,
 ax + by = 4ab(a² b²).
- 19. $p = \sqrt[3]{a + ib}$ এবং q = x + iy
 - (গ) p = q হলে, প্রমাণ কর যে, $4(x^2 y^2) = \frac{a}{x} + \frac{b}{y}$
- 20. $z_1 = 1 + ix, z_2 = a + ib$
 - (খ) $|z_2|^2=1$ হলে দেখাও যে, x এর একটি বাস্তব মান $\frac{\overline{z_1}}{z_2}=\overline{z_2}$ সমীকরণকে সিদ্ধ করে।
- 21. $g(x) = p + qx + rx^2$

[BB'1

JB'22

Type-08: জটিল সংখ্যার লেখচিত্র ও জ্যামিতিক প্রয়োগ সংক্রান্ত

Concept

z = x + iy (বা প্রশ্নে উল্লিখিত রাশি) বসিয়ে সমাধান করতে হবে।

Shortcut for MCQ: কোন জটিল সংখ্যা z = x + iy এর জন্য,

- (i) |z + a| = |z + b| সরলরেখা নির্দেশ করে।
- (ii) |z + a| = k বৃত্ত নির্দেশ করে।
- (iii) $\left| \frac{z+a}{z+b} \right| = k \left[k > 0 \right]$; k = 1 হলে সরলরেখা নির্দেশ করে। $k \neq 1$ হলে বৃত্ত নির্দেশ করে।
- (iv) $|az + k_1| = |bz + k_2|$ এর ক্ষেত্রে a = b হলে সরলরেখা এবং $a \neq b$ হলে বৃত্ত নির্দেশ করে।

HSC व्रम्नवाश्य २०२०

- (v) zz = 0 विष्कृत्य निर्मं करत।
- (vi) |z a| + |z b| = k; |a b| < k হলে উপবৃত্ত নির্দেশ করে।
- ||z-a|-|z-b||=k; |a-b|>k হলে অধিবৃত্ত নির্দেশ করে ৷ [যেখানে a, b, k বাস্তব ধ্রুব সংখ্যা]

সজনশীল প্রশ্ন (क, খ ও গ)

$\mathbf{m} \cdot \mathbf{z} = \mathbf{x} + \mathbf{i}\mathbf{y}$

[RB'23]

 (খ) |z + 3| + |z - 3| = 10 ঘারা নির্দেশিত স্বধারপথের সমীকরণের শীর্ঘবিন্দুর স্থানাক্ষ নির্ণয় কর।

(খ) Sol": দেওয়া আছে, |z + 3| + |z - 3| = 10

$$\Rightarrow |x - iy + 3| + |x + iy - 3| = 10$$

$$\Rightarrow$$
 $|x + 3 - iy| + |x - 3 + iy| = 10$

$$\Rightarrow \sqrt{(x+3)^2 + y^2} + \sqrt{(x-3)^2 + y^2} = 10$$

$$\Rightarrow \sqrt{(x+3)^2 + y^2} = 10 - \sqrt{(x-3)^2 + y^2}$$

$$\Rightarrow (x+3)^2 + y^2 = 100 - 20\sqrt{(x-3)^2 + y^2} + x^2$$

$$+y^2 - 6x + 9$$

$$\Rightarrow x^2 + y^2 + 6x + 9 - x^2 - y^2 + 6x - 109$$

$$= -20\sqrt{(x-3)^2 + y^2}$$

$$\Rightarrow 12x - 100 = -20\sqrt{(x-3)^2 + y^2}$$

$$\Rightarrow 3x - 25 = -5\sqrt{(x-3)^2 + y^2}$$

$$\Rightarrow 9x^2 - 150x + 625 = 25\{(x-3)^2 + y^2\}$$

$$\Rightarrow 9x^2 - 150x + 625 = 25x^2 + 25y^2 - 150x + 225$$

$$\Rightarrow 16x^2 + 25y^2 = 400 \Rightarrow \frac{x^2}{25} + \frac{y^2}{16} = 1$$

$$\frac{x^2}{6^2} + \frac{y^2}{4^2} = 1$$
, যা একটি উপবৃত্ত।

∴ সঞ্চারপথের সমীকরণের শীর্ষবিন্দুর স্থানায় (±5,0) (Ans.)

$\mathbf{z} = \mathbf{x} + \mathbf{i} \mathbf{y}$ জটিল সংখ্যাটির অনুবন্ধী জটিল সংখ্যা $\overline{\mathbf{z}}$ ।

[SB'23]

- (গ) $|z + 4| |\overline{z} 4| = 10$, দারা নির্দেশিত সঞ্চারপথের সমীকরণ নির্ণয় কর।
- (গ) Sol": দেওয়া আছে, $z = x + iy : \overline{z} = x iy$

প্রদন্ত রাশি,
$$|z + 4| - |\overline{z} - 4| = 10$$

$$\Rightarrow |x + iy + 4| - |x - iy - 4| = 10$$

$$\Rightarrow |(x+4)+iy|-|(x-4)-iy|=10$$

$$\Rightarrow \sqrt{(x+4)^2 + y^2} - \sqrt{(x-4)^2 + y^2} = 10$$

$$\Rightarrow \sqrt{(x+4)^2 + y^2} = 10 + \sqrt{(x-4)^2 + y^2}$$

$$\Rightarrow$$
 (x + 4)² + y² = 100 + (x - 4)² + y²

$$+20\sqrt{(x-4)^2+y^2}$$
 [বর্গ করে]

$$\Rightarrow (x+4)^2 - (x-4)^2 - 100 = 20\sqrt{(x-4)^2 + y^2}$$

$$\Rightarrow 4 \cdot x \cdot 4 - 100 = 20\sqrt{(x-4)^2 + y^2}$$

$$\Rightarrow 4x - 25 = 5\sqrt{(x-4)^2 + y^2}$$

$$\Rightarrow 16x^2 + 625 - 200x = 25(x^2 - 8x + 16 + y^2)$$

$$\Rightarrow 16x^2 + 625 - 200x = 25x^2 - 200x + 400 + 25y^2$$

(ii) p = x + iy.

- (খ) p জটিল সংখ্যাটির অনুবন্ধী জটিল সংখ্যা q হলে |p + 3i| = |q + 4| দ্বারা নির্দেশিত সঞ্চারপথ নির্ণয় কর।
- (খ) Sol": ধরি, p = x + iy : q = x iy

$$\Rightarrow |x + iy + 3i| = |x - iy + 4|$$

$$\Rightarrow |x + i(y + 3)| = |(x + 4) - iy|$$

$$\Rightarrow \sqrt{x^2 + (y+3)^2} = \sqrt{(x+4)^2 + y^2}$$

$$\Rightarrow$$
 x² + y² + 6y + 9 = x² + 8x + 16 + y²

$$\Rightarrow 8x - 6y + 7 = 0$$

যা একটি সরলরেখাকে নির্দেশ করে। (Ans.)

(ক) z = x + iy হলে $\operatorname{Re}\left(\frac{1}{z}\right) = \frac{1}{2}$ দ্বারা নির্দেশিত সঞ্চারপর্থটি

নির্ণয় কর।

[Din.B'23]

(ক) Sol": দেওয়া আছে, z = x + iy ; z̄ = x − iy এখন, $\left(\frac{1}{z}\right) = \frac{1}{x-iy} = \frac{x+iy}{(x-iy)(x+iy)} = \frac{x+iy}{x^2-(iy)^2}$

$$= \frac{x+iy}{x^2+y^2} = \frac{x}{x^2+y^2} + i\frac{y}{x^2+y^2}$$

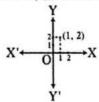
$$\therefore \operatorname{Re}\left(\frac{1}{2}\right) = \frac{1}{2} \Rightarrow \frac{x}{x^2 + y^2} = \frac{1}{2}$$

 \Rightarrow x² + y² − 2x = 0 যা একটি বৃত্ত।

z = x + iy একটি জটিল রাশি

[SB'22]

- (খ) |z + 3| = 4 বৃত্তের কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর।
- (খ) Solⁿ: $|z+3|=4 \Rightarrow |x+iy+3|=4$


$$\Rightarrow |(x+3) + iy| = 4 = \sqrt{(x+3)^2 + y^2} = 4$$

$$\Rightarrow (x+3)^2 + y^2 = 16$$

∴ বৃত্তের কেন্দ্র (-3,0) ও ব্যাসার্ধ 4 একক। (Ans.)

- 🔟 (ক) 1 + 2i কে আর্গন্ড চিত্রের সাহায্যে প্রকাশ কর। [JB'22]
- (Φ) Solⁿ: 1 + 2i = x + iy : x = 1, y = 2

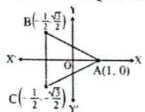
আর্গন্ড তলে জটিল সংখ্যাটির প্রতিরূপী বিন্দু (1, 2)।

pশ্যকম্প-২: $p(x) = x^3 - 1$

[নটর ডেম কলেজ, ঢাকা]

(গ) দৃশ্যকম্প-২ এর আলোকে দেখাও যে, p(x)=0সমীকরণের মূলগুলো আর্গন্ড চিত্রে একটি সমবাহু ত্রিভুজ গঠন করে।

HSC প্রম্নব্যাংক ২০২৫


ducationblog24.co উচ্চতর গণিত २য় পত্র: অধ্যায়-০৩

(গ) Sola: দেওয়া আছে, p(x) = x3 - 1 = 0

$$\Rightarrow (x-1)(x^2+x+1)=0$$

হয়,
$$x - 1 = 0$$
 অথবা, $x = \frac{-1 \pm \sqrt{1^2 - 4} \cdot 1}{2 \cdot 1}$
 $= \frac{-1 + \sqrt{-3}}{2}, \frac{-1 - \sqrt{-3}}{2} = \omega, \omega^2$

অর্থাৎ, p(x) = 0 সমীকরণটির মূলত্রয় হলো, $1, \omega$ ও ω^2

মনে করি, আর্গন্ড চিত্রে, 1 বা, 1 + 0 · i এর প্রতিরূপী বিন্দু A(1,0)

$$\frac{-1+\sqrt{-3}}{2}$$
 বা, $-\frac{1}{2}+i\frac{\sqrt{3}}{2}$ এর প্রতিরূপী বিন্দু, $B\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ $\frac{-1-\sqrt{-3}}{2}$ বা, $-\frac{1}{2}-i\frac{\sqrt{3}}{2}$ এর প্রতিরূপী বিন্দু, $C\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ এখন, $(1,0)$ ও ω এর মধ্যবর্তী দূরত,

AB =
$$\sqrt{\left(1+\frac{1}{2}\right)^2+\left(0-\frac{\sqrt{3}}{2}\right)^2}$$
 একক = $\sqrt{3}$ একক। একইভাবে, $(1,0)$ ও ω^2 এর মধ্যবর্তী দূরত্ব = $\sqrt{3}$ একক এবং ω ও ω^2 এর মধ্যবর্তী দূরত্ব = $\sqrt{3}$ একক আর্গন্ড চিত্রে $1,\omega$ ও ω^2 এর প্রতিরূপী বিন্দুওলো দ্বারা গঠিত ABC ব্রিভুজের প্রতিটি বাহুর দৈর্ঘ্য সমান।

∴ p(x) = 0 সমীকরণের মূলগুলো আর্গন্ড চিত্রে সমবাহ ত্রিভুজ গঠন করে। (দেখানো হলো)

[আদমজী ক্যান্টনমেন্ট কলেজ, ঢাকা] 08. f(x, y) = x + iy(খ) |f(x-8,y)| + |f(x+8,y)| = 20 সমীকরণ দ্বারা নির্দেশিত সঞ্চারপথের প্রকৃতি নির্ণয় কর।

(খ) Sol*: দেওয়া আছে,
$$f(x,y) = x + iy$$
এবং $|f(x-8,y)| + |f(x+8,y)| = 20$

$$\Rightarrow |x-8+iy| + |x+8+iy| = 20$$

$$\Rightarrow \sqrt{(x-8)^2 + y^2} + \sqrt{(x+8)^2 + y^2} = 20$$

$$\Rightarrow (x+8)^2 + y^2 = \left\{20 - \sqrt{(x-8)^2 + y^2}\right\}^2$$
ভিভয়পক্ষকে বৰ্গ করে]

$$\Rightarrow x^{2} + 16x + 64 + y^{2} = 400 + (x - 8)^{2} + y^{2}$$

$$-40\sqrt{(x - 8)^{2} + y^{2}}$$

$$\Rightarrow x^{2} + y^{2} + 16x + 64 = 400 + x^{2} + 64 - 16x + y^{2}$$

$$-40\sqrt{(x - 8)^{2} + y^{2}}$$

$$\Rightarrow 32x - 400 = -40\sqrt{(x - 8)^{2} + y^{2}}$$

$$\Rightarrow 32x - 400 = -40\sqrt{(x - 8)^2 + y^2}$$
$$\Rightarrow 8(4x - 50) = -40\sqrt{(x - 8)^2 + y^2}$$

$$\Rightarrow 8(4x - 50) = -40\sqrt{(x - 6)^2 + y^2}$$

$$\Rightarrow 4x - 50 = -5\sqrt{(x - 8)^2 + y^2}$$

⇒
$$(4x-50)^2=25\{(x-8)^2+y^2\}$$
 [উভয়পক্ষকে বৰ্গ কুৱে

$$\Rightarrow 16x^2 - 400x + 2500 = 25(x^2 - 16x + 64 + y^2)$$

$$\Rightarrow 25x^2 - 400x + 1600 + 25y^2 - 16x^2 + 400x$$

$$\Rightarrow 9x^2 + 25y^2 = 900 \Rightarrow \frac{9x^2}{900} + \frac{25y^2}{900} = 1 \Rightarrow \frac{x^2}{100} + \frac{y^2}{36} = 1$$

$$\therefore \frac{x^2}{10^2} + \frac{y^2}{6^2} = 1$$
 সঞ্চারপথটি একটি উপবৃত্ত। (Ans.)

09. চিট্টগ্রাম কলেজা z = x - iy একটি জটিল সংখ্যা।

(খ) $|\bar{z} + 1| + |\bar{z} - 1| = 4$ ঘারা নির্দেশিত সঞ্চারপথের বাস্তব সমীকরণ প্রমিত আকারে নির্ণয় কর।

(খ) Solⁿ: দেওয়া আছে,
$$z = x - iy : \bar{z} = x + iy$$

প্রদন্ত রাশি,
$$|\bar{z} + 1| + |\bar{z} - 1| = 4$$

$$\Rightarrow |x + iy + 1| + |x + iy - 1| = 4$$

$$\Rightarrow |(x+1) + iy| + |(x-1) + iy| = 4$$

$$\Rightarrow \sqrt{(x+1)^2 + y^2} + \sqrt{(x-1)^2 + y^2} = 4$$

$$\Rightarrow \left\{ \sqrt{(x+1)^2 + y^2} \right\}^2 = \left\{ 4 - \sqrt{(x-1)^2 + y^2} \right\}^2$$

উভয়পক্ষকে বৰ্গ করে

$$\Rightarrow (x+1)^2 + y^2 = 16 - 8\sqrt{(x-1)^2 + y^2}$$

$$+(x-1)^2+y^2$$

$$\Rightarrow (x+1)^2 - (x-1)^2 = 16 - 8\sqrt{(x-1)^2 + y^2}$$

$$\Rightarrow 4x = 16 - 8\sqrt{x^2 + y^2 - 2x + 1}$$

$$[\because (a+b)^2 - (a-b)^2 = 4ab]$$

$$\Rightarrow x = 4 - 2\sqrt{x^2 + y^2 - 2x + 1}$$

$$\Rightarrow x - 4 = -2\sqrt{x^2 + y^2 - 2x + 1}$$

$$\Rightarrow (x-4)^2 = 4(x^2 + y^2 - 2x + 1)$$
 [উভয়পক্ষকে বর্গ করে]

$$\Rightarrow x^2 - 8x + 16 = 4x^2 + 4y^2 - 8x + 4$$

∴
$$3x^2 + 4y^2 = 12$$
; যা উপবৃত্তের সমীকরণ। (Ans.)

নিজে করো

$$10. \quad z = x + iy$$

[Ans:
$$\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$$
, যা উপবৃত্ত নির্দেশ করে।]

[Ans:
$$5x^2 + 5y^2 - 2x - 7 = 0$$
]

HSC প্রশ্নব্যাংক ২০২৫

- 12. 可可容对-3: |z+6| + |z-6| = 20 可不好 z = x + iy. [Ctg.B*22]
 - (খ) দৃশ্যকল্প-১ বারা নির্দেশিত সমীতরগটির সঞ্চারপথ এবং উহার নাম উল্লেখ করে চিত্র অস্তন কর।

[Ans: সঞ্চারপর্বটি একটি উপবৃত্ত নির্দেশ করে।

(গ) কনিকটির অক্ষরয়ের দৈর্ঘ্য নির্ণয় কর।

[Ans: বুংলাক: 6 একক ও কুদ্রাক: 2√5 একক]

- [CB'22] 14. উদ্দীপক-২: z = x + iy.
 - (গ) উদ্দীপক-২ এর সাহায্যে |z + 2| = 5 ব্রন্তের কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর।

[Ans: বৃত্তের কেন্দ্র (-2, 0) ও ব্যাসার্ধ 5 একক।]

サギラマーン: |z-3|-|z+3|=4

- (গ) দৃশ্যকল ২ হতে সঞ্চারপথের সমীকরণ নির্গয় কর [Ans: $\frac{x^2}{4} - \frac{y^2}{5} = 1$]
- 16. f(x) = x 2. (গ) z = p + iq হলে, |f(z + 6)| + |f(z - 2)| = 10 হারা

নির্দেশিত সংলব্রপথের সমীকরণ নির্ণয় কর।

[Ans:
$$\frac{q^2}{3^2} - \frac{p^2}{5^2} = 1$$
]

- 17. z একট ভটিল সংখ্যা [JB'19]
 - (গ) |2z+3|=|3z+1| হারা নির্দেশিত সঞ্চারপথ নির্ণয় [Ans: $5x^2 + 5y^2 - 6x - 8 = 0$]
- [DB, SB, JB, Din.B'18] 18. দৃশ্যকম্প-২: |z - 5| = 3 (গ) z = x + iy হলে দৃশ্যকল্প-২ এর সঞ্চারপথ জ্যামিতিকভাবে কী নির্দেশ করে? চিত্র আঁক।

[Ans: সঞ্চারপর্যটি একটি বৃত্ত নির্দেশ করে যার ব্যাসার্ধ 3 একক]

19. (ক) z = x + iy হলে, $|z + i| = |\bar{z} + 2|$ দ্বারা নির্দেশিত সপ্তারপথ নির্ণয় কর।

[Ans: 4X - 2Y + 3 = 0]

MCQ প্রশ্নের জন্য এই অধ্যায়ের বিভিন্ন টাইপের তুলনামূলক গুরুত্ব:

ভক্ত	টাইপ	টাইপের নাম	यटना शत	ৰে বোৰ্ভে ৰে বছর এসেছে
3374	014-1	कोर्न्स कि चीन	GONE	MCQ
00	T-01	A+iB ও পোলার আকারে প্রকাশ	09	DB'23; RB'23; Ctg.B'23, SB'23; Din.B'23; Mad.B'23; CB'22; BB'19, 17
000	T-02	জটিল সংখ্যার মড়ুলাস ও আর্গুমেন্ট সংক্রান্ত সমস্যা	27	DB'23, 22, 19; RB'22, 17; Ctg.B'19, 17; SB'19; SB'17; JB'23, CB'23, 22, Din.B'23, 19, 22; MB'23, 22, Mad.B'23; All B'18;
00	T-03	অনুবন্ধী জটিল সংখ্যা সংক্রান্ত	13	RB'23, 19; Ctg.B'23; JB'23, 22; MB'23; Mad.B'23; SB'22; CB'22
00	T-04	মূল নির্ণয় সংক্রান্ত	16	DB'23, 22, 17; RB'23; SB'23, 22, 19; BB'23, 22; JB'23; CB'23, 19
000	T-05	i এর ঘাত এবং ধারা সংক্রান্ত	14	DB'23; Ctg.B'23, 22, 17; CB'23, 22; Mad.B'23; SB'22; JB'22, 17; Din.B'22, MB'22; All B'18; RB'17
000	T-06	ω এর ঘাত এবং ধারা সংক্রান্ত	21	SB'23; BB'23, 22, 19, 17; JB'23, 17; Mad.B'23; RB'22; Ctg.B'22, 19, Din.B'22, 17; DB'19, 17, CB'19, 17;
0	T-07	মান নির্ণয় ও প্রমাণ সংক্রোন্ত	02	RB'22; MB'22
000	T-98	জটিল সংখ্যার লেখচিত্র ও জ্যামিতিক প্রয়োগ সংক্রান্ত	16	Ctg.B'23, 19, 17; JB'23, 22; BB'23; Din.B'23, 19; MB'23; RB'22, 19; CB'22, 19; DB'19; SB'17

বিগত বোর্ড পরীক্ষামূহের MCQ প্রশ্ন

01. $z = \frac{2-3i}{2+i}$ হলে Re(z) = ?

[DB'23]

- (c) $\frac{1}{5}$
- (d) =

02. √-6i এর মান-

[DB'23]

- (a) $\pm \sqrt{3} (1 + i)$
- (b) $\pm \frac{\sqrt{3}}{2}(1+i)$
- (c) $\pm \sqrt{3}(1-i)$
- $(d)^{\frac{\sqrt{3}}{2}}(1-i)$
- 03. $z = (1 i)^3$ হলে arg (z) হবে-
- [DB'23]

- (b) $-\frac{\pi}{4}$
- $(d)\frac{3\pi}{4}$

04. n ∈ Z হলে—

- [DB'23]
- (i) $i^{4n} = 1$ (ii) $i^{2n+1} = -1$ (iii) $i^{8n+4} = 1$
- নিচের কোনটি সঠিক?
- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 05. $z = \frac{1}{2}(-1 i\sqrt{7})$ হলে $z \bar{z}$ এর মান কত?
- [RB'23]

- (b) -1
- (c) i√7
- 06. \(\frac{1+i}{i} = p + iq হলে q এর মান কত? \) (b) -1
- [RB'23]

[RB'23]

- 07. i এর বর্গমূল কোনটি?
- (d) 1
- (a) $\pm \frac{1}{2}(1+i)$
- (b) $\pm \frac{1}{2}(1-i)$
- (c) $\pm \frac{1}{\sqrt{2}}(1-i)$
- (d) $\pm \frac{1}{\sqrt{2}}(1+i)$

- z=-1-i জটিল সংখ্যাটির–
- (i) আর্তমেন্ট $-\frac{3\pi}{4}$
- (ii) বাস্তব অংশ −1
- (iii) অনুবন্ধী জটিল সংখ্যা 1 i

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (d) i, ii, iii (Ctg.B'23
- $z = \frac{1}{2+1}$ হলে x এর মান হবে—
- $(d)^{\frac{2}{3}}$

- (a) $\frac{3}{2}$
- - [Ctg.B'23]

- i⁴n+⁴ এর মান কত?
- (d) -i
- (b) -1 z = 2x + 3iy হলে |z| = 1 কী নির্দেশ করে?
 - [Ctg.B'23; DB'19]
 - (a) वृख
- (b) পরাবৃত্ত
- (c) উপবৃত্ত
- (d) অধিবৃত্ত
- 12. z = -i + 1
- (ii) z এর আর্গ্তমেন্ট —π
- (iii) $z\overline{z} = z + \overline{z}$

নিচের কোনটি সঠিক?

(i) z এর মডুলাস √2

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

ISB'23

[Ctg.B'23]

- –5 + 12i এর বর্গমূল কোনটি?
 - (b) $\pm (2 + 3i)$
 - (a) $\pm (-2 + 3i)$
- (c) $\pm (2 3i)$
- (d) $\pm (-2 3i)$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

01. c		02 -	04 h	05 a	06. b	07. d	08. a	09	10. a	11. c	12. d	13. b, d
01. c	02. c	03. a	04.0	03.4	-		141 (14	1)1 12+1			वर चान रूख	-1

- 01. $z = \frac{2-3i}{2+i} = \frac{(2-3i)(2-i)}{(2+i)(2-i)} = \frac{4-6i-2i+3i^2}{4-i^2} = \frac{1-8i}{5} = \frac{1}{5} \frac{8}{5}i$ \therefore Re $(z) = \frac{1}{5}$
- 02. $\sqrt[4]{3}$, $\sqrt{-6i} = a + bi \Rightarrow -6i = a^2 + 2ab \cdot i + b^2i^2$
 - $\Rightarrow -6i = a^2 b^2 + 2ab \cdot i$
 - বাস্তব ও কাম্পনিক অংশ সমীকৃত করে পাই,
 - a² b² = 0 (i) এবং 2ab = -6 (ii) $\therefore (a^2 + b^2)^2 = (a^2 - b^2)^2 + 4 \cdot a^2 \cdot b^2 = 0 + (-6)^2$
 - $\Rightarrow a^2 + b^2 = 6 \dots \dots \dots (iii)$
 - (i) এবং (iii) সমাধান করে পাই, $2a^2 = 6 \Rightarrow a^2 = 3 \therefore a = \pm \sqrt{3}$
 - এবং (ii) হতে পাই, $a = +\sqrt{3}$ হলে, $b = -\sqrt{3}$
 - $a = -\sqrt{3}$ Ref. $b = +\sqrt{3}$:: $\sqrt{-61} = \sqrt{3} \sqrt{3}i$, $-\sqrt{3} + \sqrt{3}i = \pm\sqrt{3}(1-i)$
 - Shortcut: $\sqrt{-6i} = \sqrt{6}\sqrt{-1} = \frac{\sqrt{6}}{\sqrt{3}} \cdot \sqrt{-2i}$
 - $= \sqrt{3} \cdot \sqrt{1 2\mathbf{i} + \mathbf{i}^2} = \sqrt{3} \cdot \sqrt{(1 \mathbf{i})^2} = \pm \sqrt{3}(1 \mathbf{i})$
- 03. $z = (1-i)^3 = 1 3i + 3i^2 + (-i)^3$ = 1 - 3i - 3 + i = -2 - 2i; $arg(z) = -\pi + tan^{-1} \left| \frac{z}{z} \right| = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$ Shortcut: $arg(z^n) = arg(z) = arg\{(1-1)^3\}$
- $= 3\arg(1-1) = 3\left[-\tan^{-1}\left[\frac{1}{-1}\right]\right] = -\frac{3\pi}{4}$ 04. (i) $i^{4n} = (i^4)^n = 1^n = 1$; (ii) $i^{2n+1} = i^{2n} i^1 = (-1)^n \cdot i$;
- (iii) $i^{8n+4} = i^{8n} \cdot i^4 = (i^4)^{2n} \cdot i^4 = 1 \cdot 1 = 1$ 05. $\bar{z} = \frac{1}{2}(-1 + i\sqrt{7}) : z - \bar{z} = \frac{1}{2}(-1 - i\sqrt{7} + 1 - i\sqrt{7})$ $\Rightarrow z - \overline{z} = \frac{1}{2} \cdot \left(-2i\sqrt{7} \right) = -i\sqrt{7}$

- 06. $\frac{1+i}{i} = \frac{(i+1)i}{i^2} = \frac{i^2+i}{-1} = 1 i = p + iq$ হলে q এর মান হবে -1
- 07. $\sqrt{i} = \sqrt{\frac{1}{2} \times 2i} = \sqrt{\frac{1}{2}(1 + 2i 1)} = \sqrt{\frac{1}{2}(1 + 2i + i^2)}$ $= \sqrt{\frac{1}{2} \times (1+i)^2} = \pm \frac{1}{\sqrt{2}} (1+i)$
- 09. (সঠিক উত্তর নেই); $z = \frac{1}{z+1} = \frac{2-1}{(2+1)(2-1)} = \frac{2-1}{2^2-1^2} = \frac{2-1}{4+1} = \frac{2}{5} \frac{1}{5}$ i $z = \frac{2}{5} - \frac{1}{5}i$ কে x + iy এর সঙ্গে তুলনা করে পাই, x = $\frac{2}{5}$
- 10. $i^{4n+4} = i^{4n}, i^4 = (i^4)^n, i^4 = 1^n, 1 = 1$ विकल्त: i4n+4 = i4(n+1) = (i4)n+1 = 1
- 11. z = 2x + i3y; প্রসাতে, |z| = 1
 - $\Rightarrow \sqrt{(2x)^2 + (3y)^2} = 1 \Rightarrow 4x^2 + 9y^2 = 1$
 - $\Rightarrow \frac{x^2}{(\frac{1}{a})^2} + \frac{y^2}{(\frac{1}{a})^2} = 1$ যা $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সাথে তুলনীয়, যা উপবৃত্ত নির্দেশ করে
- 12. $z = -i + 1 \Rightarrow |z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$;
 - $\arg(z) = -\tan^{-1}\left|\frac{-1}{1}\right| = -\frac{\pi}{4}; \overline{z} = i+1 : z\overline{z} = (-i+1)(i+1)$ $=1-i^2=1+1=2=-i+1+i+1$
- = z + ž (i), (ii), (iii) मठिक।
- 13. (b) ও (d); উভয়ই সঠিক; -5 + 12i $= -9 + 12i + 4 = 2^{2} + 2 \cdot 2 \cdot 3i + (3i)^{2} = (2 + 3i)^{2}$
 - $\sqrt{-5+12} = \pm(2+3i)$ বেশি গ্রহণযোগ্য অথবা $\pm(-2-3i)$

HSC প্রস্নব্যাংক ২০২৫

উচ্চত্তর গণিত ২য় পত্র : অধ্যায়-০৩

ISB'231

- (b) 0
- (c) 1
- (d) 2
- p = x + iy হল |p − 2| = 3 সমীকরণটি নির্দেশ করে-

[SB'23; Din.B'23, 19]

(a) 38

- (b) সরলরেখা
- (c) विन्तृव्छ
- (d) উপবৃত্ত
- 16. এককের জটিল ঘনমূল α, β হলে-
- [SB'23]

- (i) $\alpha\beta = 1$
- (ii) $\alpha^2 = \beta$ (iii) $\alpha + \beta = -1$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 17. z = 3 4i এবং $\sqrt{z} = x + iy$ হলে নিচের কোনটি সঠিক? [BB'23]
 - (a) $x^2 y^2 = 5$
- (b) $x^2 + y^2 = 5$
- (c) $x^2 + y^2 = 3$
- (d) $x^2 y^2 = 4$
- 18. যদি z = x + iy, $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$ তিনটি [BB'23] জটিল সংখ্যা হয়, তবে-
 - (i) $Re(z) \le |z|$
 - (ii) $arg(z_1z_2) \le arg z_1 + arg z_2$
 - (iii) $|z_1 z_2| \ge |z_1| |z_2|$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$p = \frac{1}{2} \left(-1 + \sqrt{-3}\right)$$
 একটি জটিল সংখ্যা।

- 19. (p+p)2 = **ある?**
- [BB'23]

(d) ō

- (a) 1
- (b) p
- (c) 1
- (BB'23)

- (a) i
- 20. $\sqrt{p^2 + \bar{p}^2} = \overline{\phi}$ ত? (b) - i
- (c) 1
- (d) 1
- √2³ এর মূলত্রয়ের যোগফল কত?
- [JB'23]

- (a) 0
- (b) 2
- (c) 2w

(d) $2\omega^2$

- 22. z = x + iy হলে |z + 1| = |z 2| দ্বারা নির্দেশিত সঞ্চারপথ কোনট? [JB'23]
 - (a) সরলরেখা
- (b) 98
- (c) পরাবৃত্ত
- (d) উপবৃত্ত
- 23. z = i 1 43-
- (i) মডুলাস = √2
- (ii) আৰ্তমেন্ট = -
- (iii) zz একটি বাস্তব সংখ্যা

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) 1, 11, 111
- 24. z = x + iy হলে $\sqrt{z \overline{z}}$ এর মান কত?
- JB'23

[JB'23]

- (a) $\sqrt{y} (1 + i)$
- (b) $\sqrt{y} (1 i)$
- (c) $\sqrt{x} (1+i)$
- $(d) \sqrt{x} (1-i)$

MCO উত্তরমালা ও ব্যাখ্যামূলক সমাধান

					the second second second			,		
14. a	15. a	16. d	17. b	18. b	19. a	20. a	21. a	22. a	23. b	24. a

- $14. \quad \frac{i^{-1}}{1+i^{3}} = \frac{\frac{1}{12}}{1+i^{3}(2)} = \frac{\frac{1}{12}}{1+i} = \frac{\frac{1}{1}}{1+i} = \frac{1}{1+i^{2}} = \frac{1}{1-1} = \frac{i+1}{i^{2}-1} = \frac{i+1}{-2} = -\frac{1}{2} \frac{1}{2}$ া বাস্তব ও কাম্পনিক আংশের সমষ্টি = - - - - - - - - - - -
- 15. $|p-2|=3\Rightarrow |(x-2)+iy|=3\Rightarrow \sqrt{(x-2)^2+y^2}=3$
 - $(x-2)^2 + y^2 = 3^2$ খা একটি বৃত্তের স্মীকরণ। [কেন্দ্র (2,0), ব্যাসার্ঘ = 3]
- 16. Acres serie 1, a, β see, $1 + a + \beta = 0$. $a + \beta = -1$ [(iii) $\pi [\delta \Phi]$
 - [\(\omega + \omega^2 + 1 = 0 \) 481 \(\omega^3 = 1 \) তবং $\alpha^2 = \beta(\alpha)$ সঠিক]। আবার, $\alpha\beta = \alpha \cdot \alpha^2 = \alpha^4 = 1$ [(i) সঠিক]
- 17. $z = 3 4i \sqrt{z} = x + iy \Rightarrow (\sqrt{z})^2 = (x + iy)^2$
 - $\Rightarrow z = x^1 y^2 + 2ixy$
 - मधारा कार शाहे, $1 \times x^2 y^3 = 3$, $2xy = -4 \Rightarrow xy = -2$
 - $(x^2 + y^2)^2 = (x^2 y^2)^2 + 4x^2y^2$
 - $=3^2+4(-2)^2=25 \times x^2+y^2=5$
- 18. arg(z,z,) = arg(z,) + arg (z,) (i) 5 (iii) #2 7/35 :
- 19. $\vec{p} = (-1 \sqrt{-3})$
 - $(p+\beta)^2 = \left(\frac{1}{2}(-1+\sqrt{-3}-1-\sqrt{-3})\right)^2 = \left(\frac{1}{2}(-2)\right)^2 = 1$

- 20. $p = \frac{1}{2}(-1 + \sqrt{-3}) = \omega$; $\overline{P} = \frac{1}{2}(-1 3) = \omega^2$; $1 + \omega + \omega^2 = 0 \Rightarrow \omega + \omega^2 = -1$
 - $\therefore \sqrt{p^2 + \bar{p}^2} = \sqrt{\omega + \omega^2} = \sqrt{-1} = i$
- 21. $\sqrt{6}$, $x = \sqrt[3]{2^3} \Rightarrow x^3 = 2^3 \Rightarrow x^3 2^3 = 0$
 - $\Rightarrow (x-2)(x^2+2x+4)=0$
 - $well, x^2 + 2x + 4 = 0$ TT. x - 2 = 0 = x = -210/2-114 = -210/22 = -1 ± √3:
 - : भूमक्ट्डव (यागकन = $2 + (-1 + \sqrt{3}i) + (-1 \sqrt{3}i) = 0$
- 22. $|z+1| = |z-2| \Rightarrow |(x+1) + |y| = |(x-2) + |y|$
 - $\Rightarrow \sqrt{(x+1)^2 + y^2} \Rightarrow \sqrt{(x-2)^2 + y^2}$ [and social]
 - $\Rightarrow 2x + 1 = -4x + 4 \Rightarrow 6x = 3 \Rightarrow 2x = 1$
 - ⇒ 2x − 1 ≈ 0; যা y অকের সমান্তরাল সরলবেখা;
- 23. z = i 1 (cm, $|z| = \sqrt{1 + (-1)^2} = \sqrt{2}$ (a) with $z = \sqrt{1 + (-1)^2} = \sqrt{2}$
 - arg z = π tan 1 | 1 | = π = = 10 (ii) সচিক = 2 :
- zt = (1 1)(-i 1) = (-1)² i² = 1 + 1 = 2 ∈ R (iii) ×2·* 24. x-7=(x+iy)-(x-iy)=i2y
- 1 VI-2 = VI 2y = Vy VII = Vy V(1+1) = Vy(1+1)

25. अकटकत खिन घनभूनष्य p ख q दहन ps + qs = कज?

[JH'23]

- (b) t
- (c) w
- (d) w2
- 26. 1- v=3 এর মুখা আওমেন্ট কড?

[CB'23, 22, 17; DB, RB, MB'22; DB, Ctg.B, Din.B'19; All Board'18; DB, RB, Ctg.B'17]

- (a) $-\frac{2\pi}{3}$ (b) $-\frac{\pi}{4}$
- (d) **

 ¹/₂ এর বর্ণমূল কড?

[CB'23]

- (a) $\pm \frac{1}{\sqrt{3}}(1+i)$
- (b) $\pm \frac{1}{\sqrt{2}}(1-1)$
- (c) $\pm (1+1)$
- (d) $\pm (1-1)$
- 28. i⁵ + i⁶ + i⁷ + i⁸ + i⁹ এর মান কড?[CB'23; Din.B'22]
 - (a) 1
- (b) i
- (e) 1

29. z = 2 - 2i 文(可

- [CB'23]
- (i) Re(z) + Im(z) = 0 (ii) $z\overline{z} = 8$
- (iii) z এর পোলার আকার $2\sqrt{2}\left(\cos\frac{\pi}{4}-i\sin\frac{\pi}{4}\right)$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 30. $A + iB = \frac{2-3i}{5-4i}$ হলে, B এর মান কোনটি?

[Din.B'23, BB'19]

- (a) $-\frac{7}{9}$ (b) $-\frac{7}{41}$
- (c) $\frac{22}{41}$
- 31. —i√3 এর আর্গ্রমেন্ট কড?
- [Din.B'23]

- (a) 0
- $(b)^{\frac{\pi}{2}}$
- (c) $-\frac{\pi}{2}$ (d) $-\frac{\pi}{1}$

- w अकरकत काल्योनक धनभूष धाम, (w*+ w*+ u./ ω^{0}) ($\omega^{-1} + \omega^{-1} + \omega^{-5} + \omega^{-7}$) and with [Din.15'25
- (b) w2

MB'21

- ।।. =2 + ।√5 এর মঙ্গাস কোনটি?
 - (a) 2
- (b) V5
- (6) 3
- z = 2 + 31 একটি জটিল সংখ্যা হলে z z এর মুখ্য আর্ধকে IMB'23 **事场**?
 - (a) 0
- (c) n

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

একটি জটিপ সংখ্যা
$$z=rac{1}{2+1}$$

- 7 এর অনুবৃধি জটিল সংখ্যা কোন্টি? [MB, Mad.B'23
 - (a) $\frac{2-1}{4}$
- (b) $\frac{2+1}{3}$

- জটিল সংখ্যাটি কার্ডেসীয় সমতলে যে বিন্দু নির্দেশ করে, তা MB'23 利利保
 - (a) $\left(-\frac{1}{5},\frac{2}{5}\right)$
- (b) $\left(\frac{1}{5}, \frac{2}{5}\right)$
- (c) $\left(\frac{2}{5}, -\frac{1}{5}\right)$
- (d) $\left(\frac{2}{5}, \frac{1}{6}\right)$
- 37. z এकि कि किन সংখ্যা दल,
- (ii) $z \cdot \overline{z} = |\overline{z}|^2$
- $(i)\frac{|z|}{|z|}=1$
- (iii) $\arg\left(\frac{z}{z}\right) = \arg(z) + \arg(\overline{z})$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

[MB'23]

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

31. c 32. a 33. c 34. b 35. c 29. d 30. b 27. b 28. d 25. a 26. a

- 25. $p^5 + q^5 = \omega^5 + (\omega^2)^5 = \omega^2 + \omega = -1$
- 26. $\frac{-1-\sqrt{-3}}{2} = -\frac{1}{2} \frac{\sqrt{3}}{2}1$.. WINGENT = $-\pi + \tan^{-1}$
- $=-\pi + \tan^{-1}\sqrt{3} = -\pi + \frac{\pi}{2} = -\frac{2\pi}{3}$
- 27. $\frac{1}{1} = \frac{1}{12} = -1 = \frac{1}{2}(-2i) = \frac{1}{2}(1-2i-1) = \frac{1}{2}(1-2i+1^2)$
 - $=\frac{1}{2}(1-1)^2$: $\int_{1}^{1} = \pm \frac{1}{\sqrt{2}}(1-1)$
- 28. 15+15+17+18+19=(1+12+13+14)+1=0+1=1 [a, b, c, d চারটি ক্রমিক পূর্ণসংখ্যা হলে 1° + 1° + 1° + 1° + 1° = 0]
- 29. z = 2 2i; (i) Re(z) + Im(z) = 2 2 = 0
 - (ii) $z \cdot \overline{z} = (2 2i)(2 + 2i) = 4 4i^2 = 4 + 4 = 8$ (iii) $r = \sqrt{2^2 + 2^2} = 2\sqrt{2}$ wat $\theta = -\tan^{-1} \left| \frac{1}{2} \right| = -\frac{\pi}{2}$
 - $\therefore z = 2\sqrt{2} \left(\cos^{\frac{\pi}{4}} i\sin^{\frac{\pi}{4}}\right)$
- 30. $A + iB = \frac{2-3i}{5-4i} = \frac{(2-3i)(5+4i)}{(5-4i)(5+4i)} = \frac{10-18i+8i-12i^2}{25+16} = \frac{22-7i}{41}$ $A + 1B = \frac{22}{11} - \frac{71}{11} + B = -\frac{7}{41}$
- 31. -1√3 as wiscr0 = tan 1 | √3 | = "
- 32. $(\omega^5 + \omega^6 + \omega^7 + \omega^8)(\omega^{-1} + \omega^{-3} + \omega^{-3} + \omega^{-7})$ $= (\omega^2 + 1 + \omega + \omega^2) \left(\frac{1}{\omega} + \frac{1}{\omega^3} + \frac{1}{\omega^5} + \frac{1}{\omega^4} \right)$ $= (\omega^2 + 0)(\omega^2 + 1 + \omega + \omega^2) = \omega^2 \cdot (0 + \omega^2) = \omega^4 = \omega$

- 33. $r = \sqrt{(-2)^2 + (\sqrt{5})^2} = \sqrt{4 + 5} = \sqrt{9} = 3$
- 34 $z-z=2+3i-2+3i=6i \land 0=\tan^{-1}\frac{6}{0}=\frac{\pi}{2}$
- 35. $z = \frac{1}{2+1} = \frac{2-1}{(2+1)(2-1)} = \frac{2-1}{5} \wedge \overline{z} = \frac{2+1}{5}$
- 36. $z = \frac{2-1}{5} \Rightarrow \frac{2}{5} + {\binom{-1}{5}}$ । কে a + bt এর সাথে তুখনা করে পাই.
 - $a = \frac{2}{6} + b = -\frac{1}{6} \{ \frac{1}{2} + \frac{1}{6} \}$ and $a = (a, b) = (\frac{2}{6}, \frac{-1}{6})$
- 37. 48, 2 = a + bi, Z = a bi
 - (i) $\frac{|z|}{|z|} = \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}} = 1$
 - (ii) $z.z = (a + bi)(a bi) = a^2 b^2i^2 = a^2 + b^2$
 - $|\mathbf{Z}|^2 = (\sqrt{a^2 + b^2})^4 = a^2 + b^2$
 - (iii) $z = r(\cos\theta_1 + i\sin\theta_1)$ ও $z = r(\cos\theta_2 + i\sin\theta_2)$ विचारम argument been 0, 402
 - $\begin{array}{ll} r(\cos\theta_1+i\sin\theta_2) & (\cos\theta_1+i\sin\theta_2)(\cos\theta_2-i\sin\theta_2) \\ r(\cos\theta_2+i\sin\theta_2) & (\cos\theta_2+i\sin\theta_2)(\cos\theta_2-i\sin\theta_2) \\ (\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)+i(\sin\theta_1\cos\theta_2-\cos\theta_1\sin\theta_2) \end{array}$
 - $\frac{\cos(\theta_1 \theta_2) + i\sin(\theta_1 \theta_3)}{\cos^2 \theta_3 + \sin^2 \theta_3} = \cos(\theta_1 \theta_2) + i\sin(\theta_3 \theta_2)$
 - with, $\arg \binom{4}{2} = \theta_1 \theta_2$; we $\arg (z) = \theta_1 \circ \arg (z) = \theta_2$ $A \arg {s \choose s} = \arg(z) - \arg(z)$

HSC প্রশ্নব্যাংক ২০২৫

- 38. i⁴n+3 এর মান কত? যখন n ∈ N.

- (a) -i
- (b) i
- (c) -1
- (d) 1
- 39. $\frac{3+i}{2-i}$ = A + iB হলে, A এর মান নিচের কোনটি?

[Mad.B'23; BB'17]

- (b) $\frac{5}{4}$ (c) $\frac{3}{5}$
- $(d)^{\frac{5}{2}}$
- 40. −2√3 + 2i এর আর্গুমেন্ট নিচের কোনটি?
- [Mad.B'23]

- (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$
- $(d)\frac{5\pi}{4}$
- 41. z = -6 4i হলে, z z এর মান কত?
- [Mad.B'23]

(b) -12

(c) 8i

- (d) 8i
- 42. z₁ = 1 + 2i এবং z₂ = 3 + i, হলে z₁ z₂ এর মডুলাস
 - হল-

[DB'22]

(a) √5

- (b) √13
- (c) √25
- (d) $5\sqrt{2}$
- 43. z = 1 i হলে $z \bar{z}$ এর বর্গমূল কত?

[DB, SB, BB'22; SB, CB'19; DB'17]

- (a) -1 i
- (b) $\pm (1 + i)$
- (c) $\pm (1 i)$
- (d) $\pm \frac{1}{\sqrt{2}}(1-i)$
- 44. ∜-49 এর মান কোনটি?

[DB'22]

- (a) $\pm \sqrt{7}i$
- (b) $\pm \sqrt{\frac{7}{2}} (1 \pm i)$
- (c) $\pm \frac{7}{2} (1 \pm i)$
- $(d) \frac{7}{\sqrt{2}} (1 \pm 2i)$
- 45. $i^2 = -1$ হলে $\frac{-i-i^{-5}}{2i^{-5}+i}$ এর মান-

[Ctg.B'22, 17; CB, MB'22; JB'22, 17]

- (a) 2
- (b) 0
- (c) $\frac{1}{2}$
- (d) 2

[Mad.B'23] | 46. √1 এর মূপ্রয়ের—

[Ctg.B'22]

- (i) याशकल भेना
- (ii) দুইটি মুপধ্য জটিল
- (iii) একটি মূল অপর একটি মূলের বর্ণের সমান

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 47. া এর মডুলাস ও আর্ডমেন্ট-

[Ctg.B, Din.B'22; SB'19; BB'17]

- (a) 1 3 0
- (b) 1 $e^{-\frac{\pi}{3}}$
- (c) 1 @ n
- (d) 1 e = 1
- এককের একটি জটিল ঘনমূল ω হলে, $rac{2}{\omega^{13}+\omega^{24}}$ এর মান-

[Ctg.B'22]

- (b) -1
- (c) 0

(c) 2

- (d) 2
- 49. $x + iy = i^{-2021} + 2(\omega)^{-2019}$ (47) =?
 - (d) -2
- (b) $-\frac{1}{2}$ 50. -1 - i√3 এর অনুবন্ধী রাশির আর্গ্তমেন্ট কত?

- $(c)-\frac{2\pi}{2}$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও

z = 3i

- ই দ্বারা গঠিত বিন্দু কোনটি?
- [RB'22, 19]
- (a) (0, -3)
- (b)(0,3)
- (c)(-3,0)
- (d)(3,0)
- 52. z এর সাধারণ আর্গুমেন্ট কত?
- [RB'22]

- (a) $2n\pi + \frac{\pi}{2}$
- (b) $2n\pi \frac{\pi}{2}$
- (c) $n\pi + \frac{\pi}{2}$
- (d) $n\pi \frac{\pi}{2}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

48. a | 49. b | 50. d | 51. a | 52. b 45. b 46. d 47. b 44. b 43. c 40. d 41. c

38. $i^{4n+3} = i^{4n}i^3 = 1(-i) = -i$

39.
$$\frac{3+i}{3-i} = \frac{(3+i)^2}{(3-i)(3+i)} = \frac{9+6i+i^2}{9-i^2} = \frac{9+6i-1}{9+1} = \frac{9+6i}{10} = \frac{4}{5} + \frac{3}{5}i = A + iB$$

$$\therefore A = \frac{4}{5}$$

40. $\arg(-2\sqrt{3}+2i) = \theta = \pi - \tan^{-1}\left|\frac{2}{2\sqrt{3}}\right| = \pi - \tan^{-1}\left|\frac{1}{\sqrt{8}}\right|$

41. Z = -6 - 41; $\bar{Z} = -6 + 41 \div \bar{Z} - 2 = -6 - 41 + 6 - 41 = 81$

42. $|\bar{z}_1 - z_2| = |1 - 2i - 3 - i| = |-2 - 3i|$ $=\sqrt{(-2)^2+(-3)^2}=\sqrt{13}$

43. $z - \overline{z} = 1 - i - (1 + i) = -2i : \sqrt{z - 2} = \pm \sqrt{-2i}$ $= \pm \sqrt{1 - 2! - 1} = \pm \sqrt{1 - 2 \cdot 1 \cdot 1 + 1^2} = \pm \sqrt{(1 - 1)^2} = \pm (1 - 1)$ 44. $\sqrt[4]{-49} = \pm \sqrt{\sqrt{491^2}} = \pm \sqrt{(\pm 71)} = \pm \sqrt{7}.\sqrt{\pm 1} = \pm \frac{\sqrt{7}}{\sqrt{3}}\sqrt{\pm 21}$ $=\pm \int_{\frac{7}{2}}^{\frac{7}{2}} \sqrt{(1\pm 2i+i^2)} = \pm \int_{\frac{7}{2}}^{\frac{7}{2}} \sqrt{(1\pm i)^2} = \pm \int_{\frac{7}{2}}^{\frac{7}{2}} (1\pm i)$

47. $|-i| = \sqrt{0^2 + (-1)^2} = 1$, $\arg(-i) = -\tan^{-1}\left(\frac{-1}{0}\right) = -\frac{\pi}{2}$

48. $\frac{2}{\omega^{13}+\omega^{26}} = \frac{2}{\omega^{4\times3+1}+\omega^{8\times3+2}} = \frac{2}{\omega+\omega^2} = \frac{2}{-1} = -2$

49. $1^{-2021} + 2(\omega)^{-2019} = \frac{1}{12021} + \frac{2}{\omega^{1019}} = \frac{1}{1} + \frac{2}{\omega^3} = -1 + 2 = 2 - 1$ 4x + iy = 2 - 1 $4x = \frac{-1}{2} = -1$

50. $\bar{z} = -1 + i\sqrt{3}$. $\arg(\bar{z}) = \pi - \tan^{-1}\frac{\sqrt{3}}{4} = \frac{2\pi}{3}$

52. $\arg(\bar{z}) = 2n\pi + \left(-\tan^{-1}\frac{3}{6}\right) = 2n\pi - \frac{\pi}{2}$

HSC প্রমব্যাংক ২০২৫

- 53. $\sqrt{-3} \times \sqrt{-1}$ এর মান কোনটি?
- [RB'22]

(a) √3i

- (b) $\pm \sqrt{3}$
- (c) $-\sqrt{3}$
- (d) √3

(c) i

- 54. n ∈ N হলে i⁸ⁿ⁺⁵ এর মান কত?
- [SB'22]

- (a) 1
- (b) -1
- (d) -i
- 55. অনুবন্ধী জটিল সংখ্যার ক্ষেত্রে-
- [SB'22]

(i) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

- (ii) z = z
- (iii) $\overline{z_1}\overline{z_2} = \overline{z_1}.\overline{z_2}$
- নিচের কোনটি সঠিক?
- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 56. $x = \frac{1}{2}(-1 + \sqrt{-3})$ এবং $y = \frac{1}{2}(-1 \sqrt{-3})$ হলে 1
 - x y + xy এর মান কত?
- [BB'22]

- (a) 2
- (b) 2
- (c) 3
- (d) -3
- 57. z = x + iy হলে, |z| = 5 সমীকরণটি প্রকাশ করে-

[JB, CB'22; Ctg.B'17]

- (a) সরলরেখা
- (b) বৃত্ত
- (c) পরাবৃত্ত
- (d) উপবৃত্ত
- 58. z = i 1 হলে-

[JB'22]

- (i) $\overline{z} = -i 1$
- (ii) $|z| = \sqrt{2}$
- (iii) z এর পোলার আকার $\cos \frac{\pi}{4} i \sin \frac{\pi}{4}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 59. একটি দ্বিঘাত সমীকরণের একটি মূল 1/1+i হলে অপর মূলটি
 - কত?

[CB'22]

 $(a) \frac{1}{1-i}$

(b) $\frac{1-i}{2}$

(c) $\frac{1+i}{2}$

(d) 1 - i

- 60. -1 + i এর পোলার আকার-
 - (a) $\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$
- (b) $\sqrt{2} \left(\cos \frac{\pi}{4} i \sin \frac{\pi}{4}\right)$
- (c) $\sqrt{2} \left(\cos \frac{3\pi}{4} i \sin \frac{3\pi}{4} \right)$ (d) $\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাঙ্ $\mathbf{x} = \sqrt[3]{1}$ একটি সমীকরণ্⊥

- 61. সমীকরণের মূলগুলোর যোগফল-
 - - (c) 0
- Din.B. (d) I
- 62. সমীকরণের মূলগুলোর গুণফল-
 - (a) -1(b) 0

(b) ω^2

- (c) 1
- Din.B. (d) 1 + 1

MB

63. z = x + iy হলে-

(a) ω

- (i) $|z| = |\overline{z}|$
- (ii) $z, \overline{z} = |z|^2$
- (iii) $arg(\bar{z}) = arg(z)$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, ii
- 64. $x = 1 + \sqrt{2}i$ হলে $2x^3 3x^2 + 4x + 1$ এর মান কর্
 - MBT

- (a) 4
- (b) 2
- (c) 1
- (d) -2

[DB]

- 65. এককের জটিল ঘনমূল x ও y হলে-
 - (i) $x^2 = y$ (ii) $x^2 + y^2 = i^2$ (iii) $x^2y^2 = i^4$
- নিচের কোনটি সঠিক?
- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, L E

- 66. z = x + iy হলে-
- [RB]
- (i) $z \overline{z}$ একটি কাম্পনিক সংখ্যা
 - (ii) z . ই একটি বাস্তব সংখ্যা
 - (iii) z^n একটি বাস্তব সংখ্যা, যেখানে $n \in \mathbb{N}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) 1, 11, 12

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

53. c	54. c	55. d	56. c	57. b	58. a	59. c	60. d	61.0	62 -			65. d 66.1
-								01.0	02. C	63. a	64. d	63. u

- 53. $\sqrt{-3} \times \sqrt{-1} = \sqrt{3}i \times i = i^2 \sqrt{3} = -\sqrt{3}$
- 54. ien+5 = i4×2n, i5 = 1.1 = i
- 56. $x = \frac{1}{2}(-1 + \sqrt{-3}) = \omega \Rightarrow y = \frac{1}{2}(-1 \sqrt{-3}) = \omega^2$ $1 - x - y + xy = 1 - \omega - \omega^2 + \omega^3$ $= 1 - (\omega + \omega^2) + \omega^3 = 1 - (-1) + 1 = 3$
- 57. $|z| = 5 \Rightarrow |x + iy| = 5 \Rightarrow \sqrt{x^2 + y^2} = 5 \Rightarrow x^2 + y^2 = 25$, या अकिए वृद
- 58. $|z| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$, $\arg(z) = \pi \tan^{-1} \frac{1}{2} = \frac{3\pi}{4}$ $\therefore 1 - i = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$
- অপর মৃল = $\frac{1}{2} + \frac{1}{2}i = \frac{1+i}{2}$

- 60. $|z| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$, $\arg(z) = \pi \tan^{-1} \frac{1}{1} = \frac{3\pi}{4}$ $\therefore 1 - 1 = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$
- 61. $\sqrt[3]{1} = x \Rightarrow x^3 = 1 \Rightarrow x = 1, \omega, \omega^2 : 1 + \omega + \omega^2 = 0$ 64. $x = 1 + \sqrt{2}i \Rightarrow x - 1 = \sqrt{2}i \Rightarrow x^2 - 2x + 1 = -2$ $\Rightarrow x^2 - 2x + 3 = 0$
 - $4 \sqrt{3} 3x^2 + 4x + 1 = 2x^3 4x^2 + 6x + x^2 2x + 3^{-2}$ $= 2x(x^2 - 2x + 3) + 1(x^2 - 2x + 3) - 2 = 0 + 0 - 2 = 1$
- 65. $(\omega^2)^2 + (\omega)^2 = \omega^4 + \omega^2 = \omega + \omega^2 = -1 = i^2, \omega^2 \omega^4 = \omega^4$ = 1 = 14
- 66. $\sqrt[4]{3}$, n = 1; $z^n = (x + iy)^1 = x + iy$ $z - \tilde{z} = x + iy - (x - iy) = 2yi$ এবং $z \cdot \overline{z} = (x + iy)(x - iy) = x^2 + y^2$

HSC প্রশ্নব্যাংক ২০২৫

$$(1-\omega^4)(1-\omega^8)(1-\omega^{10})(1-\omega^{14})$$
 এর মান হল-

[Ctg.B'19]

- (a) -1
- (c) 3
- (d) 9

 $68. \quad z = x - 2iy$ হলে, $z\overline{z} = 7$ এর সঞ্চারপথ একটি-

[Ctg.B, CB'19]

- (a) পরাবৃত্ত
- (b) উপবৃত্ত
- (c) বৃত্ত
- (d) অধিবৃত্ত

69. 2i এর বর্গমূল কত?

[SB'19]

- (a) 2 + i
- (b) -(1+i)
- (c) $\pm (1+i)$
- $(d) \pm (1 i)$
- 70. 1 এর ঘনমূল তিনটির-
- [BB'19; DB, CB'17]
- (i) যোগফল = 0
- (ii) গুণফল = 1
- (iii) জটিল মূল দুটির একটি অপরটির বর্গ

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 71. $(2i)^{-\frac{1}{2}} + (-2i)^{-\frac{1}{2}}$ এর মান কত?

[JB'19]

- (a) $\frac{1}{2}$
- (b) 1

- 72. 1 এর ঘনমূল তিনটির যোগফল-

[CB'19]

- (ii) ω^3
- (iii) $1 + \omega + \omega^2$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 73. কাম্পনিক সংখ্যা i এবং $n \in \mathbb{N}$ এর জন্য
 - $i^{4n} i + i^{4n+1} 1$ এর মান কত?

[All.B'18]

- (b) i
- (c) 0
- 74. $\alpha = \frac{-1+\sqrt{3}i}{2}$ এবং এর অনুবন্ধী α হলে কোনটি সত্য?

[All.B'18]

- (a) $\alpha \overline{\alpha} = \alpha^2$
- (b) $\alpha + \overline{\alpha} = 2\alpha$
- (c) $\alpha + \overline{\alpha} = -1$
- (d) $\overline{\alpha} + \alpha^2 = -1$

75. $i^m + i^{m+1} + i^{m+2} + i^{m+3} =$ কত? [$m \in \mathbb{Z}$]

- (a) -1
- (b) -i
- (d) i
- 76. নিচের কোনটি মূলদ সংখ্যা?

[Ctg.B'17]

- (a) π
- (c) $\frac{1}{\sqrt{\epsilon}}$
- 77. 2x i3y জটিল সংখ্যাটি কোন চতুর্ভাগে অবস্থিত?

[SB'17]

- (a) ১ম চতুর্ভাগে
- (b) ২য় চতুর্ভাগে
- (c) ৩য় চতুর্ভাগে
- (d) ৪র্থ চতুর্ভাগে
- 78. এককের একটি জটিল ঘনমূল ω হলে $\omega^{6n+3} = ?$ [BB'17]

- (b) 1
- (c) ω
- 79. ω এককের একটি কাম্পনিক ঘনমূল হলে, $ω^{92} + ω^{16}$ এর মান কত? [JB'17]
 - (a) -1
- $(b) \omega$
- $(c) -\omega^2$
- (d) 2ω
- 80. কাল্পনিক একক i এবং এককের জটিল ঘনমূল ω হলে-

[CB'17]

- (i) $\omega^3 = -1$
- (ii) $i^2 = -1$
- (iii) $\omega + \omega^2 = -1$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

81. $z = -1 + i\sqrt{3}$ হলে–

[Din.B'17]

(i) $z^9 = 64$

 $(a) -2\omega^2$

- (ii) z এর আর্গ্রমেন্ট 120°
- (iii) z- এর বর্গমূল $\pm \frac{1}{\sqrt{2}} (1 i\sqrt{3})$

নিচের কোনটি সঠিক?

- (a) i
- (b) ii

 $(b) -2\omega$

(c) ii, iii

(c) 0

- (d) i, ii, iii
- 82. $\frac{1}{\omega^{2015}} + \frac{1}{\omega^{2016}} + \frac{1}{\omega^{2017}}$ এর মান কোনটি?
- [Din.B'17] (d) 3

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

67. d	68. b	69. c	70. d 82. c	71. b	72. b	73. c	74. c	75. c	76. d	77. d	78. b
79. a	80. c	81. b	82. c								

- 67. $(1-\omega^4)(1-\omega^8)(1-\omega^{10})(1-\omega^{14})$ $= (1 - \omega^{3}.\omega)(1 - \omega^{3}.\omega^{3}.\omega^{2})(1 - \omega^{3}.\omega^{3}.\omega^{3}.\omega)(1 - \omega^{3}.\omega^{3}.\omega^{3}.\omega^{2})$ $= (1 - \omega)(1 - \omega^2)(1 - \omega)(1 - \omega^2) \ [\because \omega^3 = 1]$
- $= (1 \omega)^2 (1 \omega^2)^2 = (1 \omega \omega^2 + \omega^3)^2 = 3^2 = 9$ 68. $z\bar{z} = |z|^2 = 7 \Rightarrow x^2 + 4y^2 = 7 \Rightarrow \frac{x^2}{2} + \frac{y^2}{2} = 1$ যা একটি উপবৃত্ত।
- 69. $2i = 1 + 2i + i^2 = (1 + i)^2 : \sqrt{2i} = \pm (1 + i)$
- 71. $2i = 1 + i^2 + 2 \cdot 1 \cdot i = (1 + i)^2 \Rightarrow (2i)^{\frac{1}{2}} = 1 + i$; $-2i = 1 + i^2 - 2 \cdot 1 \cdot i = (1 - i)^2 \Rightarrow (-2i)^{\frac{1}{2}} = 1 - i$
 - $\therefore (2i)^{-\frac{1}{2}} + (-2i)^{-\frac{1}{2}} = \frac{1}{1+i} + \frac{1}{1-i} = \frac{1+i+1-i}{1-i^2} = \frac{2}{2} = 1$

- 73. $(i^4)^n i + (i^4)^n \cdot i 1 = 1 i + i 1 = 0$
- 74. $\alpha = \frac{-1+\sqrt{3}i}{2} = \omega : \overline{\alpha} = \omega^2 : 1 + \omega + \omega^2 = 0 : \omega + \omega^2 = -1$
- 75. $i^m + i^{m+1} + i^{m+2} + i^{m+3} = i^m (1 + i + i^2 + i^3)$
- $=i^{m}(1+i-1-i)=0$ 78. $\omega^{6n+3} = \omega^{6n}, \omega^3 = 1$.
- 79. $\omega^{92} + \omega^{16} = \omega^{90} \times \omega^2 + \omega^{15} \times \omega = \omega^2 + \omega = -1$
- 81. $z^9 = \frac{(-1+\sqrt{3}i)^9}{2^9}$. $2^9 = \left(\frac{-1+\sqrt{3}i}{2}\right)^9$. $2^9 = (\omega^2)^9 2^9 = 2^9 = 512$;
 - $\theta = \pi \tan^{-1} \left| \frac{\sqrt{3}}{3} \right| = \frac{2\pi^c}{3} = 120^\circ$
- 82. $\frac{1}{\omega^{2015}} + \frac{1}{\omega^{2016}} + \frac{1}{\omega^{2017}} = \frac{1}{\omega^2} + \frac{1}{\omega^2} + \frac{1}{\omega} = \frac{\omega + \omega^3 + \omega^2}{\omega^3} = 0$

বিভিন্ন কলেজের টেস্ট পরীক্ষার MCQ প্রশ্ন

- $i^{50} \cdot i^{18351493} = ?$ 83.
- রোজশাহী ক্যাডেট কলেজ।

- (a) i
- (b) -i
- (c) 1
- (d) -1
- x = i 1 হলে x³ + 3x² + 4x + 7 এর মান কত? 84.

ঝোলকাঠি সরকারি মহিলা কলেজ।

- (a) 3
- (b) 4
- (c) 5
- (d) 6
- এককের কাল্পনিক ঘনমূলক ω হলে, $(1-\omega^{-2})(1-\omega^{10})$ 85.
 - $(1-\omega^8)(1-\omega^{14})$
- বিংপুর ক্যাডেট কলেজ

- (a) -1
- (b) 1
- (c) 3
- (d) 9
- $i^{m} + i^{m+1} + i^{m+2} + i^{m+3} = ? (m \in \mathbb{Z})$ 86.

[রংপুর ক্যাডেট কলেজ]

- (a) 1
- (b) -i
- (c) 0
- (d) i
- 87. $\frac{1}{2}$ i এর বর্গমূল কোনটি? [ফৌজদারহাট ক্যাডেট কলেজ, চউগ্রাম]
 - (a) $\pm \frac{1}{\sqrt{3}}(1+i)$
- (b) $\pm \frac{1}{\sqrt{3}}(1-i)$
- (c) $\pm \frac{1}{\sqrt{6}} (1+i)$
- (d) $\pm \frac{1}{\sqrt{6}} (1 i)$
- $i^2 = -1$ এবং $\omega^2 = 1$ হলে-88.
- [সিলেট ক্যাডেট কলেজ]
- (i) $i^{4n+3} = -i$, $n \in \mathbb{N}$
- (ii) $\omega^{48} = i^{100}$
- (iii) $\omega^{12n} + 1 = 2, n \in \mathbb{N}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- i-2024 + 1 এর মান কত? 89.
- [সিলেট ক্যাডেট কলেজ]

(a) 0

(b) 1 - i

(c) 2

(d) 1 + i

- (ω¹²⁷) এর মান কত?
- সিলেট ক্যাডেট কলেভ
- (a) $\frac{1}{\omega^{i}}$ (b) $\frac{1}{\omega}$
- (c) w
- (d) ω¹
- (1+i)" (1-i)ⁿ⁻² এর মান নিচের কোনটি? বিরিশাল ক্যাডেট কলেজ
 - (a) $-i^{n+1}$
- (b) in+1
- $(c) 2i^{n+1}$
- (d) 1

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$z = \frac{5-i}{2-3i}$$

- $\bar{z} = \bar{\phi} \bar{\sigma}$? 92.
- রোজউক উত্তরা মডেল কলেজ, ঢাকা
- (a) 1 + i
- (b) 1 i
- (c) 2 + 3i
- (d) 5 + i
- $1 + \omega + \omega^2 + \omega^3 + \dots + \omega^{99} = ?$ 93.

াভিকারুননিসা নূন স্কুল এম্ড কলেজ, ঢাকা

- (a) 0
- (b) 1
- (c) ω
- $(d) \omega^2$
- যদি $x + iy = 2i + 3i^2 + 4i^3 + 5i^4$ হয়, তবে xy এর মন 94. আদমজী ক্যান্টনমেন্ট কলেজ, সকা
 - কত?

(a) -4

(a) - 4

- (b) 4
- (c) 2
- (d) -2
- এককের কাম্পনিক মূল ω হলে, $(1-\omega+\omega^2)^2+$
 - $(1+\omega-\omega^2)^2=?$
- জ্যপুরহাট গার্লস ক্যাডেট কল্ডে
- (b) -3
- (c)3
- (d) 4
- $x = \sqrt{-2 + 2\sqrt{-2 + 2\sqrt{-2 + \cdots}}}$ হলে, x এর মান কোনটা

হলি ক্রস কলেজ, চার

- (a) 1 i
- (b) 1 + i
- (c) -1 + i
- (d) -2 2i

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

90. c 95. a 87. c 88. d 94, a 86. c 85. d 83. b

- 83 156 118361493 = 1(4×12)+2 , 1(4×4587878)+1 $= i^2 \cdot 1 \cdot 1 \cdot i = i^2 \cdot i = (-1) \cdot i = -i$
- 85. $(1-\omega^{-2})(1-\omega^{10})(1-\omega^{8})(1-\omega^{14})$
 - $= \left(1 \frac{1}{\omega^2}\right) (1 \omega^{10}) (1 \omega^0) (1 \omega^{14})$
 - $= \left(1 \frac{\omega^3}{\omega^2}\right) (1 \omega^9 \cdot \omega) (1 \omega^4 \cdot \omega^2) (1 \omega^{12} \cdot \omega^2)$
 - $= (1 \omega)(1 \omega)(1 \omega^2)(1 \omega^2) = (1 \omega)^2(1 \omega^2)^2$ $= \{(1-\omega)(1-\omega^2)\}^2 = (1-\omega^2 - \omega + \omega^3)^2$
 - $= (1 + \omega^3 \omega \omega^2)^2 = (1 + 1 \omega \omega^2)^2 = (2 (\omega + \omega^2))^2$ $=-\{2-(-1)\}^2=3^2=9$
- 89. $1^{-2024} + 1 = \frac{1}{12024} + 1 = \frac{1}{(14)206} + 1 = 1 + 1 = 2$
- 91. $\frac{(1+i)^n}{(1-i)^{n+2}} = \frac{(1+i)^n}{(1-i)^n} (1-i)^2 \Rightarrow \left(\frac{1+i}{1-i}\right)^n (1-2i+i^2) = \left(\frac{(1+i)^n}{1-i^2}\right)^n (-2i)^n$ $=\left(\frac{21}{7}\right)^{n}(-2i)=(i)^{n}(-2i)=-2i^{n+1}$
- 94. $x + iy = 2i + 3i^2 + 4i^3 + 5i^4 = 2i 3 4i + 5 = 2 2i$ xy = (2)(-2) = -4
- 95. $(1-\omega+\omega^2)^2+(1+\omega-\omega^2)^2=(1+\omega^2-\omega)^2+(1+\omega^2-\omega)^2$ $= (-\omega - \omega)^2 + (-\omega^2 - \omega^2)^2 = (-2\omega)^2 + (-2\omega^2)^2$ $=4\omega^{2}+4\omega^{4}=4\omega^{2}+4\omega=4(\omega+\omega^{2})=4(-1)=-4$

সাজেশনভিত্তিক মডেল টেস্ট: অধ্যায়-০৩

পূৰ্ণমান: ৪০

MCQ

সময়: ৪০ মিনিট

- 01. 1 i জটিল সংখ্যাটির—
 - (i) মডুলাস = √2
- (ii) আর্তমেন্ট = "
- (iii) পোলার আকৃতি, $\sqrt{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 02. z = x + iy হলে |z 5| = 3 দ্বারা নির্দেশিত সমীকরণ कि निर्फिंग करत?
- (a) সরলরেখা (b) পরাবৃত্ত (c) উপবৃত্ত 03. এককের ঘনমূল-
 - (i) i
- (ii) $\frac{1}{2}(-1+i\sqrt{3})$
- (iii) $\frac{1}{2}(-1-i\sqrt{3})$

নিচের কোনটি সঠিক?

- (b) i, iii
- (c) ii, iii (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও।

$$z_1 = 1 + i$$

- 04. z̄₁ এর পরমমান কত?
 - (a) 0
- (b) 1
- (c) $\sqrt{2}$
- 05. এককের একটি কাল্পনিক ঘনমূল ω হলে ω^{3000} + $\omega^{3001} + \omega^{3002}$ এর মান নিচের কোনটি?
- (b) 1
- (c) w
- (d) ω^2
- 06. $x^2 + px + q = 0$ সমীকরণের একটি মূল 1 + i হলে p ও q এর মান কোনটি? $[p, q \in \mathbb{R}]$
 - (a) p = 2, q = 1
- (b) p = 2, q = 2
- (c) p = -2, q = 2
- (d) p = 2, q = -2

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও।

- এককের একটি কাম্পনিক ঘনমূল ω , যেখানে $\omega = \frac{-1-\sqrt{-3}}{2}$
- 07. $(1 + ω)(1 + ω^2)$ এর মান কোনটি?
- (a) -1
- (c) 1
- (d) 2

- (b) 0 08. arg(ω) কোনটি?
- (b) $\frac{\pi}{6}$
- (c) $-\frac{\pi}{3}$
- 09. i+i2+i3+i4+.....+i25 এর মান কত?
- (b) 1
- (c) i
- (d) i
- 10. $z = \frac{1}{1-1}$ জটিল সংখ্যার-
 - (i) আর্তমেন্ট ^{3π}
 - (ii) পোলার আকৃতি $\frac{1}{\sqrt{2}} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)$
 - (iii) বাস্তব অংশ -
 - নিচের কোনটি সঠিক? (a) i (b) i, ii
- - (c) ii, iii
- (d) i, ii, iii

- 11. $z_1 = 3 + i$; $z_2 = 5 + i$ হলে-
 - (i) $z_1 + z_2 = 8$
- (ii) $z_1^2 + z_2^2 = 32 + 16i$
 - (iii) $|z_1 + z_2| = 2\sqrt{17}$

নিচের কোনটি সঠিক?

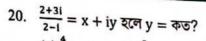
- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 12. যদি z = x + iy হয় হবে $z\overline{z} = 0$ সমীকরণটি হবে-
 - (a) সরলরেখা
- (b) পরাবৃত্ত
- (c) অধিবৃত্ত
- (d) বৃত্ত
- 13. একের কাল্পনিক ঘনমূল ω হলে-
 - (i) $1 + \omega^4 + \omega^8 = 0$
- (ii) $\sqrt{\omega + \omega^2} = 1$
- (iii) $\omega^3 = 1$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- 14. x + iy = 3i হলে (x, y) এর মান নিচের কোনটি?
 - (a) $(x, y) \equiv (1, 3)$
- (b) $(x,y) \equiv (0,3)$
- (c) $(x, y) \equiv (3, 1)$
- (d) $(x,y) \equiv (1,3)$
- এককের ঘনমূলত্রয় 1, ω, ω² হলে—
 - (i) $\omega + \omega^2 = 1$
- (ii) $\omega^3 = 1$
- (iii) $\omega = \frac{1}{\omega^2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 16. $(x-1)(x^2+4)=0$ সমীকরণের সমাধান নিচের কোনটি?
 - (a) 1, 2, -2
- (b) 1, -2, -2
- (c) 1, 2i, -2i
- (d) 1, -2i, -2i
- 17. y = 3 5i এখানে-
 - (i) y একটি জটিল সংখ্যা
 - (ii) y একটি বাস্তব সংখ্যা
 - (iii) y এর মডুলাস ও আর্গ্রমেন্ট নির্ণয় করা যায়


নিচের কোনটি সঠিক?

- (a) i
- (b) iii
- (c) i, iii
- 18. $(\omega^{3n} + \omega^{3n+1} + \omega^{3n+2})^5$ $(n \in \mathbb{N})$ এর মান কত?
 - (a) ω
- (b) ω^2
- (c) 0
- (d) 1
- 19. নিচের তথ্যগুলো লক্ষ কর:
 - (i) এককের জটিল ঘনমূল দুইটির গুণফল একক
 - (ii) এককের জটিল ঘনমূল দুইটির একটি অপরটির উল্টা

(iii) এককের তিনটি ঘনমূলের সমষ্টি শূন্য নিচের কোনটি সঠিক?

- (a) ii
- (b) i
- (c) i, ii, iii (d) iii

HSC প্রম্নব্যাংক ২০২৫

21. z = 3 + 4i এবং $\bar{z} = 3 - 4i$ হলে $z - \bar{z}$ সংখ্যাটি একটি-

- (i) বাস্তব (ii) অবাস্তব (iii) জটিল নিচের কোনটি সঠিক?
- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- 22. a + ib = p + iq হলে কোনটি সঠিক?
 - (a) a = p, b = q
- (b) a = q, b = p
- (c) a = b, p = q
- (d) কোনটিই নয়
- 23. $\frac{1}{1-\frac{1}{1-\frac{1}{1}}}$ এর মান কত?
 - (a) 1 + i
- (b) 1 i (c) -2
- (d) 2
- 24. $a = \frac{1+i}{\sqrt{2}}$ হলে a^6 এর মান কত?
- (b) -1
- (c) i
- (d) i
- 25. এককের একটি কাল্পনিক ঘনমূল ω হলে $(1-\omega+$ ω^2)⁵ + $(1 + \omega - \omega^2)^5$ এর মান কত?
- (b) -32
- (c) 32
- (d) 64
- 26. $i = \sqrt{2}a 1$ হলে $a^8 + a^6 + a^4 + a^2 + 1$ এর মান কত?
- (c) 1
- (d)0
- 27. $\frac{1}{\omega^2} + \frac{1}{\omega^3} + \frac{1}{\omega^4} = ?$
- (b) ω
- (c) ω^2
- $(d) -\omega^2$
- 28. x + iy জটিল সংখ্যাটির মডুলাস r এবং আর্গুমেন্ট θ হলে এর পোলার আকার নিচের কোনটি?
 - (a) re^{-iθ}
- (b) re^{iθ}
- (d) $e^{-i\theta}$
- 29. $\sqrt{i} + \sqrt{-i}$ এর মান নিচের কোনটি?
 - (a) $\sqrt{3}$
- (b) √2
- (c) 2
- (d) 1
- 30. ω একটি এককের কাম্পনিক ঘনমূল হলে, $1 + ω + ω^2 +$ $\omega^3 + \cdots + \omega^{34}$ এর মান কত?
- (b) ω
- (c) ω² (d) কোনোটিই নয়
- 31. $z_1 = 2 + i$ এবং $z_2 = 3 + i$ হলে $z_1 \overline{z_2}$ এর সঠিক মডলাস নিচের কোনটি?
 - (a) 6
- (b) 7
- (c) $5\sqrt{2}$
- (d) $5\sqrt{3}$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৩

নিচের উদ্দীপকের আ**লো**কে পরবর্তী তিনটি প্রশ্নের উত্তর দাও। a = 3 - 2i, b = 3 + 2i

- (a + b) কী ধরনের রাশি?
 - (a) বাস্তব
- (b) অবান্তব
- (c) কাল্পনিক
- (d) কোনটিই নয়
- 33. |a| + |b| = কত?
 - (a) 3
- (b) 13
- (c) √13
- (d) $2\sqrt{13}$
- 34. উদ্দীপকের আলোকে—
 - (i) a b = 0
 - (ii) a b কাল্পনিক রাশি
 - (iii) $a^2 + b^2 = 10$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- 35. $\sqrt{2}(\sqrt{i} + \sqrt{-i}) = ?$
 - (a) $\sqrt{2}$
- (b) 2
- (c) $2\sqrt{2}$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উন্তর দাও।

- $z = \frac{5-i}{2-3i}$
- 36. $\bar{z} = ?$
 - (a) 1 + i
- (b) 1 i (c) 2 + 3i (d) 5 + i

- 37. $arg(\overline{Z}) = ?$
 - $(a)^{\frac{\pi}{4}}$
- (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{4}$
- 38. 4 + 3i এর অনুবন্ধী জটিল সংখ্যা নিম্নের কোনটি?
 - (a) -3 4i
- (b) -4 + 3i
- (c) 4 3i
- (d) 3 4i
- $39. \quad a+ib=0$ বলতে কি বোঝায়? $[a,b\in\mathbb{R}]$
 - (a) a = 0, b = 0
- (b) $a = 0, b \neq 0$ (d) $a \neq 0, b \neq 0$
- (c) $a \neq 0, b = 0$ 40. z = i − 1 হলে -
 - (i) $|z| = \sqrt{2}$
- (ii) $arg(z) = 135^{\circ}$
- $(iii) \bar{z} = i + 1$

নিচের কোনটি সঠিক?

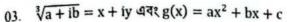
- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

পূৰ্ণমান: ৫০

CO

সময়: २:৩৫ मिनिए

(যেকোনো পাঁচটি প্রশ্নের উত্তর দাও:)


- 01. (i) x=a+b, $y=a\omega+b\omega^2$ এবং $z=a\omega^2+b\omega$
 - (ii) ω হলো এককের একটি জটিল ঘনমূল।
 - (ক) মড়ুলাস ও আর্গ্রমেন্ট বলতে কী বুঝো? (খ) (i) নং থেকে দেখাও যে, $x^2 + y^2 + z^2 = 6ab$
 - (গ) (ii) থেকে প্রমাণ কর যে. $(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)=9$
- 02. $z_1 = a + ib$, $z_2 = c + id$ এবং $z_1 z_2 = p + iq$
 - (ক) দেখাও যে, ${\bf x}^3-1=0$ সমীকরণের জটিল মূলদ্বয়ের একটি অপরটির বিপরীত।
 - (খ) প্রমাণ কর যে, $(c^2 + d^2)z_1^2 2(ac + bd)z_1z_2$ $+(a^2+b^2)z_2^2=0$
 - (গ) a = b = 1 হলে, z_1 এর বর্গমূল নির্ণয় কর।

2

HSC প্রশ্নব্যাংক ২০২৫

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৩

(ক) i³ এর বর্গমূল নির্ণয় কর।

(খ) দেখাও যে,
$$\sqrt[3]{a-ib} = x - iy$$

(গ)
$$\{g(\omega)\}^3 + \{g(\omega^2)\}^3 = 0$$
 হলে দেখাও যে,
$$a = \frac{1}{2}(b+c)$$
 অথবা, $b = \frac{1}{2}(c+a)$ অথবা, $c = \frac{1}{2}(a+b)$ যেখানে ω হলে এককের জটিল একটি ঘনমূল।

04.
$$\left(\frac{-1+\sqrt{-3}}{2}\right)^n + \left(\frac{-1-\sqrt{-3}}{2}\right)^n = p$$
 এবং $q = a + b + c$

(क) i এর ঘনমূলগুলি নির্ণয় কর।

(খ) দেখাও যে, p এর মান 2 অথবা —1, যখন n যথাক্রমে 3 দ্বারা বিভাজ্য অথবা, অপর কোনো পূর্ণসংখ্যা।

(গ) q = 0 হলে প্রমাণ কর যে, (a + bω + cω²)³ + (a + bω² + cω)³ = 27abc [যেখানে ω এককের একটি কাম্পনিক ঘনমূল।]

05.	b = 64	এবং ³ √a	+ ib =	x + iv
	- 0.	- 11 A CE	1 10 -	ATIV

(ক) $(1 - \omega^2)(1 - \omega^4)$ এর মান নির্ণয় কর।

(খ) [∜]-b এর মানগুলো নির্ণয় কর।

(গ) প্রমাণ কর যে,
$$4(x^2 - y^2) = \frac{a}{x} + \frac{b}{y}$$
.

06. z₁ = 3 + 4i, z₂ = 4 + 3i এবং p = a - ib

(ক) z_1+z_2 জটিল সংখ্যাটির পোলার আকার নির্ণয় কর।

(খ) z₁z₂ এর মড়ুলাস ও আর্গুমেন্ট নির্ণয় কর।

(গ) যদি a² + b² = 1 হয়, তবে দেখাও যে, x এর একটি বাস্তব মান 1-ix = p সমীকরণকে সিদ্ধ করে, এখানে a ও b বাস্তব সংখ্যা।

07. (i) $(1 + x + x^2)^n = p_0 + p_1 x + p_2 x^2 + \cdots p_{2n} x^{2n}$

(ii) জটিল সংখ্যা, z = x + iy

(ক) $\frac{i^{-1}-i}{2i^{-1}+i}$ এর মান নির্ণয় কর।

(খ) (i) থেকে প্রমাণ কর যে, $p_0 + p_3 + p_6 + \cdots = 3^{n-1}$. 4

(গ) (ii) অনুযায়ী |z - 8| + |z + 8| = 20 দ্বারা নির্দেশিত সঞ্চারপথের সমীকরণ নির্ণয় কর।

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

MCQ

01. b	02. d	03. с	04. с	05. a	06. c	07. с	08. a	09. c	10. b	11. c	12. d	13. c	14. b	15. c
16. c	17. c	18. c	19. c	20. c	21. b	22. a	23. a	24. d	25. c	26. c	27. a	28. b	29. b	30. d
					36. b									

- 02. |z-5|=3 হল বৃত্তের সমীকরণ যার কেন্দ্র (5,0) ও ব্যাসার্ধ $3,\pm\sqrt{(x-5)^2+y^2}=3$
- 06. -p = 1 + i + 1 i = 2 এবং $q = (1^2 i^2) = 1 + 1 = 2 \Rightarrow p = -2$
- 09. $(i+i^2+i^3+i^4)+i^4(i+i^2+i^3+i^4)+\cdots\cdots+i^{20}(i+i^2+i^3+i^4)+i^{25}=0+0+\cdots\cdots+0+i^{25}=(i^{24}).i=i$
- 10. $z = \frac{i}{1-i} = -\frac{1}{2} + \frac{1}{2}i = \frac{1}{\sqrt{2}} \left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \right)$
- 12. z = x + iy হলে, $z\bar{z} = x^2 + y^2$; $z\bar{z} = 0$ একটি বিন্দুবৃত্ত নির্দেশ করে।
- 20. $\frac{2+3i}{2-i} = \frac{(2+3i)(2+i)}{(2-i)(2+i)} = \frac{4+6i+2i-3}{5} = \frac{1}{5} + \frac{8}{5}i : y = \frac{8}{5}$
- 23. $\frac{1}{1-\frac{1}{1-1}} = \frac{1}{1-\frac{1}{1-1}} = \frac{1(1-1)}{-1} = 1+i$
- 24. $a = \frac{1+i}{\sqrt{2}} \Rightarrow a^2 = \frac{1+2i-1}{2} = i$, $a^6 = (a^2)^3 = (i)^3 = -i$
- 25. $(1 \omega + \omega^2)^5 + (1 + \omega \omega^2)^5 = ?$ $(1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5 = (-2\omega)^5 + (-2\omega^2)^5$ $= -32\omega^2 - 32\omega = -32(\omega + \omega^2) = 32$

- 26. $i = \sqrt{2} a 1 \Rightarrow a = \frac{1+i}{\sqrt{2}} = \pm \sqrt{i} : a^2 = i; a^4 = -1; a^6 = -i$ $a^8 = 1 : a^8 + a^6 + a^4 + a^2 + 1 = 1$
- 27. $\frac{1}{\omega^2} + \frac{1}{\omega^3} + \frac{1}{\omega^4} = \frac{1}{\omega^2} + 1 + \frac{1}{\omega} = \omega + 1 + \omega^2 \left[\because \omega = \frac{1}{\omega^2} \right] = 0$
- 29. $\sqrt{i} + \sqrt{-i} = \sqrt{\frac{1}{2}}(1 + 2i + i^2) + \sqrt{\frac{1}{2}}(1 2i + i^2)$ = $\frac{1}{\sqrt{2}}\sqrt{(1 + i)^2} + \frac{1}{\sqrt{2}}\sqrt{(1 - i)^2} = \frac{1}{\sqrt{2}}(1 + i + 1 - i) = \sqrt{2}$
- 30. $(1 + \omega + \omega^2) + \omega^3 (1 + \omega + \omega^2) + \omega^6 (1 + \omega + \omega^2) + \cdots + \omega^{30} (1 + \omega + \omega^2) + \omega^{33} + \omega^{34} = 0 + \omega^{33} (1 + \omega) = 1 + \omega = -\omega^2$
- 31. $|z_1, z_2| = |z_1|, |z_2|$; $[|z_2| = |\overline{z_2}|]$
- 35. $\sqrt{i} = \pm \frac{i+i}{\sqrt{2}}$; $\sqrt{-i} = \pm \frac{i-i}{\sqrt{2}}$; $\sqrt{i} + \sqrt{-i} = \pm \frac{[(1+i)\pm(1-i)]}{\sqrt{2}} = \frac{\pm 2}{\sqrt{2}}$ or $\pm \frac{2i}{\sqrt{2}}$ $\therefore \sqrt{2}(\sqrt{i} + \sqrt{-i}) = \pm 2$ or $\pm 2i$
- 36. $z = \frac{5-i}{2-3i}$; $\overline{Z} = \frac{(5+i)(2-3i)}{(2+3i)(2-3i)} = \frac{13-13i}{13} = 1-i$
- 37. $\overline{z} = 1 i$; $arg(\overline{z}) = -tan^{-1}1 = -\frac{\pi}{4}$

CQ

- 02. (7) $\pm \frac{1}{\sqrt{2}} \left\{ (\sqrt{2} + 1)^{\frac{1}{2}} + (\sqrt{2} 1)^{\frac{1}{2}} \right\}$
- 03. (*) $\pm \frac{1}{\sqrt{3}} (1-1)$
- 04. (Φ) -i, -iω, -iω²]
- 05. (本) 3 (中) ±21,±21ω,±21ω²

- 06. (4) $7\sqrt{2}(\cos 45^{\circ} + 1\sin 45^{\circ})$
 - (খ) মড়ুলাস = 25, আর্ডমেন্ট = $\frac{\pi}{2}$]
- 07. (本) 2
 - (1) $\frac{x^2}{5^2} + \frac{y^2}{5^2} = 1$, উপবৃত্তের সমীকরণ

অধ্যায় 08

বহুপদী ও বহুপদী সমীকরণ

সৃজনশীল (ক), (খ) ও (গ) নং প্রশ্নের জন্য এ অধ্যায়ের গুরুত্বপূর্ণ টাইপসমৃহ:

তরুত্ব	টাইপ	টাইপের নাম	যতবার প্রশ্ন এসেছে			বে ৰোৰ্ডে যে বছর এসেছে
			4	4	গ	CQ
0	T-01	কোনো রাশি বহুপদী কিনা নির্ণয়	01			CB'17
000	T-02	নিশ্চায়ক (D) ও মৃলগুলোর প্রকৃতি	26	03	01	DB'23, 21, 18; RB'23, 22, 21; Ctg.B'23, 22; SB'23, 22 21, 18; JB'23, 22, 21, 19, 18; CB'23, 22; Din.B'23, 22 21, 19, 18; MB'23, 22
000	T-03	মৃল-সহগ সম্পর্ক সংক্রান্ত	03	16	06	DB'23, 18, 17; BB'23, 22; JB'23, 22, 21, 18; CB'23; Din.B'23, 22, 21, 18; RB'22; SB'22, 18; MB'22, 21; Ctg.B'21;
000	T-04	দুইটি সমীকরণের মৃলের সম্পর্ক সংক্রান্ত	-	07	09	RB'23, 21, 19; Ctg.B'23, 22; SB'23, 22; BB'23, 22; CB'23, 22; DB'21; Din.B'21, 17; MB'21; JB'19
00	T-05	বহুপদী সমীকরণের মূল নির্ণয়	06	02	04	DB'23, 22, RB'23; Din.B'23, 21; JB'22; CB'22; SB'21; BB'21; MB'21; SB'19
00	T-06	সমীকরণ গঠন সংক্রান্ত	06	07	06	DB'23; RB'23; JB'23, 19; SB'22, 21; CB'22, 17; Din.B'22, 21, 19; MB'22; Ctg.B'21
000	T-07	প্রতিসম রাশি ও প্রতিসম মূলবিশিষ্ট সমীকরণ	03	11	12	DB'23, 21; Ctg.B'23, 21, 22; SB'23, 21; BB'23, 22, 2 CB'23, 22, 19; Din.B'23, 21; MB'23, 21; RB'22, 17; JB'22, 21, 17
00	T-08	মূলগুলো বিভিন্ন প্রগমনভূক সম্পর্কিত	01	-	04	JB'23, 22; MB'23; DB'22, 21
00	T-09	সাধারণ মূল সংক্রোন্ত	-	04	08	DB'23, 21, 19; Ctg.B'23, 21; BB'23; MB'23, 22; RB'22; Din.B'22; JB'21; CB'21

CQ প্রশ্ন ও সমাধান (ক, খ ও গ)

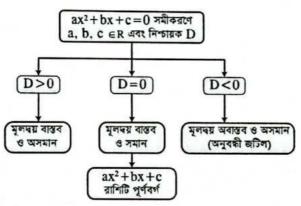
Type-01: কোনো রাশি বহুপদী কিনা নির্ণয়

Concept

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

সূজনশীল প্রশ্ন (ক, খ ও গ)

(ক) $\frac{x^3-8}{x-2}$ বহুপদীর ঘাত নির্ণয় কর।


[CB'17]

(ক) Soln: $\frac{x^3-8}{x-2} = \frac{(x^3-2^3)}{x-2} = \frac{(x-2)(x^2+2x+4)}{x-2}$; এখানে x এর সর্বোচ্চ ঘাত 2+(Ans.)

Type-02: নিকায়ক (D) ও মূলওলোর প্রকৃতি

*Concept

 $ax^2 + bx + c = 0$ (a $\neq 0$) দ্বিঘাত সমীকরণের মূলদ্বয়, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$; যেখানে $b^2 - 4ac$ কে প্রদন্ত দ্বিঘাত সমীকরণের পৃথায়ক বা নিশ্চায়ক (Discriminant) বলে। একে D দ্বারা প্রকাশ করা হয়।

 $a, b, c \in \mathbb{Q}, D \ge 0$ এবং D পূর্ণবর্গ হলে, মূলদ্বয় মূলদ হবে।

সূজনশীল প্রশ্ন (ক, খ ও গ)

(ক) $2x^2 - 2(p+q)x + (p^2 + q^2) = 0$ সমীকরণের 01. মূলহুয় বাস্তব ও সমান হলে, প্রমাণ কর যে, p=q [DB'23]

- (ক) Solⁿ: $2x^2 2(p+q)x + (p^2 + q^2) = 0$ সমীকরণের মূলদ্বয় বাস্তব ও সমান হলে, D = 0 $\Rightarrow \{-2(p+q)\}^2 - 4 \cdot 2(p^2 + q^2) = 0$ $\Rightarrow 4(p+q)^2 - 4 \cdot 2(p^2 + q^2) = 0$ $\Rightarrow (p+q)^2 - 2p^2 - 2q^2 = 0$ $\Rightarrow -p^2 + 2pq - q^2 = 0 \Rightarrow -(p - q)^2 = 0$
- $f(x) = 3x^2 4x + 1$ [RB'23] (ক) f(x) = 0 সমীকরণের মূলের প্রকৃতি নির্ণয় কর।

 \Rightarrow $(p-q)^2 = 0 \Rightarrow p-q = 0 \Rightarrow p = q$ (Proved)

 $(\overline{\Phi})$ Solⁿ: $f(x) = 0 \Rightarrow 3x^2 - 4x + 1 = 0$ সমীকরণের নিশ্চায়ক = $b^2 - 4ac = (-4)^2 - 4 \cdot 3 \cdot 1$ = 16 - 12 = 4 > 0় মূল দুটি হবে বাস্তব ও অসমান। আবার, 3, -4,1 ∈ Q : D = 4 পূর্ণবর্গ বিধায় মূলদয় মূলদ।

(Ans.)

- $f(x) = x^2 + x + 1$ 03. [Ctg.B'23] (ক) f(x) = 0 সমীকরণের মূলের প্রকৃতি নির্ণয় কর।
- (Φ) Solⁿ; $f(x) = 0 \Rightarrow x^2 + x + 1 = 0$ নিশ্চায়ক, $D = b^2 - 4ac = (1)^2 - 4 \cdot 1 \cdot 1 = -3 < 0$ ∴ মূলের প্রকৃতি জটিল ও অসমান। ∵ x², x ও x⁰ এর সহগ 1,1,1 ∈ R : মূলছয় পরস্পর অনুবন্ধী। (Ans.)
- (ii) $ax^2 + 2bx + 2c = 0$ 04. (ক) a + b + c = 0 এবং a, b, c অশ্ন্য বাস্তব হলে দেখাও যে, (ii) নং সমীকরণের মূলম্বয় বাস্তব ও অসমান হবে।
- Soln: $a+b+c=0 \Rightarrow a+c=-b$ (季) \Rightarrow $(a + c)^2 = (-b)^2 \Rightarrow a^2 + c^2 + 2ac = b^2$ এখন (ii) নং সমীকরণ ⇒ ax2 + 2bx + 2c = 0 নিকায়ক = $(2b)^2 - 4 \cdot 2c \cdot a = 4b^2 - 8ac$ $=4(a^2+c^2+2ac)-8ac=4(a^2+c^2)$ আমরা জানি, দুটি বাস্তব সংখ্যার বর্গের যোগফল অঝণাত্মক হয়। $∴ 4(a^2 + c^2) \ge 0$. আবার, a, b, c ≠ 0 ∴ $a^2, b^2, c^2 > 0$ $∴ 4(a^2 + c^2) > 0$ বা, D > 0.
- সমীকরণের মূলদ্বয় বাস্তব ও অসমান। (Showed)

HSC श्राकारके २०२०

ducation

 $(4) 9x^2 - (k+2)x + 4$ রাশিটি পূর্ণবর্গ হলে, k এর মান निर्मद कर

(SB'23)

- (ক) ১০৫: রাশিটি পূর্ণবর্গ হলে $9x^2 (k+2)x + 4 = 0$ সমীকরদের নিসায়ক শূনা হবে। ্ নিভায়ক, $D = (k+2)^2 - 144 = 0$ $\Rightarrow (k+2)^2 = 144 \Rightarrow k+2 = \pm 12$ k = 10, -14 (Ans.)
- ি ক্রান শর্চে $2x^2 2(a+b)x + a^2 + b^2 = 0$ সমীকরণের মূলকলো বাস্তব হবে? [Din.B'23]
- (3) Sol*: $2x^2 2(a+b)x + a^2 + b^2 = 0$ as years বাস্তব হবে যদি এর নিশ্বায়ক > 0 হয়। নিচায়ক D = $\{-2(a+b)\}^2 - 4 \cdot 2(a^2 + b^2) \ge 0$ $\Rightarrow 4(a+b)^2 - 8(a^2 + b^2) \ge 0$ $\Rightarrow a^2 + b^2 + 2ab - 2a^2 - 2b^2 \ge 0$ \Rightarrow 2ab $-a^2 - b^2 \ge 0$ \Rightarrow $a^2 - 2ab + b^2 \le 0 \Rightarrow (a - b)^2 \le 0$ $\Rightarrow a-b \le 0 : a \le b$ সূতরাং $a \le b$ শতে $2x^2 - 2(a+b)x + a^2 + b^2 = 0$ এর মলগুলো বাস্তব হবে।
- (ক) λ এর কোন মানের জন্য $(\lambda + 1)x^2 + 2(\lambda + 2)x$ $+(\lambda - 3) = 0$ সমীকরণের মূলবর বাস্তব ও সমান হবে? [MB'23]
- (3) Sol*: $(\lambda + 1)x^2 + 2(\lambda + 2)x + (\lambda 3) = 0$ সমীকরণের মূলহয় বাস্তব ও সমান হলে, D = 0 $\therefore \{2(\lambda + 2)\}^2 - 4(\lambda + 1)(\lambda - 3) = 0$ $\Rightarrow \lambda^2 + 4\lambda + 4 - \lambda^2 + 2\lambda + 3 = 0 \Rightarrow 6\lambda + 7 = 0$ $\therefore \lambda = -\frac{7}{\epsilon} \text{(Ans.)}$
- (ক) $(a + 1)x^2 + x + 1 = 0$ সমীকরণের মূলদম্ বাস্তব ও অসমান হলে a এর মান বের কর। [Ctg.B'22]
- (ক) Sol®: প্রদত্ত সমীকরণ, (a + 1)x² + x + 1 = 0(i) শর্তমতে, সমীকরণটির মূলগুলো বাস্তব ও অসমান। ∴ নিচায়ক > 0 হবে। ⇒ 1² – 4(a + 1) · 1 > 0 $\Rightarrow 1 - 4a - 4 > 0 \Rightarrow -4a - 3 > 0 \Rightarrow -4a > 3$ $\Rightarrow a < -\frac{3}{4}$ (Ans.)
- मुन्द्रक्ता: $(m^2 + n^2)x^2 + 2(mp + nq)x + p^2 + q^2 = 0$ [Ctg.B'22]
 - (গ) দেখাও যে, দৃশ্যকম্প এর সমীকরণের মূলধয় বাস্তব হলে ভারা সমান হবে এবং সমান মূলগুলো নির্ণয় কর।
- (91) Sol^a: $(m^2 + n^2)x^2 + 2(mp + nq)x + p^2 + q^2 = 0$ $a = m^2 + n^2$; b = 2(mp + nq); $c = p^2 + q^2$ $D = b^2 - 4ac = 4(mp + nq)^2 - 4(m^2 + n^2)(p^2 + q^2)$ $=4(m^2p^2+2mnpq+n^2q^2-m^2p^2-n^2p^2-m^2q^2$ $-n^2q^2$ $=4(-m^2q^2+2mqnp-n^2p^2)$ $= -4(m^2q^2 - 2mq \cdot np + n^2p^2)$

 $= -4(mq - np)^2 \le 0$ কিন্তু সন্নীকরণটির মূলহর বাস্তব। তাই, D < 0 ∴ D = 0 অর্থাৎ, মূলহয় বাস্তব হলে সমান হবে। ਸਮਾਜ ਸੂਸ = $-\frac{b}{2a} = -\frac{2(mp+nq)}{2(m^2+n^2)} = -\frac{mp+nq}{m^2+n^2}$ (Showed)

- $f(x) = px^2 + 2qx + r, g(x) = x^2 + (p+r)x$ [JB12] $+(p^2+r^2+2q^2).$
 - (খ) f(x) = 0 সমীকরণের মূলবয় বাস্তব এবং অসমান হ দেখাও যে, g(x) = 0 সমীকরণের মূলবয় কাম্পনিক হ
- (*) Sol*: $f(x) = px^2 + 2qx + r = 0$ শর্ভমতে, $(2q)^2 - 4 \cdot p \cdot r > 0 \Rightarrow 4q^2 - 4pr > 0$ $\Rightarrow q^2 - pr > 0 \Rightarrow q^2 > pr \dots \dots (i)$ ভাবার, g(x) = $x^2 + (p+r)x + (p^2 + r^2 + 2q^2)$

সমীকরণ (ii) এর নিশ্চায়ক = (p+r)2 - 4(p2 + r2 + 2q2 $= p^2 + 2pr + r^2 - 4p^2 - 4r^2 - 8q^2$ $= -3p^2 + 2pr - 3r^2 - 8q^2$ $=-3p^2-3r^2-8q^2+2pr$ $= -(3p^2 + 3r^2 + 8q^2 - 2pr)$ যেহেতু, pr < q² [সমীকরণ (i) হতে] তাই, আমরা বলতে পারি, সমীকরণ (ii) এর নিশ্চায়ক ঋণাত্তক হং

 $x^2 - 2ax + a^2 - b^2 = 0 \dots (i)$ [Din.B'22 (क) a, b मृनान इरन राज्यां खर, (i) नभीकदापद मृनदद नर्दन মূলদ হবে।

অর্থাৎ, g (x) = 0 সমীকরণের মূলবয় কাষ্পনিক হবে। (Shower

- (4) Solⁿ: $x^2 2ax + a^2 b^2 = 0$ সমীকরণটির নিকায়ক = $(-2a)^2 - 4 \cdot 1 \cdot (a^2 - b^2)$ $=4a^2-4a^2+4b^2=4b^2>0$ যেহেতু a ও b মূলদ, তাই নিশ্চায়কের মান 4b² > 0 তাই মূলদ্বয় সর্বদা মূলদ হবে। (Showed)
- पुनक्ला-3: p(x) = (x a)(x b) + (x b)(x c)12. +(x-c)(x-a).
- (খ) p(x) রাশিটি পূর্ণবর্গ হলে দেখাও যে, a = b = c. (4) Solⁿ: p(x) = (x-a)(x-b) + (x-b)(x-c)
 - +(x-c)(x-c) $= x^2 - ax - bx + ab + x^2 - bx - cx + bc + x^2 - 0$

 $= 3x^2 - 2(a + b + c)x + ab + bc + ca$ p(x) পূর্ণবর্গ হবে যদি p(x) = 0 সমীকরণের মূলদ্বয় বাস্ত্র হ সমান হয়।

∴ নিন্চায়ক = 4 (a + b + c)² - 4 · 3 · (ab + bc + ca) $= 4(a^2 + b^2 + c^2 + 2ab + 2bc + 2ca) - 12$ (ab + bc + ca

 $= 4a^2 + 4b^2 + 4c^2 + 8ab + 8bc + 8ca - 12ab$ -12bc - 120

 $=4a^2+4b^2+4c^2-4ab-4bc-4ca$

HSC প্রশ্নব্যাংক ২০২৫

=
$$4(a^2 + b^2 + c^2 - ab - bc - ca) = 4 \cdot \frac{1}{2}$$

$$[(a - b)^2 + (b - c)^2 + (c - a)^2]$$
= $2[(a - b)^2 + (b - c)^2 + (c - a)^2]$

$$p(x) পূর্ববর্গ হবে যদি নিশ্চায়ক = 0 হয়
$$\therefore 2[(a - b)^2 + (b - c)^2 + (c - a)^2] = 0$$

$$\Rightarrow (a - b)^2 + (b - c)^2 + (c - a)^2 = 0$$
একাধিক বর্গ রাশির যোগফল শূন্য হবে যদি প্রত্যেকে পৃথকভাবে
পূন্য হয়। $\therefore (a - b)^2 = 0$ বা, $a = b$;
$$(b - c)^2 = 0 \Rightarrow b = c$$
 এবং $(c - a)^2 = 0 \Rightarrow c = a$

$$\therefore a = b = c$$
 (দেখানো হলো)$$

- (ক) $x^2 x + k = 0$ সমীকরণের মূলহুয় বাস্তব হলে, k এর [DB'21]
- (ক) Sol": মূলম্বয় বাস্তব হলে $D \ge 0 \Rightarrow 1 4k \ge 0$ $\Rightarrow 4k-1 \le 0 \Rightarrow k \le \frac{1}{4}$ (Ans.)
- (ক) a এর মান কত হলে $x^2 4ax + 4 = 0$ সমীকরণের মৃলহয় জটিল হবে? [RB'21]
- (ক) Soln: মূলদ্বয় জটিল হলে D $< 0 \Rightarrow 16a^2 16 < 0$ $\Rightarrow 16(a^2 - 1) < 0 \Rightarrow a^2 < 1 \Rightarrow |a|^2 < 1$ $\Rightarrow -1 < a < 1$ (Ans.)
- ্রে (ক) দেখাও যে, b = p না হলে, $2x^2 2(b + p)x + b^2$ $+\mathbf{p}^2=0$ সমীকরণটির মূলগুলো বাস্তব হতে পারে না।
- (a) Solu: $2x^2 2(b+p)x + b^2 + p^2 = 0$ \Rightarrow D = 4(b + p)² - 8(b² + p²) \Rightarrow D = 4(b² + 2bp + p²) - 8(b² + p²) $\Rightarrow D = -4(b-p)^2 :: D \le 0,$ তাই মূল বাস্তব হলে $D = 0 \Rightarrow b - p = 0 \Rightarrow b = p$ b = P না হলে $2x^2 - 2(b + p)x + b^2 + p^2 = 0$ সমীকরণটির মূলগুলো বাস্তব হতে পারে না।

- (ক) p এর মান কত হলে px² + 4x + 3 রাশিটি পূর্ণবর্গ 16. হবে? [SB'21]
- (ক) Sol": শর্তমতে, D = 0 ⇒ (4)² 4 × p × 3 = 0 $\Rightarrow 16 - 12p = 0 \Rightarrow p = \frac{16}{12} = \frac{4}{3}$ (Ans.)
- দুশ্যকলপ: f(x) = ax² + bx + c, a ≠ 0 একটি ছিঘাত काश्नन। [Din.B'21] (ক) a = 1, b = -2, c = 1 হলে, f(x) = 0 সমীকরণের মূলের প্রকৃতি নির্ণয় কর।
- (ক) Solⁿ: $ax^2 + bx + c = 0$ সমীকরণের নিশ্চায়ক $D = b^2 - 4ac = 4 - 4 \cdot 1 \cdot 1 = 0$ সমীকরণের মূলদ্বয় বাস্তব সমান ও মূলদ (Ans.)
- $P(x) = mx^3 + nx^2 + qx + r.$ 18. [Din.B'19] (ক) m = 0 এবং n = q = r = 1 হলে, P(x) = 0 সমীকরণের মূলের প্রকৃতি নির্ণয় কর।
- (Φ) Solⁿ: P(x) = mx³ + nx² + qx + r \Rightarrow 0 = x² + x + 1 \therefore নিশ্চায়ক, D = $1^2 - 4 \cdot 1 \cdot 1 = -3$ 🗠 মূলদ্বয় অনুবন্ধী জটিল সংখ্যা। 🗅 মূলদ্বয়ের প্রকৃতি জটিল।
- 19 দৃশ্যকম্প-১: $\frac{1}{x} + \frac{1}{p-x} = \frac{1}{q}$ [DB, SB, JB, Din.B'18] (ক) p = q = 1 হলে দৃশ্যকম্প-১ এর সমীকরণটির মূলের প্রকৃতি নির্ণয় কর।
- (Φ) Solⁿ: $\frac{1}{x} + \frac{1}{1-x} = 1 \Rightarrow \frac{1-x+x}{x(1-x)} = 1$ $\Rightarrow 1 = x - x^2 \Rightarrow x^2 - x + 1 = 0$ $D = 1^2 - 4 \cdot 1 \cdot 1 = -3 < 0$ মৃলদ্বয় জিল, অনুবন্ধী।
- (ক) q এর মান কত হলে qx² + 4x + 3 রাশিটি পূর্ণবর্গ 20. [সরকারি রাজেন্দ্র কলেজ, ফরিদপুর]
- (ক) Solⁿ: $qx^2 + 4x + 3 = 0$ রাশিটি পূর্ণবর্গ হলে, $4^2 - 4 \cdot 3 \cdot q = 0 \Rightarrow 16 - 12q = 0 : q = \frac{2}{3}$ (Ans.)

নিজে করো

- 21. (ক) দেখাও যে, p = q না হলে 2x² 2(p+q)x $+(p^2+q^2)=0$ সমীকরণের মূলগুলো বাস্তব হতে পারে
- 22. (ক) $4x^2 kx + 1 = 0$ সমীকরণের মূলদ্বয় সমান হলে k-এর মান নির্ণয় কর। [CB'23] [Ans: ±4]
- 23. (ক) দেখাও যে, $2x^2 + 6x 8 = 0$ সমীকরণের মূলদ্বয় মূলদ
- 24. (ক) $x^2 4x + 4 = 0$ সমীকরণের মূলদ্বয়ের প্রকৃতি নির্ণয় $[SB'22][Ans: b^2 - 4ac = 0]$

- 25. (ক) a এর মান কত হলে (a 1) x² + (a + 2) x + 4 = 0 সমীকরণের মূলদ্বয় বাস্তব ও সমান হবে? [CB'22] [Ans:10, 2]
- 26. দৃশ্যকল্প-১: $(p+1)x^2 + 2(p+3)x + 2p + 3 = 0$ একটি রাশি। [Din.B'22]
 - (খ) p এর মান কত হলে ১ম দৃশ্যকম্পে উল্লিখিত রাশিটি পূৰ্ণবৰ্গ হবে? [Ans: 3, -2]
- 27. (Φ) $(m-1)x^2 (m+1)x + 2 = 0$, m এর মান কড হলে প্রদত্ত সমীকরণের মূলগুলো সমান হবে? [JB'21] [Ans: 3]
- 28. (ক) $x^2 2mx + 8m 15 = 0$ এর মূল্ছয় বাস্তব ও সমান হলে m এর মান কত? [JB'19] [Ans: 3, 5]

Type-03: মূল-সহগ সম্পর্ক সক্রোত্ত

& Concept

(i) ax² + bx + c = 0 এর মূল্বয় α, β হলে, [বিঘাত সমীকরণের মূল 2 টি]

$$\sum \alpha = \alpha + \beta = -\frac{b}{a}$$
; $\sum \alpha \beta = \alpha \beta = \frac{c}{a}$

(ii) $ax^3 + bx^2 + cx + d = 0$ এর মূলত্রয় α, β, γ হলে [ত্রিঘাত সমীকরণের মূল 3টি]

$$\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{a}$$

$$\sum \alpha \beta = \alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$$

$$\sum \alpha \beta \gamma = \alpha \beta \gamma = -\frac{d}{a}$$

(iii) $ax^4+bx^3+cx^2+dx+e=0$ এর মূলগুলো $\alpha,\beta,\gamma,\delta$ হলে [চতুর্যাত সমীকরণের মূল 4 টি]

$$\int ax^{2} + bx^{2} + cx^{2} + dx + e = 0$$
 প্রায় মূল্ডলো মেন্স্রান্তর মাবেশ (Combination) এর [${}^{4}C_{1} = 4$ টি]
$$\sum \alpha = \alpha + \beta + \gamma + \delta = -\frac{b}{a} \rightarrow 4$$
 টি থেকে 1 টি করে নিয়ে সকল সমাবেশ (Combination) এর [${}^{4}C_{1} = 4$ টি]

যোগফল =
$$-\frac{b}{a}$$

$$\sum \alpha \beta = \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \frac{c}{a} \rightarrow 4$$
 টি থেকে 2 টি করে নিয়ে সকল সমাবেশের (Combination)

$$[^4C_2=6$$
টি] যোগফল $=\frac{c}{a}$

$$[^4C_2=6\overline{b}]$$
 যোগফল $=\frac{1}{a}$ $\sum \alpha\beta\gamma=\alpha\beta\gamma+\alpha\beta\delta+\alpha\gamma\delta+\beta\gamma\delta=-\frac{d}{a}\to 4$ টি থেকে 3 টি করে নিয়ে সকল সমাবেশ (Combination) এর

$$[{}^4C_3 = 4$$
 টি] যোগফল $= -\frac{d}{a}$

$$[^4C_3=4\,$$
 টি] যোগফল $=-rac{a}{a}$ $\sum lpha eta \gamma \delta = rac{e}{a}
ightarrow 4$ টি থেকে 4 টি করে নিয়ে সকল সমাবেশ (Combination) এর $[^4C_4=1\,$ টি] যোগফল $=rac{e}{a}$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

উদ্দীপক: থিঘাত সমীকরণ $ax^2 + bx + b = 0$; $[a \neq 0]$ 01.

(খ) উদ্দীপকের মুলম্বয়ের অনুপাত m: 3n হলে, প্রমাণ কর যে,

$$\sqrt{\frac{m}{n}} + 3\sqrt{\frac{n}{m}} + \sqrt{\frac{3b}{a}} = 0$$
 [DB'23]

(খ) Sol*: প্রদন্ত সমীকরণ: ax² + bx + b = 0 [a ≠ 0]

धति, मृलघ्य α ও β

অধাৎ,
$$\alpha + \beta = -\frac{b}{a}$$
; $\alpha\beta = \frac{b}{a}$: $\alpha + \beta = -\alpha\beta$

প্রসাতে,
$$\frac{\alpha}{\beta} = \frac{m}{3n} \Rightarrow \frac{m}{n} = \frac{3\alpha}{\beta} \dots \dots \dots (ii)$$

$$\therefore \text{ L. H. S} = \sqrt{\frac{m}{n}} + 3\sqrt{\frac{n}{m}} + \sqrt{\frac{3b}{a}} = \frac{\sqrt{3\alpha}}{\sqrt{\beta}} + 3\sqrt{\frac{\beta}{3\alpha}} + \sqrt{\frac{3b}{a}}$$

$$=\frac{\sqrt{3\alpha}}{\sqrt{\beta}}+\frac{3\sqrt{\beta}}{\sqrt{3}\sqrt{\alpha}}+\sqrt{\frac{3b}{a}}=\frac{\sqrt{3}(\alpha+\beta)}{\sqrt{\alpha}\sqrt{\beta}}+\sqrt{\frac{3b}{a}}=\frac{-\sqrt{3}\alpha\beta}{\sqrt{\alpha}\sqrt{\beta}}+\sqrt{\frac{3b}{a}}$$

$$=-\sqrt{3\alpha\beta}+\sqrt{3\alpha\beta}=0=R.H.S$$
 (Proved)

$$f(x) = mx^2 + nx + l$$
 [BB'23]

দেশাও যে,
$$(mp+n)^{-2} + (mq+n)^{-2} = \frac{n^2-2\ell m}{\ell^2 m^2}$$

$$pq = \frac{l}{m} \dots \dots (ii) ; (i) \Rightarrow p + q = -\frac{n}{m}$$
$$\Rightarrow mp + mq = -n \therefore mp + n = -mq \dots \dots (iii)$$

এখন,
$$(mp + n)^{-2} + (mq + r)^{-2}$$

$$= (-mq)^{-2} + (-mp)^{-2} = \frac{1}{m^2q^2} + \frac{1}{m^2p^2} = \frac{p^2+q^2}{m^2p^2q^2}$$

$$= \frac{(p+q)^2 - 2pq}{m^2 \cdot (pq)^2} = \frac{\left(\frac{-n}{m}\right)^2 - 2\frac{1}{m}}{m^2 \cdot \left(\frac{1}{m}\right)^2} [(i) \, \, \mathfrak{C}(ii) \, \, \mathfrak{C}(ij)]$$

$$=rac{rac{n^2}{m^2}rac{2l}{m}}{rac{m^2l^2}{m^2}}=rac{n^2-2lm}{l^2m^2}=R.H.S$$
 (দেখানো হলো)

্রি দুশ্যকম্প-২:
$$g(x) = px^2 + qx + r$$

(খ)
$$g(x) = 0$$
 সমীকরণের মূল দুইটি α ও α^2 হলে প্রমা
যে, $p^2r + pr^2 + q^3 = 3pqr$.

(খ) Sol": দেওয়া আছে,
$$g(x) = 0$$
 সমীকরণের মূল দূটি a^6 $g(x) = 0 \Rightarrow px^2 + qx + r = 0$

এখন,
$$\alpha \cdot \alpha^2 = \frac{r}{p} : \alpha^3 = \frac{r}{p}$$

HSC প্রশ্নব্যাংক ২০২৫

জাবার,
$$(\alpha + \alpha^2) = \frac{-q}{p} \Rightarrow (\alpha + \alpha^2)^3 = \left(-\frac{q}{p}\right)^3$$

$$\Rightarrow \alpha^3 + (\alpha^2)^3 + 3\alpha \cdot \alpha^2(\alpha + \alpha^2) = -\frac{q^3}{p^3}$$

$$\Rightarrow \alpha^3 + (\alpha^3)^2 + 3\alpha^3(\alpha + \alpha^2) = -\frac{q^3}{p^3}$$

$$\Rightarrow \frac{r}{p} + \frac{r^2}{p^2} + 3\frac{r}{p}\left(-\frac{q}{p}\right) = -\frac{q^3}{p^3}$$

$$\Rightarrow p^2r + pr^2 + (-3pqr) = -q^3$$

$$\Rightarrow p^2r + pr^2 + q^3 = 3pqr$$
 [প্রমাণিত]

- দৃশ্যকল্প-১: $f(x) = \frac{1}{x} + \frac{1}{l-x} \frac{1}{m}$ [Din.B'23] দৃশ্যকম্প-২: $g(x) = x^2 + \frac{q}{p}x + \frac{r}{p}$
 - (খ) দৃশ্যকম্প-১ এ f(x)=0 সমীকরণের মূলদ্বয়ের অন্তর n হলে প্রমাণ কর যে, $l = 2m \pm \sqrt{4m^2 + n^2}$
 - (গ) দৃশ্যকম্প-২ এ g(x) = 0 সমীকরণের একটি মূল অপরটির বর্গের সমান হলে দেখাও যে, $\frac{\mathbf{p}}{\mathbf{r}} = \left(\frac{\mathbf{p} - \mathbf{q}}{\mathbf{r} - \mathbf{q}}\right)^3$ এবং $3q - p - r = \frac{q^3}{pr}$
- (খ) Sol": দেওয়া আছে, $f(x) = \frac{1}{x} + \frac{1}{t-x} \frac{1}{m}$ আর f(x) = 0তাহলে, $\frac{1}{y} + \frac{1}{l-y} - \frac{1}{m} = 0 \Rightarrow \frac{1}{y} + \frac{1}{l-y} = \frac{1}{m}$ $\Rightarrow \frac{1}{x(l-x)} = \frac{1}{m} \Rightarrow lx - x^2 = lm$ $x^2 - lx + lm = 0 \dots (i)$ মনে করি, (i) এর মূলদ্বয় হলো α, β $\alpha + \beta = l$ এবং $\alpha\beta = lm$ প্রশানুসারে, $|\alpha - \beta| = n \Rightarrow \alpha - \beta = \pm n$ $\Rightarrow (\alpha - \beta)^2 = n^2 \Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = n^2$ $\Rightarrow l^2 - 4lm = n^2 \Rightarrow l^2 - 4lm + (2m)^2 = n^2 + 4m^2$ $\Rightarrow (l-2m)^2 = n^2 + 4m^2 \Rightarrow l-2m = \pm \sqrt{n^2 + 4m^2}$
- (গ) Sol*: দেওয়া আছে, $g(x) = x^2 + \frac{q}{n}x + \frac{r}{n}$ আর g(x) = 0 $x^2 - \left(-\frac{q}{p}\right)x + \frac{r}{p} = 0 \dots \dots (i)$ (i) নং সমীকরণের মূলদ্বয় α, α² হওয়ায় $\alpha + \alpha^2 = -\frac{q}{2} \dots \dots (ii)$ এবং $\alpha \cdot \alpha^2 = \frac{r}{p} \Rightarrow \alpha^3 = \frac{r}{p} \dots \dots \dots (iii)$ R.H.S: $\left(\frac{p-q}{r-q}\right)^3 = \left(\frac{1-\frac{q}{p}}{r-\frac{q}{p}}\right)^3 = \left(\frac{1+\alpha+\alpha^2}{\alpha^3+\alpha+\alpha^2}\right)^3$ [(ii) ও (iii) নং হতে]

 $\therefore l = 2m \pm \sqrt{n^2 + 4m^2}$ (প্রমাণিত)

 $=\left\{\frac{1+\alpha+\alpha^2}{\alpha(1+\alpha+\alpha^2)}\right\}^3 = \frac{1}{\alpha^3} = \frac{p}{r} = \text{L.H.S (Showed)}$ এখন, $\left(\frac{p-q}{r-q}\right)^3 = \frac{p}{r}$ $\Rightarrow (p^3 - 3p^2q + 3q^2p - q^3)r = p(r^3 - 3r^2q +$ $3rq^{2}-q^{3}$

Educationblog24 c উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৪

⇒
$$p^{3}r - 3p^{2}qr + 3q^{2}pr - q^{3}r = pr^{3} - 3r^{2}qp$$

 $+3rq^{2}p - q^{3}p$
⇒ $q^{3}p - q^{3}r = pr^{3} - p^{3}r + 3p^{2}qr - 3r^{2}qp$
⇒ $q^{3}(p - r) = pr(r + p)(r - p) + 3pqr(p - r)$
⇒ $q^{3}(p - r) = -pr(r + p)(p - r) + 3pqr(p - r)$
⇒ $q^{3} = -pr^{2} - p^{2}r + 3pqr$ ⇒ $\frac{q^{3}}{pr} = \frac{-pr^{2}}{pr} - \frac{p^{2}r}{pr} + \frac{3pqr}{pr}$
∴ $\frac{q^{3}}{pr} = 3q - p - r$ [Showed]

- $f_2(x) = \alpha x^2 + \beta x + \gamma$ [RB'22] (খ) $f_2(x) = 0$ সমীকরণের একটি মূল অপরটির বর্গের সমান হলে a এর মান নির্ণয় কর, যেখানে $\alpha = 9$, $\beta = 2$ এবং $\gamma = -\frac{1}{2}(a+2).$
- (খ) Sol": প্রদন্ত সমীকরণ, $f_2(x) = \alpha x^2 + \beta x + \gamma = 0$; যেখানে, $\alpha = 9$, $\beta = 2$, $\gamma = -\frac{1}{2}(a+2)$: সমীকরণটি হলো: $9x^2 + 2x - \frac{1}{3}(a+2) = 0 \dots \dots (i)$ ধরি, (i) নং সমীকরণের মূলদ্বয়, $p 3 p^2 p^2 + p = -\frac{2}{9}$ \Rightarrow p² + p + $\frac{2}{9}$ = 0 \Rightarrow p = $-\frac{1}{3}$, $-\frac{2}{3}$ এখন, $p = -\frac{1}{3}$ হলে, $-\frac{1}{27} = -\frac{1}{27}(a+2) \qquad -\frac{8}{27} = -\frac{1}{27}(a+2)$ $\Rightarrow a = -1 \text{ (Ans.)} \qquad \Rightarrow a+2=8$ \Rightarrow a = -1 (Ans.) \Rightarrow a = 6 (Ans.)
- 06. $P(x) = ax^2 + bx + c$ [SB'22] (গ) P(x) = 0 সমীকরণের মূলম্বয়ের পার্থক্য 2π হলে প্রমাণ কর যে, $b^2 - 4ac = 4a^2\pi^2$ । Sol": $p(x) = ax^2 + bx + c = 0 \dots \dots (i)$
 - ধরি, (i) নং সমীকরণের মূলদ্বয়, α ও α + 2π শর্তমতে, $\alpha + \alpha + 2\pi = -\frac{b}{a}$ (ii) এবং $\alpha^2 + 2\pi\alpha = \frac{c}{a} \dots \dots$ (iii) $(ii)^2 - 4 \times (iii)$ $\Rightarrow \frac{b^2}{a^2} - \frac{4c}{a} = (2\alpha + 2\pi)^2 - 4(\alpha^2 + 2\pi\alpha)$ $\Rightarrow \frac{b^2 - 4ac}{a^2} = 4\alpha^2 + 8\pi\alpha + 4\pi^2 - 4\alpha^2 - 8\pi\alpha$ \Rightarrow b² - 4ac = $4\pi^2\alpha^2$ [Proved]
- $g(x) = x^2 + 2x + q$ একটি ফাংশন। 07. [SB'22] (গ) g(x) = 0 সমীকরণের একটি মূল অপরটির বর্গের সমান হলে, প্রমাণ কর যে, $q^2 - 5q + 8 = 0$ ।
- Sol^a: $g(x) = x^2 + 2x + q = 0 \dots (i)$ (11) ধরি, মূলদ্বয় $\alpha \, \circ \, \alpha^2 \, : \, \alpha + \alpha^2 = -2$ $\Rightarrow \alpha^2 + \alpha + 2 = 0 \dots \dots (ii)$ এবং $\alpha^3 = q \dots \dots (iii)$ L. H. $S = q^2 - 5q + 8$ $= (\alpha^3)^2 - 5\alpha^3 + 8 = \alpha^6 - 5\alpha^3 + 8$

Education त जनिले २घ भञ्ज : व्यव्याय-०८

$$= \alpha^{6} + \alpha^{5} + 2\alpha^{4} - \alpha^{5} - \alpha^{4} - 2\alpha^{3} - \alpha^{4} - \alpha^{3} - 2\alpha^{2}$$

$$-2\alpha^{3} - 2\alpha^{2} - 4\alpha + 4\alpha^{2} + 4\alpha + 8$$

$$= \alpha^{4}(\alpha^{2} + \alpha + 2) - \alpha^{3}(\alpha^{2} + \alpha + 2) - \alpha^{2}$$

$$(\alpha^{2} + \alpha + 2) - 2\alpha(\alpha^{2} + \alpha + 2) + 4(\alpha^{2} + \alpha + 2)$$

$$= 0 = R. H. S [Proved]$$

উদ্দীপক-১: $x^2 - bx - c = 0$ সমীকরণের একটি মূল 08. অপরটির বর্গের সমান। [BB'22]

- (খ) উদ্দীপক-১ এর সাহায্যে দেখাও যে, $b^3 + c(3b+1) - c^2 = 0$
- (4) Solⁿ: $x^2 bx c = 0 \dots \dots (i)$; সমীকরণটির মূলঘয় α ও α2 $\therefore \alpha + \alpha^2 = b \dots \dots$ (ii) এবং $\alpha^3 = -c \dots \dots$ (iii) L. H. $S = b^3 + c(3b + 1) - c^2$ $= (\alpha + \alpha^2)^3 + (-\alpha^3)(3\alpha^2 + 3\alpha + 1) - (-\alpha^3)^2$ $= \alpha^3 + 3\alpha^2 \cdot \alpha^2 + 3\alpha \cdot \alpha^4 + \alpha^6 - 3\alpha^5 - 3\alpha^4 - \alpha^3 - \alpha^6$; $= \alpha^3 + 3\alpha^4 + 3\alpha^5 - 3\alpha^5 - 3\alpha^4 - \alpha^3$ = 0 = R.H.S [Showed]
- $(x) = ax^2 + bx + c$ [JB'22] (ক) $3x^2 - mx + 4 = 0$ সমীকরণের একটি মূল অপর মুঙ্গটির তিনগুণ হলে, m এর মান নির্ণয় কর।
 - (খ) f(x) = 0 সমীকরণের মূল দুটির অনুপাত r হলে দেখাও $\sqrt{(r+1)^2} = \frac{b^2}{a^2}$
- (ক) Sol": প্রদত্ত সমীকরণ, $3x^2 mx + 4 = 0$ যার মূলদ্বয়, α ও $3\alpha : \alpha + 3\alpha = \frac{m}{3} \Rightarrow 4\alpha = \frac{m}{3} \dots \dots (i)$ এবং $3\alpha^2 = \frac{4}{3} \Rightarrow \alpha^2 = \frac{4}{9} \Rightarrow \alpha = \pm \frac{2}{3}$ \therefore সমীকরণ (i) থেকে, $4\alpha = \frac{m}{3} \Rightarrow 4 \times (\pm \frac{2}{3}) = \frac{m}{3}$ $m = \pm 8$ (Ans.)
- (*) Sol": $f(x) = ax^2 + bx + c = 0$ ধরি, সমীকরণটির মূলদ্বয় α ও αr.

 $\alpha + \alpha r = -\frac{b}{a} \Rightarrow \alpha(r+1) = -\frac{b}{a} \dots \dots (i)$ এবং $\alpha^2 r = \frac{c}{a} \dots \dots$ (ii)

 $(i)^2 + (ii) \Rightarrow \frac{\alpha^2(r+1)^2}{\alpha^2 r} = \frac{\frac{b^2}{a^2}}{\frac{c}{2}} \quad \therefore \frac{(r+1)^2}{r} = \frac{b^2}{ac} \text{ (Showed)}$

(4) $2x^3 - 9x^2 + 9x + 2 \equiv (x - 2)(ax^2 + bx + c)$ হলে a, b, c এর মান নির্ণয় কর যেখানে a, b এবং c ধ্রুবক।

[Din.B'22]

(ক) Sol": প্রদত্ত সমীকরণ, $2x^3 - 9x^2 + 9x + 2 \equiv (x - 2)(ax^2 + bx + c)$ $\Rightarrow 2x^3 - 9x^2 + 9x + 2 \equiv ax^3 + bx^2 + cx - 2ax^2$ -2bx - 2c $\Rightarrow 2x^3 - 9x^2 + 9x + 2 \equiv ax^3 + (b - 2a)x^2$ +(c-2b)x-2c

সমীকরণ (i) এর x3, x2, x ও ধ্রুব পদের সহগ সমীকৃত করে পাই, x^3 এর সহগ সমীকৃত করে পাই, a=2 x^2 এর সহগ সমীকৃত করে, b-2a=-9 \Rightarrow b - 4 = -9 \Rightarrow b = -5 ধ্রুব রাশি সহগ সমীকৃত করে পাই, $-2c=2\Rightarrow c=-1$ (Ans.)

- দৃশ্যকম্প-২: $x^3 9x^2 + 14x + 24 = 0$ একটি ত্রিঘাত [Ctg.B'21 সমীকরণ।
 - (গ) দৃশ্যকম্প-২ এর দুইটি মূলের অনুপাত 3:2 হলে সমীকরণটি সমাধান কর।
- (গ) Soln: দৃশ্যকল্প-২ এর সমীকরণ, $x^3 9x^2 + 14x + 24 = 0$ এর মূলতায় 3α, 2α ও β $6\alpha^2 + 3\alpha\beta + 2\alpha\beta = 14 \dots (ii)$ $\therefore 3\alpha + 2\alpha + \beta = 9$ $\Rightarrow 6\alpha^2 + 5\alpha\beta = 14$ $\Rightarrow 5\alpha + \beta = 9$

$$\therefore \beta = 9 - 5\alpha \dots (i) \Rightarrow 6\alpha^2 + 5\alpha(9 - 5\alpha) = 14$$

$$\Rightarrow 6\alpha^2 + 45\alpha - 25\alpha^2 = 14$$

$$\Rightarrow 19\alpha^2 - 45\alpha + 14 = 0$$

$$\therefore \alpha = 2, \frac{7}{19}$$

 $\alpha=2$ হলে, $\beta=-1$; $\alpha=\frac{7}{19}$ হলে, $\beta=\frac{136}{19}$; $(3\alpha)(2\alpha)\beta = -24 \Rightarrow \alpha^2\beta = -4 \dots \dots (iii)$ $\alpha=2$ ও $\beta=-1$ (iii) নং সমীকরণকে সিদ্ধ করে। কিন্তু $\alpha = \frac{7}{19}$ ও $\beta = \frac{136}{19}$ (iii) নং সমীকরণকে সিদ্ধ করে না। ∴ α = 2 ও β = −1 ∴ মূলতায়: 6, 4, −1 (Ans.)

- pশ্যকম্প-২: $lx^2 + mx + m = 0$ সমীকরণের মূলদ্বের অনুপাত a: b.
 - (গ) দৃশ্যকম্প-২ থেকে প্রমাণ কর যে, $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} + \sqrt{\frac{m}{l}} = 0$
- Soln: ধরি, মূলঘয় a α ও b α \therefore α (a + b) = $-\frac{m}{l}$(i) $\alpha^2 ab = \frac{m}{l} \Rightarrow \alpha \sqrt{ab} = \sqrt{\frac{m}{l}} \cdots \cdots \cdots (ii)$

এখন, (i) + (ii) $\Rightarrow \frac{a+b}{\sqrt{ab}} = -\sqrt{\frac{m}{l}} \Rightarrow \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = -\sqrt{\frac{m}{l}}$

- $\Rightarrow \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} + \sqrt{\frac{m}{l}} = 0$ (প্রমাণিত)
- (ক) $x^2 + 5x + 3 = 0$ সমীকরণের মূল্ছয় α , β হলে, [Din.B'21] $\frac{1}{a} - \frac{1}{a}$ এর মান নির্ণয় কর।
- (ক) Solⁿ: প্রশাসতে, $\alpha + \beta = -5$, $\alpha\beta = 3$ এখন, $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta \Rightarrow (\alpha - \beta)^2 = 25^{-12}$ $\Rightarrow \alpha - \beta = \pm \sqrt{13}; \frac{1}{\beta} - \frac{1}{\alpha} = \frac{\alpha - \beta}{\alpha \beta} = \pm \frac{\sqrt{13}}{3}$ (Ans.)

 $px^2 + qx + 1 = 0 \cdots \cdots (i)$ [MB'21] (খ) (i) নং সমীকরণের মূল দুইটি α ও β হলে দেখাও যে, $(p\alpha + q)^{-3} + (p\beta + q)^{-3} = \frac{q(q^2 - 3p)}{p^3}$

(খ) Soln:
$$px^2 + qx + 1 = 0$$
 সমীকরণের মূলদ্ব α , β হলে-
$$\alpha + \beta = -\frac{q}{p} \dots \dots (i); \alpha\beta = \frac{1}{p} \dots \dots (ii)$$
(i) $\Rightarrow p\alpha + q = -p\beta \dots \dots (iii);$

$$p\beta + q = -p\alpha \dots \dots (iv)$$
L. H. $S = (p\alpha + q)^{-3} + (p\beta + q)^{-3}$

$$= (-p\beta)^{-3} + (-p\alpha)^{-3} = -\frac{1}{p^3\beta^3} - \frac{1}{p^3\alpha^3} = -\frac{1}{p^3} \left(\frac{\alpha^3 + \beta^3}{\alpha^3\beta^3}\right)$$

$$= -\frac{1}{p^3} \left\{ \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{(\alpha\beta)^3} \right\} = -\frac{1}{p^3} \times \frac{-\frac{q^3}{p^3} + \frac{3q}{p^2}}{\frac{1}{p^3}}$$

$$= -\frac{1}{p^3} \times (3pq - q^3) = \frac{q}{p^3} (q^2 - 3p)$$

- $P(x) = x^2 + mx n$ [সরকারি রাজেন্দ্র কলেজ, ফরিদপুর] 15. (খ) P(x) = 0 সমীকরণের একটি মূল অপরটির বর্গের সমান হলে প্রমাণ কর যে, $m^3 + n^2 + 3mn - n = 0$
- Solⁿ: প্রদত্ত সমীকরণ, $P(x) = x^2 + mx n = 0$ ধরি, মূলদ্বয় α ও α² $\therefore \alpha + \alpha^2 = -m \dots \dots (i)$ এবং $\alpha \cdot \alpha^2 = -n \Rightarrow \alpha^3 = -n \dots \dots (ii)$

= R. H. S (Showed)

(i) নং হতে পাই, $(\alpha + \alpha^2) = -m \Rightarrow \alpha^3 + \alpha^6 + 3\alpha^3(\alpha + \alpha^2) = -m^3$ [উভয় পক্ষে ঘন করে] $\Rightarrow -n + (-n)^2 + 3(-n)(-m) = -m^3$ $m^3 + n^2 + 3mn - n = 0$ (প্রমাণিত)

- (ক) $2x^2 + bx + c = 0$ সমীকরণের মূলঘয় পরস্পর উল্টা 16. হলে c এর মান নির্ণয় কর। [চট্টগ্রাম কলেজ]
- (ক) Solⁿ: ধরি, $2x^2 + bx + c = 0$ এর মূল দুটি হলো: $\alpha, \frac{1}{\alpha}$ $\therefore \alpha \cdot \frac{1}{\alpha} = \frac{c}{2} \Rightarrow \frac{c}{2} = 1 \therefore c = 2 \text{ (Ans.)}$
- $\mathbf{x}^2 \mathbf{x} + 2 = 0$ সমীকরণের মূলবয় $\frac{1}{\alpha}$ ও $\frac{1}{\beta}$ [সরকারি মাইকেল মধুসূদন কলেজ, যশোর] (খ) প্রমাণ কর যে, $4(\alpha^2 - \beta^2) = 1 - 8\alpha\beta$ (খ) Solⁿ: দেওয়া আছে, $x^2 - x + 2 = 0$ সমীকরণে মূলদ্বয় $\frac{1}{\alpha}, \frac{1}{\beta}$
- $\frac{1}{\alpha} + \frac{1}{\beta} = -(-1) = 1 \dots \dots (i)$ এবং $\frac{1}{\alpha} \cdot \frac{1}{\beta} = 2 \Rightarrow \frac{1}{\alpha\beta} = 2 \dots \dots (ii)$ (i) নং হতে পাই, $\frac{\alpha+\beta}{\alpha\beta}=1\Rightarrow \alpha+\beta=\alpha\beta\Rightarrow \alpha+\beta=\frac{1}{2}$ [(ii) নং হতে] $\Rightarrow 2(\alpha + \beta) = 1 \Rightarrow 4(\alpha^2 + \beta^2 + 2\alpha\beta) = 1$ $\Rightarrow 4(\alpha^2 + \beta^2) + 8\alpha\beta = 1$ $4(\alpha^2 + \beta^2) = 1 - 8\alpha\beta \text{ (Proved)}$

নিজে করো

18. (i) $mx^2 + nx + n = L$ [JB'23]

যদি L = 0 সমীকরণের মূল দুটির অনুপাত p: q হয় তাহলে প্রমাণ কর যে, $\int_{\overline{q}}^{\underline{p}} + \int_{\overline{p}}^{\overline{q}} + \int_{\overline{m}}^{\overline{n}} = 0$.

- 19. $8x^2 + 2x (b+4) = 0$ এবং $y^2 + y + 1 = 0$ একটি দ্বিঘাত সমীকরণ।
 - (খ) ১ম সমীকরণের একটি মূল যদি অপরটির বর্গের সমান হয় তবে b এর মান নির্ণয় কর। [Ans: -3]
- 20. पृनाप्रकल-১: $ax^2 + bx c = 2$. [CB'21]
 - (খ) যদি দৃশ্যকল্প-১ এ a = 27, b = 6, c = m এবং সমীকরণটির একটি মূল অপরটির বর্গের সমান হয়, তবে m এর মানগুলো নির্ণয় কর। [Ans: m = -1, 6]

- 21. দৃশ্যকল্প: $\frac{1}{x} + \frac{1}{p-x} = \frac{1}{q}$ [DB, SB, JB, Din.B'18] (খ) দৃশ্যকল্প-এ মূলদ্বয়ের অন্তর r হলে p, q এবং r এর মধ্যে একটি সম্পর্ক লিখ। [Ans: $p^2 = 2q \pm \sqrt{4q^2 - r^2}$]
- 22. যদি $f(x) = ax^2 + bx + c$ এবং $g(x) = cx^2 + bx + a$ হয় তবে. [DB'17]
 - (খ) f(x) = 0 সমীকরণের মূলদ্বর যথাক্রমে α, β হলে দেখাও α , $(a\alpha + b)^{-3} + (a\beta + b)^{-3} = \frac{b^3 - 3abc}{a^3c^3}$
 - (গ) f(x) = 0 এর একটি মূল, g(x) = 0 সমীকরণের একটি মূলের দিগুণ হলে দেখাও যে, 2a = c অথবা $(2a+c)^2=2b^2$.

Type-04: দুইটি সমীকরণের মূলের সম্পর্ক সংক্রান্ত

▼Concept

Type-03 তে আলোচিত মূল-সহগ সম্পর্ক ব্যবহার করে সমাধান করতে হবে।

সূজনশীল প্রশ্ন (ক, খ ও গ)

or. $q(x) = lx^2 + mx + n$

[RB'23]

- $\mathbf{r}(\mathbf{x}) = \mathbf{n}\mathbf{x}^2 + \mathbf{m}\mathbf{x} + I$
- (গ) r(x) = 0 সমীকরণের একটি মূল q(x) = 0 সমীকরণের একটি মূলের বিশুণ হলে, দেখাও যে, I=2n অথবা $2m^2 = (l + 2n)^2$
- (*1) Sol": CFURI WICE, $q(x) = Ix^2 + mx + n$ $r(x) = nx^2 + mx + l$ ধরি, q(x) = 0 সমীকরণের একটি মূল α বলা আছে, r(x) = 0 সমীকরণের একটি মূল q(x) = 0সমীকরণের দিওণ।

প্রশ্নমতে,
$$\mathbf{r}(\mathbf{x})=0$$
 সমীকরণের মূল 2α

$$\therefore q(\alpha) = l\alpha^2 + m\alpha + n = 0 \dots \dots \dots (1)$$

$$\therefore \mathbf{r}(\alpha) = 4\mathbf{n}\alpha^2 + 2\mathbf{m}\alpha + l = 0 \dots \dots \dots (ii)$$

এখন, (ii)
$$-2 \times$$
 (i) করে পাই,

$$4n\alpha^2 + 2m\alpha + l = 0 \dots \dots (iii)$$

$$2l\alpha^2 + 2m\alpha + 2n = 0 \dots \dots (iv)$$

$$(iii) - (iv)$$

$$(4n - 2l)\alpha^2 - 2n + l = 0$$

$$\Rightarrow 2(2n-l)\alpha^2 + (l-2n) = 0$$

$$\Rightarrow 2(2n-l)\alpha^2 - (2n-l) = 0$$

$$\Rightarrow (2n-l)(2\alpha^2-1)=0$$

$$\therefore l = 2n$$
 অথবা $2\alpha^2 = 1 \Rightarrow \alpha^2 = \frac{1}{2}$

এখন,
$$\alpha^2 = \frac{1}{2}$$
 (iii) নং এ বসিয়ে পাই,

$$4n\left(\frac{1}{2}\right) + 2m\alpha + l = 0 \Rightarrow 2n + l = -2m\alpha$$

$$\Rightarrow (2n+l)^2 = 4m^2\alpha^2 \Rightarrow (2n+l)^2 = 4m^2\frac{1}{2}$$

$$\Rightarrow (2n+l)^2 = 2m^2 :: 2m^2 = (2n+l)^2$$
 (Showed)

- (i) $ax^2 + 2cx + 2b = 0$; (ii) $ax^2 + 2bx + 2c = 0$ 02.
 - (গ) সমীকরণ (i) ও (ii) নং মৃলহয়ের পার্থক্য সমান হলে দেখাও যে, b = c এবং b + c + 2a = 0 [Cig.B'23]
- Sol": $ax^2 + 2cx + 2b = 0 \dots \dots (i)$

এর মৃলহয়
$$\alpha$$
, β হলে $\alpha + \beta = -\frac{2c}{a}$

$$\alpha\beta = \frac{2b}{a} \text{ age } ax^2 + 2bx + 2c = 0 \dots \dots (ii)$$

এর মূলঘয়
$$\gamma$$
, δ হলে $\gamma + \delta = \frac{-2b}{a}$; $\gamma \delta = \frac{2c}{a}$

প্রশ্নমতে,
$$\alpha - \beta = \gamma - \delta$$

$$\Rightarrow (\alpha - \beta)^2 = (\gamma - \delta)^2 \quad [4\sqrt{16} \text{ and acc}]$$

$$\Rightarrow (\alpha + \beta)^2 - 4\gamma\beta = (\gamma + \delta)^2 - 4\gamma\delta$$

$$\Rightarrow \left(\frac{-2c}{a}\right)^2 - 4 \cdot \frac{2b}{a} = \left(\frac{-2b}{a}\right)^2 - 4 \cdot \frac{2c}{a}$$

$$\Rightarrow \frac{4c^2}{a^2} - \frac{8b}{a} = \frac{4b^2}{a^2} - \frac{8c}{a} \Rightarrow \frac{4c^2 - 8ab}{a^2} = \frac{4b^2 - 8ac}{a^2}$$

$$\Rightarrow 4c^2 - 8ab = 4b^2 - 8ac$$

$$\Rightarrow 4(b^2 - c^2) + (8ab - 8ac) = 0$$

$$\Rightarrow 4(b + c)(b - c) + 8a(b - c) = 0$$

$$\Rightarrow (b - c)(b + c + 2a) = 0$$

হয়, b-c=0 সপ্ৰা b+c+2a=0 (Showed a b = c (Showed)

- দুশাকম্প-২: x² qx + r = 0 সমীকরণের মূল দুইটি α 03.(SB
 - (গ) দৃশ্যকম্প-২ এর α ও β ব্যবহার করে $r(x^2+1)$ $({f q}^2-2{f r}){f x}=0$ সমীকরণের মূপধয়কে lpha ও f eta এর মাধ্যমে প্রকাশ কর।
- Sol": দেওয়া আছে, $x^2-qx+r=0$ সমীকরণের মূলহং এবং β : $\alpha + \beta = q$ এবং $\alpha\beta = r$ এখন, $r(x^2 + 1) - (q^2 - 2r)x = 0$ $\Rightarrow \alpha\beta(x^2+1) - \{(\alpha+\beta)^2 - 2\alpha\beta\}x = 0$ $\Rightarrow \alpha \beta x^2 + \alpha \beta - \{\alpha^2 + \beta^2 + 2\alpha \beta - 2\alpha \beta\} x = 0$

$$\Rightarrow \alpha \beta x^2 + \alpha \beta - (\alpha^2 x - \beta^2 x = 0)$$

$$\Rightarrow \alpha \beta x^2 - \alpha^2 x - \beta^2 x + \alpha \beta = 0$$

$$\Rightarrow \alpha x(\beta x - \alpha) - \beta(\beta x - \alpha) = 0$$

$$\Rightarrow (\beta x - \alpha)(\alpha x - \beta) = 0 : x = \frac{\alpha}{\beta}, \frac{\beta}{\alpha} (Ans.)$$

ICB"

- मृश्राकल्ल-५: $f(x) = ax^2 + bx + c$ দৃশ্যকল্প-২: $g(x) = px^2 + qx + r$
 - (গ) f(x) = 0 ও g(x) = 0 সমীকরণঘয়ের মূলগুলোর অনুপাত সমান হলে প্রমাণ কর, $\frac{b^2}{c^2} = \frac{q^2}{pr}$.
- Sol": $f(x) = 0 \Rightarrow ax^2 + bx + c = 0$ সমীকরণের মূলদ্বর α , β হলে $\alpha + \beta = -\frac{b}{a}$; $\alpha\beta = \frac{c}{a}$ এবং

$$g(x)=0\Rightarrow px^2+qx+r=0$$

সমীকরণের মূলদ্বয় γ,δ হলে $\gamma+\delta=-rac{q}{p}$; $\gamma\delta=rac{r}{p}$

প্রশ্নমতে,
$$\frac{\alpha}{\beta} = \frac{\gamma}{\delta} \Rightarrow \frac{\alpha}{\gamma} = \frac{\beta}{\delta} = \frac{\alpha + \beta}{\gamma + \delta} \therefore \frac{\alpha}{\gamma} \cdot \frac{\beta}{\delta} = \frac{(\alpha + \beta)^2}{(\gamma + \delta)^2}$$

$$\Rightarrow \frac{\frac{c}{p}}{\frac{1}{p}} = \frac{\frac{b^2}{a^2}}{\frac{q^2}{p^2}} [$$
েেহেতু সবগুলো অনুপাত সমান]
$$\Rightarrow \frac{cp}{ar} = \frac{b^2p^2}{a^2q^2} \Rightarrow \frac{b^2}{ca} = \frac{q^2}{pr}$$
 [প্রমাণিত]

- $P(x) = ax^2 + bx + c$ 05.
 - (খ) P(x) = 0 সমীকরণের মূলঘয় α ও β হলে ax^2 2bx + 4c = 0 সমীকরণের মূলহুয় α ও β এর মার্থ
- প্রকাশ কর। (খ) Sol": প্রদন্ত সমীকরণ, $p(x) = ax^2 + bx + c = 0$... সমীকরণ (i) এর মূলদ্বয় α ও β ∴ α + β = $-\frac{b}{a}$ এবং $\alpha\beta = \frac{c}{a} \dots \dots (iii)$
 - আবার, $ax^2 2bx + 4c = 0 \dots (iv)$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

- $\therefore \alpha_1 \beta_1 = \sqrt{(\alpha_1 + \beta_1)^2 4\alpha_1\beta_1} = \sqrt{\frac{4b^2}{a^2} 4 \cdot \frac{4c}{a}}$
- $= 2\sqrt{\frac{b^2}{a^2} \frac{4c}{a}} = 2\sqrt{(\alpha + \beta)^2 4 \cdot \alpha\beta}$ $= 2(\alpha \beta) \dots \dots \dots (vii)$

HSC প্রস্নব্যাংক ২০২৫

- আবার, $\alpha_1 + \beta_1 = \frac{2b}{a} = -2(\alpha + \beta) \dots \dots (viii)$
- (vii) + (viii) $\Rightarrow 2\alpha_1 = -2\alpha 2\beta + 2\alpha 2\beta$
- $\Rightarrow 2\alpha_1 = -4\beta \Rightarrow \alpha_1 = -2\beta$
- $(viii) (vii) \Rightarrow 2\beta_1 = -2\alpha 2\beta 2\alpha + 2\beta$
- $\Rightarrow 2\beta_1 = -4\alpha \Rightarrow \beta_1 = -2\alpha$ (Ans.)
- 06. উদ্দীপক-২: $ax^2 + 2bx + c = 0$ এর একটি মূল। [BB'22] $cx^2 + 2bx + a = 0$ সমীকরণের একটি মূলের তিনগুণ।
 - (গ) উদ্দীপক-২ এর সাহায্যে দেখাও যে, c=3a অথবা $12b^2=(c+3a)^2$
- (গ) Solⁿ: প্রদন্ত সমীকরণ, ax² + 2bx + c = 0 (i); cx² + 2bx + a = 0 (ii)
 - ধরি, সমীকরণ (i) এর মূলদ্বয় 3α ও β এবং সমীকরণ (ii) এর মূলদ্বয় α ও γ
 - শর্তমতে, $3\alpha + \beta = -\frac{2b}{a} \dots \dots (iii)$;
 - $3\alpha\beta = \frac{c}{a} \dots \dots (iv)$ এবং $\alpha + \gamma = -\frac{2b}{c} \dots \dots (v)$;
 - $\alpha \gamma = \frac{a}{c} \dots \dots (vi)$
 - সমীকরণ (i) ও (ii) এ, $x = 3\alpha$ ও $x = \alpha$ বসিয়ে,
 - $9a\alpha^{2} + 6b\alpha + c = 0$; $c\alpha^{2} + 2b\alpha + a = 0$
 - $\therefore \frac{\alpha^2}{6ba-2bc} = \frac{\alpha}{c^2-9a^2} = \frac{1}{18ab-6bc}$
 - এখন, $\alpha^2 = \frac{6ab-2bc}{18ab-6bc} = \frac{2(3ab-bc)}{6(3ab-bc)} = \frac{1}{3} : \alpha = \pm \frac{1}{\sqrt{3}}$
 - $\alpha = \frac{c^2 9a^2}{18ab 6bc} = \frac{(c + 3a)(c 3a)}{6b(3a c)} \Rightarrow \alpha^2 = \frac{(c + 3a)^2 (c 3a)^2}{36b^2(3a c)^2}$
 - $\Rightarrow \frac{1}{3} = \frac{(c+3a)^2(c-3a)^2}{36b^2(3a-c)^2}$
 - $\Rightarrow 12b^2(3a-c)^2 = (c+3a)^2(c-3a)^2$
 - $\Rightarrow (c 3a)^{2} [12b^{2} (c + 3a)^{2}] = 0$
 - হয়, $(c-3a)^2=0 \Rightarrow c=3a$
 - অথবা, $12b^2 (c + 3a)^2 = 0$
 - $\Rightarrow 12b^2 = (c + 3a)^2$ (Showed)
- 07. উদ্দীপক-১: $x^2 2x + b = 0$ এবং $x^2 bx + 2 = 0$ দুইটি দ্বিঘাত সমীকরণ। [CB'22
 - (খ) দৃশ্যকম্প-১ এ উল্লিখিত সমীকরণ দুইটির মূলধয়ের পার্থক্য একটি ধ্রুব রাশি হলে প্রমাণ কর যে, $b^2 + 4b 12 = 0$.
- (খ) Sol^a: x² 2x + b = 0 (i) এবং x² - bx + 2 = 0 (ii)
 - ধরি, (i) নং সমীকরণ এর মূলদ্বয়, α , β \therefore α + β = 2 ,
 - $\alpha\beta = b$ এবং $\alpha \beta = c$ [ধ্রুবরাশি]

- ⇒ b² + 4b 12 = 0 (Proved)

 108. x² + cx + b = 0 সমীকরণের মূলহর α, β. [RB*21 (খ) b(x² + 1) (c² 2b)x = 0 সমীকরণের মূলহরকে α ও β এর মাধ্যমে প্রকাশ কর।
- ম ও β এর মাধ্যমে প্রকাশ কর।

 (খ) Sol*: $x^2 + cx + b = 0$ স্মীকরণের মূলহর α , β হলে $\alpha + \beta = -c \cdots (i)$; $\alpha\beta = b \cdots (ii)$ এখন, $(i)^2 \div (ii) \Rightarrow \frac{(\alpha+\beta)^2}{\alpha\beta} = \frac{c^2}{b} \cdots (iii)$ $b(x^2 + 1) (c^2 2b)x = 0$ $\Rightarrow x^2 + 1 \left(\frac{c^2}{b} 2\right)x = 0$ $\Rightarrow x^2 + 1 \left\{\frac{(\alpha+\beta)^2}{\alpha\beta} 2\right\}x = 0$ $\Rightarrow x^2 + 1 \left\{\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right\}x = 0$ $\Rightarrow x^2 \left\{\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right\}x + \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 0 \Rightarrow \left(x \frac{\alpha}{\beta}\right)\left(x \frac{\beta}{\alpha}\right) = 0$ $\therefore x = \frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ (Ans.)
 - বিকলা: $b(x^2 + 1) (c^2 2b)x = 0$ $\Rightarrow \alpha\beta(x^2 + 1) - \{(\alpha + \beta)^2 - 2\alpha\beta\}x$ $\Rightarrow \alpha\beta x^2 + \alpha\beta - (\alpha^2 + \beta^2)x \Rightarrow (\alpha x - \beta)(\beta x - \alpha) = 0$ $\Rightarrow x = \frac{\beta}{\alpha}, \frac{\alpha}{\beta} \text{ (Ans.)}$
- াচ্ছাকলপ: $f(x) = ax^2 + bx + c$, $a \neq 0$ একটি হিঘাত ফাংশন। [Din.B'21]
 (খ) দৃশ্যকল্পের আলোকে f(x) = 0 সমীকরণের মূলহর α , β হলে, $cx^2 \left(\frac{b^2}{a} 2c\right)x + c = 0$ সমীকরণের মূলহয় α , β এর মাধ্যমে প্রকাশ কর।
- (খ) Solⁿ: প্রশ্নীয়তে, $f(x) = 0 \Rightarrow ax^2 + bx + c = 0$ [: $a \neq 0$] $\therefore \alpha + \beta = -\frac{b}{a} \dots \dots (i); \alpha\beta = \frac{c}{a} \dots \dots (ii)$ $(i)^2 \div (ii) \Rightarrow \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{b^2}{a^2} \times \frac{a}{c} = \frac{b^2}{ac} \dots \dots (iii)$ $cx^2 \left(\frac{b^2}{a} 2c\right)x + c = 0 \Rightarrow x^2 \left(\frac{b^2}{ac} 2\right)x + 1 = 0$ $\Rightarrow x^2 \left\{\frac{(\alpha + \beta)^2}{\alpha\beta} 2\right\}x + 1 = 0 \quad [(iii)]$ $\Rightarrow x^2 \left\{\frac{(\alpha + \beta)^2 2\alpha\beta}{\alpha\beta}\right\}x + 1 = 0$ $\Rightarrow x^2 \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)x + \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 0$ $\Rightarrow \left(x \frac{\alpha}{\beta}\right)\left(x \frac{\beta}{\alpha}\right) = 0 \therefore x = \frac{\alpha}{\beta}, \frac{\beta}{\alpha} \quad (Ans.)$

HSC अञ्चलाश्क २०२०

Educationblog 24 (

$$f(x) = ax^2 + bx + c$$

$$g(x) = px^2 + qx + r$$

IMB*211

- (গ) যদি f(x) = 0 সমীকরণের মূল দুইটির অনুপাত g(x) = 0 সমীকরণের মৃল দুইটির অনুপাতের সমান হয়, তাহলে দেখাও বে, b: $q = \sqrt{6}$: $\sqrt{35}$ যখন a = 2, c = 3, p = 5, r = 7.
- (গ) Sel*: ধরি, x² + bx + c = 0 সমীকরণের মূলহয় a, ma; $px^2 + qx + r = 0$ সমীকরণের মূলদ্বয় β, mβ শর্তমতে, $\alpha(m+1) = -\frac{b}{a} \dots \dots (i)$ $\alpha^2 m = \frac{\epsilon}{1} \dots \dots (ii)$ আবার, $\beta(m+1) = -\frac{q}{p} \dots \dots$ (iii) $\beta^2 m = \frac{r}{n} \dots \dots (iv)$ এখন, (i)² ÷ (ii) $\Rightarrow \frac{(m+1)^2}{m} = \frac{b^2}{ac}$ $(iii)^2 \div (iv) \Rightarrow \frac{(m+1)^2}{m} = \frac{q^2}{pr}$ $\therefore \frac{b^2}{ac} = \frac{q^2}{pr} \Rightarrow \frac{b^2}{6} = \frac{q^2}{35} \Rightarrow \frac{b^2}{a^2} = \frac{6}{35} \Rightarrow \frac{b}{q} = \frac{\sqrt{6}}{\sqrt{35}}$
- \therefore b: $q = \sqrt{6}$: $\sqrt{35}$ (Showed) x² + px + q = 0, p, q ≠ 0 এর মূলছয় u এবং v
 - (খ) দেখাও যে, $qx^2 + px + 1 = 0$ এর মূলহর $\frac{1}{n}$ এবং $\frac{1}{n}$ ।
- (\P) Sol*: $x^2 + px + q = 0 : u + v = -p; uv = q$ $\therefore qx^2 + px + 1 = 0 \Rightarrow uvx^2 - (u + v)x + 1 = 0$ $\Rightarrow ux(vx-1)-1(vx-1)=0$ $\Rightarrow (ux - 1)(vx - 1) = 0 : x = \frac{1}{4}, \frac{1}{4}$ ্ৰ সমীকরণটির মূলম্বর 🗓 এবং 🗓। (Showed)

12 $g(x) = cx^2 + bx + 2a$

[সরকারি মাইকেল মধুসূদন কলেজ, যকে

- (খ) ax² + bx + 2c = 0 এর একটি মূল g(x) = 0 সমীকরণের একটি মূলের চারগুণ হলে দেখাও যে, c = 4a অথবা, $2b^2 = (c + 4a)^2$
- (*) Sol*: $g(x) = cx^2 + bx + 2a (i)$ এবং ax2 + bx + 2c = 0 (ii) ধরি, (i) নং সমীকরণের একটি মৃল α. প্রশ্নমতে, (ii) নং সমীকরণের মূলটি 4a $ca^{2} + ba + 2a = 0 (iii)$ এবং $a(4\alpha)^2 + b(4\alpha) + 2c = 0$ $\Rightarrow 8a\alpha^2 + 2b\alpha + c = 0 \dots \dots (iv)$ (iii) ও (iv) নং এ বজ্লগুণন পদ্ধতিতে পাই, $\frac{\alpha^2}{bc-4ab} = \frac{\alpha}{16a^2 - c^2} = \frac{1}{2bc-8ab}$ $\Rightarrow \alpha = \frac{16a^2 - c^2}{2bc - 8ab} [হয় ও ৩য় অনুপাত হতে]$ আবার, $\alpha = \frac{bc-4ab}{16a^2-c^2}$ [১ম ও ২য় অনুপাত হতে] $\therefore \frac{bc-4ab}{16a^2-c^2} = \frac{16a^2-c^2}{2bc-8ab}$ $\Rightarrow (16a^2 - c^2)^2 = (bc - 4ab)(2bc - 8ab)$ $\Rightarrow (c^2 - 16a^2)^2 - 2b^2(c - 4a)^2 = 0$ $\Rightarrow (c - 4a)^{2}(c + 4a)^{2} - 2b^{2}(c - 4a)^{2} = 0$ $\Rightarrow (c - 4a)^{2} \{ (c + 4a)^{2} - 2b^{2} \} = 0$ অথবা, (c + 4a)2 - 2b2 = 0 $\therefore (c-4a)^2=0$ $2b^2 = (4a + b)^2$ $\Rightarrow c - 4a = 0$ ∴ c = 4a
 - ∴ c = 4a অথবা 2b² = (4a + b)² (Showed)

নিজে করো

13. $g(x) = px^2 + qx + r$

[BB'23]

LJB'191

- (গ) যদি g(x) = 0 সমীকরণের মূল দৃটি $\gamma \in \delta$ হয়, তবে $rp(x^2 + 1) - (q^2 - 2rp)x = 0$ সমীকরণের মূল দুটি [Ans: $x = \frac{\alpha}{6}, \frac{\beta}{6}$] γ, δ এর মাধ্যমে প্রকাশ কর।
- 14. সুৰাকজ্প-১: mx² + nx + p = 0......(1) [Ctg.B'22] $px^2 - 4nx + 16m = 0 \dots (2)$ দৃশ্যকল্প-২: $x^3 + dx + h = 0$.
 - (খ) দৃশ্যকম্প-১ এর (1) নং সমীকরণের মূলধ্য α ও β হলে (2) নং সমীকরণের মূলধয়কে α ও β এর মাধ্যমে প্রকাশ কর। [Ans: $(\alpha_1, \beta_1) = \left(-\frac{4}{\alpha}, -\frac{4}{\beta}\right)$]

- [DB" $\varphi(x) = ax^3 + bx^2 + cx + d$ $\Psi(x) = x^2 - mx + l$
- (গ) $\varphi(x) = 0$ সমীকরণে a = 0, b = 1, c = -l এবং d=m হলে; φ(x)=0 এবং Ψ(x)=0 সমীকরণে মূলদ্বয়ের পার্থক্য একটি ধ্রুবক রাশি হলে প্রমাণ কর যে l + m + 4 = 0.
- IRB' 16. $f(x) = px^2 + qx + r$
 - (খ) উদ্দীপক থেকে f(x)=0 সমীকরণের মূলদ্বয় α, β ং $rx^2 + 4qx + 16p = 0$ সমীকরণের মূলম্বাকে a^6 [Ans: x = 6 এর মাধামে প্রকাশ কর।
- 17. $mx^2 + nx + l = 0$ এবং $lx^2 + nx + m = 0$. [Din.B]
 - (গ) উদ্দীপকের ১ম সমীকরণটির মূলদ্বয় α , β হলে m^{1/x^3} $(n^2 - 2ml)x = 0$ সমীকরণের মূলহয় α, β
 - [Ans: मूल पूरि है वर মাধামে প্রকাশ কর।

,

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

Type-05: বহুপদী সমীকরণের মূল নির্ণয়

Concept Concept

- বাস্তব সহগবিশিষ্ট একটি বহুপদী সমীকরণের জটিল মূলগুলো অনুবন্ধী যুগলে থাকে। অর্থাৎ, একটি মূল a + ib হলে অপর মূল a − ib হবে [a, b ∈ R]।
- > মূলদ সহগবিশিষ্ট বহুপদী সমীকরণের অমূলদ মূলগুলি অনুবন্ধী যুগলে থাকে। অর্থাৎ, একটি মূল $a+\sqrt{b}$ হলে অপর মূলটি হবে $a-\sqrt{b}$ $[a,b\in\mathbb{R}]$ । আর মূলদ সহগবিশিষ্ট না হলে বহুপদী সমীকরণের মূলগুলি অনুবন্ধী যুগলে থাকবে না।

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- 11 (ক) $x^3 + (p^2 3)x (p + 2) = 0$ সমীকরণের একটি মূল -1 + ip হলে, সমীকরণিট সমাধান কর। [DB'23]
- (ক) Soln: x³ + (p² 3)x (p + 2) = 0 সমীকরণের একটি
 মূল -1 + ip হলে, এর অনুবদ্ধী মূলটি -1 ip
 ধরি, অন্য মূলটি α
 অর্থাৎ, (-1 + ip) + (-1 ip) + α = 0
 ⇒ -2 + α = 0 ∴ α = 2
 ∴ সমীকরণের মূলএয় -1 ± ip ও 2 (Ans.)
- 02. P(x) = x³ 7x² + 8x + 10 [RB'23] (গ) P(x) = 0 সমীকরণের একটি মূল 5 হলে, অপর মূলগুলো নির্ণয় কর।
- গোঁ Soln: দেওয়া আছে, $x^3-7x^2+8x+10=0$ এর একটি মূল $5. \div x-5$ একটি উৎপাদক। $\Rightarrow x^3-5x^2-2x^2+10x-2x+10=0$ $\Rightarrow x^2(x-5)-2x(x-5)-2(x-5)=0$ $\Rightarrow (x-5)(x^2-2x-2)=0$ এখন, $x^2-2x-2=0$ $\Rightarrow x=\frac{2\pm\sqrt{4-4+1\cdot(-2)}}{2\cdot 1}=\frac{2\pm\sqrt{12}}{2}=1\pm\sqrt{3}$ সমীকরণের মূলম্বয় $=5,1+\sqrt{3},1-\sqrt{3}$ (Ans.)
- সূল্যকল্প-২: $g(x) = x^4 + 3x^3 + x^2 + 13x + 30$ (গ) দৃশ্যকল্প-২ এ g(x) = 0 সমীকরণের একটি মূল 1 - 2iহলে সমীকরণটির সমাধান কর। [Din.B'23]
- (গা) Sol": দেওয়া আছে, g(x) = x⁴ + 3x³ + x² + 13x + 30
 এবং g(x) = 0
 ভাহলে, x⁴ + 3x³ + x² + 13x + 30 = 0 এর একটি মূল
 1 2i হলে আরেকটি হবে 1 + 2i
 এখন, 1 + 2i ও 1 2i মূলবিশিষ্ট ছিঘাত সমীকরণ হলো,
 x² (1 + 2i + 1 2i)x + (1 + 2i)(1 2i) = 0
 ⇒ x² 2x + 1 + 2² = 0 ∴ x² 2x + 5 = 0
 এখন, x⁴ + 3x³ + x² + 13x + 30 = 0
 ⇒ x⁴ 2x³ + 5x² + 5x³ 10x² + 25x + 6x² 12x
 + 30 = 0

- \Rightarrow $x^2(x^2-2x+5)+5x(x^2-2x+5)+6$ $(x^2-2x+5)=0$ \Rightarrow $(x^2-2x+3)(x^2+5x+6)=0$ সূতরাং, g(x)=0 এর বাকী দৃটি মূল হবে $x^2+5x+6=0$ এর মূল।
 এখন, $x^2+5x+6=0 \Rightarrow x^2+3x+2x+6=0$ \Rightarrow x(x+3)+2(x+3)=0 \Rightarrow (x+3)(x+2)=0 \therefore x=-3,-2অতএব, y=0 এর বাকী মূলগুলো হলো y=0
- (ক) x² + 7x + k = 0 সমীকরণের একটি মৃল −8 হলে
 k এর মান ও অপর মূলটি নির্ণয় কর।
 [DB'22

 (ক) Sola: প্রদত্ত সমীকরণ: x² + 7x + k = 0 এবং একটি মূল

 ৪ সম্বর্গ (-৪)² + 7 × (-৪) + k = 0 ক k = 0
 - -8 সুতরাং, $(-8)^2 + 7 \times (-8) + k = 0 \Rightarrow k = -8$ সমীকরণটি হলো, $x^2 + 7x 8 = 0$; এটি $ax^2 + bx + c = 0$ সমীকরণের সাথে তুলনা করে পাই, $\alpha\beta = \frac{c}{a} \left[\alpha, \beta$ হলো সমীকরণের দুটি মূল] $\Rightarrow -8 \times \beta = -8 \Rightarrow \beta = 1$ \therefore অপর মূলটি হলো 1. (Ans.)
- 05. (ক) $x^2 6x + 25 = 0$ সমীকরণের x এর মান নির্ণয় কর। $|JB^2|$
- (Φ) Sol^a: $\chi = \frac{-(-6)\pm\sqrt{(-6)^2-4\times1\times25}}{2\times1} = \frac{6\pm\sqrt{36-100}}{2}$ = $\frac{2(3\pm4i)}{2} = 3\pm4i$ (Ans.)
- উদ্দীপক-২: x⁴ 7x³ + 18x² 22x + 12 = 0
 সমীকরণের একটি মূল 1 + i. [CB'22]
 (গ) দৃশ্যকম্প-২ এ উল্লিখিত সমীকরণটি সমাধান কর।
- (গ) Sol": প্রদন্ত সমীকরণ, $x^4 7x^3 + 18x^2 22x + 12 = 0$ এবং একটি মূল 1 + i সূতরাং অন্য একটি মূল হবে 1 i ধরি, অন্য দূটি মূল α গু β \therefore $\alpha + \beta + 1 + i + 1 i = 7$ $\Rightarrow \alpha + \beta = 5 \dots$ (i) এবং $\alpha \cdot \beta \cdot (1 + i)(1 i) = 12$ $\therefore \alpha \cdot \beta \cdot 2 = 12 \Rightarrow \alpha\beta = 6$

Education log24 com

$$\therefore \alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{5^2 - 4 \cdot 6} = 1 \dots (ii)$$
(i) ও (ii) হতে, $2\alpha = 6 \Rightarrow \alpha = 3$ এবং $2\beta = 4 \Rightarrow \beta = 2$

∴ মূলগুলো হলো, 3, 2, 1 + i, 1 − i (Ans.)

$ax^3 + bx^2 + cx + d = 0$ একটি ত্রিঘাত সমীকরণ।

- (গ) यमि a = 1, b = -9, c = 23, d = -15 হয় এবং সমীকরণটির একটি মূল 3 হয়, তবে অপর মূলগুলো নির্ণয় কর।
 [SB'21]
- (গ) Solⁿ: $x^3 9x^2 + 23x 15 = 0$ এর একটি মূল 3 হলে (x-3) রাশিটির একটি উৎপাদক। $x^3 9x^2 + 23x 15 = 0$ $\Rightarrow x^3 3x^2 6x^2 + 18x + 5x 15 = 0$ $\Rightarrow x^2(x-3) 6x(x-3) + 5(x-3) = 0$ $\Rightarrow (x-3)(x^2 6x + 5) = 0$ $\Rightarrow (x-3)(x-5)(x-1) = 0 \therefore x = 1,3,5$
- 08 (ক) উৎপাদকের সাহায্যে $x^2 + i2\sqrt{2}x + 16 = 0$ সমীকরণের সমাধান নির্ণয় কর। [BB'21]
- (ক) Soln: $x^2 + i2\sqrt{2}x + 16 = 0$ $\Rightarrow x^2 + 2 \cdot x \cdot \sqrt{2}i + (\sqrt{2}i)^2 = -16 - 2$ $\Rightarrow (x + \sqrt{2}i)^2 = (3\sqrt{2}i)^2$ $\Rightarrow (x + \sqrt{2}i)^2 - (3\sqrt{2}i)^2 = 0$ $\Rightarrow (x + \sqrt{2}i + 3\sqrt{2}i)(x + \sqrt{2}i - 3\sqrt{2}i) = 0$ $\Rightarrow (x + 4\sqrt{2}i)(x - 2\sqrt{2}i) = 0$ $\therefore x = -4\sqrt{2}i$ অথবা $x = 2\sqrt{2}i$ (Ans.)

∴ অপর মূলগুলি 1,5 (Ans.)

- $\phi(x) = x^3 9x^2 + 21x 5$ [BB'2] (খ) $\phi(x) = 0$ সমীকরণের একটি মূল 5 হলে অপর মূলঘয় নির্ণয় কর।
- (খ) Sol": দেওয়া আছে, $\phi(x) = x^3 9x^2 + 21x 5 = 0$ ধরি, মূলদ্ব α , β ও 5; যেখানে, $\alpha \geq \beta$ হিসেবে নেওয়া হয়েছে $\therefore \alpha + \beta + 5 = 9 \Rightarrow \alpha + \beta = 4 \cdots (i)$ এবং $5\alpha\beta = 5 \Rightarrow \alpha\beta = \frac{5}{5} = 1 \cdots (ii)$ $\therefore \alpha \beta = \sqrt{(\alpha + \beta)^2 4\alpha\beta} = \sqrt{16 4} = 2\sqrt{3} \dots (iii)$ (i) ও (iii) হতে পাই, $\therefore \alpha = 2 + \sqrt{3}; \beta = 2 \sqrt{3} \text{ (Ans.)}$
- দৃশ্যকম্প-২: g(x) = x³ 3x² 8x + 30. [Din.B'21]
 (খ) দৃশ্যকম্প-২ এর আলোকে g(x) = 0 সমীকরণের একটি
 মূল 3 + i হলে, অপর মূলগুলি নির্ণয় কর।

- (খ) Solⁿ:একটি মূল, 3 + i হলে অপর মূল 3 i
 শর্তমতে, 3 + i + 3 i + α = 3 ⇒ 6 + α = 3
 ⇒ α = -3 ∴ অপর মূলগুলি -3, 3 i (Ans.)
- \mathbf{II} (ক) $\mathbf{x} \frac{1}{\mathbf{x}} = \mathbf{k}$ সমীকরণটির একটি মূল $\sqrt{5} 2$ হলে, \mathbf{k} এর মান নির্ণয় কর। $[MB^{*}2]$
- (ক) Sol": $x \frac{1}{x} = k \Rightarrow (\sqrt{5} 2) \frac{\sqrt{5} + 2}{(\sqrt{5} 2)(\sqrt{5} + 2)} = k$ $\Rightarrow \sqrt{5} 2 (\sqrt{5} + 2) = k \Rightarrow k = -4 \text{ (Ans.)}$ বিকম্প: $x^2 kx 1 = 0$ একটি মূল $-2 + \sqrt{5}$ হলে অপর মূল $= -2 \sqrt{5}$ অর্থাৎ, $-2 + \sqrt{5} 2 \sqrt{5} = -\left(-\frac{k}{1}\right) \Rightarrow k = -4 \text{ (Ans.)}$
- (ক) x³ + x² + 4x + 4 = 0 সমীকরণের একটি মৃল 2i
 হলে, সমীকরণটি সমাধান কর।
 [SB'19]
- (ক) Sol":একটি মূল 2i হলে, অপর মূলটি −2i
 ধরি, অপর মূল α হলে, α + 2i − 2i = −1 ∴ α = −1
 ∴ সমাধান, x = −1, 2i, −2i (Ans.)
- (গ) Solⁿ:প্রদন্ত রাশি, x²p(x) 10x + 4 = 0

 ⇒ x² (x² + mx n) 10x + 4 = 0

 ⇒ x²(x² 5x + 10) 10x + 4 = 0

 [∵ m = -5, x = -10]

 ⇒ x⁴ 5x³ + 10x² 10x + 4 = 0 (ii)
 - (i) নং সমীকরণের একটি মূল 1 + i হলে অপর মূল 1 i 1 + i ও 1 - i মূলবিশিষ্ট সমীকরণ:

 $x^{2} - (1+i+1-i)x + (1+i)(1-i) = 0$

$$x^{2} - (1 + 1 + 1 - 1)x + (1 + 1)(1 - 1)$$

$$\Rightarrow x^{2} - 2x + 2 = 0 \dots \dots \dots (ii)$$

- (ii) নং সমীকরণটি (i) নং সমীকরণের একটি উৎপাদক,
- (i) নং কে উৎপাদকে বিশ্লেষণ করে পাই,

$$x^{4} - 5x^{3} + 10x^{2} - 10x + 4$$

$$= x^{4} - 2x^{3} + 2x^{2} - 3x^{3} + 6x^{2} - 6x + 2x^{2} - 4x^{4}$$

$$= x^{2}(x^{2} - 2x + 2) - 3x(x^{2} - 2x + 2) + 2$$

$$(x^{2} - 2x^{4})^{2}$$

 $= (x^2 - 3x + 2)(x^2 - 2x + 2)$

অপর দৃটি মূলের জন্য $x^2 - 3x + 2 = 0 \dots (ii)$

(iii) নং সমীকরণ সমাধান করে পাই অপর মূল দৃটি: 2.1

Type-06: সমীকরণ গঠন সংক্রান্ত

Concept

- α , β মূলবিশিষ্ট দ্বিঘাত সমীকরণ, $x^2 (\alpha + \beta)x + \alpha\beta = 0$ বা, $(x \alpha)(x \beta) = 0$
- ho
- $\mathbf{\hat{q}}$ দ্বিদাত সমীকরণ: $\mathbf{x}^2 (\mathbf{\hat{q}}$ দ্বাহায়ের যোগফল) $\mathbf{x} + \mathbf{\hat{q}}$ দ্বাহায়ের গুণফল $\mathbf{x} = \mathbf{0}$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

ত্রী উদ্দীপক: দ্বিঘাত সমীকরণ $ax^2 + bx + b = 0$; $[a \neq 0]$

- (গ) a=1, b=-4 এবং উদ্দীপকের সমীকরণের মূলঘর α ও β হলে, $(\alpha+\beta)$ ও $(\alpha-\beta)$ মূলবিশিষ্ট সমীকরণটি নির্ণর কর। [DB'23]
- (গ) Solⁿ: a = 1, b = -4 হলে, প্রদত্ত সমীকরণটি হবে: $x^2 4x 4 = 0$

প্রশ্নমতে, মূলদ্বর α ও β হলে, $\alpha + \beta = -\left(\frac{-4}{1}\right) = 4$

এবং $\alpha\beta = \frac{-4}{1} = -4$

এখন $\alpha - \beta = \pm \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$ = $\pm \sqrt{4^2 - 4(-4)} = \pm 4\sqrt{2}$

 $\alpha \cdot (\alpha + \beta)$ ও $(\alpha - \beta)$ মূলবিশিষ্ট সমীকরণ হবে:

 $x^{2} - \{(\alpha + \beta) + (\alpha - \beta)\}x + (\alpha + \beta)(\alpha - \beta) = 0$ $\Rightarrow x^{2} - (4 \pm 4\sqrt{2})x + 4 \times (\pm 4\sqrt{2}) = 0$

 $\therefore x^2 - 4(1 \pm \sqrt{2})x \pm 16\sqrt{2} = 0;$

যা নির্ণেয় সমীকরণ। (Ans.)

$f(x) = 3x^2 - 4x + 1$

[RB'23]

- (খ) f(x)=0 সমীকরণের মূলধয় α, β হলে, $|\alpha-\beta|$ এবং $\alpha^2+\beta^2$ মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
- (খ) Sol": দেওয়া আছে, $f(x)=3x^2-4x+1$ এবং f(x)=0 $\therefore 3x^2-4x+1=0$ ধরি, সমীকরণের মূলদ্বয় α,β ; $\alpha+\beta=\frac{4}{3}$; $\alpha\beta=\frac{1}{3}$

এখন, $|\alpha - \beta| = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{\frac{16}{9} - \frac{4}{3}} = \frac{2}{3}$

[মডুলাস আছে তাই কেবল ধনাত্মক মান]

আবার, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{16}{9} - \frac{2}{3} = \frac{10}{9}$

 $|\alpha - \beta|$ ও $\alpha^2 + \beta^2$ দ্বারা গঠিত সমীকরণ,

 $x^{2} - \{|\alpha - \beta| + \alpha^{2} + \beta^{2}\} + |\alpha - \beta| \times (\alpha^{2} + \beta^{2}) = 0$

 $\therefore |\alpha - \beta| + \alpha^2 + \beta^2 = \frac{2}{3} + \frac{10}{9} = \frac{6+10}{9} = \frac{16}{9}$

এখন, $|\alpha - \beta| \cdot (\alpha^2 + \beta^2) = \frac{2}{3} \times \frac{10}{9} = \frac{20}{27}$

 \therefore সমীকরণদ্বয়, $x^2 - \frac{16}{9}x + \frac{20}{27} = 0$

 $27x^2 - 48x + 20 = 0 \text{ (Ans.)}$

(ক) একটি দ্বিঘাত সমীকরণ নির্ণয় কর যার একটি মূল 1/(2+i3)
 [JB'23]

(ক) Sol^a: দেওয়া আছে, দ্বিঘাত সমীকরণটির একটি মূল $\frac{1}{2+3i} = \frac{2-3i}{(2+3i)(2-3i)} = \frac{2-3i}{4+9} = \frac{2}{13} - \frac{3}{13}i$

 \therefore অপর মূল = $\frac{2}{13} + \frac{3}{12}$ i

 \therefore মূলদ্বয়ের যোগফল = $\left(\frac{2}{13} + \frac{3}{13}i\right) + \left(\frac{2}{13} - \frac{3}{13}i\right) = \frac{4}{13}$

: মূলদ্বের গুণফল = $\left(\frac{2}{13} + \frac{3}{13}i\right)\left(\frac{2}{13} - \frac{3}{13}i\right)$ = $\frac{4}{13^2} + \frac{9}{13^2} = \frac{1}{13}$

 \therefore নির্ণেয় সমীকরণ, $x^2 - \frac{4}{13}x + \frac{1}{13} = 0$

 $\Rightarrow 13x^2 - 4x + 1 = 0$ (Ans.)

- (ক) (2 3i) মূলবিশিষ্ট সমীকরণ নির্ণয় কর। [SB'22]
- (本) Solⁿ: $(x-2+3i) \times p(x) = 0$ [যেখানে p(x) হলো x চলকের অশ্ন্য বহুপদী] আকারের যেকোনো সমীকরণই 2-3i মূলবিশিষ্ট সমীকরণ। উদাহরণস্বরূপ: আমরা যদি মূলদ সহগবিশিষ্ট দ্বিঘাত সমীকরণ চাই, সেক্ষেত্রে অপর মূলটি 2+3i : সমীকরণ: $x^2 \{(2-3i) + (2+3i)\}x + (2-3i)$ (2+3i) = 0

 $\Rightarrow x^2 - 4x + 2^2 + 3^2 = 0 : x^2 - 4x + 13 = 0 \text{ (Ans.)}$

- 10x² 8x + 1 = 0 বহুপদী সমীকরণ। [CB'22]
 (খ) একটি দ্বিঘাত সমীকরণ নির্ণয় কর যার মূলদ্বয় হবে
 - (খ) একাত বিঘাত সমাকরণ নিশয় কর যার মৃশধর ২বে উদ্দীপকে উল্লিখিত বিঘাত সমীকরণের মৃশধয়ের যোগফল ও অন্তরফলের যোগবোধক মান।
- (খ) Sol": প্রদত্ত দ্বিঘাত সমীকরণ $10x^2 8x + 1 = 0$

यात्र भूमचग्र, $\alpha \in \beta : \alpha + \beta = -\frac{(-8)}{10} = \frac{4}{5} \dots \dots (i);$

 $\alpha\beta = \frac{1}{10} \dots \dots \dots (ii) \therefore \alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$

 $= \sqrt{\frac{16}{25} - \frac{4}{10}} = \sqrt{\frac{6}{25}} = \frac{\sqrt{6}}{5} \dots \dots \dots (iii)$

 \therefore নতুন সমীকরণের মূলদ্বয় $\frac{4}{5}$ ও $\frac{\sqrt{6}}{5}$

: সমীকরণটি $x^2 - \left(\frac{4}{5} + \frac{\sqrt{6}}{5}\right)x + \frac{4}{5} \times \frac{\sqrt{6}}{5} = 0$

 $\Rightarrow 25x^2 - (20 + 5\sqrt{6})x + 4\sqrt{6} = 0$ (Ans.)

HSC প্রমুব্যাংক ২০২৫

- Fducation plans of the company of th
- তৃশ্যকম্প-১: 2x² 3x + 1 = 0 সমীকরণের মৃলয়য় α ও β.
 (খ) দৃশ্যকম্প-১ এর আলোকে α + β এবং αβ মৃলবিশিষ্ট সমীকরণ নির্ণয় কর। [Ctg.B'21]
- (ব) Soln: $2x^2 3x + 1 = 0$ এর মূলদ্বয় α ও β হলে, $\alpha + \beta = \frac{3}{2}; \ \alpha\beta = \frac{1}{2}$ $\therefore \text{ নতুন সমীকরণে, মূলদ্বয়ের যোগফল } = (\alpha + \beta) + \alpha\beta$ $= \frac{3}{2} + \frac{1}{2} = 2$ মূলদ্বয়ের গুণফল = $(\alpha + \beta)(\alpha\beta) = \frac{3}{2} \times \frac{1}{2} = \frac{3}{4}$ $\therefore \text{ নতুন সমীকরণ: } x^2 2x + \frac{3}{4} = 0$ $\therefore 4x^2 8x + 3 = 0 \text{ (Ans.)}$
- 07. f(x) = x² 5x + 4 [BB'21] (খ) f(x) = 0 সমীকরণের মূল্বয় a, b হলে a² + b² ও a³ + b³ মূল্বিশিষ্ট দ্বিত্যত সমীকরণটি নির্ণয় কর।
- (খ) Soln: f(x) = x² 5x + 4 = 0; এর মূলদ্ব a, b ⇒ x² - 4x - x + 4 = 0 ⇒ (x - 4)(x - 1) = 0 ∴ a = 4 ও b = 1 ∴ a² + b² = 16 + 1 = 17; a³ + b³ = 64 + 1 = 65 ∴ নির্ণেয় সমীকরণ x² - {(a² + b²) + (a³ + b³)}x + (a² + b²)(a³ + b³) = 0 ⇒ x² - (17 + 65)x + 17 × 65 = 0 ∴ x² - 82x + 1105 = 0 (Ans.)
- 08. দৃশ্যকলপ: f(x) = ax² + bx + c, a ≠ 0 একটি দ্বিঘাত ফাংশন। [Din.B'21]
 - (গ) দৃশ্যকম্পে a = 1, b = -2n, c = n² m² হলে এমন একটি সমীকরণ গঠন কর যার মূলছয়, f(x) = 0 সমীকরণের মূলছয়ের যোগফল ও অন্তরফলের যোগবোধক মান হবে।
- (গ) Sol*: প্রশ্নমতে, f(x) = 0 ⇒ x² 2nx + n² m² = 0 ⇒ x² - {(n - m) + (n + m)}x + (n - m)(n + m) = 0 ⇒ {x - (n - m)}{x - (n + m)} = 0 ⇒ x = n + m, n - m ∴ মূলদ্বয়ের যোগফল = 2n; মূলদ্বয়ের বিয়োগফল = 2m ∴ নির্ণেয় সমীকরণ: x² - (2m + 2n)x + 4mn = 0 ⇒ x² - 2(m + n)x + 4mn = 0 (Ans.)
- 2x³ 9x² + 14x 5 = 0 এর একটি মৃল 2 i.[JB'19]
 (গ) উদ্দীপকের দিতীয় সমীকরণের বাস্তব মৃল এবং ¼
 মৃলবিশিষ্ট একটি দ্বিঘাত সমীকরণ নির্ণয় কর।
- (গ) Sol": একটি মূল 2-i হলে অপরটি হবে 2+i; এখন, $2x^3-9x^2+14x-5=0$ সমীকরণের বাস্তব মূল α হলে $\alpha+2-i+2+i=\frac{9}{2}:\alpha=\frac{1}{2}:\frac{1}{2}:\frac{1}{2}:\frac{1}{4}$ মূলবিশিষ্ট দ্বিঘাত সমীকরণ $\left(x-\frac{1}{2}\right)\left(x-\frac{1}{4}\right)=0$ $\Rightarrow (2x-1)(4x-1)=0 \Rightarrow 8x^2-6x+1=0$ (Ans.)

- z = α + βi, যেখানে α ও β বান্তব সংখ্যা। (CB¹)
 (খ) উদ্দীপকে α = 2, β = √3 হলে z মৃলবিশিষ্ট বিঘাত সমীকরণ নির্ণয় কর।
- (খ) Solⁿ: দেওয়া আছে, z = α + βi
 যখন α = 2, β = √3
 তখন z = 2 + i√3
 আমরা জানি, কোনো বাস্তব সহগ বিশিষ্ট দ্বিঘাত সমীকরণের
 জটিল মূলগুলি যুগলে থাকে। একটি মূল 2 + i√3 হলে অপর
 মূলটি হবে 2 i√3 এবং সমীকরণিটি হবে,
 x² (2 + i√3 + 2 i√3)x + (2 + i√3) (2 i√3) = 0
 ⇒ x² 4x + (4 i²3) = 0
 ⇒ x² 4x + (4 + 3) = 0
 ⇒ x² 4x + 7 = 0, ইহাই নির্ণেয় সমীকরণ। (Ans.)
- দৃশ্যকম্প-২: $(a + b)^2 + (a\omega + b\omega^2)^2 + (a\omega^2 + b\omega)^2$ = 12 এবং $(a\omega + b\omega^2)^2 + (a\omega^2 + b\omega)^2 = 3$ (গ) x চলকবিশিষ্ট একটি দ্বিঘাত সমীকরণ নির্ণয় কর যার
 মূলদ্বয় $a^5 \otimes b^7$. [ময়মনসিংহ গার্লস ক্যাডেট কলেজ

(গ) Solⁿ: দেওয়া আছে, $(a + b)^2 + (a\omega + b\omega^2)^2$

- $+(a\omega^2+b\omega)^2=12......(i)$ এবং $(a\omega+b\omega^2)^2+(a\omega^2+b\omega)^2=3.....(ii)$ এখন, $(i)-(ii)\Rightarrow(a+b)^2=12-3$ $\Rightarrow a^2+b^2+2ab=9.....(iii)$ (i) নং হতে পাই, $a^2+b^2+2ab+a^2\omega^2+2ab\omega^3+b^2\omega^4+a^2\omega^4+2ab\omega^3+b^2\omega^2=12$ $\Rightarrow a^2+b^2+a^2(\omega^2+\omega)+b^2(\omega+\omega^2)+6ab=12$
 - ⇒ $a^2 + b^2 a^2 b^2 + 6ab = 12 [\because \omega^2 + \omega = -1]$ ⇒ 6ab = 12 ⇒ ab = 2 ⇒ $b = \frac{2}{3} (iv)$
 - (iv) নং হতে b এর মান (iii) নং সমীকরণে বসিয়ে পাই.

$$\frac{4}{a^2} + a^2 + 4 = 9 \Rightarrow 4 + a^4 = 5a^2$$

$$\Rightarrow a^4 - 5a^2 + 4 = 0$$

$$\Rightarrow a^{2}(a^{2}-1)-4(a^{2}-1)=0$$

$$\Rightarrow$$
 $(a^2 - 1)(a^2 - 4) : a = \pm 1, \pm 2$

$$\dot{a}^5 + b^7 = 1^5 + 2^7 = 1 + 128 = 129$$

এবং
$$a^5b^7 = 1^5 \cdot 2^7 = 128$$

আবার,
$$a = -1$$
 হলে, $b = -2$

$$a^5 + b^7 = (-1)^5 + (-2)^7 = -1 - 128 = -129$$

.: a5 ও b7 দ্বারা গঠিত সমীকরণ:

$$x^2 - (a^5 + b^7)x + a^5b^7 = 0$$

$$x^2 \pm 129x + 128 = 0$$
 (Ans.)

$$a^5 + b^7 = (\pm 2)^5 + (\pm 1)^7 = \pm 33$$

এবং
$$a^5b^7 = (\pm 2)^5 \cdot (\pm 1)^7 = 32$$

এক্ষেত্রে নির্ণেয় সমীকরণ:
$$x^2 \pm 33x + 32 = 0$$
 (Ans.)

দৃশ্যকম্প-২: $\frac{3-1}{1-2i}$ একটি জটিল সংখ্যা।

[সরকারি রাজেন্দ্র কলেজ, ফরিদপুর]

- (গ) বাস্তব সহগবিশিষ্ট একটি ত্রিঘাত সমীকরণ গঠন কর যার একটি মূল 0 এবং অপর মূল দৃশ্যকম্প-২ এর জটিল সংখ্যা।
- Sol": উদ্দীপক হতে পাই

অপর মূল:
$$\frac{3-i}{1-2i} = \frac{(3-i)(1+2i)}{(1-2i)(1+2i)} = \frac{3+6i-i-2i^2}{1^2-(2i)^2} = \frac{5+5i}{1+4} = 1+i$$

যেহেতু, জটিল মূল অনুবন্ধী যুগলে থাকে, সেহেতু আরেকটি মূল

$$1 - i$$

0, (1 - i) ও (1 + i) মূলবিশিষ্ট সমীকরণ:

$$x^3 - (0+1-i+1+i)x^2 + \{(1+i)\cdot 0 + (1-i)\cdot$$

$$0 + (1+i)(1-i)x - \{(1+i) \cdot (1-i) \cdot 0\} = 0$$

$$\Rightarrow x^3 - 2x^2 + (1 - i^2)x = 0$$

$$x^3 - 2x^2 + 2x = 0$$
 (Ans.)

$g(x) = qx^2 + px + q$ যেখানে $p, q \in \mathbb{R}$

(খ) g(x) = 0 সমীকরণের মূলদ্বয়ের সমষ্টি এদের অন্তরফলের

তিনগুণ হলে এমন একটি সমীকরণ নির্ণয় কর যার মূলদ্বয়

 $rac{P}{q}$ ও $rac{q}{p}$ এর বর্গের সমষ্টি ও অন্তরফলের পরম মানের

সমান।

চিট্টগ্রাম কলেজা

(খ) Sol": দেওয়া আছে, g(x) = qx² + px + q = 0 সমীকরণটির মূলদ্বয় α ও β হলে,

$$\alpha+\beta=-\frac{p}{q},\alpha\beta=\frac{q}{q}=1$$

এবং
$$|\alpha - \beta| = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{\frac{p^2}{q^2} - 4}$$

প্রশাতে, $\alpha + \beta = 3|\alpha - \beta|$

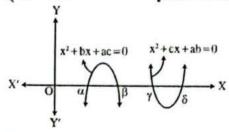
$$\Rightarrow -\frac{p}{3q} = \sqrt{\frac{p^2}{q^2} - 4} \Rightarrow \frac{p^2}{9q^2} = \frac{p^2}{q^2} - 4$$

$$\Rightarrow \frac{8}{9} \cdot \frac{p^2}{q^2} = 4 - \left(\frac{p}{q}\right)^2 = \frac{9}{2}$$

$$\therefore \frac{P}{q} \in \frac{q}{p}$$
 এর বর্গের সমষ্টি = $\left(\frac{P}{q}\right)^2 + \left(\frac{q}{p}\right)^2 = \frac{9}{2} + \frac{2}{9} = \frac{85}{18}$

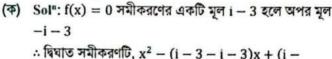
এবং অন্তরফলের প্রমমান:
$$\left| \left(\frac{p}{q} \right)^2 - \left(\frac{q}{p} \right)^2 \right| = \left| \frac{9}{2} - \frac{2}{9} \right| = \frac{77}{18}$$

নির্ণেয় সমীকরণ: $x^2 - \left(\frac{65}{18} + \frac{77}{18}\right)x + \frac{65}{18} \cdot \frac{77}{18} = 0$


$$\Rightarrow x^2 - 9x + \frac{6545}{324} = 0$$

$$324x^2 - 2916x + 6545 = 0$$
 (Ans.)

Educationblog24


উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

[সিলেট সরকারি মহিলা কলেজ]

- (क) i − 3 মৃলবিশিষ্ট সমীকরণ নির্ণয় কর।
- (খ) β = γ হলে দৃশ্যকল্প-১ হতে দেখাও যে, তাদের ভিন্ন

দুইটি মূল দারা গঠিত সমীকরণ, $x^2 + ax + bc = 0$

$$3)(-i-3)=0$$

$$\Rightarrow x^2 + 6x + (9 - i^2) = 0$$

$$x^2 + 6x + 10 = 0$$
 (Ans.)

(খ) Sol": প্রদত্ত সমীকরণদ্বয়, x² + bx + ac = 0 এবং x² +

$$cx + ab = 0$$

১ম সমীকরণের একটি মূল β এবং ২য় সমীকরণটির একটি মূল

দেওয়া আছে, $\beta = \gamma$ অর্থাৎ β উভয় সমীকরণকে সিদ্ধ করবে।

$$\therefore \beta^2 + b\beta + ac = 0 \dots \dots (i)$$

এবং
$$\beta^2 + c\beta + ab = 0 \dots \dots (ii)$$

(i) ও (ii) বজ্রগুণন প্রক্রিয়ায় পাই,

$$\frac{\beta^2}{ab^2 - ac^2} = \frac{\beta}{ac - ab} = \frac{1}{c - b} \Rightarrow \frac{\beta^2}{a(b - c)(b + c)} = \frac{\beta}{a(c - b)} = \frac{1}{c - b}$$

$$\Rightarrow \frac{\beta}{a(c-b)} = \frac{1}{c-b} \Rightarrow \beta = a \dots \dots (iii)$$

আবার,
$$\frac{\beta^2}{a(b-c)(b+c)} = \frac{\beta}{a(c-b)}$$

$$\Rightarrow \beta = \frac{a(b-c)(b+c)}{a(c-b)} = -(b+c)$$

$$\therefore a = -(b+c) \dots \dots (iv)$$

$$\Rightarrow$$
 a + b + c = 0

সমীকরণ দুটির অপর দুটি মূল যথাক্রমে α ও δ।

$$\therefore \alpha\beta = ca \Rightarrow \alpha a = ca \therefore \alpha = c$$

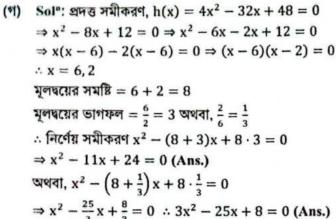
এবং
$$\gamma \delta = ab \Rightarrow a\delta = ab [: \gamma = \beta = a]$$

$$\delta = b$$

.. α ও δ মূলবিশিষ্ট সমীকরণ হলো:

$$x^2 - (\alpha + \delta)x + \alpha\delta = 0 \Rightarrow x^2 - (c + b)x + cb = 0$$

$$\therefore x^2 + ax + cb = 0 [\because -(b+c) = a]$$
(Showed)


15. $h(x) = 4x^2 - 32x + 48 = 0$

[সরকারি মাইকেল মধুসূদন কলেজ, যশোর]

(গ) এমন একটি সমীকরণ নির্ণয় কর যার মূলধর h(x)=0সমীকরণের মূলধয়ের সমষ্টি ও ভাগফলের সমান।

Education blog 24 com

- $x^2 x + 2 = 0$ সমীকরণের মূলদ্বয় $\frac{1}{\alpha}$ ও $\frac{1}{\beta}$ (ক) 3, -2 মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
 - (গ) এমন একটি চতুর্ঘাত সমীকরণ নির্ণয় কর যার তিনটি মূল
 α, β ও 2 i [সরকারি মাইকেল মধুসূদন কলেজ, যশোর]
- (ক) Solⁿ: 3, -2 মূলবিশিষ্ট সমীকরণ = $x^2 (3-2)x + 3 \cdot (-2) = 0$ $\therefore x^2 x 6 = 0$ (Ans.)
- গ) Sol": দেওয়া আছে, চতুর্যাত সমীকরণটির তিনটি মৃল α , β , γ ... চতুর্থ মূলটি হলো: $\overline{2-i}=2+i$ প্রদন্ত সমীকরণ হতে আমরা পাই, $\frac{1}{\alpha}+\frac{1}{\beta}=1$ (i) এবং $\frac{1}{\alpha\beta}=2$ (ii) (ii) নং হতে, $\frac{\alpha+\beta}{\alpha\beta}=1\Rightarrow \alpha+\beta=\alpha\beta\Rightarrow \alpha+\beta=\frac{1}{2}$ $\Rightarrow \beta=\frac{1}{2}-\alpha$ (iii) (iii) নং হতে β এর মান (ii) নং বসিয়ে পাই, $\frac{1}{\alpha(\frac{1}{2}-\alpha)}=2\Rightarrow\frac{1}{2}\alpha-\alpha^2=\frac{1}{2}\Rightarrow 2\alpha^2-\alpha+1=0$... α , β মূলবিশিষ্ট সমীকরণ: $2x^2-x+1=0$ (i) 2+i ও 2-i মূলবিশিষ্ট দ্বিঘাত সমীকরণ: $x^2-(2+i+2-i)x+(2+i)(2-i)=0$ $\Rightarrow x^2-4x+5=0$ (v) ... α , β , 2+i, 2-i মূলবিশিষ্ট চতুর্যাত সমীকরণ:

নিজে করো

17. $x^4 - 9x^3 + 27x^2 - 33x + 14 = 0 \dots (ii)$ [Din.B'22]

(গ) (ii) নং সমীকরণের একটি মূল $3-\sqrt{2}$ হলে সমীকরণটি সমাধান কর।

[Ans: মূলগুলো হলো = 2, 1, 3 + $\sqrt{2}$, $-\sqrt{2}$]

18. (ক) $2-\sqrt{-3}$ মূলবিশিষ্ট একটি দ্বিঘাত সমীকরণ নির্ণয় কর। [MB'22] [Ans: $x^2-4x+7=0$] 19. φ(x) = x³ - 9x² + 21x - 5 [BB]
 (ক) একটি দ্বিঘাত সমীকরণ নির্ণয় কর যার একটি মূল 2 - 1
 [Ans: x² - 4x + 13 =

 $\Rightarrow 2x^4 - 9x^3 + 15x^2 - 9x + 5 = 0 \text{ (Ans.)}$

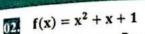
 $2x^4 - 8x^3 + 10x^2 - x^3 + 4x^2 - 5x + x^2 - 4x + 5$

 $(2x^2 - x + 1)(x^2 - 4x + 5) = 0$

20. P(x) = mx³ + nx² + qx + r. [Din.B¹]
(গ) এমন একটি সমীকরণ নির্ণয় কর যার মূলয়য় ফলয়
P(x) = 0 সমীকরণের মূল দুটির সমষ্টি ও অন্তরফা
পরমমান হবে, যেখানে m = 0, n = 2, q = 1, r = [Ans: 4x² - 4x - 3 =

Type-07: প্রতিসম রাশি ও প্রতিসম মূলবিশিষ্ট সমীকরণ নির্ণয়

Concept


একাধিক চলকবিশিষ্ট যে সকল রাশির যে কোনো দুইটি চলককে পরস্পরের সাথে স্থান বিনিময় করলে রাশিটির কোনো পরিবর্তন হয়।

যেমন: $\alpha^2+\beta^2+\gamma^2$ -এ α এর পরিবর্তে β এবং β এর পরিবর্তে α বসালে পাওয়া যায় $\beta^2+\alpha^2+\gamma^2$ । অর্থাৎ রাশিটি অপরিবর্তে আছে। অনুরূপভাবে β এর পরিবর্তে γ এবং γ এর পরিবর্তে β বসালেও রাশিটি অপরিবর্তিত থাকে। α এটি একটি প্রতিসম রাশি।

সূজনশীল প্রশ্ন (ক, খ ও গ)

1 উদীপক-২: $x^3 + px^2 + qx + r = 0$. [DB'23]

- (গ) উদ্দীপক-২ এর সমীকরণটির মূলতার lpha, eta, γ হলে, $\Sigma(lpha-eta)^2$ এর মান নির্ণয় কর।
- গ) Solⁿ: প্রশ্নাতে, x³ + px² + qx + r = 0 এর মূলতায় α, β ও γ হলে,
- অর্থাৎ, $\sum \alpha = -p$, $\sum \alpha \beta = q$ এবং $\sum \alpha \beta \gamma = -r$ $\therefore \sum (\alpha - \beta)^2 = (\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2$ $= 2(\sum \alpha^2 - \sum \alpha \beta) = 2\{(\sum \alpha)^2 - 2\sum \alpha \beta - \sum \alpha \beta\}$ $= 2\{(\sum \alpha)^2 - 3\sum \alpha \beta\} = 2 \times \{(-p)^2 - 3 \times q\}$ $= 2(p^2 - 3q) \text{ (Ans.)}$

[Ctg.B'23]

- (গ) f(x)=0 সমীকরণের মূলদ্বয় α , β হলে $\alpha+\frac{1}{\beta}$ এবং $\beta+\frac{1}{\alpha}$ মূলবিশিষ্ট সমীকরণটি নির্ণয় কর।
- (গ) Sol": $f(x) = 0 \Rightarrow x^2 + x + 1 = 0$ সমীকরণের মূলদ্বয় α , β হলে $\alpha + \beta = -1$ ও $\alpha\beta = 1$ $\therefore \left(\alpha + \frac{1}{\beta} + \beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \frac{\alpha + \beta}{\alpha\beta} = -1 + \frac{-1}{1} = -2$ এবং $\left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right) = \alpha\beta + 1 + 1 + \frac{1}{\alpha\beta}$ $= 1 + 1 + 1 + \frac{1}{1} = 4$ $\therefore \left(\alpha + \frac{1}{\beta}\right)$ এবং $\left(\beta + \frac{1}{\alpha}\right)$ মূলবিশিষ্ট সমীকরণ $\Rightarrow x^2 \left(\alpha + \frac{1}{\beta} + \beta + \frac{1}{\alpha}\right)x + \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right) = 0$ $\Rightarrow x^2 (-2)x + 4 = 0 \therefore x^2 + 2x + 4 = 0 \text{ (Ans.)}$
- মূশ্যকম্প-১: $5x^3-4x^2+1=0$ সমীকরণের মূলগুলো α,β ও γ [SB'23] (খ) দৃশ্যকম্প ১ হতে $\sum \alpha^2 \beta$ এর মান নির্ণয় কর।
- (খ) Soln: দেওয়া আছে, $5x^3-4x^2+1=0$ সমীকরণের মূলগুলো α , β এবং γ \therefore $\alpha+\beta+\gamma=-\frac{-4}{5}=\frac{4}{5}$(i) $\alpha\beta+\beta\gamma+\gamma\alpha=\frac{0}{5}=0$ (ii) এবং $\alpha\beta\gamma=-\frac{1}{5}$(iii) ... $\sum \alpha^2\beta=\alpha^2\beta+\alpha\beta^2+\beta^2\gamma+\beta\gamma^2+\gamma^2\alpha+\gamma\alpha^2=\alpha^2\beta+\alpha\beta^2+\alpha\beta\gamma+\beta^2\gamma+\beta\gamma^2+\alpha\beta\gamma+\gamma^2\alpha+\gamma\alpha^2+\alpha\beta\gamma+\alpha\beta\gamma+\gamma^2\alpha+\gamma\alpha^2+\alpha\beta\gamma+\beta\gamma+\gamma\alpha(\alpha+\beta+\gamma)+\beta\gamma(\alpha+\beta+\gamma)+\gamma\alpha(\alpha+\gamma+\beta)-3\alpha\beta\gamma=(\alpha+\beta+\gamma)(\alpha\beta+\beta\gamma+\gamma\alpha)-3\alpha\beta\gamma=\frac{4}{5}\times 0-3\times\left(-\frac{1}{5}\right)=\frac{3}{5}$ (Ans.)
- (क) $3x^3 2x^2 + 1 = 0$ সমীকরণের মূলগুলো α , β , γ হলে, $\sum \alpha^2$ এর মান নির্ণয় কর। [BB'23]
- (ক) Soln: প্রদন্ত সমীকরণ $3x^3-2x^2+1=0$; α , β , γ যদি সমীকরণের মূল হয়, $\alpha+\beta+\gamma=\frac{2}{3}$; $\alpha\beta+\beta\gamma+\gamma\alpha=0$ $\alpha\beta\gamma=-\frac{1}{3}:\sum\alpha^2=\alpha^2+\beta^2+\gamma^2$ $=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma+\gamma\alpha)$ $=\left(\frac{2}{3}\right)^2-2\cdot 0=\frac{4}{9} \text{ (Ans.)}$
- দৃশ্যকম্প-১: $f(x) = 3x^3 2x^2 + x 4$ [Din.B'23] (খ) দৃশ্যকম্প-১ এ f(x) = 0 সমীকরণের মূলতায়, a, b, c হলে, $\sum \frac{1}{a^2b}$ এর মান নির্ণয় কর।
- (খ) Sol": দৃশ্যকপ্প-১ হতে পাই, $f(x)=3x^3-2x^2+x-4$ আর f(x)=0 তাহলে, $3x^3-2x^2+x-4=0$ এর মূল গুলো a,b,c হলে, $a+b+c=\frac{2}{3}$, $ab+bc+ca=\frac{1}{3}$ এবং $abc=\frac{4}{3}$

এখন, $\sum \frac{1}{a^2b} = \frac{1}{a^2b} + \frac{1}{b^2a} + \frac{1}{b^2c} + \frac{1}{c^2b} + \frac{1}{c^2a} + \frac{1}{a^2c}$ $= \frac{c^2b + c^2a + a^2c + a^2b + b^2a + b^2c}{a^2b^2c^2}$ $= \frac{c^2b + b^2c + abc + c^2a + a^2c + abc + a^2b + b^2a + abc - 3abc}{(abc)^2}$ $= \frac{bc(a + b + c) + ca(c + a + b) + ab(a + b + c) - 3abc}{(abc)^2}$ $= \frac{(a + b + c)(ab + bc + ca) - 3abc}{(abc)^2} = \frac{\frac{2}{3} \times \frac{1}{3} - 3 \times \frac{4}{3}}{\left(\frac{4}{3}\right)^2} = \frac{\frac{2}{9} - 4}{\frac{16}{9}}$ $= \frac{2 - 36}{9} \times \frac{9}{16} = \frac{-34}{16} = \frac{-17}{8} \text{ (Ans.)}$

দৃশ্যকম্প-১: $3x^2+4x+7=0$ সমীকরণের মূলদ্বর α ও β । দৃশ্যকম্প-২: $f(x)=x^3-px^2+qx-r$. [MB'23] (খ) দৃশ্যকম্প-১ এর আলোকে α^{-2} ও β^{-2} মূলবিশিষ্ট

সমীকরণ নির্ণয় কর।

- (গ) f(x)=0 সমীকরণের মূলত্রয়, α , β , γ হলে $\sum \frac{1}{\alpha^3}$ এর মান নির্ণয় কর।
- (খ) Soln: দেওয়া আছে, $3x^2+4x+7=0$ সমীকরণের মূলদ্বর α ও β অর্থাৎ, $\alpha+\beta=\frac{-4}{3}.......(i)$; $\alpha\beta=\frac{7}{3}.......(ii)$ এখন, $\alpha^{-2}+\beta^{-2}=\frac{1}{\alpha^2}+\frac{1}{\beta^2}=\frac{\alpha^2+\beta^2}{(\alpha\beta)^2}=\frac{(\alpha+\beta)^2-2\alpha\beta}{(\alpha\beta)^2}$ $=\frac{\left(-\frac{4}{3}\right)^2-2\times\frac{7}{3}}{\left(\frac{7}{3}\right)^2}=-\frac{26}{49}\text{ এবং }\alpha^{-2}\beta^{-2}=\frac{1}{(\alpha\beta)^2}=\frac{1}{\left(\frac{7}{3}\right)^2}=\frac{9}{49}$ $\therefore \alpha^{-2}$ ও β^{-2} মূলবিশিষ্ট নির্ণেয় সমীকরণ: $x^2-\left(\frac{-26}{49}\right)x+\frac{9}{49}=0 \Rightarrow 49x^2+26x+9=0 \text{ (Ans.)}$
- (গ) Soln: প্রশ্নমতে, $x^3 px^2 + qx r = 0$ সমীকরণের মূলত্রয়, α , β ও γ . অর্থাৎ, $\alpha + \beta + \gamma = p$ (i) ও $\alpha\beta + \beta\gamma + \gamma\alpha = q$ (ii) এবং $\alpha\beta\gamma = r$ (iii) $\therefore \sum \frac{1}{\alpha^3} = \frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^3} = \frac{(\beta\gamma)^3 + (\gamma\alpha)^3 + (\alpha\beta)^3}{(\alpha\beta\gamma)^3}$ $= \frac{\sum \alpha\beta\{(\sum \alpha\beta)^2 3\alpha\beta\gamma(\sum \alpha)\} 3(\alpha\beta\gamma)^2}{(\alpha\beta\gamma)^3} = \frac{q\{q^2 3r\cdot p\} 3r^2}{r^3}$ $= \frac{q^3 3pqr 3r^2}{r^3}$ (Ans.)
- 07. $f(x)=x^2-4x+5$, g(x)=x+1 [RB'22] (গ) $f(x)\cdot g(x)=0$ সমীকরণের মূলত্রয় p, q, r হলে $\sum p^3q$ নির্ণয় কর।
- (গ) Soln: প্রদন্ত রাশি, $f(x) = x^2 4x + 5$ এবং g(x) = x + 1শর্তমতে, $f(x) \cdot g(x) = 0 \Rightarrow (x + 1)(x^2 4x + 5) = 0$ $\Rightarrow x^3 3x^2 + x + 5 = 0 \dots \dots (i)$ মূল্যায়, p, q, r হলে, p + q + r = 3(ii);
 pq + qr + pr = 1(iii); pqr = -5(iv)
 এখন, $\sum p^3 q = p^3 q + p^3 r + q^3 p + q^3 r + r^3 p + r^3 q$ $= p^3 q + pq^3 + pqr^2 + q^3 r + qr^3 + p^2 qr + r^3 p$ $+ rp^3 + pq^2 r pqr^2 p^2 qr pq^2 r$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : তাধ্যায়-০৪

$$= pq(p^{2} + q^{2} + r^{2}) + qr(p^{2} + q^{2} + r^{2})$$

$$+rp(p^{2} + q^{2} + r^{2}) - pqr(p + q + r)$$

$$= (p^{2} + q^{2} + r^{2})(pq + qr + rp) - pqr(p + q + r)$$

$$= [(p + q + r)^{2} - 2(pq + qr + rp)](pq + qr + rp)$$

$$-pqr(p + q + r)$$

$$= [(3)^{2} - 2 \cdot 1]1 - (-5) \times 3$$

$$= (9 - 2) + 15 = 22 \text{ (Ans.)}$$

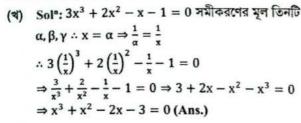
- 08. $f_1(x) = 4x^2 7x + 3$ [RB'22] $f_2(x) = \alpha x^2 + \beta x + \gamma$
 - (গ) $f_1(x)=0$ সমীকরণের মূলদ্বয় p,q হলে $\frac{1}{p^3}$ ও $\frac{1}{q^3}$ মূলবিশিষ্ট সমীকরণটি নির্ণয় কর।
- 09. উদ্দীপক: $ax^3 + bx + c = 0$ সমীকরণের মূলত্রয় α , β , γ । (ক) $3x^2 + 2x + 2 = 0$ এর মূলহয় α , β হলে $\frac{1}{\alpha} + \frac{1}{\beta}$ এর মান বের কর। [BB'22
 - (খ) উদ্দীপক এর সাহায্যে $\frac{\gamma^2}{\alpha+\beta}$, $\frac{\alpha^2}{\beta+\gamma}$ ও $\frac{\beta^2}{\gamma+\alpha}$ মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
- (ক) Soln: প্রদন্ত সমীকরণ, $3x^2 + 2x + 2 = 0$; যার মূলদ্বয় α ও β \therefore $\alpha + \beta = -\frac{2}{3}$ (i) এবং $\alpha\beta = \frac{2}{3}$ (ii) $\therefore \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{-\frac{2}{3}}{\frac{2}{3}} = -1$ (Ans.)
- (খ) Soln: প্রদন্ত সমীকরণ, $ax^3 + bx + c = 0$ যার মূলক্রয় α , β , γ \therefore $\alpha + \beta + \gamma = 0$ (i) $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{b}{a} \dots \dots (ii); \alpha\beta\gamma = -\frac{c}{a} \dots \dots (iii)$ এখন, $\frac{\alpha^2}{\beta + \gamma}, \frac{\beta^2}{\alpha + \gamma}, \frac{\gamma^2}{\alpha + \beta}$ মূলবিশিষ্ট সমীকরণ এর ক্ষেত্রে, $\frac{\alpha^2}{\beta + \gamma} + \frac{\beta^2}{\alpha + \gamma} = \frac{\alpha^2(\alpha + \beta)(\gamma + \alpha) + \beta^2(\alpha + \beta)(\beta + \gamma) + \gamma^2(\beta + \gamma)(\gamma + \alpha)}{(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)}$ $= \frac{\alpha^2(-\gamma)(-\beta) + \beta^2(-\gamma)(-\alpha) + \gamma^2(-\alpha)(-\beta)}{-\gamma(-\alpha)(-\beta)} = \frac{\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2}{-\alpha\beta\gamma}$ $= \frac{\alpha\beta\gamma(\alpha + \beta + \gamma)}{\alpha + \beta} = 0$

আবার,
$$\frac{\alpha^2}{\beta+\gamma} \cdot \frac{\beta^2}{\alpha+\gamma} + \frac{\beta^2}{\alpha+\gamma} \cdot \frac{\gamma^2}{\alpha+\beta} + \frac{\alpha^2}{\beta+\gamma} \cdot \frac{\gamma^2}{\alpha+\beta}$$

$$= \frac{\alpha^2 \beta^2}{-\beta(-\alpha)} + \frac{\beta^2 \gamma^2}{-\beta(-\gamma)} + \frac{\alpha^2 \gamma^2}{-\alpha(-\gamma)} = \alpha\beta + \beta\gamma + \gamma\alpha = \frac{b}{a}$$
আবার, $\frac{\alpha^2}{\beta+\gamma} \cdot \frac{\beta^2}{\gamma+\alpha} \cdot \frac{\gamma^2}{\alpha+\beta} = \frac{\alpha^2 \beta^2 \gamma^2}{-\alpha-\beta-\gamma} = \alpha\beta\gamma = \frac{c}{a}$

$$\therefore সমীকরণটি হবে, $x^3 - \left(\frac{\alpha^2}{\beta+\gamma} + \frac{\beta^2}{\gamma+\alpha} + \frac{\gamma^2}{\alpha+\beta}\right)x^2$

$$+ \left(\frac{\alpha^2 \beta^2}{(\alpha+\gamma)(\beta+\gamma)} + \frac{\beta^2 \gamma^2}{(\alpha+\gamma)(\alpha+\beta)} + \frac{\alpha^2 \gamma^2}{(\alpha+\beta)(\beta+\gamma)}\right)x$$


$$- \frac{\alpha^2 \beta^2 \gamma^2}{(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)} = 0$$

$$\Rightarrow x^3 - 0 \cdot x^2 + \frac{b}{a}x - \frac{c}{a} = 0 \Rightarrow x^3 + \frac{b}{a}x - \frac{c}{a} = 0$$

$$\Rightarrow ax^3 + bx - c = 0 \text{ (Ans.)}$$$$

- ID $g(x) = x^2 px + q$. [JB'22] (গ) g(x) = 0 সমীকরণের মূলদ্বয় α, β হলে, $\frac{q}{p-\alpha}$ এবং $\frac{q}{p-\beta}$ মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
- (গ) Soln: $g(x) = x^2 px + q = 0$;
 যার মূলদ্বয় α , β ; $\alpha + \beta = p \dots \dots (i)$ এবং $\alpha\beta = q \dots (ii)$ এখন, $\frac{q}{p-\alpha}$ ও $\frac{q}{p-\beta}$ মূলবিশিষ্ট সমীকরণ: $\therefore \frac{q}{p-\alpha} + \frac{q}{p-\beta} = \frac{q}{\beta} + \frac{q}{\alpha} [\therefore p = \alpha + \beta]$ $= \frac{q(\alpha+\beta)}{\alpha\beta} = \frac{pq}{q} = p$ আবার, $\frac{q}{p-\alpha} \cdot \frac{q}{p-\beta} = \frac{q^2}{\beta\alpha} = q$ $\therefore সমীকরণটি হবে <math>x^2 px + q = 0$ (Ans.)
- া (ক) $x^3-ax^2+bx-c=0$ সমীকরণের মূলতায় α,β ও γ হলে $\sum \frac{1}{\alpha^2}$ নির্ণয় কর। |Ctg.B'21|
- (ক) Solⁿ: $x^3 ax^2 + bx c = 0$ এর মূলতায় α , β ও γ হলে, $\alpha + \beta + \gamma = a \cdots (i)$; $\alpha\beta + \beta\gamma + \gamma\alpha = b \cdots (ii)$ $\alpha\beta\gamma = c \cdots (iii)$ এখন, $\sum \frac{1}{\alpha^2} = \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$ $= \frac{\beta^2 \gamma^2 + \alpha^2 \gamma^2 + \alpha^2 \beta^2}{\alpha^2 \beta^2 \gamma^2} = \frac{(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2}{(\alpha\beta\gamma)^2}$ $= \frac{(\alpha\beta + \beta\gamma + \gamma\alpha)^2 2(\alpha\beta\beta\gamma + \beta\gamma \cdot \gamma\alpha + \gamma\alpha \cdot \alpha\beta)}{(\alpha\beta\gamma)^2}$ $= \frac{(\alpha\beta + \beta\gamma + \gamma\alpha)^2 2(\alpha\beta\beta\gamma + \beta\gamma \cdot \gamma\alpha + \gamma\alpha \cdot \alpha\beta)}{(\alpha\beta\gamma)^2} = \frac{b^2 2ca}{c^2}$ (Ans.)
- দৃশ্যকম্প-১: $3x^3 + 2x^2 x 1 = 0$ সমীকরণের তিনটি মূল α, β, γ .
 - (খ) দৃশ্যকম্প-১ এর আলোকে $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ মূলবিশিষ্ট সমীকরণটি গঠন কর।

HSC প্রশ্নব্যাংক ২০২৫

- দুশ্যকল্প-১: $f(x) = x^4 3x^3 11x^2 + 23x 10$. (গ) দৃশ্যকম্প-১ এর আলোকে f(x) = 0 সমীকরণের একটি মূল 1 এবং অপর মূলগুলি α , β , γ হলে $\alpha^3 + \beta^3 + \gamma^3$ নির্ণয় কর। [Din.B'21]
- (গ) Solⁿ: প্রশাসতে, $1 + \alpha + \beta + \gamma = 3$ $\Rightarrow \alpha + \beta + \gamma = 2 \dots (i)$ আবার, $1 \cdot \alpha \beta \gamma = -10 \Rightarrow \alpha \beta \gamma = -10 \dots (ii)$ আবার, $\alpha\beta\gamma + \alpha\beta + \gamma\alpha + \beta\gamma = -23$ \Rightarrow -10 + $\alpha\beta$ + $\gamma\alpha$ + $\beta\gamma$ = -23 $\Rightarrow \alpha\beta + \beta\gamma + \gamma\alpha = -13 \dots \dots (iii)$ আবার, $\alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma$ $= (\alpha + \beta + \gamma)\{(\alpha + \beta + \gamma)^2 - 3(\alpha\beta + \beta\gamma + \gamma\alpha)\}\$ $= 2{4 + 39} = 86$ $\therefore \alpha^3 + \beta^3 + \gamma^3 = 86 + 3\alpha\beta\gamma$ $= 86 + 3 \times (-10) = 56$ (Ans.)
- $x^3 11x^2 + 47x 85 = 0 \dots \dots (ii)$ (গ) (ii) নং সমীকরণের মূলগুলি 5, α , β হলে, $\alpha+\frac{1}{\beta}$ এবং $\beta + \frac{1}{2}$ মূলবিশিষ্ট সমীকরণটি নির্ণয় কর। (গ) Soln: শর্তমতে, $5 + \alpha + \beta = 11$
- $\Rightarrow \alpha + \beta = 6 \dots \dots (i);$ $5\alpha\beta = 85 \Rightarrow \alpha\beta = 17 \dots \dots (ii)$ নির্ণেয় সমীকরণ, $x^{2} - \left(\alpha + \beta + \frac{\alpha + \beta}{\alpha \beta}\right)x + 2 + \alpha \beta + \frac{1}{\alpha \beta} = 0$ $\Rightarrow x^2 - \left(6 + \frac{6}{17}\right)x + 2 + 17 + \frac{1}{17} = 0$ $\Rightarrow x^2 - \frac{108x}{17} + \frac{324}{17} = 0$ $\Rightarrow 17x^2 - 108x + 324 = 0$ (Ans.)
- 5 দুশ্যকল্প: $px^2 + qx + r = 0$. [RB'17] (গ) দৃশ্যকম্প এ উল্লিখিত সমীকরণের মূল্ঘয় α , β হলে $\frac{2}{\alpha}$, $\frac{2}{6}$ মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
- (গ্) Soln: প্রদত্ত সমীকরণ, px2 + qx + r = 0; মূলঘর, $\alpha, \beta : \alpha + \beta = -\frac{q}{p}$ এবং $\alpha\beta = \frac{r}{p}$ $\frac{2}{\alpha}$ এবং $\frac{2}{\beta}$ মূলবিশিষ্ট সমীকরণ, $x^2 - \left(\frac{2}{\alpha} + \frac{2}{\beta}\right)x + \frac{2}{\alpha} \times \frac{2}{\beta} = 0$ $\Rightarrow x^2 - 2\left(\frac{\alpha + \beta}{\alpha \beta}\right)x + \frac{4}{\alpha \beta} = 0$ $\Rightarrow x^2 - 2\left(\frac{-\frac{4}{p}}{\frac{r}{p}}\right)x + \frac{4}{r} = 0$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

$$\Rightarrow$$
 $x^2 + \frac{2qx}{r} + 4 \times \frac{p}{r} = 0 \Rightarrow rx^2 + 2qx + 4p = 0$
 $\therefore rx^2 + 2qx + 4p = 0$ যা নির্পেয় সমীকরণ। (Ans.)

- [6] দৃশ্যকল্প: x² 5x + 3 = 0 এর মূলদ্বর α ও β. [JΒ'17] (খ) দৃশ্যকম্প এর সাহায্যে $\frac{3}{5-\alpha}$ ও $\frac{3}{5-8}$ মূলবিশিষ্ট সমীকরণ নির্ণয় কর।
- (খ) Sol^a: যেহেতু $x^2 5x + 3 = 0$ সমীকরণের মূলদ্য $\alpha \in \beta$ ∴ α + β = 5(i) এবং αβ = 3(ii) এখন, প্রদত্তমূলদ্বয়ের যোগফল $\frac{3}{5-\alpha}+\frac{3}{5-\beta}=\frac{15-3\beta+15-3\alpha}{(5-\alpha)(5-\beta)}$ $=\frac{30-3(\alpha+\beta)}{25-5\alpha-5\beta+\alpha\beta}$ $\Rightarrow \frac{30-3.5}{25-5(\alpha+\beta)+\alpha\beta} = \frac{15}{25-5.5+3} = \frac{15}{3} = 5$ আবার, প্রদত্তমূলদ্বয়ের গুণফল $=\frac{3}{5-\alpha}\times\frac{3}{5-\beta}=\frac{9}{25-5(\alpha+\beta)+\alpha\beta}=\frac{9}{25-5.5+3}=\frac{9}{3}=3$: নির্ণেয় সমীকরণ $x^2 - 5x + 3 = 0$ (Ans.)
- া দুশ্যকজ্প-১: $p(x) = (a + b + c)x^2 + (b + 2c)x + c$ [নটর ডেম কলেজ, ঢাকা] (খ) দৃশ্যকম্প-১ এর p(x)=0 সমীকরণটির দুইটি মূল lpha এবং β হলে, $\frac{\alpha}{\alpha+1}$ এবং $\frac{\beta}{\beta+1}$ মূলবিশিষ্ট দ্বিঘাত সমীকরণ নির্ণয় কর।
- (খ) Soln: দেওয়া আছে, $p(x) = (a + b + c)x^{2} + (b + 2c)x + c$ ধরি, সমীকরণের মূলদ্বয় α ও β $\therefore \alpha + \beta = -\frac{b+2c}{a+b+c}, \alpha\beta = \frac{c}{a+b+c}$ $=\frac{2c-b-2c}{c-b-2c+a+b+c}=-rac{b}{a}$ এবং $\left(rac{lpha}{lpha+1}
 ight)\left(rac{eta}{eta+1}
 ight)=rac{lphaeta}{lphaeta+lpha+a+b+1}$ $= \frac{\frac{a+b+c}{c}}{\frac{c}{c+b+2c+1}} = \frac{c}{c-b-2c+a+b+c} = \frac{c}{a}$ $\therefore \frac{\alpha}{\alpha+1}$ এবং $\frac{\beta}{\beta+1}$ মূলবিশিষ্ট সমীকরণ: $x^2 - \left(-\frac{b}{a}\right)x + \frac{c}{a} = 0$ $\Rightarrow x^2 + \frac{b}{a}x + \frac{c}{a} = 0 : ax^2 + bx + c = 0 \text{ (Ans.)}$
- দ্রি দৃশ্যকম্প-১: $x^3 2x^2 + 3x 4 = 0$ সমীকরণের মূলত্রয় [ময়মনসিংহ গার্লস ক্যাডেট কলেজ] (ক) দৃশ্যকম্প-১ হতে ∑ α³ এর মান নির্ণয় কর।
- (ক) Solⁿ: দেওয়া আছে, $x^3 2x^2 + 3x 4 = 0$ সমীকরণের মূলতায় α, β ও γ $\therefore \alpha + \beta + \gamma = -\frac{-2}{1} = 2, \alpha\beta + \beta\gamma + \gamma\alpha = \frac{3}{1} = 3$ এবং $\alpha\beta\gamma = -\frac{-4}{1} = 4$

Educationblog24.com উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৪

HSC প্রশ্নব্যাংক ২০২৫

তাব, $\sum \alpha^3 = \alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) + 3\alpha\beta\gamma$ = $(\alpha + \beta + \gamma)\{(\alpha + \beta + \gamma)^2 - 3(\alpha\beta + \beta\gamma + \gamma\alpha)\} + 3\alpha\beta\gamma = 2\{2^2 - 3 \cdot 3\} + 3 \cdot 4 = 2 \text{ (Ans.)}$

দৃশ্যকম্প-২: $3x^3-2x^2+1=0$ সমীকরণের মূলগুলি p. q এবং r [সলেট সরকারি মহিলা কলেজ] (গ) $\sum \frac{p^2q}{r}$ এর মান নির্ণয় কর।

(গ) Sol": দেওয়া আছে, $3x^3-2x^2+1=0 \ \text{সমীকরণের মূল্যায় p,q ও r}$ $\therefore \ \sum p=p+q+r=\frac{2}{3}, \sum pq=pq+qr+rp=0$

এবং pqr = $-\frac{1}{3}$ প্রদান্ত রাশি: $\sum \frac{p^2q}{r} = \frac{p^2q}{r} + \frac{p^2r}{q} + \frac{q^2p}{r} + \frac{q^2r}{p} + \frac{r^2p}{q} + \frac{r$

নিজে করো

20. দৃশ্যকল্প-১: $3x^2 - 4x + 1 = 0$ সমীকরণের মূলছয় a ও b. [SB'23]

(খ) দৃশ্যকল্প-১ হতে $a+\frac{1}{b}$ ও $b+\frac{1}{a}$ মূলবিশিষ্ট দ্বিঘাত সমীকরণ নির্ণয় কর। $Ans: 3x^2-16x+16=0$

21. দৃশ্যকল্প: $ax^3 + 3bx^2 + 3cx + d = 0$ সমীকরণের মূলদ্বয় α, β, γ [CB'23]

(খ) দেখাও যে, $\sum (\alpha - \beta)^2 = \frac{18(b^2 - ac)}{a^2}$

22. দৃশ্যকম্প-২: $x^3 + dx + h = 0$. [Ctg.B'22]

(গ) দৃশ্যকম্প-২ এর সমীকরণের মূলত্রয় α , β , γ হইলে $\sum \frac{1}{\alpha^3}$ এর মান নির্ণয় কর। [Ans: $\frac{3h^2-d^3}{h^3}$]

23. $2x^3 - 3x^2 + 4x - 1 = 0$ বহুপদী সমীকরণ। [CB'22]

(গ) উদ্দীপকে উল্লিখিত ত্রিঘাত সমীকরণের মূলত্রয় α, β, γ হলে $\sum \alpha^2 \beta$ এর মান নির্ণয় কর। [Ans: $\frac{3}{2}$]

24. φ(x) = ax³ + bx² + cx + d [DB'21]
 (খ) Φ(x) = 0 সমীকরণে a = 4, b = -2, c = 0 এবং d = 3
 হলে এবং মূলগুলো α, β, γ হলে Σα²β এর মান নির্ণয়
কর। [Ans: 1]

25. $ax^3 + bx^2 + cx + d = 0$ একটি ত্রিঘাত সমীকরণ।[SB'21]

(খ) যদি a = 3, b = -2, c = 0, d = 1 হয় এবং
 সমীকরণটির মূলত্রয় α, β, γ হয় তবে ∑ α²β বের কর।

[Ans: অপর মূলগুলি 1,5]

26. $\Psi(x) = x^3 - 3x^2 + 5x - 8$ [BB'21]

(গ) $\Psi(x) = 0$ সমীকরণের মূলত্রয় a, b, c হলে $\sum a^3 b$ এর মান নির্ণয় কর। [Ans: -29]

27. $f(x) = x^3 + 2x^2 + x + 3$ একটি বহুপদী রাশি। $|CB'^{19}|$

(খ) f(x) = 0 বহুপদীর সমীকরণের মূলত্রয় α , β , γ হলে. $\sum \alpha^3 \, \text{এর মান নির্ণয় কর }$ [Ans: -11]

Type-08: মূলওলো বিভিন্ন প্রগমনভুক্ত সম্পর্কিত

Concept

- কোনো ত্রিঘাত সমীকরণের মৃলগুলো-
 - (i) সমান্তর প্রগমনে থাকলে মূলগুলোকে $\alpha-d, \alpha, \alpha+d$ ধরতে হবে। [সাধারণ অন্তর =d]
 - (ii) গুণোত্তর প্রগমনে থাকলে $\frac{\alpha}{r}$, α , α r ধরতে হবে। [সাধারণ অনুপাত = r]
- কোনো চতুর্ঘাত সমীকরণের মূলগুলো-
 - (i) সমান্তর প্রগমনে থাকলে $\alpha-3d$, $\alpha-d$, $\alpha+d$, $\alpha+3d$ ধরতে হবে। [সাধারণ অন্তর =2d]
 - (ii) গুণোত্তর প্রগমনে থাকলে $\frac{\alpha}{r^3}, \frac{\alpha}{r}$, αr , αr^3 ধরতে হবে। [সাধারণ অনুপাত = r^2]
- a, b, c ভাজিত/হারমোনিক/বিপরীত প্রগমনে থাকলে, ¹/_a + ¹/_c = ²/_b

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪ 📗 🛴

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- (ii) S = 6x³ 20x² + 5 এবং T = 6 6x 9x²
 - (গ) যদি S = T সমীকরণটির মূলগুলো সমান্তর প্রগমনের গৌণিক বিপরীত প্রগমনভুক্ত হয় তবে, x এর মান নির্ণয় কর। [JB'23]
- (গ) Sel": দেওয়া আছে, S = T $\Rightarrow 6x^3 - 20x^2 + 5 = 6 - 6x - 9x^2$ $\Rightarrow 6x^3 + 9x^2 - 20x^2 + 6x + 5 - 6 = 0$ $\Rightarrow 6x^3 - 11x^2 + 6x - 1 = 0$ ধরি, মূলগুলো যথাক্রমে $\frac{1}{\alpha-d}$, $\frac{1}{\alpha}$, $\frac{1}{\alpha+d}$ প্রশ্নাতে, $\frac{1}{(\alpha-d)\alpha(\alpha+d)} = \frac{1}{6} \Rightarrow \alpha(\alpha^2 - d^2) = 6 \dots \dots \dots (i)$ আবার, $\frac{1}{(\alpha-d)\alpha} + \frac{1}{\alpha(\alpha+d)} + \frac{1}{(\alpha+d)(\alpha-d)} = 1$ $\Rightarrow \frac{\alpha + d + \alpha - d + \alpha}{\alpha(\alpha - d)(\alpha + d)} = 1 \Rightarrow \frac{3\alpha}{\alpha(\alpha^2 - d^2)} = 1 \dots \dots (ii)$ $\Rightarrow \frac{3\alpha}{6} = 1 \Rightarrow \alpha = 2$ [(i) নং হতে পাই] (ii) নং সমীকরণ হতে পাই, $\frac{3\alpha}{\alpha(\alpha^2-d^2)}=1\Rightarrow \frac{3}{\alpha^2-d^2}=1$ $\Rightarrow \frac{3}{4-d^2} = 1 \Rightarrow 3 = 4 - d^2 \Rightarrow d^2 = 1 \therefore d = \pm 1$: নির্পেয় মূলত্রয় $\left(\frac{1}{2-1}, \frac{1}{2}, \frac{1}{2+1}\right) = \left(1, \frac{1}{2}, \frac{1}{2}\right)$ (Ans.)
- 02. দৃশ্যকল-২: $8x^3 36x^2 + 22x + 21 = 0$. [MB'23] (গ) দৃশ্যকম্প-২: এর সমীকরণের মূলত্রয় সমান্তর প্রগমনভুক্ত হলে মূলগুলো নির্ণয় কর।
- (গ) Sol": দেওয়া আছে, $8x^3 36x^2 + 22x + 21 = 0$ সমীকরণের মূলত্রয় সমান্তর প্রগমনভুক্ত। ধরি, মূলত্রয় α + k, α ও α - k;

[যেখানে k একটি ইচ্ছামূলক ধ্রুবক]

এখন,
$$(\alpha + k) + \alpha + (\alpha - k) = -\left(\frac{-36}{8}\right) = \frac{9}{2}$$
 $\Rightarrow 3\alpha = \frac{9}{2} \Rightarrow \alpha = \frac{3}{2} \dots \dots \dots (i)$

এবং $\alpha(\alpha + k)(\alpha - k) = \frac{-21}{8} \Rightarrow \alpha(\alpha^2 - k^2) = \frac{-21}{8}$
 $\Rightarrow k^2 = \alpha^2 + \left(\frac{21}{8}\right) \times \frac{1}{\alpha}$
 $\Rightarrow k^2 = \left(\frac{3}{2}\right)^2 + \frac{21}{8} \times \frac{2}{3} = \frac{9}{4} + \frac{7}{4} = \frac{16}{4} = 4$
 $\therefore k = \pm 2; \therefore$ মূল্যায় $\alpha \in \alpha \pm 2$ অর্থাৎ, $-\frac{1}{2}, \frac{3}{2} \in \frac{7}{2}$ (Ans.)

- $g(x) = 3x^3 26x^2 + 52x 24$ (গ) g(x) = 0 সমীকরণের মৃলতলো তণোন্তর প্রণমনে হলে, সমীকরণটি সমাধান কর।
- (গ) Sol": প্রদন্ত সমীকরণ, $g(x) = 3x^3 - 26x^2 + 52x - 24 = 0 \dots \dots (1)$ थित, भूनश्रमा श्रमा ar, a, =; শর্তমতে, $\alpha r + \alpha + \frac{\alpha}{r} = \frac{26}{3}$

$$\Rightarrow \alpha \left(r + 1 + \frac{1}{r} \right) = \frac{26}{3} \dots \dots (ii)$$
এবং, $\alpha r \cdot \alpha \cdot \frac{\alpha}{r} = \frac{24}{3} \Rightarrow \alpha^3 = \frac{24}{3} = 8 \Rightarrow \alpha = 2$
সমীকরণ (ii) থেকে- $2 \left(r + 1 + \frac{1}{r} \right) = \frac{26}{3}$

$$\Rightarrow \frac{r^2 + r + 1}{r} = \frac{13}{3} \Rightarrow 3r^2 + 3r + 3 = 13r$$

$$\Rightarrow 3r^2 - 10r + 3 = 0 \Rightarrow r = 3, \frac{1}{3}$$

$$\therefore r = 3$$
 হলে, $\alpha r = 6$, $\alpha = 2, \frac{\alpha}{r} = \frac{2}{3}$ এবং $r = \frac{1}{3}$ হলে, $\alpha r = \frac{2}{3}$, $\alpha = 2, \frac{\alpha}{r} = 6$ \therefore মূলগুলো = 2, 6, $\frac{2}{3}$ (Ans.)

- $M(y) = 8y^3 42y^2 + 63y 27.$ [JB'22] (গ) M(x) = 0 সমীকরণটির মূলগুলো গুণোত্তর প্রগমনভুক্ত হলে সমীকরণটির সমাধান কর।
- (1) Solⁿ: $M(x) = 8x^3 42x^2 + 63x 27 = 0 \dots (i)$ ধরি, মূলগুলো হলো a, ar, $\frac{a}{1}$: $a + ar + \frac{a}{1} = \frac{42}{9} = \frac{21}{4}$ $\Rightarrow a \left(1 + r + \frac{1}{r}\right) = \frac{21}{4} \dots \dots \dots (ii)$ এবং $a^3 = \frac{27}{9}$ বা, $a = \frac{3}{2}$ (ii) থেকে $\Rightarrow \frac{3}{2} \left(r + \frac{1}{5} + 1 \right) = \frac{21}{4}$ $\Rightarrow \frac{1+r+r^2}{r} = \frac{7}{2} \Rightarrow 2r^2 + 2r + 2 = 7r$ $\Rightarrow 2r^{2} - 5r + 2 = 0 \Rightarrow 2r^{2} - 4r - r + 2 = 0$ \Rightarrow $(r-2)(2r-1) = 0 : r = 2, \frac{1}{2}$ এখন, r=2 হলে, $\frac{a}{r}=\frac{3}{2}\cdot\frac{1}{2}=\frac{3}{4}$; ar=3 এবং $a=\frac{3}{2}$ আবার, $r = \frac{1}{2}$ হলে, $\frac{a}{r} = \frac{\frac{7}{2}}{\frac{1}{2}} = 3$ এবং $ar = \frac{3}{2} \cdot \frac{1}{2} = \frac{3}{4}$ ∴ মূলগুলি ³/₄, ³/₂, 3 (Ans.)
- (ক) m এর মান কত হলে (m² 3)x² + 3mx + 3m +1 = 0 সমীকরণের মূল দৃটি পরস্পর গৌণিক বিপরীতক
- (ক) Soln: (m2 3)x2 + 3mx + (3m + 1) = 0 এর মূলছয় α % $\frac{1}{\alpha}$ (Ref.) $\alpha \times \frac{1}{\alpha} = \frac{3m+1}{m^2-3} \Rightarrow m^2-3 = 3m+1$ $\Rightarrow m^2 - 3m - 4 = 0 \Rightarrow (m - 4)(m + 1) = 0$ m = 4, -1 (Ans.)
- $f(x) = x^2 4qx + p^2 g(x) = qx^2 + px + q$ यथारन p, q ∈ R [চট্টগ্রাম কলেজ] (গ) যদি g(x)=0 সমীকরণের মূল্বয় α, β এবং f(x)=0সমীকরণের মূলধয় μ, δ হয় এবং α, β, μ, δ তণোত্তর প্রগমনভুক্ত হয়, তবে দেখাও যে, $p^4 - 16q^4 = 0$
- (গ) Sola: $g(x) = qx^2 + px + q = 0$ সমীকরণের মূলদ্বয় α, β হলে, $\alpha + \beta = -\frac{p}{a}$ এবং $\alpha\beta = \frac{q}{a} = 1$

HSC প্রয়ব্যাংক ২০২৫

আবার, $f(x)=x^2-4qx+p^2$ এর মূল্যয় μ,δ হলে, $\mu+\delta=4q$ এবং $\mu\delta=p^2$

α, β, μ ও δ তণোত্তর প্রগমনভুক্ত হলে,

$$\frac{\alpha}{\beta} = \frac{\mu}{\delta} \Rightarrow \frac{\alpha}{\mu} = \frac{\beta}{\delta} = \frac{\alpha + \beta}{\mu + \delta} \therefore \frac{\alpha}{\mu} = \frac{\alpha + \beta}{\mu + \delta} \text{ Act } \frac{\beta}{\delta} = \frac{\alpha + \beta}{\mu + \delta}$$

07 দুশ্যকম্প-২: $ax^3 - bx^2 + cx + d = 0$

[মুয়াডাঙ্গা সরকারি কলেজ]

.. নির্ণেয় মূলত্রয়: 4/3, 2, 4 (Ans.)

Type-09: সাধারণ মূল সংক্রান্ত

Concept

দুইটি দ্বিঘাত সমীকরণের একটি সাধারণ মূল থাকলে:

$$a_1x^2+b_1x+c_1=0$$
 এবং $a_2x^2+b_2x+c_2=0$ এর একটি সাধারণ মূল α হলে, $a_1\alpha^2+b_1\alpha+c_1=0$ এবং $a_2\alpha^2+b_2\alpha+c_2=0$ বস্তুগুলনের মাধ্যমে সমাধান করে পাই, $(a_1b_2-a_2b_1)(b_1c_2-b_2c_1)=(c_1a_2-c_2a_1)^2$ [12 21 rule]

দুইটি দ্বিঘাত সমীকরণের দুইটি সাধারণ মূল থাকলে:

দুইটি দ্বিঘাত সমীকরণের দুইটি মূলই সমান হবে (বা দুইটি সাধারণ মূল থাকবে) যদি একটি সমীকরণ অপরটির গুণিতক হয় ব সমীকরণদ্বয়ের x², x এর সহগগুলোর এবং ধ্রুবক পদের অনুপাত সমান হয়।

জ্বাৎ,
$$a_1x^2+b_1x+c_1=0$$
 এবং $a_2x^2+b_2x+c_2=0$ এর 2 টি মূলই সমান হলে, $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$

Shortcut for MCQ:

$$x^2 - 5x + 6 = 0 \longrightarrow (x - 2)(x - 3) = 0$$

 $x^2 - 6x + 8 = 0 \longrightarrow (x - 2)(x - 4) = 0$ এখান থেকে বলা যায় সাধারণ মূল 2

কিন্তু দুইটি সমীকরণ দেওয়া থাকলে যদি তাদের সাধারণ মূল থাকে তাহলে তা নির্ণয়ের সহজ উপায় হলো সমীকরণছয় বিয়োগ তবে দেওই (x² এর সহগ একই রেখে)-

$$x^2 - 5x + 6 = 0$$

$$x^2 - 6x + 8 = 0$$

$$x-2=0$$

বি. দ্র.: 2 টি সমীকরণের সাধারণ মূল না থাকলেও বিয়োগ করলে x এর একটি মান আসবে। কিন্তু সেটা উক্ত সমীকরণছয়ের একটিবর্ভ মূল নায়। তাই 2 টি সমীকরণ বিয়োগ করে প্রাপ্ত x এর মানটিকে থেকোন একটি সমীকরণে বসিয়ে দিলে যদি L. H. S=R. H. S হয়, তাইলে ব্রিটাই সাধারণ মূল।

সজনশীল প্রশ্ন (ক, খ ও গ)

- ১ উদ্দীপক-১: 2mx² + nx + 1 = 0 এবং nx² + 2mx + 1 = 0
 - (খ) উদ্দীপক-১ এর সমীকরণ দুইটির একটিমাত্র সাধারণ মূল থাকলে, প্রমাণ কর যে, 2m + n + 1 = 0
- (খ) Sol": ধরি, সাধারণ মূলটি α অর্থাৎ, $2m\alpha^2 + n\alpha + 1 = 0 \dots (i)$ $n\alpha^2 + 2m\alpha + 1 = 0 \dots \dots (ii)$ আড়গুণন পদ্ধতি প্রয়োগ করে, $\frac{\alpha^2}{n-2m}=\frac{\alpha}{n-2m}=\frac{1}{(2m)^2-m^2}$ প্রথম দুটি অনুপাত নিয়ে পাই, $\frac{\alpha^2}{n-2m} = \frac{\alpha}{n-2m} = \alpha$ $\Rightarrow \alpha = 1 \dots \dots (iii)$ (iii) হতে α এর মান (i) এ বসিয়ে পাই. $2m \times 1^2 + n \times 1 + 1 = 0$ \Rightarrow 2m + n + 1 = 0 (Proved)
- (i) $ax^2 + 2cx + 2b = 0$; (ii) $ax^2 + 2bx + 2c = 0$ [Ctg.B'23]
 - (খ) (i) ও (ii) নং সমীকরণের একটি সাধারণ মূল থাকলে দেখাও যে, a + 2b + 2c = 0
- (খ) Soln: দেওয়া আছে, ax2 + 2cx + 2b = 0 (i) $ax^2 + 2bx + 2c = 0 \dots \dots (ii)$ (i) ও (ii) নং সমীকরণের একটি সাধারণ মূল α হলে, $a\alpha^2 + 2c\alpha + 2b = 0 \dots \dots (iii)$ $a\alpha^2 + 2b\alpha + 2c = 0 \dots \dots (iv)$ (iii) ও (iv) আডগুণন করে পাই.

$$\frac{\alpha^2}{\frac{|2c-2b|}{|2b-2c|}} = \frac{-\alpha}{\frac{|a-2b|}{|a-2c|}} = \frac{1}{\frac{|a-2c|}{|a-2b|}}$$

$$\Rightarrow \frac{\alpha^2}{4c^2-4b^2} = \frac{-\alpha}{2ca-2ba} = \frac{1}{2ab-2ac}$$
২য় ও ৩য় অনুপাত হতে, $\frac{\alpha}{2ba-2ca} = \frac{1}{2ab-2ac}$ $\therefore \alpha = 1$
১ম ও ২য় অনুপাত হতে, $\frac{\alpha^2}{4(c^2-b^2)} = \frac{\alpha}{2ab-2ca}$

$$\Rightarrow \alpha = \frac{4(c^2-b^2)}{2a(b-c)} \Rightarrow 4(c+b)(c-b) = 2a(b-c)$$

$$\Rightarrow \alpha = \frac{4(c^2 - b^2)}{2a(b - c)} \Rightarrow 4(c + b)(c - b) = 2a(b - c)$$
$$\Rightarrow 2(c + b)(c - b) + a(c - b) = 0$$

$$(c - b)\{2(c + b) + a\} = 0$$

অথবা, a + 2b + 2c = 0 ह्य, c - b = 0 (Showed) किछ, c ≠ b (यादश्रु (i) ও (ii) नश সরলরেখা একই হবে

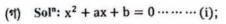
[BB'23] $f(x) = mx^2 + nx + l$ (গ) যদি f(y) = 0 এবং $f(\frac{1}{y}) = 0$ সমীকরণের একটি মূল সাধারণ হয়, তবে দেখাও যে, $l+m=\pm n$.

- (1) Solⁿ: $f(y) \Rightarrow my^2 + ny + l = 0 \dots \dots (i)$ $f\left(\frac{1}{y}\right) = 0 \Rightarrow \frac{m}{y^2} + \frac{n}{y} + l = 0$ $\Rightarrow ly^2 + ny + m = 0 \dots \dots (ii)$ (i) ও (ii) এর সাধারণ মূল ধরি α (i) \Rightarrow m α^2 + n α + l = 0; (2) \Rightarrow $l\alpha^2$ + n α + m = 0 $\therefore \frac{\alpha^2}{mn-ln} = \frac{\alpha}{l^2-m^2} = \frac{1}{mn-ln} \Rightarrow \alpha^2 = 1$ আবার, $\alpha = \frac{mn-ln}{l^2-m^2} = \frac{n(m-l)}{(m+l)(l-m)} = \frac{-n(l-m)}{(m+l)(l-m)} = \frac{-n}{m+l}$ $\Rightarrow \alpha^2 = \left(\frac{-n}{m+l}\right)^2 = 1 \Rightarrow \frac{n^2}{(m+l)^2} = 1 \Rightarrow (l+m)^2 = n^2$
- 04. দৃশ্যকল্প-১: $ax^2 + bx + c = 0$ এবং $bx^2 + cx + a = 0$ (খ) দৃশ্যকম্প-১: এর দ্বিঘাত সমীকরণদ্বয়ের একটি সাধারণ মূল থাকলে দেখাও যে, $a^3 + b^3 + c^3 = 3abc$. [MB'23] (খ) Sol": ধরি, সাধারণ মূলটি λ। সূতরাং λ দ্বারা উভয় সমীকরণ সিদ্ধ
 - হবে। অর্থাৎ, $a\lambda^2 + b\lambda + c = 0 \dots \dots (i)$ এবং $b\lambda^2 + c\lambda + a = 0 \dots \dots (ii)$ আড়গুণন পদ্ধতি প্রয়োগ করে পাই, $\frac{\lambda^2}{ab-c^2}=\frac{\lambda}{bc-a^2}=\frac{1}{ca-b^2}$ প্রথম দুটি অনুপাত নিয়ে শেষের দুটি অনুপাত নিয়ে পাই, $\frac{\lambda^2}{ab-c^2} = \frac{\lambda}{bc-a^2}$ পাই, $\frac{\lambda}{bc-a^2} = \frac{1}{ca-b^2}$ $\Rightarrow \lambda = \frac{ab-c^2}{bc-a^2} \dots \dots$ (iii) $\Rightarrow \lambda = \frac{bc-a^2}{ca-b^2} \dots \dots$ (iv) (iii) ও (iv) কে সমন্বয় করে পাই, $\frac{ab-c^2}{bc-a^2} = \frac{bc-a^2}{ca-b^2}$ \Rightarrow (bc - a²)² = (ab - c²)(ca - b²) \Rightarrow b²c² + a⁴ - 2a²bc = a²bc - ab³ - c³a + b²c² $\Rightarrow a^4 + ab^3 + c^3a = 3a^2bc$
- \Rightarrow a(a³ + b³ + c³) = a · 3abc $a^3 + b^3 + c^3 = 3abc [Showed]$ $φ(x) = lx^2 + mx + n$ এবং $Ψ(x) = nx^2 + mx + l$
 - (খ) $\phi(x) = 0$ এবং $\Psi(x) = 0$ সমীকরণছয়ের একটিমাত্র সাধারণ মূল থাকলে m কে l ও n এর মাধ্যমে প্রকাশ কর।
- (খ) Sol": প্রদত্ত সমীকরণ, φ(x) = lx² + mx + n = 0 ... (i) $432 \psi(x) = nx^2 + mx + l = 0 \dots \dots (ii)$ সমীকরণঘয়ের সাধারণ মূল $\alpha : l\alpha^2 + m\alpha + n = 0 ...$ (iii) এবং $n\alpha^2 + m\alpha + l = 0 \dots (iv)$ (iii) ও (iv) থেকে $\Rightarrow \frac{\alpha^2}{ml-mn} = \frac{\alpha}{n^2-l^2} = \frac{1}{ml-mn} \dots \dots (v)$
 - সমীকরণ (v) হতে, $\alpha^2=1\Rightarrow \alpha=\pm 1$ এবং $\alpha=\frac{n^2-t^2}{mt-mn}$ $\alpha = 1$ er, $n^2 - l^2 = m(l - n) \Rightarrow m = -(n + l)$ $\alpha = -1$ Eq., $n^2 - l^2 = m(n-1) \Rightarrow m = n + l$ (Ans.)

- मृश्राकम्ल-२: ax² + 3x + c = 0 जन्द cx² + 3x + a = O দুইটি থিঘাত সমীকরণ। [Din.B'22]
 - (শ) যদি দৃশাকম্প-২ এর সমীকরণছয়ের একটি সাধারণ মূল থাকে তাহলে প্রমাণ কর যে, $c + a = \pm 3$.
- (भ) ४०।° धति, भाषात्रभ भूम = [$a\beta^{2} + 3\beta + c = 0$ $a\beta^{2} + 3c\beta + c^{2} = 0$... (1) जबर $c\beta^2 + 3\beta + a = 0$: $ca\beta^2 + 3a\beta + a^2 = 0$... (II)
 - डाश्रम, (i) (ii) $\Rightarrow 3(c-a)\beta + (c^2 a^2) = 0$ $\Rightarrow 3\beta + c + a = \frac{0}{c - a} \stackrel{\wedge}{\rightarrow} \beta = \frac{c + a}{-3}$
 - Λ সাধারণ মূল, $\chi = \frac{c+a}{-1}$

তাহলে, $ax^2 + 3x + c = 0$ [১ম সমীকরণ]

- $\Rightarrow a\left(\frac{c+a}{-1}\right)^2 + 3 \times \frac{c+a}{-1} + c = 0$
- $\Rightarrow a \times \frac{c^2 + 2ca + a^2}{2} c a + c = 0$
- $\Rightarrow c^2 + 2ca + a^2 9 = 0$ [উভয়পক্ষকে $\frac{9}{4}$ ঘারা গুণ]
- $\Rightarrow (c+a)^2 = (\pm 3)^2 \div c + a = \pm 3 \text{ (Proved)}$
- 📆 দৃশকম্প-২: ax² + bx + c = 0 (i) [MB'22] $cx^2 - 2bx + 4a = 0 \dots \dots \dots (ii)$
 - (গ) (i) নং সমীকরণের মূলধয় α ও β এবং (ii) নং সমীকরণের মূলধয় β ও γ হলে প্রমাণ কর যে, 2a + c = 0 অপবা $(2a - c)^2 + 2b^2 = 0$.
- (শ) Sol": ax2 + bx + c = 0 যার মূল্যা a ও β এবং $cx^2 - 2bx + 4a = 0$ যার মূলদম β ও γ : $\alpha + \beta = -\frac{b}{a}$


 $\alpha\beta = \frac{c}{a}$; $\beta + \gamma = \frac{2b}{a}$; $\beta\gamma = \frac{4a}{a}$ উভয় সমীকরণের সাধারণ মূল $\beta : c\beta^2 - 2b\beta + 4a = 0(i)$

- $a\beta^2 + b\beta + c = 0 \dots \dots \dots (ii)$
- $\therefore \frac{\beta^2}{-2bc-4ab} = \frac{\beta}{4a^2-c^2} = \frac{1}{bc+2ab}$
- এখন, $\beta^2 = -\frac{2(2ab+bc)}{1} = -2$
- আবার, $\beta = \frac{(2a+\epsilon)(2a-\epsilon)}{b(2a+\epsilon)} \Rightarrow \beta^2 = \frac{(2a+\epsilon)^2(2a-\epsilon)^2}{b^2(2a+\epsilon)^2}$
- $\Rightarrow -2b^2(2a+c)^2 (2a+c)^2(2a-c)^2 = 0$
- $\Rightarrow (2a + c)^{2}[2b^{2} + (2a c)^{2}] = 0$;
- হয়, $(2a + c)^2 = 0 \Rightarrow 2a + c = 0$
- অপবা, $2b^2 + (2a \epsilon)^2 = 0$ (Proved)
- $f(x) = x^2 + 2px + q$ [DB'21] $g(x) = x^2 + mx + l$
 - (গ) f(x) = 0 সমীকরণে p = 1/2 এবং q = m. আবার, f(x) = 0 ও g(x) = 0 সমীকরণধ্যের একটি সাধারণ মূল বিদ্যমান হলে দেখাও যে, $2x^2 + (l + m - 2)x =$ $(l+m-2)^2$ সমীকরণের মূলধয় 3 এবং $\frac{-3}{2}$.

- (51) Sol^n : $f(x) = 0 \Rightarrow x^2 + 2px + q = 0$ $\Rightarrow x^2 + 2 \times \frac{l}{z}x + m = 0 \Rightarrow x^2 + lx + m = 0 \dots \dots (i)$ $g(x) = 0 \Rightarrow x^2 + mx + l = 0 \dots \dots \dots (ii)$ এখন, সাধারণ মূল a হলে, $\alpha^2 + l\alpha + m = 0 \dots \dots \dots \dots (iii)$ $\alpha^2 + m\alpha + l = 0 \dots \dots \dots (iv)$ (-) करत, $(l-m)\alpha+(m-l)=0\Rightarrow \alpha=1$ (iii) এ বসাই,1 + l + m = 0 ∴ l + m = −1 वान, 2x2 + (l + m - 2)x = (l + m - 2)2 $\Rightarrow 2x^2 - 3x = 9 \Rightarrow 2x^2 - 3x - 9 = 0$ $\Rightarrow 2x^2 - 6x + 3x - 9 = 0$ $\Rightarrow 2x(x-3) + 3(x-3) = 0 \Rightarrow (x-3)(2x+3) = 0$ হয়, x - 3 = 0; x = 3 অথবা, 2x + 3 = 0 : $x = -\frac{3}{2}$
- া দুশ্যকম্প-২: $x^2 + x k = 0$ এবং $x^2 7x +$ (k + 4) = 0 দুটি বিঘাত সমীকরণ। [Ctg.B'21] (গ) দৃশ্যকম্প-২ এর আলোকে সমীকরণ দুটির একটি মাত্র সাধারণ মূল থাকলে k এর মান নির্ণয় কর।

মূলদয় 3 ও - ³/₂ (দেখানো হলো)

- (গ) Sol": সাধারণ মূল β হলে, $\beta^2 + \beta - k = 0$ $\beta^2 - 7\beta + (k+4) = 0$ $8\beta - k - (k + 4) = 0$ [বিয়োগ করে] $\Rightarrow 8\beta - 2k - 4 = 0 \Rightarrow 8\beta = 2k + 4 :: \beta = \frac{k+2}{4}$ \therefore সাধারণ মূল, $x = \frac{k+2}{2}$ $\left(\frac{k+2}{4}\right)^2 + \frac{k+2}{4} - k = 0$ [১ম সমীকরণ এ মান বসিয়ে] $\Rightarrow \frac{k^2 + 4k + 4 + 4k + 8 - 16k}{16} = 0 \Rightarrow k^2 - 8k + 12 = 0$ $\therefore k = \frac{-(-8)\pm\sqrt{(-8)^2-4\times1\times12}}{2\times1} = 2,6 \text{ (Ans.)}$
- \mathbf{v} मृत्राक्क्श-२: $\mathbf{x}^2 + \mathbf{g}\mathbf{x} + \mathbf{h} = 0$, $\mathbf{x}^2 + \mathbf{h}\mathbf{x} + \mathbf{g} = 0$. (গ) দৃশ্যকম্প-২ এর সমীকরণম্বয়ের একটি সাধারণ মূল থাকলে, অপর মূলম্ম মারা সমীকরণ গঠন কর। [JB'21]
- (গ) Solⁿ: ধরি, সাধারণ মূল α; α² + gα + h = 0 · · · · · · · (i); $\alpha^2 + h\alpha + g = 0 \cdots (ii)$ এখন, (i) – (ii) $\Rightarrow \alpha(g-h)+h-g=0$ $\Rightarrow (g-h)(\alpha-1)=0$ এখানে, $g\neq h$. $\alpha=1$. অন্য মূল দুটি $\frac{h}{t},\frac{g}{t}=h,g$.: নির্ণেয় সমীকরণ, x² - (g + h)x + gh = 0 (Ans.)
- मृभाकम्प-५: $x^2 + ax + b = 0$ ज्वर $x^2 + bx + a = 0$. 11.
 - (গ) দৃশ্যকম্প-২ এর সমীকরণছয়ের একটি সাধারণ মূল থাকলে দেখাও যে, তাদের অপর দৃটি মূল দারা গঠিত সমীকর^{ণটি} $x^2 + x + ab = 0.$

$$x^2 + bx + a = 0 \cdots (ii)$$

একটি সাধারণ মূল থাকলে ধরি, সেটি α

$$\therefore \frac{\alpha^2}{a^2 - b^2} = \frac{-\alpha}{a - b} = \frac{1}{b - a}$$

$$\alpha = -(a + b) = 1 \cdots (iii)$$

এখন (i) নং এর অপর মূল β হলে, $\beta=-a-1$

$$[\because \alpha + \beta = -a]$$

(ii) নং এর অপর মূল γ হলে, $\gamma=-b-1$

$$[\forall \alpha + \gamma = -b]$$

$$\beta + \gamma = -a - b - 2 = -(a + b) - 2 = 1 - 2 = -1$$

$$\beta \gamma = \{-(a+1)\}\{-(b+1)\} = ab + (a+b) + 1 = ab$$

 $\therefore \beta$ ও γ দ্বারা গঠিত সমীকরণটি $x^2 + x + ab = 0$

(দেখানো হলো)

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

$$P(x) = rx^2 - 2nx + 4m$$
 43 ? $Q(x) = mx^2 + nx + mx + mx$

(গ)
$$P(x) = 0$$
 এবং $Q(x) = 0$ সমীকরণ দুটির একটি সাধারণ মূল থাকলে, প্রমাণ কর যে,

$$(2m-r)^2 + 2n^2 = 0$$
 \text{ \text{Seq}} $2m + r = 0$.

(1) Solⁿ:
$$rx^2 - 2nx + 4m = 0 = P(x) \dots (i)$$

$$mx^2 + nx + r = 0 = Q(x) \dots (ii)$$

ধরি, সাধারণ মূল
$$\alpha : r\alpha^2 - 2n\alpha + 4m = 0$$

এবং
$$m\alpha^2 + n\alpha + r = 0$$

∴ বজ্বগণন করে পাই,
$$\frac{\alpha^2}{-2nr-4mn} = \frac{\alpha}{-r^2+4m^2} = \frac{1}{nr+2mn}$$

$$\Rightarrow \alpha = \frac{-2n(r+2m)}{4m^2-r^2} = \frac{4m^2-r^2}{n(r+2m)}$$

$$\cdot (4m^2 - r^2)^2 = -2n^2(r + 2m)^2$$

$$\Rightarrow (2m-r)^2(2m+r)^2 + 2n^2(2m+r)^2 = 0$$

$$\Rightarrow (2m + r)^{2} \{ (2m - r)^{2} + 2n^{2} \} = 0$$

$$\therefore 2m + r = 0$$

অথবা,
$$(2m-r)^2 + 2n^2 = 0$$
 [Proved]

MCQ প্রশ্নের জন্য এই অধ্যায়ের বিভিন্ন টাইপের তুলনামূলক গুরুত্ব:

ওরুত্	টাইপ	টাইপের নাম	যতবার প্রশ্ন	যে বোর্ডে যে বছর এসেছে
	198.00		এসেছে	MCQ
00	T-01	কোনো রাশি বহুপদী কিনা নির্ণয়	05	DB'23; RB'23; SB'22; Din.B'22; All.B'18
000	T-02	নিশ্চায়ক (D) ও মূলগুলোর প্রকৃতি	41	SB'23, 22, 21, 19; JB'23, 22, 21, 19; CB'23, 22, 21, 19, 17; RB'22, 21; Ctg.B'22, 21, 19, 17; BB'22, 21, 19, 17; MB'22; DB'21, 19; Din.B'21, 19;
000	T-03	মূল-সহগ সম্পর্ক সংক্রান্ত	40	DB'23, 22; RB'23, 21, 17; Ctg.B'23, 22, 21, 19, 17; BB'23, 22, 21; JB'23, 22, 21, 17; MB'23, 21; Mad.B'23; CB'22, 21; Din.B'22, 21; SB'21, 19
00	T-04	দুইটি সমীকরণের মূলের সম্পর্ক সংক্রান্ত	09	RB'23; BB'23; Din.B'23; SB'22; JB'22, 21, 19; MB'22; DB'17
000	T-05	বহুপদী সমীকরণের মূল নির্ণয়	25	DB'23, 21, 17; Ctg.B'23, 22, 21, 19; SB'23, 19, 17; BB'23, 21, 19; MB'23, 22; Mad.B'23; RB'21; JB'19; CB'19; Din.B'19, 17; All.B'18
000	T-06	সমীকরণ গঠন সংক্রাম্ভ	35	RB'23, 17; Din.B'23, 22, 21, 19, 17; MB'23, 21; DB'22, 21, 19; SB'22, 21, 17; BB'22, 21, 19, 17; RB'21, JB'21; CB'21, 19, 17
000	T-07	প্রতিসম রাশি ও প্রতিসম মূলবিশিষ্ট সমীকরণ	22	DB'23, 22, 21; SB'23, 21; JB'23; CB'23, 22; Din.B'23, 21; MB'23, 22, 21; Mad.B'23; BB'22; Ctg.B'21; BB'21, RB'19
	T-08	মূলগুলো বিভিন্ন প্রণমনভুক্ত সম্পর্কিত	-	
0	T-09	সাধারণ মূল সংক্রান্ত	03	Ctg.B'21; JB'21; DB'19

বিশত বোর্ড পরীক্ষামুহের MCQ প্রশ্ন

- $01. (k-2)x^2 + 2kx 1 = 0$ সমীকরণের মূলগুলো জটিল সংখ্যা হলে k এর মান-[DB, RB'23]
 - $(a) 2 \le k \le 1$
- (b) $-2 \le k \le 1$
- (c) -2 > k > 1
- $(d)-2\geq k\geq 1$
- 02. $3x^3-2x^2+1=0$ সমীকরণের মূলগুলো α,β এবং γ হলে $\sum \alpha \beta = ?$ [DB'23]
 - $(a) \frac{1}{a}$
- (b) 0
- (c) =
- (d) $-\frac{2}{3}$
- $03. \quad 2x^2 3x + k = 0$ সমীকরণের একটি মূল 2 হলে অপর মূলটি 274-[DB'23, 21; RB, Ctg.B'21]
 - (a) $-\frac{7}{2}$

(b) $-\frac{1}{2}$

 $(c)^{\frac{1}{2}}$

- (d) $\frac{7}{4}$
- 04. $\sqrt{2}x^2 + 3x + 1 = 0$ সমীকরণের মূল দুটি α, β হলে, $\frac{1}{a}$ ও $\frac{1}{6}$ মূলবিশিষ্ট সমীকরণ হবে-IDB'23; MB'211
 - (a) $\sqrt{2}x^2 3x + 1 = 0$
- (b) $\sqrt{2}x^2 + 3x 1 = 0$
- (c) $x^2 + 3x + \sqrt{2} = 0$
- (d) $x^2 3x + \sqrt{2} = 0$
- 05. k এর মান কত হলে $x^2 + 7x + 3 + k = 0$ সমীকরণের একটি উৎপাদক x + 3 হবে? [RB'23; MB'22; DB'17]
 - (a) -33
- (b) -9

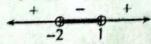
(c) 9

(d) 33

- 06. √-3 + 1 মূলবিশিষ্ট দ্বিঘাত সমীকরণ নিচের কোনটি? [RB'23, 21; BB'22, 21; MB'21]
 - (a) $x^2 + 2x + 4 = 0$
- (b) $x^2 2x + 4 = 0$
- (c) $x^2 + 2x 4 = 0$
- (d) $x^2 2x 4 = 0$

[RB'23; JB'22; Ctg.B, MB'21]

- $07. \quad x^3 3x + 10 = 0$ সমীকরণের মূলগুলো α, β, γ হলে
 - $\sum \alpha = \Phi \nabla ?$
- (c) 0
- (d) -3


- (b) 3 (a) 7
- 08, $x^2-2x-3=0$ সমীকরণের মূলদ্বয় α ও β হলে $\alpha-\beta=$ **亚罗?**
 - (a) ± 4
- (b) ± 8
- (c) $\pm \sqrt{-4}$ (d) $\pm \sqrt{-8}$
- 09. c এর মান কত হলে $x^2 7x + c = 0$ সমীকরণের মূল দুট [RB, BB'23; MB'21) ক্রমিক পূর্বসংখ্যা হবে?
 - (a) 3
- (b) 4
- (c) 7
- (d) 12
- $4x^2 + 5x + k = 0$ এর মৃত্তাহয়ের একটি অপরটির বিপরীত হলে k-এর মান হবে-[Ctg.B'23]
 - (a) -4
- (b) 4
- (c) $\frac{5}{4}$ (d) $\frac{-5}{4}$
- ছিঘাত সমীকরণের একটি মৃল
 ¹/₋₁₊₁ হলে অপর মৃলটি-

[Ctg.B'23; BB'19]

- (a) i + 1
- (b) -i + 1
- (c) $\frac{1}{2}(-i+1)$
- $(d)^{\frac{1}{2}}(i+1)$

				,						
01. b	02. b	03. b	04. c	05. c	06. b	07. с	08. a	09. d	10. b	11. c
			THE RESERVE AND ADDRESS OF THE PARTY.	And in column 2 is not a second or other death of the last	And in contrast of the last of				The second secon	

- সমীকরণের মূলগুলো জটিল সংখ্যা হলে, নির্ণায়কের মান শূনা হতে ছোট হবে। अर्थार, D < 0 ⇒ 4k2 + 4(k-2) < 0
 - $\Rightarrow 4k^2 + 4k 8 < 0 \Rightarrow k^2 + k 2 < 0$
 - $\Rightarrow k^2 + 2k k 2 < 0 \Rightarrow k(k+2) 1(k+2) < 0$
 - (k+2)(k-1) < 0

- 2-2<k<1
- 02. AFTER, $\sum \alpha \beta = \alpha \beta + \beta \gamma + \gamma \alpha = \frac{6}{3} = 0$
- 03. ধরি, অপর মূলটি $\alpha \wedge \alpha + 2 = \frac{3}{2} \Rightarrow \alpha = \frac{3}{2} 2 = -\frac{1}{2}$
- 04. ANICH, $\alpha + \beta = -\frac{3}{2}$ and $\alpha\beta = \frac{1}{2}$
 - $\Delta \forall A, \frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab} = \frac{1}{\sqrt{2}} = -3 \ \ \ \ \frac{1}{ab} = \frac{1}{ab} = \frac{1}{3} = \sqrt{2}$
 - $\frac{1}{a}$ এবং $\frac{1}{6}$ মূলবিশিষ্ট সমীকরণ, $x^2 (\frac{1}{a} + \frac{1}{6})x + \frac{1}{a}, \frac{1}{a} = 0$ $\Rightarrow x^2 - (-3)x + \sqrt{2} = 0 \text{ i. } x^2 + 3x + \sqrt{2} = 0$

- 05. $f(-3) = 0 \Rightarrow (-3)^2 + 7(-3) + 3 + k = 0$ ⇒9-21+3+k=0 .. k=9
- 06. একটি মূল $\sqrt{-3} + 1$ হলে আরেকটি মূল $-\sqrt{-3} + 1$
 - ে সমীকরণ $x^2 (\sqrt{-3} + 1 \sqrt{-3} + 1)x + (\sqrt{-3} + 1)(-\sqrt{-3} + 1) = 0$ $\Rightarrow x^2 - 2x + (1^2 + 3) = 0 \Rightarrow x^2 - 2x + 4 = 0$
- 07. $ax^3 + bx^2 + cx + d = 0$ 48 $\sum a = \frac{-b}{4}$
 - ST x3 3x + 10 = 0 44 ∑ a = 0 = 0
- 08. $x^2 2x 3 = 0$ of $\alpha + \beta = 2$ of $\alpha + \beta = -3$ $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = (2)^2 - 4 \times (-3)$ = 4 + 12 ∴ a = B = ±4
- 09. चित्र भूगवरा a, a + 1; काइटम a + a + 1 = 7
 - = 2a = 6 . a = 3 . c = 4 a(a + 1) = 3 × 4 = 12
- 10 बात्रवारक, ककाँगे मून व करन, अनुकाँगे !
 - wells, yescus were $\alpha \times \frac{1}{2} = \frac{1}{2} \Rightarrow 1 = \frac{3}{2} \wedge k = 4$
- - ** 1-1 ** 1-(-1) ** 1 + 1 | 1 ** West West ** 1 ** (-1 + 1)

HSC প্রস্নব্যাংক ২০২৫

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

- 12. $2x^2 x 1 = 0$ এর মূলদুটি a, b (a > b) হলে b এর মান
 - [Ctg.B'23]

- (a) -1
- (b) 1

- $(c) \frac{1}{2}$
- $(d)^{\frac{1}{2}}$
- 13. $3x^2 + 2x + 1 = 0$ এর কেত্রে—
- [Ctg.B'23]
- (i) মূলদ্বয় বাস্তব ও সমান
 - (ii) মূলদ্বয়ের যোগফল 2
 - (iii) মূলদ্বয়ের গুণফল -

নিচের কোনটি সঠিক?

- (a) i. ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 14. $x^2 + 4x 2 = 0$ সমীকরণের মূলের চেয়ে 1 বেশি মূলবিশিষ্ট সমীকরণ-[SB'23]
 - (a) $x^2 2x 5 = 0$
- (b) $x^2 + 2x 5 = 0$
- (c) $x^2 2x + 5 = 0$
- (d) $x^2 + 2x + 5 = 0$
- 15. $x^3 3x^2 25x + 75 = 0$ সমীকরণের দৃটি মূলের যোগফল শূন্য হলে মূলগুলো কত? ISB'231
 - (a) 3, 5, -5
- (b) 5, -3, 3
- (c) 2, 5, -5
- (d) 5, 2, -2

- 16. কোন শর্তে $px^2 + qx + r = 0$ সমীকরণটির একটি মূল শূন্য হবে? [SB'23; Ctg.B'22]
 - (a) p = 0
- (b) q = 0 (c) r = 0

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

- x2 + ax + (a + 2) = 0 একটি দ্বিঘাত সমীকরণ যার মূলভ্য়
- 17. α + β এর মান কত?

[SB'23]

- (a) $-\frac{1}{a+2}$
- (b) $-\frac{a}{24^2}$

- 18. a = 1 হলে সমীকরণটির মূলগুলোর প্রকৃতি কীরূপ? [SB'23]
 - (a) বাস্তব ও সমান
- (b) বাস্তব ও অসমান
- (c) মূলদ
- (d) জটিল সংখ্যা
- 19. $x^2 + 1 = 0$ এর একটি মূল α হলে $|\alpha|$ এর মান কত?

- (a) 2
- (b) $\sqrt{-1}$
- (c) $\sqrt{2}$
- (d) 1
- 20. $x^2 + ax + b = 0$ এবং $x^2 + bx + a = 0$ স্মীকরণের একটি সাধারণ মূল থাকলে a + b = কত?
 - (a) 0
- (b) -1
- (c) 1
- (d) co

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

	Selection of the select							
12. c	13. c	14. b	15. a	16. c	17. b	18. d	19. d	20. b

- 12. $a+b=-\left(\frac{-1}{2}\right)=\frac{1}{2}....(i)$
 - $Ab = -\frac{1}{2}$: a > b : $a b = \sqrt{(a + b)^2 4ab} = \sqrt{\frac{1}{4} + 2}$
 - $\Rightarrow a b = \frac{3}{3} \dots \dots \dots (ii)$
 - (i) (iii) \Rightarrow 2b = -1 \Rightarrow b = $-\frac{1}{2}$
- 13. (i) = $b^2 4ac = 2^2 4 \times 3 \times 1 = 4 12 = -8 < 0$
 - . भृमदग्र अनुवृक्षी क्रिन। (ii) भृमद्राग्न द्रागंकन= -2
 - (iii) মূলহয়ের গুণফল = 1; (ii) ও (iii) সঠিক।
- 14. $x^2 + 4x 2 = 0$ মূলহয় α, β হলে $\alpha + \beta = -4$; $\alpha\beta = -2$
 - এখন নতুন সমীকরণের মৃলঘয় (α + 1), (β + 1)
 - $(\alpha + 1) + (\beta + 1) = \alpha + \beta + 2 = -4 + 2 = -2$
 - $432 (\alpha + 1)(\beta + 1) = 4\beta + 4 + 3 + 1 = -2 + (-4) + 1 = -5$
 - : নতুন সমীকরণ $x^2 (-2)x + (-5) = 0 \Rightarrow x^2 + 2x 5 = 0$
- 15. x3 3x2 25x + 75 = 0 403 912.
 - $\alpha + \beta + \gamma = 3 \dots (i)$
- 44t a + B = 0
- $\alpha\beta + \beta\gamma + \gamma\alpha = -11....(ii)$
- αβγ = -75 (iii)

- $\therefore 0 + y = 3; y = 3$ आवात, $\alpha \beta y = -75 \Rightarrow (-\beta)$, $\beta . 3 = -75 [: \alpha = -\beta]$ $\Rightarrow \beta^2 = 25 \land \beta = \pm 5$; $\beta = 5$ and $\alpha = -5 \land$ hand $\alpha = 3,5,-5$

- 16. একটি মূল শূন্য হলে $p(0)^2 + q(0) + r = 0 \Rightarrow r = 0$
- 17 $\frac{1}{\alpha} + \frac{1}{8} = -a \Rightarrow \frac{\alpha + \beta}{\alpha 8} = -a$
 - $\Rightarrow \frac{1}{\alpha\beta} = a + 2 : \alpha\beta = \frac{1}{142}$
- 18. a = 1 इ.ल मशीकत्र $\Rightarrow x^2 + x + 3 = 0$

 $\therefore \alpha + \beta = -a(\alpha\beta) = \frac{-a}{a+2}$

- ∴ নিভায়ক D = 12 4 · 3 = 1 12 = -11
- : মূলগুলো জটিল।
- 19. $a^2 + 1 = 0 \Rightarrow \alpha = \pm \sqrt{-1} = \pm i$
 - : |a| = |±i| = 1 [জালৈ সংখ্যা i এর modulus এর মান 1]
- 20. ধরি, সাধারণ মৃশটি α অতএব, α² + aα + b = 0(i)
 - $a^2 + ba + a = 0 \dots (ii)$
 - $(i)-(ii) \Rightarrow (a-b)\alpha = a-b = \alpha = 1$
 - 447. (i) = 1+a+b=0 : a+b=-1

OUC द्वाराज्य विकास विकास विकास कर

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: একটি দ্বিঘাত সমীকরণের একটি মূল √-3 + 512

21. অপর মূলটি কত?

[BB'23]

- (a) $\sqrt{3} 5i^2$
- (b) $\sqrt{3} + 5i^2$
- (c) $-5 \sqrt{3}i$
- (d) $5 \sqrt{3}i$
- 22. দ্বিঘাত সমীকরণ কোনটি?

[BB'23]

- (a) $x^2 9x + 20 = 0$
- (b) $x^2 + 9x 28 = 0$
- (c) $x^2 10x 28 = 0$
- (d) $x^2 + 10x + 28 = 0$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

- $x^3 5x^2 + 11x 7 = 0$ একটি ত্রিঘাত সমীকরণ।
- 23. সমীকরণটির একটি মূল 2 + i√3 হলে উহার বাস্তব মূলটি কত? [JB'23]
 - (a) 15
- (b) -9
- (c) -1
- (d) 1
- সমীকরণটির মূল a, b, c এবং ∑ab = kabc হলে k এর মান [JB'23] কত?

 - (a) $-\frac{5}{7}$ (b) $-\frac{11}{7}$ (c) $\frac{5}{7}$

- 25. $x^2 + 4x + 5 = 0$ সমীকরণের মূলহয় α, β হলে α + 2 এবং β + 2 মূলবিশিষ্ট সমীকরণ নিচের কোনটি?
 - [JB'23; CB'22]

- (a) $x^2 1 = 0$
- (b) $x^2 8x + 1 = 0$
- (c) $x^2 + 1 = 0$
- (d) $x^2 + 8x + 1 = 0$

- 26. $x^2 kx + 9 = 0$ সমীকরপের মূলদ্বা জটিল হলে k এর k = 0[JB'23; BB'22]
 - কড?

(b) $\{-6,6\}$

(a) ±6

- (d) $(-\infty, -6) \cup (6, \infty)$
- (c) (-6,6)
- $27. \ \ 2x^2-x+k=0$ সমীকরণের মূলঘ্য় সমান হলে, k-এর $x_{\rm R}$ [CB'23; Din.B'19; BB'17] কত?
 - (b) $-\frac{1}{8}$ (a) $-\frac{1}{4}$
- 28. $ax^2 + bx + c = 0$ থিয়াত সমীকরণের দুইটি মূলই $a\eta_{eq}$ হওয়ার শর্ত নিচের কোনটি? [CB'23]
 - (a) $b \neq 0$
- (b) c ≠ 0
- (c) c = 0
- (d) b = c = 0
- 29. $2x^2 5x + 3 = 0$ সমীকরণের মূলঘর α, β হলে, $Σα^3$ এর CB'231 মান কত?
 - (a) $\frac{8}{25}$
- (b) $\frac{35}{8}$
- (c) 20
- $(d)^{\frac{215}{n}}$
- $30. \quad x^2-5x+9=0$ সমীকরণের মূলদ্বয় α,β হলে, $\alpha+\beta$ ও $\alpha\beta$ মূলবিশিষ্ট সমীকরণ কোনটি? [Din.B'23]
 - (a) $x^2 14x + 45 = 0$
 - (b) $x^2 + 14x + 45 = 0$
 - (c) $x^2 + 4x + 45 = 0$
 - (d) $x^2 + 4x 45 = 0$

MCO উত্তরমালা ও ব্যাখ্যামূলক সমাধান

21. c 22. d	23. d	24. d	25. c	26. c	27. с	28. b	29. b	30. a

- একটি মূল √-3 + 5i² = √3i 5 .: অপর মূল = -5 √3i; मृल्ख्य -5 + √3i, -5 - √3i
- 22. $x^2 \{(-5 + \sqrt{3}i) + (-5 \sqrt{3}i)\}$ $x + (-5 + \sqrt{3}i)(-5 - \sqrt{3}i) = 0$ $\Rightarrow x^2 - (-10)x + (-5)^2 - (\sqrt{3}i)^2 = 0$ $\Rightarrow x^2 + 10x + 25 + 3 = 0 \Rightarrow x^2 + 10x + 28 = 0$
- 23. अनुवकी छणिन म्लडरना 2 ± √31, शब्र, वाखव म्लणि a .. সবতলো মূলের সমষ্টি = $-\left(\frac{-5}{1}\right)$ = 5 ⇒ 2 + $\sqrt{3}$ i + (2 − $\sqrt{3}$ i) + a = 5
- = 4+a=5 .a=1 24 $\Sigma ab = 11 \Rightarrow abc = -(-7) = 7$ শ্ৰমতে, Lab = k abc => 11 = k · 7 ∴ k = 11
- 25. Asuce, $\alpha + \beta = -4$ are $\alpha\beta = 5$ ্ নির্ণেয় সমীকরণ হবে: $x^2 - \{(\alpha + 2) + (\beta + 2)\}x + (\alpha + 2)(\beta + 2) = 0$ $\Rightarrow x^2 - (\alpha + \beta + 4)x + \alpha\beta + 2(\alpha + \beta) + 4 = 0$ $\Rightarrow x^2 - (-4+4)x + 5 + 2(-4) + 4 = 0 \Rightarrow x^2 + 9 - 8 = 0$
 - $x^2 + 1 = 0$ হবে নির্পেয় সমীকরণ।

- 26. মুদারয় জটিল বলে, নিশ্চায়ক D < 0 ⇒ $(-k)^2 4 \cdot 1 \cdot 9 < 0$ ⇒ k² < 36 : -6 < k < 6 : (-6,6) সঠিক
- 27. 2x2-x+k=0; धति, भूनवग्र α व्यवश् α মূলধয় সমান হলে, $\alpha + \alpha = \frac{1}{2} \Rightarrow 2\alpha = \frac{1}{2}$.: $\alpha = \frac{1}{4}$ এবং $\alpha \cdot \alpha = \frac{k}{2}$ $\Rightarrow \alpha^2 = \frac{k}{2} \wedge k = 2\alpha^2 = 2\left(\frac{1}{2}\right)^2 = \frac{1}{4}$

[4] $\frac{1}{a}$ D = 0 ⇒ (-1)² - 4 · 2 · k = 0 ⇒ 1 = 8k ∴ k = $\frac{1}{a}$

- 28. $ax^2 + bx + c = 0$ এর মূল শুন্য হলে $a(0)^2 + b(0) + c = 0$ ⇒ c = 0 . जन्म म्राचन क्रम भर्ड c ≠ 0
- 29. $2x^2 5x + 3 = 0$ and House α, β ; $\alpha + \beta = \frac{3}{2}$; $\alpha\beta = \frac{3}{2}$ $\alpha^{3/4}, \sum \alpha^3 = \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ $= \left(\frac{5}{5}\right)^3 - 3 \times \frac{3}{2} \times \frac{5}{2} = \frac{125}{3} - \frac{15}{3} = \frac{35}{3}$
- 30. श्रम्थ मधीकत्त्व, a + \beta = 5 खन्र a\beta = 9 এখন, $\alpha + \beta + \alpha\beta = 5 + 9 = 14$ এখং $(\alpha + \beta)(\alpha\beta) = 5 \times 9 = 45$ ் α + β এবং αβ মুগবিশিষ্ট সমীকরণ, $x^{2} - (\alpha + \beta + \alpha \beta)x + (\alpha + \beta)\alpha\beta = 0 \Rightarrow x^{2} - 14x + 45 = 0$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

- 31. $x^2 + bx + a = 0$ এবং $x^2 4x + b = 0$ সমীকরণদ্যের একটি সাধারণ মূল 3 হলে a এর মান কোনটি? [Din.B'23]
 - (a) 18(c) 3
 - (b) 0

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$f(x) = 2x^2 - 7x + 7, g(x) = x$$

32. f(x) = 0 সমীকরণের মূলগুলোর প্রকৃতি কীরূপ?

[CB, Din.B'23; Ctg.B'22]

- (a) বাস্তব ও সমান
- (b) বাস্তব ও অসমান
- (c) মূলদ
- (d) অবাস্তব
- 33. $f(x) \cdot g(x) = 0$ সমীকরণের মূলগুলো α, β, γ হলে, $\sum \alpha^2$ এর [Din.B'23]
 - (a) $\frac{77}{1}$

- একটি দ্বিঘাত সমীকরণের একটি মূল —i হলে সমীকরণটি—

- (a) $x^2 + 1 = 0$
- (b) $x^2 1 = 0$
- (c) $x^2 + i = 0$
- (d) $x^2 i = 0$
- 35. $2x^2 + bx + 6 = 0$ সমীকরণের মূল দুইটির যোগফল 5 হলে b এর মান হল-[MB'23]
 - (a) -10
- (b) $-\frac{5}{2}$
- (c) $\frac{5}{2}$
- (d) 10

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$\alpha + \beta = 2$$
, $\alpha^3 + \beta^3 = 8$

36. Σα² এর মান কত?

[MB'23,22]

- (a) 0
- (b) 4
- (c) 8
- (d) 16

37. α, β মূলবিশিষ্ট সমীকরণ হলো-

[MB'23]

- (a) $x^2 + 2 = 0$
- (b) $x^2 + 2x = 0$
- (c) $2x^2 1 = 0$
- (d) $x^2 2x = 0$
- $38. f(x) = x^4 3x^2 2x$ একটি বহুপদী হলে
 - (i) f(x) = 0 সমীকরণের মূল 4টি
 - (ii) f(x) = 0 এর একটি মূল 2
 - (iii) x 1, f(x) এর একটি উৎপাদক

নিচের কোনটি সঠিক?

- (a) i, ii
- (c) ii, iii
- (d) i, ii, iii
- 39. $3x^3 + 2x^2 + x + 2 = 0$ সমীকরণের মূলত্রয় α, β, γ হলে–

[Mad.B'23, Ctg.B,22]

- (i) $\alpha + \beta + \gamma = -\frac{2}{3}$
- (ii) $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{1}{2}$
- (iii) $\alpha\beta\gamma = \frac{2}{3}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 40. $3x^2 5x + 1 = 0$ সমীকরণের মূলদ্বয় কোনটি?

[Mad.B'23]

- (a) $\frac{-5\pm\sqrt{13}}{6}$

- 41. $x^2 2x + 5 = 0$ সমীকরণের মূলদ্বয় α, β হলে, $\alpha^2 + \beta^2 =$ কত? [Mad.B'23]
 - (a) 16
- (b) -6
- (c) 14
- (d) 24

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

31. a	32. d	33. b	34. a	35. a	36. b	37. d	38. a	39. a	40. b	41. b

- 31. সমীকরণম্বয়ের একটি সাধারণ মূল 3 হলে, $3^2 + b \cdot 3 + a = 0$ => a+3b+9=0 (i) 4329-4×3+b=0 : b=3 (i) হতে পাই, a + 3 × 3 + 9 = 0 ∴ a = -18
- 32. প্রদত্ত সমীকরণের নির্ণায়ক, D = $(-7)^2 4 \cdot 2 \cdot 7 = -7 < 0$ ্র মূলবয় অবাস্তব।
- 33. প্রদত্ত সমীকরণ, $f(x) \cdot g(x) = 0$ $\Rightarrow (2x^2 - 7x + 7)x = 0 \Rightarrow 2x^3 - 7x^2 + 7x = 0$ সমীকরণের মূলতলো α, β এবং γ হলে, $\alpha + \beta + \gamma = -\frac{-7}{2} = \frac{7}{2}$ $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{7}{3}$ ARE $\alpha\beta\gamma = -\frac{9}{3} = 0$ $\sum \alpha^2 = \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $=\frac{49}{7}-2\cdot\frac{7}{3}=\frac{49}{7}-7=\frac{21}{7}$
- 34. বিঘাত সমীকরণের একটি মূল -। .. অপর মূল হলো। সমীকরণটি হলো: $x^{2} + (-i + i)x + (-i) \times (i) = 0 \Rightarrow x^{2} - i^{2} = 0 \Rightarrow x^{2} + 1 = 0$
- 35. धर्ति, मूलवश क्रला a, ß क्षम, $\alpha + \beta = -\frac{b}{3} = 5$ $\therefore b = -10$

- 36. আমরা জানি, $(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha^2\beta + 3\beta^2\alpha$ $\Rightarrow (\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)$ $\Rightarrow 2^3 = 8 + 3\alpha\beta \cdot 2 : \alpha\beta = 0$ এখন, $\sum \alpha^2 = \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 2^2 - 0 = 4$
- 37. $\alpha + \beta = 2 \circ \alpha \beta = 0$ Size, $\alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{4 - 0} = 2$ এখন, $\alpha + \beta = 2$ ও $\alpha - \beta = 2$ যোগ বিয়োগ করে পাই, $\alpha = 2$ ও $\beta = 0$

সূতরাং, α ও β মূলবিশিষ্ট সমীকরণ হবে $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ $\Rightarrow x^2 - 2x = 0$

- 39. $3x^3 + 2x^2 + x + 2 = 0$ সমীকরণের মূল α, β, γ $\alpha + \beta + \gamma = -\frac{1}{2}; \alpha\beta + \beta\gamma + \gamma\alpha = \frac{1}{2}; \alpha\beta\gamma = -\frac{1}{2}$
- 40 $3x^2 5x + 1 = 0$; $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 4 + 3}}{23} = \frac{5 \pm \sqrt{13}}{6}$
- 41. $x^2 2x + 5 = 0$ an year $\alpha, \beta \wedge \alpha + \beta = 2$. $\alpha\beta = 5$ $\Delta \alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 2^{2} - 2 \cdot 5 = -6$

a গণিত ২য় পত্ৰ : অধ্যায়-08

- $42. x^2 + 9x + P = 0$ সমীকরণের একটি মূল -4 হলে, P এর মান 400)
 - [Mad.B'23]

- (a) 52
- (b) 20
- (c) 20
- (d) 52
- 43. $5x^2 7x 3 = 0$ সমীকরণের মুলম্বয়ের গুণফল কত? [Mad.B'23]
 - (a) $-\frac{7}{3}$ (b) $-\frac{3}{5}$ (c) $\frac{3}{5}$
- (d) $\frac{7}{5}$
- 44. $3x^3 1 = 0$ সমীকরণের মূলতায় α , β , γ হলে,
 - $\alpha^3 + \beta^3 + \gamma^3 = ?$

[DB, BB'22]

- (a) 1

- (d) 1
- 45. কোনো দ্বিঘাত সমীকরণের একটি মূল 1/2+1 হলে সমীকরণটি হবে-[DB'22]
 - (a) $9x^2 12x + 5 = 0$
- (b) $5x^2 4x + 1 = 0$
- (c) $5x^2 + 4x + 1 = 0$
- (d) $25x^2 20x + 3 = 0$
- $46. \quad x^2 kx + 2 = 0$ সমীকরণের একটি মূল 3 হলে-[DB'22]
 - (i) অপর মূল ²
- (ii) k এর মান 11
- (iii) প্রদত্ত সমীকরণের নিকায়ক = 7

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- 47. $(p^2-4)x^2+4px+(4p+1)=0$ সমীকরণের মূলদ্বয় পরস্পর গৌণিক বিপরীত হলে p এর মান কত? [DB'22]
 - (a) -1, 5
- (b) 1,5
- (c) -2, -2
- (d) -3, 1
- 48. $\frac{1}{x} \frac{1}{x-p} = \frac{1}{a}$ সমীকরণের মূলদ্বয় α, β হলে-
- [DB'22]

- (i) $\alpha + \beta = p$
- (ii) $\alpha\beta = pq$
- (iii) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{\alpha}$

নিচের কোনটি সঠিক?

(a) i, ii

(b) ii, iii

- (c) i, iii
- (d) i, ii, iii

- $x^3 2x^2 2x + 4 = 0$ সমীকরণের
 - (i) একটি মূল 2
- (ii) দুইটি মূল অমূলন
- (iii) भूनजारात छन्यन 4

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) $i_{\rm c}\,i_{\rm l}\,i_{\rm l}$

IRB 22

[SB'2]

- $50. \quad x^2 8x + c = 0$ এর মূলম্বর—
 - (i) সমান হবে यपि c = 8 হয়
 - (ii) জটিল হবে যদি c > 16 হয়
 - (iii) वाखव হবে यि c ≤ 16 इग्न

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, i_L, i_L
- নিচের কোনটি বহুপদী রাশি নয়?
 - (a) $ax^2 + 2hxy + by^2$
 - (b) $2x^2 + 3xy + y^2$
 - (c) $x^2 + y^2 + 2gx + 2fy + c$
 - (d) $2x^2 + \frac{3y}{x} + y^2$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

- $x^2-5x+6=0$ সমীকরণের মূলহর γ,δ
- 52. সমীকরণটির মূলদ্বয়ের ক্ষেত্রে নিচের কোনটি সঠিক?
 - [SB'22; RB, SB, BB'21]
 - (a) মূলদ্বয় বাস্তব ও সমান
- (b) মূলদ্বয় অমূলদ
- (c) মূলদ্বয় মূলদ ও অসমান
- (d) মূলবয় জটিল
- 53. $\gamma > \delta$ হলে, $\gamma \delta = \sigma$ ত?
- SB'22 (d) 5
- (a) 1 (b) 3
 - (c) 4
- 54. $a_1x^2 + b_1x + c_1 = 0$ এবং $a_2x^2 + b_2x + c_2 = 0$
 - সমীকরণের উভয় মূলই সাধারণ হওয়ার শর্ত— ISB, JB"22
 - (a) $a_1b_2 = a_2b_1$
 - (b) $(a_1b_2 a_2b_1) = (c_1a_2 c_2a_1)^2$
 - (c) $a_1 + a_2 = b_1 + b_2 = c_1 + c_2$

42. c	43. b	44. d	45. b	46. a	47. a	48. d	49 0	50 1			1	61 4
							17. 0	30. b	51. d	52. c	53. a	34.0

- $\Rightarrow (-4)^2 + 9(-4) + P = 0 \Rightarrow -20 + P = 0 \therefore P = 20$
- 43. $5x^2 7x 3 = 0$ এর মুগজর α , β হলে, $\alpha\beta = -\frac{3}{5}$
- 44. $\alpha + \beta + \gamma = 0$, $\alpha\beta + \beta\gamma + \gamma\alpha = 0$ এবং $\alpha\beta\gamma = \frac{1}{3}$; প্রদন্ত রাশি = $\alpha^3 + \beta^3 + \gamma^3$
- $=(\alpha+\beta+\gamma)(\alpha^2+\beta^2+\gamma^2-\alpha\beta-\beta\gamma-\gamma\alpha)+3\alpha\beta\gamma=0+3\times\frac{1}{2}=1$ 45. भूम: 1 = 2 - 1; A अना भूम = 2 + 1;
 - ্ৰ সমীকরণ, $x^2 \left(\frac{2}{5} \frac{1}{5}i + \frac{2}{5} + \frac{1}{5}i\right)x + \left(\frac{2}{5} \frac{1}{5}i\right)\left(\frac{2}{5} + \frac{1}{5}i\right) = 0$ $\Rightarrow x^2 - \frac{4}{5}x + \frac{1}{5} = 0 \Rightarrow 5x^2 - 4x + 1 = 0$
- 46. (i) : जना मूल = ²/₃ [Use Calculator] (ii) 3² − 3k + 2 = 0 \Rightarrow k = $\frac{11}{3}$; (iii) নিভায়ক = b² - 4ac = $\left(-\frac{11}{3}\right)^{2}$ - 4 · 1 · 2 = $\frac{49}{6}$
- 47. Yours, $\alpha \le \frac{1}{\alpha} : \frac{4P+1}{P^2-4} = \alpha, \frac{1}{\alpha} = 1$
 - $\Rightarrow 4P + 1 = P^2 4 \Rightarrow P^2 4P 5 = 0 : P = -1.5$
- 48. $\frac{1}{x} \frac{1}{x-p} = \frac{1}{q} \Rightarrow \frac{x-p-x}{x(x-p)} = \frac{1}{q} \Rightarrow x^2 px = -pq \Rightarrow x^2 px + pq = 0$ (i) $\alpha + \beta = p$; (ii) $\alpha\beta = pq$; (iii) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{p}{pq} = \frac{1}{q}$
- 49. (i) Use Calculator (ii) Use Calculator; (iii) $\alpha\beta\gamma = -\frac{4}{1} = -4$
- 53. মূপথয় 3 ও 2 ∧ γ − δ = 3 − 2 = 1 [Use Calculator]

HSC প্রস্নব্যাংক ২০২৫

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

55. $x^2 - 2x + 4 = 0$ সমীকরণটির $_-$

[BB'22]

- (i) भूलष्रस्त्रत र्याशंकल = 3
- (ii) মূলদয়ের গুণফল = 4
- (iii) মূলগুল জটিল সংখ্যা

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, ii

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

- $P(x) = x^2 Kx + 9$ একটি দ্বিঘাত বহুপদী, যেখানে Kএকটি ধ্রুবক।
- 56. P(x) = 0 সমীকরণের মূলদ্বয় বাস্তব ও সমান হবে যদি-
 - (a) K > 6
- (b) K < 6
- [JB'22]

- (c) $K = \pm 6i$
- (d) $K = \pm 6$

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$x^2 - 5x + k = 0$$
 সমীকরণের মূলদ্বয় α, β

- 57. k এর মান কত হলে সমীকরণটির মূলদ্বয় বাস্তব ও সমান হবে?
- (b) $k = \frac{25}{4}$
- [CB'22]

- (c) k < $\frac{25}{4}$
- 58. $x^3 \frac{1}{3}x 15 = 0$ সমীকরণের মূলগুলি α, β, γ হলে—

[CB'22]]

- (i) $\sum \alpha = 0$
- (ii) $\sum \alpha \beta = -\frac{1}{2}$
- (iii) $\alpha\beta\gamma = 15$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 59. নিচের কোনটি বহুপদী রাশি?
- [Din.B'22]

- (a) $x^{-2} + x^{-3}$ (b) $\sqrt[3]{x^2} + \sqrt{x^3}$ (c) $x^{\frac{1}{4}}$
- 60. কোনো দ্বিঘাত সমীকরণের মূলদ্বয় মূলদ ও অসমান হলে পৃথায়ক হবে-
- [Din.B'22]
- (i) পূর্ণবর্গ
 - (ii) ধনাত্মক সংখ্যা
- (iii) ঋণাত্মক সংখ্যা

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (c) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

- $3x^2 5x + 1 = 0$ সমীকরণের মূল α ও β 61. $\frac{1}{\alpha} + \frac{1}{8}$ এর মান-
 - [Din.B'22; BB'17]

- (b) $-\frac{5}{3}$ (c) 5
- (d) -5
- 62. α^2 ও β^2 মূলবিশিষ্ট সমীকরণ-
- [Din.B'22]
- (a) $9x^2 + 19x + 1 = 0$ (b) $9x^2 19x + 1 = 0$
 - (d) $9x^2 19x 1 = 0$
- (c) $9x^2 + 19x 1 = 0$
- 63. বাস্তব সহগবিশিষ্ট দ্বিঘাত সমীকরণের একটি মূল $\frac{1}{\sqrt{2}+1}$ হলে
 - অপর মূল কোনটি?
- [MB'22; All.B'18]
- (a) $\sqrt{2} + 1$
- (b) $-\sqrt{2} 1$
- (c) $\sqrt{2} 1$
- (d) $-\sqrt{2} + 1$

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$2x - x^2 + k = 0$$
 একটি দ্বিঘাত সমীকরণ।

- 64. সমীকরণটির মূলদ্বয় বাস্তব হলে-
 - [Ctg.B, MB'22]
 - (a) $k \le -1$
- (b) $k \ge -1$
- (c) k < -1
- (d) k > -1
- $65. x^2 + x + 1 = 0$ সমীকরণের মূলগুলোর প্রকৃতি -

[Ctg.B'22; DB'21]

- (a) বাস্তব ও সমান
- (b) বাস্তব ও অসমান
- (c) অবাস্তব ও অসমান
- (d) অবাস্তব ও সমান

নিচের উদ্দীপকের আলোকে পরবর্তী দুটি প্রশ্নের উত্তর দাও:

$$7x^2 - 5x - 3 = 0$$
 সমীকরণের মূলদ্বয় α ও β ।

- 66. $\Sigma \alpha^2$ এর মান কোনটি?
- (b) $\frac{11}{7}$ (c) $\frac{-59}{49}$

[DB'21]

[DB'21]

- 67. α + β ও αβ মূলবিশিষ্ট সমীকরণ কোনটি?
 - (a) $49x^2 56x 15 = 0$
 - (b) $49x^2 56x + 15 = 0$
 - (c) $49x^2 14x 15 = 0$
 - (d) $49x^2 14x + 15 = 0$

1116												Name of the last o	
1	55. b	56. d	57. b	58. d	59. d	60. a	61. c	62. b	63. b	64. b	65. c	66. a	67. c

- 55. α+β=2(i) নং ভুল
- 56. $P(x) = 0 \Rightarrow x^2 Kx + 9 = 0 : K^2 9 \times 4 = 0 \Rightarrow K = \pm 6$
- 61. $\alpha + \beta = \frac{5}{3}$ and $\alpha\beta = \frac{1}{3} : \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{2}{1} = 5$
- 62. $\alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta = (\frac{5}{2})^2 2 \times \frac{1}{3} = \frac{19}{9}$ $\alpha^2 \beta^2 = (\alpha \beta)^2 = \frac{1}{9} : x^2 - \frac{19}{9}x + \frac{1}{9} = 0 \Rightarrow 9x^2 - 19x + 1 = 0$
- 63. $\varphi = \frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$ \therefore অন্য মূলটি হবে = $-\sqrt{2}-1$

- 64. $2^2 4(-1) \cdot k \ge 0 \Rightarrow 4 + 4k \ge 0 \Rightarrow k \ge -1$
- 65. D = 1² 4 · 1 · 1 = -3 < 0 : মূল অবাস্তব ও অসমান।
- 66. $\alpha + \beta = \frac{5}{7}$; $\alpha\beta = \frac{-3}{7}$; $\Sigma\alpha^2 = \alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta$
 - $=\left(\frac{5}{7}\right)^2-2\left(-\frac{3}{7}\right)=\frac{25}{49}+\frac{6}{7}=\frac{25+42}{49}=\frac{67}{49}$
- 67. $(\alpha + \beta) + \alpha\beta = \frac{5}{7} \frac{3}{7} = \frac{2}{7}; (\alpha + \beta)\alpha\beta = \frac{5}{7} \times (-\frac{3}{7}) = \frac{-15}{15}$
 - \therefore সমীকরণ, $x^2 \frac{2}{7}x \frac{15}{49} = 0 \Rightarrow 49x^2 14x 15 = 0$

HSC প্রম্বব্যাংক ২০২৫

- 68. দ্বিঘাত সমীকরণের নিশ্চায়ক ধনাত্মক পূর্ণবর্গ সংখ্যা হলে [DB'21] মূলতলো হবে-
 - (a) অবাস্তব ও মূলদ
- (b) বাস্তব ও মূলদ
- (c) বাস্তব ও অমূলদ
- (d) অবাস্তব ও অমূলদ
- 69. —i + 2 মৃলবিশিষ্ট সমীকরণ কোনটি?

[DB'21]

- (a) $x^2 4x + 3 = 0$
- (b) $x^2 + 4x + 3 = 0$
- (c) $x^2 + 4x + 5 = 0$ (d) $x^2 4x + 5 = 0$
- 70. a এর কোন মানের জন্য $ax^2 x + 4 = 0$ সমীকরণের
 - মূলদ্বয় সমান হবে?

[RB'21]

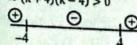
- (a) $\frac{1}{16}$
- (b) $-\frac{1}{16}$ (c) $\frac{1}{4}$
- 71. $3x^2 9x 5 = 0$ সমীকরণের মূলদ্বয়ের যোগফল কত?

[RB'21]

- (a) -9
- (b) $\frac{-5}{2}$ (c) $\frac{5}{2}$
- (d) 3
- 72. $2x^3 4x^2 + 6x + 1 = 0$ সমীকরণের মূলগুলো α, β, γ হলে $\sum \alpha \beta$ এর মান কোনটি? [RB'21; JB'17]
 - (a) 2 (b) 3 (c) 4
- (d) 6
- নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:
 - $f(x) = 1 + 3x 2x^2.$
- 73. f এর গরিষ্ঠ মান কত?

[Ctg.B'21; DB'19]

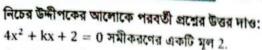
- (a) $-\frac{17}{8}$ (b) $-\frac{1}{8}$ (c) $\frac{1}{8}$


- 74. f(x) = 0 এর মূলদায় α ও β হলে α ও β মূলবিশিষ্ট সমীকরণ নিচের কোনটি?
 - (a) $2x^2 3x + 1 = 0$
- (b) $2x^2 + 3x 1 = 0$
- (c) $2x^2 3x 1 = 0$
- (d) $2x^2 + 3x + 1 = 0$
- 75. $2x^2 kx + 2 = 0$ সমীকরণের মূলদ্বয় বাস্তব ও অসমান হৈ k এর মান কত? $\{C_{tg,B'21}\}$
 - (a) (-4,4)
- (b) (-4, 4]
- (c) $(-\infty, -4) \cup (4, \infty)$
- (d) $(-\infty, -4] \cup [4, \infty)$
- 76. $2x^2 px + 8$ রাশিটি একটি পূর্ণবর্গ হলে p এর মান করু? [Ctg.B'2]]
 - (a) $\pm 2\sqrt{2}$
- (b) ± 4
- (c) $\pm 4\sqrt{2}$
 - (d) ±8
- 77. যদি $x^2 + x + 2 = 0$ সমীকরণের মূলদ্বয় α ও β হয় তবে $\frac{1}{\alpha} + \frac{1}{\beta}$ এর মান কত? [Ctg.B, SB, BB'2]
 - (a) -1
- (b) $-\frac{1}{2}$
- (c) $\frac{1}{2}$
- (d) 2
- 78. $3x^2 px + 4 = 0$ সমীকরণের একটি মূল অপরটির তিন্তুর হলে p এর মান কত? Ctg.B'21
 - (a) ± 3
- (b) $\pm 2\sqrt{2}$
- (c) ± 6
- $(d) \pm 8$
- 79. $mx^2 x + n = 0$ সমীকরণের মূলছয়ের বর্গের সমষ্টি ϕg^2 (যেখানে m ≠ 0) SB'21
 - $(a)\,\frac{2mn-1}{m^2}$ (b) $\frac{1-2mn}{m^2}$
- (d) $\frac{1-2n}{m^2}$
- 80. $2x^2 5x 3 = 0$ সমীকরণের মূলদ্বয় হতে 1 কম মূলবিশ্টি সমীকরণ কোনটি? ISB'21
 - (a) $2x^2 x + 4 = 0$
- (b) $2x^2 + x + 6 = 0$
- (c) $2x^2 x 6 = 0$
- (d) $2x^2 + 9x + 4 = 0$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

68. b 69. d 70. a 71. d 73. d 74. b 75. c 77. b 78. d 79. b 80.€

- 69. $x = -i + 2 \Rightarrow x 2 = -i \Rightarrow (x 2)^2 = -1$ $\Rightarrow x^2 - 4x + 4 = -1 \Rightarrow x^2 - 4x + 5 = 0$
- 70. $1 16a = 0 \Rightarrow a = \frac{1}{16}$
- 71. त्याशक्त = $-\left(\frac{-9}{3}\right) = 3$
- 72 $\sum \alpha \beta = \frac{6}{7} = 3$
- 73. $f(x) = 1 + 3x 2x^2$ $f'(x) = 0 \Rightarrow 3 - 4x = 0 : x = \frac{3}{2}$
 - ে গরিষ্ঠ মান = $f(\frac{3}{4}) = 1 + 3 \times \frac{3}{4} 2 \times (\frac{3}{4})^2$
 - $=1+\frac{9}{4}-2\times\frac{9}{16}=1+\frac{9}{4}-\frac{9}{8}=\frac{8+18-9}{8}=\frac{17}{8}$
- 74. f(x) = 0 an yea a erm, f(a) = 1 + 3a 2a2 = 0
 - मद्रम সমীকরণে, x == −α => α == −x
 - $1 + 3(-x) 2(-x)^2 = 0 \Rightarrow 1 3x 2x^2 = 0$
 - $\Rightarrow 2x^2 + 3x 1 = 0$


75. $2x^2 - kx + 2 = 0$; $D > 0 \Rightarrow (-k)^2 - 4 \cdot 2 \cdot 2 > 0$ $\Rightarrow (k+4)(k-4) > 0$

- $...k<-4 \text{ or } k>4 ...k \in (-\infty,-4) \cup (4,\infty)$
- 76. $(-p)^2 4 \cdot 2 \cdot 8 = 0 \Rightarrow p^2 = 64 \therefore p = \pm 8$
- 77. $x^2 + x + 2 = 0$; $\alpha + \beta = -1$; $\alpha\beta = 2$; $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-1}{2}$
- 78. $\alpha \cdot 3\alpha = \frac{4}{3} \cdot \alpha^2 = \frac{4}{3} \cdot \alpha = \pm \frac{2}{3}$ $\alpha + 3\alpha \Rightarrow \frac{p}{3} \Rightarrow 4\left(\pm \frac{2}{3}\right) = \frac{p}{3} \Rightarrow p = \pm 8$
- 79. $\sqrt[n]{\alpha}, \beta \therefore \alpha + \beta \approx \frac{1}{m}; \alpha\beta = \frac{n}{m}$
 - $(\alpha^2 + \beta^2) = (\alpha + \beta)^2 2\alpha\beta = (\frac{1}{m})^2 2\frac{n}{m} \Rightarrow (\frac{1}{m})^2 \frac{2n}{m} = \frac{1-2nn}{m^2}$
- 80. Zx³ 5x 3 = 0 अते मुलबर्ग 3, 1
 - ্ নির্বের সমীকরণ $x^2 \left(2 \frac{3}{2}\right)x 3 = 0$
 - $4x^{2} \frac{x}{3} 3 = 0 \Rightarrow 2x^{2} x 6 = 0$
 - $64 = 7 \cdot 2(x+1)^2 5(x+1) 3 = 0 \Rightarrow 2x^2 x 6 = 0$

HSC व्रभुकाश्क २०२०

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

81. k এর মান কড?

[SB'21]

- (a) -5
- (b) 18
- (c) -9(d) -10
- 82. $6x^3 + 3x^2 + 2 = 0$ ত্রিঘাত সমীকরণটির মূলতায় a, b ও c হলে ∑ a²b² এর মান কোনটি?
 - (a) $-\frac{1}{3}$
- (b) 3

- 83. 2 + i মূলবিশিষ্ট দ্বিঘাত সমীকরণ কোনটি? [BB'21; CB'17]
 - (a) $x^2 4x + 5 = 0$
- (b) $x^2 + 4x 3 = 0$
- (c) $x^2 4x + 3 = 0$
- (d) $x^2 + 4x 5 = 0$
- 84. $x^3 2x^2 + 4 = 0$ এর মূলগুলো p, q, r হলে pqr এর মান
 - BB'211
 - (a) 2(b) -4(c) 2 নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:
 - $x^2 + 2x p = 0$ একটি দ্বিঘাত সমীকরণ।
- 85. সমীকরণের মূলদ্বয়ের গুণফল 4 হলে p এর মান কত?
 - (a) 4
- (b) 2
- (c) -4
- 86. সমীকরণের একটি মূল অপরটির দ্বিগুণ হলে মূলদ্বয় কত?
- (b) $\frac{-2}{3}$, $\frac{-4}{3}$ (d) $\frac{2}{3}$, $\frac{4}{3}$
- [BB'21]

- 87. k এর মান কত হলে $kx^2 + 4x + 4 = 0$ সমীকরণের মূলদ্বয় জটিল হবে? [JB'21]
 - (a) k > 4
- (b) k < 4
- (c) k > 1
- (d) k > 16
- 88. কী শর্তে $x^3 + px^2 + qx r = 0$ সমীকরণের দুটি মূলের সমষ্টি শুন্য হবে? [JB'21]
 - (a) pr = q
- (b) pq + r = 0
- (c) qr = p
- (d) r = p

- (i) প্রতিটির মূলধ্য় মূলদ
- (ii) সাধারণ মূল 3
- (iii) প্রথম সমীকরণের মৃপৎয়ের সমষ্টি 5

নিচের কোনটি সঠিক?

- (b) ii
- (c) i. iii
- (d) i. ii. iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রপ্লের উত্তর দাও:

 $\mathbf{x}^2 + \mathbf{x} + \mathbf{1} = \mathbf{0}$ এর মূলধর $\mathbf{\alpha}^{-1}$ ও $\mathbf{\beta}^{-1}$ হলে

- 90. (α β) এর মান কত?
- [JB'21] (d) 1 + 3i

- (a) 1
- (b) √31
- (c) 1
- [JB'21]

- 91. α এর মান কত?
 - (a) 1 i
- (b) 1 + i
- (c) $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$
- (d) $\frac{1}{3} \pm \frac{\sqrt{5}}{3}$
- 92. x এর মান বাস্তব হলে $-4x^2 + 4ax + b^2$ এর সর্বোচ্চ মান–
 - (a) $a^2 + b^2$
- (b) a + b
- [JB'21]

- (c) $a^2 b^2$
- (d) a b
- 93. $x^2 7x + p = 0$ সমীকরণের একটি মূল -4 হলে, p এর [CB'21]
 - (a) -66
- (b) -44
- (c) 44 (d) 60

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$5x^2 - 7x - 3 = 0$$
 সমীকরণের মূল α ও β .

- 94. কোন সমীকরণের মূল α + β এবং αβ?

 - (a) $25x^2 20x 21 = 0$
 - (b) $25x^2 20x + 21 = 0$
 - (c) $25x^2 + 20x 21 = 0$
 - (d) $25x^2 + 20x + 21 = 0$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

Q1 a	02 -	02											
81. c	62. a	83. a	84. 6	85. c	86. b	87. c	88. b	89. d	90. b	91 c	02 0	02 1	0.
									70.0	71.0	72. d	93.0	94. a

- 81. $16 + 2k + 2 \Rightarrow 2k = -18 \Rightarrow k = -9$
- 82. $\sum a^2b^2 = (\sum ab)^2 2abc(\sum a)$

=
$$0 - 2 \cdot \left(-\frac{1}{3}\right) \cdot \left(-\frac{1}{2}\right) = -\frac{1}{3} \left[\sum a = -\frac{1}{2}; \sum ab = 0; \sum abc = -\frac{1}{3}\right]$$

- 83. $x = 2 + i \Rightarrow (x 2)^2 = i^2 \Rightarrow x^2 4x + 4 = -1$ $4x^2-4x+5=0$
- 84. $pqr = -\frac{1}{7} = -4$
- 85. $\alpha\beta = -P = 4 \Rightarrow p = -4$
- 86. $\alpha + 2\alpha = -2 \Rightarrow \alpha = -\frac{2}{3}$; $2\alpha = -\frac{4}{3}$
- 87. 42-4 k.4<1 wife k>1
- শর্তমতে, α, –α, β তিনটি মূল Λ β = –p
- $(-p^3 + p, p^2 pq r = 0) \Rightarrow pq + r = 0$ 89. স্পষ্টত (iii) সঠিক। আবার, 3² — 5 · 3 + 6 = 0
 - 32 + 3 12 = 0, wife (ii) महिन।

90. $\frac{\beta+\alpha}{\alpha\beta}=-1:\alpha+\beta=-1;\alpha\beta=1$

- 91. '90' cate $\alpha + \beta = -1$; $\alpha \beta = \pm \sqrt{3}i = \alpha = \frac{-3}{3} \pm \frac{\sqrt{3}i}{3}$
- 92. $-(4x^2-4ax-b^2)=-\{(2x-a)^2-a^2-b^2\}$
 - $\Rightarrow a^2 + b^2 (2x a)^2$ [(2x a)² এর সংশিদ্ধ যান 0] . Max value = a2 + b2
- 93. $(-4)^2 7(-4) + p = 0$: p = -44
- 94. $\alpha + \beta = \frac{1}{2}; \alpha \beta = -\frac{1}{2}$
 - ্ৰ সমীকৱণ $x^2 (\frac{7}{5} \frac{x}{5})x + \frac{7}{5}(-\frac{x}{5}) = 0$ খা, $25x^2 20x 21 = 0$

- 95. α এর মান কত (যদি α > β হয়)?
- (a) $-\frac{1}{10} \left(7 + \sqrt{109}\right)$ (b) $\frac{1}{10} \left(-7 + \sqrt{109}\right)$
- (c) $\frac{1}{10} \left(7 \sqrt{109}\right)$ (d) $\frac{1}{10} \left(7 + \sqrt{109}\right)$
- 96. $4x^2 + 4x 1 = 0$ সমীকরণে-
- [CB'21]

- (i) মূলদ্বয় বাস্তব ও অসমান
- (ii) একটি মূল √2-1
- (iii) মূলদ্বয় জটিল ও অসমান

নিচের কোনটি সঠিক?

(a) i, ii

- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 97. k-এর কোন মানের জন্য $(k-1)x^2 (k+2)x + 4$ রাশিটি [CB'21] পূৰ্ণবৰ্গ হবে?
 - (a) (-10, 2)
- (b) (10, -2)
- (c)(2,10)
- (d) (-2, -10)
- 98. √3 1 মূলবিশিষ্ট দ্বিঘাত সমীকরণ কোনটি?

[Din.B'21; DB'19]

- (a) $x^2 2x 2 = 0$
- (b) $x^2 + 2x 2 = 0$
- (c) $x^2 2\sqrt{3}x + 2 = 0$
- (d) $x^2 + 2\sqrt{3}x + 2 = 0$
- 99. দ্বিঘাত সমীকরণের মূলগুলো বাস্তব হবে যদি-
- [Din.B'21]

- (i) পৃথায়ক শূন্য হয়
- (ii) পৃথায়ক ধনাত্মক হয়
- (iii) পৃথায়ক ঋণাত্মক হয়

নিচের কোনটি সঠিক?

(a) i, ii

- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- $100. x^2 + 5x 7 = 0$ সমীকরণের মূলগুলো-

[Din.B'21; DB, Ctg.B, SB'19]

- (a) বাস্তব ও মূলদ
- (b) বাস্তব ও অমূলদ
- (c) জটিল
- (d) বাস্তব ও সমান

- $101. \ 2x^2 5x + c = 0$ সমীকরণের মূলদ্বয় পরস্পর গুণাত্মক
 - বিপরীত হলে c এর মান কত?
- [Din.B'21]
- (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) -2

- $102. \ 2x^3 x^2 5x 2 = 0$ সমীকরণের মূলত্রায়ের সমষ্টি কত? [Din.B'21]
 - (a) $-\frac{5}{2}$ (b) $\frac{1}{2}$ (c) -2
- (d) 2
- 103. $x^3-px^2+q=0$ সমীকরণের মূলত্রয় α, β ও γ হলে \sum_{α^2} [Din.B'21] এর মান কত?
 - (a) p²

- (b) $p^2 2q$
- $(c) -p^2$
- (d) -q
- 104. x² + 4x + 16 = 0 সমীকরণের-
 - (ii) মূলদ্বয়ের যোগফল -4
 - (i) মূলদ্বয় জটিল
 - (iii) মূলদ্বরের গুণফল 16

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

[MB'21]

- $105. \ x^3 bx^2 + cx a = 0$ সমীকরণের মূলগুলির বিপরীত মুলগুলি দ্বারা গঠিত সমীকরণ নিচের কোনটি? [DB'19]
 - (a) $-x^3 + bx^2 cx + a = 0$
 - (b) $ax^3 + cx^2 bx + 1 = 0$
 - (c) $x^3 + bx^2 + cx + a = 0$
 - (d) $ax^3 cx^2 + bx 1 = 0$
- 106. k এর মান কত হলে x2 + (k2 4)x + 2k 6 = 0 সমীকরণের মূল দুইটি পরস্পর উল্টা ও বিপরীত চিহ্ন বিশিষ্ট হবে? [DB'19]

 - (a) $\pm \sqrt{3}$ (b) $\pm \sqrt{5}$
- (c) $\frac{5}{2}$
- 107. $x^2+4x+13=0$ সমীকরণের মূলদ্বয় α ও β হলে $\alpha+1$ এবং β + 1 মূলবিশিষ্ট সমীকরণ নিচের কোনটি?
 - (a) $x^2 + 2x + 10 = 0$
- (b) $x^2 + 6x + 18 = 0$
- (c) $x^2 2x + 10 = 0$ (d) $x^2 6x + 18 = 0$

		-	Assessment Section Section 5		THE PERSON NAMED IN							
00.1	06 0	97 c	98 h	99. a	100 h	101 d	102 6	100			-	107 0
95.0	90. a	71.0	70.0	, , , m	100.0	101.4	102.0	103. a	104 d	105 4	106 0	107.4
95. d		-				-	-	-	104. u	103. 0	100.0	

- 95. $\alpha = \frac{7+\sqrt{49-4\times5\times(-3)}}{2\times5} = \frac{1}{10}(7+\sqrt{109})$
- 96 मूलवर -4+ 16116 = 1 1 1 1 1
- 97. $(k+2)^2 = 4 \times 4 \times (k-1) \Rightarrow k^2 + 4k + 4 = 16k 16$ $\Rightarrow k^2 - 12k + 20 = 0 \Rightarrow (k - 10)(k - 2) = 0 : k = 2,10$
- 98. $x = \sqrt{3} 1 \Rightarrow x + 1 = \sqrt{3}$
 - $(x+1)^2 = 3 \Rightarrow x^2 + 2x + 1 = 3 \Rightarrow x^2 + 2x 2 = 0$
- 100. D = 25 4 · 1(-7) = 53 या পूर्ववर्ण नग्न।
- 101. = 1 ⇒ c = 2

- 102. $\alpha + \beta + \gamma = -\frac{b}{2} = \frac{1}{2}$
- 103. $\Sigma \alpha^2 = (\Sigma \alpha)^2 2\Sigma \alpha \beta = p^2 2 \times 0 = p^2$
- 104. b² 4ac = -48 : মূলবয় জটিল
- 105. $\left(\frac{1}{x}\right)^3 b\left(\frac{1}{x}\right)^2 + c\left(\frac{1}{x}\right) a = 0 \Rightarrow 1 bx + cx^2 ax^3 = 0$ $\Rightarrow ax^3 - cx^2 + bx - 1 = 0$
- 107. $\alpha + \beta = -4$; $\alpha\beta = 13$: $\alpha + \beta + 2 = -4 + 2 = -2$ $\alpha\beta + \alpha + \beta + 1 = 13 - 4 + 1 = 10$
 - ে স্থীকরণ, $x^2 (-2)x + 10 = 0$: $x^2 + 2x + 10 = 0$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$f(x) = 2x^2 - 5x + 1$$
; $g(x) = x$.

108. f(x) g(x) = 0 সমীকরণের মূলত্রয় α, β, γ হলে, $\sum αβ$ এর

[Ctg.B'19]

(a)
$$-\frac{5}{2}$$
 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$

(b)
$$-\frac{1}{2}$$

(c)
$$\frac{1}{2}$$

(d)
$$\frac{5}{2}$$

109. $x^2 - 8x + k = 0$ সমীকরণের একটি মূল 4 হলে অন্য মূলটি-

[Ctg.B'19]

- (a) k 4
- (b) -4
- (c) 4
- (d) 4 k

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: $3x^2 - 4x - k = 0$ একটি দ্বিঘাত সমীকরণ।

110. সমীকরণের মূলদ্বয়ের গুণফল 10 হলে, k এর মান কোনটি?

[SB'19]

- (a) + 30
- (b) -10
- (c) 10
- (d) -30
- 111. সমীকরণটির একটি মূল অপরটির দ্বিগুণ হলে, মূলদ্বয়ের মান কোনটি? [SB'19]
 - (a) -4, -8 (b) $\frac{4}{9}, \frac{8}{9}$ (c) 4, 8

- 112. $3x^2 + x + 2 = 0$ সমীকরণের মূলদ্বয় α ও β হলে, $\frac{1}{\alpha} + \frac{1}{\beta} =$
 - (a) $-\frac{1}{2}$
- (b) $-\frac{2}{3}$ (c) $\frac{1}{2}$
- 113. p এর কোন মানের জন্য $px^2 + 3x + 4 = 0$ সমীকরণের মূলদ্বয় বাস্তব ও অসমান হবে? [BB'19]
 - (a) $p = \frac{9}{16}$ (b) $p < \frac{16}{9}$ (c) $p < \frac{9}{16}$ (d) $p > \frac{9}{16}$

- 114. $ax^2 + bx + c = 0$ একটি দ্বিঘাত সমীকরণ-
- [JB'19]
- (i) c = 0 হলে, একটি মূল শূন্য
- (ii) b = 0 হলে, মূল দৃটি সমান ও বিপরীত চিহ্নযুক্ত হবে
- (iii) c ও a একই চিহ্নবিশিষ্ট হলে মূল দুটি বাস্তব হবে

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

- $115. \ 4x^3 + 2x^2 + 3x 6$ কে x 1 দ্বারা ভাগ করলে ভাগশেষ কত হবে? [JB'19]
 - (a) 1
- (b) 3
- (c) 11
- $116. \ x^2 + x + 1 = 0$ সমীকরণের একটি মূল lpha হলে অন্য মূলটি হবে-JB'191
 - (a) $-\alpha$
- (b) $\frac{1}{a^2}$
- $(c)^{\frac{1}{a}}$

(d) 0

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$x^2 - 5x + 4 = 0$$
 সমীকরণের মূলদ্বয় α ও β .

- 117. সমীকরণটির মূলদ্বয়ের ক্ষেত্রে কোনটি সঠিক?
 - (b) মূলদ্বয় অমূলদ
 - (a) মূলদ্বয় বাস্তব ও সমান (c) মূলদ্বয় মূলদ ও অসমান
- (d) মূলদ্বয় জটিল
- 118. $\alpha > \beta$ হলে, $\alpha \beta = \sigma$ ত?
- [CB'19] (d) 5
- (a) 1
- (b) 3
- (c) 4

[CB'19]

- $119. \ x^3 3x^2 16x + 48 = 0$ সমীকরণের দুটি মূলের যোগফল শূন্য হলে, তৃতীয় মূল কোনটি? [CB'19]
 - (a) -4
- (b) -3
- (c) 3
- (d) 4

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$2x^2 - 2x + 1 = 0$$
 সমীকরণের মূল দুটি $\frac{1}{p}$, $\frac{1}{q}$

- 120. p + q এর মান কত?
- [Din.B'19]

- (a) 2

- (d) + 2[Din.B'19]

- 121. q এর মান কত?
- - (c) $\frac{-1\pm i}{2}$ (d) $\frac{1\pm i}{2}$
- 122. কোন ফাংশনটি বহুপদী?
- [All.B'18]
- (a) $2x^2 5\sqrt{x} + 1$
- (b) $x^3 \frac{3}{x^2} + 4x + 1$
- (c) $x^3 + 2x^2 3x + x^{-1}$ (d) $2x^2 x + 1$

(a) $-1 \pm i$ (b) $1 \pm i$

- 123. $4x x^2 4 = 0$ সমীকরণের একটি মূল 2 হলে অপর মূল কত? [DB'17]
 - (a) -4
- (b) -2
- (c) 0
- (d) 2

108. c	109. c	110. d	111.b	112. a	113. c	114. a	115. b	116. c	117. c
118. b	119. c	120. c	121. b	122. d	123. d				

- 108. $2x^3 5x^2 + x = 0$. $\sum \alpha \beta = \frac{1}{2}$
- 109. $x^2 8x + k = (x 4)(x \alpha) = x^2 (4 + \alpha)x + 4\alpha$
- $4 + \alpha = 8 \Rightarrow \alpha = 4$
- 110. $-\frac{k}{3} = 10 : k = -30$ 111. $\alpha + 2\alpha = \frac{4}{3} \wedge 3\alpha = \frac{4}{3} \wedge \alpha = \frac{4}{3} \wedge 2\alpha = \frac{8}{3}$
- 112. $\alpha + \beta = -\frac{1}{3}$, $\alpha\beta = \frac{2}{3}$; $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{1}{3} = -\frac{1}{2}$
- 113. 9 16p > 0 \Rightarrow p $< \frac{9}{16}$
- 115. x = 1 => 4 · 13 + 2 · 12 + 3 · 1 6 = 3
- 116. a. B = 1 = B = -

- 117. x = 4,1 । আবার, b2 4ac = 9, যা পূর্ণবর্গ সংখ্যা।
- 118. $\alpha = 4, \beta = 1$ RCM, $\alpha \beta = 4 1 = 3$
- 119. $\alpha + \beta + \gamma = 3 \land \gamma = 3 [\lor \alpha + \beta = 0]$
- 120. $\frac{1}{p}, \frac{1}{q} = \frac{1}{2} \Rightarrow pq = 2$ and $\frac{1}{p} + \frac{1}{q} = -\frac{-2}{2} = 1 \Rightarrow p + q = pq = 2$
- 121. $(p-q)^2 = (p+q)^2 4pq = 2^2 4 \cdot 2 = -4$;
 - p q = 2i width, p + q = 2.. 2p = 2 + 2i; p = 1 + i si Rtq = 1 - i .. q = 1 ± i
- 122. বহুপদী রাশিতে x এর ঘাত ধনাত্তক পূর্ণসংখ্যা।
- 123. $x^2 4x + 4 = 0 \Rightarrow (x 2)^2 = 0 : x = 2$

- Education गणि सम्ब 124. mx³ - nx + 3 = 0 সমীকরণের মূলতায় a, b ও c হলে [RB'17]
 - ab + bc + ca এর মান কোনটি? (a) $-\frac{n}{m}$ (b) 0 (c) $\frac{n}{m}$ (d) $\frac{3}{m}$
- 125. x² + px + q = 0 সমীকরণের একটি মূল 3 + i হলে p ও q [RB'17] এর মান কত?
 - (a) -6, -10 (b) -6, 10 (c) 6, -10 (d) 6,10
- [Ctg.B'17] $126. x^2 = 0$ সমীকরণের পৃথায়ক কত?
- (d) 4 (a) -4(b) 0
- 127. $2x^3 3x 5 = 0$ সমীকরণের মূলত্রয় α , β , γ হলে $\Sigma \alpha \beta$ [Ctg.B'17] এর মান কত?
- (a) $\frac{-3}{2}$ (b) 0 (c) $\frac{3}{2}$
- 128. $ax^2 + bx + c = 0$, (a ≠ 0) সমীকরণের পৃথায়ক D হলে-[Ctg.B'17] (i) मृलघग्र वाखव यथन D ≥ 0
 - (ii) भूलवय সমান यथन D = 0
 - (iii) मृलदग्र मृलम यथन D ≤ 0

নিচের কোনটি সঠিক?

(c) i, iii (d) i, ii, iii (a) i, ii (b) ii, iii নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

 $2x^3 + 3x^2 - 5x - 6 = 0$ ব্রিঘাত সমীকরণের মূলত্রয় a, b, c-

- 129. $\sum a^2$ এর মান নিচের কোনটি?
 - [SB'17]

- (a) $\frac{9}{4}$ (b) $\frac{25}{4}$
- (c) $\frac{29}{4}$ (d) $\frac{36}{4}$

130. x এর মানগুলি-

[SB'17]

- (a) $1, -\frac{3}{2}, -2$
- (b) $-1, -\frac{3}{2}, 2$
- (c) $-1, \frac{3}{2}, -2$
- $(d) -1, -\frac{3}{2}, -2$

- 131. $9x^3 + 45x^2 + 60x 27 = 0$ সমীকরণের মূল্যার স্থ कड?
 - (b) 5 (a) 45
- (d) -45
- 132. 3x² + x + 2 = 0 四月 (年(五)
- [JB'17]
- (i) মূলদ্বয় বাস্তব ও সমান
- (ii) মূলম্বরের যোগফল $-\frac{1}{2}$
- (iii) মূলদ্বয়ের গুণফল ²

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii

(c) -5

- (d) i, ii, ii
- 133. 1 + √2 মূলবিশিষ্ট দ্বিঘাত সমীকরণ কোন্টি?
 - (a) $x^2 2x 1 = 0$ (b) $x^2 + 2x 1 = 0$
 - (c) $x^2 2x + 1 = 0$ (d) $x^2 + 2x + 1 = 0$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাঙ $x^2 - 3x - p = 0$ একটি দ্বিঘাত সমীকরণ।

- 134. সমীকরণের একটি মূল −2 হলে p এর মান কত? [CB'I7]
 - (a) -10
- (b) -2
- (c) 2

[CB'17]

- 135. মূলদ্বয় বাস্তব ও সমান হলে p এর মান-

- (a) $\frac{9}{4}$ (b) $\frac{-9}{4}$ (c) $\frac{3}{4}$
- 136. $13x^2 6x 7 = 0$ এর মূলদ্বয় α ও β হলে $\alpha^{-1} + 1$ ও
 - β⁻¹ + 1 মূলবিশিষ্ট সমীকরণ কোনটি?
- (a) $7x^2 8x 12 = 0$ (b) $7x^2 20x = 0$
- (c) $7x^2 + 8x 12 = 0$ (d) $7x^2 + 8x = 0$
- $137. 4x^3 + 12x^2 3x + 52 = 0$ সমীকরণের একটি মূল
 - $\frac{1}{2}$ √3i হলে, এর বাস্তব মূল কোনটি?
- [Din.B'17]

- (a) -5
- (b) -4

(c) 4

(d) 5

124. a	125. b	126. b	127. a	128. a	129. c	130 c	121 0	122.0	133.4
134 d	135. b	136. a	137. b			150.0	131.0	132. 0	

- 125. 3 + 1,3 1 OTHERP = 6 : SOTEM = 10 : p = -6,q = 10
- 126. $(0)^2 4 \cdot 1 \cdot 0 = 0$
- 129. $2x^3 + 3x^2 5x 6 = 0$ $a + b + c = -\frac{3}{2}$; $ab + bc + ca = -\frac{5}{2}$ $\Delta x = (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$
- $2a^{2} + b^{2} + c^{2} = \left(-\frac{3}{2}\right)^{2} 2\left(-\frac{5}{2}\right) = \frac{9}{4} + 5 = \frac{9+25}{4} = \frac{29}{2}$ 132. (i) বিভায়ক = $(1)^2 - 4 \times 3 \times 2 = -11$ ः মূলধ্য অবাস্তব ও অসমান।
 - (ii) মূলধ্যের যোগফল = $-\frac{1}{2} = -\frac{1}{2}$;
 - (iii) मूलवरस्व छलकल =

- 133. এकि মূল $1+\sqrt{2}$ रहन जलत মূল $1-\sqrt{2}$ ः মূলছয়ের যোগমল = 2
 - \therefore মূলহয়ের ওণফল $= (1 + \sqrt{2})(1 \sqrt{2}) = 1 2 = -1$
 - x নির্বেয় সমীকরণ = $x^2 2x 1$
- 134. $\alpha + \beta = 3 \implies -2 + \beta = 3$
 - $\alpha \beta = 5$; $\alpha \beta = -p \Rightarrow (-2)5 = -p \Rightarrow p = 10$
- 135. $(-3)^4 4 \cdot 1(-p) = 0 \Rightarrow 9 + 4p = 0 :: p = -\frac{1}{4}$
- $136. \frac{1}{\alpha} + 1 = x \Rightarrow \alpha = \frac{1}{x-1} \wedge 13 \left(\frac{1}{x-1}\right)^2 6 \left(\frac{1}{x-1}\right) 7 = 0$

বিভিন্ন কলেজের টেস্ট পরীক্ষার MCQ প্রশ

- 138 x² = 0 সমীকরণের নিশ্চায়ক কত? |রংপুর ক্যাডেট কলেজ।
 - (a) 4
- (b) 0

(c) 1

- (d) 4
- 139. $4x^3 + 12x^2 3x + 52 = 0$ সমীকরণটির একটি মূল $\frac{1}{2}$
 - √3i হলে এর বাস্তব মূলটি কত? [কুমিল্লা ক্যাডেট কলেজ।
 - (a) -5
- (b) -4

(c) 4

- (d) 5
- 140. $2x^2 7x + 5 = 0$ সমীকরণের মূলদ্বয় α, β এবং $x^2 -$ 4x + 3 = 0 সমীকরণের মূলদ্বয় β ও γ হলে $(\gamma + \alpha)$: $(\gamma - \alpha)$ |ফৌজদারহাট ক্যাডেট কলেজ, চট্টগ্রাম|
- (b) 5 : 6
- (a) 6:5(c) 11:1
- (d) 1:6
- 141. $ax^2 + bx + c = 0$ সমীকরণের মূলছয় $\sin \alpha$ ও $\sin \beta$ হলে $\sin^2 \alpha + \sin^2 \beta = ?$
 - [ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা।
 - $(a) \frac{b^2 c^2}{a^2}$
- (c) $\frac{2ac-b^2}{a^2}$
- $(d) \frac{b^2 2ac}{a^2}$

- 142. $x^2 5x + 6 = 0$ সমীকরণের দুইটি মূল α এবং $β : α^4$ এবং β⁴ মূলবিশিষ্ট সমীকরণ নিচের কোনটি?
 - [আদমজী ক্যান্টনমেন্ট কলেজ, ঢাকা]
 - (a) $x^2 + 97x + 1296 = 0$
 - (b) $x^2 97x + 1296 = 0$
 - (c) $x^2 + 97x 1296 = 0$
 - (d) $x^2 97x 1296 = 0$
- 143. $ax^n + bx + c = 0; n \in \mathbb{Z}$ সমীকরণের কভটি থাকবে?[বাংলাদেশ মহিলা সমিতি বালিকা উচ্চ বিদ্যালয় ও কলেজ, চট্টগ্রাম।
 - (a) 0
- (b) 1
- (c) n
- (d) n + 1

08

- $144. x^3 + 5x^2 49x 245 = 0$ সমীকরণের দুইটি মূলের যোগফল শুন্য হলে, অপর মূলটি কত?
 - [বাংলাদেশ নৌবাহিনী কলেজ, চট্টগ্রাম।
 - (a) 5
- (b) 3
- (c) 2
- (d) -5
- 145. 2x3 3x 5 = 0 সমীকরণের মূলত্রয় a, b, c হলে,
 - $\frac{1}{2} + \frac{1}{6} + \frac{1}{6}$ এর মান কত?
- [খাগড়াছড়ি সরকারি কলেজ]

 - (a) $\frac{3}{5}$ (b) $-\frac{3}{5}$ (c) $\frac{3}{2}$ (d) $-\frac{3}{2}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

138. b	139. b	140. c	141. d	142. b	143. d	144. d	145. b

- 138. $x^2 = 0 \dots (i)$
 - নিস্তায়ক, $b^2 4ac = (0)^2 4 \cdot 1 \cdot 0 = 0$
- $139. \frac{1}{2} \sqrt{3}i + \frac{1}{2} + \sqrt{3}i + \alpha = \frac{-12}{4}$ [মানগুলোর যোগফল = $-\frac{b}{a}$] $\Rightarrow 1 + \alpha = -\frac{12}{14} \Rightarrow \alpha = -\frac{12}{4} - 1 \Rightarrow \alpha = \frac{-12-4}{4} = \frac{-16}{4} = -4$
- 140. $2x^2 7x + 5 = 0 \dots (i); x^2 4x + 3 = 0 \dots (ii)$
 - (i) নং সমীকরণের মূলহয় α, β
 - (ii) নং সমীকরণের মৃলবয় β, γ
 - $\alpha+\beta=\frac{7}{2}\ldots\ldots$ (iii); $\beta+\gamma=\frac{-(-4)}{1}=4\ldots\ldots$ (iv)
 - (iii) (iv) \Rightarrow $(y a) = 4 \frac{7}{2} = \frac{1}{2}$

সাধারণ মূল, β হওয়ায়,

- (i) (ii) × 2 ⇒
 - $2x^2 7x + 5 = 0$
 - $2x^2 8x + 6 = 0$
- (-) (+) (-)

ः সাধারণ মৃশ, β = 1

- $x-1=0 \Rightarrow x=1$
- .. a = 1 = [(iii) नर (भारक)
- y = 4 1 = 3 ((iv) 和 (如(本)
- $(\gamma + \alpha) \cdot (\gamma \alpha) = (\frac{11}{2}) \cdot (\frac{1}{2}) = 11 \cdot 1$

- 141. $\sin \alpha + \sin \beta = -\frac{b}{a} \dots \dots (i)$
 - $\sin \alpha \sin \beta = \frac{c}{2} \dots \dots (ii)$
 - $\sin^2 \alpha + \sin^2 \beta = (\sin \beta + \sin \beta)^2 2 \sin \alpha \sin \beta$
- 142. $x^2 5x + 6 = 0 \Rightarrow x^2 3x 2x + 6 = 0$
 - $\Rightarrow x(x-3)-2(x-3)=0 \Rightarrow (x-3)(x-2)=0$
 - $\alpha = 3, \beta = 2$
 - $\alpha^4 = 81, \beta^4 = 16$
 - ∴ সমীকরণ: x² (81 + 16)x + 81 × 16 = 0
 - $\Rightarrow x^2 97x + 1296 = 0$
- 143. মনে করি, n = +k,n = -k হলে, [k > 0]
 - $x^{-k} + 2x + 1 = 0 \Rightarrow x^{-k+k} + 2x^{k+1} + x^k = 0$ [x+k wisi eq acs]
 - $\Rightarrow 2x^{n+1} + x^n + 1 = 0$
 - মূল থাকবে = n + 1
 - N B: আসলে মূল থাকবে = (|n|+1) টি কারণ $n \in \mathbb{Z}$
- $144 \quad \alpha + (-\alpha) + \beta = -\frac{3}{5} \Rightarrow \beta = -5$
- $145. 2x^3 3x 5 = 0$ সমীকরণের মূলতলো a, b, c হলে,
 - $ab + bc + ca = \frac{-1}{4}$
 - आवात, abc = $\frac{-(-5)}{}$ = $\frac{5}{3}$

(b) -4

12. যদি f(x) = 0 এর তিনটি মূল 1, -1, 2 হয় তবে

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও

 $2x^3 - 5x^2 + 6x - 1 = 0$ বহুপদী সমীকরণের মূল ি

(c) -12

(b) $\frac{1}{2}$, $-\frac{1}{2}$, -1

(d) 0, 1, -2

(c) -3

(c) 4

সাজেশনভিত্তিক মডেল টেস্ট: অধ্যায়-০৪

পূৰ্ণমান: ৫০

MCQ

abc এর মান কোনটি?

f(2x) = 0 এর মূলগুলি-

13. $\alpha\beta + \beta\gamma + \gamma\alpha$ এর মান নিচের কোনটি?

(b) $\frac{1}{2}$

(b) $-\frac{1}{4}$

15. 1,1 ও 1 মূল তিনটি দ্বারা গঠিত সমীকরণ কোনটি?

14. $\sum \alpha^2$ এর মান নিচের কোনটি?

(a) $x^3 + 3x^2 + 3x + 1 = 0$

(b) $x^3 - 3x^2 + 3x - 1 = 0$

(c) $x^3 - 3x^2 - 3x - 1 = 0$

(d) $x^3 - 3x^2 - 3x + 1 = 0$

(a) 4

(a) $-\frac{1}{2}, \frac{1}{2}, 1$

(c) 2, -2, 4

a, B এवः Y I

(a) $\frac{5}{3}$

(a) $\frac{1}{4}$

मध्यः १० विल

- 01. চলকের যে সকল মানের জন্য বহুপদীর মান শূন্য হয় তারা প্রত্যেকেই ঐ বহুপদী সমীকরণের কী?
 - (a) भून
- (b) ঘাত
- (c) সূচক
- (d) মাত্রা
- $02. \quad 3x^2 + 4x + 1 = 0$ সমীকরণের মূলদ্বয় α, β হলে-
 - (i) $\alpha + \beta = \frac{-4}{3}$
 - (ii) $\alpha\beta = \frac{1}{2}$
 - (iii) α + 1 এবং β + 1 মূলবিশিষ্ট সমীকরণ $3x^2 2x = 0$ নিচের কোনটি সঠিক?
 - (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 03 $x^2 + 4x + 4 = 0$ এর মূলদ্বয় α, β হলে এর মূলদ্বয়ের ঘন এর সমষ্টি কত?
 - (a) 112
- (b) 16
- (c) 16
- (d) 112
- $x^2 5x + m = 0$ এর একটি মূল -3 হলে m এর মান কত?
 - (a) -6
- (b) 12
- (c) -24

(iii) সমান

- (d) 30
- $4x^2 20x + 25 = 0$ ছিঘাত সমীকরণের মূলম্বয়
 - (i) অমূলদ (ii) বাস্তব নিচের কোনটি সঠিক?
 - (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- $06. \quad x^2 4x + 16 = 0$ সমীকরণের-
 - (i) भृलदय भृलप
- (ii) মূলদ্বয়ের যোগফল-4
- (iii) মূলদ্বয়ের গুণফল 16

নিচের কোনটি সঠিক?

- (a) iii
- (b) ii, iii
- (c) i, iii

(c) 3

- (d) i, ii, iii
- 07. 1 − 2√−1 মূলবিশিষ্ট সমীকরণটি হবে-
 - (a) $x^2 2x + 5 = 0$
- (b) $x^2 + 2x + 5 = 0$
- (c) $x^2 + 2x 5 = 0$
- (d) $x^2 2x 5 = 0$
- $2x^2 3x P = 0$ সমীকরণের মূলদ্বয় পরম্পর উল্টো হলে. P এর মান কত?
 - (a) 2
- (b) 2
- (d) -3
- 09. x² 4x + a = 0 এর মূলদ্য__
 - (i) সমান হবে यपि a = 4 হয়
 - (ii) জिंग स्टा यिम a > 4 स्य
 - (iii) वाखव इरन यमि a ≤ 4 इग्न

নিচের কোনটি সঠিক?

- (b) i, iii (c) ii, iii (d) i, ii, iii নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: $3x^3 - 5x^2 - 12 = 0$ সমীকরণের মূলতায় a, b, c.
- 10. ∑ab এর মান কোনটি?
 - (a) 5
- (b) -5
- (c) 0
- (d) 6

উন্দাস একাডেমিক এন্ড এডমিশন কেয়ার

(a) - 10

এর মান কত?

- (b) -3
- (c) 3
- (d) 10

(d) 3

একটি ত্রিঘাত সমীকরণের দুইটি মূল 1 ও i সমীকরণটি-

16. $2x^2 + ax + 6 = 0$ সমীকরণটির মূলদ্বয়ের যোগফল 5 লে a

- (a) $x^3 x^2 + x 1 = 0$ (b) $x^3 + 1 = 0$
- (c) $x^3 + x^2 x 1 = 0$ (d) $x^3 + x^2 + x + 1 = 0$ 18. x = ³√1 সমীকরণের মূল তিনটির গুণফল কত?
 - (a) 1
- (b) 0
- (c) 1
- 19. 7 + 2i ও 7 2i মূলদ্বয়বিশিষ্ট সমীকরণ নিচের কোনটি? (a) $x^2 - 14x + 53 = 0$ (b) $x^2 - 14x - 53 = 0$
 - (c) $x^2 + 14x 53 = 0$
- (d) $x^2 + 14x + 53 = 0$
- 20. $4x^3 7x^2 + 2x 8 = 0$ সমীকরণের মূলত্রয়ের সমষ্টি কোনটি?

- (a) $-\frac{4}{7}$ (b) $\frac{-7}{4}$ (c) $\frac{7}{4}$ 21. যদি $\alpha+\beta=3$ ও $\alpha^3+\beta^3=7$ হয় তবে α ও β যে সমীকরণের মূল তা নিচের কোনটি হবে?
 - (a) $x^2 3x + 7 = 0$
- (b) $x^2 3x 7 = 0$
- (c) $9x^2 27x + 20 = 0$ (d) $9x^2 27x 20 = 0$ 22. $x^3 \left(\frac{1}{x} + \frac{2}{x^2} + \frac{1}{x^3} \right) = 0$ সমীকরণটি
 - (i) দ্বিঘাত (ii) বিঘাত (iii) वाखव भूनविभिष्ठ
 - নিচের কোনটি সঠিক? (a) i, ii
 - (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

- $2x^2 + 4x + 1 = 0$ সমীকরণের মূল দুটি α ও β হলে α^2 ও β² মূল বিশিষ্ট সমীকরণ কোনটি?
 - (a) $4x^2 12x + 1 = 0$
- (b) $4x^2 + 12x + 1 = 0$
- (c) $4x^2 + 12x 1 = 0$
- (d) $4x^2 12x 1 = 0$
- $x^2 + ax + 2 = 0$ এর একটি মূল অন্যটির দিগুণ হলে a এর মান কত?
 - $(a) \pm 2$
- (b) ± 3
- $(c) \pm 4$
- (d) + 5

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: $x^2 - 3x + 5 = 0$ সমীকরণের মূলদ্বয় α , $\beta(\alpha > \beta)$

- 25. সমীকরণটির মূলদ্বয়ের সমষ্টি কত?
 - (a) 3
- (b) $\frac{1}{2}$
- (c) 5
- 26. সমীকরণটির ন্যুনতম মান কত?
- (b) $\frac{4}{11}$

- 27. $2x^2 + 3x + 1 = 0$ সমীকরণের মূলদ্বয় m, n হলে |m - n| এর মান নিচের কোনটি?
- (b) 1
- (c) 2
- $x^3 px^2 qx r = 0$ সমীকরণের মুলগুলোর বিপরীত মুলগুলো দ্বারা গঠিত সমীকরণ কোনটি?
 - (a) $x^3 + px^2 + px + r = 0$
 - (b) $x^3 + qx^2 + rx + p = 0$
 - (c) $rx^3 + qx^2 + px 1 = 0$
 - (d) $rx^3 px^2 + px 1 = 0$
- 29. $2x^2 + 2x k$ রাশিটি পূর্ণবর্গ হলে, k এর সঠিক মান নিচের কোনটি?
 - $(a)^{\frac{2}{3}}$
- (b) $\frac{2}{9}$
- (c) $-\frac{2}{3}$
- 30. x² + ax + b = 0 সমীকরণের একটি মূল 1 i হলে a এবং b এর মান নিমের কোন দুইটি? [ab ∈ R]
 - (a) a = 2, b = 1
- (b) a = -2, b = 2
- (c) a = 2, b = 2
- (d) a = 2, b = -2
- 31. $x^3 + x^2 + 4x + 7 = 0$ একটি-
 - (i) এক চলকের বহুপদী সমীকরণ
 - (ii) ত্রিঘাতবিশিষ্ট বহুপদী সমীকরণ
 - (iii) সমমাত্রিক বহুপদী সমীকরণ

নিচের কোনটি সঠিক?

- (b) ii, iii
- (c) i, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$x^2 - 5x + k = 0$

- 32. x² 2x + 1 = 0 সমীকরণের মূলদ্বয়—
- (ii) এর তণফল -1
- (iii) এর একটি অপরটির গুণাত্মক বিপরীত

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- 33. $x^3 x^2 + x 1 = 0$ সমীকরণের একটি মূল i হলে অপর মুলদ্বয়ের গুণফল কোনটি?
- (c) 1

- $34. -2x^2 x + 3 = 0$ সমীকরণের পৃথায়ক কত?
 - (a) 25
- (b) -23
- (c) 23
- 35. $x^2 2x + 3 = 0$ সমীকরণের মূলদ্বয় p, q হলে $p^2 + q^2 = \overline{a}$?
 - (a) -2
- (b) 1
- (c) 2
- 36. -α ও β মূলবিশিষ্ট দ্বিঘাত সমীকরণ কোনটি?
 - (a) $x^2 (\alpha + \beta)x + \alpha\beta = 0$
 - (b) $x^2 (\beta \alpha)x \alpha\beta = 0$
 - (c) $x^2 (\alpha \beta)x \alpha\beta = 0$
 - (d) $x^2 (\beta \alpha)x + \alpha\beta = 0$
- 37. $x^2 + kx + 1 = 0$ সমীকরণের মূলদ্বয় জটিল হলে k এর মান
 - (a) k > -2
- (b) k > 2
- (c) k < 2
- (d) -2 < k < 2
- 38. x² = 0 সমীকরণের পৃথায়ক কত?
 - (a) -4
- (b) 0
- (c) 1
- (d) 4
- 39. $f(x) = (x a_1)f_1(x)$ হলে, $f_1(x)$ বহুপদীর ঘাত নিচের কোনটি? [f(x) -এর ঘাত n]
 - (a) n
- (b) n + 1
 - (c) n 1
- (d) n 2
- 40. 9x2 6px + q2 এর সর্বনিমু মান কোনটি?
 - (a) $p^2 q^2$ (c) $p^2 + q^2$
- (b) $q^2 p^2$ (d) $p^2 + 2q^2$
- 41. দ্বিঘাত সমীকরণ $ax^2 + bx + c = 0$ এর দুইটি মূল অশূন্য হওয়ার শর্ত-
 - (a) c = 0
- (b) a = 0
- (c) b = c = 0
- (d) $c \neq 0$
- 42. $ax^2 + bx + c = 0$ সমীকরণটি-
 - (i) দ্বিঘাত হবে, যদি a ≠ 0 হয়
 - (ii) দ্বিঘাত সমীকরণের নিশ্চায়ক √c² 4ab

(iii) c = 0 হলে একটি মূল 0 হবে নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i
- 43. $x^2 + ax + b = 0$ সমীকরণের মূলছয়ের পার্থক্য 1 হলে কোন সম্পর্কটি সত্য?
 - (a) $a^2 + 4b + 1 = 0$
- (b) $a^2 + 4b = 1$
- (c) $a^2 4b + 1 = 0$
- (d) $a^2 4b = 1$
- 44. $x^3 + ax^2 + bx + c = 0$ সমীকরণের মূলগুলো α , β , γ হলে, $\alpha^2 + \beta^2 + \gamma^2$ এর মান কত?
 - (a) $a^2 + 2b$
- (b) $a^2 2b$
- (c) $a^2 + 2bc$
- (d) $a^2 2bc$
- 45. $x^4 + 3x^3 + 5x + 6 = 0$ সমীকরণের মূলগুলো α , β , δ , γ হলে, ∑αβ এর মান কত?
 - (a) 6
- (b) 5
- (c) -3
- (d) 0
- 46. $2x^3 + 3x^2 + 5x 1$ রাশিকে (x + 2) ছারা ভাগ করলে ভাগশেষ কত হবে?
 - (a) 7
- (b) 17
- (c) 37
- (d) 15

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

HSC প্রশ্নব্যাংক ২০২৫

47. $(x + \alpha)(x - \beta) + (x - \beta)(x + \gamma) + (x + \gamma)$ $(x + \alpha) = 0$ সমীকরণের মূলগুলির যোগফল শূন্য হবে যদি

(a) $\alpha + \beta + \gamma = 0$

(b) $\alpha = \beta + \gamma$

(c) $\beta = \alpha + \gamma$

(d) $\gamma = \alpha + \beta$

48. k এর মান কত হলে (3k + 1)x² + (11 + k)x + 9 = 0 সমীকরণের মূলদ্বয় জটিল সংখ্যা হবে?

(a) k > 1

(b) k < 85

(c) k > 85

(d) 1 < k < 85

49. α – β = 8, α³ – β³ = 152 ছলে, α ও β মূলবিশিষ্ট সমীকরণ কোনটি?

(a) $x^2 - 8x - 2 = 0$

(b) $x^2 - 2x - 15 = 6$

(c) $x^2 + 15x + 12 = 0$

(d) $x^2 + 12x + 8 = 0$

50. যদি -1,0 এবং 2 সমীকরণ f(x) = 0 এর মূল হয়, তরে f(3x) = 0 সমীকরণের তিনটি মূল হবে-

(a) -1,0,2

(b) 0,1,2

(c) -3.0.6

(d) $0, -\frac{1}{3}, \frac{2}{3}$

পূৰ্ণমান: ৫০

CQ

मयग्रः २:00 विक

01. $px^2 + qx + r = 0$ একটি দ্বিঘাত সমীকরণ।

(ক) দেখাও যে, m=n না হলে, $2x^2-2(m+n)x+m^2$ $+n^2=0 \ \text{সমীকরণের মূলগুলো বাস্তব হতে পারে না।} \quad 2$

(খ) উদ্দীপকের সমীকরণের একটি মূল যদি p ও r স্থান বিনিময় করলে যে সমীকরণ পাওয়া যায় তার একটি মূলের দিওণ হয় তবে প্রমাণ কর য়ে, 2p = r অথবা (2p + r)² = 2q²।

(গ) উদ্দীপকে p = 1, q = 5, r = 6 এর জন্য দ্বিঘাত সমীকরণের মূলদ্বয় α, β হলে, α – 2 এবং β – 3 মূলবিশিষ্ট সমীকরণ গঠন কর।

02. $ax^2 + bx + c = 0$ সমীকরণের মূলদ্বয় α ও β এবং $2x^3 - x^2 - 22x - 24 = 0$ একটি ত্রিঘাত সমীকরণ।

(ক) দ্বিতীয় সমীকরণের মূলগুলো α, β ও γ হলে ∑ α²β এর
মান নির্ণয় কর।

(খ) দিতীয় সমীকরণের দৃটি মৃলের অনুপাত 3: 4 হলে সমীকরণটির সমাধান কর।

(গ) ১ম সমীকরণ থেকে (aα + b)⁻² এবং (aβ + b)⁻² মূল দুটি দ্বারা গঠিত সমীকরণ নির্ণয় কর। 03. $f(x) = 4 + 3x - x^2$; $g(x) = x^3 - 7x^2 + 8x + 16$

(ক) বহুপদী বিঘাত সমীকরণের মূল বের করার পদ্ধতিটি _{শিষ}্

(খ) f(x) = 0 সমীকরণের মৃলহয় α ও β হলে α² + β² ç
 α³ + β³ মৃলবিশিষ্ট সমীকরণ গঠন কর।

(গ) g(x) = 0 সমীকরণের একটি মূল $1 + \sqrt{3}$: সমীকরণ্ট সমাধান কর।

 $04. \quad x^2 - px + 6 = 0, x^2 - 6x - 16 = 0$ দুইটি দ্বিঘাত সমীকরণ।

(ক) $2x^2 - 3x - 35 = 0$ সমাধান কর।

(খ) উদ্দীপকে উল্লিখিত দ্বিতীয় দ্বিঘাত সমীকরণের মূল্য α, β হলে (α + β) এবং (α – β) মূলবিশিষ্ট সমীকরণটি গঠন কর।

(গ) উদ্দীপকের প্রথম ও দ্বিতীয় দ্বিঘাত সমীকরণের একী সাধারণ মূল থাকলে p এর মান নির্ণয় কর।

05. (i) $P(x) = x^2 + px + q$ এবং $Q(x) = x^2 + qx + p$

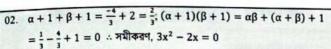
 $(ii)\frac{1}{x} + \frac{1}{p-x} = \frac{1}{q}$

(ক) k এর মান কত হলে (k - 1)x² - (k + 2)x + 4 = 0 সমীকরণের মূলদ্বয় বাস্তব ও সমান হবে?

(খ) P(x) = 0 এবং Q(x) = 0 হলে এবং সমীকরণ দুইটির একটি সাধারণ মূল থাকলে দেখাও যে, তাদের অপর মূল দুইটি $x^2 + x + pq = 0$ সমীকরণের মূল হবে।

গে) উদ্দীপকে (ii) নং হতে মূলঘয়ের অন্তর r হলে, p কে q গ r এর মাধ্যমে প্রকাশ কর।

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান


2

MCQ

01. a	02. d	03. с	04. c	05. с	06. a	07. a 08 a 00	
16. a	17. a	18. c	19. a	20. c	21. c	07. a 08. a 09. d 10. c 11. a 12. a 13. d 14. a 22. c 23. a 24. b 25. a 26. d 27. a 28. c 29. d 37. d 38. b 39. c 40. b 41. d 27. a 28. c 29. d	1
31. a	32. c	33. a	34. d	35. a	36. b	22. c 23. a 24. b 25. a 26. d 27. a 28. c 29. d 37. d 38. b 39. c 40. b 41. d 42. d 43. d 44. b	1/
16. d	47. c	48. d	49. b	50. d		39. c 40. b 41. d 42. d 42. d	

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৪

- 04. $(-3)^2 5(-3) + m = 0 : m = -24$
- 07. মূলহয় 1 2i এবং 1 + 2i ∴ সমীকরণটি = (x – 1 – 2i) (x – 1 + 2i) = 0 ⇒ x² – 2x + 5 = 0
- 09. D = 16 4a বাস্তব হবে যদি $16 4a \ge 0$ অর্থাৎ, $a \le 4$ জটিল হবে যদি 16 4a < 0 অর্থাৎ, a > 4
- 12. f(x) = (x-1)(x+1)(x-2) = 0; f(2x) = (2x-1)(2x+1)(2x-2) = 0wite, $2(4x^2-1)(x-1) = 0$ $\therefore x = \pm \frac{1}{2}$; x = 1.
- 14. $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ = $\left(\frac{5}{2}\right)^2 - 2 \times 3 = \frac{25}{4} - 6 = \frac{1}{4}$
- 15. $(x-1)(x-1)(x-1) = 0 : x^3 3x^2 + 3x 1 = 0$
- 16. $\frac{-a}{2} = 5 :: a = -10$
- 17. $x^3 (1+i-i)x^2 + (1\cdot i-i\cdot 1-i^2)x 1\cdot i\cdot (-i) = 0$ $\Rightarrow x^3 - x^2 + x - 1 = 0$
- 19. $x^2 (7 + 2i + 7 2i)x + \{(7 + 2i)(7 2i)\} = 0$ $\Rightarrow x^2 - 14x + 53 = 0$
- 21. $\alpha + \beta = 3$; $\alpha^3 + \beta^3 = 7$ $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = 7 \Rightarrow 27 - 3 \times \alpha\beta \times 3 = 7 \Rightarrow \alpha\beta = \frac{20}{9}$.: সমীকরণ $x^2 - 3x + \frac{20}{9} = 0 \Rightarrow 9x^2 - 27x + 20 = 0$
- 22. $x^3 \left(\frac{1}{x} + \frac{2}{x^2} + \frac{1}{x^3} \right) = x^2 + 2x + 1 = (x+1)^2$
- 23. $\alpha + \beta = -2$; $\alpha\beta = \frac{1}{2}$; $\alpha^2 + \beta^2 = (\alpha + \beta)^2 2$. $\alpha\beta = 4 1 = 3$ $\alpha^2\beta^2 = \frac{1}{4}$ \therefore সমীকরণ, $4x^2 - 12x + 1 = 0$
- 24. $2\alpha^2 = 2 \Rightarrow \alpha = \pm 1 : 3\alpha = -a \Rightarrow a = \pm 3$
- 26. $x^2 3x + 5 = x^2 2 \cdot x \cdot \frac{3}{2} + \frac{9}{4} + 5 \frac{9}{4} = \left(x \frac{3}{2}\right)^2 + \frac{11}{4}$ $x - \frac{3}{2} = 0$ হলে রাশিটির মান ন্যুনতম হবে। ∴ ন্যুনতম মান $\frac{11}{4}$ ।
- 27. $m + n = -\frac{3}{2}$; $mn = \frac{1}{2}$; $(m n)^2 = (m + n)^2 4mn$ = $\frac{9}{4} - 4 \times \frac{1}{2} = \frac{9}{4} - 2 = \frac{1}{4}$ $\therefore |m - n| = \frac{1}{2}$
- 28. $\alpha + \beta + \gamma = p$; $\alpha\beta + \beta\gamma + \gamma\alpha = -q$ $\alpha\beta\gamma = r$; $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = \frac{-q}{r}$; $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} = \frac{p}{q}$ $\frac{1}{\alpha\beta\gamma} = \frac{1}{r} \therefore \, \forall \lambda \text{ in add}, \, x^3 + \frac{q}{r} x^2 + \frac{p}{q} x \frac{1}{r} = 0$ $\Rightarrow rx^3 + qx^2 + px 1 = 0$
- 29. $2^2 + 8k = 0 : k = -\frac{1}{2}$

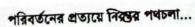
- 30. Option test. a = -2 ও b = 2 বসালে মূলদম 1 ± i হয়।
- 33. একটি মূল i হলে অপর মূল হবে $-i (x+i)(x-i) = 0 \Rightarrow x^2+1=0$ $x^3-x^2+x-1=0 \Rightarrow x(x^2+1)-1(x^2+1)=0$ $\Rightarrow (x-1)(x^2+1)=0 \therefore x=1 ; x=\pm i$ \therefore অপর মূলঘয়ের গুণফল -i ।
- 34. $2x^2 + x 3 = 0$ পুথায়ক $D = b^2 4ac = 1^2 4 \times (-3) \times 2 = 25$
- 35. p + q = 2; pq = 3; $p^2 + q^2 = 2^2 2 \cdot 3 = -2$
- 37. $k^2 4 < 0$; $k^2 < 4 \Rightarrow -2 < k < 2$
- 40. $9x^2-6px+q^2=(3x)^2-2\cdot 3x\cdot p+p^2+q^2-p^2=(3x+p)^2+q^2-p^2$ 3x+p=0 হলে সর্বনিমু মান পাওয়া যাবে। x সর্বনিমু মান x সর্বনিমু মান x
- 43. মূলম্বা α ও $\alpha + 1$ হলে, $\alpha + \alpha + 1 = -a$ $\therefore \alpha = \frac{1+a}{-2}$ $\alpha(\alpha + 1) = b \Rightarrow \left(\frac{1+a}{-2}\right)^2 + \frac{1+a}{-2} = b \Rightarrow \frac{1+a^2+2a}{4} \frac{1+a}{2} = b$ $\Rightarrow 1 + a^2 + 2a 2 2a = 4b \therefore a^2 4b = 1$
- 44. $\alpha + \beta + \gamma = -a$; $\alpha\beta + \beta\gamma + \gamma\alpha = b$; $\alpha\beta\gamma = -c$ $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $\alpha^2 + \beta^2 + \gamma^2 = \alpha^2 - 2b$
- $45. \quad \sum \alpha \beta = \frac{x^2 \text{ de } \pi x \eta}{x^4 \text{ de } \pi x \eta} = 0$
- 46. $f(x) = 2x^3 + 3x^2 + 5x 1 : f(-2) = -15$
- 47. $(x + \alpha)(x \beta) + (x \beta)(x + \gamma) + (x + \gamma)(x + \alpha) = 0$ $\Rightarrow x^2 + x\alpha x\beta \alpha\beta + x^2 + x\gamma \beta x \beta \gamma + x^2 + x\alpha + x\gamma + \alpha \gamma = 0$ $\Rightarrow 3x^2 + x(\alpha \beta + \gamma \beta + \alpha + \gamma) \alpha\beta \beta \gamma + \gamma \alpha = 0$ মূলগুলোর যোগফল = $\alpha \beta + \gamma \beta + \alpha + \gamma = 0$ $\Rightarrow 2\alpha + 2\gamma = 2\beta \therefore \beta = \alpha + \gamma$
- 48. $(11 + k)^2 4(9)(3k + 1) < 0$ $\Rightarrow 121 + 22k + k^2 - 108k - 36 < 0$ $\Rightarrow k^2 - 86k + 85 < 0 \Rightarrow (k - 85)(k - 1) < 0 \therefore 1 < k < 85$
- 49. $\alpha \beta = 8 \cdots (i)$ $\alpha^3 \beta^3 = 152 \cdots (ii)$ $(ii) \div (i)$ করে পাই, $\frac{(\alpha \beta)(\alpha^2 + \alpha\beta + \beta^2)}{(\alpha \beta)} = 19$ $\therefore \alpha^2 + \beta^2 + \alpha\beta = 19 \cdots (iii)$ $(\alpha \beta)^2 = 8^2 \therefore \alpha^2 + \beta^2 2\alpha\beta = 64 \cdots (iv)$ (iii) (iv) করে পাই, $\alpha\beta = -15$ $\alpha + \beta = \pm \sqrt{(\alpha \beta)^2 + 4\alpha\beta} \therefore \alpha + \beta = \pm 2$ \therefore সমীকরণটি- $x^2 2x 15 = 0$
- অথবা, $x^2 + 2x 15 = 0$ 50. $f(x) = 0 \Rightarrow (x+1)(x-2)x = 0$
- 50. $f(x) = 0 \Rightarrow (x+1)(x-2)x = 0$ $\therefore f(3x) = (3x+1)(3x-2)(3x) = 0$ f(3x) = 0 RCF $x = 0, \frac{-1}{3}, \frac{2}{3}$

co

- 01. (51) $x^2 + 10x + 24 = 0$
- 02. $(\Phi) \frac{63}{2}$
- $(4) -\frac{3}{2}, -2,4$
- (17) $x^2 \left(\frac{b^2 2ca}{a^2c^2}\right)x + \frac{1}{a^2c^2} = 0$
- 03. (4) $x^2 80x + 1071 = 0$ (4) $1 \sqrt{3}$ and 5.
- 04. (4) $x = 5, -\frac{7}{2}$
 - (1) $p = \frac{35}{4}, -5$
- 05. (4) k = 10.2
 - (4) $p = 2q \pm \sqrt{4q^2 + r^2}$

ধ্বংসের সময়েও নতুন কিছু গড়ো।

Maxine Hong Kingston


 $(4) x^2 - 16x + 60 = 0$

অধ্যায় ০৬

কনিক

সৃজনশীল (ক), (খ) ও (গ) নং প্রশ্নের জন্য এ অধ্যায়ের গুরুত্বপূর্ণ টাইপসমূহ:

डक ्	টাই	ণ টাইপের নাম		যতবা: এফে		যে বোর্ডে যে বছর এসেছে
			4	T	1 9	CQ
00	T-01	কনিকের প্রকৃতি নির্ণয়	03		T	DB'22; CB'22; BB'17
000	T-02	পরাবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়	16	02	01	RB'23, 22, 17; Ctg.B'23, 22; SB'23, 22, 18; BB'2 22; JB'23, 22, 18; CB'23; Din.B'23, 18; DB'22, 18
00	T-03	বিভিন্ন শর্ত হতে পরাবৃত্তের সমীকরণ এবং উপাদান নির্ণয় সংক্রান্ত		04	02	DB'23; Ctg.B'23; BB'23; BB'23; JB'22; Din.B'22
00	T-04	পরাবৃত্তের উপকেন্দ্রিক দূরত্ব সম্পর্কিত	01	02		CB'23, 17; BB'22
000	T-05	উপবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়	11	04	04	DB'23, 22, 19, 17; RB'23; SB'23, 22; CB'23, 22; Ctg.B'22, 19; BB'22; Din.B'22; MB'22; JB'17
000	T-06	বিভিন্ন শর্ত হতে উপবৃত্তের সমীকরণ এবং উপাদান নির্ণয় সংক্রান্ত	02	04	09	RB'23, 22, 19; SB'23, 22, 17; BB'23, 22; JB'23, DB'22, 17; Din.B'22; CB'17
000	T-07	অধিবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়	08	03	06	RB'23, 22; Ctg.B'23, 17; SB'23, 19, 18; JB'23, 18; CB'23; MB'23, 22; BB'22; DB'18; Din.B'18
000	T-08	বিভিন্ন শর্ত থেকে অধিবৃত্তের সমীকরণ নির্ণয়		02	07	DB'23; BB'23; RB'22, 17; Ctg.B'22; SB'22; CB'22; Din.B'22; JB'17
0	T-09	SP + S'P = বৃহৎ/আড় অক্ষের দৈর্ঘ্য সংক্রাম্ভ	·		01	MB'22
00	T-10	অধিবৃত্তের অসীমতট সম্পর্কিত সমস্যাবলি	02	01	02	DB'23; RB'23; Din.B'23; MB'23; Ctg.B'22;
	T-11	কনিকের পরামিতিক সমীকরণ			-	25, MB 25, Ctg.B 22.
000	T-12	কনিকের উপকেন্দ্র, উৎকেন্দ্রিকতা ও দিকাক্ষ হতে কনিকের সমীকরণ নির্ণয়। (SP = e · PM)		11	09	DB'23, 22; RB'23; Ctg.B'23, 22, 19, 17; SB'23, 22, 19; BB'23, 22; CB'23, 22; MB'23, 22; Din.B'22
00	T-13	স্পৰ্শক/ছেদক সম্পৰ্কিত		04	•	DB'18; SB'18; JB18; Din.B'18

CQ প্রশ্ন ও সমাধান (ক, খ ও গ)

Type-01: কনিকের প্রকৃতি নির্ণয়

Concept

কনিকের সাধারণ সমীকরণ, $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$

- (i) $\Delta=0$ হলে সমীকরণটি একজোড়া সরলরেখা নির্দেশ করে। $[e o\infty]$
- (ii) $\Delta \neq 0$; $a = b \neq 0$ এবং h = 0 হলে সমীকরণটি বৃত্ত নির্দেশ করে। $[e \rightarrow 0]$
- (iii) $\Delta \neq 0$ এবং $h^2 ab = 0$ হলে, [e = 1] সমীকরণটি পরাবৃত্ত।
- (iv) $\Delta \neq 0$ এবং $h^2 ab > 0$ হলে, [e > 1] সমীকরণটি অধিবৃত্ত।
- (v) $\Delta \neq 0$ এবং $h^2 ab < 0$ হলে, [0 < e < 1] সমীকরণটি উপবৃত্ত।

যেখানে, $\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- 🔃 (ক) কনিক ও কনিকের উপকেন্দ্রের সংজ্ঞা পিখ। 🛮 [DB'22]
- (क) Sol®: কোনো সমতলে একটি বিন্দু যদি এমনভাবে চলে যে, ঐ সমতলের উপর অবস্থিত একটি স্থির বিন্দু ও চলমান বিন্দুর মধ্যবতী দূরত্ব এবং চলমান বিন্দু থেকে সমতলটির ওপর অবস্থিত একটি স্থির সরলরেখার লম্ব দূরত্বের অনুপাত সর্বদা দ্রুবক থাকে, তবে ঐ চলমান বিন্দুর সঞ্চারপথকে কনিক বলে এবং ঐ স্থির বিন্দুটিকে কনিকের উপকেন্দ্র বলে।
- (ক) 4x² 9y² 1 = 0 কনিকটি প্রমাণ আকারে প্রকাশ করে শনাক্ত কর।
 (CB'22; BB'17)
- (ক) Solⁿ: প্রদন্ত সমীকরণটি, $4x^2 9y^2 1 = 0$ $\Rightarrow \frac{x^2}{\left(\frac{1}{2}\right)^2} \frac{y^2}{\left(\frac{1}{3}\right)^2} = 1; \, \text{যা, } \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \, \text{ জাকারের}$ $\therefore \, \textbf{ইহা একটি অধিবৃত্ত। (Ans.)}$

9

Type-02: পরাবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়

Concept

- 😕 পরাবৃত্তের শীর্ষবিন্দু হতে উপকেন্দ্র এবং অক্ষরেখা ও নিয়ামকরেখার ছেদবিন্দু নিয়ামকের পাদবিন্দু সমদূরবর্তী।
- পরাবৃত্তের কতিপয় উপাদান

পরাবৃত্ত (Parabola)

	পরাবৃত্তের আকার	a > 0, a < 0	a > 0, a < 0	a > 0, a < 0	a > 0, a < 0
	The same of the sa	$y^2 = 4ax$	$x^2 = 4ay$	$(y-\beta)^2=4a(x-\alpha)$	$(x-\alpha)^2 = 4a(y-\beta)$
(i)	শীর্ষবিন্দুর স্থানান্ধ, A:	(0, 0)	(0, 0)	(α, β)	(α, β)
(ii)	উপকেন্দ্রের স্থানান্ধ, S:	(a, 0)	(0, a)	$(a + \alpha, \beta)$	$(\alpha, a + \beta)$
(iii)	নিয়ামকরেখার পাদবিন্দুর স্থানাঙ্ক, Z:	(-a, 0)	(0, -a)	$(-a + \alpha, \beta)$	$(\alpha, -a + \beta)$
(iv)	অক্ষরেখার সমীকরণ:	y = 0	x = 0	$y - \beta = 0$	$x - \alpha = 0$
(v)	নিয়ামকরেখার সমীকরণ:	x + a = 0	y + a = 0	$x - \alpha + a = 0$	$y - \beta + a = 0$
(vi)	উপকেন্দ্রিক লম্বের সমীকরণ/ নাভিলম্বের সমীকরণ:	x = a	y = a	$x - \alpha = a$	$y - \beta = a$
(vii)	শীর্ষে স্পর্শকের সমীকরণ:	x = 0	y = 0	$x - \alpha = 0$	$y - \beta = 0$
(viii)	উপকেন্দ্রিক লীম্বের দৈর্ঘ্য, LL':	4 a	4 a	4 a	4 a
(ix)	উপকেন্দ্রিক লম্বের/নাভিলম্বের প্রান্ত বিন্দু দুইটির স্থানাক্ক:	(a, ±2a)	(±2a, a)	$(a + \alpha, \pm 2a + \beta)$	$(\pm 2a + \alpha, a + \beta)$
(x)	(x, y) বিন্দুর উপকেন্দ্রিক দূরত্ব, SP:	x + a	ly + al	$ \mathbf{x} - \mathbf{\alpha} + \mathbf{a} $	$ y - \beta + a $
(xi)	উপকেন্দ্র ও শীর্ষের দূরতু:	a	a	a	a
(xii)	পরামিতিক সমীকরণ:	$x = at^2$ $y = 2at$	$x = 2at$ $y = at^2$	$x = \alpha + at^2$ $y = \beta + 2at$	$x = \alpha + 2at$ $y = \beta + at^2$
(xiii) পোলার সমীকরণ:	$r = 4 a \cot \theta$ $\csc \theta$	$r = 4a \tan \theta$ $\sec \theta$	$ (r \sin \theta - \beta)^2 $ $= 4a(r \cos \theta - \alpha) $	$ (r \cos\theta - \alpha)^2 $ $= 4a(r \sin\theta - \beta) $

HSC প্রম্বব্যাংক ২০২৫

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- 01. দৃশ্যকম্প-১: $3x^2 + 9x 6y 8 = 0$ একটি কনিকের সমীকরণ।
 - (খ) দৃশ্যকম্প-১ এ উল্লিখিত কনিকটির উপকেন্দ্রিক সম্বের প্রান্তবিন্দুছয়ের স্থানাম্ক ও নিয়ামক রেখার সমীকরণ নির্ণয় কর। [RB'23]

(খ) Soln: দেওয়া আছে,
$$3x^2 + 9x - 6y - 8 = 0$$

$$\Rightarrow 3(x^2 + 3x) = 6y + 8$$

$$\Rightarrow 3\left(x^2 + 2 \cdot x \cdot \frac{3}{2} + \frac{9}{4}\right) = 6y + 8 + \frac{27}{4}$$

$$\Rightarrow 3\left(x + \frac{3}{2}\right)^2 = 6y + \frac{59}{4} \Rightarrow 3\left(x + \frac{3}{2}\right)^2 = 6\left(y + \frac{59}{24}\right)$$

$$\Rightarrow \left(x + \frac{3}{2}\right)^2 = 2\left(y + \frac{59}{24}\right) \dots \dots (i)$$

(i) নং সমীকরণকে
$$(x - \alpha)^2 = 4a(y - \beta)$$
 এর সাথে তুলনা করে পাই, $\alpha = -\frac{3}{2}$, $\beta = \frac{-59}{24}$

শীর্ষবিন্দু
$$(\alpha, \beta) \equiv \left(-\frac{3}{2}, -\frac{59}{24}\right)$$
 এবং $4a = 2 : a = \frac{1}{2}$
উপকেন্দ্র: $(X, Y) = (0, a) \Rightarrow \left(x + \frac{3}{2}, y + \frac{59}{24}\right) = \left(0, \frac{1}{2}\right)$
 $x + \frac{3}{2} = 0$ সুতরাং $x = \frac{-3}{2}$

আবার,
$$y + \frac{59}{24} = \frac{1}{2} \Rightarrow y = -\frac{47}{24}$$

সূতরাং, উপকেন্দ্র:
$$(x,y) = \left(-\frac{3}{2}, -\frac{47}{24}\right)$$

উপকেন্দ্রিক লম্বের প্রান্তবিন্দুদ্বয়ের স্থানাঙ্ক; X = ±2a

$$Y = a; x + \frac{3}{2} = \pm 2 \cdot \frac{1}{2} \Rightarrow x + \frac{3}{2} = \pm 1 : x = -\frac{5}{2}, -\frac{1}{2}$$

 \therefore উপকেন্দ্রিক লম্বের প্রান্তবিন্দুদ্বর, $(x,y)\equiv\left(-rac{5}{2},rac{-47}{24}
ight)$

অথবা,
$$\left(-\frac{1}{2}, \frac{-47}{24}\right)$$
 (Ans.)

নিয়ামক রেখার সমীকরণ, $Y = -a \Rightarrow y + \frac{59}{24} = \frac{-1}{2}$

$$\Rightarrow y = -\frac{59}{24} - \frac{1}{2} \Rightarrow y = \frac{-59 - 12}{24}$$

$$\Rightarrow y = \left(-\frac{71}{24}\right) \Rightarrow 24y = -71 \Rightarrow 24y + 71 = 0 \text{ (Ans.)}$$

02. (ক) $3x^2 - 4y + 6x - 5 = 0$ পরাবৃত্তের নিয়ামকরেখার সমীকরণ নির্ণয় কর। [SB'23]

(ক) Soln: দেওয়া আছে,
$$3x^2 - 4y + 6x - 5 = 0$$

⇒ $3x^2 + 6x = 4y + 5 \Rightarrow 3(x^2 + 2x + 1) = 4y + 8$

⇒ $3(x + 1)^2 = 4(y + 2) \Rightarrow (x + 1)^2 = \frac{4}{3}(y + 2)$

∴ $X^2 = \frac{4}{3}Y$ [যেখানে, $X = x + 1, Y = y + 2$]

∴ নিয়ামক রেখার সমীকরণ, $Y = -a$

⇒ $y + 2 = -\frac{1}{3}$ [∵ $a = \frac{1}{3}$]

⇒ $y = -\frac{1}{3} - 2 \Rightarrow y = \frac{-7}{3}$ ∴ $3y + 7 = 0$ (Ans.)

- $x^2 4y 2 = 0$ পরাবৃত্তটির অক্ষরেখার সমীaরণ নির্ণয় কর।
- (ক) Solⁿ: দেওয়া আছে, x² = 4y + 2 ⇒ x² = 4 · 1 · (y + ½) ∴ অক্ষরেখার সমীকরণ, x = 0 (Ans.)
- 04. (ক) $y^2 = 4(4-x)$ পরাবৃত্তের শীর্যবিন্দুর স্থানাত্ত নির্ণাx ক্র
- ক) Solⁿ: দেওয়া আছে, $y^2 = 4(4-x) \Rightarrow y^2 = -4(x-4)$ এখানে, a = -1 : শীর্যবিন্দু $\equiv (4,0)$ (Ans.)
- (ক) x² = 8(1 y) পরাবৃত্তের নিয়ামক রেখার সমীক্র নির্ণয় কর।
 [Din.B'23]
- (ক) Soln: দেওয়া আছে, $x^2 = 8(1-y) = -8(y-1)$ $= 4 \times -2 \times (y-1) \text{ এর } a = -2$ পরাবৃত্তের নিয়ামকের সমীকরণ হবে, y = -a $\Rightarrow y = -(-2) \therefore y 2 = 0 \text{ (Ans.)}$
- তির উদ্দীপক-১: 3x² 4y 6x 5 = 0 [DB'22]
 (খ) উদ্দীপক-১ এ উল্লিখিত সমীকরণটিকে পরাবৃরের আদর্শ
 সমীকরণ আকারে প্রকাশ কর ও এর শীর্ষবিন্দু, উপক্ষের,
 অক্ষের সমীকরণ নির্ণয় কর।
- - (i) নং কে $X^2 = 4aY$ সমীকরণের সাথে তুলনা করে পাই. $a = \frac{1}{3}$; এখন শীর্ষবিন্দু, $A(X,Y) \equiv (0, 0)$ $X = 0 \Rightarrow x 1 = 0 \therefore x = 1$, $Y = 0 \Rightarrow y + 2 = 0 \therefore y = -2$ \therefore শীর্ষবিন্দু, A(x,y) = (1, -2) (Apr.)

$$\therefore$$
 শীর্যবিন্দু, $\Lambda(x,y)\equiv (1,-2)$ (Ans.) আবার, উপকেন্দ্র $S(X,Y)\equiv (0,a)\equiv \left(0,\frac{1}{3}\right)$

$$X = 0 \Rightarrow x - 1 = 0 \therefore x = 1$$

$$Y = \frac{1}{3} \Rightarrow y + 2 = \frac{1}{3} \therefore y = -\frac{5}{3}$$

$$\therefore$$
 উপকেন্দ্র, $S(x,y) \equiv \left(1, -\frac{5}{3}\right)$ (Ans.)

অন্দের সমীকরণ, $X = 0 \Rightarrow x - 1 = 0 : x = 1$ (Ans.)

- 07. (ক) $y^2 = 80x$ কনিকের উপকেন্দ্রের স্থানান্ধ নির্ণয় কর। [RB'22]
- (ক) Solⁿ: প্রদন্ত সমীকরণটি,
 y² = 80x ⇒ y² = 4 · 20x (i)
 (i) নং কে y² = 4ax এর সাথে তুলনা করে পাই, a = 20
 ∴ উপকেন্দ্র, S(20,0) (Ans.)
- 08. $f(x,y) = x^2 8x 4y + 20$ একটি ফাংশন। |SB'22| (গ) f(x,y) = 0 পরাবৃত্তের উপকেন্দ্রিক লম্বের সমীকরণ, নিয়ামকের সমীকরণ ও অক্ষরেখার সমীকরণ নির্ণয় কর।
- (গ) Solⁿ: এখানে, f(x,y) = x² 8x 4y + 20 = 0 ⇒ x² - 2 · 4 · x + 4² - 4² = 4y - 20 ⇒ (x - 4)² = 4y - 4 ⇒ (x - 4)² = 4(y - 1) ⇒ X² = 4 · 1 · Y (i) [ধরি, X = x - 4 এবং Y = y - 1]
 - (i) নং কে x² = 4ay এর সাথে তুলনা করে পাই, a = 1
 - : উপকেন্দ্রিক লম্বের সমীকরণ,

 $Y = a \Rightarrow y - 1 = 1 : y = 2$ (Ans.)

- \therefore নিয়ামকের সমীকরণ, $Y=-a,\Rightarrow y-1=-1$
- $\therefore y = 0 \text{ (Ans.)}$

এবং অক্ষরেখার সমীকরণ, $X = 0 \Rightarrow x - 4 = 0$

- $\therefore x = 4 \text{ (Ans.)}$
- 09. (ক) $y^2 + 4x + 2y 11 = 0$ পরাবৃত্তটির শীর্ষবিন্দু নির্ণয়
 কর। [BB'22]
- (ক) Solⁿ: দেওয়া আছে, পরাবৃত্তির সমীকরণ,
 y² + 4x + 2y 11 = 0
 ⇒ y² + 2y + 1 = -4x + 12
 ⇒ (y + 1)² = -4(x 3) (i)
 ∴ পরাবৃত্তির শীর্ষ, A(3, -1) (Ans.)

Educationblog24.com

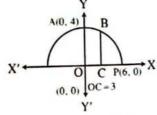
উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

- 10. (ক) $y^2 + 6y 4x = 0$ পরাবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর। |RB'17|
- দৃশ্যকম্প-২: একটি পরাবৃত্তের সমীকরণ,
 Nx² + Ky + Px + L = 0 [নটর ডেম কলেজ, ঢাকা]
 (গ) দৃশ্যকম্প-২ এ প্রদন্ত পরাবৃত্তের শীর্ষবিন্দুর স্থানাম্ভ এবং
 উপকেন্দ্রিক লম্বের সমীকরণ নির্ণয় কর।
 (যেখানে, N = 3, K = 2, P = -NK, L = 17)
- (গ) Soln: প্রদন্ত সমীকরণ: $Nx^2 + Ky + Px + L = 0$ $\Rightarrow 3x^2 + 2y 6x + 17 = 0 \text{ [মান বসিয়ে]}$ $\Rightarrow 3(x^2 2x + 1) = -2y 17 + 3$ $\Rightarrow (x 1)^2 = -\frac{2}{3}(y + 7)$ আদর্শ সমীকরণের সাথে তুলনা করে পাই, $4a = -\frac{2}{3}$ \therefore $a = -\frac{1}{6}$ উপকেন্দ্রিক লম্বের সমীকরণ, $y + 7 = a \Rightarrow y + 7 + \frac{1}{6} = 0$ $\Rightarrow y + \frac{43}{6} = 0 \therefore 6y + 43 = 0 \text{ (Ans.)}$
- (ক) x² = −5y প্যারাবোলার উপকেন্দ্র ও উপকেন্দ্রিক লম্বের সমীকরণ নির্ণয় কর। [চুয়াডাঙ্গা সরকারি কলেজ]
- (ক) Solⁿ: প্রদন্ত সমীকরণ: x² = -5y ⇒ x² = 4 (-5/4) y
 ∴ আদর্শ সমীকরণের সাথে তুলনা করে পাই, a = -5/4
 ∴ উপকেন্দ্র (0, a) = (0, -5/4) (Ans.)
 উপকেন্দ্রিক লম্বের সমীকরণ, y = a ⇒ y = -5/4
 ∴ 4y + 5 = 0 (Ans.)

নিজে করো

- 13. (ক) $y^2 = -6x$ পরাবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর। [Ctg.B'23][Ans: 6 একক]
- 14. (ক) $y^2 = 8x + 5$ কনিকের নিয়ামকের সমীকরণ নির্ণয় কর। [BB'23] [Ans: 8x + 21 = 0]
- 15. (क) $x^2 = -7y$ পরাবৃত্তটির দিকাক্ষের সমীকরণ নির্ণয় কর। [Ctg.B'22][Ans: 4y-7=0]
- 16. (ক) $(x-3)^2 = 4(y+2)$ পরাবৃত্তের উপকেন্দ্রের স্থানান্ধ নির্ণায় কর। |SB'22|[Ans: (3,-1)]
- 17. (ক) $y^2 8x + 8y = 0$ পরাবৃত্তটির উপকেন্দ্রের স্থানান্ধ কত? [JB'22][Ans: (0, -4)]
- 18. (ক) x² = −12y পরাবৃত্তের নিয়ামকের সমীকরণ বের কর।
 [DB, SB, JB, Din.B'18] [Ans: y = 3]
- 19. (ii) 5x² + 15x 10y 4 = 0 একটি কনিকের সমীকরণ। [ইবনে তাইমিয়া কুল এম্ড কলেজ, কুমিয়া]
 - (গ) (ii) নং কনিকের শীর্ষবিন্দু, ফোকাস, অক্ষের সমীকরণ নির্ণয় কর। $\left[Ans:\left(-\frac{3}{2},-\frac{61}{40}\right);\left(-\frac{3}{2},-\frac{41}{40}\right);x=\frac{-3}{2}\right]$

Type-03: বিভিন্ন শর্ত হতে পরাবৃত্তের সমীকরণ ও উপাদান নির্ণয় সংক্রান্ত


Concept ?

- (α, β) শীর্ষবিশিষ্ট পরাবৃত্তের প্রধান অক্ষ,
 - (i) x-অক্ষের সমান্তরাল হলে, $(y-\beta)^2=4a(x-\alpha)$; সাধারণ রূপ: $x=ay^2+by+c$
 - (i) y-অক্ষের সমান্তরাল হলে, $(x-\alpha)^2=4a(y-\beta)$; সাধারণ রূপ: $y=ax^2+bx+c$ যেখানে, $a\neq 0$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

উদ্দীপক-২: 01.

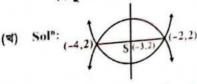
[DB'23]

- (গ) উদ্দীপক-২ এর চিত্রটি একটি পরাবৃত্ত এবং শীর্ষবিন্দু A হলে, CB রেখার দৈর্ঘ্য নির্ণয় কর।
- (গ) Sol": যেহেতু, পরাবৃত্তটির শীর্ষ (0,4), অক্ষরেখা y অক্ষ। অতএব, পরাবৃত্তটির সমীকরণ:

$$x^2 = -4a(y - 4) \dots (i)$$

যা P(6,0) বিন্দুগামী। ∴ (i) হতে পাই,

$$6^2 = -4a(0-4) \Rightarrow a = \frac{36}{16} = \frac{9}{4}$$

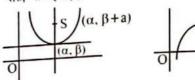

 \therefore পরাবৃত্তটির সমীকরণ: $x^2=-4 imesrac{9}{4}(y-4)$

$$\Rightarrow x^2 = -9(y - 4) \dots \dots (ii)$$

চিত্রমতে, B বিন্দুটি পরাবৃত্তের উপরে অবস্থিত।

যার ভুজ = OC = 3

- (ii) হতে পাই, $3^2 = -9(y-4) \Rightarrow -1 = y-4 : y = 3$
- ∴ B বিন্দুর স্থানায় (3,3); C(3,0)
- ∴ CB রেখার দৈঘ্য = (3 0) একক = 3 একক (Ans.)
- দৃশ্যকম্প-১: $x = by^2 + cy + a$ একটি কনিক। [Ctg.B'23]দৃশ্যকম্প-২: কোনো পরাবৃত্তের উপকেন্দ্রিক লম্বের প্রান্তবিন্দুষয় (-2,2) এবং (-4,2)।
 - (খ) দৃশ্যকম্প-২ থেকে পরাবৃত্তের সমীকরণ নির্ণয় কর।
 - (গ) দৃশ্যকম্প-১ এ কনিকের শীর্যবিন্দু (1, -2) এবং এটি (3,0) বিন্দুগামী হলে a, b, c এর মান নির্ণয় কর।



উক্ত পরাবৃত্তের সমীকরণ, X² = 4aY

 $4|a| = \sqrt{(-2+4)^2 + (2-2)^2} \Rightarrow |a| = \frac{2}{4} = \frac{1}{2}$

উপকেন্দ্র $\equiv \left(\frac{-4-2}{2}, \frac{2+2}{2}\right)$ অর্থাৎ (-3, 2)

ধরি, শীর্ষ (α, β) অর্থাৎ উপকেন্দ্র $(\alpha, \beta \pm a) \equiv (-3, 2)$

অতএব, $\alpha = -3$; $\beta \pm a = \beta \pm \frac{1}{2} = 2 : \beta = \frac{5}{2}, \frac{3}{2}$

 \therefore নির্ণেয় পরাবৃত্তের সমীকরণ: $(x + 3)^2 = 4\left(\frac{1}{2}\right)\left(y - \frac{3}{2}\right)$

 $\Rightarrow (x + 3)^2 = 2y - 3$ (Ans.) [$a = +\frac{1}{2}$ এর জন্য]

 $g(x+3)^2 = -4\left(\frac{1}{2}\right)\left(y-\frac{5}{2}\right)$

 $\Rightarrow (x + 3)^2 = -2(y - \frac{5}{2})$ (Ans.) [a = $-\frac{1}{2}$ এর জন্য]

(গ) Sol": ধরি, কনিকটির সমীকরণ,

 $(y+2)^2 = 4p(x-1)$ [य्यर्ट्यू भीर्विन्नू (1,-2)]

(3,0) বিন্দুগামী হলে, (0 + 2)² = 4p(3 - 1)

 $\Rightarrow 4 = 4p \times 2 : p = \frac{1}{2}$

 \therefore সমীকরণটি $(y+2)^2 = 4 \times \frac{1}{2}(x-1)$

 $\Rightarrow y^2 + 4y + 4 = 2x - 2$

 $\Rightarrow 2x = y^2 + 4y + 6 \Rightarrow x = \frac{1}{2}y^2 + 2y + 3$

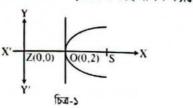
x = by² + cy + a -এর সাথে তুলনা করে পাই,

a = 3; $b = \frac{1}{2}$; c = 2 (Ans.)

- উদ্দীপক-১: একটি পরাবৃত্তের শীর্ষবিন্দু (5.3) অক্ষরেখা y অক্ষের সমান্তরাল এবং যা (7,2) বিন্দু দিয়ে অতিক্রম করে। [JB'22] (খ) পরাবৃত্তটির সমীকরণ নির্ণয় কর।
- (খ) Solⁿ: অফরেখা y-অফের সমান্তরাল এবং A (5,3) শীর্ষবি^{শিষ্ট} পরাবৃত্তের সমীকরণ, $(x-5)^2 = 4a(y-3)....(i)$

(i) নং (7, 2) বিন্দুগামী বলে, (7 – 5)² = 4a (2 – 3)

 $\Rightarrow 4 = -4a : a = -1$


 \therefore নির্ণেয় পরাবৃত্তের সমীকরণ, $(x-5)^2 = -4(y-3)$ (Ans.)

পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা...

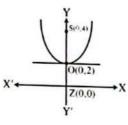
04.

[ময়মনসিংহ গার্লস ক্যাডেট কলেজ]

চিত্র-১: O, S ও Z বিন্দুত্রয় যথাক্রমে শীর্ষ, ফোকাস এবং দিকাক্ষ ও অক্ষরেখার ছেদবিন্দু।

(খ) চিত্র-১ এর আলোকে পরাবৃত্তের সমীকরণ নির্ণয় কর।

(খ) Solⁿ:এখানে, Z(0,0) , শীর্ষ


O(0,2)। অর্থাৎ দিকাক্ষ রেখা x

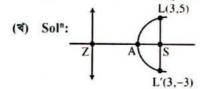
অক্ষ। সূতরাং অক্ষ রেখা হবে x

অক্ষের উপর লম্ব। যেহেতু শীর্ষ

O(0,2), সেহেতু অক্ষরেখা y অক্ষ

হবে। শীর্ষ O হতে দিকাক্ষের

পাদবিন্দু Z এর দূরত্ব, a = 2 একক।


সুতরাং উপকেন্দ্র, S = (0, 2 + 2) = (0,4)।

 \therefore পরাবৃত্তের সমীকরণ: $(x-0)^2 = 4 \times 2(y-2)$

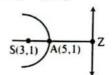
 $\Rightarrow x^2 = 8y - 16 \Rightarrow x^2 - 8y + 16 = 0$ (Ans.)

উদ্দীপক-২: কোনো পরাবৃত্তের উপকেন্দ্রিক লম্বের প্রান্ত বিন্দুছয় (3,5) এবং (3, -3) [সরকারি মাইকেল মধুসূদন কলেজ, যশোর]

(খ) উদ্দীপক-২ থেকে পরাবৃত্তের সমীকরণ নির্ণয় কর।

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

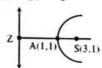

এখানে, উপকেন্দ্রিক লম্বের প্রান্তবিন্দুদ্বয় L(3,5), L'(3,-3)অতএব, উপকেন্দ্র $S\left(\frac{3+3}{2},\frac{5-3}{2}\right)=(3,1)$

দেখা যাচ্ছে উপকেন্দ্রিক লম্ব y-অক্ষের সমান্তরাল। সুতরাং অক্ষরেখা হবে x-অক্ষের সমান্তরাল।

উপকেন্দ্রিক লম্বের দৈর্ঘা,

$$LL' = |4a| \Rightarrow |4a| = \sqrt{(5+3)^2} = 8 \Rightarrow a = \pm 2$$

অথবা, A(3 - 2, 1) = (1,1)



শীর্ষ A(5,1), উপকেন্দ্র S(3,1) শীর্ষ হতে উপকেন্দ্রের দূরত্ব 2 একক এবং অক্ষ x অক্ষের সমান্তরাল হলে সমীকরণ,

$$(y-1)^2 = -4 \times 2(x-5)$$

$$\Rightarrow y^2 - 2y + 1 = -8x + 40$$

$$\Rightarrow y^2 - 2y + 8x - 39 = 0$$

আবার, শীর্ষ A(1,1), উপকেন্দ্রে S(3,1), শীর্ষ হতে উপকেন্দ্রের দূরত্ব 2 একক এবং অক্ষ x-অক্ষের সমান্তরাল হলে সমীকরণ- $(y-1)^2=4\times 2(x-1)\Rightarrow y^2-2y+1=8x-8$ $\Rightarrow y^2-2y-8x+9=0$

এবং
$$y^2 - 2y - 8x + 9 = 0$$
 (Ans.)

নিজে করো

06. দুশ্যকল্প-১: $f(y) = ay^2 + by + c$.

निर्परा करा।

[BB'23]

07. A(1,-3), B(0,7), C(1,1)

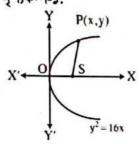
[Din.B'22]

(খ) দৃশ্যকম্প-১ এর আলোকে, x = f(y) কনিকের শীর্ষবিন্দু (খ) $y = ax^2 + bx + c$ পরাবৃত্তটির শীর্ষ A এবং এটি B (3, -2) এবং এটি (5, 0) বিন্দুগামী হলে a, b, c এর মান নির্ণয় কর।

Type-04: পরাবৃত্তের উপকেন্দ্রিক দূরত্ব সম্পর্কিত

Concept

কোনো পরাবৃত্তের উপকেন্দ্র হতে পরাবৃত্ততির উপরম্ভ যেকেনো বিন্দুর দূরত্বকে ফোকাস দূরত্ব বা উপকেন্দ্রিক দূরত্ব বলে।


[Ans: $a = \frac{1}{2}$, b = 2, c = 5]

- (i) $y^2 = 4ax$ পরাবৃত্তের উপরম্থ যেকোনো বিন্দু P(x,y) এর উপকেন্দ্রিক দূরত্ব, SP = |a+x|
- (ii) $x^2 = 4ay$ পরাবৃত্তের উপরম্ভ যেকোনো বিন্দু P(x,y) এর উপকেন্দ্রিক দূরত্ব, SP = |a+y|

Education कि कि विशेष कि कि

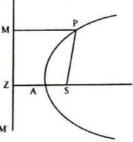
সৃজনশীল প্রশ্ন (ক, খ ও গ)

্যা দৃশ্যকম্প-১:

(খ) দৃশ্যকল্প-১ এ S উপকেন্দ্র এবং SP = 6 একক হলে, P বিন্দুর স্থানাঙ্ক নির্ণয় কর।

(খ) Soln: পরাবৃত্তের সমীকরণ, y² = 16x [দেওয়া আছে]
 y² = 4 · 4x · a = 4 · উপকেন্দ্র ≡ (4,0)
 P বিন্দুর উপকেন্দ্রিক দূরত্ব = |x + a| ⇒ 6 = |x + 4|
 ∴ x = 2 [যেহেতু P বিন্দুটি প্রথম চতুর্ভাগে]
 x = 2 বসিয়ে পাই, y² = 16 × 2 · y = ±4√2 = 4√2

দৃশ্যকম্প-১: মনে করি, একটি কনিকের সমীকরণ, Bx², Ry² + Nxy + Tx + Sy + A = 0 [নটর ডেম কলেজ, চাক্রা (খ) দৃশ্যকম্প-১ এ প্রদন্ত কনিকের উপরস্থ যে বিন্দুর উপকেষ্ট্রিক দূরত্ব 12 একক তার স্থানান্ধ নির্ণয় কর।


(যেখানে,
$$R = 1, T = -16, B = N = S = A = 0$$
)

(খ) Solⁿ: প্রদত্ত সমীকরণ: Bx² + Ry² + Nxy + Tx + Sy + A = 0 ⇒ y² - 16x = 0 [মান বসিয়ে] ⇒ y² = 4 · 4x · a = 4 প্রশ্নতে, উপকেন্দ্রিক দূরত্ব: a + x = 12 ⇒ 4 + x = 12 ∴ x = 8 এবং y² - 16 × 8 = 0 ∴ y = ±8√2

.. নির্ণেয় বিন্দুর স্থানান্ধ: (৪, ±8√2) (Ans.)

নিজে করো

03.

[MB'22]

উপরের চিত্রটি একটি কনিক নির্দেশ করে। যার উপকেন্দ্র S, শীর্ষবিন্দু A এবং MZM' নিয়ামক রেখা।

্খ) উদ্দীপকের কনিকটির সমীকরণ, $y^2 = 6x$ এবং SP = 6 হলে, P বিন্দুর স্থানাঙ্ক নির্ণয় কর।

[Ans: $\left(\frac{9}{2}, \pm \frac{9\sqrt{6}}{2}\right)$]

04. (क) $y^2 = 32x$ পরাবৃত্তম্থ কোনো বিন্দুর ফোকাস দূরত্ব 10; বিন্দুটির স্থানাম্ক নির্ণয় কর।

[CB'17] [Ans: (2, ±8)]

Type-05: উপবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়

V Concept

এসব ক্ষেত্রে $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, আকারের উপবৃত্তের আদর্শ সমীকরণের সাথে তুলনা করে বিভিন্ন উপাদান বের করতে হবে।

দমিক নং	উপবৃত্তের আকার:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$ $a > b$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$ $a < b$	$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1,$ $a > b$	$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = a < b$
(i)	কেন্দ্ৰ, C:	(0,0)	(0,0)		(α, β)
(ii)	तृद्ध अरकत रेपर्घाः	2a	2b	(α, β)	The second secon
(iii)	কুদ্র অক্ষের দৈর্ঘা:	2b	2a	2a	2b
(iv)	উপকেন্দ্র, S:	(± ae, 0)		2b	2a
(14)	7 13 - 21 - 2		$(0, \pm be)$	(α ± ae, β)	(a, \be)

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

1		1	8		
ı	. [F	2	1	
ı	1	1		*	

(v)	বৃহৎ অক্ষের সমীকরণ:	y = 0	x = 0	$y - \beta = 0$	$x - \alpha = 0$
(vi)	ক্ষুদ্র অক্ষের সমীকরণ:	x = 0	y = 0	$x - \alpha = 0$	$y - \beta = 0$
(vii)	দিকাক্ষের সমীকরণ:	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{c}$	$x = \alpha \pm \frac{a}{c}$	$y = \beta \pm \frac{b}{c}$
(viii)	উপকেন্দ্রিক লম্ব, LL':	2b ²	2a ²	262	2a ²
(ix)	উপকেন্দ্রিক লম্বের/ নাভিলম্বের সমীকরণ:	x = ± ae	y = ± be	$x = \alpha \pm ae$	$y = \beta \pm be$
(x)	উপকেন্দ্রিক লম্বের/ নাভিলম্বের প্রান্তবিন্দুগুলো:	$\left(\pm ae, \pm \frac{b^2}{a}\right)$	$\left(\pm \frac{a^2}{b}, \pm be\right)$	$\left(\alpha \pm ae, \beta \pm \frac{b^2}{a}\right)$	$\left(\alpha \pm \frac{a^2}{b}, \beta \pm be\right)$
(xi)	উৎকেন্দ্রকতা, e:	$\sqrt{1-\frac{b^2}{a^2}}$	$\sqrt{1-\frac{a^2}{b^2}}$	$\sqrt{1-\frac{b^2}{a^2}}$	$\sqrt{1-\frac{a^2}{b^2}}$
(xii)	বৃহৎ অক্ষের প্রান্তবিন্দু (শীর্ষবিন্দু):	(± a, 0)	(0, ± b)	(α ± a, β)	(α, β ± b)
(xiii)	ক্ষুদ্র অক্ষের প্রান্তবিন্দু:	$(0, \pm b)$	(± a, 0)	$(\alpha, \beta \pm b)$	(α ± a, β)
(xiv)	ফোকাসদ্বয়ের দূরত্ব, SS':	2ae	2be	2ae	2be
(xv)	নিয়ামকের দূরত্ব, ZZ':	2 a	2 b	2 a	2 b
(xvi)	ক্ষেত্রফল :	π ab	πab	πab	πab
(xvii)	প্রামিতিক স্মীকরণ:	$x = a \cos \theta$, $y = b \sin \theta$, যেখানে $\theta = \tan^{-1} \left(\frac{ay}{bx}\right)$	$x = a \cos \theta$, $y = b \sin \theta$, যেখানে $\theta = \tan^{-1} \left(\frac{ay}{bx}\right)$	$x = \alpha + a\cos\theta,$ $y = \beta + b\sin\theta$ যেখানে $\theta = \tan^{-1}\left(\frac{a(y-\beta)}{b(x-\alpha)}\right)$	$x = \alpha + a\cos\theta,$ $y = \beta + b\sin\theta,$ যেখানে $\theta = \tan^{-1}\left(\frac{a(y-\beta)}{b(x-\alpha)}\right)$

সূজনশীল প্রশ্ন (ক, খ ও গ)

💵 উদ্দীপক-১: 16x² + 25y² - 32x + 100y - 284 = 0 [DB'23]

(খ) উদ্দীপক-১ এর নিয়ামক রেখার সমীকরণ নির্ণয় কর।

(*) Solⁿ:
$$16x^2 + 25y^2 - 32x + 100y - 284 = 0$$

$$\Rightarrow 16(x^2 - 2x + 1) + 25(y^2 + 4y + 4) = 284$$

$$+16 + 100$$

⇒
$$16(x-1)^2 + 25(y+2)^2 = 400$$

⇒ $\frac{(x-1)^2}{25} + \frac{(y+2)^2}{16} = 1$

$$\Rightarrow \frac{(x-1)^2}{5^2} + \frac{(y+2)^2}{4^2} = 1$$
 কে উপবৃত্তের সাধারণ

সমীকরণ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সঙ্গে তুলনা করে পাই,

উপবৃত্তির প্রধান অক্ষ x-অক্ষের সমান্তরাল।

উৎকেন্দ্রিকতা,
$$e = \sqrt{1 - \left(\frac{b}{a}\right)^2} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$

 $\therefore \frac{a}{e} = \frac{5}{3} = \frac{25}{3}$

∴ নিয়ামকের সমীকরণ: $X = \pm \frac{a}{a} \Rightarrow x - 1 = \pm \frac{25}{3}$ (Ans.)

$(a) \frac{x^2}{8} + \frac{y^2}{4} = 1$ উপবৃত্তের বৃহৎ অক্ষের দৈর্ঘ্য নির্ণয় কর।

(ক) Sol":
$$\frac{x^2}{8} + \frac{y^2}{4} = 1 \Rightarrow \frac{x^2}{(2\sqrt{2})^2} + \frac{y^2}{2^2} = 1$$
 কে $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সঙ্গে তুলনা করে পাই, $a = 2\sqrt{2}$ এবং $b = 2$; $a > b$ অর্থাৎ x -অক্ষ বরাবর পরাবৃত্তটির বৃহৎ অক্ষ অবস্থিত। \therefore বৃহৎ অক্ষের দৈর্ঘ্য = $2a = 2 \times 2\sqrt{2} = 4\sqrt{2}$ একক (Ans.)

03 (ক)
$$2x^2 + y^2 = 2$$
 কনিকটির শীর্ষবিন্দুর স্থানাঙ্ক নির্ণয় কর।
[RB'23]

(ক) Solⁿ: দেওয়া আছে,
$$2x^2 + y^2 = 2 \Rightarrow \frac{2x^2 + y^2}{2} = 1$$

$$\Rightarrow \frac{x^2}{(1)^2} + \frac{y^2}{(\sqrt{2})^2} = 1 \dots \dots (i)$$
 সমীকরণ (i) কে $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সাথে তুলনা করে পাই, $a = 1$ এবং $b = \sqrt{2}$; $b > a$ অর্থাৎ প্রধান অক্ষ y-অক্ষ। আমরা জানি, শীর্যবিন্দুর স্থানান্ধ $(0, \pm b)$ \therefore প্রদন্ত কনিকের শীর্ষবিন্দু $(0, \pm \sqrt{2})$ (Ans.)

HSC প্রশ্নব্যাংক ২০২৫

(ক) $3x^2 + 2y^2 = 1$ উপবৃত্তের উৎকেন্দ্রিকতা নির্ণয় কর।

(ক) Sol^n : দেওয়া আছে, উপবৃত্তের সমীকরণ, $3x^2 + 2y^2 = 1$ $\Rightarrow \frac{x^2}{\underline{1}} + \frac{y^2}{\underline{1}} = 1$

উপবৃত্তটির সমীকরণকে $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সাথে তুলনা করে পাই, $a^2 = \frac{1}{3}$, $b^2 = \frac{1}{3}$

এখন, উৎকেন্দ্রিকতা, $e = \sqrt{1 - \frac{a^2}{h^2}} = \frac{1}{\sqrt{2}}$ (Ans.)

দুশ্যকল্প-২: $4x^2 + 5y^2 + 10y - 16x + 1 = 0$

- (গ) দৃশ্যকম্প-২ হতে কনিকটির উপকেন্দ্র ও উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর।
- (গ) Soln: দেওয়া আছে, $4x^2 + 5y^2 + 10y 16x + 1 = 0$ $\Rightarrow 4(x^2 - 4x + 4) + 5(y^2 + 2y + 1) = 20$ $\Rightarrow \frac{(x-2)^2}{5} + \frac{(y+1)^2}{4} = 1 : a = \sqrt{5}, b = 2$ এক্ষেত্রে a > b অর্থাৎ প্রধান অক্ষ x-অক্ষের সমান্তরাল।

এবং
$$e = \sqrt{1 - \frac{4}{5}} = \frac{1}{\sqrt{5}}$$

এখন উপকেন্দ্র $(X,Y) \equiv \left(\pm\sqrt{5}\frac{1}{\sqrt{5}},0\right)$

- $\Rightarrow (x-2,y+1) \equiv (\pm 1,0)$
- \Rightarrow (x, y) \equiv ($\pm 1 + 2, -1$) \equiv (3, -1), (1, -1)

এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য = $\frac{2b^2}{3} = \frac{2\cdot 2^2}{\sqrt{5}} = \frac{8}{\sqrt{6}}$ (Ans.)

(ক) $4x^2 + 5y^2 = 1$ উপবৃত্তটির উৎকেন্দ্রিকতা নির্ণয় কর।

(ক) Sol*: দেওয়া আছে, $4x^2 + 5y^2 = 1 \Rightarrow \frac{x^2}{\frac{1}{2}} + \frac{y^2}{\frac{1}{2}} = 1$ $\therefore a = \frac{1}{2}, b = \frac{1}{\sqrt{6}}$

 $\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{\frac{1}{5}}{\frac{1}{4}}} = \frac{1}{\sqrt{5}} \text{ (Ans.)}$

- (ক) $2x^2 + 3y^2 = 1$ উপবৃত্তটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর।
- (ক) Sol": উপবৃত্তের সমীকরণ: 2x2 + 3y2 = 1 $\Rightarrow \frac{x^2}{\frac{1}{2}} + \frac{y^2}{\frac{1}{2}} = 1 \dots \dots \dots (i)$

(i) নং কে $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সাথে তুলনা করে পাই,

 $a^2 = \frac{1}{2}$, $b^2 = \frac{1}{2}$: a > b

 \therefore উপকেন্দ্রিক লম্বের দৈর্ঘ্য = $\frac{2b^2}{a} = \frac{2 \times \frac{1}{3}}{\frac{1}{3}} = \frac{2 \sqrt{2}}{3}$ একক (Ans.)

- দৃশ্যকম্প-১: $4x^2-8x+8y^2-8y=10$ একটি উপ্যান 08.
 - (খ) দৃশ্যকম্প-১ এর উপবৃত্তটির কেন্দ্র, উপকেন্দ্র এবং উপর্কেন্দ্র
- Sol": উপবৃত্তের সমীকরণটি, $4x^2 8x + 8y^2 8y = 10$ $\Rightarrow 4(x^2 - 2x + 1 - 1) + 8\left(y^2 - y + \frac{1}{4} - \frac{1}{4}\right) = 10$

 $\Rightarrow 4(x-1)^2 - 4 + 8\left(y - \frac{1}{2}\right)^2 - 2 = 10$

 $\Rightarrow 4(x-1)^2 + 8(y-\frac{1}{2})^2 = 16$

 $\Rightarrow \frac{(x-1)^2}{4} + \frac{\left(y - \frac{1}{2}\right)^2}{2} = 1 \Rightarrow \frac{x^2}{2^2} + \frac{y^2}{\left(\sqrt{2}\right)^2} = 1 \dots \dots (i)$

ধিরি, X = x - 1, এবং $Y = y - \frac{1}{2}$

(i) নং কে $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সাথে তুলনা করে পাই, a = 2

এবং $\mathbf{b}=\sqrt{2}$ \therefore $a>\mathbf{b}$; কেন্দ্র, $C(X,Y)\equiv(0,0)$

 $X = 0 \Rightarrow x - 1 = 0 : x = 1, Y = 0 \Rightarrow y - \frac{1}{2} = 0$

 $\dot{y} = \frac{1}{2}$ েকেন্দ্র $\equiv \left(1, \frac{1}{2}\right)$ (Ans.)

উৎকেন্দ্ৰিকতা, $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{2}{4}} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$

উপকেন্দ্রের স্থানান্ধ, $S(X,Y)\equiv (\pm ae,0)$

 $X = \pm ae \Rightarrow x - 1 = \pm 2 \times \frac{1}{\sqrt{2}} \therefore x = 1 \pm \sqrt{2}$;

 $Y = 0 \Rightarrow y - \frac{1}{2} = 0 \therefore y = \frac{1}{2}$

 \therefore উপকেন্দ্র, $\equiv \left(1 \pm \sqrt{2}, \frac{1}{2}\right)$ (Ans.)

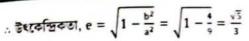
এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য = $\frac{2b^2}{3} = \frac{2 \times 2}{2} = 2$ একন (Ans.)

- উদ্দীপক-২: $4x^2 + 9y^2 40x 108y + 388 = 0$ 09. একটি কনিক।
 - (গ) উদ্দীপক-২ এ উল্লিখিত কনিকটির উপকেন্দ্রিক গরে সমীকরণ নির্ণয় কর।
- Sol": উদ্দীপক-২ হতে পাই,

 $4x^2 + 9y^2 - 40x - 108y + 388 = 0$

 $\Rightarrow 4(x^2 - 10x) + 9(y^2 - 12y) + 388 = 0$

 $\Rightarrow 4(x^2 - 10x + 25 - 25) + 9(y^2 - 12y + 36^{-36})$


 $\Rightarrow 4(x-5)^2 - 100 + 9(y-6)^2 - 324 + 388 = \emptyset$

 $\Rightarrow 4(x-5)^2 + 9(y-6)^2 = 36$

 $\Rightarrow \frac{(x-5)^2}{9} + \frac{(y-6)^2}{4} = 1$

⇒ $\frac{X^2}{3^2} + \frac{Y^2}{2^2} = 1 \dots \dots (i) [4fa, X = X - 5 \text{ add } Y = y - 6]$

(i) n? (ii) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ as সাথে তুলনা করে পাই, a = 3এ**व**१ b = 2 ∴ a > b

.: উপকেন্দ্রিক লম্বের সমীকরণ, $X = \pm ae$ ⇒ $x - 5 = \pm 3 \times \frac{\sqrt{5}}{3} \Rightarrow x = 5 \pm \sqrt{5}$ (Ans.)

(ক) 4x² + 5y² = 1 উপবৃত্তের একটি উপকেন্দ্র ও এর অনুরূপ নিয়ামক রেখার মধ্যবর্তী দূরত্ব নির্ণয় কর।

[Din.B'22]

(ক) Soln: $4x^2 + 5y^2 = 1 \Rightarrow \frac{x^2}{\left(\frac{1}{2}\right)^2} + \frac{y^2}{\left(\frac{1}{\sqrt{5}}\right)^2} = 1 \therefore a = \frac{1}{2}$ এবং $b = \frac{1}{\sqrt{5}} \therefore a > b \therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{4}{5}} = \frac{1}{\sqrt{5}}$ \therefore উপকেন্দ্র ও এর অনুরূপ নিয়ামক রেখার মধ্যবর্তী দূরত্

 $=\frac{a}{e}-ae=\frac{\sqrt{5}}{2}-\frac{1}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}$ (Ans.)

া (ক) $5x^2 + 4y^2 = 1$ উপবৃত্তের নিয়ামক রেখার সমীকরণ নির্ণয় কর। |Ctg.B'19|

(ক) Soln: উপবৃত্তি, $5x^2+4y^2=1$; $\left(\frac{x}{\frac{1}{\sqrt{5}}}\right)^2+\left(\frac{y}{\frac{1}{2}}\right)^2=1$ এখানে, $e=\sqrt{1-\frac{a^2}{b^2}}=\sqrt{1-\frac{4}{5}}=\frac{1}{\sqrt{5}}$ এখন, নিয়ামক রেখা, $y=\pm\frac{b}{e}\Rightarrow y=\pm\frac{1}{2}\times\sqrt{5}\Rightarrow 2y=\pm\sqrt{5}$

[সলেট ক্যাডেট কলেজ, সিলেট]

(ii) $2x^2 + y^2 - 8x - 2y - 7 = 0$

(গ) (ii) নং হতে কনিকটির নিয়ামকের সমীকরণ এবং অক্ষ্বয়ের দৈর্ঘ্য নির্ণয় কর।

(গ) Sol*:প্রদত্ত সমীকরণ: $2x^2 + y^2 - 8x - 2y - 7 = 0$ $\Rightarrow 2(x^2 - 4x + 4) - 8 + (y^2 - 2y + 1) - 1 - 7 = 0$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

⇒ $2(x-2)^2 + (y-1)^2 = 16$ ⇒ $\frac{(x-2)^2}{8} + \frac{(y-1)^2}{16} = 1$ ∴ $\frac{(x-2)^2}{(2\sqrt{2})^2} + \frac{(y-1)^2}{4^2} = 1$; $a = 2\sqrt{2}$ এবং b = 4

অর্থাৎ, b > a হলে বৃহৎ অক্ষ-y অক্ষের সমান্তরাল। বৃহৎ অক্ষের দৈর্ঘা = $2 \times 4 = 8$ একক এবং কুদ্র অক্ষের দৈর্ঘা = $2 \times 2\sqrt{2} = 4\sqrt{2}$ একক

উংকেন্দ্রিকতা, $e=\sqrt{1-\frac{a^2}{b^2}}=\sqrt{1-\frac{8}{16}}=\frac{1}{\sqrt{2}}$ \therefore নিয়ামকের সমীকরণ, $y-1=\pm\frac{b}{e}\Rightarrow y=1\pm\frac{4}{\frac{1}{\sqrt{2}}}$ $\Rightarrow y=1\pm4\sqrt{2} \therefore y-1\pm4\sqrt{2}=0$ (Ans.)

ন্দ্যকল্প-২: $6x^2 + 4y^2 - 36x - 4y + 43 = 0$ একটি সমীকরণ। [ঢাকা রেসিডেনসিয়াল মডেল কলেজ] (গ) দৃশ্যকল্প-২ সমীকরণটির উপকেন্দ্র ও নিয়ামকের সমীকরণ বেব কব।

পো Sol*: প্রদের সমীকরণ: $6x^2 + 4y^2 - 36x - 4y + 43 = 0$ $\Rightarrow 6(x^2 - 6x + 9) + 4\left(y^2 - y + \frac{1}{4}\right) = -43 + 54 + 1$ $\Rightarrow \frac{(x-3)^2}{2} + \frac{\left(y - \frac{1}{2}\right)^2}{3} = 1 \Rightarrow \frac{(x-3)^2}{\left(\sqrt{2}\right)^2} + \frac{\left(y - \frac{1}{2}\right)^2}{\left(\sqrt{3}\right)^2} = 1$ $\therefore a = \sqrt{2}, b = \sqrt{3}$ অর্থাৎ b > a এবং কেন্দ্র $(\alpha, \beta) \equiv \left(3, \frac{1}{2}\right)$ $\therefore উপকেন্দ্রের সমীকরণ: <math>(\alpha, \beta \pm be) \equiv \left(\alpha, \beta \pm \sqrt{b^2 - a^2}\right)$ $\equiv \left(3, \frac{1}{2} \pm 1\right) \equiv \left(3, \frac{3}{2}\right), \left(3, -\frac{1}{2}\right)$ (Ans.)

এবং নিয়ামকরেখার সমীকরণ: $y - \frac{1}{2} = \pm \frac{b}{e}$ $\Rightarrow y - \frac{1}{2} = \pm \frac{b^2}{\sqrt{b^2 - a^2}} \Rightarrow y = \frac{1}{2} \pm \frac{3}{1}$

 $\Rightarrow y = \frac{1}{2} + 3 = \frac{7}{2} : 2y - 7 = 0$ এবং $y = \frac{1}{2} - 3 = \frac{-5}{2}$ $\therefore 2y + 5 = 0$ (Ans.)

নিজে করো

14. (ক) $4x^2 + 7y^2 = 28$ কনিকের উৎকেন্দ্রিকতা নির্ণয় কর।

[SB'22] [Ans: $\frac{1}{\sqrt{5}}$]

15. উদ্দীপক-২: x² + 2y² - 12x + 28 = 0 [CB'22]

(গ) উদ্দীপক-২ এ উল্লিখিত কনিকের উপকেন্দ্রের স্থানাম্ব ও নিয়ামক রেখার সমীকরণ নির্ণয় কর।

[Ans: (8,0), (4,0); $x-6=\pm 4$]

16. উদ্দীপক-১: $4x^2 + 6y^2 - 4x - 36y + 43 = 0$. [MB'22]

(ক) $5x^2 + 4y^2 = 1$ কনিকের উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর। |Ans: $\frac{4}{5}$ |

 (খ) উদ্দীপক-১ এ বর্ণিত সমীকরণকে প্রমিত আকারে প্রকাশ করে কনিকটির নিয়ামক রেখার সমীকরণ নির্ণয় কর।

|Ans: $x - \frac{1}{2} = \pm 3$ |

17. $16x^2 + 25y^2 = 400$.

[DB'17]

9

(খ) উৎকেন্দ্রিকতাসহ উদ্দীপকের কনিকটির শীর্ষছয়ের স্থানায়,
 ফোকাস ও উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর।

[Ans: $e = \frac{3}{5}$ শীর্ষবিন্দুসমূহ, $(\pm 5, 0)$ ও $(0, \pm 4)$;

ফোকাসম্ম (± 3.0) : $\frac{32}{5}$

(গ) চিত্র অঙ্কনপূর্বক উদ্দীপকের কনিকটির উপকেন্দ্রিক লম্বছয়ও নিয়ামকছয় এর সমীকরণ নির্ণয় কর।

[Ans: $x = \pm 3$; $3x = \pm 25$]

18. (ক) $3x^2 + 5y^2 = 1$ এর উৎকেন্দ্রিকতা নির্ণয় কর।

[DB'19; JB'17][Ans: $\sqrt{\frac{2}{5}}$]

উচ্চতর গাণত ২য় সত্র : অধ্যায়-n.৷

Type-06: বিভিন্ন শর্ত হতে উপবৃত্তের সমীকরণ এবং উপাদান নির্ণয় সংক্রান্ত

& Concept

- 💌 (α,β) কেন্দ্রবিশিষ্ট উপবৃত্তের বৃহৎ অক্ষ
 - (i) x-অক্ষের সমান্তরাল হলে উপবৃত্তের সমীকরণ $\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 0$; [যেখানে a > b]
 - (ii) y-অক্ষের সমান্তরাল হলে উপবৃত্তের সমীকরণ $\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 0$; [যেখানে a < b]

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- দৃশ্যকম্প-২: একটি কনিকের কেন্দ্র মূলবিন্দুতে, উপকেন্দ্রিক লম্বের দৈর্ঘ্য 10 ও উৎকেন্দ্রিকতা 🗓। |RB'23|
 - (গ) স্থানাঙ্কের অক্ষদ্বয়কে দৃশ্যকল্প-২ এ বর্ণিত কনিকের অক্ষদ্বয় বিবেচনা করে এর সমীকরণ নির্ণয় কর।
- (গ) Sol": দেওয়া আছে, উপকেন্দ্রিক লম্বের দৈর্ঘ্য = 10 উৎকেন্দ্রিকতা = $e = \frac{1}{\sqrt{3}}$

ধরি, a>b : আমরা জানি, উপকেন্দ্রিক লম্বের দৈর্ঘ্য = $\frac{2b^2}{a}=10$:: $b^2=5a$ (i)

আবার,
$$e=\sqrt{1-rac{b^2}{a^2}}\Rightarrow e^2=1-rac{b^2}{a^2}$$

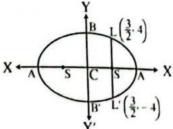
$$\Rightarrow b^2 = a^2(1 - e^2) \Rightarrow b^2 = a^2(1 - \frac{1}{3})$$

$$b^2 = \frac{2a^2}{3} \dots \dots \dots (ii)$$

(i) ও (ii) তুলনা করে পাই, $5a = \frac{2a^2}{3} \Rightarrow 15 = 2a : a = \frac{15}{2}$

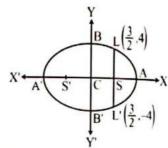
এখন, (ii)
$$\Rightarrow$$
 $b^2 = \frac{2}{3} \times \left(\frac{15}{2}\right)^2 : b^2 = \frac{75}{2}$

নির্ণেয় সমীকরণ: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{\left(\frac{15}{2}\right)^2} + \frac{y^2}{\frac{75}{2}} = 1$


$$\Rightarrow \frac{x^2}{\frac{225}{4}} + \frac{y^2}{\frac{75}{2}} = 1 \Rightarrow \frac{4x^2}{225} + \frac{2y^2}{75} = 1$$

$$\Rightarrow 4x^2 + 6y^2 = 225$$

্. নির্ণেয় সমীকরণ: 4x² + 6y² = 225 (Ans.)


02. দৃশ্যকম্প-১:

[SB'23]

(খ) দৃশ্যকম্প-১ এর উপবৃত্তটির উৎকেন্দ্রিকতা $\frac{1}{3}$ হলে, এর সমীকরণ নির্ণয় কর।

(역) Soln:

যেহেতু উপবৃত্তের অক্ষন্বয় x-অক্ষ এবং y-অক্ষ বরাবর ফর্ক্য় ধরি, উপবৃত্তের সমীকরণ, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b)

[যা L বিসুগায়ী]

1887

$$\frac{9}{4a^2} + \frac{16}{b^2} = 1 \dots \dots (i)$$

এখন, উপকেন্দ্র
$$S\left(\frac{\frac{3}{2}+\frac{3}{2}}{2},\frac{4-4}{2}\right)$$
 বা $\left(\frac{3}{2},0\right)$

এখন, ae =
$$\frac{3}{2}$$
 \Rightarrow a $\times \frac{1}{3} = \frac{3}{2} \left[\because e = \frac{1}{3}\right] \therefore a = \frac{9}{2}$

(i) হতে পাই,
$$\frac{9}{4\frac{81}{4}} + \frac{16}{b^2} = 1 \Rightarrow \frac{16}{b^2} = 1 - \frac{1}{9} \Rightarrow b^2 = 18$$

$$\therefore$$
 উপবৃত্তের সমীকরণ, $\frac{4x^2}{81} + \frac{y^2}{18} = 1$ (Ans.)

03.

X' (-5, 0) A'(-4, 0) A(4, 0) S(5, 0) N

(গ) উদ্দীপকের $\Lambda \otimes \Lambda'$ কে উপকেন্দ্র ধরে উপবৃত্তের সমীকর্ম নির্ণয় কর যার একটি নিয়ামকের সমীকরণ, 5x - 36 = 0

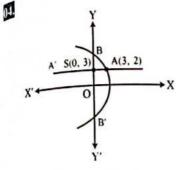
(গ) Sol": A'(-4,0) ও A(4,0) ∴ কেন্দ্র, C ≡ (0,0) এই 2ae = 8 ⇒ ae = 4(i)

এখন, কেন্দ্র (0,0) থেকে নিয়ামক রেখার দূরত্

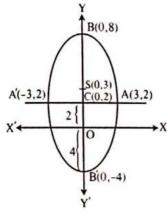
$$\frac{|5|6-36|}{\sqrt{25}} = \frac{36}{5} = \frac{4}{6} \dots \dots \dots \dots (11)$$

(i) × (ii)
$$\Rightarrow$$
 ae × $\frac{a}{e}$ = 4 × $\frac{36}{5}$ \Rightarrow a² = $\frac{144}{5}$: a = $\frac{12}{5}$

$$e = \frac{4}{a} = \frac{4\sqrt{5}}{12} = \frac{\sqrt{5}}{3}$$


আবার,
$$e^2 = 1 - \frac{b^2}{a^2} \Rightarrow \frac{b^2}{a^2} = 1 - e^2 = \frac{4}{9}$$

$$b^2 = \frac{4}{9} \times \frac{144}{5} = \frac{64}{5}$$


় উপবৃত্তের সমীকরণ,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\Rightarrow \frac{x^2}{\frac{144}{5}} + \frac{y^2}{\frac{64}{5}} = 1 \Rightarrow \frac{5x^2}{144} + \frac{5y^2}{64} = 1 \text{ (Ans.)}$$

[JB'23, SB'17]

- (গ) উদ্দীপকে OB' = 4 এবং AS = A'S হলে BB' কে বৃহৎ
 আক্ষ ও AA' কে ক্ষুদ্র আক্ষ ধরে অঙ্কিত উপবৃত্তের
 উপকেন্দ্রিক লম্বের সমীকরণ বাহির কর।
- (গ) Sol": যেহেতু, OB' = 4 একক, সেহেতু B'(0, -4)

আবার C, AA' এর মধ্যবিন্দু ∴ C(0,2) এবং BC = B'C;

$$B'C = 2 - (-4) = 6 : B(0,2+6)$$
 বা, $B(0,8)$ ।

$$a = AC = A'C = 3 - 0 = 3; b = BC = 6$$

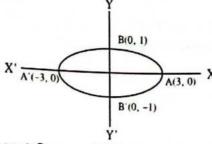
BB' কে বৃহৎ অক্ষ এবং AA' কে ক্ষুদ্র অক্ষ ধরে উপবৃত্তটির

সমীকরণ
$$\frac{x^2}{3^2} + \frac{(y-2)^2}{6^2} = 1$$

$$\dot{}$$
 উৎকৈন্দ্রিকতা $e = \sqrt{\frac{b^2 - a^2}{b^2}} = \sqrt{\frac{36 - 9}{36}} = \frac{3\sqrt{3}}{6}$

উপবৃত্তের উপকেন্দ্রিক লম্বের সমীকরণ,

$$y-2 = \pm be \Rightarrow y-2 = \pm 6 \times \frac{3\sqrt{3}}{6}$$


∴ y - 2 =
$$\pm 3\sqrt{3}$$
. (Ans.)

Educationblog24

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

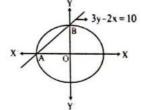
05 উদ্দীপক-১:

[DB'22]

- (খ) উদ্দীপক-১ এ উল্লিখিত উপবৃত্তের উৎকেন্দ্রিকতা, উপকেন্দ্র ও নিয়ামকের সমীকরণ নির্ণয় কর।
- (খ) Sol": উদ্দীপক-১ এর চিত্র হতে পাই, উপবৃত্তটির বৃহদাক্ষের দৈর্ঘ্য, $2a=\sqrt{(3+3)^2+0}\Rightarrow a=3$ এবং ক্ষুদ্রাক্ষের দৈর্ঘ্য, $2b=\sqrt{(1+1)^2+0}$

∴ b = 1 ∵ a > b
∴ উৎকেন্দ্রিকতা, e =
$$\sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{1}{9}} = \frac{2\sqrt{2}}{3}$$
 (Ans.)

উপকেন্দ্রের সমীকরণ, $x = \pm ae \Rightarrow x = \pm 3 \times \frac{2\sqrt{2}}{3}$


 $\therefore x = \pm 2\sqrt{2} \text{ (Ans.)}$

নিয়ামকের সমীকরণ, $x = \pm \frac{a}{e} \Rightarrow x = \pm \frac{3}{2\sqrt{2}}$

$$\therefore 2\sqrt{2}x \pm 9 = 0 \text{ (Ans.)}$$

06 দৃশ্যকম্প-১:

- (খ) দৃশ্যকল্প-১ এ বর্ণিত উপবৃত্তের উপকেন্দ্রিক লম্বের সমীকরণ নির্ণয় কর।
- (খ) Soln: মনে করি, উপবৃত্তের সমীকরণটি,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \dots \dots (i)$$

প্রদত্ত সরলরেখার সমীকরণ, 3y - 2x = 10

$$\Rightarrow \frac{y}{\frac{10}{3}} + \frac{x}{-5} = 1$$

অর্থাৎ, উপবৃত্তটি (-5,0) এবং $(0,\frac{10}{3})$ বিন্দুগামী।

$$\therefore \frac{(-5)^2}{a^2} + 0 = 1 \Rightarrow a^2 = 25 \Rightarrow a = 5$$

এবং
$$0 + \frac{\left(\frac{10}{3}\right)^2}{b^2} = 1 \Rightarrow b^2 = \frac{100}{9} \Rightarrow b = \frac{10}{3} \therefore a > b$$

$$\therefore$$
 উৎকেন্দ্রিকতা, $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{100}{9 \times 25}} = \frac{\sqrt{5}}{3}$

x উপকেন্দ্রিক লম্বের সমীকরণ, $x = \pm ae \Rightarrow x = \pm 5 \times \frac{\sqrt{5}}{3}$

$$\therefore 3x \pm 5\sqrt{5} = 0 \text{ (Ans.)}$$

07 দৃশ্যকম্প-১: $4x^2 + ay^2 = 1$ একটি কনিকের সমীকরণ।

 (খ) দৃশ্যকল্প-১ এর কনিকটি (0, ±1) বিন্দু দিয়ে অতিক্রম করলে কনিকটির অক্ষয়য়ের দৈর্ঘ্য বের কর।

(খ) Sol": প্রদত্ত সমীকরণ,
$$4x^2 + ay^2 = 1 (i)$$

$$4 \times 0^2 + a \times (\pm 1)^2 = 1 \therefore a = 1$$

(i)
$$\Rightarrow 4x^2 + y^2 = 1 \Rightarrow \frac{x^2}{\left(\frac{1}{2}\right)^2} + \frac{y^2}{(1)^2} = 1 \dots \dots (ii)$$

(ii) নং কে
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 এর সাথে তুলনা করে পাই,

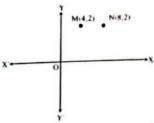
$$a = \frac{1}{2}$$
, $b = 1 : b > a$

$$\therefore$$
 বৃহদাক্ষের দৈর্ঘ্য = $2b = 2 \times 1 = 2$ একক
এবং ক্ষুদ্রাক্ষের দৈর্ঘ্য = $2a = 2 \times \frac{1}{2} = 1$ একক $\left. \left. \right\}$

$$08 \quad A(1,-3), B(0,7), C(1,1)$$

[Din.B'22]

(গ) A ও C কোনো উপবৃত্তের শীর্ষ এবং উৎকেন্দ্রিকতা $\frac{\sqrt{3}}{2}$ হলে, উপবৃত্তটির সমীকরণ নির্ণয় কর।


(গ) Solⁿ: দেওয়া আছে, শীর্ষবিন্দুছয়, A (1,-3) এবং C (1,1)
 যেহেতু শীর্ষের ভুজ একই সুতরাং, বৃহদাক্ষ y-অক্ষের সমান্তরাল।
 ∴ কেন্দ্র, C (¹⁺¹/₂, ⁻³⁺¹/₂) = (1,-1)

 \therefore উপবৃত্তের সমীকরণ, $\frac{(x-1)^2}{a^2}+\frac{(y+1)^2}{b^2}=1$ বৃহদাক্ষের দৈর্ঘ্য, $2b=\sqrt{(1+3)^2+0}\Rightarrow 2b=4$ \therefore b=2 আবার, $e^2=1-\frac{a^2}{b^2}\Rightarrow \frac{3}{4}=1-\frac{a^2}{4}\Rightarrow a^2=1$

 \therefore নির্ণেয় উপবৃত্তের সমীকরণ, $(x-1)^2 + \frac{(y+1)^2}{4} = 1$ (Ans.)

09.

[Din.B'22]

(ক) M ও N বিন্দুষয় কোনো উপবৃত্তের ফোকাস এবং বৃহৎ অক্ষের দৈয়্য 6 হলে উপবৃত্তির সমীকরণ নির্ণয় কর।

(ক) ১০1": দেওয়া আছে, উপবৃত্তের ফোকাসদ্বয়, M (4,2) ও N (8,2) কোটি একই বলে, বৃহদাক্ষ x-অক্ষের সমান্তরাল, ∴ a > b; কেন্দ্র, C (6,2)

$$\Rightarrow 4 = 2 \times 3 \times e : e = \frac{2}{3}$$

আবার,
$$e^2=1-\frac{b^2}{a^2}\Rightarrow \frac{4}{9}=1-\frac{b^2}{9}\div b^2=5$$

্র নির্ণেয় উপনৃত্তের সমীকরণ, $\frac{(x-6)^2}{9} + \frac{(y-2)^2}{5} = 1$ (Ans.)

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

 দৃশ্যকম্প-২: উপবৃত্তের একটি উপকেন্দ্র ও তার নিকটিয় নিয়ামকের দ্রত্ব 14 সে.মি.।

(গ) দৃশ্যকম্প-২ এর উপবৃত্তটির উৎকেন্দ্রিকতা । হলে উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর।

(গ) Sol*:
$$\frac{a}{e} - ae = 14 \Rightarrow a\left(\frac{1}{e} - e\right) = 14$$

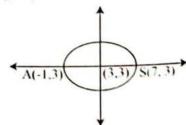
$$\Rightarrow a\left(\frac{4}{3} - \frac{3}{4}\right) = 14 \therefore a = 24$$
আবার, $e^2 = 1 - \frac{b^2}{a^2} \therefore b^2 = 252$
উপকেন্দ্রিক লম্বের দৈর্ঘ্য = $\frac{2b^2}{a} = \frac{2 \times 252}{24} = 21 \text{ cm (Ans.)}$

(ক) এমন একটি উপবৃত্তের সমীকরণ নির্ণয় কর যা (0.2√2)
ও (-3,0) বিন্দু দিয়ে যায়।

(ক) Sol": মনে করি, উপবৃত্তের সমীকরণ, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (i) \therefore উপবৃত্তি $(0,2\sqrt{2})$ বিন্দুগামী \therefore $0 + \frac{(z\sqrt{2})^2}{b^2} = 1$

আবার, (i) নং উপবৃত্তটি (-3,0) বিন্দুগামী।

$$\therefore \frac{9}{3^2} + 0 = 1 \Rightarrow a^2 = 9$$


(i) নং সমীকরণে a^2 ও b^2 এর মান বসিয়ে পাই,

$$\frac{x^2}{9} + \frac{y^2}{8} = 1 \implies \frac{8x^2 + 9y^2}{72} = 1 \implies 8x^2 + 9y^2 = 72$$

যা নির্ণেয় উপবৃত্তের সমীকরণ। (Ans.)

12. S এর স্থানান্ধ (7,3) এবং A বিন্দুর স্থানান্ধ (-1,3) $|CBT|^2$ (গ) উদ্দীপকের SA রেখাংশকে বৃহদাক্ষ ধরে কনিবান
সমীকরণ নির্ণয় কর যার উৎকেন্দ্রিকতা $\frac{\sqrt{3}}{2}$ ।

(গ) Soln: এখানে, বৃহদাক = SA = 2a = √(7 + 1)² + (3 - 3)² = 8 ∴ a = 4

দেওয়া আছে, উৎকেন্দ্রিকতা $e=rac{\sqrt{3}}{2}$

তাহলে, $e^2 = \frac{3}{4}$ [বর্গ করে]

$$\Rightarrow 1 - \frac{b^2}{a^2} = \frac{3}{4} \Rightarrow \frac{b^2}{16} = 1 - \frac{3}{4} = \frac{1}{4} \Rightarrow b^2 = 4 \cdot b^{\pm 2}$$

কেন্দ্রের স্থানান্ধ, $\left(\frac{7-1}{2}, \frac{3+3}{2}\right) = (3, 3)$:

 \therefore উপবৃত্তের সমীকরণ, $\frac{(x-3)^2}{4^2} + \frac{(y-3)^2}{2^2} = 1$: যা নির্ণেয় কনিকটির সমীকরণ। (Ans.)

দৃশ্যকম্প-১: একটি উপবৃত্তের দুইটি উপকেন্দ্র S(10,2) এবং S'(-6,2) [নটর ডেম কলেজ, ঢাকা]

(খ) দৃশ্যকম্প-১ হতে, উপবৃত্তের সমীকরণ নির্ণয় কর, যার যেকোনো উপকেন্দ্র হতে শীর্ষদ্বয়ের দূরত্বের গুণফল 36 একক।

(খ) Soln: প্রদত্ত উপবৃত্তের উপকেন্দ্র দুটি হলো: S(10,2) এবং S'(-6,2)

$$\therefore$$
 কেন্দ্রের স্থানাম্ব: $\left(\frac{10-6}{2}, \frac{2+2}{2}\right) \equiv (2,2)$

উপকেন্দ্রদ্বয় এর কোটির স্থানাঙ্ক সমান।

:: অক্ষ x-অক্ষের সমান্তরাল।

:. উপকেন্দ্রছয়ের দূরত্ব
$$2ae = \sqrt{(10+6)^2 + (2-2)^2} = 16$$

∴ ae = 8

$$\Rightarrow$$
 a = $\sqrt{36 + (ae)^2} = \sqrt{36 + 8^2} = 10$

এবং ae = 8
$$\Rightarrow$$
 a $\times \sqrt{\frac{a^2-b^2}{a^2}} = 8 \Rightarrow \sqrt{a^2-b^2} = 8$

$$\Rightarrow$$
 b = $\sqrt{a^2 - 8^2} = \sqrt{10^2 - 8^2} = 6$

$$\therefore$$
 উপবৃত্তির সমীকরণ, $\frac{(x-2)^2}{10^2} + \frac{(y-2)^2}{6^2} = 1$

$$\Rightarrow \frac{(x-2)^2}{100} + \frac{(y-2)^2}{36} = 1 \text{ (Ans.)}$$

- B(2,3) এবং A(9,2), A'(-1,2) [হলি ক্রস কলেজ, ঢাকা]
 - (গ) শীর্ষবিন্দু A, A' এবং উপকেন্দ্রদ্বয়ের মধ্যকার দূরত্ব ৪, একক হলে, উপবৃত্তের সমীকরণ ও নিয়ামকদয়ের সমীকরণ নির্ণয় কর।
- (গ) Sol": উপবৃত্তের শীর্ষবিন্দু A ও A' হলে উপবৃত্তির কেন্দ্রের স্থানান্ধ $\left(\frac{9-1}{2},\frac{2+2}{2}\right)\equiv (4,2)$ উপকেন্দ্রয় এর মধ্যবর্তী দূরত, $2ae=8\ldots\ldots$ (i)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

শীর্ষদ্বয় এর মধ্যবতী দূরত্ব,

$$2a = AA' = \sqrt{(9+1)^2 + (2-2)^2} = 10 \Rightarrow a = 5$$

$$\therefore$$
 উৎকেন্দ্রিকতা $e = \sqrt{1 - \frac{b^2}{a^2}}$

$$\Rightarrow b = a\sqrt{1 - e^2} = 5 \times \sqrt{1 - \left(\frac{4}{5}\right)^2} = 3$$

$$\therefore$$
 উপবৃত্তটির সমীকরণ: $\frac{(x-4)^2}{c^2} + \frac{(y-2)^2}{3^2} = 1$ (Ans.)

এবং নিয়ামক রেখার সমীকরণ:
$$x - 4 = \pm \frac{a}{c}$$

$$\Rightarrow x - 4 = \pm \frac{5}{4} \Rightarrow x - 4 = \pm \frac{25}{4} \Rightarrow 4x - 16 \pm 25 = 0$$

(i) উপবৃত্তের একটি শীর্ষবিন্দু এবং তার নিকটতম নিয়ামকের মধ্যবতী দূরত্ব 7 সে.মি.।

[ইবনে তাইমিয়া স্কুল এন্ড কলেজ, কুমিল্লা]

- (খ) (i) নং এর $e = \frac{3}{4}$ হলে, উদ্দীপকের উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর।
- (খ) Solⁿ: প্রশ্নমতে, $\frac{a}{e} a = 7$ $\Rightarrow a \left(\frac{1}{e} 1\right) = 7 \Rightarrow a \left(\frac{4}{3} 1\right) = 7 \quad \left[\because e = \frac{3}{4}\right]$ $\Rightarrow a = 21 সে.মি.$

আবার,
$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$\Rightarrow b = a\sqrt{1 - e^2} = 21\sqrt{1 - \left(\frac{3}{4}\right)^2} = \frac{21\sqrt{7}}{4}$$
 সে.মি.

$$\therefore$$
 উপকেন্দ্রিক লম্বের দৈর্ঘ্য $=$ $\frac{2b^2}{a} = \frac{2\left(\frac{21\sqrt{7}}{4}\right)^2}{21}$ $=$ $\frac{147}{8}$ সে.মি. (Ans.)

নিজে করো

16. দৃশ্যকল্প-২:

[RB'22]

- OA = OS = 1, AA' = 6, AO < OB.
- (গ) দৃশ্যকল্প-২ এ বর্ণিত উপবৃত্তের উপকেন্দ্র S এর স্থানান্ধ
 (0,4) হলে এর নিয়ামক রেখার সমীকরণ নির্ণয় কর।

[Ans: $y = \pm \frac{5}{4} \div 4y \pm 25 = 0$]

- 17. উদ্দীপক-২: $\frac{1}{\sqrt{2}}$ উৎকেন্দ্রিকতা বিশিষ্ট একটি কনিক যা $(4, -2\sqrt{6})$ বিন্দুগামী; যার অক্ষন্ত্বয় যথাক্রমে $x \in y$ অক্ষব্যাবর অবস্থিত। [BB'22]
 - (গ) উদ্দীপক-২ এ উল্লিখিত কনিকটির সমীকরণ নির্ণয় কর।

[Ans:
$$\frac{x^2}{64} + \frac{y^2}{32} = 1$$
]

Educationblog24.com

উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৬

Type-07: অধিবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়

Concept

 $\frac{x^2}{a^2}-\frac{Y^2}{b^2}=1$ বা $\frac{Y^2}{b^2}-\frac{X^2}{a^2}=1$ অর্থাৎ অধিবৃত্তের প্রমিত আকারের সাথে তুলনা করে উপাদান নির্ণয় করতে হবে।

Note: আয়তাকার অধিবৃত্তের (a=b) ক্ষেত্রে উৎকেন্দ্রিকতা, $e=\sqrt{2}$

Sl. No.	অধিবৃত্তের আকার:	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$	$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = 1$	$\frac{(y-\beta)^2}{b^2} - \frac{(x-\alpha)^2}{a^2} = 1$
(i)	পরামিতিক সমীকরণ:	$x = a \sec \theta,$ $y = b \tan \theta$	$x = a \tan \theta,$ $y = b \sec \theta$	$x = \alpha + a \sec \theta,$ $y = \beta + b \tan \theta$	$x = \alpha + a \tan \theta,$ $y = \beta + b \sec \theta$
(ii)	পোলার স্থানাদ্ধে সমীকরণ:	$r^{2}(b^{2}\cos^{2}\theta - a^{2}\sin^{2}\theta)$ $= a^{2}b^{2}$	$r^{2}(a^{2} \sin^{2} \theta)$ $-b^{2} \cos^{2} \theta)$ $= a^{2}b^{2}$	$b^{2}(r\cos\theta - \alpha)^{2}$ $-a^{2}(r\sin\theta - \beta)^{2} = a^{2}b^{2}$	$a^{2}(r \sin \theta - \beta)^{2}$ $-b^{2}(r \cos \theta - \alpha)^{2}$ $= a^{2}b^{2}$
(iii)	কেন্দ্ৰ, C:	(0,0)	(0, 0)	(α, β)	(α, β)
(iv)	শীর্ষদ্বয়ের স্থানাদ্ধ:	(± a, 0)	(0, ± b)	$(\alpha \pm a, \beta)$	$(\alpha, \beta \pm b)$
(v)	উপকেন্দ্র, S:	(± ae, 0)	(0, ± be)	(α ± ae, β)	(α, β ± be)
(vi)	আড় অক্ষের দৈর্ঘ্য:	2a	2b	2a	2b
(vii)	অনুবন্ধী অক্ষের দৈর্ঘ্য:	2b	2a	2b	2a
(viii)	উৎকেন্দ্রিকতা, e:	$\sqrt{1+\frac{b^2}{a^2}}$	$\sqrt{1+\frac{a^2}{b^2}}$	$\sqrt{1+\frac{b^2}{a^2}}$	$\sqrt{1+\frac{a^2}{b^2}}$
(ix)	উপকেন্দ্রিক লম্বের/ নাভিলম্বের দৈর্ঘ্য:	2b ² a	za² b	2b ²	2 a 2 b
(x)	আড় অক্ষের সমীকরণ:	y = 0	x = 0	$y - \beta = 0$	$x - \alpha = 0$
(xi)	অনুবন্ধী অক্ষের সমীকরণ:	x = 0	y = 0	$x - \alpha = 0$	$y - \beta = 0$
(xii)	উপকেন্দ্রিক লম্বের/ নাভিলম্বের সমীকরণ:	x = ± ae	y = ± be	$x = \alpha \pm ae$	$y = \beta \pm be$
(xiii)	নিয়ামক রেখার সমীকরণ:	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{e}$	$x = \alpha \pm \frac{a}{e}$	$y = \beta \pm \frac{b}{c}$
(xiv)	উপকেন্দ্রখয়ের মধ্যবতী দূরত্ব, SS':	2ae	2be	2ae	2be
(**)	উপকেন্দ্র ও অনুরূপ নিয়ামকের মধ্যবর্তী দূরত্ব:	ae – å	be – b	$ae - \frac{a}{c}$	be - b
evi)	নিয়ামক/দিকাক্ষধয়ের মধ্যবতী দূরত্ব, ZZ':	24	2 <u>b</u>	2a 0	<u>26</u>
(vii)	অসীমতটের সমীকরণ:	$y = \pm \frac{b}{a} x$	$y = \pm \frac{b}{a}x$	No. of Contract of	
Cities	শীর্ঘবিপুতে অন্ধিত স্পর্শকের সমীকরণ:	x = ±a	y = ±b	$y - \beta = \pm \frac{b}{a}(x - \alpha)$ $x = \alpha \pm a$	$y - \beta = \pm \frac{b}{a}(x - a)$ $y = \beta \pm b$

সূজনশীল প্রশ্ন (ক, খ ও গ)

 $3y^2 - 5x^2 = 15$ কনিকটির উপকেন্দ্র নির্ণয় কর।

RB'23

- (ক) Soln: প্রদন্ত কনিকের সমীকরণ $3y^2 5x^2 = 15$ $\Rightarrow \frac{y^2}{5} \frac{x^2}{3} = 1 \Rightarrow \frac{y^2}{(\sqrt{5})^2} \frac{x^2}{(\sqrt{3})^2} = 1; a = \sqrt{3}, b = \sqrt{5}$ উৎকেন্দ্রিকতা, $e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{\frac{8}{5}} = \frac{2\sqrt{2}}{\sqrt{5}}$ উপকেন্দ্র $= (0, \pm be) \equiv \left(0, \pm \sqrt{5} \times \frac{2\sqrt{2}}{\sqrt{5}}\right)$ $= (0, \pm 2\sqrt{2}) \text{ (Ans.)}$
- \mathbf{D} (ক) $\mathbf{x}^2 4\mathbf{y}^2 = 2$ কনিকের উৎকেন্দ্রিকতা নির্ণয় কর।

(ক) Sol^a: প্রদন্ত কনিক $x^2 - 4y^2 = 2 \Rightarrow \frac{x^2}{2} - \frac{y^2}{\frac{1}{2}} = 0$ \therefore উৎকেন্দ্রিকতা $e = \sqrt{1 + \frac{1}{2}} = \sqrt{1 + \frac{1}{4}} = \frac{\sqrt{5}}{2}$ (Ans.)

03. দুশ্যকম্প-২: $4x^2 - 9y^2 - 16x + 54y - 101 = 0$ [SB'2.

(গ) দৃশ্যকম্প-২ এর কনিকটির উপকেন্দ্রের স্থানাঙ্ক নির্ণয় কর।

- (গ) Soln: প্রদন্ত সমীকরণ, $4x^2 9y^2 16x + 54y 101 = 0$ $\Rightarrow 4x^2 16x 9y^2 + 54y = 101$ $\Rightarrow 4(x^2 4x + 4) 9(y^2 6y + 9) = 101 + 16 81$ $\Rightarrow 4(x 2)^2 9(y 3)^2 = 36$ $\Rightarrow \frac{(x 2)^2}{9} \frac{(y 3)^2}{4} = 1 \Rightarrow \frac{x^2}{3^2} \frac{y^2}{2^2} = 1$ [X = x 2, Y = y 3 (ধরি)]; a = 3, b = 2
 - \therefore উৎকেন্দ্রিকতা, $e = \sqrt{\frac{9+4}{9}} = \frac{\sqrt{13}}{3}$
 - : উপকেন্দ্রের স্থানান্ধ (±ae, 0)
 - $\therefore X = \pm ae \Rightarrow x 2 = \pm 3 \times \frac{\sqrt{13}}{3} \therefore x = 2 \pm \sqrt{13}$
 - এবং $Y = 0 \Rightarrow y 3 = 0 : y = 3$
 - \therefore উপকেন্দ্রের স্থানাঙ্ক $\left(2\pm\sqrt{13},3\right)$ (Ans.)
- 14 $f(x,y) = x^2 4y^2 6x 16y 11$ [JB'23]
 (খ) f(x,y) = 0 কনিকের প্রকৃতি নির্ণয় করে উহার উপকেন্দ্রন্বয়ের মধ্যবতী দূরত্ব নির্ণয় কর।
- (খ) Soln: দেওয়া আছে, f(x,y) = 0

 ⇒ x² 4y² 6x 16y 11 = 0

 ⇒ (x² 6x + 9) (4y² + 16y + 16) 9 + 16

 -11 = 0

 ⇒ (x 3)² 4(y + 2)² = 4 ⇒ \frac{(x-3)²}{4} \frac{(y+2)²}{1} = 1

 যা একটি অধিবৃত্তকে নির্দেশ করে।

 ∴ a² = 4 ⇒ a = 2 এবং b² = 1 ⇒ b = 1

 \therefore উৎকেন্দ্রিকতা, $e = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{4+1}{4}} = \frac{\sqrt{5}}{2}$

 \therefore উপকেন্দ্রদ্বয়ের মধাবতী দূরত্ব = $2ae = 2 \times 2 \times \frac{\sqrt{5}}{2}$ = $2\sqrt{5}$ একক (Ans.)

(ক) 9x² - 4y² = 36 কনিকের নিয়ামকের সমীকরণ নির্ণয় কর।
[JB'23]

(ক) Solⁿ: দেওয়া আছে, $9x^2 - 4y^2 = 36 \Rightarrow \frac{x^2}{4} - \frac{y^2}{9} = 1$ ∴ $a^2 = 4$ এবং $b^2 = 9$

 \therefore উৎকেন্দ্রিকতা, $e=\sqrt{\frac{a^2+b^2}{a^2}}=\frac{\sqrt{13}}{2}$ তাহলে, নিয়ামকের সমীকরণ, $x=\pm\frac{a}{e}\Rightarrow x=\pm2\times\frac{2}{\sqrt{13}}$ $\Rightarrow \sqrt{13}x\pm 4=0$ (Ans.)

06. দৃশ্যকল্প-২: x² – 3y² – 4x – 8 = 0 [CB'23]

(গ) দৃশ্যকম্প-২ এর কনিকটির উপকেন্দ্রিক লম্বের সমীকরণ ও দৈর্ঘ্য নির্ণয় কর। 90

- (গ) Sol®: দৃশ্যকম্প-২ এ দেওয়া আছে, $x^2-3y^2-4x-8=0$ $\Rightarrow x^2-4x+4-3y^2-12=0$ $\Rightarrow (x-2)^2-3y^2=12\Rightarrow \frac{(x-2)^2}{12}-\frac{y^2}{4}=1$ $\therefore a=2\sqrt{3}, b=2$ $\therefore e=\sqrt{1+\frac{4}{12}}=\frac{2}{\sqrt{3}}$ \therefore উপকেন্দ্রিক লম্বের দৈর্ঘ্য $=\frac{2b^2}{a}=\frac{2\times 4}{2\sqrt{3}}=\frac{4}{\sqrt{3}}$ একক এবং সমীকরণ $\Rightarrow X=\pm ae\Rightarrow (x-2)=\pm 2\sqrt{3}\times \frac{2}{\sqrt{3}}$ $\Rightarrow x-2=\pm 4$ $\therefore x=6$ অথবা x=-2 (Ans.)
- $\sqrt{(a)} \frac{x^2}{4} \frac{y^2}{9} + 1 = 0$ কনিকের উৎকেন্দ্রিকতা নির্ণয় কর।

(ক) Solⁿ: প্রদত্ত সমীকরণটি $\frac{x^2}{4} - \frac{y^2}{9} = -1 \Rightarrow \frac{y^2}{9} - \frac{x^2}{4} = 1$ a = 2, b = 3; $e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{1 + \frac{4}{9}} = \frac{\sqrt{13}}{3}$ (Ans.)

08. (ক) $\frac{x^2}{9} - \frac{y^2}{25} + 1 = 0$ কনিকের অক্ষদ্বয়ের দৈর্ঘ্য নির্ণয় কর।

(ক) Solⁿ: $\frac{x^2}{9} - \frac{y^2}{25} + 1 = 0 \Rightarrow \frac{y^2}{25} - \frac{x^2}{9} = 1 \therefore \frac{y^2}{5^2} - \frac{x^2}{3^2} = 1$ \therefore আড় অক্ষের দৈর্ঘ্য = $2 \times 5 = 10$ একক এবং অনুবন্ধী অক্ষের দৈর্ঘ্য = $2 \times 3 = 6$ একক (Ans.)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

HSC প্রস্নব্যাংক ২০২৫

নিজে করো

09. দুশাকল্প-১: $4x^2 - 9y^2 - 16x + 54y - 101 = 0$. [MB'23]

(খ) দৃশাকম্প-১ এর কনিকটিকে প্রমাণ আকারে প্রকাশ করে উপকেন্দ্রিক লয়্বের দৈর্ঘ্য ও নিয়ামক রেখার সমীকরণ নির্ণয়

 $\Phi = \{Ans: \frac{8}{3}; x = 2 \pm \frac{9\sqrt{13}}{13} \}$

10. (ক) $3x^2 - 4y^2 = 12$ কনিকের উৎকেন্দ্রিকতা নির্ণয় কর।

[RB'22] [Ans: $\frac{\sqrt{7}}{2}$]

11. (ক) $\frac{y^2}{2} - x^2 = 1$ অধিবৃত্তটির উপকেন্দ্রের স্থানাস্ক নির্ণয় কর।

[BB'22] [Ans: $(0, \pm \sqrt{3})$]

- 12. উদ্দীপক-১: $9x^2 4y^2 + 36x 8y 4 = 0 একটি ক্রিছে$ সমীকরণ।
 - (খ) উদ্দীপক-১ এ উল্লিখিত কনিকের উপকেন্দ্রের স্থানাম্ভ নির্দ্ধ কর। $|Ans: (2 \pm \sqrt{13}, -1)|$
- 13. দৃশ্যকম্প-২: $4x^2 5y^2 16x 10y 9 = 0$ [DB, SB, JB, Din.B']8
 - (গ) দৃশ্যকল্প-২ এ বর্ণিত সমীকরণটি প্রমিত আকার প্রকাশ করে উপকেন্দ্রিক লম্বের দৈর্ঘ্য ও সমীকরণ নির্ণয় কর।

[Ans: $\frac{8}{\sqrt{5}}$ $\P \Phi \Phi$; x = 5, x = -1]

14. (ক) $\frac{x^2}{4} - \frac{y^2}{9} = 1$ অধিবৃত্তের উৎকেন্দ্রিকতা নির্ণয় কর।

|Ctg.B'17| |Ans: 11

[BB'23]

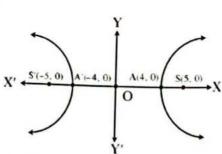
Type-08: বিভিন্ন শর্ত থেকে অধিবৃত্তের সমীকরণ নির্ণয়

Concept Concept

- (α, β) কেন্দ্রবিশিষ্ট অধিবৃত্তের আড় অক্ষ,
 - (i) x-অক্ষের সমান্তরাল হলে অধিবৃত্তের সমীকরণ, $\frac{(x-\alpha)^2}{a^2} \frac{(y-\beta)^2}{b^2} = 1$
 - (ii) y-অক্ষের সমান্তরাল হলে অধিবৃত্তের সমীকরণ, $\frac{(y-\beta)^2}{b^2} \frac{(x-\alpha)^2}{a^2} = 1$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- উদ্দীপক-২: একটি অধিবৃত্তের উৎকেন্দ্রিকতা √3, উপকেন্দ্রছয়ের মধ্যবতী দূরত্ 18। [DB'23]
 - (গ) অধিবৃত্তের অক্ষয়য়েক স্থানায়ের অক্ষ ধরে উদ্দীপক-২ এর অধিবৃত্তের সমীকরণ নির্ণয় কর।
- (গ) Sol*: ধরি, অধিবৃত্তের সমীকরণ: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \dots \dots$ (i) দেওয়া আছে, উৎকেন্দ্রিকতা $e = \sqrt{3}$ এবং উপকেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব 2ae = 18 [ধরি, x অক্ষ বরাবর আড় অক্ষ অবস্থিত]


$$a = \frac{18}{2 \times \sqrt{3}} = 3\sqrt{3} \Rightarrow a^2 = 27 \dots \dots (ii)$$

আবার, $e^2 = 1 + \frac{b^2}{a^2} \Rightarrow 1 + \frac{b^2}{27} = 3$

 $\Rightarrow b^2 = 27 \times 2 = 54 \dots (iii)$

- (i), (ii) ও (iii) কে সমন্বয় করে পাই, $\frac{x^2}{27} \frac{y^2}{54} = 1$
- ⇒ 2x² y² = 54; যা নির্ণেয় অধিবৃত্তের সমীকরণ (Ans.)

02.

- উদ্দীপকের সাহায্যে অধিবৃত্তের সমীকরণ নির্ণয় কর।
- (খ) Sol°: উদ্দীপক অনুসারে, আড়-অক = x অক

 \therefore অধিবৃত্তের সমীকরণ, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \dots \dots \dots (i)$

আবার, 2a = 8 ⇒ a = 4 এবং 2ae = 10

 \Rightarrow ae = 5 \Rightarrow e = $\frac{5}{a}$ = $\frac{5}{4}$

ध्यम्, $e^2 = 1 + \frac{b^2}{a^2}$

- $\Rightarrow e^2 1 = \frac{b^2}{a^2} \Rightarrow \frac{25}{16} 1 = \frac{b^2}{16} \Rightarrow b^2 = 9$
- ∴ (i) $\Rightarrow \frac{x^2}{16} \frac{y^2}{9} = 1$; ইহাই অধিবৃত্তের সমীকরণ। (Ans.)

HSC প্রমুব্যাংক ২০২৫

দৃশ্যকল্প-২: কেন্দ্র মৃদবিন্দৃতে এবং y-অন্ধ বরাবর আড় অন্ধবিশিষ্ট কোনো অধিবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য 24 এবং উপকেন্দ্রহয়ের [Ctg.B'22]

(গ) দৃশ্যকম্প-২ এর তথ্যের সাহায্যে অধিবৃত্তটির সমীকরণ নির্বয় কর

(গ) Sol*: মনে করি, মৃলবিন্দুতে কেন্দ্রবিশিষ্ট এবং y-অক্ষ বরাবর আড় অক্ষবিশিষ্ট অধিবৃত্তের সমীকরণটি, $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \dots \dots (i)$ প্রশ্নমতে, উপকেন্দ্রিক লম্বের দৈর্ঘ্য, $\frac{2a^2}{b} = 24$

$$\Rightarrow a^2 = 12b \dots \dots (ii)$$

এবং উপকেন্দ্রহয়ের মধ্যবতী দূরত,

আবার,
$$e = \sqrt{1 + \frac{a^2}{b^2}} \Rightarrow e^2 = \frac{b^2 + a^2}{b^2}$$

$$\Rightarrow$$
 b² + 12b - 64 = 0 \Rightarrow b² + 16b - 4b - 64 = 0

$$\Rightarrow$$
 b(b + 16) - 4(b + 16) = 0

$$\Rightarrow$$
 (b + 16)(b - 4) = 0

(ii)
$$\Rightarrow a^2 = 12 \times 4 = 48$$

∴ নির্দেয় অধিবৃত্তের সমীকরণটি, $\frac{y^2}{16} - \frac{x^2}{48} = 1$ (Ans.)

 $rac{11}{2}$ উদ্দীপক-১: একটি কনিকের উৎকেন্দ্রিকতা $rac{\sqrt{13}}{3}$ এবং উহা $\left(4, \frac{\sqrt{28}}{3}\right)$ বিন্দুগামী।

(খ) উদ্দীপক-১ এ উল্লিখিত কনিকের অক্ষন্বয়কে x- অক্ষ ও y-অক্ষ ধরে উহার অক্ষদ্বয়ের দৈর্ঘ্য নির্ণয় কর।

(খ) Sol": উদ্দীপক-১ হতে পাই, উৎকেন্দ্রিকতা, $e = \frac{\sqrt{13}}{3} > 1$ এটি অধিবৃত্ত।

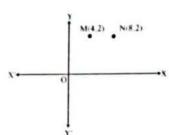
Educationblog24.

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

মনে করি, অধিবৃত্তের সমীকরণটি, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \dots \dots (1)$

(i) নং
$$\left(4, \frac{\sqrt{28}}{3}\right)$$
 বিন্দুগামী হলে, $\frac{16}{a^2} - \frac{28}{9b^2} = 1 \dots \dots$ (ii)

আবার,
$$e^2 = 1 + \frac{b^2}{a^2} \Rightarrow \frac{13}{9} = 1 + \frac{b^2}{a^2}$$


$$\Rightarrow \frac{b^2}{a^2} = \frac{4}{9} : b^2 = \frac{4}{9}a^2 \dots \dots \dots (iii)$$

(ii)
$$\Rightarrow \frac{16}{a^2} - \frac{28}{4a^2} = 1 \Rightarrow 64 - 28 = 4a^2$$

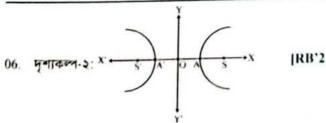
$$\therefore$$
 নির্ণেয় অধিবৃত্তের সমীকরণ, $\frac{x^2}{9} - \frac{y^2}{4} = 1$

[Din.B'22]

[RB'17]

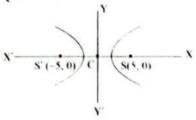
(গ) M ও N বিন্দুষয় কোনো অধিবৃত্তের উপকেন্দ্র এবং উৎকেন্দ্রিকতা 2 হলে অধিবৃত্তটির সমীকরণ নির্ণয় কর।

(গ) Sol": দেওয়া আছে, অধিবৃত্তের উপকেন্দ্রছয় M (4,2) এবং N (8,2) :: কেন্দ্র, C $\left(\frac{4+8}{2},\frac{2+2}{2}\right) = (6,2)$ এবং e=2যেহেতু উপকেন্দ্রছয়ের কোটি একই, আড় অক্ষ x-অক্ষের সমান্তরাল তাহলে, অধিবৃত্তের সমীকরণটি,


$$\frac{(x-6)^2}{a^2} - \frac{(y-2)^2}{b^2} = 1 \dots \dots (i)$$

আবার,
$$e^2 = 1 + \frac{b^2}{a^2} \Rightarrow 4 = 1 + \frac{b^2}{1} : b^2 = 3$$

∴ অধিবৃত্তের সমীকরণ: (x − 6)² − (y-2)²/3 = 1 (Ans.)


নিজে করো

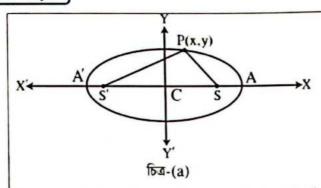
05.

AA' = 8, SS' = 10

- (গ) দৃশ্যকম্প-২ এর আলোকে অধিবৃত্তটির সমীকরণ নির্ণয় [Ans: $\frac{x^2}{16} - \frac{y^2}{9} = 1$]
- 07. দৃশ্যকষ্প-২: √3 উৎকেন্দ্রিকতাবিশিষ্ট একটি কনিকের নিয়ামক রেখাদ্বয়ের মধ্যবতী দূরত্ব 4।
 - (গ) দৃশ্যকম্প-২ এর কনিকের অক্ষয়্য স্থানান্ধের অক্ষয় বরাবর হলে, কনিকের সমীকরণ নির্ণয় কর।[Ans: $\frac{x^2}{12} - \frac{y^2}{24} = 1$]

(গ) দৃশ্যকন্প-২ এ অধিবৃত্তের উৎকেন্দ্রিকতা √5 হলে অধিবৃত্তের [Ans: $4x^2 - y^2 = 20$] সমীকরণ নির্ণয় কর।

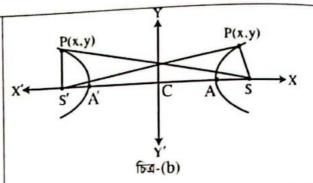
দৃশ্যকম্প-২: একটি অধিবৃত্তের উপকেন্দ্র দৃইটি (6.1) ও (10.1) 09. এবং উৎকেন্দ্রকতা ৷


(গ) দৃশ্যকম্প-২ হতে অধিবৃত্তির সমীকরণ নির্ণয় কর।

[Ans:
$$\frac{(x-\theta)^2}{\frac{4}{9}} - \frac{(y-1)^2}{\frac{32}{9}} = 1$$
]

উচ্চত্তব গণিত ২য় পত্র: অধ্যায়-০৬

Type-09: SP + S'P = বৃহৎ/আড় অক্ষের দৈর্ঘ্য সংক্রান্ত


Concept |

চিত্র-(a) তে উপবৃত্তের উপকেন্দ্রদ্বয় S ও S' বৃহৎ অক্ষের দৈর্ঘ্য

AA' এবং উপবৃত্তের উপরস্থ যেকোনো বিন্দু P(x,y) হলে,

SP + S'P = বৃহৎ অক্ষের দৈর্ঘ্য।

চিত্র-(b) তে অধিবৃত্তের উপকেন্দ্রদ্বয় S ও S' আড় অক্ষের দৈর্ঘ্য AA' এবং অধিবৃত্তের উপরস্থ যেকোনো বিন্দু P(x,y) হলে, |SP - S'P| = আড় অক্ষের দৈর্ঘ্য।

সৃজনশীল প্রশ্ন (ক, খ ও গ)

তা

উদ্দীপক-২: একটি কনিকের উপকেন্দ্রহয় (10, 5) ও (8, 3)
এবং উৎকেন্দ্রকতা √2

[MB'22]

(গ) উদ্দীপক-২ এ বর্ণিত কনিকটির সমীকরণ নির্ণয় কর।

(গ) Sol*: দেওয়া আছে, অধিবৃত্তের উপকেন্দ্রছয়, S(৪,3) এবংS'(10,5)

এখন, SS' =
$$2ae \Rightarrow \sqrt{(10-8)^2 + (5-3)^2} = 2a\sqrt{2}$$

 $\Rightarrow 2\sqrt{2} = 2\sqrt{2} \times a \Rightarrow a = 1$

আবার,
$$e^2 = 1 + \frac{b^2}{a^2} \Rightarrow 2 = 1 + \frac{b^2}{1} : b = 1$$

আমরা জানি, অধিবৃত্তের ক্ষেত্রে, |SP - S'P| = 2b

$$\Rightarrow \sqrt{(x-8)^2 + (y-3)^2} - \sqrt{(x-10)^2 + (y-5)^2} = \pm 2$$

$$\Rightarrow (x-8)^2 - (y-3)^2 = 4 + (x-10)^2 + (y-5)^2$$

$$\pm 4\sqrt{(x-10)^2+(y-5)^2}$$

$$\Rightarrow x^2 - 16x + 64 + y^2 - 6y + 9 = 4 + x^2 - 20x$$

$$+100 + y^2 - 10y + 25 \pm 4\sqrt{(x-10)^2 + (y-5)}$$

$$\Rightarrow 4x + 4y - 56 = \pm 4\sqrt{(x - 10)^2 + (y - 5)^2}$$

$$\Rightarrow$$
 x + y - 14 = $\pm \sqrt{(x-10)^2 + (y-5)^2}$

$$\Rightarrow (x + y - 14)^2 = (x - 10)^2 + (y - 5)^2 \text{ (Ans.)}$$

Type-10: অধিবৃত্তের অসীমতট সম্পর্কিত সমস্যাবলি

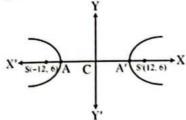
Concept |

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 বা $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ অধিবৃত্তের অসীমতটের সমীকরণ, $y = \pm \frac{b}{a} x$

$$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = 1 \text{ di. } \frac{(y-\beta)^2}{b^2} - \frac{(x-\alpha)^2}{a^2} = 1 \text{ অধিবৃত্তের অসীমতটের সমীকরণ, } y - \beta = \pm \frac{b}{a}(x-\alpha)$$
 di. $Y = \pm \frac{b}{a}X$ [যেখানে, $X = x - \alpha$; $Y = y - \beta$]

অধিবৃত্তের অসীমতটদ্বয়ের মধ্যবতী কোণ 2 tan-1 b/a

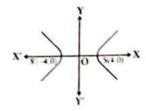
উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬



সৃজনশীল প্রশ্ন (ক, খ ও গ)

্রা (ক) $4x^2 - 9y^2 = 36$ অধিবৃত্তের অসীমতটের সমীকরণ নির্ণয় কর। [DB'23]

(ক) Soln:
$$4x^2 - 9y^2 = 36 \Rightarrow \frac{x^2}{3^2} - \frac{y^2}{2^2} = 1$$
 কে $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ এর সঙ্গে তুলনা করে পাই, $a = 3, b = 2$ \therefore প্রদত্ত অধিবৃত্তের অসীমতটের সমীকরণ:
$$y = \pm \frac{b}{a}x \Rightarrow y = \pm \frac{2}{3}x \text{ (Ans.)}$$


[RB'23]

- (গ) দৃশ্যকম্প-২ এর উৎকেন্দ্রিকতা 3 হলে কনিকটির অসীমতট রেখার সমীকরণ নির্ণয় কর।
- (গ) Sel": দৃশ্যকম্প-২ এ অধিবৃত্তের কেন্দ্র $\left(\frac{-12+12}{2},\frac{6+6}{2}\right)$ বা (0,6) হলে অধিবৃত্তের সমীকরণ $\frac{(x-0)^2}{a^2} - \frac{(y-6)^2}{b^2} = 1$ হলে, উপকেন্দ্র $(\alpha \pm ae, \beta) = (\pm 12,6)$; যেখানে, $\alpha = 0, \beta = 6$ $\therefore \pm ae = \pm 12 \Rightarrow ae = 12 \Rightarrow a = \frac{12}{e} = \frac{12}{3} = 4$ এবং $e = \sqrt{1 + \frac{b^2}{a^2}} \Rightarrow 3^2 = 1 + \frac{b^2}{4^2} \Rightarrow \frac{b^2}{4^2} = 8 \Rightarrow b = 8\sqrt{2}$ অসীমতট রেখার সমীকরণ: $y - 6 = \pm \frac{8\sqrt{2}}{4}(x - 0)$ \Rightarrow y = 6 ± 2 $\sqrt{2}$ x (Ans.)

🔃 দৃশ্যকম্প-২:

[Din.B'23]

- (গ) দৃশ্যকম্প-২ এ S ও S' উপকেন্দ্র, কেন্দ্র হতে নিয়ামক রেখার দূরত্ব 3 একক হলে, অধিবৃত্তটির সমীকরণ এবং অসীমতটের সমীকরণ নির্ণয় কর।
- (গ) Sol*: দেওয়া আছে, উপকেন্দ্রয়য় হলো S'(-4,0), S(4,0) \therefore উপকেন্দ্রখয়ের মধ্যবর্তী দূরত্ = $\sqrt{(4+4)^2+0^2}=8$ ∴ 2ae = 8 (i) [আড় অফ x-অকের সমান্তরাল] আবার, কেন্দ্র হতে নিয়ামকের দূরত্ব হলো ื = 3 (ii)

(i) × (ii) \Rightarrow 2ae × $\frac{a}{e}$ = 8 × 3 \Rightarrow 2a² = 24

 $\Rightarrow a^2 = 12 : a = \sqrt{12}$

এখন, (i) নং এ $a = \sqrt{12}$ বসিয়ে পাই,

 $ae = 4 \implies \sqrt{12} e = 4 : e = \frac{2}{\sqrt{3}}$

আমরা জানি, $e^2 = 1 + \frac{b^2}{a^2} \Rightarrow e^2 - 1 = \frac{b^2}{a^2}$

 $\Rightarrow b^2 = a^2(e^2 - 1) \Rightarrow b = \sqrt{a^2(e^2 - 1)}$

 $\Rightarrow b = \sqrt{12\left(\frac{4}{3} - 1\right)} = \sqrt{4} : b = 2$

: অধিবৃত্তের কেন্দ্রের স্থানাঙ্ক (0,0)

অতএব, অধিবৃত্তের সমীকরণ $\frac{x^2}{(\sqrt{12})^2} - \frac{y^2}{(\sqrt{4})^2} = 1$

 $\therefore \frac{x^2}{12} - \frac{y^2}{4} = 1$

এবং অসীমতট রেখার সমীকরণ হলো, $\frac{x^2}{12} - \frac{y^2}{4} = 0$

 $\Rightarrow \frac{x^2}{12} = \frac{y^2}{4} \Rightarrow y^2 = \frac{4}{12} x^2 : y = \pm \frac{1}{\sqrt{3}} x \text{ (Ans.)}$

 $\sqrt{4}$ (ক) শীর্ষবিন্দু (0, ± 2) অসীমতটের সমীকরণ $y=\pm \frac{1}{2}x$ হলে, অধিবৃত্তের সমীকরণ নির্ণয় কর।

[হলি ক্রস কলেজ, ঢাকা]

(ক) Solⁿ: অধিবৃত্তটির শীর্ষবিন্দু (0, ±2) অর্থাৎ আড় অক্ষ y-অক্ষ বরাবর। অসীমতটের সমীকরণ, $y = \pm \frac{1}{2}x$;

সমীকরণটিকে $y=\pm \frac{b}{a}x$ এর সাথে তুলনা করে পাই, b=1

∴ অধিবৃত্তের সমীকরণ, $\frac{y^2}{1^2} - \frac{x^2}{2^2} = 1$ $\Rightarrow 4y^2 - x^2 = 4 \text{ (Ans.)}$

💽 (ক) $25x^2 - 16y^2 = 400 অধিবৃত্তের অসীমতট্বরের অন্তর্ভুক্ত$ সৃক্ষকোণ নির্ণয় কর।

[সরকারি মাইকেল মধুসূদন কলেজ, যশোর]

(\mathfrak{F}) Solⁿ: $25x^2 - 16y^2 = 400 \Rightarrow \frac{x^2}{16} - \frac{y^2}{25} = 1$ (\mathfrak{F})

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ এর সাথে তুলনা করে a = 4, b = 5

 \therefore অসীমতটছয়ের সমীকরণ: $y = \pm \frac{b}{a} x = \pm \frac{5}{4} x$

আমরা জানি, অসীমতট্বয়ের মধ্যবতী কোণ = $2 \tan^{-1} \frac{b}{c}$

 $= 2 \tan^{-1} \frac{5}{4} = \tan^{-1} \left| \frac{2 \times \frac{7}{4}}{\frac{7}{4}} \right| = \tan^{-1} \left| \frac{\frac{7}{4}}{\frac{7}{4}} \right|$

 $= \tan^{-1} \left(\frac{5}{2} \times \frac{16}{9} \right) = \tan^{-1} \left(\frac{40}{9} \right)$ (Ans.)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : _{অধ্যায়-০৬}

নিজে করো

06. (ক) $\frac{x^2}{5} - \frac{y^2}{3} = 1$ অধিবৃত্তটির অসীমতটের সমীকরণ নির্ণয় কর। [MB'23] [Ans: $\sqrt{5}y = \pm \sqrt{3}x$]

07. দৃশ্যকম্প-১: একটি অধিবৃত্তের উপকেন্দ্রছয় (4, 2), (10, 2) এবং উৎকেন্দ্রিকতা 3। [Ctg.B'22] (খ) দৃশ্যকল্প-১ এর অধিবৃত্তের অসীমতটের সহীক্ষা হিছ

 $(4n_s: y = \frac{1}{16} + \frac{y^2}{16} = 1$ অধিবৃত্তের অসীমতট রেখার সমীকর কর। [নটর ডেম কলেজ, ঢাকা] $|An_s: 4y \pm 5x = 1$

Type-11: কনিকের পরামিতিক সমীকরণ

Concept

তাংখ্যে একটি সমীকরণ থেকে পরামিতির (যেমন: t, θ ইত্যাদি) মান অপর সমীকরণে বসিয়ে কার্তেসীয় সমীকরণ গঠন করতে হরে হ যে রাশিটি পরামিতি তাকে vanish করতে হবে।

আদর্শ সমীকরণ	$y^2 = 4ax$	$x^2 = 4ay$	$(y-\beta)^2=4a(x-\alpha)$	$(x-\alpha)^2=4a(y)$
পরামিতিক সমীকরণ	$x = at^2$,	$y = at^2$,	$x = \alpha + at^2$	$y = \beta + at^2$
	y = 2at	x = 2at	$y = \beta + 2at$	$x = \alpha + 2at$

- $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ উপবৃত্তের উপরস্থ একটি বিন্দুর পরামিতিক স্থানাম্ভ $(a\cos\theta,b\sin\theta)$ বা, $\left(a\frac{1-t^2}{1+t^2},b\frac{2t}{1+t^2}\right)$ যেখানে, θ বা $\cos\theta$ বা Parameter বলে। যেখানে, $\theta = \tan^{-1}\left(\frac{ay}{bx}\right)$ । θ কে উৎপকেন্দ্রিক/ উপকেন্দ্রিক কোণও বলা হয়।
- পরামিতিক সমীকরণ (ত্রিকোণমিতিক) থেকে কার্তেসীয় সমীকরণ পাওয়ার জন্য sin θ এবং cos θ কে পৃথকভাবে বর্গ করে এব প্রায় করতে হবে।
- $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ অধিবৃত্তের উপরস্থ একটি বিন্দু P(x,y) এর পরামিতিক স্থানাঙ্ক $P(a \sec \theta, b \tan \theta)$ [যেখানে, $\theta = \tan^{-1}\frac{y}{b}$]
- $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$ অধিবৃত্তের উপরস্থ একটি বিন্দু P(x,y) এর পরামিতিক স্থানাঙ্ক $P(a \tan \theta, b \sec \theta)$ [যেখানে, $\theta = \tan^{-1} \frac{x}{a}$]
- পরামিতির সমীকরণ থেকে কার্তেসীয় সমীকরণ পাওয়ার জন্য sec θ এবং tan θ কে পৃথকভাবে বর্গ করে এক পাশে রেখে বিক্রেন্স
 হবে।

সৃজনশীল প্রশ্ন (ক, খ ও গ)

[এই টাইপ থেকে বিগত বোর্ড পরীক্ষায় কোনো সৃজনশীল প্রশ্ন আসেনি।]

- তাঁ। (ক) $9x^2 + 25y^2 = 225$ উপবৃত্তের উপরস্থ $\left(\frac{10}{3}, \sqrt{5}\right)$ বিন্দুর উপকেন্দ্রিক কোণের মান নির্ণয় কর। [নটর ডেম কলেজ, ঢাকা]
- (ক) Soln: প্রদন্ত সমীকরণ, $9x^2 + 25y^2 = 225$ $\Rightarrow \frac{x^2}{25} + \frac{y^2}{9} = 1 : \frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$ $: উপবৃত্তির পরমিতিক সমীকরণ: (5 <math>\cos \theta$, $3 \sin \theta$) $\left(\frac{10}{3}, \sqrt{5}\right)$ বিন্দুর জন্য, $5 \cos \theta = \frac{10}{3}$ $\Rightarrow \cos \theta = \frac{2}{3} (i)$ $3 \sin \theta = \sqrt{5} \Rightarrow \sin \theta = \frac{\sqrt{5}}{3} (ii)$
 - (ii) Θ (i) $\Rightarrow \tan \theta = \frac{\sqrt{5}}{3} \times \frac{3}{2} = \frac{\sqrt{5}}{2}$
 - $\therefore \theta = \tan^{-1} \frac{\sqrt{5}}{2} \text{ (Ans.)}$

(ক) (√3 sec θ, 2 tan θ) পরামিতিক ছানাছ বিশী
 অধিবৃত্তের সমীকরণ নির্ণয় কর।

[ইবনে তাইমিয়া ফুল এন্ড ^{কলের হাঁ}

- (ক) Sol": দেওয়া আছে, পরিমিতিক স্থানাম্ভ ($\sqrt{3}$ sec θ . $2^{\frac{y}{2}}$ ধরি, $x=\sqrt{3}$ sec $\theta\Rightarrow\sec\theta=\frac{x}{\sqrt{3}}$(i) এবং $y=2\tan\theta\Rightarrow\tan\theta=\frac{y}{2}$(ii) $(i)^2-(ii)^2\Rightarrow\sec^2\theta-\tan^2\theta=\frac{x^2}{3}-\frac{y^2}{4}$
 - $\Rightarrow \frac{x^2}{3} \frac{y^2}{4} = 1 :: 4x^2 3y^2 = 12 \text{ (Ans.)}$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : আধ্যায়-০৬

Type-12: কনিকের উপকেন্দ্র, উৎকেন্দ্রিকতা ও দিকাক্ষ হতে কনিকের সমীকরণ নির্ণয়। (SP = e · PM)

Concept |

- (i) উপকেন্দ্র S হতে সঞ্চরণশীল বিন্দু বা পরাবৃত্তের উপরস্থ বিন্দু P(x,y) এর দূরত্ব SP এবং P(x,y) হতে নিয়ামকরেখার লম্ব দূরত্ব PM হলে SP=PM [v|e=1] প্রয়োগ করে পরাবৃত্তের সমীকরণ নির্ণয় করতে হবে।
 - (ii) উপবৃত্ত ও অধিবৃত্তের ক্ষেত্রে, $SP=e\cdot PM\Rightarrow SP^2=e^2PM^2$ সূত্র প্রয়োগ করতে হবে। ভিপবৃত্তে 0< e< 1 এবং অধিবৃত্তে e>1 হয়। [Note: কনিকের অক্ষ স্থানাম্বের অক্ষণ্ডলো বা তাদের সমাস্তরাল না হলে এই পদ্ধতিতে সমীকরণ নির্ণয় করতে হবে। তবে অক্ষ স্থানাম্বের অক্ষণ্ডলো বা তাদের সমান্তরাল হলেও এই পদ্ধতি প্রযোজ্য

সূজনশীল প্রশ্ন (ক, খ ও গ)

- 🕦 উদ্দীপক-১: একটি উপবৃত্তের উপকেন্দ্র (–2,3) এবং উৎকেন্দ্ৰিকতা 📆
 - (খ) উদ্দীপক-১ এর উপবৃত্তটির নিয়ামকের সমীকরণ x + 2y - 1 = 0 হলে, উপবৃত্তের সমীকরণ নির্ণয় কর।
- (খ) Sol^a: দেওয়া আছে, উপবৃত্তের উপকেন্দ্র S(−2,3) উৎকেন্দ্রিকতা, e = 📆। নিয়ামকের সমীকরণ: $x + 2y - 1 = 0 \dots (i)$ সংজ্ঞানুসারে, উপবৃত্তের উপরম্ভ একটি বিন্দু P(x, y) হলে,

$$\Rightarrow \sqrt{\{x - (-2)\}^2 + (y - 3)^2} = \frac{1}{\sqrt{3}} \cdot \frac{|x + 2y - 1|^2}{\sqrt{1^2 + 2^2}}$$

⇒
$$(x + 2)^2 + (y - 3)^2 = \frac{(x + 2y - 1)^2}{3 \times 5}$$
 [বৰ্গ করে]

$$\Rightarrow 15x^2 + 15y^2 + 60x - 90y + 195$$

$$= x^2 + 4y^2 + 1 + 4xy - 4y - 2x$$

$$14x^2 + 11y^2 - 4xy + 62x - 86y + 194 = 0$$

যা নির্ণেয় উপবৃত্তের সমীকরণ। (Ans.)

- 02 দৃশ্যকম্প-১: একটি পরাবৃত্তের শীর্ষবিন্দু (1,1) এবং নিয়ামক রেখার সমীকরণ, 2x + y - 1 = 0। (খ) দৃশ্যকম্প-১ এর আলোকে পরাবৃত্তের সমীকরণ নির্ণয় কর।
- (খ) Sol*: দেওয়া আছে, পরাবৃত্তের শীর্ষবিন্দু A(1,1) এবং নিয়ামক রেখার সমীকরণ 2x + y - 1 = 0 (i) নিয়ামকের লম্ব রেখার সমীকরণ (অক্ষের সমীকরণ)

$$x - 2y + k = 0 \dots (ii)$$

- ∴ অক্ষের সমীকরণ: x 2y + 1 = 0 (iii)
- (i) ও (iii) সমাধান করে, আমরা নিয়ামক রেখার পাদবিন্দু পাই,

$$(x,y) = \left(\frac{1}{5}, \frac{3}{5}\right)$$

আমরা জানি, শীর্যবিন্দু হলো নিয়ামক রেখার পাদবিন্দু ও উপকেন্দ্রের মধ্যবিন্দু।

ধরি, উপকেন্দ্রের স্থানাম্ব (m, n); শীর্যবিন্দু (1, 1)

এখন,
$$1 = \frac{m + \frac{1}{5}}{2} \Rightarrow m = \frac{9}{5}$$
; $1 = \frac{\frac{3}{5} + n}{2} \Rightarrow n = \frac{7}{5}$

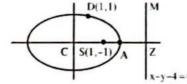
উপকেন্দ্রের স্থানাম্ব $S\left(\frac{9}{\epsilon},\frac{7}{\epsilon}\right)$

ধরি, P(x, y) কনিকের একটি বিন্দু

$$\Rightarrow \sqrt{\left(x - \frac{9}{5}\right)^2 + \left(y - \frac{7}{5}\right)^2} = \frac{|2x + y - 1|}{\sqrt{2^2 + 1^2}}$$

$$\Rightarrow \left(x - \frac{9}{5}\right)^2 + \left(y - \frac{7}{5}\right)^2 = \frac{(2x + y - 1)^2}{5} \left[\frac{3}{7} \right]$$

$$\Rightarrow x^2 - \frac{18}{5}x + \frac{81}{25} + y^2 - \frac{14}{5}y + \frac{49}{25} = \frac{4x^2 + y^2 + 1 + 4xy - 2y - 4x}{5}$$


$$\Rightarrow 5x^2 - 18x + \frac{81}{5} + 5y^2 - 14y + \frac{49}{5}$$

$$= 4x^2 + y^2 + 1 + 4xy - 2y - 4x$$

$$\Rightarrow x^2 + 4y^2 - 4xy - 14x - 12y + 25 = 0 \text{ (Ans.)}$$

উপবৃত্তের উপকেন্দ্র S এবং নিয়ামক MZ.

- (খ) দৃশ্যকম্প-১ থেকে উপবৃত্তের সমীকরণ নির্ণয় কর।
- Sol": D(1, 1) হতে নিয়ামক রেখা x y 4 = 0 এর দূরত্ $DM = \frac{|1-1-4|}{\sqrt{1^2+1^2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$ একক এবং SD = $\sqrt{(1-1)^2 + (1+1)^2} = 2$

 $\therefore e = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} \left[\because SD = e \cdot DM \right]$ ধরি, P(x, y) উপবৃত্তের উপর একটি বিন্দু।

$$\therefore \frac{\mathsf{SP}}{\mathsf{MP}} = \mathsf{e} \Rightarrow \mathsf{SP}^2 = \mathsf{e}^2 \times \mathsf{MP}^2$$

$$\Rightarrow (x-1)^2 + (y+1)^2 = \frac{1}{2} \times \frac{(x-y-4)^2}{1^2+1^2}$$

$$\Rightarrow x^2 - 2x + 1 + y^2 + 2y + 1 = \frac{1}{4}(x^2 + y^2 + 16)$$

$$-2xy - 8x + 8y$$

$$\Rightarrow x^2 + y^2 - 2x + 2y + 2 = \frac{1}{4}(x^2 + y^2 + 16 - 2xy)$$

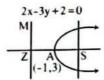
$$-8x + 8y$$

$$\Rightarrow 4x^2 + 4y^2 - 8x + 8y + 8 = x^2 + y^2 + 16 - 2xy$$

⇒
$$3x^2 + 3y^2 + 2xy - 8 = 0$$
 যা নির্ণেয় কনিকের সমীকরণ।

-8x + 8y

20 UCat ভিঙ্গ গণিত্য ঘূদ্ৰ কাণ্যত


04.

[SB'23]

চিত্রের পরাবৃত্তটির উপকেন্দ্র S, শীর্ষ A এবং MZ নিয়ামকরেখা। (গ) A বিন্দুর স্থানাম্ক (-1, 3) এবং MZ রেখার সমীকরণ 2x - 3y + 2 = 0 হলে, পরাবৃত্তের উপকেন্দ্রিক লম্বের সমীকরণ নির্ণয় কর।

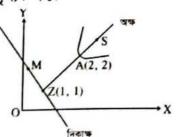
(গ) Sol": যেহেতু MZ রেখা এবং উপকেন্দ্রিক লম্ব পরস্পর সমান্তরাল।

ধরি, উপকেন্দ্রিক লম্বের সমীকরণ, 2x - 3y + k = 0

$$AZ = a = \left| \frac{2(-1) - 3 \cdot 3 + 2}{\sqrt{2^2 + 3^2}} \right| = \frac{9}{\sqrt{13}}$$

$$\therefore AS = a = \left| \frac{2(-1) - 3 \cdot 3 + k}{\sqrt{2^2 + 3^2}} \right| = \frac{9}{\sqrt{13}}$$

 $\Rightarrow |-11 + k| = 9 \Rightarrow -11 + k = \pm 9 : k = 20,2$


কিন্তু k=2 হতে পারে না। কারণ k=2 হলে তা নিয়ামক রেখার সমীকরণ হবে।

পরাবৃত্তের উপকেন্দ্রিক লম্বের সমীকরণ,

$$2x - 3y + 20 = 0$$
 (Ans.)

দৃশ্যকম্প-১:

[CB'23]

- (খ) দৃশ্যকম্প-১ হতে পরাবৃত্তটির উপকেন্দ্র ও নিয়ামকের সমীকরণ নির্ণয় কর।
- (খ) Sol": উপকেন্দ্র S যদি (x, y) হয় তবে A বিন্দৃটি Z এবং S এর यधाविन्य ।

$$\therefore 2 = \frac{x+1}{2} \Rightarrow x = 3 \text{ and } 2 = \frac{y+1}{2} \Rightarrow y = 3$$

$$S \equiv (3,3)$$

আবার, SZ রেখার ঢাল = $\frac{3-1}{3-1}$ = 1

- ∴ MZ রেখার ঢাল, m = -1
- : দিকাক্ষ MZ যেহেতু (1, 1) বিন্দুগামী
- .: সমীকরণ (y 1) = -1(x 1) ⇒ x + y 2 = 0

06.

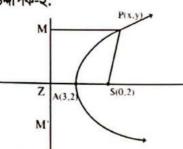
(গ) দৃশ্যকল্প-২ এর পরাবৃত্তটির সমীকরণ নির্ণয় কর।

- Soln: A(1,3) বিন্দুগামী AZ অক্ষরেখা নিয়ামকরেখা MZM কে Z বিন্দুতে ছেদ করে।
 - .: Z বিন্দৃটি নিয়ামকের পাদবিন্দু। অক্ষরেখা, y = 4 রেখ উপর লম্ব যা A(1,3) বিন্দুগামী।
 - .: অক্ষরেখার সমীকরণ: x = a = 1 ⇒ x = 1
 - ∴ অক্ষরেখা ও নিয়ামকের ছেদবিন্দু Z(1,4)

ধরি, উপকেন্দ্রের স্থানাঙ্ক, S(α, β)

অর্থাৎ, $\frac{\alpha+1}{2}=1\Rightarrow \alpha=1$ এবং $\frac{\beta+4}{2}=3\Rightarrow \beta=2$:: $S_{\{1,2\}}$ সংজ্ঞানুসারে, আমরা জানি, SP = PM [ধরি, P(x,y)

পরাবৃত্তের উপরস্থ একটি বিন্দু]


$$\therefore SP = PM \Rightarrow \sqrt{(x-1)^2 + (y-2)^2} = \frac{|y-4|}{\sqrt{1^2}}$$

- $\Rightarrow x^2 + y^2 2x 4y + 5 = y^2 8y + 16$ [र्क दा
- $\Rightarrow x^2 2x + 4y 11 = 0$
- $\therefore (x-1)^2 = -4(y-3)$ যা নির্ণেয় পরাবৃত্তের সমীকর

DB'22

MB'23

07. উদ্দীপক-২:

(গ) উদ্দীপক-২ এ চিহ্নিত পরাবৃত্তের সমীকরণ নির্ণয় ^{কর।}

Sol": দেওয়া আছে, উপকেন্দ্র S(0,2) এবং শীর্ষবিন্দু A(3,2) ধরি, পরাবৃত্তের উপর একটি বিন্দু P(x,y) ও নিয়ামক বেখ 🕬 আমরা জানি, Z ও S এর মধ্যবিন্দু A

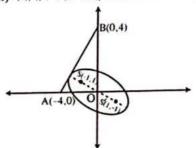
ধরি, Z এর স্থানান্ধ (x_1, y_1) :: $\frac{x_1+0}{2} = 3 \Rightarrow x_1 = 6$ এবং $\frac{y_1+2}{2} = 2 \implies y+2 = 4 \implies y_1 = 2$:. Z(6.2)

পরাবৃত্তের অক্ষরেখার ঢাল, ${
m m_1}=rac{2-2}{3-0}=0$

- \therefore নিয়ামক রেখার ঢাল, $m_2 = \frac{-1}{o} \left[\because m_1 \times m_2 = -1 \right]$
- ∴ নিয়ামক রেখার সমীকরণ, $y 2 = \frac{-1}{6}(x 6)$
- $\Rightarrow -x + 6 = 0 \Rightarrow x 6 = 0$
- এখন, $SP = PM \Rightarrow SP^2 = PM^2$
- $\Rightarrow x^2 + (y 2)^2 = (x 6)^2$
- $\Rightarrow x^2 + (y 2)^2 = x^2 12x + 36$
- $\Rightarrow (y-2)^2 = -12(x-3),$ ইহাই নির্ণেয় পরাবৃত্তের সমীকরণ। (Ans.)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬


উদ্দীপক-১: একটি পরাবৃত্তের শীর্যবিন্দু (-1,1) এবং উপকেন্দ্র (2, -3) 1

- (খ) উদ্দীপক-১ এর সাহায্যে পরাবৃত্তের নিয়ামক রেখার সমীকরণ
- (খ) Sel": উদ্দীপক-১ হতে পাই, পরাবৃত্তের শীর্যবিন্দু, A(-1,1) এবং উপকেন্দ্র, S(2, -3) \therefore অন্দের ঢাল, $\frac{-3-1}{2+1} = -\frac{4}{3}$ \therefore নিয়ামকের ঢাল $=\frac{3}{4}$ ধরি, অব্দরেখা ও নিয়ামক রেখার ছেদবিন্দু Z(α, β) যেহেতু S ও Z এর মধাবিন্দু, A সূতরাং, $\frac{z+\alpha}{z}=-1$ $\Rightarrow \alpha = -4$ এবং $\frac{-3+\beta}{2} = 1 \Rightarrow \beta = 5 :: Z(-4,5)$ নিয়ামক রেখাটি (-4,5) বিন্দুগামী এবং ³ ঢালবিশিষ্ট। ∴ নিয়ামক রেখার সমীকরণ, $\frac{y-5}{x+4} = \frac{3}{4}$ 3x - 4y + 32 = 0 (Ans.)
- 🔯 উদ্দীপক-১: একটি উপবৃত্তের অক্ষধয় x ও y অক্ষরেখা, একটি উপকেন্দ্র (2,0) এবং উৎকেন্দ্রিকতা $\frac{1}{\sqrt{2}}$
 - (খ) নিয়ামকরেখা x অক্ষরেখার উপর লম্ব ও (৪, 0) বিন্দুগামী হলে দৃশ্যকম্প-১ হতে দেখাও যে উপবৃত্তের সমীকরণ, $x^2 + 2y^2 + 8x - 56 = 0.$
- (খ) Sol": উদ্দীপক ১ হতে পাই, S(2,0) এবং $e=\frac{1}{\sqrt{2}}<1$ x-অক্ষের উপর লম্ব এবং (৪, ০) বিন্দুগামী নিয়ামকের সমীকরণ, $x = 8 \Rightarrow x - 8 = 0 \dots (i)$ ধরি, উপবৃত্তের উপর অবস্থিত একটি বিন্দু, P(x,y) আমরা জানি, $SP = e \times PM$ $\Rightarrow \sqrt{(x-2)^2 + y^2} = \frac{1}{\sqrt{2}} \times \left| \frac{x-8}{1} \right|$ $\Rightarrow x^2 - 4x + 4 + y^2 = \frac{1}{2}(x^2 - 16x + 64)$ [বর্গ করে] $x^2 + 2y^2 + 8x - 56 = 0$ (দেখানো হলো)

- (খ) O-কে উপকেন্দ্র এবং AB- কে শীর্যবিন্দুতে স্পর্শক ধরে অঙ্কিত পরাবৃত্তের নিয়ামকের সমীকরণ নির্ণয় কর।
- (গ) O-কে কেন্দ্র এবং AB- কে নিয়ামক ধরে অঞ্চিত উপবৃত্তের উপকেন্দ্রধয়ের স্থানাঙ্ক নির্ণয় কর যার উৎকেন্দ্রিকতা $\frac{1}{\sqrt{2}}$ ।
- (খ) Solⁿ: AB এর সমীকরণ, $\frac{x}{-4} + \frac{y}{4} = 1$ $\therefore -x + y = 4 \therefore x - y + 4 = 0 \dots \dots (i)$ ் অক্ষের সমীকরণ, х + у + k = 0 या (i) এর উপর লম্ব ও (0,0) विन्त्र भिरम याम। $x + y = 0 \dots (ii)$

(I) ও (II) সমাধান করে পাই, শীর্যবিন্দু y (-2,2)

- ধরি, নিয়ামক ও অক্ষরেখার ছেদবিন্দু (α, β) ; $\frac{\alpha+0}{2} = -2$
- $\therefore \alpha = -4 \ ; \ \frac{\beta+0}{2} = 2 \ \therefore \beta = 4 \ \therefore (\alpha,\beta) = (-4,4)$
- ∴ নিয়ামকের সমীকরণ, x y + k = 0
- $\Rightarrow -4 4 + k = 0 : k = 8 : x y + 8 = 0$ (Ans.)
- (গ) Sol": নিয়ামকের সমীকরণ: $\frac{x}{-4} + \frac{y}{4} = 1$
 - $x y + 4 = 0 \dots (i)$
 - ·· উপবৃত্তের বৃহদাক্ষ 上 নিয়ামক এবং বৃহদাক্ষ কেন্দ্রগামী।
 - ∴ বৃহদাক্ষের সমীকরণ: x + y = 0 (ii)
 - (i) ও (ii) সমাধান করে পাই, নিয়ামকের পাদবিন্দু A'(−2, 2)

চিত্রানুসারে, OS: SA' = ae: $\left(\frac{a}{e} - ae\right) = e: \left(\frac{1}{e} - e\right)$

- $=\frac{1}{\sqrt{2}}:\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right)=1:1$ [অন্তর্বিভক্তি]
- : S হলো OA এর মধ্যবিন্দু।
- $\therefore S = \left(\frac{0-2}{2}, \frac{0+2}{2}\right) = (-1,1)$

আবার, কেন্দ্র O হলো SS' এর মধ্যবিন্দু।

- $\therefore \frac{x_{s'} + x_{s}}{2} = 0 \therefore -x_{s'} = x_{s} = 1$ এবং $\frac{y_{s'} + y_{s}}{2} = 0$
- $\therefore y_s, = -y_s = -1$
- ∴ উপকেন্দ্রয়য় (-1, 1), (1, -1) (Ans.)

[Ctg.B'17]

11.

[SB'19]

চিত্রটি একটি কনিক নির্দেশ করে যার নিয়ামক রেখা MZM'

- (গ) SP : PM = 1 : 2 এবং MZM' রেখার সমীকরণ 3x + 4y = 1 হলে কনিকটির সমীকরণ নির্ণয় কর।
- (11) Sol": দেওয়া আছে, SP: PM = 1: 2 $\Rightarrow \frac{SP}{PM} = \frac{1}{2} \Rightarrow PM = 2SP \dots \dots \dots (i)$ ধরি, P বিন্দুর স্থানান্ধ, (x, y); আবার, উপকেন্দ্রের স্থানান্ধ S(-2,2) এবং MZM' রেখার সমীকরণ 3x + 4y = 1
 - (i) থেকে পাই, $\left| \frac{3x+4y-1}{\sqrt{3^2+4^2}} \right| = 2 \cdot \sqrt{(x+2)^2 + (y-2)^2}$

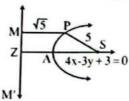
10.

HSC প্রমুব্যাংক ২০২৫

Educationblog र्यं भव : व्यक्षाय-०५

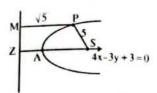
 $\Rightarrow (3x + 4y - 1)^2 = (10\sqrt{x^2 + y^2 + 4x - 4y + 8})^2$

$$\Rightarrow 9x^2 + 16y^2 + 1 + 24xy - 6x - 8y$$


$$= 100(x^2 + y^2 + 4x - 4y + 8)$$

$$\Rightarrow 100x^2 + 100y^2 + 400x - 400y + 800 - 9x^2$$

$$-16y^2 - 24xy + 6x + 8y - 1 = 0$$


$$\cdot \cdot 91x^2 + 84y^2 - 24xy + 406x - 392y + 799 = 0$$
 যা নির্ণেয় কনিকের সমীকরণ। (Ans.)

🛂 দৃশ্যকম্প-২: চিত্রে উল্লেখিত প্রতীকগুলো প্রচলিত অর্থ বহন করে। [নটর ডেম কলেজ, ঢাকা]

(গ) দৃশ্যকম্প-২ এ প্রদন্ত চিত্রের কনিকের সমীকরণ নির্ণয় কর। যেখানে, উপকেন্দ্র S(6, 9) এবং M(1, -1)

(গ) Soln:

প্রদত্ত কনিকের উৎকেন্দ্রিকতা, $e = \frac{SP}{PM} = \frac{5}{\sqrt{5}} = \sqrt{5}$

অক্ষের সমীকরণ, 4x - 3y + 3 = 0(i)

(i) নং সমীকরণের উপর লম্ব ও M(1, -1) বিন্দুগামী স্মী_{করু} $3x + 4y = 3 \cdot 1 + 4 \cdot (-1) \Rightarrow 3x + 4y = -1$

∴ নিয়ামকের সমীকরণ, 3x + 4y + 1 = 0

উপকেন্দ্র S(6,9) ও উৎকেন্দ্রিকতা, e = √5

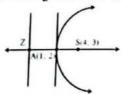
:. কনিকটির সমীকরণ: $\sqrt{(x-6)^2 + (y-9)^2} = \sqrt{5} \left| \frac{3x+4y+1}{\sqrt{3^2+4^2}} \right|$ $\Rightarrow x^2 + y^2 - 12x - 18y + 117 = \frac{9x^2 + 16y^2 + 1 + 24xy + 61 + 9y}{6}$

 \Rightarrow $(9-5)x^2 + (16-5)y^2 + 24xy + (6+5 \times 12)x$ $+(8+18\times5)y+1-5\times117=0$

 $4x^2 + 11y^2 + 24xy + 66x + 98y - 584 = 0 (Ans.)$

নিজে করো

[SB'23]


চিত্রের পরাবৃত্তটির উপকেন্দ্র S, শীর্ষ A এবং MZ নিয়ামকরেখা।

(খ) উদ্দীপকের উল্লিখিত A ও S বিন্দুর স্থানাঙ্ক যথাক্রমে (2, 3) ও (2, 7) হলে, পরাবৃত্তটির সমীকরণ নির্ণয় কর।

[Ans:
$$x^2 - 4x - 16y + 52 = 0$$
]

দৃশ্যকল্প-২: A শীর্ষবিন্দু ও S উপকেন্দ্র।

BB'23|

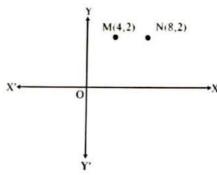
(গ) দৃশ্যকল্প-২ হতে পরাবৃত্তের সমীকরণ নির্ণয় কর।

[Ans:
$$x^2 + 9y^2 - 110x - 70y - 6xy - 225 = 0$$
]

15. দৃশ্যকল্প-২: একটি কনিকের কেন্দ্র (-2, -2) এবং শীর্ষবিন্দু (4, −1), উংকেদ্রিকতা ¹/₃। [Ctg.B'22]

(গ) দৃশ্যকম্প-২ এর কনিকটির নাম উল্লেখ কর এবং উহার সমীকরণ নির্ণয় কর।

[Ans: উপবৃত্ত,
$$(x-0)^2 + (y+\frac{5}{3})^2 = (\frac{1}{3})^2 \times \frac{(6x+y-97)^2}{6^2+1^2}$$
]


I6. A(1, −2) একটি বিন্দু

(খ) নিয়ামক রেখার সমীকরণ 3x - 4y = 1 হলে, পরাবৃত্তের সমীকরণ বের কর যার শীর্যবিন্দু \Lambda

[Ans: $16x^2 + 9y^2 + 24xy - 104x + 172y + 444 = 0$]

17.

Din.B'22

(খ) একটি পরাবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র M এবং শীর্ষ O । [Ans: $(x-2y)^2 - 80x - 40y = 0$

18.

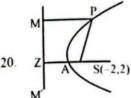
[MB'22]

উপরের চিত্রটি একটি কনিক নির্দেশ করে। যার উপ^{কেন্দু 5}

শীর্যবিন্দু A এবং MZM' নিয়ামক রেখা। (গ) উদ্দীপকের কনিকটির সমীকরণ নির্ণয় কর, যার উ^{প্রেক} (-1,1) এবং শীর্ষবিন্দু (2, -3) **।**

|Ans: $(4x + 3y)^2 + 308x - 394y - 1799 = 0$

Educationbl

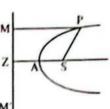

HSC প্রশ্নব্যাংক ২০২৫

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

সিলেট ক্যাডেট কলেজ

(গ) দৃশ্যকম্প-২ হতে MZM' এর সমীকরণ নির্ণয় কর।

[Ans:
$$3x + 4y + 25 = 0$$
]



[Ctg.B'17]

চিত্রটি একটি কনিক নির্দেশ করে যার নিয়ামক রেখা MZM' (খ) A(1, -2) হলে MZM' এর সমীকরণ নির্ণয় কর।

[Ans:
$$3x - 4y - 36 = 0$$
]

21.

(i) চিত্রের কনিকের উপকেন্দ্র S এবং MZM' নিয়ামকের সমীকরণ।

(ii)
$$2x^2 + y^2 - 8x - 2y - 7 = 0$$

(খ)
$$S(-8, -2)$$
, $SP = PM$ এবং MZM' এর সমীকরণ $2x - y - 9 = 0$ হলে কনিকটির সমীকরণ নির্ণয় কর। $[Ans: (x + 2y)^2 + 116x + 2y + 259 = 0]$

Type-13: স্পর্শক/ছেদক সম্পর্কিত

Concept Concept

কনিকের উপরস্থ বিন্দুতে স্পর্শক:

ax² + by² + 2hxy + 2gx + 2fy + c = 0 কনিকের উপরস্থ যেকোনো একটি বিন্দু (x1, y1) হলে, (x1, y1) বিন্দুতে অঙ্কিত স্পর্শক নির্ণয়ের জন্য কনিকের সমীকরণে,

x এর পরিবর্তে →
$$\frac{x+x_1}{2}$$

y এর পরিবর্তে → $\frac{y+y_1}{2}$

$$xy$$
 এর পরিবর্তে $\rightarrow \frac{xy_1+yx_1}{2}$

ইত্যাদি বসাতে হয়।

 $\therefore ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ এর উপরস্থ (x_1, y_1) বিন্দুতে কনিকটির স্পর্শকের সমীকরণ: $axx_1 + byy_1 + 2h$ $\frac{xy_1+yx_1}{2} + 2g\frac{x+x_1}{2} + 2f\frac{y+y_1}{2} + c = 0 : \left[axx_1 + byy_1 + h(xy_1 + yx_1) + g(x+x_1) + f(y+y_1) + c = 0\right]$

(ii) y = mx + c সরলরেখাটি

(a)
$$y^2 = 4ax$$
 কে স্পর্শ করলে, $c = \frac{a}{m}$

$$(d) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 কে স্পর্শ করলে, $c^2 = a^2 m^2 + b^2$

(b)
$$x^2 = 4ay$$
 কে স্পর্শ করলে, $c = -am^2$

$$(e) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 কে স্পর্শ করলে, $c^2 = a^2 m^2 - b^2$

(c)
$$x^2 + y^2 = r^2$$
 (क স্পর্শ করলে, $c^2 = r^2(m^2 + 1)$

(f)
$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$
 কে স্পর্শ করলে, $c^2 = b^2 - a^2 m^2$

সূজনশীল প্রশ্ন (ক, খ ও গ)

 $\sqrt{\frac{x^2}{16}} + \frac{y^2}{9} = 1$

[DB, SB, JB, Din.B'18]

(খ) x-y-5=0 রেখাটি দৃশ্যকম্প-১ এ বর্ণিত কনিকটিকে স্পর্শ করলে স্পর্শ বিন্দুর স্থানান্ক নির্ণয় কর।

(খ) Solⁿ: (x_1, y_1) বিন্দুতে $\frac{x^2}{16} + \frac{y^2}{9} = 1$ কনিকের স্পর্শকের সমীকরণ,

$$\frac{xx_1}{16} + \frac{yy_1}{9} = 1 \Rightarrow \frac{xx_1}{16} + \frac{yy_1}{9} - 1 = 0 \dots$$
 (i); আবার, $x - y - 5 = 0 \dots$ (ii)

(i) 8 (ii) একই সরলরেখা নির্দেশ করলে, $\frac{11}{16} = \frac{71}{-1} = \frac{-1}{-5} \Rightarrow x_1 = \frac{16}{5}, y_1 = \frac{-9}{5}$

: নির্পেয় বিন্দু $(x_1, y_1) = (\frac{16}{5}, \frac{-9}{5})$ (Ans.)

▲ MCO প্রকার জন্ম এই জাধ্যায়ের বিভিন্ন টাইপের তুলনামূলক গুরুত্ব:

M	CQ প্র	গ্লর জন্য এই অধ্যায়ের বিভিন্ন টাইপের তুলনা	যতবার প্রশ্ন	যে বোর্ডে যে বছর এসেছে
ওরত্	টাইপ	টাইণের নাম	बलक	мсо
000	T-01	কনিকের প্রকৃতি নির্ণয়	18	RB'23, 22, 17, 17; SB'23; BB'23; MB'2 21; Din.B'22; JB'21, 19; CB'21, 17; CB'1
000	T-02	পরাবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়	65	DB'23, 22, 21, 19; RB'23, 22, 21, 19, 1 SB'23, 22, 21, 19, 17; BB'23, 22, 21, 19, 1 JB'23, 22, 21, 19; Din.B'23, 22, 21, 19, 1 MB'23, 22, 21; Mad.B'23; Ctg.B'22, 21, 1 CB'22, 21, 19, 17; All.B'18
0	T-03	বিভিন্ন শর্ত হতে পরাবৃত্তের সমীকরণ এবং উপাদান নির্ণয় সংক্রান্ত	03	SB'23; JB'21
00	T-04	পরাবৃত্তের উপকেন্দ্রিক দূরত্ব সম্পর্কিত	05	СВ'23, 22; ЈВ'22, 21, 17
000	T-05	উপবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়	48	DB'23, 21, 17; RB'23, 21; Ctg.B'23, 22, 23; SB'23, 22, 21, 19; BB'23, 22, 21; JB'23, 21, 19, 17; CB'23, 22, 21, 19; Din.B'23, 19, 17; MB'23, 22, 21; Mad.B'23
0	T-06	বিভিন্ন শর্ত হতে উপবৃত্তের সমীকরণ এবং উপাদান নির্ণয় সংক্রান্ত	01	Mad.B'23
000	Т-07	অধিবৃত্তের সমীকরণ হতে বিভিন্ন উপাদান নির্ণয়	48	DB'23, 22, 21, 19, 17; RB'23, 22, 21, 19, BB'23, 22, 21, 17; CB'23, 19; Din.B'23, 21, 17; SB'22, 17; Ctg.B'21, 19; SB' JB'22, 21, 17; MB'22, 21; All.B'18
0	T-08	বিভিন্ন শর্ত থেকে অধিবৃত্তের সমীকরণ নির্ণয়	01	CB'21
	T-09	SP + S'P = বৃহৎ/আড় অক্ষের দৈর্ঘ্য সংক্রান্ত		
00	T-10	অধিবৃত্তের অসীমতট সম্পর্কিত সমস্যাবলি	03	RB'23; CB'23; JB'21
00	Т-11	কনিকের পরামিতিক সমীকরণ	06	Ctg.B'23, 21; BB'23; JB'23; Din.B'23; MB'21
	T-12	কনিকের উপকেন্দ্র, উৎকেন্দ্রিকতা ও দিকাক্ষ হতে কনিকের সমীকরণ নির্ণয়। (SP = e · PM)		
000	T-13	স্পৰ্শক/ছেদক সম্পৰ্কিত	13	DB'23, 22, 21; RB'23, 19; Ctg B'23, CB'23; SB'22, 21; BB'21; Din B'21;

HSC প্রমুব্যাংক ২০২৫

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

(3)4

- (b) 8
- [DB'23]

(c) 16

- (d) কোনোটি নয়
- 02. y² = 4x + 4y 8 পরাবৃত্তের শীর্ষের স্থানান্ধ—
- (b) (2, 1)
- (c)(2,2)
- (d)(2,4)
- $03. \frac{(x-2)^2}{c} + \frac{(y+1)^2}{4} = 1$ উপবৃত্তের উৎকেন্দ্রিকতা হলো—

- (a) $\frac{3}{5}$ (b) $\frac{2}{5}$ (c) $\frac{2}{\sqrt{5}}$ (d) $\frac{1}{\sqrt{5}}$
- 04. y = x + c সরলরেখাটি $9x^2 + 16y^2 = 144$ উপবৃত্তকে স্পর্শ করলে c এর মান— [DB'23]
 - $(a) \pm 3$
- (b) ± 4
- $(c) \pm 5$
- $05. 7x^2 9y^2 + 63 = 0$ অধিবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য হলো— [DB'23]

 - (a) $\frac{14}{3}$ (b) $\frac{14}{9}$ (c) $\frac{18}{7}$ (d) $\frac{18}{\sqrt{7}}$

- 06. r(1 + cos θ) = 2 সমীকরণটি কী প্রকাশ করে? [RB'23]
 - (a) সবলবেখা
- (b) 30
- (c) পরাবৃত্ত
- (d) উপবৃত্ত

- 07. $y^2 = 8x$ পরাবৃত্তের নিয়ামকরেখার সমীকরণ কোনটি?
 - (a) x 2 = 0
- (b) x + 2 = 0
- (c) y 2 = 0
- (d) y + 2 = 0
- 08. $\frac{(x-3)^2}{16} + \frac{(y+1)^2}{12} = 1$ উপবৃত্ততির—
 - (i) কেন্দ্রের স্থানাম্ব (3, −1) (ii) বৃহৎ অক্ষের দৈর্ঘা ৪ একক
 - (iii) উৎকেন্দ্ৰকতা -

নিচের কোনটি সঠিক?

- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

[RB'23]

- 09. b এর মান কত হলে y = 4x + 1 সরলরেখাটি $y^2 = 8bx$ পরাবৃত্তকে স্পর্শ করবে?

 - (a) $\frac{1}{4}$ (b) $\frac{1}{3}$
- (c) 2
- (d) 4

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$9x^2 - 16y^2 = 144$$

- 10. অধিবৃত্তটির শীর্ষবিন্দুর স্থানাম্ব কোনটি?
 - (b) $(\pm 5, 0)$
 - (a) $(\pm 4, 0)$ $(c)(0,\pm 4)$
- $(d)(0, \pm 5)$
- অধিবৃত্তির অসীমতটের সমীকরণ কোনিট?

[RB, CB'23; JB'21]

- (a) $2x = \pm 3y$
- (b) $3y = \pm 2x$
- (c) $3x = \pm 4y$
- (d) $4x = \pm 3y$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

01. a	02. a	03. d	04. c	05. d	06. c	07. b	08. d	09. c	10. a	11. c

- 01. $y^2 = 4x + 3y 7 \Rightarrow y^2 3y = 4x 7$
 - $\Rightarrow y^2 2 \cdot y \cdot \frac{3}{2} + \frac{9}{4} = 4x 7 + \frac{9}{4} \Rightarrow \left(y \frac{3}{2}\right)^2 = 4x \frac{19}{4}$
 - $4\left(y-\frac{1}{2}\right)^2=4\cdot 1\left(x-\frac{19}{16}\right)$ ় উপকেন্দ্রিক লম্বের দৈর্ঘ্য = $4\cdot 1=4$
- $02 \quad y^2 = 4x + 4y 8 \Rightarrow y^2 4y = 4x 8$
 - $\Rightarrow y^2 4y + 4 = 4x 8 + 4 \Rightarrow (y 2)^2 = 4x 4$
 - $=(y-2)^2=4(x-1)$: পরাবৃত্তের শীর্ষের স্থানান্ধ (1,2)
- $03. \quad \frac{(x-z)^2}{5} + \frac{(y+1)^2}{4} = 1; \text{ diver}, \ a^2 = 5, b^2 = 4, \ \therefore \ a > b$
 - . Decomposit, $e = \sqrt{\frac{a^2-b^2}{a^2}} = \sqrt{\frac{b-4}{5}} = \frac{1}{\sqrt{5}}$
- $64 \quad 9x^2 + 16y^2 = 144 \Rightarrow \frac{x^2}{16} + \frac{y^2}{y} = 1 \Rightarrow \frac{x^2}{4^2} + \frac{y^2}{3^2} = 1 \therefore a = 4, b = 3$
 - y = x + c जवलत्वचारि উপবৃত্তকে স্পর্ণ করলে $c^2 = a^2m^2 + b^2 \Rightarrow c^2 \approx 4^2 \cdot 1^2 + 3^2 = 25 : c = \pm 5$
- 05 $7x^2 9y^2 + 63 = 0 \Rightarrow 7x^2 9y^2 = -63 \Rightarrow \frac{x^2}{2} + \frac{y^2}{2} = 1$

দুন্মি একাডেমিক এন্ড এডমিশন কেয়ার

- = 1; date, a = 3, b = √7
- ্ উপতেশ্যিক লয়েব দৈখা = ^{14'} = ^{14'} = ¹

- 06. $r(1 + \cos \theta) = 2 \Rightarrow r + r \cos \theta = 2 \Rightarrow r + x = 2$ $\Rightarrow r = 2 - x \Rightarrow r^2 = (2 - x)^2 [3\sqrt[4]{3}$
 - $\Rightarrow x^2 + y^2 = 4 + x^2 4x \Rightarrow y^2 = -4.1(x 1)$
 - যা $y^2 = -4ax$ এর সাথে তুলনীয় অর্থাৎ, পরাবৃত্ত নির্দেশ করে।
- 07. $y^2 = 8x \Rightarrow y^2 = 4.2.x : a = 2$
 - : নিয়ামক রেখা, $x = -a \Rightarrow x = -2$: x + 2 = 0
- $08. \quad \frac{(x-3)^2}{16} + \frac{(y+1)^2}{12} = 1$ 4점 (i) (কমের ছানার হলো (3. -1),
 - (ii) বৃহৎ অক্ষের দৈর্ঘ্য = 2 × 4 = ৪ একর
 - (iii) উৎকেশ্বিকতা, $e = \sqrt{1 \frac{b^2}{a^2}} = \sqrt{1 \frac{12}{16}} = \frac{1}{2}$
- 10. $9x^2 16y^2 = 144 \Rightarrow \frac{x^2}{16} \frac{y^2}{2} = 1 a = 4, b = 3$
- 11 $9x^2 16y^2 = 0 \Rightarrow 9x^2 = 16y^2 : 3x = \pm 4y$

aucatio कि कि कि से में के COII

12. $3x^2 - 4y^2 = 12$ অধিবৃত্তের (4, 3) বিন্দৃতে স্পর্শকের ঢালের মান-

[Ctg.B'23]

- (a) 1
- (b) $\frac{3}{4}$ (c) 1
- $(d)^{\frac{4}{3}}$
- 2x² + y² = 4 কনিকটির বৃহৎ অক্ষের দৈর্ঘ্য- [Cig.B, JB'23]
- (b) 2
- (c) $2\sqrt{2}$
- (d) $\sqrt{2}$
- $14. x^2 = -3y$ পরাবৃত্তের—

[Ctg.B'23]

- (i) উপকেন্দ্রিক লম্বের দৈর্ঘ্য 🕺
- (ii) উপকেন্দ্রের স্থানাম্ব $\left(0, \frac{-3}{4}\right)$
- (iii) উপকেন্দ্রিক লম্বের সমীকরণ 4y 3 = 0

নিচের কোনটি সঠিক?

(a) i, ii

- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- কোনো কনিকের উৎকেন্দ্রিকতা √3 হলে, সেটি একটি- [SB'23]
 - (a) পরাবৃত্ত
- (b) উপবৃত্ত
- (c) অধিবৃত্ত
- (d) সম অধিবৃত্ত

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$x^2 + 5y = 0$$
 একটি কণিক।

- 16. কনিকটির নিয়ামকের সমীকরণ কোনটি?
- [SB'23]

- (a) 5x + 4 = 0
- (b) 5x 4 = 0
- (c) 4y + 5 = 0
- (d) 4y 5 = 0

- 17. কনিকটির উপকেন্দ্রের স্থানাম্ব কত?
 - (a) $(0, \frac{5}{4})$
- (b) $(0, -\frac{5}{4})$
- (c) $\left(0,\frac{4}{5}\right)$
- (d) $\left(0, -\frac{4}{\epsilon}\right)$
- $18. \quad \frac{y^2}{25} \frac{x^2}{16} = 1$ অধিবৃত্তের পরামিতিক সমীকর্ণ.
 - (a) $x = 5 \tan \theta, y = 4 \sec \theta$
 - (b) $x = 5 \sec \theta, y = 4 \tan \theta$
 - (c) $x = 5 \sin \theta$, $y = 4 \cos \theta$
 - (d) $x = 4 \tan \theta, y = 5 \sec \theta$

নিচের উদ্দীপকের আপোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাঙ্ কোনো বিন্দুর পরামিতিক স্থানান্ধ ($2\cos\theta, \sqrt{3}\sin\theta$)

- 19. সঞ্চারপথটি কী নির্দেশ করে?
 - (a) পরাবৃত্ত
 - (b) উপবৃত্ত
- (c) 90
- [BB 23] (d) অধিবৃত্ত

[BB'23]

[BB'23]

ISB 21

- 20. কেন্দ্রের স্থানাম্ব কত?
 - (a) $(2, \sqrt{3})$
- (b)(0,0)
- (c)(2,0)
- (d) $(0, \sqrt{3})$
- 21. $x^2 4x + 12y 32 = 0$ প্রাব্তের-

- (i) উপকেন্দ্র (2, −6)
- (ii) নিয়ামকের সমীকরণ y = 6
- (iii) शीर्यविन्पू (2, 3)

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

12. c	13. a	14	15. b	16. d	17. b	18. d	19. b	20. b	2
-------	-------	----	-------	-------	-------	-------	-------	-------	---

- (4.3) বিন্দৃটি অধিবৃত্তের উপরে অবস্থিত।
 - .: অধিবৃত্তের উক্ত বিন্দৃতে অন্ধিত স্পর্শক: 3x x 4 4y x 3 = 12
 - \Rightarrow 12x − 12y = 12 \Rightarrow y = x − 1 \therefore চাল m = 1

বিকম্প: $3x^2 - 4y^2 = 12 \Rightarrow 6x - 8y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{3x}{4x}$

 $\left. : \frac{dy}{dx} \right|_{(4,3)} = \frac{3 \times 4}{4 \times 3} = 1$

13. $2x^2 + y^2 = 4 \Rightarrow \frac{x^2}{(\sqrt{2})^2} + \frac{y^2}{2^2} = 1$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সঙ্গে তুলনা করলে, $a = \sqrt{2}, b = 2$ [b > a]

.. বৃহৎ অক্ষের দৈখা = 2b = 2 × 2 = 4

14. (সঠিক উত্তর তপু II); x2 = -3y

 $\Rightarrow x^2 = -4. {3 \choose 4} y$ of $x^2 = -4ay$ and how going nation, $a = {1 \over 4}$

্ৰ উপকেন্দ্ৰ (0, -a) বা $(0, \frac{-1}{4})$, উপকেন্দ্ৰিক লম্বেন দৈৰ্ঘ্য = $4a = 4 \times \frac{1}{4} = 3$

ত্তপকেন্দ্রিক লম্ব y = -a ⇒ y = - ⇒ 4y + 3 = 0

15. $e = \frac{\sqrt{3}}{2}$ যেহেতু 0 < e < 1 তাই উপবৃত্ত।

16. $x^2 = -5y$; $x^2 = 4$, $\left(-\frac{5}{4}\right)y$

∴ নিয়ামক রেখা $y + \left(-\frac{5}{4}\right) = 0$ ∴ 4y - 5 = 0

17. $x^2 = 4.\left(-\frac{5}{4}\right)y$: উপকেন্দ্র = $\left(0, -\frac{5}{4}\right)$

18. $\frac{y^2}{25} - \frac{x^2}{16} = 1 \Rightarrow \frac{y^2}{5^2} - \frac{x^2}{4^2} = 1$

a = 4; b = 5 $\therefore x = a \tan \theta = 4 \tan \theta$; $y = b \sec \theta = 5 \sec \theta$

যেখানে $\theta = \tan^{-1} \left(\frac{x}{x} \right) = \tan^{-1} \left(\frac{x}{x} \right)$

19. উপবৃত্তের পরামিতিক স্থানান্ধ (a cos θ , b sin θ)

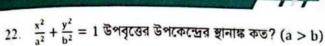
20. (0,0) কেন্দ্রবিশিষ্ট উপবৃত্তের পরামিতিক স্থানান্ধ (a cos θ, b sinθ)

21. $x^2 - 4x + 12y - 32 = 0$

 $\Rightarrow x^2 - 2.2.x + 4 = 32 - 12y + 4 \Rightarrow (x - 2)^2 = 36 - 12y$

 $\Rightarrow (x-2)^2 = -12(y-3)$

এখানে, $\alpha=2, \beta=3, a=\frac{-12}{4}=-3$, উপকেন্দ্র $(\alpha, a+\beta) \in (2,0)$


নিয়ামকের সমীকরণ, $y - \beta + a = 0$

 \Rightarrow y - 3 - 3 = 0 \Rightarrow y = 6

भुठतार (ii) छ (iii) नर अठिक।

শীর্যবিন্দু $(\alpha, \beta) \equiv (2.3)$

[BB, JB'23]

(a)
$$(\pm \sqrt{a^2 + b^2}, 0)$$

(b)
$$(\pm \sqrt{a^2 - b^2}, 0)$$

$$(c)(\pm a/e, 0)$$

(d)
$$(0, \pm ae)$$

23.
$$4x^2 - y^2 + 16 = 0$$
 অধিবৃত্তের পরামিতিক স্থানাঙ্ক কোনটি?

(a)
$$(4 \sec \theta, 2 \tan \theta)$$

24.
$$(x-1)^2 = -y$$
 এর

(ii) উপকেন্দ্র
$$\left(-\frac{1}{4},0\right)$$

(iii) উপকেন্দ্র থেকে নিকটতম নিয়ামকের দূরত্ব
$$= \frac{1}{2}$$

নিচের কোনটি সঠিক?

25.
$$3x^2 + 4y^2 = 12$$
 উপবৃত্তের—

(iii) নিয়ামক রেখার সমীকরণ
$$y=\pm\sqrt{3}$$

নিচের কোনটি সঠিক?

- (a) 12
- (b) 20
- (c) 24
- (d) 36

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

- 27. অধিবৃত্তিটির নিয়ামক রেখাদয়ের মধ্যবতী দূরত্ব কত একক? [CB'23]
 - (a) $\frac{4\sqrt{5}}{3}$ (b) $\frac{10}{3}$

- 28 x + y + c = 0 সরলরেখাটি $y^2 = x$ পরাবৃত্তটিকে স্পর্শ
 - করলে c এর মান কত?

[CB'23]

- (a) 4
- (b) $-\frac{1}{4}$ (c) $\frac{1}{4}$
- (d) 4
- $29. x^2 = Py$ পরাবৃত্তটি (6, -3) বিন্দুগামী হলে, পরাবৃত্তের [Din.B'23] উপকেন্দ্রের স্থানাঙ্ক-
 - (a)(0,3)

- (b) (3,0) (c) (0,-3) (d) (-3,0)
- $\frac{x^2}{9} \frac{y^2}{4} = 1$ অধিবৃত্তের উপকেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব–

[BB, Din.B'23]

- (a) $2\sqrt{13}$ (b) $\frac{2\sqrt{2}}{3}$ (c) $\frac{2\sqrt{13}}{3}$
- $(d)\sqrt{2}$
- 31. $\frac{x^2}{4} + \frac{y^2}{9} = 1$ উপবৃত্তের ক্ষেত্রে—
- [Din.B'23]

- (i) উৎকেন্দ্রিকতা √5
- (ii) নিয়ামকের সমীকরণ √5y = ±9
- (iii) শীর্ষবিন্দুদ্বয়ের মধ্যবতী দূরত্ব = 4

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

22. b	23. d	24. b	25. a	26. b	27. b	28. c	29. с	30. a	31. a

23. $4x^2 - y^2 + 16 = 0 \Rightarrow y^2 - 4x^2 = 16$

$$\Rightarrow \frac{y^2}{4^2} - \frac{x^2}{2^2} = 1 \ \ (4 + \frac{y^2}{2^2} - \frac{x^2}{2^2} = 0)$$

এর সঙ্গে তুলনা করে পাই, b = 4 এবং a = 2

্র প্রদত্ত অধিবৃত্তের পরামিতিক স্থানাঙ্ক (a tan θ , b sec θ)

प्रश्री (2 tan 0, 4 sec 0)

24. $(x-1)^2 = -y \Rightarrow (x-1)^2 = -4 \cdot (\frac{1}{4})y$ (4)

 $X^2 = -4aY$ এর সঙ্গে তুলনা করে পাই, $a = \frac{1}{4}$

শীর্ষ (x - 1, y) ≡ (0, 0) অর্থাৎ (1, 0); (i) সঠিক।

উপকেন্দ্র $(x-1,y)\equiv (0,-a)$ অর্থাৎ $\left(1,-\frac{1}{4}\right)$ উপকেন্দ্র থেকে নিকটতম

নিয়ামকরেখার দূরত্ = $2a = 2 \times \frac{1}{4} = \frac{1}{2}$ (ii) সঠিক নয়, (iii) সঠিক 25. $3x^2 + 4y^2 = 12 \Rightarrow \frac{x^2}{4} + \frac{y^2}{3} = 1$

$$a = 2 \cdot b = \sqrt{3} \cdot e = \sqrt{1 - \frac{3}{4}} = \frac{1}{2}$$

উপকেন্দ্র $\left(\pm 2 \times \frac{1}{2},0\right)=\left(\pm 1,0\right)$ এবং নিয়ামক রোখা, $x=\pm \frac{2}{1} \Rightarrow x=\pm 4$

26. $x^2 = 16y = 4 \times 4y$, a = 4, with x = 16 (i.e., $y = \frac{x^4}{16} = \frac{16^4}{16} = 16$

∴ উপকেন্দ্রিক দূরত্ব = |y + a| = 16 + 4 = 20

27. $4y^2 - 5x^2 = 20 \Rightarrow \frac{y^2}{5} - \frac{x^2}{4} = 1 : a = 2 : b = \sqrt{5}$

$$\therefore e = \sqrt{1 + \frac{4}{5}} = \frac{3}{\sqrt{5}}$$
 \therefore নিয়ামক রেখাছয়ের মধ্যে দূরত্ব $= \frac{2b}{e} = \frac{2\sqrt{5}}{\frac{3}{\sqrt{5}}} = \frac{10}{3}$

28. x + y + c = 0 রেখাটি $y^2 = x$ পরাবৃত্তকে স্পর্শ করলে,

$$-c = \frac{2}{-1} = -\frac{1}{4} [x + y + c = 0 \Rightarrow y = -x - c$$

∴ m = -1 এবং y² = $\frac{1}{4} \cdot 4x$ ∴ a = $\frac{1}{4}$] ∴ c = $\frac{1}{4}$

29. $x^2 = Py$ পরাবৃত্তটি (6, -3) বিন্দুগামী হলে, 36 = P(-3)

∴ P = -12 ∴ পরাবৃত্তের সমীকরণ, x² = -12y

⇒ x² = 4. (-3)y ∴ উপকেন্দ্রের স্থানান্ধ (0, -3)

 $30. \frac{x^2}{a} - \frac{y^2}{4} = 1$ এখানে, a = 3, b = 2

$$e = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{9 + 4}{9}} = \sqrt{\frac{13}{9}} = \frac{\sqrt{13}}{3}$$

 \therefore উপকেন্দ্রছয়ের মধাবতী দূরত্ব = $2ae = 2 \times 3 \times \frac{\sqrt{13}}{3} = 2\sqrt{13}$

 $31. \frac{x^2}{4} + \frac{y^4}{6} = 1$ and 3.a = 2, b = 3.a < b

(i) Geralmon, $e = \sqrt{\frac{b^2 - a^2}{b^2}} = \sqrt{\frac{9 - 4}{9}} = \frac{\sqrt{5}}{3}$

(ii) নিয়ামকের সমীকরণ, $y = \pm \frac{3}{\sqrt{3}}$ বা, $y = \pm \frac{9}{\sqrt{5}}$ ∴ $\sqrt{5}y = \pm 9$

(iii) गीर्यनिष्मुषरशत यथान्छी मृत्रङ् = 2b = 6

32. $\frac{x^2}{16} - \frac{y^2}{9} = 1$ অধিবৃত্তের (x, y) বিন্দুর পরামিতিক স্থানান্ধ-

[Ctg.B, Din.B'23]

- (a) (4 sec θ, 3 tan θ)
- (b) $(4 \sin \theta, -3 \cos \theta)$
- (c) $(4\cos\theta, 3\sin\theta)$
- (d) $(4 \tan \theta, 3 \sec \theta)$
- $33. y^2 + 3y = 3x 8$ পরাবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য-

[Din.B'23]

(d)3

- (a) $-\frac{3}{2}$ (b) $\frac{3}{4}$
- (c) $\frac{23}{13}$
- 34. $(x-1)^2 + 3y = 0$ সমীকরণটি কী নির্দেশ করে? [MB'23]
 - (a) সরলরেখা
- (b) বৃত্ত
- (c) পরাবৃত্ত
- (d) অধিবৃত্ত
- 35. $y^2 kx = 0$ পরাবৃত্তটির নিয়ামক রেখার সমীকরণ x 1 = 0[MB'23] হলে k এর মান-
 - (a) $4\sqrt{2}$
- (b) 4

(c) - 4

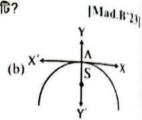
- (d) $-4\sqrt{2}$
- $36. \quad 27x^2 + 8y^2 = 216$ উপবৃত্তের বৃহৎ অক্ষের সমীকরণ হল-

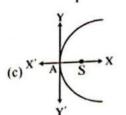
- (a) x = 0
- (b) y = 0
- (c) $x = 2\sqrt{2}$
- (d) $y = 3\sqrt{3}$

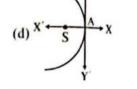
নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$y^2 - 4x + 4y - 6 = 0$$
 হচ্ছে একটি পরাবৃত্তের সমীকরণ

পরাবৃত্তির উপকেন্দ্রের স্থানাঙ্ক—


[MB'23; DB, Ctg.B'22; SB, BB'19]


- $(a)\left(\frac{3}{2},-2\right)$
- (b) $\left(-2, -\frac{3}{2}\right)$
- (c) $\left(-\frac{3}{2},2\right)$
- $(d)\left(-\frac{3}{2},-2\right)$


- 38. পরাবৃত্তটির শীর্যবিন্দুর স্থানাঞ্চ
 - (a) $\left(\frac{5}{2},2\right)$
- (b) $\left(\frac{5}{2}, -2\right)$

[MB'23]

- (c) $\left(-\frac{5}{2},2\right)$
- (d) $\left(-\frac{5}{2}, -2\right)$
- 39. y² = -4x এর লেখচিত্র কোনটি?

- 40. e এর কোন মানের জন্য উপবৃত্ত নির্দেশ করে? [Mad.B'23]
 - (a) e = 0
- (b) e = 1
- (c) 0 < e < 1
- (d) e > 1
- 41. 3x² + 5y² = 15 উপবৃত্তটির—

[Mad.B'23]

- (i) কেন্দ্রের স্থানান্ধ (0,0)
 - (ii) উৎকেন্দ্ৰিকতা ^{2√2}
 - (iii) ক্ষুদ্র অক্ষের দৈর্ঘ্য 2√3

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

32. a	33. d	34. c	35. c	36. a	37. d	38. d	39. d	40. c	41. b

32. $\frac{x^2}{16} - \frac{y^2}{9} = 1$ এখানে, a = 4, b = 3

অধিবৃত্তটির (x, y) বিন্দুটির পরামিতিক স্থানান্ধ (asec θ, b tan θ)

বা, $(4 \sec \theta, 3 \tan \theta)$ মেখানে $\theta = \tan^{-1} \frac{3}{2}$

33. $y^2 + 3y = 3x - 8 \Rightarrow y^2 + 2 \cdot y \cdot \frac{3}{2} + \frac{9}{4} = 3x - 8 + \frac{9}{4}$

 $\Rightarrow \left(y + \frac{3}{2}\right)^2 = 3x - \frac{23}{4} \Rightarrow \left(y + \frac{3}{2}\right)^2 = 3\left(x - \frac{23}{12}\right)$

্ৰ উপকেন্দ্ৰিক দম্বের দৈৰ্ঘ্য = 3 $35. \quad y^2 = kx \Rightarrow y^2 = 4 \cdot \frac{k}{4} \cdot x \text{ and } a = \frac{k}{4}$

আর আমরা জানি, $y^2 = 4ax$ এর নিয়ামকের সমীকরণ, x = -a

তাহলে $x-1=0 \Rightarrow x=1$ পেকে পাই a=-1

এখন, $\frac{k}{4} = -1 \Rightarrow k = -4$

36. $27x^2 + 8y^2 = 216 \Rightarrow \frac{x^2}{y} + \frac{y^2}{27} = 0, a = 2\sqrt{2}, b = 3\sqrt{3}, \text{ GPW } (0,0)$

যেহেতু b > a. বৃহৎ অক্ষের সমীকরণ x = 0

37. $y^2 - 4x + 4y - 6 = 0 \Rightarrow (y + 2)^2 = 4x + 10$ $\Rightarrow (y+2)^2 = 4\left(x+\frac{5}{2}\right) \text{ and } a = 1, (\alpha,\beta) \equiv \left(-\frac{5}{2},-2\right)$

উপকেন্দ্র হবে $\equiv (\alpha+a,\beta) \equiv \left(-\frac{5}{2}+1,-2\right) \equiv \left(-\frac{3}{4},-2\right)$

38. $y^2 - 4x + 4y - 6 = 0 \Rightarrow (y + 2)^2 = 4(x + \frac{5}{2})$

.: শীর্যবিন্দু $(X,Y) = (0,0) \Rightarrow \{(x + \frac{5}{2}), (y + 2)\} = (0,0)$

 $\therefore (x,y) = \left(-\frac{5}{2},-2\right)$

41. $3x^2 + 5y^2 = 15 \Rightarrow \frac{x^2}{5} + \frac{y^4}{3} = 1$; $a = \sqrt{5}$; $b = \sqrt{3}$

 $cong = (0,0); e = \sqrt{1 - \frac{3}{5}} = \sqrt{\frac{2}{5}}$

পুদ্ৰ অকেব দৈখা = 2b = 2√3

নিচের উদ্দীপকের আলোকে পরবর্তী দূইটি প্রশ্নের উত্তর দাও:

y2 = 3x একটি পরাবৃত্তের সমীকরণ।

- 42. উপকেন্দ্রের স্থানাম্ব কোনটি?
- [Mad.B'23]

- (a) $\left(\frac{3}{4},0\right)$
- (b) $\left(\frac{4}{3},0\right)$ (c) $\left(0,\frac{3}{4}\right)$
 - (d) $(0,\frac{4}{3})$
- 43. নিয়ামক রেখার সমীকরণ কোনটি?
- [Mad.B'23]

- (a) 3x + 4 = 0
- (b) 3x 4 = 0
- (c) 4x 3 = 0
- (d) 4x + 3 = 0
- 44. $y^2 = 6x$ পরাবৃত্তটি y = mx + c, রেখাকে স্পর্শ করলে—
- [DB, SB'22; DB, SB'21]
- (i) $c = \frac{3}{2m}$
- (ii) পরাবৃত্ত ও সরলরেখার সমীকরণ উভয়ই মূলবিন্দুগামী
- (iii) স্পর্শ বিন্দুর স্থানাম্ভ $\left(\frac{3}{2m^2}, \frac{3}{m}\right)$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

নিচের তথ্যের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$16y^2 - 9x^2 = 144$$

- 45. কনিকটির উৎকেন্দ্রিকতা কত? [DB, JB'22; RB, SB,

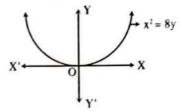
 - JB, Din.B'21; DB, Ctg.B'19; All.B'18]
 - $(a)^{\frac{5}{2}}$
- (b) $\frac{5}{4}$ (c) $\frac{\sqrt{7}}{2}$
- $(d) \frac{\sqrt{7}}{4}$

46. কনিকটির—

- [DB, MB'22; RB'19]
- (i) অসীমতট রেখার সমীকরণ, $y = \pm \frac{3}{4}x$
- (ii) নিয়ামক রেখার সমীকরণ, 5y ± 9 = 0
- (iii) পরামিতিক সমীকরণ, x = 3 sec θ, y = 4 tan θ

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii


Educationblog24.com উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

- 47. স্থানাঙ্কের অক্ষদ্বয়কে উপবৃত্তের অক্ষ বিবেচনা করে, বৃহৎ অক্ষের দৈর্ঘ্য 12 একক এবং উৎকেন্দ্রিকতা 🖥 হলে ক্ষুদ্রাক্ষের দৈর্ঘ্য [DB'22] কত?
 - (a) $4\sqrt{2}$
- (b) $8\sqrt{2}$ (c) $9\sqrt{2}$
- (d) $4\sqrt{6}$
- 48. $y^2 = 32x 64$ পরাবৃত্তটির নিয়ামক রেখার সমীকরণ-

[Ctg.B, SB, JB'22; DB, RB'21; Din.B'19; BB'17]

- (a) x 6 = 0
- (b) x + 8 = 0
- (c) x 10 = 0
- (d) x + 6 = 0

নিচের তথ্যের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

- 49. পরাবৃত্তটির উপকেন্দ্রের স্থানান্ত— [RB, Ctg.B, SB'22]
 - (a)(8,0)
- (b)(2,0)
- (c)(0,2)
- (d)(0,8)
- 50. $\frac{x^2}{16} + \frac{y^2}{9} = 1$ উপবৃত্তের বৃহৎ অক্ষের সমীকরণ- [Ctg.B'22]
 - (a) x = 0
- (b) y = 3
- (c) x = 4
- (d) y = 0

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$9x^2 - 16y^2 = 144$$
 একটি অধিবৃত্তের সমীকরণ।

- 51. অধিবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য কোনটি? [RB'22]
- (b) $\frac{9}{3}$
- (c) $\frac{32}{5}$
- 52. নিয়ামক রেখার সমীকরণ কোনটি? [RB, SB'22; DB'21]
 - (a) $x = \frac{16}{5}$
- (b) $y = \frac{16}{5}$
- (c) $x = \pm \frac{16}{6}$
- (d) $y = \pm \frac{16}{5}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

47. b 48. d 49. c 50. d 51. b 45. a 46. a 52. c 42. a 43. d 44. c

42. $y^2 = 3x \Rightarrow y^2 = \frac{3}{4} \cdot 4x : a = \frac{3}{4}$ (3)

46. $16y^2 - 9x^2 = 144 \Rightarrow \frac{y^3}{3} - \frac{x^2}{12} = 1 \Rightarrow \frac{y^3}{3^2} - \frac{x^2}{4^2} = 1$

এখানে, a = 4, b = 3; (i) $y = \pm \frac{b}{4}x = \pm \frac{1}{4}x$; (i) নং সঠিক

(ii) $y = \pm \frac{1}{2} = \pm \frac{1}{2} = \pm \frac{1}{2} \Rightarrow 5y \pm 9 = 0$

(ii) নং সঠিক (iii) পরামিতিক স্থানান্ধ

- (a tan 0, b sec 0) = (4 tan 0, 3 sec 0) मुख्तार, (i) ७ (ii) मर महिक ।
- $47. \quad 2a = 12 \Rightarrow a = 6 \Rightarrow e = \frac{1}{2}$
 - ∴ সুদ্রাক্ষের দৈর্ঘ্য = 2b = 2a√1 e² = 8√2
- $x 2 = -8 \Rightarrow x 2 + 8 = 0 : x + 6 = 0$
- 49. x² = 8y ⇒ x² = 4 · 2 · y :: উপকেন্দ্র: (0, a) ভ (0, 2)
- 50. $\frac{x^2}{16} + \frac{y^2}{9} = 1 \Rightarrow \frac{x^2}{12} + \frac{y^2}{12} = 1$ ় বৃহৎ অক্ষের সমীকরণ: y = 0
- 51. $9x^2 16y^2 = 144 \Rightarrow \frac{x^2}{4^2} \frac{y^2}{4^2} = 1$; 4 चारत, a = 4, b = 3
 - ্ উপকেন্দ্ৰিক লম্বের দৈখা: 262 = 2.52 = 9
- 52 x= ± = ± + = ± +

Educationblog24.

HSC প্রশ্নব্যাংক ২০২৫

- $9x^2 + 7y^2 = 63$ কনিকের ক্ষেত্রফল কত?
 - (a) 7n
- (b) 9π
- (d) $3\sqrt{7}\pi$

[RB'22]

- $54. \quad 9x^2 24xy + 12y^2 48x 24y + 36 = 0$ [RB'22; JB'19] সমীকরণটি কী নির্দেশ করে?
 - (a) বৃত্ত

(b) পরাবৃত্ত

(c) 7√3π

- (c) উপবৃত্ত
- (d) অধিবৃত্ত
- 55. x² = -12y পরাবৃত্তের -

[SB'22]

- (i) উপকেন্দ্রের স্থানাঙ্ক (0, −3)
 - (ii) নিয়ামকের সমীকরণ y 3 = 0
 - (iii) উপকেন্দ্রিক লম্বের সমীকরণ y + 3 = 0

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

 $25x^2 - 16y^2 + 400 = 0$ একটি অধিবৃত্তের সমীকরণ।

56. অধিবৃত্তটির আড় অক্ষ ও অনুবন্ধী অক্ষের দৈর্ঘ্য যথাক্রমে –

[SB'22; DB, Ctg.B'21]

- (a) 10.8
- (b) 8, 10
- (c) 5, 4
- (d) 4, 5
- 3x² + 5y² = 15 উপবৃত্তের উৎকেন্দ্রিকতা হবে–

[SB'22, 21; Ctg.B'21; CB'19; JB'17]

- (a) $\sqrt{\frac{3}{5}}$
- (b) $\sqrt{\frac{5}{3}}$
- (c) $\sqrt{\frac{5}{2}}$

(d) $\sqrt{\frac{2}{5}}$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

- 58. $x^2 + 4x + 2y = 0$ পরাবৃত্তটির উপকেন্দ্রিক লম্ব x-অক্ষের
 - সাথে কত কোণ তৈরি করে?

[SB'22]

- (a) $\frac{\pi}{2}$
- $(c)^{\frac{\pi}{4}}$
- $59. (x-4)^2 = -4(y-5)$ পরাবৃত্তের নিয়ামকের সমীকরণ
 - নিচের কোনটি?
- (b) y = 6
- (a) x = 4
- (d) y = 5
- (c) x = 5

|BB'22|

[BB'22]

- $y^2 = -12x$ পরাবৃত্তের -
 - (i) উপকেন্দ্রিক লম্বের দৈর্ঘ্য 16 একক
 - (ii) অক্ষের সমীকরণ y = 0
 - (iii) নিয়ামকের সমীকরণ x = 3

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii

নিচের তথ্যের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

 $8x^2 + 3y^2 = 1$ একটি উপবৃত্তের সমীকরণ।

উপবৃত্তটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য নিচের কোনটি?

[BB'22; DB, CB'21; Din.B'19]

- $(a) \frac{\sqrt{2}}{3} \qquad \qquad (b) \frac{\sqrt{3}}{2}$
- (c) $\frac{2\sqrt{2}}{3}$
- 62. উপবৃত্তটির শীর্ষবিন্দুর স্থানাম্ক নিচের কোনটি? [BB'22]
 - (a) $\left(0,\pm\frac{1}{\sqrt{3}}\right)$
- (b) $\left(\pm\frac{1}{\sqrt{3}},0\right)$
- (c) $\left(0,\pm\frac{2}{\sqrt{3}}\right)$
- (d) $\left(\pm \frac{2}{\sqrt{3}}, 0\right)$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

53 d	54. d	55. d	56. a	57. d	58. d	59. b	60. b	61. d
33. u		, ,	v ²		67 22 1.5	2 - 15 - x2	$\frac{y^2}{x^2} - 1 \Rightarrow \frac{x^2}{x^2}$	$+\frac{y^2}{2}=1\Rightarrow \frac{x^2}{2\pi^2}+$

- 53. $9x^2 + 7y^2 = 63 \Rightarrow \frac{x^2}{7} + \frac{y^2}{9} = 1 \Rightarrow \frac{x^2}{(\sqrt{7})^2} + \frac{y^2}{3^3} = 1$, বা উপবৃত্ত।
 - \therefore এর ক্ষেত্রফল = $\pi ab = \pi . \sqrt{7}.3 = 3\sqrt{7}\pi$
- 54. এখানে, h = -12.a = 9,b = 12 অর্থাৎ, h² = 144 $ab=9\times 12=108$ \therefore $b^2>ab$ \therefore কনিকটি অধিবৃত্ত।
- 55. x² = −12y ⇒ x² = −4.3.y; উপকেন্দ্রের স্থানাম্ব: (0, −a) ≡ (0, −3)

নিয়ামকের সমীকরণ: $y = a \Rightarrow y = 3 \Rightarrow y - 3 = 0$

উপকেন্দ্রিক লড়ের সমীকরণ: y = -a

- ⇒ y = -3 : y + 3 = 0 : (i), (ii) ও (iii) নং সঠিক
- 56. $25x^2 16y^2 + 400 = 0 \Rightarrow 16y^2 25x^2 = 400$
 - $\Rightarrow \frac{y^2}{25} \frac{x^2}{16} = 1 \Rightarrow \frac{y^2}{5^2} \frac{x^4}{4^2} = 1$ so 47, a = 4, b = 5
 - ্ আড় অংকর দৈখা = 2b = 2 × 5 = 10

অনুবন্ধী অক্ষের দৈখা 2a = 2 × 4 = 8

57. $3x^2 + 5y^2 = 15 \Rightarrow \frac{x^2}{\frac{15}{3}} + \frac{y^2}{\frac{15}{5}} = 1 \Rightarrow \frac{x^2}{5} + \frac{y^2}{3} = 1 \Rightarrow \frac{x^2}{(\sqrt{5})^2} + \frac{y^4}{(\sqrt{5})^3} = 1$

এখানে a > b : উৎকেন্দ্রিকতা, $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{3}{5}} = \frac{\sqrt{10}}{5} = \frac{\sqrt{10}}{5}$

- $\therefore e = \frac{\sqrt{10}}{5} = \frac{\sqrt{5 \times 2}}{(\sqrt{5})^2} = \frac{\sqrt{5 \times 2}}{(\sqrt{5})^2} = \frac{\sqrt{5}\sqrt{2}}{\sqrt{5}\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}} = \sqrt{\frac{2}{5}}$
- 58. $x^2 + 4x + 2y = 0 \Rightarrow x^2 + 4x + 4 = -2y + 4$ $\Rightarrow x^2 + 2 \cdot x \cdot 2 + (2)^2 = -2(y-2)$
 - $\Rightarrow (x+2)^2 = -4 \cdot \frac{1}{2}(y-2) \Rightarrow X^2 = -4 \cdot \frac{1}{2} Y$

∴ উপকেন্দ্রিক লম্বের সমীকরণ: Y = -a ⇒ y - 2 = - 1

- $\Rightarrow 2y 4 = -1 :: 2y 3 = 0$
- উপকেন্দ্রিক পত্ন x-অক্ষের সমান্তরাল অর্থাৎ x-অক্ষের সাথে 0° কোষ উৎ^পল্ল ^{কর্মের}
- $(x-4)^2 = -4(y-5) \Rightarrow y-5 = 1 \Rightarrow y = 6$
- (i) এ উপকেন্দ্রিক লম্ব = 4(3) = 12 একব
- $8x^2 + 3y^2 = 1 \Rightarrow \frac{x^2}{\frac{1}{2}} + \frac{y^2}{\frac{1}{2}} = 1$; $Covit = \frac{2\pi^2}{h} = \frac{2\pi^2}{\frac{1}{2}} = \frac{\sqrt{3}}{4}$
- 62. শীৰ্ষবিন্দু: (0, ±b) ল (0, ± 📆

Educationblog24.com

HSC প্রশ্নব্যাংক ২০২৫

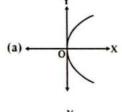
উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

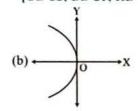
$63. x^2 - y^2 = 18$ অধিবৃত্তের ফোকাসদ্বয়ের মধ্যবতী দূরত কত? [BB'22]

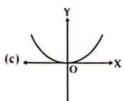
- (b) 12
- (c) 16
- (d) 18
- 64. $y^2 = 16x$ পরাবৃত্তের উপরস্থ (4,8) বিন্দুর উপকেন্দ্রিক দূরত [JB, CB'22; JB'21, 17]
 - (a) 20
- (b) 16
- (c) 12
- (d) 8
- $65. 4x^2 + y^2 = 4$ উপবৃত্তের ক্ষেত্রে-
- [JB'22]

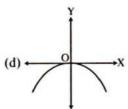
- (i) বৃহৎ অক্ষের দৈর্ঘ্য 4
- (ii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য 1
- (iii) উপকেন্দ্রছয়ের স্থানাঙ্ক $(0,\pm\sqrt{2})$

নিচের কোনটি সঠিক?


- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii


নিচের তথ্যের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:


$$y^2 = 1 - x$$
 একটি পরাবৃত্তের সমীকরণ।


- 66. পরাবৃত্তটির শীর্ষবিন্দু কোনটি?
- [JB'22; RB, BB, MB'21]
- (a)(-1,0)
- (b)(1,0)
- (c)(0,-1)
- (d)(0,1)
- $67. x^2 = -12y$ এর ক্ষেচ কোনটি?

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উন্তর দাও:

$$9x^2 + 25y^2 = 225$$

- 68. উদ্দীপকের কনিকের উপকেন্দ্রের স্থানাম্ব কোনটি?
 - [CB'22; DB, SB'21; Din.B'19; BB'17]
 - (a) $(\pm 4, 0)$
- (b) $(\pm 5, 0)$
- (c) $(0, \pm 4)$
- $(d)(0,\pm 5)$
- 69. উদ্দীপকের কনিকের নিয়ামকদ্বয়ের মধ্যবর্তী দূরত্ব কত?

- (a) $\frac{25}{4}$ (b) $\frac{25}{3}$
- (c) 4
- (d)8
- 70. $\frac{y^2}{16} \frac{x^2}{25} = 1$ অধিবৃত্তের আড় অক্ষ নিচের কোনটি? [Din.B'22]
 - (a) x-অফ
- (b) y-অক
- (c) x-অকের সমান্তরাল
- (d) y-অক্ষের সমান্তরাল
- 71. x² = 16y কনিকের উৎকেন্দ্রিকতা কত হবে? [Din.B, MB'22]
 - (a) e = 1
- (b) e = 0
- (c) e > 1
- (d) 0 < e < 1
- 72. $\frac{x^2}{100} + \frac{y^2}{36} = 1$

[Din.B'22]

- (i) উৎকেন্দ্ৰিকতা = 靠
- (ii) উপকেন্দ্রদ্বয়ের স্থানান্ধ = $\left(0, \pm \frac{24}{5}\right)$
- (iii) নিয়ামক দুইটির দুরত = 25

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের তথ্যের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

স্থানাঙ্কের অক্ষদ্বয়কে উপবৃত্তের অক্ষ ধরে ক্ষুদ্রাক্ষের দৈর্ঘ্য 2

একক এবং উৎকেন্দ্রিকতা ।

- 73. বৃহৎ অক্ষের দৈর্ঘ্য কত একক?

- (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{2}{\sqrt{6}}$
- $(d)^{\frac{1}{\sqrt{\epsilon}}}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

63. b 64. d 65. a 66. b 67. d 68. a 69. b 70. b 71. a 72. b 73. a													
63. b	64. d	65. a	66. b	67. d	68. a	69. b	70. b	71. a	72. b	73. a			

- 63. $x^2 y^2 = 18$ $\Rightarrow \frac{x^2}{10} \frac{y^2}{10} = 1$; $e = \sqrt{2}$ $a = b = 3\sqrt{2}$
 - $759 = 2ae = 2 \times 3\sqrt{2} \times \sqrt{2} = 6 \times 2 = 12$
- 64. a = 4; Sycofy o yes; a + x = 4 + 4 = 8, $y^2 = 16x = 4.4x$
- 65. $4x^2 + y^2 = 4 \Rightarrow \frac{x^4}{1^2} + \frac{y^4}{2^2} = 1$
 - So, a = 1, b = 2 $|e = \sqrt{1 \frac{1}{4}} = \frac{\sqrt{3}}{2}$
 - বৃহৎ আৰু = $2b = 2 \times 2 = 4$; উপকেন্দ্ৰিক লম্ব = $\frac{2a^2}{b} = \frac{2\times 1^2}{2} = 1$
 - উপক্রের স্থানার = $(0, \pm be) \equiv \left(0, \pm 2 \times \frac{\sqrt{3}}{2}\right) \equiv \left(0, \pm \sqrt{3}\right)$
 - সঠিক উত্তর, (a), i, ii

68. $9x^2 + 25y^2 = 225 \Rightarrow \frac{x^2}{25} + \frac{y^2}{2} = 1 \Rightarrow \frac{x^2}{22} + \frac{y^2}{22} = 1$; a > b

এপানে,
$$a = 5, b = 3$$
 $\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{o}{25}} = \frac{a}{5}$

- \therefore উপরেক্ডের স্থানাক্ষ: $(\pm ae,0)\equiv \left(\pm 5\cdot \frac{4}{5},0\right)\equiv (\pm 4,0)$
- 69. निग्नामकश्वरशत भशावणी मृत्रङ् : $2\frac{s}{s} = 2 \cdot \frac{s}{2} = \frac{2s}{2}$
- 73. $2b = 2 \Rightarrow b = 1$; $e^2 = 1 \frac{b^2}{a^2} \Rightarrow \left(\frac{1}{\sqrt{8}}\right)^2 = 1 \frac{1^2}{a^2} = a = \frac{\sqrt{8}}{2}$
 - $\therefore 2a = 2.\frac{\sqrt{5}}{3} = \sqrt{5}$

- উচ্চতর গণিত হয় পত্র : অধ্যায়-০৬
- 74. উপবৃত্তের সমীকরণ নিচের কোনটি?
- [Din.B'22]

- (a) $3x^2 + 5y^2 = 5$
- (b) $4x^2 + 3y^2 = 5$
- (c) $2x^2 + 3y^2 = 5$
- (d) $4x^2 + 5y^2 = 5$
- 75. $3x^2 + 4y^2 = 12$ উপবৃত্তের উপকেন্দ্রদ্বয়ের দূরত্ব কত?
 - [MB'22]

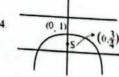
- (b) √3
- (c) 1
- 76. $\frac{(y+2)^2}{4} \frac{x^2}{5} = 1$ অধিবৃত্তের-
- [MB'22]
- (i) কেন্দ্রের স্থানাঙ্ক (−2,0)
- (ii) আড় অক্ষের দৈর্ঘ্য 4
- (iii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য 5
- নিচের কোনটি সঠিক?
- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:
 - $25x^2 + y^2 = 25$
- 77. কনিকটির ক্ষেত্রে-
- [DB, Ctg.B, BB'21; DB'17]
- (i) কেন্দ্রের স্থানাঙ্ক (0,0)
- (ii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য 5 (iii) বৃহৎ অক্ষের দৈর্ঘ্য 10
- নিচের কোনটি সঠিক?
- (a) i, ii
- (b) ii, iii
- (c) i, iii
- 78. (2,4) বিন্দুতে $y^2 = 8x$ পরাবৃত্তের স্পর্শকের সমীকরণ কোনটি? [DB'21]
 - (a) x + y 2 = 0
- (b) x y 2 = 0
- (c) x y + 2 = 0
- (d) x = 0
- 79. $2x^2 + 3y^2 = 6$ কনিকের–
- [RB'21]
- (i) বৃহদাক্ষের দৈর্ঘ্য 2√3 একক
 - (ii) ক্ষুদ্রতম অক্ষের দৈর্ঘ্য 2√2 একক
 - (iii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য 4√3
 - নিচের কোনটি সঠিক?
 - (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

- 80. $2x^2 + 3y^2 4x 12y + 8 = 0$ স্মীকরণ্টি.
 - [RB, JB, CB'21; JB']
 - (a) বুত্তের
- (b) পরাবৃত্তের
- (c) অধিবৃত্তের
- (d) উপবৃত্তের
- 81. একটি কনিকের উৎকেন্দ্রিকতা √2। কনিকটি একটি- |RB?

- (b) উপবৃত্ত
- (c) অধিবৃত্ত
- (d) পরাবৃত্ত
- 82. y² = 4ax পরাবৃত্তের পরামিতিক স্থানাম্ভ কোনটি?
 - (a) (at², 2at)
- (b) $(-at^2, 2at)$

[RB'2]

- (c) (2at, at²)
- (d) $(-2at, at^2)$
- 83. একটি অধিবৃত্তের উপর যে কোনো বিন্দুর পরামিতিক _{স্থানাই} (4 sec θ, 6 tan θ) অধিবৃত্তটির সমীকরণ-[Ctg.B'2]
 - (a) $16x^2 25y^2 = 400$
- (b) $16x^2 25y^2 = 400$
- (c) $9x^2 4y^2 = 144$ $84. x^2 = 1 - y$ পরাবৃত্তির-
- (d) $4x^2 9y^2 = 144$ [Ctg.B'21]
- (i) गीर्घविन्प (1,0)
- (ii) উপকেন্দ্র $\left(0,\frac{3}{4}\right)$
- (iii) নিয়ামক রেখার সমীকরণ 4y = 5
- নিচের কোনটি সঠিক?
- (a) i, ii
- (b) ii, iii
- (c) ii, iii
- (d) i, ii, iii
- নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:
- $9x^2 4y^2 + 36 = 0$ একটি অধিবৃত্তের সমীকরণ।
- 85. অধিবৃত্তটির উপকেন্দ্রের স্থানাম্ক কত?
 - [Ctg.B'21]
 - (a) $(\pm \sqrt{13}, 0)$
- (b) $(\pm \sqrt{5}, 0)$
- (c) $(0, \pm \sqrt{5})$
- (d) $(0, \pm \sqrt{13})$


MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান 🕽

74. d	75. a	76. c	77 c	79 0	70						
74. d			,,,,,	70. C	19. a	80. d	81. c	82. a	83. c	84 c	85. d
74 x2	y2 - 1 -	x2 , y2 .	4x2 y2	4474512						0	

74.
$$\frac{x^2}{\left(\frac{\sqrt{5}}{2}\right)^2} + \frac{y^2}{(1)^2} = 1 \Rightarrow \frac{x^2}{\frac{5}{4}} + \frac{y^2}{1} = 1 \Rightarrow \frac{4x^2}{5} + \frac{y^2}{1} = 1 \Rightarrow \frac{4x^2 + 5y^2}{5} = 1$$

- 76. $\frac{(y+z)^2}{4} \frac{x^2}{5} = 1 \Rightarrow \frac{Y^2}{2^2} \frac{X^2}{(\sqrt{5})^2} = 1 : কেন্দ্রের স্থানাম্ব: (0, -2)$
- 77. $\frac{x^2}{(1)^2} + \frac{y^2}{(5)^2} = 1$ ে কেন্দ্র $\equiv (0,0)$ ে বৃহৎ আফ = 2b = 10 একক। উপকেন্দ্রিক সম্বের দৈর্ঘ্য = $2\frac{a^2}{h} = 2 \times \frac{1}{2} = \frac{2}{2}$ একক
- 78. $y.4 = 8\left(\frac{x+2}{2}\right) \Rightarrow 4y = 4(x+2) : y = x+2 \Rightarrow x-y+2 = 0$
- 79. $\frac{x^2}{3} + \frac{y^2}{2} = 1$; $a = \sqrt{3}, b = \sqrt{2}$
 - (i) বৃহদাক = 2a = 2√3; (ii) কুপ্রাক = 2b = 2√2
 - (iii) উপকেন্দ্রিক লম্ব = $\frac{2b^2}{a} = \frac{4}{76}$, (i) ও (ii) সঠিক।
- 80. $h^2 ab = 0 6 = -6 < 0$
- 82. $x = at^2$ (2at) $y^2 \equiv (2at)^2 = 4a^2t^2$ $4ax = 4a \times at^2 = 4a^2t^2 : y^2 = 4ax$

83. $x = 4 \sec \theta \Rightarrow \frac{x}{1} = \sec \theta \cdots (i)$ $y = 6 \tan \theta \Rightarrow \frac{y}{x} = \tan \theta \cdots (ii)$ $\{(i)^2 - (ii)^2\} \Rightarrow \frac{x^2}{4^2} - \frac{y^2}{6^2} = 1 \Rightarrow \frac{x^2}{16} - \frac{y^2}{36} = 1 \Rightarrow 9x^2 - 4y^2 = 144$

- $X^2 = -4. \left(\frac{1}{4}\right). (y-1);$ निग्नाभक, $y = 1 + \frac{1}{4} = \frac{5}{4}$.: 4y = 5
- 85. $9x^2 4y^2 + 36 = 0 \Rightarrow 4y^2 9x^2 = 36$ $\Rightarrow \frac{y^3}{9} - \frac{x^3}{4} = 1 \Rightarrow \frac{y^3}{3^3} - \frac{x^3}{3^2} = 1$ [অধিবৃত্ত]
 - a = 2, b = 3; $e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{1 + \frac{4}{9}} = \sqrt{\frac{13}{9}}$
 - উপকেস্ক্র = $(0, \pm be) = \left(0, \pm 3\sqrt{\frac{13}{9}}\right) = \left(0, \pm \sqrt{13}\right)$

HSC প্রমুব্যাংক ২০২৫

Educationblog24

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

- $y^2 = 12ax$ পরাবৃত্তটি (3, -2) বিন্দুগামী হলে পরাবৃত্তটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত? ISB'211

- (a) $\frac{4}{3}$
- (b) $\frac{3}{4}$
- (c) 4

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

- $16y^2 25x^2 = 400$ একটি কনিকের সমীকরণ।
- 87. কনিকটির উপকেন্দ্রিক লম্বের সমীকরণ কত?

- (a) $x = \pm \sqrt{41}$
- (b) $y = \pm \sqrt{41}$
- (c) $x = \pm 3$
- (d) $y = \pm 3$
- 88. (x-2)2 = 16(y+3) পরাবৃত্তের-
- [SB'21]

- (i) উপকেন্দ্র (2, 1)
 - (ii) নিয়ামকের সমীকরণ, y 7 = 0
 - (iii) অক্ষরেখার সমীকরণ, x 2 = 0

নিচের কোনটি সঠিক?

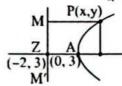
- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- $89. y^2 = 4x + 8y$ পরাবৃত্তের শীর্ষবিন্দু-
- [BB'21]

- (a)(4,4)
- (b) (-4,4)
- (c) (-4, -4)
- (d)(4,-4)
- 90. y = 3x + c রেখাটি $\frac{x^2}{5} + \frac{y^2}{3} = 1$ উপবৃত্তের স্পর্শক হলে c
 - এব মান কত?
- [BB, Din.B'21]
- (a) $\pm 2\sqrt{7}$
- (b) $\pm 3\sqrt{26}$ (c) $\pm 6\sqrt{6}$
- (d) $\pm 4\sqrt{3}$
- 91. $\frac{x^2}{14} \frac{y^2}{a} = 1$ অধিবৃত্তের (hyperbola) অনুবন্ধী অক্ষের দৈর্ঘ্য কত? [BB'21]
 - (a) 4
- (b) 5
- (c) 6
- (d) 8
- 92. $4y^2 9x^2 = 36$ অধিবৃত্তের শীর্ষবিন্দু কত?
- [BB'21]

- (a) $(\pm 3, 0)$
- (b) $(0, \pm 3)$
- (c) $(\pm 2, 0)$
- $(d)(0,\pm 2)$

93. $x^2 + 3y^2 = 3$ কনিকের নিয়ামকের সমীকরণ কোনটি?

[BB, Din.B'21]


- (a) $\sqrt{2}x = \pm 3$
- (b) $2x = \pm 3$
- (c) $x = \pm \sqrt{2}$
- (d) $x = \pm 2$
- $94. \quad x^2 = 4 4y^2$ উপবস্তের-

- [JB'21]
- (i) পরামিতিক স্থানাম্ক (2 cos θ, sin θ)
- (ii) ক্ষুদ্রাক্ষ x-অক্ষ বরাবর
- (iii) ফোকাসদ্বয়ের দূরতু 2√3

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উন্তর দাও:

- 95. পরাবৃত্তের দ্বিকাক্ষের সমীকরণ-
- [JB'21]

- (a) y = 3
- (b) x + 2 = 0
- (c) y = -3
- (d) x 2 = 0
- 96. উপকেন্দ্রিক লম্বের সমীকরণ-
- [JB'21]

- (a) x = 4
- (b) x = -2
- (c) x = 8
- (d) x = 2
- 97. x2 = 2y কনিকের জন্য-

- [CB'21]
- (i) উপকেন্দ্রের স্থানাঙ্ক $\left(0,\frac{1}{2}\right)$
- (ii) অক্ষের সমীকরণ y = 0
- (iii) নিয়ামকের সমীকরণ 2y + 1 = 0

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

86. a	87. b	88. b	89. b	90. d	91. c	92. b	93. a	94. b	95. b	96. d	97. d

- 86. $4 = 36q \Rightarrow q = \frac{1}{9}$: সমীকরণ: $y^2 = 12 \times \frac{1}{9}x = 4 \times \frac{1}{9}x$
 - : উপকেন্দ্ৰিক লম্ব = |4a| = |4 × 1 | = 1
- 87. $y = \pm be \Rightarrow y = \pm 5.\frac{\sqrt{41}}{5} \Rightarrow y = \pm \sqrt{41}$
- 88. $(x-2)^2 = 4.4(y+3); a = 4$
 - উপকেন্দ্র $\equiv (2, a 3) \equiv (2, 4 3) \equiv (2, 1)$

নিয়ামক রেখার সমীকরণ: $y + 3 = -4 \Rightarrow y + 7 = 0$

অন্ধরেখার সমীকরণ: x - 2 = 0

- 90. $c = \pm \sqrt{a^2 m^2 + b^2} = \pm \sqrt{5 \times 3^2 + 3} = \pm 4\sqrt{3}$
- 91. $2b = 2 \times 3 = 6$
- 92. $\frac{y^2}{a} \frac{x^2}{a} = 1$ $1 + 10 = (0, \pm 3)$
- 93. $\frac{x^2}{3} + \frac{y^2}{1} = 1$; নিয়ামকের সমীকরণ $x = \pm \frac{a}{a} = \pm \frac{\sqrt{3}}{\sqrt{1-1}} = \pm \frac{3}{\sqrt{2}}$
 - $x = \pm \frac{3}{\sqrt{2}}$; $\sqrt{2}x = \pm 3$

94. $x^2 + 4y^2 = 4 \Rightarrow \frac{x^2}{4} + \frac{y^2}{1} = 1$, ক্ষুদ্রাক x অক বরাবর নয়।

পরামিতিক স্থানান্ধ = $(a \cos \theta, b \sin \theta) = (2 \cos \theta, \sin \theta)$

ফোকাসম্বয়ের দূরত্ব = $2ae = e = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2} = 2 \times 2 \times \frac{\sqrt{3}}{2}$

= 2√3 একক

- 95. অক্ষের সমীকরণ y = 3 চিত্রে, দিকাক্ষপাদ, $z \equiv (-2.3)$
 - ∴ দিকাক x = -2 ⇒ x + 2 = 0
- 96. উপকেন্দ্র ≡ (0 + 2, 3) ≡ (2, 3) ∴ উপকেন্দ্রিক লম্ব x = 2
- 97. x² = 4 · 1 · y (i) \$প(本班 = (0.1)
 - (ii) অক্ষ, y = 0 (iii) নিয়ামক $y = -\frac{1}{2}$

UCati ক্রিকার গাঁতি যুগ্র প্রাপায় নি

- 98. (±3,0) শীৰ্ষবিন্দুতে এবং √3 উৎকেন্দ্ৰিকতাবিশিষ্ট অধিবৃত্তের [CB'21] সমীকরণ নিচের কোনটি?
 - (b) $2x^2 y^2 = 18$
 - (a) $x^2 2y^2 = 18$
- (c) $2y^2 x^2 = 18$
- (d) $y^2 2x^2 = 18$

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$\frac{(x-2)^2}{2} + \frac{(y-1)^2}{8} = 1$$
 একটি উপবৃত্তের সমীকরণ।

99. উপকেন্দ্রের স্থানাম্ব কোনটি?

[CB'21]

- (a) $(\sqrt{2}, 0), (-\sqrt{2}, 0)$
- (b) (0, 2), (0, -2)
- (c) (2,3), (2,-1)
- (d) (2, -3), (2, 1)
- 100. কেন্দ্রবিহীন কনিক কোনটি?
- [CB'21; Ctg.B'17]
- (a) $x^2 + y^2 = 0$
- (b) $x^2 + y = 0$
- (c) $x^2 y^2 = 10$
- (d) $x^2 + 2y^2 = 10$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$3x^2 - 4y + 6x - 5 = 0$$
 একটি পরাবৃত্ত।

- 101. পরাবৃত্তটির ফোকাস কোনটি?
- [Din.B'21]

- (a) $\left(-1, -\frac{5}{3}\right)$
- (b) $(0, -\frac{1}{3})$
- (c) $\left(0,\frac{1}{2}\right)$
- (d)(-1,-2)
- 102. পরাবৃত্তটির নিয়ামক রেখা কোনটি?
- [Din.B'21]

- (a) 3y + 2 = 0
- (b) 3y + 5 = 0
- (c) 3y + 7 = 0
- (d) 3y 7 = 0
- 103. $3x^2 + 4y^2 = 1$ উপবৃত্তের-
- [Din.B'21]

- (i) উৎকেন্দ্ৰিকতা = ½
- (ii) উপকেন্দ্র (±2√3,0)
- (iii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য = √3

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

- $104. \ 4x^2 9y^2 1 = 0$ অধিবৃত্তের উপকেন্দ্রিক লম্বের দৈয়া কড? $|D_{in,B'2j}|$
 - (a) 9
- (b) $\frac{4}{9}$

- 105. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ উপবৃত্তটির পরামিতিক স্থানাম্ক.
 - (a) (a sec θ, b cosec θ)
- (b) (b sec θ, a cosec θ)
- (c) (a cos θ, b sin θ)
- (d) $(a \sin \theta, b \cos \theta)$
- $(x-3)^2 = -4(y-4)$ পরাবৃত্তটির উপকেন্দ্রিক লাম্বে সমীকরণ-[MB'2]
 - (a) y + 3 = 0
- (b) y 3 = 0
- (c) x + 3 = 0
- (d) x 3 = 0
- $107. \frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ কনিকটির উৎকেন্দ্রিকতা শূন্য হলে বক্ররেখাটির MB'21
 - (a) উপবৃত্ত
- (b) gg
- (c) পরাবৃত্ত
- (d) অধিবৃত্ত
- 108. u ও a ধ্রুবক হলে v² = u² + 2as এর লেখচিত্র হবে-
 - (a) সরলরেখা
- (b) পরাবৃত্ত
 - MB'21

- (c) অধিবৃত্ত
- (d) উপবৃত্ত
- 109. $3x^2 + 2y^2 = 12 কনিকটির নিয়ামকরেখার সমীকরণ-$
 - (a) $2x = \pm \sqrt{3}$
- (b) $x = \pm 2\sqrt{3}$ [MB2]
- (c) $y = \pm 2\sqrt{3}$
- (d) $y = \pm 3\sqrt{2}$
- 110. $x^2 8y^2 = 2$ কনিকটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য-
 - [MB'21]

- (a) $\frac{\sqrt{3}}{2}$ (b) $\sqrt{\frac{3}{2}}$ (c) $\frac{1}{2\sqrt{2}}$ (d) $\frac{1}{2}$

110.€

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

109. d 108. b 107. b 102. c 103. b 104. b 105. c 106. b 101. a 100. b 98. b (সঠিক উভব নেই); b > a সমীকরণ y-4=-1

্র ইপ্রেকস্ত $(x-2,y-1) \equiv \left(0,\pm 2\sqrt{2}\sqrt{1-\frac{2}{6}}\right)$

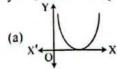
- বা, $(x,y) \equiv (2.1 \pm \sqrt{6})$
- পরাবৃত্তের কেন্দ্র নেই। 100.
- 101 $3\{(x+1)^2-1\}=4y+5\Rightarrow 3(x+1)^2=4y+8$ $\Rightarrow (x+1)^2 = \frac{1}{3}(y+2)$ শীর্ষবিন্দু A(-1, -2), ফোকাস S $\left(-1$, $-2 + \frac{1}{4}\right)$
- 102. $y + 2 = -\frac{1}{4} \Rightarrow 3y + 7 = 0$
- 103. $e = \sqrt{1 \frac{3}{4}} = \frac{1}{2}$: উপকেন্দ্রিক লয়ের দৈব্য $= \frac{2b^2}{4} = \frac{2c_1^4}{2} = \frac{\sqrt{3}}{2}$

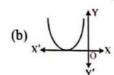
ছলকেন্দ্র $\equiv \left(\pm \frac{1}{\sqrt{3}} \cdot \frac{1}{2}, 0\right) \equiv \left(\pm \frac{1}{2\sqrt{3}}, 0\right); \frac{a^2}{\left(\frac{1}{20}\right)^2} + \frac{y^2}{\left(\frac{1}{2}\right)^2} \approx 1 \left[a > b\right]$

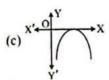
- 108. $3v^2 = u^2 + 2as$ সমীকরণে,
 - $u \circ a \text{ the } a \phi \text{ even}, u^2 = c \text{ the } a$
 - $v^2 = 2as + c \dots (1)$
 - (i) y² = 4ax + c এর সাথে তুলনাযোগা।
 - তাই, সমীকরণটি পরাবৃত্ত নির্দেশ করবে।
- $3x^2 + 2y^2 = 12 \Rightarrow \frac{x^2}{4} + \frac{y^2}{6} = 1 \therefore e = \sqrt{1 \frac{4}{6}} = \frac{1}{\sqrt{3}}$
 - নিয়ামক রেখা- y = $\pm \frac{5}{6} = \pm \sqrt{6} \cdot \sqrt{3} = \pm 3\sqrt{2}$

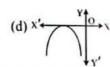
নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: $px^2 - 16y^2 = 144$ কনিকটি (±4,0) বিন্দুগামী।

111. p এর মান-


[MB'21]


- (a) 9
- (b) -4
- (c) 4
- (d) 9


112. উপকেন্দ্রের স্থানান্ধ–


[MB'21; DB, RB'19]

- (a) $(0, \pm 4)$ (b) $(\pm 4, 0)$ (c) $(0, \pm 5)$ (d) $(\pm 5, 0)$
- 113. $y = (x + 2)^2$ পরাবৃত্তের লেখচিত্র কোনটি?

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$9x^2 - 4y^2 = 36$$
 এর-

- 114. উৎকেন্দ্রিকতা কোনটি?
- [DB, Ctg.B'19; All.B'18]
- (a) $\frac{\sqrt{13}}{2}$ (b) $\frac{\sqrt{13}}{3}$ (c) $\frac{\sqrt{5}}{3}$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

 $y = ax^2 + bx + c$ (a ≠ 0) বক্ররেখাটি একটি পরাবৃত্তের সমীকরণ।

- 115. পরাবৃত্তটির অক্ষরেখা হলো-

- (a) x-অক্ষের সমান্তরাল
- (b) y-অক্ষের সমান্তরাল
- (c) x-অক
- (d) y-অক

116. পরাবৃত্তটি x-অক্ষকে স্পর্শ করলে $ax^2 + bx + c = 0$

সমীকরণের মূলদ্বয়-

[RB'19]

- (a) বাস্তব ও সমান
- (b) মূলদ ও অসমান
- (c) অমূলদ ও অসমান
- (d) জটিল ও অসমান

117. y = 4x + c সরলরেখাটি $y^2 = 32x$ বক্ররেখাকে স্পর্শ করলে

c এর মান কত?

[Ctg.B'19]

- (a) -128 (b) $\frac{1}{3}$
- (c) 2
- (d) 128

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

Educationblog24.

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

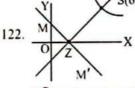
- $\frac{x^2}{256} \frac{y^2}{225} = 1$ একটি অধিবৃত্তের সমীকরণ।
 - [Ctg.B'19]
- 118. শীর্ষবিন্দুর স্থানান্ধ-(a) $(\pm 16, 0)$
- (b) $(\pm 15, 0)$
- (c) $(0, \pm 16)$
- (d) $(0, \pm 15)$
- 119. $\frac{x^2}{9} + \frac{y^2}{4} = 1$ উপবৃত্তের-

- (i) উৎকেন্দ্রিকতা $\frac{\sqrt{5}}{3}$ (ii) উপকেন্দ্রের স্থানান্ধ $(\pm\sqrt{5},0)$
- (iii) कृष्ठ अरकत मिर्घा = 4

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:


 $y^2 - 4y - 4x + 16 = 0$ একটি প্যারাবোলার সমীকরণ।

- 120. অক্ষরেখার সমীকরণ কোনটি?
- (b) y 2 = 0
- (a) x 3 = 0
- (c) x = 0
- (d) y = 0
- 121. $\frac{(x+2)^2}{3} + \frac{(y-1)^2}{4} = 1$ উপবৃত্তের-
- (i) কেন্দ্রের স্থানাঙ্ক (-2,1)(ii) কুদ্রাক্ষের দৈর্ঘ্য 6

 - (iii) একটি উপকেন্দ্রিক লম্বের সমীকরণ y = 2

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

উদ্দীপকের পরাবৃত্তের দিকাক্ষের সমীকরণ x + y - 2 = 0 হলে শীর্ষবিন্দুর স্থানাম্ব কত? [JB'19]

- (a)(2,0)
- (b)(4,2)
- (c)(2,4)
- (d)(0,2)

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

120. b 122. b 117. c 118. a 119. d 121. b 115. -116. a 112. d 113. b 111. d

111. $(\pm 4.0) \Rightarrow 16p - 16 \times 0 = 144 \Rightarrow p = 9$

112. $\frac{x^2}{16} - \frac{y^2}{9} = 1$; $e = \sqrt{1 + \frac{9}{16}} = \frac{5}{4}$

উপকেন্দ্র $\equiv (\pm ae, 0) \equiv (\pm 4 \times \frac{5}{4}, 0) \equiv (\pm 5, 0)$

114. $\frac{x^2}{4} - \frac{y^2}{9} = 1$; $e = \sqrt{\frac{4+9}{4}}$:: $e = \sqrt{\frac{13}{4}} = \frac{\sqrt{13}}{2}$

115. (সঠিক উত্তর নেই); এক্ষেরে অফরেখা প্রকৃতপক্ষে x অক্ষের ওপর গ্রন্থ। এখন b = 0 হলে (d) সঠিক, b ≠ 0 হলে (b) সঠিক।

- প্রশ্নে a ≠ 0 উল্লেখ থাকলেও, b সম্পর্কে কিছুই বলা নেই। 117. $\frac{1}{m} = c \Rightarrow \frac{1}{n} = c \cdot c = 2$
- 118. $(\pm a, 0) = (\pm 16,0)$

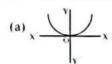
119. $e = \sqrt{1 - \frac{4}{9}} = \frac{\sqrt{5}}{3}$ ঃ উপকেন্দ্র $\equiv (\pm ae, 0)$ খা. $(\pm \sqrt{5}, 0)$:

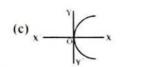
শুদ্র অন্দের দৈর্ঘ্য = 2 × 2 = 4 একক।

- 120. $(y-2)^2 = 4.1.(x-3)$ ∴ অক্ষের সমীকানণ, y-2=0
- 121. (季雪 (-2,1): 季野季 = 2√3

উপকেন্দ্রিক লড়ের সমীকরণ: $y - 1 = \frac{1}{2}, 2 \land y = 2$

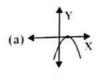
122. দিকাক সমীকরণ: x + y - 2 = 0 .. অফরেখা সমীকরণ: x - y = 6 - 4 = 2


Educationblog24.co


HSC প্রশ্নব্যাংক ২০২৫

- 123. $x^2 y^2 = 2$ অধিবৃত্তের ফোকাসদ্বয়ের মধ্যবর্তী দূরত্ব কোনটি?
 - [CB'19]

- (a) 2
- (b) $2\sqrt{2}$
- (c) 4
- (d) $4\sqrt{2}$
- $124. x^2 = 3y$ কনিকের লেখচিত্র কোনটি?
- [CB'19]



- (d) x 9 x
- [Din.B'19] $125. x^2 + 12x + 3y = 0$ পরাবৃত্তের শীর্ষবিন্দু-
 - (a) (-6, -12)
- (b) (6, 12)
- (c)(-6,12)
- (d)(6,-12)
- $126. y^2 = -2x$ পরাবৃত্তের-

- [All.B'18]
- (i) উপকেন্দ্রিক লম্বের সমীকরণ 2x = 1
- (ii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য 2 একক
- (iii) উপকেন্দ্রের স্থানাম্ক $\left(-\frac{1}{2},0\right)$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- $127. (x 1)^2 = -4y$ কনিকটির জন্য কোনটি সত্য? [All.B'18]

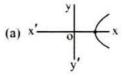
উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

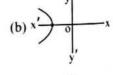
নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

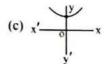
$$\frac{x^2}{3} - \frac{y^2}{2} = 1$$
 একটি কনিকের সমীকরণ।

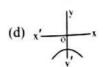
128. কনিকটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য নিচের কোনটি?

[All.B'18; SB'17


- (a) 9
- (b) $3\sqrt{2}$
- $(c)^{\frac{3}{8}}$
- (d) $\frac{4}{\sqrt{3}}$


Ctg.B'17


[Ctg.B'17]


নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

- 25x² 16y² + 400 = একটি অধিবৃত্তের সমীকরণ। 129. অধিবৃত্তটির শীর্ষবিন্দুদ্বয়ের স্থানাষ্ক কোনটি? IDB, RB'I
 - (a) $(\pm, 0)$
- (b) $(0, \pm 2)$
- $(c)(0,\pm 5)$
- (d) $(\pm 5, 0)$
- $3x^2 + 2y^2 = 6$ কনিকের উৎকেন্দ্রিকতা $\frac{1}{\sqrt{3}}$ হলে উপকেন্দ্র দুইটির স্থানাঙ্ক কত?
 - (a) $\left(\pm \frac{2}{\sqrt{3}}, 0\right)$
- (b) $\left(\pm\sqrt{\frac{2}{3}},0\right)$
- (c) $(0, \pm \sqrt{3})$
- $(d)(0,\pm 1)$
- 131. কেন্দ্ৰবিহীন কনিক কোনটি?
- (b) পরাবৃত্ত
- (a) वृख (c) উপবৃত্ত
- (d) অধিবৃত্ত
- 132. $x^2 = -4y$ পরাবৃত্তের উপকেন্দ্রের স্থানান্ধ-
 - (b) (0,-1)
 - (a)(0,1)
- (d)(-1,0)
- (c)(1,0)
- $133. \ y^2 = -4ax, a > 0$ পরাবৃত্তের লেখ চিত্র কোনটি?

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

		125 -	126 -	127					
23. c	124. a	125. c	120. C	127. a	128. d	129. c	130 d	131 h	132. b
-							150. u	131.0	132.0

25. $x^2 + 12x + 36 = -3y + 36 \Rightarrow (x+6)^2 = -3 \cdot (y-12)$: শীর্ঘবিন্দু (-6,12)

 $126. y^2 = 4\left(-\frac{1}{2}\right)x : a = \frac{1}{2}$

উপকেন্দ্রিক লম্বের সমীকরণ $x = -\frac{1}{2}$: 2x = -1

উপকেন্দ্রিক লম্বের দৈর্ঘ্য = |4a|=2 \therefore উপকেন্দ্র $\left(-\frac{1}{2},0\right)$

- 127. শীর্ষ (1, 0) বিন্দুতে
- 128. উপকেন্দ্রিক লম্বের দৈর্ঘ্য $\frac{2b^2}{a} = \frac{2 \times 2}{\sqrt{3}} = \frac{4}{\sqrt{3}}$
- 129. $16y^2 25x^2 = 400 \Rightarrow \frac{y^2}{25} \frac{x^2}{16} = 1$ b = 5 এবং a = 4: गीर्यविन्तु (0, ±5)

- 130. $3x^2 + 2y^2 = 6 : \frac{x^2}{2} + \frac{y^2}{3} = 1 : b = \sqrt{3}, e = \sqrt{1 \frac{2}{3}} = \frac{1}{\sqrt{3}}$ \cdot উপকেন্দ্র দুইটির স্থানান্ধ = $(0, \pm be) = (0, \pm \sqrt{3} \times \frac{1}{\sqrt{3}}) = (0, \pm 1)$
- $132. \ x^2 = -4y$ কে $x^2 = 4ay$ তুলনা করে, 4a = -4 a = -1∴ স্থানান্ধ (0, −1)
- 133. (সঠিক উত্তর নেই); x'_

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$x^2 = -y$$
 একটি কনিক।

্যু ক্রিকটির দিকাক্ষের সমীকরণ কোনটি?

[SB, BB'17]

$$\frac{1}{(a)} \frac{3}{4x} - 1 = 0$$

(b)
$$4x + 1 = 0$$

(a)
$$4x$$

(c) $4y - 1 = 0$

(d)
$$4y + 1 = 0$$

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$9x^2 + 4y^2 = 324$$
 কনিকের সমীকরণ।

_{135.} উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত?

[BB'17]

(b) 3

(d) 27

 $\frac{x^2}{136} - \frac{y^2}{a^2} = 1$ সমীকরণ (-5, -4) বিন্দুগামী, a^2 এর মান

[BB'17]

(a) 9

(b) 3 (c) $\frac{1}{3}$ (d) $\frac{1}{9}$

 $_{137.}\frac{y^{2}}{4}-\frac{x^{2}}{5}=1$ অধিবৃত্তের ক্ষেত্রে–

[JB'17]

(i) আড় অক্ষের দৈর্ঘ্য 4 একক

(ii) শীর্ষবিন্দুর স্থানাম্ব $(\pm\sqrt{5},0)$ (iii) উৎকেন্দ্রিকতা $\frac{3}{5}$

নিচের কোনটি সঠিক?

(a) i, ii

(b) i, iii

(c) ii, iii

(d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$5x^2 + 7y^2 = 1$$

138. উপবৃত্তটির বৃহৎ অক্ষের দৈর্ঘ্য কত?

[JB'17]

(a) $\frac{2}{\sqrt{5}}$ (b) $\frac{2}{5}$ (c) $\frac{2}{\sqrt{7}}$ (d) $\frac{2}{7}$

$139. \ 3x^2 = 12 - 4y^2$ সমীকরণটি কী নির্দেশ করে?

(a) বৃত্তের সমীকরণ

(b) উপবৃত্তের সমীকরণ

(c) পরাবৃত্তের সমীকরণ (d) অধিবৃত্তের সমীকরণ

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$x^2 = 4(1 - y)$$
একটি কনিক।

140. কনিকটির উৎকেন্দ্রিকতা-

[CB'17]

(a) 0

(b) 0 < e < 1

(c) e = 1

(d) e > 1

141. কনিকটির উপকেন্দ্রের স্থানাঙ্ক -

[CB'17]

(a)(0,0)

(b) (0,-1)

(c)(0,1)

(d)(0,2)

142. $y^2 - 2(x + 3)^2 = 18$ কনিকের নিয়ামকদ্বয়ের দূরত্ব [Din.B'17]

কোনটি?

(d) $2\sqrt{3}$

(b) $4\sqrt{2}$ (c) $3\sqrt{2}$ (a) $4\sqrt{3}$

143. 3y² - 30y + 5x + 55 = 0 কনিকের উপকেন্দ্রের স্থানাম্ব [Din.B'17]

(a) $\left(-\frac{53}{12},5\right)$

(b) $\left(-\frac{43}{12},5\right)$

(c) $\left(\frac{43}{12}, 5\right)$

(d) $\left(\frac{53}{12}, 5\right)$

144. $\frac{(x-3)^2}{3} + \frac{(y+1)^2}{4} = 1$ উপবৃত্তের–

[Din.B'17]

(i) শীর্ষের একটি স্থানাম্ক (3,1) (ii) ক্ষুদ্রাক্ষের দৈর্ঘ্য 6

(iii) একটি উপকেন্দ্রিক লম্বের সমীকরণ y + 2 = 0

নিচের কোনটি সঠিক?

(a) i, ii

(b) ii, iii

(c) i, iii

(d) i, ii, iii

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

124 -	125 0	126 2	137. b	138. a	139. b	140. c	141. a	142. a	143. c	144. c
1 134. C	133.0	130. a	151.0	THE STATE OF						

134.
$$x^2 = -y$$
, $x^2 = 4ay$ সাথে তুলনা করে। $4a = -1$ $a = -\frac{1}{4}$

: নিয়ামকরেখার সমীকরণ $y - \frac{1}{4} = 0$: 4y - 1 = 0

135
$$\frac{x^2}{36} + \frac{y^2}{81} = 1$$
 : $a = 6$, $b = 9$; $a < b$

া শামের দৈর্ঘ্য =
$$2\frac{a^2}{b} = 2 \times \frac{36}{9} = 8$$

$$138.$$
 .: বৃহৎ অক্ষের দৈর্ঘ্য = $2 \times \sqrt{\frac{1}{5}} = \frac{2}{\sqrt{5}}$

139.
$$3x^2 + 4y^2 = 12 \Rightarrow \frac{x^2}{4} + \frac{y^2}{3} = 1$$

$$140. \ \chi^2 = -4(y-1)$$
 পরাবৃত্তের সমীকরণ।

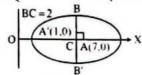
$$|41|_{x^2} = 4(1-y) = -4.1.(y-1)$$
 : উপকেন্দ্র $(0,0)$

142.
$$y^2 - 2(x+3)^2 = 18$$
 ; $\frac{y^2}{18} - \frac{(x+3)^2}{9} = 1$:: $a^2 = 9$, $b^2 = 18$
:: নিয়ামকদ্ববের দূরত্ব = $\frac{2b^2}{\sqrt{a^2+b^2}} = 4\sqrt{3}$

143.
$$3y^2 - 30y + 5x + 55 = 0 \Rightarrow y^2 - 10y + \frac{5}{3}x + \frac{55}{3} = 0$$

$$\Rightarrow y^2 - 2 \times 5 \times y + 25 + \frac{5x}{3} - \frac{20}{3} = 0 \Rightarrow (y - 5)^2 = \frac{20}{3} - \frac{5x}{3}$$

$$\Rightarrow (y-5)^2 = -\frac{5}{3}(x-4) :: 4a = \frac{-5}{3} \Rightarrow a = \frac{-5}{12}$$
:: উপকেন্দ্র = $\left(\frac{-5}{12} + 4.5\right) \equiv \left(\frac{43}{12}, 5\right)$


(iii) উপকেন্দ্রিক লম্বের সমীকরণ,
$$y + 1 = \pm \frac{21}{2}$$

$$\Rightarrow$$
 y + 1 = ±1 : y + 2 = 0 অথবা y = 0

বিভিন্ন কলেজের টেস্ট পরীক্ষার MCQ প্রশ্ন

145. চিত্রানুসারে, উপবৃত্তির সমীকরণ- (যখন C উপবৃত্তির কেন্দ্র)

[ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা]

(a)
$$\frac{(x+8)^2}{9} + \frac{y^2}{4} = 1$$

(b)
$$\frac{(x-4)^2}{9} + \frac{y^2}{4} = 1$$

(c)
$$\frac{(x-4)^2}{4} + \frac{y^2}{9} = 1$$
 (d) $\frac{x^2}{4} + \frac{(y-4)^2}{9} = 1$

(d)
$$\frac{x^2}{4} + \frac{(y-4)^2}{9} = 1$$

146. যদি কোনো উপবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য তার বৃহৎ অক্ষের এক তৃতীয়াংশ হয়, তবে উপবৃত্তটির উৎকেন্দ্রিকতা-

[আদমজী ক্যান্টনমেন্ট কলেজ, ঢাকা]

(a)
$$\sqrt{\frac{3}{2}}$$
 (b) $\sqrt{\frac{2}{3}}$ (c) $\sqrt{\frac{3}{5}}$ (d) $\sqrt{\frac{5}{3}}$

147. $\frac{(x+2)^2}{3} + \frac{(y-1)^2}{4} = 1$ উপবৃত্তের- মাইলস্টোন কলেজ, ঢাকা]

- (i) কেন্দ্রের স্থানান্ধ (-2, 1)
- (ii) কুদ্র অক্ষের দৈর্ঘ্য 6
- (iii) একটি উপকেন্দ্রিক লম্বের সমীকরণ y = 2

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: স্থানাঙ্কের অক্ষরয়কে উপবৃত্তের অক্ষ ধরে ক্ষুদ্রাক্ষের দৈর্ঘ্য 2 একক এবং উৎকেন্দ্রিকতা টু

- 148. বৃহৎ অক্ষের দৈর্ঘ্য কত একক? [রাজশাহী সরকারি মহিলা কলেজ]
 - (a) √5
- $(b) \frac{3}{\sqrt{5}} \qquad (c) \frac{2}{\sqrt{5}}$
- $(d)\frac{1}{\sqrt{\epsilon}}$

149. উপবৃত্তের সমীকরণ নিচের কোনটি?

|রাজশাহী সরকারি মহিলা কলে_জ

(a)
$$3x^2 + 5y^2 = 5$$
 (b) $4x^2 + 3y^2 = 5$

(b)
$$4x^2 + 3y^2 = 5$$

(c)
$$2x^2 + 3y^2 = 5$$

(d)
$$4x^2 + 5y^2 = 5$$

- 150. y = 2x + 5 রেখাটি $y^2 = 4ax$ কে স্পর্শ করলে উপকেন্দ্রিত্ত লম্বের দৈর্ঘ্য কত হবে? |বেপজা পাবলিক স্কুল ও কলেজ, চট্টগ্রামা
- (b) 10
- (c) 20
- 151. আতশ কাঁচের সাহায্যে সূর্য রশ্মিকে কেন্দ্রীভূত করে কোনো বস্তুকে উত্তপ্ত করা বা আগুন ধরানো যায় কোন কনিকের সাহায্যে? |বাংলাদেশ মহিলা সমিতি বালিকা উচ্চ বিদ্যালয় ৪ কলেজ, চট্টগ্রাম
 - (a) অধিবৃত্ত
- (b) উপবৃত্ত (c) পরাবৃত্ত
- 152. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ উপবৃত্তের সহায়ক বৃত্তের সমীকরণ কোনটি?

[বাংলাদেশ মহিলা সমিতি বালিকা উচ্চ বিদ্যালয় ও কলেজ, চট্টগ্রাম]

- (b) $x^2 + y^2 = a^2$
- $(d) x^2 + y^2 = b$

 $y = a^2$ (c) $x^2 - y^2 = b^2$ নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

9x² − 16y² − 144 = 0 একটি অধিবৃত্ত।

- 153. অধিবৃত্তটির শীর্ষবিন্দুর স্থানাঙ্ক কোনটি? [নটর ডেম কলেজ, ঢাকা]
 - (a) $(\pm 4, 0)$
- (b) $(\pm 5, 0)$
- (c) $(0, \pm 4)$
- $(d)(0,\pm 5)$
- 154. অধিবৃত্তির অসীমতটের সমীকরণ কোনটি?

[নটর ডেম কলেজ, ঢাকা]

- (a) $2x = \pm 3y$
- (b) $3y = \pm 2x$
- (c) $3x = \pm 4y$
- (d) $4x = \pm 3y$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

148. a 149. d 147. c 146. b 150. d 154. c 145. b 152. b 153. a

145. A'(1,0), A(7,0), C $\equiv \left(\frac{1+7}{2},0\right) \equiv (4,0)$ (4.0), AA' = 7 - 1 = 6 $BC = 2, CA = \frac{6}{2} = 3$

: উপবৃত্তের সমীকরণ: $\frac{(x-4)^2}{3^2} + \frac{y^2}{2^2} = 1$ বা, $\frac{(x-4)^2}{9} + \frac{y^2}{4} = 1$

- 146. উপকেন্দ্রিক লম্ব = 262 [বৃহদাক্ষ x অক্ষের সমান্তরাল ধরে] বৃহৎ অক্ষ = 2a প্রস্থাতে, $\frac{2b^2}{a} = \frac{1}{3} \cdot 2a = \frac{2a}{3} \Rightarrow 2b^2 \times 3 = 2a^2 \Rightarrow 3b^2 = a^2 \Rightarrow \frac{b^2}{a^2} = \frac{1}{3}$ উৎকেন্দ্রিকতা, $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \left(\frac{1}{3}\right)} = \sqrt{\frac{2}{3}}$
- 147. $\frac{(x+2)^2}{3} + \frac{(y-1)^2}{4} = 1 \dots (i); \ (\Phi \mathcal{B} \equiv (-2,1)$

ষ্ণুদ্র অক 2a = 2√3; উপকেন্দ্রিক সম্বের সমীকরণ, y – 1 = ±be $\Rightarrow y - 1 = \pm b \sqrt{1 - \frac{a^2}{b^2}} = \pm 2 \sqrt{1 - \frac{3}{4}} = \pm 2 \sqrt{\frac{1}{4}}$ $\Rightarrow y - 1 = \pm 1 \Rightarrow y = \pm 1 + 1 = 2, 0 \Rightarrow y = 2$

148. ऋॴक = 2b = 2 ⇒ b = 1; $e = \frac{1}{\sqrt{5}} = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{1}{a^2}}$ $\Rightarrow \frac{1}{5} = \frac{a^2 - 1}{a^2} \Rightarrow 5a^2 - 5 = a^2 \Rightarrow 4a^2 = 5 \Rightarrow a = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2}$

বৃহদাক্ষ, $2a = 2 \cdot \frac{\sqrt{5}}{3} = \sqrt{5}$

- 149. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{\frac{5}{4}} + \frac{y^2}{1} = 1$ b = 1 $a = \frac{\sqrt{5}}{2}$ $\Rightarrow 4x^2 + 5y^2 = 5$
- 150. $y^2 = 4ax$ পরাবৃত্তকে y = mx + c স্পর্শ করলে, $c = \frac{a}{m}$ প্রশ্নমতে, $5=\frac{a}{2}\Rightarrow a=10$, উপকেন্দ্রিক লম্ব = |4a| = 40
- 152. প্রদত্ত option গুলোর মধ্যে (b) x² + y² = a² একমাত্র বৃত্তের সমীকরণ।
- 153. $9x^2 16y^2 144 = 0 \Rightarrow \frac{x^2}{16} \frac{y^2}{9} = 144 \Rightarrow \frac{x^2}{4^2} \frac{y^3}{3^2} = 12^2$ শীর্যবিন্দু (±4.0)
- 154. $y = \pm \frac{b}{4}x \Rightarrow \pm \frac{3}{4}x$ b = 3; a = 4 $\Rightarrow 4y = \pm 3x \Rightarrow 3x = \pm 4y$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

সাজেশনভিত্তিক মডেল টেস্ট: অধ্যায়-০৬

পূৰ্ণমান: ৫০

MCQ

সময়: ৫০ মিনিট

- 01. একটি পরাবৃত্তের শীর্ষবিন্দু (0,2), অক্ষরেখা y অক্ষের সমান্তরাল এবং যা (2, 5) বিন্দু দিয়ে অতিক্রম করে, তার সমীকরণ হলো-

 - (a) $4x^2 = 3(y 2)$ (b) $3x^2 = 12(y 2)$
 - (c) $3x^2 = 4(y-2)$
- (d) $2x^2 = 3(y-2)$
- 02. কনিক বিভিন্ন প্রকার হতে পারে যেমন-
 - (i) উপবৃত্ত
- (ii) অধিবৃত্ত (iii) যুগল সরলরেখা

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

 $x^2 + 3y^2 = 4$ একটি উপবৃত্তের সমীকরণ নির্দেশ করে।

- 03. উপবৃত্তের দিকাক্ষের সমীকরণ কোনটি?
 - (a) $x = \pm \frac{2\sqrt{3}}{\sqrt{2}}$
- (b) $y = \pm \frac{2\sqrt{3}}{3}$
- (c) $x = \pm \frac{2\sqrt{2}}{\sqrt{3}}$
- (d) $y = \pm \frac{2\sqrt{2}}{\sqrt{3}}$
- 04. y² = 32x পরাবৃত্তের উপরিস্থিত যে বিন্দুর উপকেন্দ্রিক দূরত্ব 12 ঐ বিন্দুর ভুজ কত?
 - (a) -4
- (b) -8
- (c) 4
- (d) 8

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$5x^2 + 4y^2 = 20$$

- 05. $\frac{x^2}{9} \frac{y^2}{4} = 1$ অধিবৃত্ত—
 - (i) আড় অক্ষ x অক্ষ, অনুবন্ধী অক্ষ y অক্ষ
 - (ii) উপকেন্দ্রিক লম্বের দৈর্ঘ্য 9 (iii) শীর্ষ (±3,0)

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 06. $\frac{y^2}{2} x^2 = 1$ একটি অধিবৃত্তের সমীকরণ —
- (i) অধিবৃত্তের শীর্ষবিন্দু $(0, \pm \sqrt{2})$
 - (ii) উপকেন্দ্র (0, ±√3)
 - (iii) দিকাক্ষদ্বয়ের সমীকরণ $x = \pm \frac{2\sqrt{2}}{\sqrt{2}}$

নিচের কোনটি সঠিক?

- (a) i. ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- $07. x^2 y^2 = 2$ অধিবৃত্তের—
 - (i) शीर्यिवन्पू $(0, \pm \sqrt{2})$
- (ii) উৎকেন্দ্রিকতা √2
- (iii) আড় অক্ষের দৈর্ঘ্য 2√2

নিচের কোনটি সঠিক?

- (a) i, ii
- (c) ii, iii
- (d) i, ii, iii

- $(x-4)^2 = -4(y-5)$ পরাবৃত্তের সমীকরণ-
 - (i) এর শীর্ষবিন্দু (4,5)
 - (ii) অক্ষের সমীকরণ x 4 = 0
 - (iii) উপকেন্দ্রিক লম্বের সমীকরণ y 4 = 0

নিচের কোনটি সঠিক?

- (b) ii, iii
- (c) i. iii (d) i, ii, iii
- নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:
- x = pt2 ও y = 2pt পরামিতিক সমীকরণ।
- 09. সমীকরণটি কোন কনিককে নির্দেশ করে?
 - (a) বৃত্ত

- (b) উপবৃত্ত (c) পরাবৃত্ত (d) অধিবৃত্ত
- p এর মান ½ হলে উপকেন্দ্রিক লম্বের সমীকরণ হবে-
 - (a) 2x 1 = 0
- (b) 2x + 1 = 0
- (c) x 2 = 0
- (d) x + 2 = 0

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

 $\frac{x^2}{a^2} + \frac{y^2}{25} = 1$ একটি উপবৃত্তের সমীকরণ।

- 11. উপবৃত্তটি (6,4) বিন্দুগামী হলে a এর মান কত?
- (b) 100
- (c) 3
- 12. a = 6 হলে উপবৃত্তির উপকেন্দ্রিক লম্বের দৈর্ঘ্য কোনটি?
 - (a) ⁵ একক
- (b) ¹² একক
- (c) ²⁵ একক
- (d) ⁷² একক
- 13. $\frac{y^2}{3} \frac{x^2}{4} = 1$ অধিবৃত্তের অসীমতটের সমীকরণ—
 - (a) $2y = \pm \sqrt{3} x$
- (b) $\sqrt{3}y = \pm 2x$
- (c) $3y = \pm 4x$
- (d) $4y = \pm 3x$
- x² = 6ky পরাবৃত্তটি (9, 2) বিন্দুগামী হলে, পরাবৃত্তটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত?
 - (a) $\frac{81}{3}$
- (b) $\frac{81}{8}$
- (c) $\frac{27}{4}$ (d) $\frac{27}{3}$
- 15. y = 3x + 1 রেখাটি $y^2 = 4ax$ পরাবৃত্তের স্পর্শক হলে পরাবৃত্তটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য কোনটি?
 - (a) $\frac{4}{\sqrt{3}}$
- (b) 4
- (c) 3
- (d) 12
- $16. 4x^2 5y^2 = 20$ অধিবৃত্তের—
 - (i) নিয়ামক রেখার সমীকরণ $3x = \pm 5$
 - (ii) কেন্দ্রের স্থানাম্ব (0,0)
 - (iii) অনুবন্ধী অক্ষের সমীকরণ y = 0

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

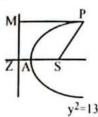
ducat निष्णु शिष्ट विश्वाद विश्वाद कि

- নিচের কোনটি অধিবৃত্তের আদর্শ সমীকরণ-
 - (a) $\frac{x^2}{x^2} \frac{y^2}{y^2} = 1$
- (b) $\frac{x^2}{b^2} \frac{y^2}{a^2} = 1$
- (c) $\frac{y^2}{x^2} \frac{x^2}{x^2} = 1$
- (d) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 18. $x^2 + 4x + 2y = 0$ কনিকটির শীর্ষবিন্দুর স্থানাম্ভ কত?
 - (a)(0,0)
- (b) (-2,0) (c) (0,2)
- (d)(-2,2)
- (±3,0) উপকেন্দ্র এবং ¹/₃ উৎকেন্দ্রিকতা বিশিষ্ট উপবৃত্তের নিয়ামক রেখার সমীকরণ কোনটি?
 - (a) $x = \pm 9$
- (b) $x = \pm 27$
- (c) $x = \pm 3$
- (d) $x = \pm 8$
- 20. $\frac{y^2}{h^2} \frac{x^2}{h^2} = 1$ অধিবৃত্তের পরামিতিক সমীকরণ কোনটি?
 - (a) $x = a \tan \theta, y = b \sec \theta$
 - (b) $x = a \sec \theta, y = b \tan \theta$
 - (c) $x = a \cos\theta, y = b \sin\theta$
 - (d) $x = a \cos\theta, y = b \tan\theta$
- 21. $y^2 6x + 4y + 11 = 0$ পরাবৃত্তের অক্ষের সমীকরণ কোনটি?
 - (a) y = 0
- (b) y + 2 = 0
- (c) 6x 7 = 0
- (d) x = 0
- 22. $x^2 \frac{y^2}{4} = 1$ অধিবৃত্তের নিয়ামকের পাদবিন্দু দুইটির স্থানান্ধ কত?
 - (a) $\left(\pm\frac{1}{2},0\right)$
- (b) $(0, \pm \frac{2}{\sqrt{3}})$
- (c) $\left(\pm\frac{1}{\sqrt{5}},0\right)$
- (d) $\left(0,\pm\frac{2}{\sqrt{\epsilon}}\right)$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: y = mx + c রেখাটি $y^2 = 4ax$ পরাবৃত্তের স্পর্শক।

- 23. স্পর্শবিন্দুর স্থানাম্ব-
- (a) $\left(\frac{2a}{m}, \frac{a}{m^2}\right)$ (b) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ (c) $\left(\frac{2a}{m^2}, \frac{a}{m}\right)$ (d) $\left(\frac{a}{m}, \frac{2a}{m^2}\right)$
- 24. আয়ত অধিবৃত্তের উৎকেন্দ্রিকতা নিচের কোনটি?
- (b) $\frac{1}{\sqrt{3}}$
- (c) √2
- 25. $\frac{y^2}{h^2} \frac{x^2}{a^2} = 1$ অধিবৃত্তের নিয়ামক রেখার সমীকরণ কোনটি?
 - (a) $x = \pm \frac{a}{2}$
- (b) $x = \pm \frac{1}{2}$
- (c) $y = \pm \frac{b}{1}$
- (d) $y = \pm \frac{\pi}{2}$

নিচের উদ্দীপকের আশোকে পরবর্তী প্রশ্নের উত্তর দাও:


- 3y² = 27x একটি পরাবৃত্ত।
- 26. (4,6) বিন্দুতে স্পর্শকের সমীকরণ হবে—
 - (a) 3x 4y 12 = 0
- (b) 3x 4y = 0
- (c) 3x 4y + 12 = 0
- (d) 4x + 3y = 0
- 27. $4y^2 5x^2 = 20$ অধিবৃত্তের—
 - (i) शीर्खंत्र झानाव (0,0)
 - (ii) অনুবন্ধী অক্ষের সমীকরণ, y = 0
 - (iii) নিয়ামকের সমীকরণ 3y ± 5 = 0

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দ্বি y² = 8x + 5 একটি পরাবৃত্ত।

- 28. পরাবৃত্ততির উপকেন্দ্রিক লম্বের সমীকরণ-
 - (a) 8x 11 = 0
- (b) 8x 21 = 0
- (c) 8x + 11 = 0
- (d) 8x + 21 = 0
- 29. y² = 4x + 8y পরাবৃত্তটির শীর্যবিন্দ্-
 - (a)(1,2)
- (b) (4, -4)
- (c) (2, 4)
- (d)(-4,4)
- 30. (3,4) উপকেন্দ্র এবং (0,0) শীর্যবিশিষ্ট পরাবৃত্তের উপরেজ্ব नास्त्रत देनधा-
 - (a) 12
- (b) 16
- (c) 20
- (d) 25
- 31. চিত্রে অঙ্কিত পরাবৃত্তের AS =?

- (a) 13
- (b) $\frac{13}{2}$ (c) $\frac{13}{4}$

- 32. আড় অক্ষের দৈর্ঘ্য ৪ এবং (±2,0) নিয়ামকের পাদবিদু বিশ্ব অধিবৃত্তের উৎকেন্দ্রিকতা কত?
 - (a) 3
- (b) $\frac{1}{2}$
- (c) 2
- $(d)^{\frac{1}{2}}$
- 33. $y^2 = 16x$ পরাবৃত্তের শীর্ষবিন্দু A এবং উপকেন্দ্রিক নম্নে প্রান্তবিন্দুদ্বয় P, Q হলে ΔΑΡQ এর ক্ষেত্রফল কত বর্গ এক্*র*
 - (a) 16
- (b) 32
- (c) 64
- (d) 25
- 34. $\frac{(x-1)^2}{4} \frac{(y-1)^2}{1} = 1$ এর চিত্ররূপ কোনটি?

- $35. \frac{1}{2}x^2 = 4y^2 + 1$ অধিবৃত্তের উৎকেন্দ্রিক লম্বের দৈর্ঘা-(a) $\frac{2}{\sqrt{3}}$ (b) $\frac{1}{2\sqrt{2}}$ (c) $\frac{3}{2}$

- 36. একটি পরাবৃত্তের নিয়ামকরেখার সমীকরণ x-1=0 a
 - শীর্যবিন্দু (3,0) হলে পরাবৃত্তটির সমীকরণ-
 - (a) $y^2 = 4(x-3)$
- (b) $y^2 = 8(x-3)$
- (c) $y^2 = 4(x+3)$
- (d) $y^2 = 8(x+3)$

$37. \frac{x^2}{x^2} - \frac{y^2}{h^2} = 1$ 43—

- (i) (x_1, y_1) বিন্দুতে স্পর্শকের সমীকরণ $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$
- (ii) (x1, y1) বিন্দুতে অভিলম্বের সমীকরণ

$$\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$$

- (iii) y = mx + c রেখা স্পর্শক হওয়ার শর্ত
- $c = \sqrt{a^2 m^2 + b^2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: $9x^2 - 16y^2 - 18x - 64y - 199 = 0$

- 38. কনিকটির কেন্দ্র-
 - (a) (-2, 1)
- (b) (1, -2)
- (c)(2,-1)
- (d)(1,2)
- 39 অধিবৃত্তের সমীকরণের—
 - (i) উপকেন্দ্র দুইটি সর্বদাই বৃহদাক্ষের উপর অবস্থিত
 - (ii) আদর্শ আকার $\frac{x^2}{h^2} \frac{y^2}{h^2} = 1$
 - (iii) সাধারণ আকার, $(a^2 + b^2)\{(x \alpha)^2 + (y \beta^2)\} =$ $e^2(ax + by + c)^2$

নিচের কোনটি সঠিক?

- (b) ii, iii (c) ii (d) i, ii, iii (a) i, iii নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: y2 = 12x একটি পরাবৃত্ত এবং x + 2y - 1 = 0 একটি
- রেখা। 40. পরাবৃত্তের একটি স্পর্শকের x + 2y - 1 = 0 রেখার উপর লম্ব
 - (a) 4x 2y + 3 = 0

নিচের কোনটি?

- (b) 3x + 2y + 4 = 0
- (c) 2x + 2y + 1 = 0
- (d) 4x + 2y 3 = 0
- 41. পরাবৃত্তটির-
 - (i) উপকেন্দ্রের স্থানাম্ব (3, 0)
 - (ii) আকার x-অক্ষের সাপেক্ষে প্রতিসম
 - (iii) আকার y-অক্ষের সাপেক্ষে প্রতিসম

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

Educationblog24.com

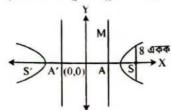
উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

- 42. y² = 4x পরাবৃত্তের মূলবিন্দৃতে স্পর্শকের ঢাল কত?
 - (a) 1
- (b) 1
- (c) co
- কোন উপবৃত্তের উপকেন্দ্রিক লম্ব এর বৃহদাক্ষের অর্থেক। এর উৎকেন্দ্রিকতা কত?
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{\sqrt{2}}$
- (c) 2
- (d) $\sqrt{2}$
- 44. a ও b এর মান কত হলে y = ax2 + b পরাবৃত্তটি (0,1) বিন্দু দিয়ে যাবে ও (1,0) বিন্দুতে উহার স্পর্শকের ঢাল 6 হবে?
- (b) 3,1
- (c) 1, -1
- 45. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b)$ উপবৃত্তের নিয়ামকের সমীকরণ
 - (a) $x = \frac{a}{1}$
- (c) $x = \pm \frac{a}{c}$
- 46. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ কনিকটি-
 - (i) অধিবৃত্ত যখন a = −b
- (ii) উপবৃত্ত যখন a ≠ b
- (iii) বৃত্ত যখন a = b

নিচের কোনটি সঠিক?

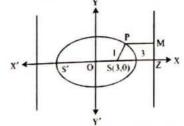
- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- 47. কোনো উপবৃত্তের বৃহৎ অক্ষ ক্ষুদ্র অক্ষের চারগুণ হলে e =?
 - (a) $\frac{3}{4}$
- (c) $\frac{\sqrt{15}}{4}$
- $48. y^2 = 4x$ এবং $x^2 = 4y$ উভয় পরাবৃত্তকে স্পর্শ করে এরূপ সরলরেখা-
 - (a) y + x + 1 = 0
- (b) y x + 1 = 0
- (c) y x 1 = 0
- (d) y + x 1 = 0
- B বিন্দু (y − 2)² = 4(x + 1) এর উপর অবস্থিত হলে, B এর স্থানাম্ব কোনটি?
 - (a) (4,0)
- (b)(0,4)
- (c)(1,2)
- (d)(1,-2)
- 50. y² = 16x পরাবৃত্তের কোনো বিন্দু থেকে তার উপকেন্দ্রের দূরতু 6 হলে ঐ বিন্দুর স্থানাম্ক কত?
 - (a) $(2, \pm 4\sqrt{2})$
- (b) $(2, 4\sqrt{2})$
- (c) $(2, -4\sqrt{2})$
- (d) $(4\sqrt{2}, \pm 2)$

পূৰ্ণমান: ৫০


CQ

সময়: ২:৩৫ মিনিট

(যেকোনো পাঁচটি প্রশ্নের উত্তর দাও:)


- 01. $y^2 = 4ax$ একটি পরাবৃত্তের সমীকরণ।
 - (ক) একটি সরল চিত্রের সাহায্যে পরাবৃত্ত উপস্থাপন কর।
 - (খ) In = am² হয় তবে দেখাও যে, lx + my + n = 0 রেখা পরাবত্তিকৈ স্পর্ণ করে।
 - (গ) a = 4 এবং কোন বিন্দুর উপকেন্দ্রিক দূরত্ব 6 হলে ঐ विन्पृत झानाझ निर्पेश कत।
- 02. $Px^2 + 25y^2 = 25P$ একটি উপবৃত্তের সমীকরণ এবং ইহা (4,6) বিন্দুগামী।
 - (Ф) y = mx + c, y² = 4ax পরাবৃত্তকে স্পর্শ করার শর্ত লেখ। ?
 - (খ) উপবৃত্তটি (4,6) বিন্দুগামী হলে এর অক্ষরয়ের দৈর্ঘ্য নির্ণয়
 - (গ) P = 16 হলে প্রমাণ কর যে, একটি উপকেন্দ্র এবং অনুরূপ নিয়ামক রেখার মধ্যবতী দুরতু 16 ।

একটি অধিবৃত্তের কেন্দ্র মূল বিন্দৃতে অবস্থিত।

- (ক) কোন অধিবৃত্তের আড় ও অনুবন্ধী অক্ষের দৈর্ঘ্য যথাক্রমে 8 এবং 10 একক হলে উৎকেন্দ্রিকতা নির্ণয় কর।
- (খ) উদ্দীপকের আড় অক্ষ x অক্ষ বরাবর এবং উৎকেন্দ্রিকতা 3 হলে অধিবৃত্তের সমীকরণ নির্ণয় কর।
- (গ) উদ্দীপকের আড় অক্ষ y অক্ষ বরাবর এবং যা (2,3) ও
 (1,-2) বিন্দুগামী হলে অধিবৃত্তের সমীকরণ নির্ণয় কর। 4
- 04. $\frac{x^2}{p^2} + \frac{y^2}{5^2} = 1$ একটি কনিকের সমীকরণ।
 - (ক) উৎকেন্দ্রিকতা e = 2k + 3 হলে k এর উপর কি শর্ত আরোপ করলে কনিকটি উপবৃত্ত হবে। 2
 - (খ) উদ্দীপকে উল্লিখিত কনিকটি (6,4) বিন্দুগামী উপবৃত্ত হলে উপকেন্দ্রের স্থানাঙ্ক নির্ণয় কর।
 - (গ) একটি অধিবৃত্তের অনুবন্ধী অক্ষের দৈর্ঘ্য 24 এবং উপকেন্দ্রদ্বয় $(0,\pm 13)$ হলে দেখাও যে, $p^2=-144$ μ 4
- 05. $4x^2 + Py^2 = 80 \cdots (i)$ $5x^2 - 4y^2 = 20 \cdots (ii)$
 - ক) উৎকেন্দ্রিকতা e এর মানের উপর কনিকের আকৃতি নির্ভর
 করে। ব্যাখ্যা কর।
 - (খ) (i) উপবৃত্তটি (0,±4) বিন্দুগামী হলে P নির্ণয় করে উৎকেন্দ্রিকতা নির্ণয় কর। 4
 - (গ) (ii) এর উৎকেন্দ্রিকতা নির্ণয় করে দেখাও যে, কনিকটি অধিবৃত্ত নির্দেশ করে।
- 06. একটি পরাবৃত্তের উপকেন্দ্র (2,5) এবং x = 4 রেখাটি পরাবৃত্তের শীর্ষবিন্দুতে অক্ষের উপর লম্ব।
 - (क) 7x² + 16y² = 112 উপবৃত্তের উপকেন্দ্রের স্থানান্ধ নির্ণয়
 কর।
 - (খ) উদ্দীপকের পরাবৃত্তটির সমীকরণ নির্ণয় কর।
 - পরাবৃত্তটির শীর্যবিন্দু ও উপকেন্দ্রিক লম্বের দৈর্ঘ্য এবং
 অক্ষরেখা ও উপকেন্দ্রিক লম্বের সমীকরণ নির্ণয় কর।

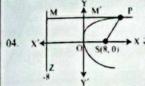
- 07. একটি পরাবৃত্তের সমীকরণ $(y-4)^2=5(x-2)$ যার জঙ্ক $_{\chi}$ অক্ষের সমান্তরাল।
 - কে) পরাবৃত্তের দিকাক্ষের সমীকরণ নির্ণয় কর যার উপকের (-6, -3) এবং শীর্ষবিন্দু (-2, 1) বিন্দুতে অবস্থিত। 2
 - (খ) উদ্দীপকের সমীকরণ হতে শীর্ষবিন্দু উপকেন্দ্র, অক্ষরেখা ও দিকাক্ষের সমীকরণ নির্ণয় কর।
 - ্গ) উদ্দীপকের পরাবৃত্তের উপস্থিত কোন বিন্দুর ফোকাস দূরত্ব ই । উক্ত বিন্দুর স্থানাঙ্ক, উপকেন্দ্রিক লম্বের সমীকরণ ও লম্বের দৈর্ঘ্য নির্ণয় কর।

08.

- (ক) $y^2 = 4(x-2)$ পরাবৃত্তের উপকেন্দ্রের স্থানাম্ক নির্ণয় কর। 2
- (খ) উদ্দীপকের উপবৃত্তটির নিয়ামক রেখার সমীকরণ নির্ণয় কর_। 4
- (গ) SS' আড় অক্ষ এবং 9 উৎকেন্দ্রকতা বিশিষ্ট অধিবৃত্তের সমীকরণ নির্ণয় কর।
- (i) একটি অধিবৃত্তের উপকেন্দ্র দুটি (10,5), (8,3) এবং
 উৎকেন্দ্রকতা √2
 - (ii) একটি উপবৃত্তের নিয়ামক রেখার সমীকরণ 2x + y = 3
 - (ক) $y^2 = 12Px$ পরাবৃত্তটি (2, -1) বিন্দুগামী হলে তার উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত?
 - (খ) দৃশ্যকল্প (i) এর অধিবৃত্তের অসীমতটের সমীকরণ নির্ণয় কর।
 - (গ) উপকেন্দ্র (3,2) উৎকেন্দ্রিকতা $\frac{1}{\sqrt{8}}$ এবং (ii) এ বর্ণিত নিয়ামক বিশিষ্ট উপবৃত্তের সমীকরণ নির্ণয় কর।
- 10. 9(x − 2)² + 25(y − 3)² = 225 উপবৃত্তের অক্ষন্বয় স্থানার্ক বরাবর অবস্থিত।
 - (ক) (4,5) বিন্দুতে $\frac{x^2}{9} + \frac{y^2}{4} = 1$ উপবৃত্তের স্প^{র্মকের} সমীকরণ এবং ক্ষুদ্র অক্ষের প্রান্তবিন্দু নির্ণয় কর।
 - (খ) যে ত্রিভুজের শীর্ষবিন্দুগুলি উদ্দীপকের উপবৃত্তের ফোকাসন্থ ও মূলবিন্দু সেই ত্রিভুজের ক্ষেত্রফল নির্ণয় কর।
 - (গ) উদ্দীপকের উপবৃত্তের ক্ষুদ্র অক্ষের সমীকরণ দিকা^{ক্ষর} সমীকরণ, উপকেন্দ্রিক লম্বের দৈর্ঘ্য, উপকেন্দ্র ও অনু^{রুপ} নিয়ামকের দূরত্ব নির্ণয় কর।

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

MCQ


					_							
01. c	02. d	03. a	04. c	05. b	06. a	07. c 08.	d 09 c	10 -				L 14 a 15.
16 a	17. a	18. d	19. b	20. a	21. b	22. c 23.	b 24 =	10. a	11. a	12. c	13. a	14. 4
21 0	32 c	33. b	34. a	35. b	36.b	37 a 39	24. C	25. c	26. c	27. c	28. a	29. 0
46. b	47.0	18 2	49 h	50 a		37. a 38.	59. d	40. a	41. a	42. c	43. b	44. b 4.

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৬

02 যুগল সরলরেখাও কনিক হতে পারে। যেমন: x² = y² একটি hyperbola

 $y^2 = 4.8.x$ দিকাক্ষের সমীকরণ, x = -8; পরাবৃত্তে, SP = PMSP = 12 = PM = PM' + MM' = x + 8 ⇒ x = 4 ∴ § 5 = 4

$$06. \quad \frac{y^2}{2} - x^2 = 1$$
, $e = \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}}$; Alt $\equiv (0, -\sqrt{2}) \in (0, \sqrt{2})$

 $08. (x - \alpha)^2 = 4a(y - \beta)^2;$

(ii) পরাবৃত্তের শীর্ষবিন্দু (α, β) ; (ii) অক্ষরেখার সমীকরণ x=0 বা, $x-\alpha=0$

(iii) উপকেন্দ্রিক লম্বের সমীকরণ Y = -1

বা,
$$y - \beta + 1 = 0$$

10. $y^2 = 4px$ হল পরাবৃত্ত। উপকেন্দ্রিক লম্ব, $x = p = \frac{1}{2} \Rightarrow 2x - 1 = 0$

13.
$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$
 -এর অসীমতটের সমীকরণ: ধ্রুবক পদকে শূন্য ধরে পাই, $\frac{y^2}{3} - \frac{x^2}{4} = 0 \Rightarrow y = \pm \frac{\sqrt{3}}{2}x$

14. $x^2 = 6ky$; (9,2) বিন্দু গামী। ⇒ $6k = \frac{9^2}{2} = \frac{81}{2}$

: উপকেন্দ্রিক লম্বের দৈর্ঘ্য = 81

15. $y^2 = 4ax$ এর স্পর্শক y = mx + c হলে $c = \frac{a}{m} : 1 = \frac{a}{a} \Rightarrow a = 3$

16.
$$\frac{x^2}{5} - \frac{y^2}{4} = 1$$
; $e = \sqrt{1 + \frac{4}{5}} = \frac{3}{\sqrt{5}}$

$$a = \sqrt{5}$$
; $x = \pm \frac{a}{6} = \pm \frac{\sqrt{5}\sqrt{5}}{3} = \pm \frac{5}{3} \Rightarrow 3x = \pm 5$

18. $(x+2)^2 = -2y + 4 \Rightarrow (x+2)^2 = -2(y-2)$ ः शीर्धविष्य (-2,2)

19. ae = 3;
$$e = \frac{1}{3} \Rightarrow a = 9 \therefore \frac{a}{5} = 27 \therefore x = \pm 27$$

21. $(y+2)^2 = 6x-11+4=6x-7=4.\frac{3}{2}\times\left(x-\frac{7}{4}\right)$

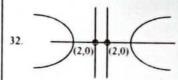
অক্টের সমীকরণ: y + 2 = 0

23. স্পর্শবিশ্বর ক্রেরে, $x = -\frac{2mc-4a}{2m^2}$

[(13)- এর (i)- নং থেকে Discriminant 0 ধরলে]

$$=-\frac{mc-2a}{m^2}=-\frac{a-2a}{m^2}=\frac{a}{m^2}$$
 $\therefore y=\sqrt{4a.\frac{a}{m^2}}=\frac{2a}{m}$

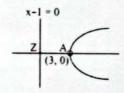
24.
$$xy = e^2$$
 or, $x^2 - y^2 = a^2$ or, $y^2 - x^2 = a^2$ $e = \sqrt{\frac{a^2 + a^2}{a^2}} = \sqrt{2}$

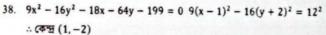

26.
$$3y^2 = 27x \implies 6y \cdot \frac{dy}{dx} = 27 \implies \frac{dy}{dx} = \frac{27}{6} \times \frac{1}{y} = \frac{9}{2y}$$

(4,6) বিন্দুতে স্পর্শকের ঢাল $\frac{9}{2x^4} = \frac{3}{4}$ ∴ সমীকরণ, 3x - 4y + 12 = 0

28.
$$y^2 = 4.2 \left(x + \frac{5}{8}\right)$$
; नीर्यनिम् = $\left(-\frac{5}{8}, 0\right)$; $a = 2$

$$\therefore \ \mathcal{C}^{\bullet} = \left(-\frac{5}{8} + 2, 0\right) = \left(\frac{11}{8}, 0\right)$$


 $x = \frac{11}{6}$ ⇒ 8x = 11 ⇒ 8x - 11 = 0



নিয়ামকদ্বয়ের মধ্যবতী দূরত্ব = 4 একক ⇒ 2 (°) = 4 ⇒ ° = 4 ∴ e = 2

36. AZ =
$$\left| \frac{3-1}{1} \right| = 2 : a = 2$$

$$y^2 = 8(x-3)$$

43.
$$\frac{2b^2}{a} = a \Rightarrow b = \frac{a}{\sqrt{2}} \Rightarrow e = \sqrt{1 - \frac{b^2}{a^2}} = \frac{1}{\sqrt{2}}$$

CO

- (1) (2,±4√2)
- 02 (খ) বৃহৎ অক্ষের দৈর্ঘা 20 ও ক্ষুদ্র অক্ষের দৈর্ঘ্য 10
- 03. (李) √41
 - (4) $8x^2 y^2 = 2$
 - $(97) \ \ 3y^2 5x^2 = 7$
- 04. (4) $\frac{-3}{2} < k < -1$;
 - (*) $(\pm 5\sqrt{3}, 0)$
- (4) (±3,0)
 - (9) x 2 = 0

- $(\Phi) x + y 7 = 0$
 - $(\forall) \quad 4x 3 = 0$

(গ) বিন্দুর স্থানাম্ব (7,-1) ও (7,9), উপকেন্দ্রিক লয়ের সমীকরণ x = 13 ও উপকেন্দ্রিক লম্বের দৈর্ঘ্য 5

- 08. (季) (3.0)
- (\forall) x = ± 27
- - (4) $y-4=\pm(x-9)$
 - (4) $36x^2 + 39y^2 228x 154y 4xy + 511 = 0$
- (季) (0.±2)
- (খ) 12 বর্ণ একক

প্রকৃত জ্ঞান হচ্ছে- তুমি জানো যে তুমি কিছুই জানো না।

Socrates

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

অধ্যায় ০৭

বিপরীত ত্রিকোণমিতিক ফাংশন ও ত্রিকোণমিতিক সমীকরণ

সজনশীল (ক), (খ) ও (গ) নং প্রশ্নের জন্য এ অধ্যায়ের গুরুত্বপূর্ণ টাইপসমূহ:

ভরুত্ব টাইপ		টাইপের নাম		তবার এসেয়ে		যে ৰোৰ্ডে যে বছর এসেছে
				4	গ	CQ
0	T-01	গ্রাফ সংক্রান্ত		03		MB'23; JB'21; BB'17
000	T-02	মান সংক্ৰান্ত	20	06	-	Ctg.B'23, 22; SB'23, 22, 21, 18; Din.B'23, 22, 19, 18, 17; MB'23; JB'22, 22, 21, 18; CB'222, 21, 17 RB'21, 19; BB'21; DB'18, 17
000	T-03	বিপরীত ত্রিকোণমিতিক সমীকরণের প্রমাণ ও সমাধান সংক্রান্ত সমস্যা	21	29	11	DB'23, 21, 19, 18, 17; RB'23, 22, 21, 17; Ctg.B'23, 22, 21, 19, 17; SB'23, 22, 21, 18, 17; BB'23, 22, 21, 19, 17; JB'23, 22, 21, 19, 18, 17; CB'23, 22, 21, 17; Din.B'23, 22, 21, 19, 18; MB'22, 21
	T-04	ত্রিকোণমিতিক সমীকরণের সমাধান সংক্রান্ত সাধারণ সমস্যা				
	T-05	বর্গসূত্রের প্রয়োগ সংক্রান্ত সমস্যা	-	-		
000	T-06	sin θ , cos θ , tan θ , sec θ এর দ্বিঘাতরাশি সম্বলিত পদ থাকলে	02	02	07	RB'23, 21; MB'23, Ctg.B'22, 21; Din.B'22, 18; DB'21, 18; JB'21, 18; BB'19, 17, SB'18
000	T-07	$a\cos\theta + b\sin\theta = c$ [যেখানে $ c \le \sqrt{a^2 + b^2}$] আকৃতির ত্রিকোণমিতিক সমীকরণ সংক্রান্ত সমস্যা	-	06	13	Ctg.B'23, 21; SB'23; BB'23, 22, 21; CB'23, 22, 17; MB'22, 21; DB'21, 17; RB'21, 19; JB'19; Din.B'17
000	T-08	sin θ, cos θ ইত্যাদি ত্রিকোণমিতিক অনুপাত যোগ আকারে থাকলে	-	03	15	DB'23, 21; SB'23, 21, 17; JB'23, 22, 17; CB'23, 21, 19; Din.B'23, 21, 17; RB'21; Ctg.B'21, 17; MB'21
00	T-09	sin θ , cos θ ইত্যাদি ত্রিকোণমিতিক অনুপাত গুণ আকারে থাকলে	-	02	04	RB'22; SB'21; JB'21; CB'21; Din.B'21, 19
00	T-10	cot θ, tan θ, sec θ, cosec θ বিশিষ্ট ত্রিকোর্ণমিতিক সমীকরণ সংক্রান্ত সমস্যা	1	1	4	DB'23, 21; JB'23; MB'21; Din.B'19

CQ প্রশ্ন ও সমাধান (ক, খ ও গ)

Type-01: গ্রাফ সংক্রান্ত

Concept

যেকোনো ফাংশনের লেখ অন্ধন করতে প্রথমেই x এর ভিন্ন ভিন্ন মানের জন্য y এর প্রতিরূপী মানগুলো নির্ণয় করতে হয়। এরপর x ও y এর সমন্বয়ে তৈরি বিন্দুগুলো (x,y) ছক কাগজে গ্রাপন করে মুক্ত হস্তে যোগ করলে সেই ফাংশনের লেখচিত্র পাওয়া যায়। যেহেতু বিপরীত ত্রিকোগমিতিক ফাংশনের ক্ষেত্রে ভোমেনগুলো নির্দিষ্ট শর্তে বাঁধা, তাই শর্তানুযায়ী x এর মানের বিপরীতে y এর মুখ্যমান নির্ণয় করতে হয়। যেমন: $y=\sin^{-1}x$ এবং $y=\cos^{-1}x$ এর জন্য $x\in [-1,1]$, $y=\tan^{-1}x$ এবং $y=\cot^{-1}x$ এর জন্য $x\in \mathbb{R}$ আর $y=\sec^{-1}x$ এবং $y=\csc^{-1}x$ এর জন্য $x\le -1$ বা $x\ge 1$ এর বিভিন্ন মানের জন্য y এর প্রতিরূপী মুখ্যমান নির্ণয় করার পর, x ও y এর সমন্বয়ে তৈরি বিন্দুগুলো ছক কাগজে বসিয়ে মুক্ত হত্তে বিন্দুগুলো যুক্ত করলে বিপরীত ত্রিকোণমিতিক ফাংশনের লেখচিত্র পাওয়া যায়।

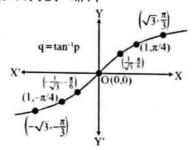
Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

সৃজনশীল প্রশ্ন (ক, খ ও গ)

qশ্যকম্প-১: $q = tan^{-1} p, -\infty .$

[MB'23]

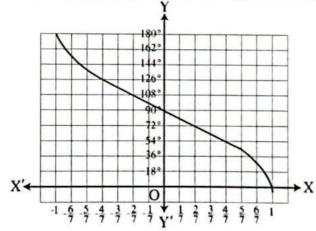

(খ) দৃশ্যকম্প-১ এর সমীকরণটির **লে**খচিত্র অঙ্কন কর।

(খ) Soln: দৃশ্যকল্প-১ মতে, q = tan-1 P

 $p \in (-\infty,\infty)$ এর নিচের তালিকায় ভিন্ন ভিন্ন মানের জন্য $q = \tan^{-1} p$ এর প্রতিরূপী মান নির্ণয় করি:

р	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$
q = tan ⁻¹ p	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	π -	<u>π</u>	<u>π</u>

একটি ছক কাগজে স্থানাঙ্কের অক্ষ রেখা X'OX এবং YOY' আঁকি।


দৃশ্যকম্প-১: q = cos⁻¹p.

[JB'21]

(খ) দৃশ্যকম্প-১ হতে $q=\cos^{-1}p$ এর $-1\leq p\leq 1$ ব্যবধিতে লেখচিত্র অঙ্কন কর।

(খ) Sol n : ধরি, $q=\cos^{-1}p$ এখানে, $-1\leq p\leq 1$ ব্যবধিতে p এর বেশ কিছু মানের জন্য q এর মান নিমুরূপ-

р	-1	$-\frac{5}{7}$	$-\frac{4}{7}$	$-\frac{2}{7}$	0	2 7	4 7	5 7	1
cos ⁻¹ p	180°	135.6°	124.9°	106.6°	90°	74.4°	55.1°	44.4°	0°

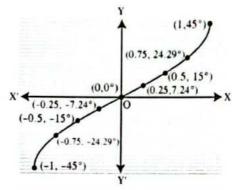
ছক কাগজে XOX' বরাবর p এবং YOY' বরাবর q এর মান বসানো হয়েছে। x অক্ষ বরাবর 35 ক্ষুদ্র বর্গঘর =1 একক এবং y অক্ষ বরাবর 5 ক্ষুদ্র বর্গঘর = 18 একক ধরা হয়েছে।

 $g(x) = psin^{-1} x$

[BB'17]

(খ) g(x) এর লেখচিত্র অঙ্কন কর, যখন $p = \frac{1}{2}, -1 \le x \le 1$.

(খ) Seln: দেওয়া আছে, $P=\frac{1}{2}$ এবং $g(x)=p\sin^{-1}x=\frac{1}{2}\sin^{-1}x$ যেখানে $-1\leq x\leq 1$


ধরি, $y = \frac{1}{2} \sin^{-1} x$

x এর বিভিন্ন মানের জন্য প্রতিসঙ্গী y এর মানগুলো নির্ণয় করি।

×	-1			-0.25		0.25			1
$y = \frac{1}{2} \sin^{-1} x$	-45°	-24.29°	-15°	-7.24°	0°	7.24°	15°	24.29°	45°

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

ছক কাগজের x অক্ষ বরাবর 10 ঘর = 1 একক এবং y অক্ষ বরাবর 1 ক্ষুদ্রতম ঘর = 5° একক ধরে প্রাপ্ত x ও y এর মানগুলি বসিয়ে $y=rac{1}{2}\sin^{-1}x$ লেখচিত্র পাওয়া যায়|

Type-02: মান নির্ণয় সংক্রান্ত

Concept 🌓

বিপরীত ত্রিকোণমিতিক ফাংশনের মান নির্ণয় সংক্রান্ত সমস্যা সমাধানের জন্য নিমুলিখিত সম্পর্ক, ফাংশনের রূপান্তর সূত্রাবলী প্রয়োজন অনুসারে ব্যবহার করতে হবে।

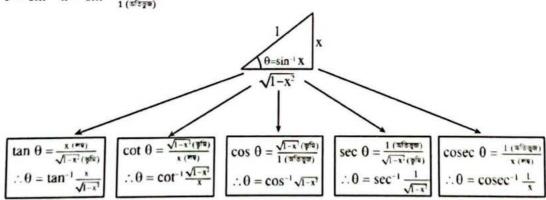
বিপরীত ত্রিকোণমিতিক ফাংশনগুলোর মধ্যকার কিছু সম্পর্ক:

01.

$$\sin^{-1} x = \csc^{-1} \frac{1}{x} \left| \cos^{-1} x = \sec^{-1} \frac{1}{x} \right| \tan^{-1} x = \cot^{-1} \frac{1}{x}$$

02.

$\sin^{-1}(-x) = -\sin^{-1}x$	$\cos^{-1}(-x) = \pi - \cos^{-1}x$
$tan^{-1}(-x) = -tan^{-1}x$	$\cot^{-1}(-x) = \pi - \cot^{-1}x$
$cosec^{-1}(-x) = -cosec^{-1}x$	$sec^{-1}(-x) = \pi - sec^{-1}x$


03.

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
 $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$

বিপরীত ত্রিকোণমিতিক ফাংশনের রূপান্তর:

পদ্ধতিটি সংক্ষেপে উপস্থাপন করা হলো:

ধরি,
$$\theta = \sin^{-1} x = \sin^{-1} \frac{x (\pi y)}{1 (\pi \log y)}$$

বিপরীত ত্রিকোণমিতিক ফাংশনের প্রয়োজনীয় সূত্রাবলি:

01.
$$\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right); x^2 + y^2 \le 1$$
 এবং $x \ge 0, y \ge 0$

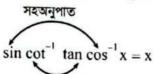
02.
$$\cos^{-1} x + \cos^{-1} y = \cos^{-1} (xy - \sqrt{1 - x^2} \cdot \sqrt{1 - y^2}); x \ge 0, y \ge 0$$

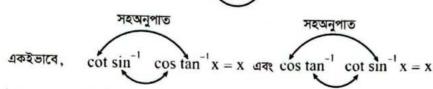
03.
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}; x \ge 0, y \ge 0$$
 এবং $xy < 1$

$$04 \quad \tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \frac{x+y}{1-xy}; \ x \ge 0, y \ge 0 \text{ and } xy > 1$$

Educationblog24

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

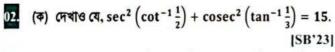

05.
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \frac{x+y+z-xyz}{1-xy-yz-zx}; x \ge 0, y \ge 0, z \ge 0$$


06.
$$2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2} = \csc^{-1} \frac{1+x^2}{2x} = \cos^{-1} \frac{1-x^2}{1+x^2} = \sec^{-1} \frac{1+x^2}{1-x^2} = \tan^{-1} \frac{2x}{1-x^2} = \cot^{-1} \frac{1-x^2}{2x}$$

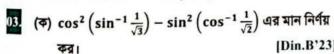
07.
$$2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2}), 2\cos^{-1}x = \cos^{-1}(2x^2-1)$$

08.
$$3\sin^{-1} x = \sin^{-1}(3x - 4x^3)$$
, $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x)$

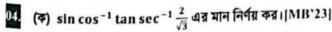
Shortcut for MCQ: ১ম ও ৪র্থ অবস্থানে সহ অনুপাত এবং ২য় ও ৩য় অবস্থানে সহ অনুপাত থাকলে শেষে যা থাকবে তাই উত্তর।



Note: এ সকল ক্ষেত্রে ৪র্থ অবস্থানে থাকা বিপরীত ত্রিকোণমিতিক ফাংশনটি অবশ্যই সংজ্ঞায়িত হতে হবে, অন্যথায় উত্তর হবে অসংজ্ঞায়িত। যেমন: sin tan⁻¹ cot⁻¹ cos⁻¹(5) অসংজ্ঞায়িত, কারণ cos⁻¹ 5 অসংজ্ঞায়িত।

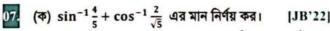

সূজনশীল প্রশ্ন (ক, খ ও গ)

(क) sin cot⁻¹ tan sec⁻¹ x এর মান নির্ণয় কর। [Ctg.B'23]

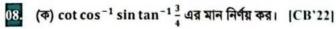

(ক) Sol": প্রদত্ত রাশি, sin cot-1 tan sec-1 x $= \sin \cot^{-1} \tan \tan^{-1} \frac{\sqrt{x^2 - 1}}{1}$ $= \sin \cot^{-1} \sqrt{x^2 - 1} = \sin \sin^{-1} \frac{1}{x} = \frac{1}{x}$ (Ans.)

(*) Sol": L. H. S = $\sec^2\left(\cot^{-1}\frac{1}{2}\right) + \csc^2\left(\tan^{-1}\frac{1}{3}\right)$ $= sec^{2}(tan^{-1}2) + cosec^{2}(cot^{-1}3)$ $\because \tan^{-1} x = \cot^{-1} \frac{1}{x}$ $= 1 + \tan^2(\tan^{-1} 2) + 1 + \cot^2(\cot^{-1} 3)$ $= 1 + 2^2 + 1 + 3^2 = 15$ (Ans.)

(ক) Sol^a: প্রদত্ত রাশি, $\cos^2\left(\sin^{-1}\frac{1}{\sqrt{3}}\right) - \sin^2\left(\cos^{-1}\frac{1}{\sqrt{2}}\right)$ $= \left\{ \cos \left(\cos^{-1} \frac{\sqrt{2}}{\sqrt{3}} \right) \right\}^2 - \left\{ \sin \left(\sin^{-1} \frac{1}{\sqrt{2}} \right) \right\}^2$ $=\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2-\left(\frac{1}{\sqrt{2}}\right)^2=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$ (Ans.)

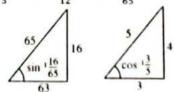

(4) Solⁿ: $\sin \cos^{-1} \tan \sec^{-1} \frac{2}{\sqrt{3}} = \sin \cos^{-1} \tan \frac{\pi}{6}$ $= \sin \cos^{-1} \frac{1}{\sqrt{3}}$ $= \sin \sin^{-1} \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} \text{ (Ans.)}$

05. (ক) $\cos^{-1}\sin\cos^{-1}\frac{1}{\sqrt{2}}$ এর মুখ্যমান নির্ণয় কর। |Ctg.B'22|


- (Φ) Solⁿ: $\cos^{-1} \sin \cos^{-1} \frac{1}{\sqrt{2}}$ $= \cos^{-1} \sin \sin^{-1} \frac{1}{\sqrt{2}}$ $= \cos^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}$ (Ans.)
- 06. (ক) $\cos^2(\sin^{-1}\frac{1}{\sqrt{3}})$ এর মান বের কর।
- (ক) Solⁿ: প্রদন্ত রাশি, cos² (sin⁻¹ ¹/_{√3}) $=\cos^2\left(\cos^{-1}\sqrt{\frac{2}{3}}\right)=\frac{2}{3}$ (Ans.)

[SB'22]

(Φ) Solⁿ: $\sin^{-1}\frac{4}{5} + \cos^{-1}\frac{2}{\sqrt{5}}$ $= \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{2}$ $= \tan^{-1} \frac{\frac{3}{3} + \frac{1}{2}}{1 - \frac{4 \times 1}{2}} = \tan^{-1} \frac{11}{2} \text{ (Ans.)}$


- ($\overline{\Phi}$) Solⁿ: cot cos⁻¹ sin tan⁻¹ $\frac{3}{4}$ $= \cot \cos^{-1} \sin \sin^{-1} \frac{3}{5}$ $= \cot \cos^{-1} \frac{3}{5}$ $= \cot \cot^{-1} \frac{3}{4} = \frac{3}{4}$ (Ans.)
- 09. (ক) $\cos^{-1}\left(-\frac{1}{2}\right)$ এর মুখ্যমান নির্ণয় কর।
- (4) Solⁿ: $\cos^{-1}\left(-\frac{1}{2}\right) = \pi \cos^{-1}\left(\frac{1}{2}\right) = \pi \frac{\pi}{3} = \frac{2\pi}{3}$ (Ans.)

- उक्का गणि रम् सर्वे व्यक्ताग्र-००
- 10. (ক) cos⁻¹ tan cot⁻¹ √2 এর মুখ্যমান নির্ণয় কর। [BB'21]
- (4) Solⁿ: $\cos^{-1} \tan \cot^{-1} \sqrt{2} = \cos^{-1} \left\{ \frac{1}{\cot(\cot^{-1} \sqrt{2})} \right\}$ $=\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}(Ans.)$
- 🔃 (ক) tan⁻¹ ½ + tan⁻¹ ½ এর মান বের কর। [JB'21]
- (Φ) Solⁿ: $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 \frac{1}{2}}\right)$ $= \tan^{-1}\left(\frac{5}{6} \times \frac{6}{5}\right) = \frac{\pi}{4} (Ans.)$
- 📭 (ক) $\cos\left(2\cot^{-1}\frac{3}{2}\right)$ এর মান নির্ণয় কর। [CB'21]
- (Φ) Solⁿ: $\cos\left(2\cot^{-1}\frac{3}{2}\right) = \frac{1-\tan^2\left(\cot^{-1}\frac{3}{2}\right)}{1+\tan^2\left(\cot^{-1}\frac{3}{2}\right)}$ $=\frac{1-\tan^2\left(\tan^{-1}\frac{2}{3}\right)}{1+\tan^2\left(\tan^{-1}\frac{2}{3}\right)}=\frac{1-\frac{4}{9}}{1+\frac{4}{9}}=\frac{5}{13}$ (Ans.)
- (ক) যদি $x = \frac{1}{2}\cos^{-1}\frac{3}{4}$ হয়, তবে $\tan x$ এর মান কত হবে?
- (Φ) Solⁿ: $x = \frac{1}{2}\cos^{-1}\frac{3}{4} \Rightarrow 2x = \cos^{-1}\frac{3}{4} \Rightarrow \cos 2x = \frac{3}{4}$ $\Rightarrow \frac{1-\tan^2 x}{1+\tan^2 x} = \frac{3}{4} \Rightarrow \frac{1+\tan^2 x}{1-\tan^2 x} = \frac{4}{3} \Rightarrow \frac{1}{\tan^2 x} = 7$ $\Rightarrow \tan x = \pm \frac{1}{\sqrt{7}} \left[\tan x = -\frac{1}{\sqrt{7}}$ গ্রহণযোগ্য নয় কারণ x সূজ্মকোণ] $\therefore \tan x = \frac{1}{\sqrt{7}} (Ans.)$
- া দৃশ্যকল্প-১: secA = $\sqrt{5}$, cosecB = $\frac{5}{3}$ এবং cotC = 3. [RB'19]
 - (ক) $\csc^{-1}\sqrt{17} + \sec^{-1}\frac{\sqrt{26}}{5}$ এর মান নির্ণয় কর।
 - (খ) দৃশ্যকম্প-১ থেকে, $A + C \frac{1}{2}B$ এর মান নির্ণয় কর।
- (3) Sol* :: $cosec^{-1}\sqrt{17} = tan^{-1}\frac{1}{4} \sqrt{17}$

$$\therefore \sec^{-1}\frac{\sqrt{26}}{5} = \tan^{-1}\frac{1}{5}$$

- $\therefore \csc^{-1}\sqrt{17} + \sec^{-1}\frac{\sqrt{26}}{5} = \tan^{-1}\frac{1}{4} + \tan^{-1}\frac{1}{5}$ = $\tan^{-1} \frac{\frac{2+\frac{1}{5}}{5}}{1-\frac{1}{5}\times\frac{1}{5}}$ = $\tan^{-1} \frac{9}{19}$ (Ans.)
- (*) Solⁿ: $A = \sec^{-1} \sqrt{5}$; $C = \cot^{-1} 3$; $B = \csc^{-1} \frac{5}{2}$ $\frac{1}{2}B = \frac{1}{2} \operatorname{cosec}^{-1} \frac{5}{3} = \frac{1}{2} \sin^{-1} \frac{3}{5}$ ধরি, $\sin\theta = \frac{3}{5} : \theta = \sin^{-1}\frac{3}{5} : \cos\theta = \frac{4}{5}$ $\tan\frac{\theta}{2} = \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} \Rightarrow \tan\frac{\theta}{2} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}} = \frac{\sin\theta}{1+\cos\theta} = \frac{\frac{5}{2}}{1+\frac{4}{5}}$ $\tan \frac{\theta}{2} = \frac{1}{3} \div \frac{1}{2} \sin^{-1} \frac{3}{5} = \tan^{-1} \cdot$ $\frac{1}{2}\csc^{-1}\frac{5}{3} = \tan^{-1}\frac{1}{3}; \cot^{-1}3 = \tan^{-1}\frac{1}{3}$
 - $\sec^{-1} \sqrt{5} = \tan^{-1} 2$

- $A + C \frac{1}{2}B = \tan^{-1} 2 + \tan^{-1} \frac{1}{3} \tan^{-1} \frac{1}{3}$ $= tan^{-1} 2 (Ans.)$
- 5 (ক) tan-1 4 ও tan-1 5 এর সমষ্টি নির্ণয় কর। |Din.B'19
- (Φ) Solⁿ: $\tan^{-1} 4 + \tan^{-1} \frac{5}{3} = \pi + \tan^{-1} \left(\frac{4 + \frac{5}{3}}{1 4 + \frac{5}{3}} \right)$ $= \pi + \tan^{-1}(-1) = \frac{3\pi}{4} \left[\because \tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \frac{x+y}{1-y} \right]$
- 6. দৃশ্যকম্প-১: $\sin^{-1}\left(\frac{4}{5}\right) \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \cot^{-1}\left(\frac{2}{11}\right)$
 - (খ) দৃশ্যকম্প-১ এর মান নির্ণয় কর। [DB, SB, JB, Din.B'18]
- (*) Solⁿ: $\sin^{-1}\frac{4}{5} + \cos^{-1}\frac{2}{\sqrt{5}} \cot^{-1}\frac{2}{11}$ $= \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{2} - \tan^{-1}\frac{11}{2} = \tan^{-1}\frac{\frac{7}{3}+\frac{7}{2}}{1-\frac{4}{3}} - \tan^{-1}\frac{11}{2}$ = $\tan^{-1}\frac{11}{2} - \tan^{-1}\frac{11}{2} = 0$ (Ans.)
- 17. দৃশ্যকম্প-১: $\sec^{-1}\frac{5}{3} + \cot^{-1}\frac{12}{5} + \sin^{-1}\frac{16}{65}$. (খ) দেখাও যে, দৃশ্যকম্প-১ এর মান 💆
- (*) Sol*: $\sec^{-1}\frac{5}{3} = \tan^{-1}\frac{4}{3}$; $\cot^{-1}\frac{12}{5} = \tan^{-1}\frac{5}{12}$ $\tan^{-1}\frac{4}{3} + \tan^{-1}\frac{5}{12} = \tan^{-1}\frac{\frac{7}{3} + \frac{5}{12}}{\frac{1-4}{3} \times \frac{5}{12}} = \tan^{-1}\frac{63}{16}$ $= \cos^{-1}\frac{16}{65} \div \sec^{-1}\frac{5}{3} + \cot^{-1}\frac{12}{5} + \sin^{-1}\frac{16}{65}$ $= \cos^{-1}\frac{16}{65} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$ [: sin⁻¹ x + cos⁻¹ x = $\frac{\pi}{2}$] (Showed)
- (ক) মান নির্ণয় কর: $\tan^{-1} \sin \cos^{-1} \int_{\frac{2}{3}}^{2}$
- (Φ) Solⁿ: $\tan^{-1} \sin \cos^{-1} \sqrt{\frac{2}{3}} = \tan^{-1} \sin \sin^{-1} \frac{1}{\sqrt{3}}$
 - $= \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$ (Ans.)
- $\sqrt{\frac{12}{5}}$ দৃশ্যকম্প-১: $\sec^{-1}\frac{5}{3} + \cot^{-1}\frac{12}{5} + \sin^{-1}\frac{16}{65}$ [ঢাকা রেসিডেনসিয়াল মডেল কলেজ] (খ) দেখাও যে, দৃশ্যকম্প-১ এর মান 🖁
- (খ) Sol": প্রদন্ত রাশি: sec⁻¹ $\frac{5}{3}$ + cot⁻¹ $\frac{12}{5}$ + sin⁻¹ $\frac{16}{65}$ $= \cos^{-1}\frac{3}{5} + \tan^{-1}\frac{5}{12} + \sin^{-1}\frac{16}{65}$

- এখন, $\cos^{-1}\frac{3}{5} = \tan^{-1}\frac{4}{3}$ এবং $\sin^{-1}\frac{16}{65} = \tan^{-1}\frac{16}{63}$ $\therefore \cos^{-1}\frac{3}{5} + \tan^{-1}\frac{5}{12} + \sin^{-1}\frac{16}{69}$
- $= \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{5}{12} + \tan^{-1}\frac{16}{63} = \tan^{-1}\frac{\frac{1}{3}\frac{1}{12}}{\frac{1}{12}\frac{433}{123}} + \tan^{-1}\frac{16}{63}$
- $= \tan^{-1} \frac{63}{16} + \cot^{-1} \frac{63}{16} = \frac{\pi}{3}$ (Showed)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

নিজে করো

 $20. \quad f(x) = \sin x.$

[RB'21]

(क) sin tan-1 cos sec-1 y এর মান নির্ণয় কর।

21. (ক) $\sec^2\left(\cot^{-1}\frac{1}{4}\right) + \tan^2\left(\cos^{-1}\frac{1}{3}\right)$ এর মান নির্ণয় কর।

[SB'21][Ans: 25]

22. (ক) $\sec^2(\cot^{-1} 1) + \sin^2(\cos^{-1} \frac{1}{2})$ এর মান নির্ণয় কর।

[BB'21][Ans: 11]

23. (ক) $\csc^{-1}\sqrt{5} + \sec^{-1}\frac{3}{\sqrt{10}}$ এর মান নির্ণয় কর। [CB'17]

[Ans: -|

Type-03: বিপরীত ত্রিকোণমিতিক সমীকরণের প্রমাণ ও সমাধান সংক্রান্ত সমস্যা

Concept

এক্ষেত্রে পূর্বের Type এর সূত্র ও রূপান্তর পদ্ধতি ব্যবহার করে প্রমাণ করতে হবে।

সূজনশীল প্রশ্ন (ক, খ ও গ)

 $\sqrt{1}$ উদীপক-১: $\cos x = \frac{p}{a}$, $\cos y = \frac{q}{b}$

[DB'23]

(ক) প্রমাণ কর যে, $\tan^{-1}\frac{2}{5} = \frac{\pi}{2} - \csc^{-1}\frac{\sqrt{29}}{c}$

(খ) উদ্দীপক-১ এর সাহায্যে $x + y = \alpha$ হলে, প্রমাণ কর যে, $b^2p^2 - 2abpq\cos\alpha + a^2q^2 = a^2b^2\sin^2\alpha$

(क) Sol": L.H.S. = tan-1 2

$$= \sec^{-1}\frac{\sqrt{29}}{5} = \frac{\pi}{2} - \csc^{-1}\frac{\sqrt{29}}{5}$$

$$\left[\because \sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}\right]$$

= R. H. S (Proved)

(খ) Sol*:দেওয়া আছে, $\cos x = \frac{p}{2}$, $\cos y = \frac{q}{2}$

প্রসাতে, $x + y = \alpha \Rightarrow \cos^{-1}\left(\frac{p}{a}\right) + \cos^{-1}\left(\frac{q}{b}\right) = \alpha$

$$\Rightarrow \cos^{-1}\left[\frac{p}{a} \cdot \frac{q}{b} - \sqrt{\left\{1 - \left(\frac{p}{a}\right)^2\right\} \left\{1 - \left(\frac{q}{b}\right)^2\right\}}\right] = \alpha$$

$$\Rightarrow \cos^{-1} \left[\frac{pq}{ab} - \sqrt{1 - \frac{q^2}{b^2} - \frac{p^2}{a^2} + \frac{p^2q^2}{a^2b^2}} \right] = \alpha$$

$$\Rightarrow \frac{pq}{ab} - \sqrt{1 - \frac{q^2}{b^2} - \frac{p^2}{a^2} + \frac{p^2q^2}{a^2b^2}} = \cos\alpha$$

$$\Rightarrow \frac{pq}{ab} - \cos \alpha = \sqrt{1 - \frac{q^2}{b^2} - \frac{p^2}{a^2} + \frac{p^2q^2}{a^2b^2}}$$

$$\Rightarrow \frac{p^2q^2}{a^2b^2} + \cos^2\alpha - 2\frac{pq}{ab}\cos\alpha = 1 - \frac{q^2}{b^2} - \frac{p^2}{a^2} + \frac{p^2q^2}{a^2b^2}$$

$$\Rightarrow 1 - \sin^2 \alpha - \frac{2pq}{ab}\cos \alpha = 1 - \frac{q^2}{b^2} - \frac{p^2}{a^2}$$
$$\Rightarrow -\sin^2 \alpha - \frac{2pq}{ab}\cos \alpha = -\frac{a^2q^2 + b^2p^2}{a^2b^2}$$

$$\Rightarrow -\sin^2\alpha - \frac{2pq}{r}\cos\alpha = -\frac{a^2q^2 + b^2p^2}{r^2b^2}$$

 $\Rightarrow a^2b^2 \sin^2 \alpha + 2abpq \cos \alpha = a^2q^2 + b^2p^2$

 $\Rightarrow b^2p^2 - 2abpq\cos\alpha + a^2q^2 = a^2b^2\sin^2\alpha \text{ (Proved)}$

$$f(x) = \sin^{-1} p + \sin^{-1} q + \sin^{-1} r$$

(ক) প্রমাণ কর যে, $\tan^{-1}\frac{1}{3} = \frac{1}{2}\sin^{-1}\frac{3}{5}$

(ব) f(x) = π হলে দেখাও যে,

$$p\sqrt{1-p^2} + q\sqrt{1-q^2} + r\sqrt{1-r^2} = 2pqr$$

($\overline{\Phi}$) Solⁿ:L.H.S. = $\tan^{-1}\left(\frac{1}{3}\right) = \frac{1}{2} \times 2 \tan^{-1}\frac{1}{3}$

$$= \frac{1}{2} \sin^{-1} \frac{2 \times \frac{1}{3}}{1 + \left(\frac{1}{3}\right)^2} = \frac{1}{2} \sin^{-1} \frac{\frac{2}{3}}{\frac{10}{9}}$$

 $=\frac{1}{2}\sin^{-1}\frac{3}{5}=R.H.S.$ (Proved)

(খ) Soln:দেওয়া আছে, f(x) = sin-1 p + sin-1 q + sin-1 r

ধরি,
$$A = \sin^{-1} p \Rightarrow p = \sin A$$

$$B = \sin^{-1} q \Rightarrow q = \sin B$$
;

$$C = \sin^{-1} r \Rightarrow r = \sin C$$

আমরা জানি, sin 2A + sin 2B + sin 2C

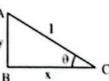
= 4 sin A sin B sin C [যখন A + B + C = π]

 \Rightarrow 2 sin A cos A + 2 sin B cos B + 2 sin C cos C

= 4 sin A sin B sin C

 \Rightarrow 2(sin A cos A + sin B cos B + sin C cos C)

= 4 sin A sin B sin C


 \Rightarrow sin A $\sqrt{1 - \sin^2 A} + \sin B \sqrt{1 - \sin^2 B}$

$$+\sin C\sqrt{1-\sin^2 C}=2pqr$$

$$\Rightarrow p\sqrt{1-p^2} + q\sqrt{1-q^2} + r\sqrt{1-r^2} = 2pqr$$

(Showed) [Ctg.B'23]

03.

(খ) উদ্দীপকে $\angle BAC = \alpha$ হলে, $\alpha + \theta = \frac{\pi}{2}$ থেকে দেখাও

$$abla x^2 + y^2 = 1$$

Educationblog24.co

 $\therefore f\left\{\sqrt{2}g\left(\frac{\pi}{2}-\theta\right)\right\}+f\left\{\sqrt{g(2\theta)}\right\}$

(খ) Sol^a: দেওয়া আছে, $f(x) = \sin^{-1} x$; $g(x) = \cos x$

 $= \sin^{-1}\left\{\sqrt{2}\cos\left(\frac{\pi}{2} - \theta\right)\right\} + \sin^{-1}\left(\sqrt{\cos 2\theta}\right)$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

HSC ব্রম্নব্যাংক ২০২৫

(4) Sel*: SEE
$$\angle BAC = \alpha$$
, $\angle ACB = \theta$

$$\sin \alpha = \frac{x}{1} \text{ det } \sin \theta = \frac{y}{1} \Rightarrow \alpha = \sin^{-1} x + \theta = \sin^{-1} y$$

$$\text{det } \alpha + \theta = \frac{\pi}{2} \Rightarrow \sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1} x = \frac{\pi}{2} - \sin^{-1} y$$

$$\Rightarrow \sin^{-1} x = \frac{\pi}{2} - \cos^{-1} \sqrt{1 - \frac{\pi}{2}}$$

$$\Rightarrow \sin^{-1} x = \frac{\pi}{2} - \cos^{-1} \sqrt{1 - y^2}$$

$$\Rightarrow x = \sin\left(\frac{\pi}{2} - \cos^{-1}\sqrt{1 - y^2}\right)$$

$$\Rightarrow x = \cos(\cos^{-1}\sqrt{1-y^2})$$

$$\Rightarrow x = \sqrt{1 - y^2} \Rightarrow x^2 = 1 - y^2$$
 [বৰ্গ কৰে]

$$\therefore x^2 + y^2 = 1 \text{ (Showed)}$$

A =
$$\sin^{-1}\frac{2}{3}$$
, B = $\cos^{-1}\frac{3}{4}$, C = $\tan^{-1}\frac{1}{\sqrt{5}}$ [SB'23]

(ক) প্রমাণ কর বে,
$$\cos^{-1} x = 2 \cos^{-1} \sqrt{\frac{1+x}{2}}$$

(খ) প্রমাণ কর থে,
$$A - \frac{1}{2}B + C = \tan^{-1}\left(\frac{\sqrt{35}-1}{\sqrt{7}+\sqrt{5}}\right)$$
.

(
$$\Phi$$
) Sol*: $\star [d]$, $\cos^{-1} x = \theta \Rightarrow \cos \theta = x$
 $\Rightarrow 2\cos^2 \frac{\theta}{2} - 1 = x \Rightarrow 2\cos^2 \frac{\theta}{2} = 1 + x$
 $\Rightarrow \cos^2 \frac{\theta}{2} = \frac{1+x}{2} \Rightarrow \cos \frac{\theta}{2} = \sqrt{\frac{1+x}{2}}$
 $\Rightarrow \frac{\theta}{2} = \cos^{-1} \sqrt{\frac{1+x}{2}} \Rightarrow \theta = 2\cos^{-1} \sqrt{\frac{1+x}{2}}$

$$\Rightarrow \frac{\theta}{2} = \cos^{-1} \sqrt{\frac{1+x}{2}} \Rightarrow \theta = 2\cos^{-1} \sqrt{\frac{1+x}{2}}$$

$$\therefore \cos^{-1} x = 2\cos^{-1} \sqrt{\frac{1+x}{2}} \text{ (Proved)}$$

(খ) Sol*: দেওয়া আছে,
$$A = \sin^{-1}\frac{2}{3}$$
, $B = \cos^{-1}\frac{3}{4}$
এবং $C = \tan^{-1}\frac{1}{\sqrt{5}}$

L. H. S = A -
$$\frac{1}{2}$$
B + C = $\sin^{-1}\frac{2}{3}$ - $\frac{1}{2}\cos^{-1}\frac{3}{4}$ + $\tan^{-1}\frac{1}{\sqrt{5}}$

$$= \tan^{-1} \frac{2}{\sqrt{5}} - \frac{1}{2} \cos^{-1} \frac{3}{4} + \tan^{-1} \frac{1}{\sqrt{5}}$$

$$= \tan^{-1}\frac{2}{\sqrt{5}} - \frac{1}{2}\cos^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{\sqrt{5}}$$

$$= \tan^{-1}\frac{2}{\sqrt{5}} - \tan^{-1}\frac{1}{\sqrt{7}} + \tan^{-1}\frac{1}{\sqrt{5}}$$

$$= \tan^{-1}\frac{2}{\sqrt{5}} + \tan^{-1}\frac{1}{\sqrt{5}} - \tan^{-1}\frac{1}{\sqrt{7}}$$

$$= \tan^{-1} \frac{\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}}{1 - \frac{2}{5}} - \tan^{-1} \frac{1}{\sqrt{7}}$$

$$= \tan^{-1} \sqrt{5} - \tan^{-1} \frac{1}{\sqrt{7}}$$

$$= \tan^{-1} \frac{\sqrt{5} - \frac{1}{\sqrt{7}}}{1 + \frac{\sqrt{5}}{\sqrt{7}}} = \tan^{-1} \left(\frac{\sqrt{35} - 1}{\sqrt{7} + \sqrt{5}} \right)$$

$$\Rightarrow \cos 2\theta = \frac{3}{4}$$

$$\Rightarrow \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{3}{4}$$

$$\Rightarrow \frac{2}{-2 \tan^2 \theta} = \frac{7}{-1}$$

$$\Rightarrow \tan \theta = \sqrt{\frac{1}{7}}$$

 $\dot{\theta} = \tan^{-1} \frac{1}{\sqrt{2}}$

 $\frac{1}{2}\cos^{-1}\frac{3}{4}=\theta$

05
$$f(x) = \sin^{-1} x$$
, $g(x) = \cos x [BB'23; CB'21; JB'19]$
(খ) দেখাও যে, $f\left\{\sqrt{2}g\left(\frac{n}{2} - \theta\right)\right\} + f\left\{\sqrt{g(2\theta)}\right\} = \frac{n}{2}$

 $= \sin^{-1}(\sqrt{2}\sin\theta) + \sin^{-1}(\sqrt{\cos 2\theta}) \dots \dots \dots \dots (i)$ $= \sin^{-1} \left\{ \sqrt{2} \sin \theta \times \sqrt{1 - \cos 2\theta} + \sqrt{\cos 2\theta} \times \sqrt{1 - \left(\sqrt{2} \sin \theta\right)^2} \right\}$ $= \sin^{-1}(\sqrt{2}\sin\theta\sqrt{2}\sin^2\theta + \sqrt{1-2\sin^2\theta} \times \sqrt{1-2\sin^2\theta})$ $= \sin^{-1}\{2\sin^2\theta + 1 - 2\sin^2\theta\} = \sin^{-1}(1) = \frac{\pi}{2}$ $\sin A = \frac{2}{\sqrt{5}}, \cos B = \frac{4}{5}, \cot C = 3$ (ক) প্রমাণ কর যে, $\sin \tan^{-1} \cdot \cot \cdot \cos^{-1} y = y$. (খ) প্রমাণ কর যে, $A - \frac{1}{2}B + C = \tan^{-1} 2$

(*) Sol*:
$$\sqrt{1-y^2} \underbrace{\int_{y}^{1} y \underbrace{\int_{\sqrt{1-y^2}}^{1}}_{\sqrt{1-y^2}}$$

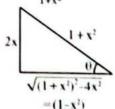
L.H.S = $\sin \tan^{-1} \cot \cos^{-1} y = \sin \tan^{-1} \left(\frac{y}{\sqrt{1-y^2}}\right)$
= $\frac{y}{\sqrt{y^2+(1-y^2)}} = y = \text{R.H.S (Proved)}$

(খ) Sol*: 2
$$\sqrt{5}$$

(ম) Sol*: 2 $\sqrt{5}$

$\cos B = \frac{4}{5} \Rightarrow B = \cos^{-1} \frac{4}{5}$
 $\cot C = 3 \Rightarrow \tan C = \frac{1}{3} \Rightarrow C = \tan^{-1} \frac{1}{3}$

(ম) Sol*: 2 $\sqrt{5}$
 $\cot C = 3 \Rightarrow \tan C = \frac{1}{3} \Rightarrow C = \tan^{-1} \frac{1}{3}$


এখন,
$$\tan \frac{1}{2}B = \sqrt{\frac{1-\cos B}{1+\cos B}} = \sqrt{\frac{1-\frac{4}{5}}{1+\frac{4}{5}}} = \sqrt{\frac{1}{9}} = \frac{1}{3} \div \frac{1}{2}B = \tan^{-1}\frac{1}{3}$$

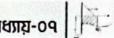
L.H.S = A - $\frac{1}{2}B$ + C = $\sin^{-1}\frac{2}{\sqrt{5}}$ - $\tan^{-1}\frac{1}{3}$ + $\tan^{-1}\frac{1}{3}$

= $\sin^{-1}\frac{2}{\sqrt{5}} = \tan^{-1}\frac{2}{\sqrt{5-2^2}} = \tan^{-1}2 = \text{R.H.S (Proved)}$

্রি (ক) প্রমাণ কর যে,
$$\sin^{-1}\frac{2x}{1+x^2}=\cos^{-1}\frac{1-x^2}{1+x^2}$$
 [CB'23]

$$(\overline{\Phi})$$
 Solⁿ: L.H.S = $\sin^{-1} \frac{2x}{1+x^2}$

ত্রিভুজের চিত্র ব্যবহার করে, $\sin^{-1} \frac{2x}{1+x^2} = \cos^{-1} \frac{1-x^2}{1+x^2}$ = R.H.S (Proved)


08. দৃশাকম্প-১:
$$P = \cos^{-1}(\frac{x}{3})$$
, $Q = \cos^{-1}(\frac{y}{2})[Din.B^2]$

(খ) দুশ্যকম্প-১ এ
$$P + Q = \theta$$
 হলে, প্রমাণ কর যে, $4x^2 - 12xy\cos\theta + 9y^2 = 36\sin^2\theta$

HSC প্রশ্নব্যাংক ২০ৢ২৫

Educationblog

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

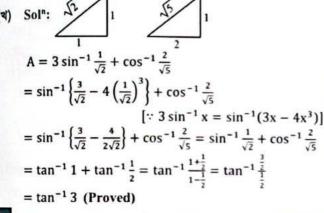
(খ) Sol®: দেওয়া আছে,
$$P = \cos^{-1}\left(\frac{x}{3}\right)$$
, $Q = \cos^{-1}\left(\frac{y}{2}\right)$
আর, $P + Q = \theta \Rightarrow \cos^{-1}\left(\frac{x}{3}\right) + \cos^{-1}\left(\frac{y}{2}\right) = 0$

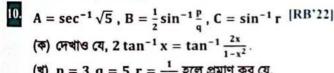
$$\Rightarrow \cos^{-1}\left\{\frac{xy}{6} - \sqrt{\left(1 - \frac{x^2}{9}\right)} \cdot \sqrt{\left(1 - \frac{y^2}{4}\right)}\right\} = \theta$$

$$\Rightarrow \frac{xy}{6} - \sqrt{1 - \frac{x^2}{9} - \frac{y^2}{4} + \frac{x^2y^2}{36}} = \cos\theta$$

$$\Rightarrow \left(\frac{xy}{6} - \cos\theta\right)^2 = 1 - \frac{x^2}{9} - \frac{y^2}{4} + \frac{x^2y^2}{36}$$

$$\Rightarrow \frac{x^2y^2}{36} - 2 \cdot \frac{xy\cos\theta}{6} + \cos^2\theta = 1 - \frac{x^2}{9} - \frac{y^2}{9} + \frac{x^2y^2}{36}$$

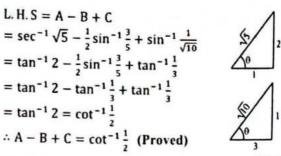

$$\Rightarrow \frac{x^2}{9} - \frac{xy\cos\theta}{3} + \frac{y^2}{4} = 1 - \cos^2\theta$$


$$\Rightarrow \frac{x^2}{9} - \frac{xy\cos\theta}{3} + \frac{y^2}{4} = \sin^2\theta$$

$$\Rightarrow 4x^2 - 12xy\cos\theta + 9y^2 = 36\sin^2\theta$$

$$\therefore 4x^2 - 12xy\cos\theta + 9y^2 = 36\sin^2\theta$$
 (Showed)

9. দৃশ্যকম্প-১:
$$A = 3 \sin^{-1} \frac{1}{\sqrt{2}} + \cos^{-1} \frac{2}{\sqrt{5}}$$
. [Ctg.B'22] (খ) দৃশ্যকম্প-১ হতে দেখাও যে, $A = \tan^{-1} 3$.



(খ)
$$p = 3, q = 5, r = \frac{1}{\sqrt{10}}$$
 হলে প্রমাণ কর যে,
 $A - B + C = \cot^{-1}(\frac{1}{2}).$

(ক) Solⁿ: ধরি,
$$\tan^{-1} x = \theta \Rightarrow x = \tan \theta$$

এখন, $\tan^{-1} \frac{2x}{1-x^2} = \tan^{-1} \frac{2 \tan \theta}{1-\tan^2 \theta} = \tan^{-1} \tan 2\theta$
 $= 2\theta = 2 \tan^{-1} x$
 $\therefore 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$ (Showed)

ં
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$$
 (Showed)
(খ) Solⁿ: $p = 3, q = 5, r = \frac{1}{\sqrt{10}}$
ધિત્ર, $\frac{1}{2}\sin^{-1}\frac{3}{5} = \theta \Rightarrow \frac{3}{5} = \sin 2\theta$
વધન, $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{2 \sin \theta \cos \theta}{2 \cos^2 \theta}$
 $= \frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{\sin 2\theta}{1 + \sqrt{1 - \sin^2 2\theta}} = \frac{\frac{3}{5}}{1 + \sqrt{1 - \frac{9}{25}}} = \frac{1}{3}$
 $\therefore \theta = \tan^{-1} \frac{1}{3}$

দেওয়া আছে
$$\varphi(x) = \cos^{-1}x$$
 [BB'22]
(ক) প্রমাণ কর যে, $\sin^2\left(\cos^{-1}\frac{1}{3}\right) - \cos^2\left(\sin^{-1}\frac{1}{\sqrt{3}}\right) = \frac{2}{9}$.
(খ) $\varphi(x) + \varphi(y) + \varphi((z) = \pi$ হলে দেখাও যে,

(খ)
$$\varphi(x) + \varphi(y) + \varphi((z) = \pi$$
 হলে দেখাও (

$$x^2 + y^2 + z^2 + 2xyz = 1.$$

(*) Sol*:
$$\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$$

$$\Rightarrow \cos^{-1} \left(xy - \sqrt{(1 - x^2)(1 - y^2)} \right) = \pi - \cos^{-1} z$$

$$\Rightarrow xy - \sqrt{1 - x^2 - y^2 + x^2y^2} = -\cos(\cos^{-1} z)$$

$$\Rightarrow xy + z = \sqrt{1 - x^2 - y^2 + x^2y^2}$$

$$\Rightarrow x^2y^2 + z^2 + 2xyz = 1 - x^2 - y^2 + x^2y^2$$

$$\Rightarrow x^2 + y^2 + z^2 + 2xyz = 1 \text{ (Showed)}$$

$$f(x)=\sin x$$
 এবং $g(y)=\cos y$. [JB'22 (গ) প্রমাণ কর যে,
$$2\tan^{-1}\frac{f(\frac{\alpha}{2})}{f(\frac{\pi-\alpha}{2})}\tan\left(\frac{\pi}{4}-\frac{\beta}{2}\right)=\tan^{-1}\frac{f(\alpha)g(\beta)}{g(\frac{\pi}{2}-\beta)+f(\frac{\pi-\alpha}{2})}$$

(51) Soln: L. H. S =
$$2 \tan^{-1} \frac{f(\frac{\alpha}{2})}{f(\frac{\pi-\alpha}{2})} \tan(\frac{\pi}{4} - \frac{\beta}{2})$$

= $2 \tan^{-1} \frac{\sin(\frac{\alpha}{2})}{\sin(\frac{\pi-\alpha}{2})} \tan(\frac{\pi}{4} - \frac{\beta}{2}) = 2 \tan^{-1} \frac{\sin(\frac{\alpha}{2})}{\cos(\frac{\alpha}{2})} \tan(\frac{\pi}{4} - \frac{\beta}{2})$
= $2 \tan^{-1} \left\{ \tan(\frac{\alpha}{2}) \tan(\frac{\pi-\beta}{4}) \right\}$
= $2 \tan^{-1} \frac{\sin(\frac{\alpha}{2}) \sin(\frac{\pi-\beta}{4})}{\cos(\frac{\alpha}{2}) \cos(\frac{\pi-\beta}{4})} = \tan^{-1} \frac{2 \times \frac{\sin(\frac{\alpha}{2}) \sin(\frac{\pi-\beta}{4})}{\cos(\frac{\alpha}{2}) \cos(\frac{\pi-\beta}{4})}}{1 \frac{\sin^{2}(\frac{\alpha}{2}) \sin^{2}(\frac{\pi-\beta}{4})}{\cos^{2}(\frac{\alpha}{2}) \cos^{2}(\frac{\pi-\beta}{4})}}$
= $\tan^{-1} \frac{2 \sin(\frac{\alpha}{2}) \sin(\frac{\pi-\beta}{4}) \times \cos(\frac{\alpha}{2}) \cos(\frac{\pi-\beta}{4})}{\cos^{2}(\frac{\alpha}{2}) \cos^{2}(\frac{\pi-\beta}{4})}$

$$= \tan^{-1} \frac{2 \sin(\frac{\pi}{2}) \sin(\frac{\pi}{4 - \frac{\pi}{2}}) \times \cos(\frac{\pi}{2} - \frac{\pi}{2})}{\cos^{2}(\frac{\pi}{2}) \cos^{2}(\frac{\pi}{4 - \frac{\pi}{2}}) - \sin^{2}(\frac{\pi}{2}) \sin^{2}(\frac{\pi}{4 - \frac{\pi}{2}})}$$

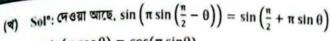
$$= \tan^{-1} \frac{\frac{1}{2} \times [2 \sin(\frac{\pi}{2}) \cos(\frac{\pi}{2})] \times [2 \sin(\frac{\pi}{4 - \frac{\pi}{2}}) \cos(\frac{\pi}{4 - \frac{\pi}{2}})]}{[\cos(\frac{\pi}{2}) \cos(\frac{\pi}{4 - \frac{\pi}{2}}) + \sin(\frac{\pi}{4 - \frac{\pi}{2}})][\cos(\frac{\pi}{4 - \frac{\pi}{2}}) - \sin(\frac{\pi}{4 - \frac{\pi}{2}})]}$$

$$= \tan^{-1} \frac{\frac{1}{2} \sin \alpha \sin(\frac{\pi}{2} - \beta)}{\cos(\frac{\pi}{2} + \frac{\pi}{4 - \frac{\pi}{2}}) \cos(\frac{\pi}{2} - \frac{\pi}{4 + \frac{\pi}{2}})}$$

$$= \tan^{-1} \frac{\frac{1}{2} \sin \alpha \cos \beta}{\frac{1}{2} \times 2 \cos(\frac{\pi}{2} + (\frac{\beta}{2} - \frac{\pi}{4})) \cos(\frac{\pi}{2} - (\frac{\beta}{2} - \frac{\pi}{4}))}$$

[JB'22]

Educationblog24.com


HSC প্রস্নব্যাংক ২০২৫

$= \tan^{-1} \frac{\sin \alpha \cos \beta}{\cos \left\{\frac{\alpha}{2} + \left(\frac{\beta}{2} - \frac{\pi}{4}\right) + \frac{\alpha}{2} - \left(\frac{\beta}{2} - \frac{\pi}{4}\right)\right\} + \cos \left\{\frac{\alpha}{2} + \left(\frac{\beta}{2} - \frac{\pi}{4}\right) - \frac{\alpha}{2} + \left(\frac{\beta}{2} - \frac{\pi}{4}\right)\right\}}$ $= \tan^{-1} \frac{\sin \alpha \cos \beta}{\cos \alpha + \cos \left(\beta - \frac{\pi}{2}\right)} = \tan^{-1} \frac{\sin \alpha \cos \beta}{\cos \alpha + \sin \beta}$ $= \tan^{-1} \frac{f(\alpha)g(\beta)}{f\left(\frac{\pi}{2} - \alpha\right) + g\left(\frac{\pi}{2} - \beta\right)} = \text{R. H. S (Proved)}$

- B উদ্দীপক-২: $\cot^{-1}\left(\frac{1}{x}\right) + \frac{1}{2}\sec^{-1}\left(\frac{1+y^2}{1-y^2}\right) + \frac{1}{2}\csc^{-1}\left(\frac{1+z^2}{2z}\right) = \pi.$ [CB'22]
 - (গ) উদ্দীপক-২ হতে প্রমাণ কর যে, x + y + z = xyz.
- (গ) Soln: প্রদন্ত রাশি, $\cot^{-1}\frac{1}{x} + \frac{1}{2}\sec^{-1}\frac{1+y^2}{1-y^2} + \frac{1}{2}\csc^{-1}\frac{1+z^2}{2z} = \pi$ $\Rightarrow \tan^{-1}x + \frac{1}{2}\cos^{-1}\frac{1-y^2}{1+y^2} + \frac{1}{2}\sin^{-1}\frac{2z}{1+z^2} = \pi$ $\Rightarrow \tan^{-1}x + \frac{1}{2}2\tan^{-1}y + \frac{1}{2}2\tan^{-1}z = \pi$ $\Rightarrow \tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \pi$ $\Rightarrow \tan^{-1}\frac{x+y+z-xyz}{1-xy-yz-zx} = \pi \Rightarrow x+y+z-xyz = 0$ $\therefore x+y+z = xyz \text{ (Proved)}$
- দৃশ্যকম্প-২: f(y) = tan⁻¹y. |Din.B'22|
 (গ) দৃশ্যকম্প-২ হতে প্রমাণ কর যে,
 tan{2f(x)} = 2tan {f(x) + f(x³)}.
- (গ) Soln: দেওয়া আছে, $f(y) = \tan^{-1} y$ L. H. $S = \tan\{2f(x)\} = \tan\{2\tan^{-1} x\}$ $= \tan \tan^{-1} \frac{2x}{1-x^2} = \frac{2x}{1-x^2}$ R. H. $S = 2\tan\{f(x) + f(x^3)\}$ $= 2\tan\{\tan^{-1} x + \tan^{-1} x^3\} = 2\tan\left(\tan^{-1} \frac{x+x^3}{1-x^4}\right)$ $= 2 \times \frac{x(1+x^2)}{(1+x^2)(1-x^2)} = \frac{2x}{1-x^2} \therefore \text{L. H. } S = \text{R. H. } S$ $\therefore \tan\{2f(x)\} = 2\tan\{f(x) + f(x^3)\}$ (Proved)
- IS $f(x) = \cos x$ একটি ত্রিকোণমিতিক ফাংশন। |MB'22| (ক) $\tan^{-1}x + \tan^{-1}y = \frac{\pi}{2}$ হলে দেখাও যে, $x = \frac{1}{y}$ [যেখানে, $x > 0, y > 0, \ 0 < xy < 1$]
 - (খ) যদি $f^{-1}(2x) + f^{-1}(2y) = \frac{3\pi}{2}$ হলে দেখাও যে, $x^2 + y^2 = \frac{1}{4}$.
- (ক) Sol*: দেওয়া আছে, $\tan^{-1} x + \tan^{-1} y = \frac{\pi}{2}$ $\Rightarrow \tan^{-1} \frac{x+y}{1-xy} = \frac{\pi}{2} \Rightarrow \cot^{-1} \frac{1-xy}{x+y} = \frac{\pi}{2} \Rightarrow \frac{1-xy}{x+y} = \cot \frac{\pi}{2} = 0$ $\Rightarrow 1 xy = 0 \Rightarrow xy = 1 \therefore x = \frac{1}{y}$ (Showed)
- (খ) Soln: দেওয়া আছে, $f^{-1}(2x) + f^{-1}(2y) = \frac{3\pi}{2}$ $\Rightarrow \cos^{-1}(2x) + \cos^{-1}(2y) = \frac{3\pi}{2}$ $\Rightarrow \cos^{-1}(4xy \sqrt{(1 4x^2)(1 4y^2)}) = \frac{3\pi}{2}$ $\Rightarrow 4xy \sqrt{1 4x^2 4y^2 + 16x^2y^2} = \cos\frac{3\pi}{2} = 0$ $\Rightarrow 4xy = \sqrt{1 4x^2 4y^2 + 16x^2y^2}$ $\Rightarrow 16x^2y^2 = 1 4x^2 4y^2 + 16x^2y^2$ $\Rightarrow 4x^2 + 4y^2 = 1 \therefore x^2 + y^2 = \frac{1}{4} \text{ (Showed)}$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

- h(x) = $\tan^{-1} x$; $f(\theta) = \cos \theta$ |DB'2| (ক) প্রমাণ কর: $\cot^{-1}(\tan 2\phi) + \cot^{-1}(-\tan 3\phi) = \phi$ (গ) প্রমাণ কর যে $2h\left(\frac{\sqrt{a-b}}{2}\tan\frac{\theta}{2}\right) = \cos^{-1}\frac{b+af(\theta)}{2}$
- (গ) প্রমাণ কর যে, $2h\left(\frac{\sqrt{a-b}}{\sqrt{a+b}}\tan\frac{\theta}{2}\right) = \cos^{-1}\frac{b+af(\theta)}{a+bf(\theta)}$ (ক) Solⁿ: L.H. S = $\cot^{-1}(\tan 2\varphi) + \cot^{-1}(-\tan 3\varphi)$
 - $= \tan^{-1}\left(\frac{1}{\tan^{2}\varphi}\right) + \tan^{-1}\left(\frac{1}{-\tan^{3}\varphi}\right)$ $= \tan^{-1}\frac{\frac{1}{\tan^{2}\varphi} + \left(-\frac{1}{\tan^{3}\varphi}\right)}{1 \frac{1}{\tan^{2}\varphi}\left(\frac{-1}{\tan^{3}\varphi}\right)} = \tan^{-1}\frac{\frac{\tan^{3}\varphi \tan^{2}\varphi}{\tan^{2}\varphi\tan^{3}\varphi}}{\frac{\tan^{2}\varphi\tan^{3}\varphi + 1}{\tan^{2}\varphi\tan^{3}\varphi}}$ $= \tan^{-1}\frac{\tan^{3}\varphi \tan^{2}\varphi}{1 + \tan^{2}\varphi\tan^{3}\varphi} = \tan^{-1}\left\{\tan\left(3\varphi 2\varphi\right)\right\}$ $= \tan^{-1}\tan\varphi = \varphi = R. H. S (Proved)$ $\boxed{\Phi^{\text{ext}}: \cot^{-1}(\tan^{2}\varphi) \cot^{-1}(\tan^{3}\varphi)}$ $= \frac{\pi}{2} \tan^{-1}(\tan^{2}\varphi) \left(\frac{\pi}{2} \tan^{-1}(\tan^{3}\varphi)\right)$ $= \frac{\pi}{2} 2\varphi \left(\frac{\pi}{2} 3\varphi\right) = \frac{\pi}{2} 2\varphi \frac{\pi}{2} + 3\varphi = \varphi = R. H. S$
- (5) Soln: L. H. $S = 2h\left(\frac{\sqrt{a-b}}{\sqrt{a+b}}\tan\frac{\theta}{2}\right) = 2\tan^{-1}\left(\frac{\sqrt{a-b}}{\sqrt{a+b}}\tan\frac{\theta}{2}\right)$ $= \cos^{-1}\frac{1-\frac{a-b}{a+b}\tan^2\frac{\theta}{2}}{1+\frac{a-b}{a+b}\tan^2\frac{\theta}{2}} = \cos^{-1}\frac{(a+b)-(a-b)\tan^2\frac{\theta}{2}}{(a+b)+(a-b)\tan^2\frac{\theta}{2}}$ $= \cos^{-1}\frac{a(1-\tan^2\frac{\theta}{2})+b(1+\tan^2\frac{\theta}{2})}{a(1+\tan^2\frac{\theta}{2})+b(1-\tan^2\frac{\theta}{2})} = \cos^{-1}\frac{a(\frac{1-\tan^2\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}})+b}{a+b(\frac{1-\tan^2\frac{\theta}{2}}{2})}$
 - $= \cos^{-1} \frac{a\cos(2\frac{\theta}{2}) + b}{a + b\cos(2\frac{\theta}{2})} = \cos^{-1} \frac{a\cos\theta + b}{a + b\cos\theta}$ $= \cos^{-1} \frac{af(\theta) + b}{a + bf(\theta)} = R. H. S [Proved]$
- াঠি $f(a) = \tan^{-1} a, f(x) = \sin x$ |RB'21|
 (খ) দেখাও যে, $2f\left(\sqrt{\frac{x-y}{x+y}}\tan\frac{\theta}{2}\right) = \sec^{-1}\frac{x+yg\left(\frac{\pi}{2}-\theta\right)}{y+xg\left(\frac{\pi}{2}-\theta\right)}$
- $\begin{aligned} & \{ \forall \} \quad \text{SoI}^n \text{: L. H. S} = 2 \tan^{-1} \left(\sqrt{\frac{x-y}{x+y}} \tan \frac{\theta}{2} \right) \\ & = \cos^{-1} \frac{1 \frac{x-y}{x+y} \tan^2 \frac{\theta}{2}}{1 + \frac{x-y}{x+y} \tan^2 \frac{\theta}{2}} = \cos^{-1} \frac{x+y (x-y) \tan^2 \frac{\theta}{2}}{x+y + (x-y) \tan^2 \frac{\theta}{2}} \\ & = \cos^{-1} \frac{x \left(1 \tan^2 \frac{\theta}{2}\right) + y \left(1 + \tan^2 \frac{\theta}{2}\right)}{x \left(1 + \tan^2 \frac{\theta}{2}\right) + y \left(1 \tan^2 \frac{\theta}{2}\right)} = \cos^{-1} \frac{y + x \frac{1 \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}}{x + y \frac{1 \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}} \\ & = \cos^{-1} \frac{y + x \cos \theta}{x + y \cos \theta} = \sec^{-1} \frac{x + y \sin \left(\frac{\pi}{2} \theta\right)}{y + x \sin \left(\frac{\pi}{2} \theta\right)} \end{aligned}$
- $= \sec^{-1} \frac{x + yg(\frac{\pi}{2} \theta)}{y + xg(\frac{\pi}{2} \theta)} = R. H. S \text{ (Showed)}$ B. $f(x) = \sin x.$ |RB'21; Ctg.B'19, 21|
 (খ) $f\left(\pi f\left(\frac{\pi}{2} \theta\right)\right) = f\left(\frac{\pi}{2} + \pi f(\theta)\right)$ হলে, দেখাও খে, $\theta = \pm \frac{1}{2}\sin^{-1}\frac{3}{4}$.

$$\Rightarrow \sin(\pi\cos\theta) = \cos(\pi\sin\theta)$$

$$\Rightarrow \sin(\pi\cos\theta) = \sin\left(\frac{\pi}{2} \pm \pi\sin\theta\right)$$

$$\Rightarrow \pi \cos \theta = \frac{\pi}{2} \pm \pi \sin \theta \Rightarrow \cos \theta = \frac{1}{2} \pm \sin \theta$$

$$\Rightarrow \cos \theta \pm \sin \theta = \frac{1}{2} \Rightarrow 1 \pm \sin 2\theta = \frac{1}{4}$$

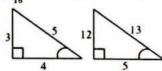
$$\Rightarrow \pm \sin 2\theta = -\frac{3}{4} \Rightarrow \sin 2\theta = \pm \frac{3}{4}$$

$$\Rightarrow 2\theta = \sin^{-1}\left(\pm\frac{3}{4}\right) \Rightarrow 2\theta = \pm\sin^{-1}\frac{3}{4}$$

$$\Rightarrow \theta = \pm \frac{1}{2} \sin^{-1} \frac{3}{4} \text{ (Showed)}$$

A =
$$\sin^{-1}\frac{3}{5}$$
, B = $\cos^{-1}\frac{5}{13}$, C = $\cot^{-1}2$,

$$D = \tan^{-1} \frac{28}{29}$$
.


[Ctg.B'21]

(গ) উদ্দীপকের আলোকে প্রমাণ কর যে,

$$2 A + B = 2 (C + D).$$

(f)
$$Sol^n$$
: L. H. $S = 2A + B = 2 sin^{-1} \frac{3}{5} + cos^{-1} \frac{5}{13}$
= $2 tan^{-1} \frac{3}{4} + tan^{-1} \frac{12}{5} = tan^{-1} \frac{2 \times \frac{3}{4}}{1 - (\frac{3}{2})^2} + tan^{-1} \frac{12}{5}$

$$= \tan^{-1} \frac{\frac{3}{2}}{1 - \frac{9}{16}} + \tan^{-1} \frac{12}{5} = \tan^{-1} \frac{24}{7} + \tan^{-1} \frac{12}{5}$$

=
$$\pi + \tan^{-1} \frac{\frac{24}{7} + \frac{12}{5}}{1 - \left(\frac{24}{7} \times \frac{12}{5}\right)}$$
 $\left[xy > 1 \text{ ECF}, \tan^{-1} x + \tan^{-1} \frac{x+y}{1-xy} \right]$

$$= \pi + \tan^{-1} \frac{\frac{204}{35}}{1 - \frac{288}{35}} = \pi + \tan^{-1} \frac{\frac{204}{35}}{\frac{253}{35}}$$

$$= \pi - \tan^{-1} \frac{204}{253}$$

R. H. S = 2 (C + D) = 2
$$\left(\cot^{-1} 2 + \tan^{-1} \frac{28}{29}\right)$$

$$= 2 \left(\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{28}{29} \right) = 2 \left(\tan^{-1} \frac{\frac{1}{2} + \frac{28}{29}}{1 - \frac{14}{29}} \right)$$

$$= 2 \tan^{-1} \frac{\frac{85}{58}}{\frac{15}{29}} = 2 \tan^{-1} \frac{17}{6} = \pi + \tan^{-1} \frac{2 \times \frac{17}{6}}{1 - \left(\frac{17}{6}\right)^2}$$

$$= \pi + \tan^{-1} \frac{\frac{17}{3}}{1 - \frac{289}{36}} = \pi + \tan^{-1} \frac{\frac{17}{3}}{\frac{253}{36}}$$

$$=\pi + \tan^{-1}\left(\frac{204}{-253}\right) = \pi - \tan^{-1}\frac{204}{253}$$

$$LH.S = R.H.S$$
 (Proved)

মূশ্যকল-১: $P = \sec^{-1} \sqrt{5} - \frac{1}{2} \sin^{-1} \frac{3}{5} + \cot^{-1} 3$.

[SB'21]

(খ) দৃশ্যকম্প-১ হতে প্রমাণ কর যে, P = tan⁻¹ 2.

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

(4) Sola:
$$4 f d_1$$
, $\frac{1}{2} \sin^{-1} \frac{3}{5} = \theta \Rightarrow \sin 2\theta = \frac{3}{5}$

আমরা জানি,
$$\tan \theta = \frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{\frac{3}{5}}{1 + \sqrt{1 - \frac{2}{5}}} = \frac{\frac{3}{5}}{1 + \frac{4}{5}} = \frac{1}{3}$$

$$\dot{\theta} = \tan^{-1}\left(\frac{1}{2}\right)$$

$$P = \sec^{-1}\sqrt{5} - \frac{1}{2}\sin^{-1}\frac{3}{5} + \cot^{-1}3$$

$$= \tan^{-1} 2 - \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3}$$

$$= \tan^{-1} 2 - \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{2} = \tan^{-1} 2$$

$$\therefore P = \tan^{-1} 2 \text{ (Proved)}$$

 $g(A) = \cos 2A, h(B) = \sin 4B.$

[BB'21]

(খ) উদ্দীপক-১ এ প্রমাণ কর যে, $A = g^{-1}\{h(B)\}$.

$$=\frac{1-tan^2(cot^{-1}7)}{1+tan^2(cot^{-1}7)}=\frac{1-tan^2\left(tan^{-1}\frac{1}{7}\right)}{1+tan^2\left(tan^{-1}\frac{1}{7}\right)}=\frac{1-\frac{1}{49}}{1+\frac{1}{49}}=\frac{24}{25}$$

$$h(B) = \sin 4B = \sin 4 (\cot^{-1} 3)$$

$$= 2 \sin(2 \cot^{-1} 3) \cos(2 \cot^{-1} 3)$$

$$= 2 \left\{ \frac{2 \tan(\cot^{-1} 3)}{1 + \tan^{2}(\cot^{-1} 3)} \right\} \left\{ \frac{1 - \tan^{2}(\cot^{-1} 3)}{1 + \tan^{2}(\cot^{-1} 3)} \right\}$$

$$= 2 \times \left\{ \frac{2 \tan \left(\tan^{-1} \frac{1}{3} \right)}{1 + \tan^{2} \left(\tan^{-1} \frac{1}{3} \right)} \right\} \left\{ \frac{1 - \tan^{2} \left(\tan^{-1} \frac{1}{3} \right)}{1 + \tan^{2} \left(\tan^{-1} \frac{1}{3} \right)} \right\}$$

$$= 2 \times \left\{ \frac{\frac{2}{3}}{1 + \frac{1}{9}} \right\} \left\{ \frac{1 - \frac{1}{9}}{1 + \frac{1}{9}} \right\} = 2 \times \frac{6}{10} \times \frac{4}{5} = \frac{24}{25}$$

$$\therefore g(A) = h(B); g^{-1}\{g(A)\} = g^{-1}\{h(B)\}$$

$$\Rightarrow A = g^{-1}\{h(B)\}$$
 (Proved)

মূশ্যকম্প-২: A =
$$\csc^{-1}\sqrt{5} - \frac{1}{2}\sin^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{4}$$
.

[JB'21]

(ক) দেখাও যে,
$$\sec^2(\tan^{-1}\sqrt{15}) + \csc^2(\cot^{-1}\sqrt{13}) = 30$$
.

(গ) দৃশ্যকম্প-২ থেকে দেখাও যে,
$$A = \tan^{-1} \frac{11}{27}$$

(4)
$$S_0I^n$$
: L. H. $S = sec^2(tan^{-1}\sqrt{15}) + cosec^2(cot^{-1}\sqrt{13})$

$$= 1 + \tan^2(\tan^{-1}\sqrt{15}) + 1 + \cot^2(\cot^{-1}\sqrt{13})$$

$$= 1 + (\sqrt{15})^2 + 1 + (\sqrt{13})^2 = 30 = R.H.S$$
 (Showed)

(গ) Solⁿ: ধরি,
$$\frac{1}{2}\sin^{-1}\frac{3}{5} = \theta \div \sin 2\theta = \frac{3}{5}$$

$$\Rightarrow \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{2 \sin^2 \theta}{2 \sin \theta \cos \theta}$$

$$= \frac{1 - \cos 2\theta}{\sin 2\theta} = \frac{1 - \sqrt{1 - \sin^2 2\theta}}{\sin 2\theta} = \frac{1 - \sqrt{1 - \left(\frac{3}{5}\right)^2}}{\left(\frac{3}{5}\right)}$$

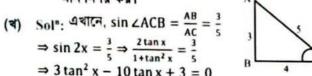
$$=\frac{1}{3}$$
 $\theta = \tan^{-1}\left(\frac{1}{3}\right)$

L. H. S = A =
$$\csc^{-1}\sqrt{5} - \frac{1}{2}\sin^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{4}$$

$$= \tan^{-1} \frac{1}{2} - \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{4}$$

$$= \tan^{-1} \left\{ \frac{\frac{1}{2} + \left(-\frac{1}{3}\right) + \frac{1}{4} - \frac{1}{2 \cdot 4 \cdot (-3)}}{1 + \frac{1}{2} + \frac{1}{1 - 2}} \right\} = \tan^{-1} \frac{11}{27} = R. H. S (Showed)$$

Educationblog24.com


উচ্চত্র গণিত ২য় পত্র : অধ্যায়-০০

23 দৃশ্যকম্প-১:

[CB'21]

(খ) দৃশ্যকম্প-১ এ ∠ACB = 2x হলে cot⁻¹ 3 – x এর মান নির্ণয় কর।

⇒
$$3 \tan^2 x - 10 \tan x + 3 = 0$$

⇒ $3 \tan^2 x - 9 \tan x - \tan x + 3 = 0$
⇒ $(3 \tan x - 1)(\tan x - 3) = 0$

কিন্তু 2x সৃন্ধকোণ ও $\tan 2x = \frac{3}{4} < 3 \Rightarrow \tan 2x < \tan x$

∴
$$\tan x \neq 3$$
 ∴ $\tan x = \frac{1}{3}$ $\text{ off}, x = \tan^{-1} \frac{1}{3}$
∴ $\cot^{-1} 3 - x = \cot^{-1} 3 - \tan^{-1} \frac{1}{3}$
= $\cot^{-1} 3 - \cot^{-1} 3 = 0$ (Ans.)

N = $tan^{-1}(cosec tan^{-1} x - tancot^{-1}x)$ [Din.B'21] (খ) দেখাও যে, N = $\frac{1}{2}tan^{-1}x$.

(*) Sol*: N =
$$\tan^{-1}(\operatorname{cosec} \tan^{-1} x - \operatorname{tan} \cot^{-1} x)$$

= $\tan^{-1}\left\{\operatorname{cosec} \operatorname{cosec}^{-1} \frac{\sqrt{1+x^2}}{x} - \operatorname{tan} \tan^{-1} \frac{1}{x}\right\}$
= $\tan^{-1}\left\{\frac{\sqrt{1+x^2}}{x} - \frac{1}{x}\right\} = \frac{1}{2} \cdot 2 \tan^{-1}\left\{\frac{\sqrt{1+x^2}}{x} - \frac{1}{x}\right\}$
= $\frac{1}{2} \tan^{-1} \frac{2(\sqrt{1+x^2}-1)}{x\left\{1 - \frac{(\sqrt{1+x^2}-1)}{x^2}\right\}} = \frac{1}{2} \tan^{-1} \frac{2x(\sqrt{1+x^2}-1)}{x^2 - (1+x^2-2\sqrt{1+x^2}+1)}$
= $\frac{1}{2} \tan^{-1} \frac{2x(\sqrt{1+x^2}-1)}{2\sqrt{1+x^2}-2} = \frac{1}{2} \tan^{-1} x$
 $\therefore N = \frac{1}{2} \tan^{-1}(x)$ (Showed)

ক) $\cot^{-1} x + \cot^{-1} y = \frac{\pi}{2}$ হলে, দেখাও যে, xy = 1.

(4) Solⁿ: $\cot^{-1} x + \cot^{-1} y = \frac{\pi}{2}$ $\Rightarrow \cot^{-1} x = \frac{\pi}{2} - \cot^{-1} y \Rightarrow \cot^{-1} x = \tan^{-1} y$ $\Rightarrow \tan^{-1} \frac{1}{x} = \tan^{-1} y \Rightarrow \frac{1}{x} = y \Rightarrow xy = 1 \text{ (Showed)}$

 $A = \sec^{-1}\frac{2}{x}, B = \sec^{-1}\frac{3}{y}.$ [MB'21] (গ) দেখাও যে, $A + B = \frac{\pi}{2}$ সমীকরণটি একটি উপবৃত্ত

(গ) Sol*: $\sec^{-1}\frac{2}{x} + \sec^{-1}\frac{3}{y} = \frac{\pi}{2} \Rightarrow \cos^{-1}\frac{x}{2} + \cos^{-1}\frac{y}{3} = \frac{\pi}{2}$ $\Rightarrow \cos^{-1}\frac{x}{2} = \frac{\pi}{2} - \cos^{-1}\frac{y}{3}$ $\Rightarrow \cos^{-1}\frac{x}{2} = \sin^{-1}\frac{y}{3} \left[\therefore \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \right]$ $\Rightarrow \frac{x}{2} = \sqrt{1 - \frac{y^2}{9}} \Rightarrow \frac{x^2}{4} = 1 - \frac{y^2}{9} \Rightarrow \frac{x^2}{4} + \frac{y^2}{9} = 1$ যা একটি উপৰুত্ত নিৰ্দেশ কৰে। (Showed)

27. $f(x) = \frac{2x}{1+x^2}, g(y) = \frac{1-y^2}{1+y^2}$

[DB'19

(খ) $\csc^{-1}\frac{1}{f(a)} - \sec^{-1}\frac{1}{g(b)} = 2\tan^{-1}x$ হলে, দেখাও যে, $x = \frac{a-b}{1+ab}$.

(*)
$$S_0I^n$$
: $cosec^{-1}\frac{1}{\frac{2a}{1+a^2}} - sec^{-1}\frac{1}{\frac{1-b^2}{1+b^2}} = 2 tan^{-1} x$

$$\Rightarrow sin^{-1}\frac{2a}{1+a^2} - cos^{-1}\frac{1-b^2}{1+b^2} = 2 tan^{-1} x$$

$$\Rightarrow 2 tan^{-1}(a) - 2 tan^{-1}(b) = 2 tan^{-1} x$$

$$\Rightarrow tan^{-1} a - tan^{-1} b = tan^{-1} x$$

$$\Rightarrow x = tan(tan^{-1} a - tan^{-1} b) \therefore x = \frac{a-b}{1+ab} [Showed]$$

মূশ্যকম্প-১: $f(a) = \sec^{-1}\frac{1}{a} + \sec^{-1}\frac{1}{b}$. |Cgt.B'19 (গ) দৃশ্যকম্প-১ হতে $f(a) = \alpha$ হতে প্রমাণ কর যে, $\sin\alpha = \sqrt{a^2 + b^2 - 2ab\cos\alpha}$

(গ) Solⁿ: প্রশানুসারে, $f(a) = \alpha$; $\sec^{-1}\frac{1}{a} + \sec^{-1}\frac{1}{b} = \alpha$ $\Rightarrow \cos^{-1}a + \cos^{-1}b = \alpha$ $\Rightarrow ab - \sqrt{1 - a^2} \cdot \sqrt{1 - b^2} = \cos\alpha \dots \dots \dots (i)$ $\Rightarrow ab - \cos\alpha = \sqrt{(1 - a^2)(1 - b^2)}$ $\Rightarrow (ab - \cos\alpha)^2 = (1 - a^2)(1 - b^2)$ $\Rightarrow -2ab\cos\alpha + \cos^2\alpha = 1 - a^2 - b^2$ $\Rightarrow a^2 + b^2 - 2ab\cos\alpha = 1 - \cos^2\alpha$ $\therefore \sin\alpha = \sqrt{a^2 + b^2 - 2ab\cos\alpha} \text{ (Proved)}$

দৃশ্যকল্প-২: $A = 2 \sin^{-1} \frac{1}{3} + \cos^{-1} \sqrt{\frac{2}{3}}$. [BB'19]
(গ) দৃশ্যকল্প-২ হতে প্রমাণ কর যে, $A = \tan^{-1} \frac{5}{\sqrt{2}}$.

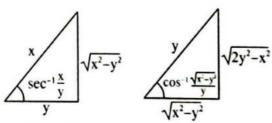
(গ) Solⁿ: $\sqrt{\frac{3}{2}}$ 1

দেওয়া আছে, $A = 2 \sin^{-1} \frac{1}{3} + \cos^{-1} \sqrt{\frac{2}{3}}$ $= 2 \tan^{-1} \frac{1}{\sqrt{8}} + \tan^{-1} \frac{1}{\sqrt{2}}$ $= \tan^{-1} \frac{\frac{2}{2\sqrt{2}}}{1 - \frac{1}{8}} + \tan^{-1} \frac{1}{\sqrt{2}} = \tan^{-1} \frac{8}{7\sqrt{2}} + \tan^{-1} \frac{1}{\sqrt{2}}$ $= \tan^{-1} \frac{\frac{8}{7\sqrt{2}} + \frac{1}{\sqrt{2}}}{1 - \frac{8}{72}} = \tan^{-1} \frac{8\sqrt{2} + 7\sqrt{2}}{6} = \tan^{-1} \frac{5}{\sqrt{2}}$ $\therefore A = \tan^{-1} \frac{5}{\sqrt{2}} \quad [Proved]$

ন্ত্ৰাকম্প-১:

[Din.B'19]

(খ) দৃশ্যকম্প-১ এর আলোকে প্রমাণ কর যে, $\frac{1}{2}\emptyset + \sin^{-1}\frac{3}{5} = \cot^{-1}2 + \cot^{-1}\frac{29}{28}$


- (4) Solⁿ: $\frac{1}{2}\emptyset = \frac{1}{2}\sin^{-1}\frac{12}{13}$ 4/3, $\theta = \frac{1}{2} \sin^{-1} \frac{12}{13} \Rightarrow \frac{12}{13} = \sin 2\theta$ আবার, $\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{2\sin\theta\cos\theta}{2\cos^2\theta} = \frac{\sin2\theta}{1+\cos2\theta}$ $= \frac{\sin 2\theta}{1 + \sqrt{1 - \sin^2 2\theta}} = \frac{\frac{12}{13}}{1 + \sqrt{1 - \left(\frac{12}{13}\right)^2}} = \frac{2}{3} : \theta = \tan^{-1} \frac{2}{3}$
 - L.H.S = $\frac{1}{2}$ Ø + sin⁻¹ $\frac{3}{5}$ = tan⁻¹ $\frac{2}{3}$ + tan⁻¹ $\frac{3}{4}$ $= \tan^{-1} \frac{\frac{2}{3} + \frac{3}{4}}{1 - \frac{2}{3} \cdot \frac{3}{4}} = \tan^{-1} \frac{17}{6}$
 - R.H.S = $\cot^{-1} 2 + \cot^{-1} \frac{29}{28} = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{28}{29}$ $= \tan^{-1} \frac{\frac{1}{2} + \frac{28}{29}}{1 - \frac{28}{1}} = \tan^{-1} \frac{17}{6}$ $\frac{1}{2}$ $\phi + \sin^{-1}\frac{3}{5} = \cot^{-1}2 + \cot^{-1}\frac{29}{28}$ (Proved)
- ্রা (ক) প্রমাণ কর যে, $2 \sin^{-1} x = \sin^{-1}(2x\sqrt{1-x^2})$. [DB, SB, JB, Din.B'18]
- (ক) Solⁿ: ধরি, $x = \sin\theta$; R. H. $S = \sin^{-1}(2x\sqrt{1-x^2})$ $= \sin^{-1}(2\sin\theta\sqrt{1-\sin^2\theta}) = \sin^{-1}(2\sin\theta\cos\theta)$ $\sin^{-1}(\sin 2\theta) = 2\theta = 2\sin^{-1}x = L.H.S$ (Proved)
- (ক) দেখাও যে, 2 tan⁻¹ x = sin⁻¹ ^{2x}/_{14x²}. [DB'17]
- (ক) Solⁿ: ধরি, $tan^{-1} x = A : tanA = x$ আমরা জানি, $\sin 2A = \frac{2 \tan A}{1 + \tan^2 A} \Rightarrow 2A = \sin^{-1} \left(\frac{2 \tan A}{1 + \tan^2 A} \right)$ $\therefore 2 \tan^{-1} x = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$ (Showed)
- $f(x) = \tan x$. [RB'17] (খ) উদ্দীপকে উল্লিখিত f(x) এর জন্য $f^{-1}(x) + f^{-1}(y) = \pi$ रल প্রমাণ কর যে প্রাপ্ত সঞ্চারপথটি একটি সরলরেখা নির্দেশ করে যার ঢাল -1 হবে।
- (ব) Solo: দেওয়া আছে, f(x) = tanx : $f^{-1}(x) = \tan^{-1} x$ এবং $f^{-1}(y) = \tan^{-1} y$ প্রশাত, $\tan^{-1} x + \tan^{-1} y = \pi \Rightarrow \tan^{-1} \frac{x+y}{1-xy} = \pi$ $\Rightarrow \frac{x+y}{1-xy} = 0 \Rightarrow x+y = 0 : y = -x$ অতএব, প্রাপ্ত সধ্যারপথটি একটি সরলরেখা নির্দেশ করে এবং সরলরেখাটির ঢাল -1। (Proved)
- $f(x) = \cot^{-1} y \tan^{-1} x \dots \dots (i)$ [Ctg.B'17] (খ) $f(x) = \frac{\pi}{6}$ হলে প্রমাণ কর যে, $x + y + \sqrt{3} xy = \sqrt{3}$.
- (4) Sol^n : $f(x) = \frac{\pi}{6} : \cot^{-1} y \tan^{-1} x = \frac{\pi}{6}$ $\Rightarrow \tan^{-1}\frac{1}{y} - \tan^{-1}x = \frac{\pi}{6}$ $\Rightarrow \tan^{-1} \frac{\frac{1}{y} - x}{1 + \frac{1}{y} \cdot x} = \frac{\pi}{6} \Rightarrow \frac{\frac{1 - xy}{y}}{\frac{y + x}{y}} = \tan \frac{\pi}{6} \Rightarrow \frac{1 - xy}{x + y} = \frac{1}{\sqrt{3}}$ \Rightarrow x + y = $\sqrt{3}$ - $\sqrt{3}$ xy \therefore x + y + $\sqrt{3}$ xy = $\sqrt{3}$ (Proved)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

- 35. দৃশ্যকম্প -১: $\cot \theta \tan \theta = \frac{6}{5}$ [JB'17]
 - (ক) প্রমাণ কর যে, $tan^{-1}(cot3x) + tan^{-1}(-cot5x) = 2x$.
 - (খ) দৃশ্যকম্প-১ হতে প্রমাণ কর যে, $\theta = \frac{1}{2} \sin^{-1} \frac{5}{\sqrt{3}A}$
- (Φ) Solⁿ: L. H. S = $\tan^{-1}(\cot 3x) + \tan^{-1}(-\cot 5x)$ $\Rightarrow \tan^{-1}\tan\left(\frac{\pi}{2}-3x\right)-\tan^{-1}\tan\left(\frac{\pi}{2}-5x\right)$ $=\frac{\pi}{2}-3x-\frac{\pi}{2}+5x=2x=R.H.S$ ∴ L. H. S = R. H. S (Proved)
- (খ) Sol": দৃশ্যকল্প-১ হতে পাই, cotθ tanθ = - $\Rightarrow \frac{\cos\theta}{\sin\theta} - \frac{\sin\theta}{\cos\theta} = \frac{6}{5} \Rightarrow \frac{\cos^2\theta - \sin^2\theta}{\sin\theta\cos\theta} = \frac{6}{5}$ $\Rightarrow \frac{\cos 2\theta}{\sin \theta \cos \theta} = \frac{6}{5} \Rightarrow 5\cos 2\theta = 6\sin \theta \cos \theta$ $\Rightarrow 5\cos 2\theta = 6\sin\theta\cos\theta \Rightarrow 5\cos 2\theta = 3\sin 2\theta$ $\Rightarrow \frac{\sin 2\theta}{\cos 2\theta} = \frac{5}{3} \Rightarrow \tan 2\theta = \frac{5}{3} \Rightarrow \sin 2\theta = \frac{5}{\sqrt{5^2 + 3^2}}$ $\Rightarrow 2\theta = \sin^{-1}\frac{5}{\sqrt{34}} : \theta = \frac{1}{2}\sin^{-1}\frac{5}{\sqrt{34}} \text{ (Proved)}$
- 36 cos A = x এবং cos B = y [হলি ক্রস কলেজ, ঢাকা] (ক) $2(\sin^{-1} 2x + \sin^{-1} 2y) = \pi$ হলে, দেখাও যে, $4x^2 + 4y^2 = 1$ (খ) A + B = θ হলে, দেখাও যে,
 - $x^2 + y^2 2xy\cos\theta = \sin^2\theta$ (গ) $\sin \cos^{-1} \tan \sec^{-1} \frac{\cos A}{\cos B} = \frac{1}{2}$ হলে, দেখাও যে, $4x^2 - 7y^2 = 0$
- (ক) Soln: দেওয়া আছে, 2(sin-1 2x + sin-1 2y) = π $\Rightarrow \sin^{-1} 2x = \frac{\pi}{2} - \sin^{-1} 2y$ $\Rightarrow 2x = \sin^{-1}\left(\frac{\pi}{2} - \sin^{-1}2y\right) = \cos^{-1}(\sin^{-1}2y)$ $\Rightarrow 2x = \sqrt{1 - (2y)^2} : 4x^2 + 4y^2 = 1$ (Showed)
- (খ) Soln: দেওয়া আছে, cos A = x : A = cos⁻¹ x এবং $\cos B = y : B = \cos^{-1} y$

প্রশাসতে,
$$A + B = \theta$$

 $\Rightarrow \cos^{-1} x + \cos^{-1} y = \theta$
 $\Rightarrow \cos^{-1} \left(xy - \sqrt{1 - x^2} \sqrt{1 - y^2} \right) = \theta$
 $\Rightarrow xy - \sqrt{1 - x^2} \sqrt{1 - y^2} = \cos \theta$
 $\Rightarrow xy - \cos \theta = \sqrt{1 - x^2} \sqrt{1 - y^2}$
 $\Rightarrow x^2y^2 - 2xy \cos \theta + \cos^2 \theta = (1 - x^2)(1 - y^2)$
 $\Rightarrow x^2y^2 - 2xy \cos \theta = 1 - x^2 - y^2 + x^2y^2 - \cos^2 \theta$
 $\therefore x^2 + y^2 - 2xy \cos \theta = \sin^2 \theta \text{ (Showed)}$

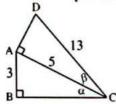
Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

(গ) Soln: দেওয়া আছে,
$$\sin \cos^{-1} \tan \sec^{-1} \frac{\cos A}{\cos B} = \frac{1}{2}$$

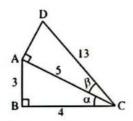
$$\Rightarrow \sin \cos^{-1} \tan \sec^{-1} \frac{x}{y} = \frac{1}{2}$$

$$\Rightarrow \sin \cos^{-1} \tan \tan^{-1} \frac{\sqrt{x^2 - y^2}}{y} = \frac{1}{2}$$


$$\Rightarrow \sin \cos^{-1} \frac{\sqrt{x^2 - y^2}}{y} = \frac{1}{2} \Rightarrow \sin \sin^{-1} \frac{\sqrt{2y^2 - x^2}}{y} = \frac{1}{2}$$

$$\Rightarrow \frac{\sqrt{2y^2 - x^2}}{y} = \frac{1}{2} \Rightarrow \frac{2y^2 - x^2}{y^2} = \frac{1}{4} \Rightarrow 8y^2 - 4x^2 = y^2$$

$$:. 4x^2 - 7y^2 = 0$$
 (দেখানো হলো)


37.

[সরকারি বিজ্ঞান কলেজ, ঢাকা]

(গ) প্রমাণ কর যে, $\alpha - \frac{1}{2}\beta + \cos^{-1} 2 = \frac{1}{2} \tan^{-1} \frac{56}{33}$

(গ) Soln:

L. H. S =
$$\alpha - \frac{1}{2}\beta + \cot^{-1} 2$$

$$= \tan^{-1}\frac{3}{4} - \frac{1}{2}\tan^{-1}\frac{12}{5} + \tan^{-1}\frac{1}{2}$$

ধরি,
$$\tan^{-1} x = \frac{1}{2} \tan^{-1} \frac{12}{5} \Rightarrow 2 \tan^{-1} x = \tan^{-1} \frac{12}{5}$$

$$\Rightarrow \frac{2x}{1-x^2} = \frac{12}{5} \Rightarrow 10x = 12 - 12x^2$$

$$\Rightarrow 12x^2 + 10x - 12 = 0$$

$$\Rightarrow 6x^2 + 5x - 6 = 0 \Rightarrow 6x^2 + 9x - 4x - 6 = 0$$

$$\Rightarrow 3x(2x+3) - 2(2x+3) = 0$$

$$\Rightarrow (2x+3)(3x-2) = 0 : x = \frac{2}{3} [x < 0]$$

$$\therefore \tan^{-1}\frac{3}{4} - \frac{1}{2}\tan^{-1}\frac{12}{5} + \tan^{-1}\frac{1}{2}$$

$$= \tan^{-1} \frac{3}{4} - \tan^{-1} \frac{2}{3} + \tan^{-1} \frac{1}{2}$$

$$= \tan^{-1} \frac{\frac{3}{4} + \frac{1}{2}}{1 - \frac{3}{1}} - \tan^{-1} \frac{2}{3} = \tan^{-1} 2 - \tan^{-1} \frac{2}{3}$$

$$= \tan^{-1} \frac{2 - \frac{2}{3}}{1 + \frac{2}{7}} = \tan^{-1} \frac{4}{7} = \frac{1}{2} \times 2 \tan^{-1} \frac{4}{7}$$

$$= \frac{1}{2} \tan^{-1} \frac{2 \times \frac{4}{7}}{1 - \left(\frac{4}{5}\right)^2} = \frac{1}{2} \tan^{-1} \frac{56}{33} = R. H. S (Proved)$$

38.
$$g(x) = \sin^{-1} \sqrt{2(1-x^2)} + \sin^{-1} \sqrt{2x^2-1}$$

[হালিশহর ক্যান্টনমেন্ট পাবলিক স্কুল এন্ড কলেজ, চট্টগ্রাম]

(খ) দেখাও যে,
$$g(\cos \theta) = \frac{\pi}{2}$$

(খ) Soln: দেওয়া আছে,

$$g(x) = \sin^{-1} \sqrt{2(1-x^2)} + \sin^{-1} \sqrt{2x^2-1}$$

$$\therefore g(\cos\theta) = \sin^{-1}\sqrt{2(1-\cos^2\theta)}$$

$$+ \sin^{-1} \sqrt{2 \cos^2 \theta} - 1$$

$$= \sin^{-1} \sqrt{2 \sin^2 \theta} + \cos^{-1} \sqrt{1 - (\sqrt{2 \cos^2 \theta} - 1)^2}$$

$$= \sin^{-1} \sqrt{2 \sin^2 \theta} + \cos^{-1} \sqrt{1 - 2 \cos^2 \theta + 1}$$

$$= \sin^{-1} \sqrt{2 \sin^2 \theta} + \cos^{-1} \sqrt{2(1 - \cos^2 \theta)}$$

$$= \sin^{-1} \sqrt{2 \sin^2 \theta} + \cos^{-1} \sqrt{2 \sin^2 \theta} = \frac{\pi}{2}$$

$$[\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}]$$

$$\therefore g(\cos \theta) = \frac{\pi}{2}$$
(Showed)

ট্টি উদ্দীপক-১:
$$\cos^{-1} x + \cos^{-1} y + \cos^{-1} \frac{1}{2} = \pi$$

[আলেকান্দা সরকারি কলেজ, বরিশাল]

(ক)
$$\sin^{-1} x = \cos^{-1} x$$
 হলে, দেখাও যে, $x = \pm \frac{1}{\sqrt{2}}$

(খ) প্রমাণ কর যে,
$$4g\left(\frac{1}{\sqrt{5}}\right) + 4g\left(\frac{1}{\sqrt{10}}\right) = \pi$$

(গ) উদ্দীপক-১ হতে দেখাও যে,
$$x^2 + y^2 + xy = \frac{3}{4}$$

(ক) Sol": দেওয়া আছে,

$$\sin^{-1} x = \cos^{-1} x = \sin^{-1} \sqrt{1 - x^2}$$

 $\Rightarrow x = \sqrt{1 - x^2} \Rightarrow x^2 = 1 - x^2 \Rightarrow x^2 = \frac{1}{2}$

$$\therefore x = \pm \frac{1}{\sqrt{2}}$$
 (Showed)

(খ) Soln: দেওয়া আছে, g(x) = sin-1 x

L. H. S =
$$4g\left(\frac{1}{\sqrt{5}}\right) + 4g\left(\frac{1}{\sqrt{10}}\right)$$

$$= 4 \sin^{-1} \left(\frac{1}{\sqrt{5}} \right) + 4 \sin^{-1} \left(\frac{1}{\sqrt{10}} \right)$$

$$= 4 \sin^{-1} \left(\frac{1}{\sqrt{5}} \sqrt{1 - \frac{1}{10}} + \frac{1}{\sqrt{10}} \sqrt{1 - \frac{1}{5}} \right)$$

$$= 4 \sin^{-1} \left(\frac{3}{\sqrt{5}\sqrt{10}} + \frac{2}{\sqrt{5}\sqrt{10}} \right)$$

$$= 4 \sin^{-1} \frac{5}{\sqrt{5}\sqrt{10}} = 4 \sin^{-1} \frac{1}{\sqrt{2}}$$

$$=4\cdot\frac{\pi}{4}=\pi$$
 (Proved)

(গ) Soln: দেওয়া আছে, $\cos^{-1} x + \cos^{-1} y + \cos^{-1} \frac{1}{2} = \pi$

$$\Rightarrow$$
 cos⁻¹ x + cos⁻¹ y = $\pi - \frac{\pi}{3}$

$$\Rightarrow \cos^{-1}(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}) = \frac{2\pi}{3}$$

$$\Rightarrow xy - \sqrt{1 - x^2 - y^2 + x^2y^2} = \cos\frac{2\pi}{3}$$

$$\Rightarrow xy + \frac{1}{2} = \sqrt{1 - x^2 - y^2 + x^2y^2}$$

$$\Rightarrow x^2y^2 + xy + \frac{1}{4} = 1 - x^2 - y^2 + x^2y^2$$

$$\Rightarrow x^2 + y^2 + xy = 1 - \frac{1}{4}$$

$$\therefore x^2 + y^2 + xy = \frac{3}{4}$$
(Showed)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

নিজে করো

 $40. x = a\cos P, y = b\cos Q$

[JB'23]

(ক) যদি
$$\sin^{-1} m + \sin^{-1} n = \frac{\pi}{2}$$
 হয়, তবে দেখাও যে, $m^2 + n^2 = 1$

(খ) যদি
$$P + Q = \Psi$$
 হয় তবে, প্রমাণ কর যে, $\frac{x^2}{a^2} - \frac{2xy}{ab}\cos\Psi + \frac{y^2}{b^2} = \sin^2\Psi$

41.
$$f(\theta) = \sin\theta$$

[SB'22]

$$\sin^{-1}(\sqrt{2}f(\theta)) + \sin^{-1}(\sqrt{f(\frac{\pi}{2} - 2\theta)}) = \frac{\pi}{2}$$

$$\csc^2\left(\tan^{-1}\frac{1}{2}\right) - 3\sec^2\left(\cot^{-1}\sqrt{3}\right) = 1.$$

43. দৃশ্যকম্প-২:
$$\cos^{-1}\frac{m}{a} + \cos^{-1}\frac{n}{b} = x$$
.

(গ) দৃশ্যকম্প-২ এর সাহায্যে দেখাও যে,
$$\frac{m^2}{a^2} - \frac{2mn}{ab} \cos x + \frac{n^2}{b^2} = \sin^2 x$$

44. উদ্দীপক-১:
$$\sec \alpha = \frac{p}{s}$$
, $\sec \beta = \frac{q}{s}$.

[BB'21]

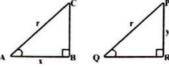
47.

(খ) উদ্দীপক-১ এ
$$\alpha + \beta = \gamma$$
 হলে প্রমাণ কর যে,

$$\frac{x^2}{p^2} + \frac{y^2}{q^2} - \frac{2xy}{pq}\cos\gamma = \sin^2\gamma.$$

45. দৃশ্যকল্প-২: f(x) = cos⁻¹ x.

[Din.B'21]


(গ) দৃশ্যকল্প-২ এ
$$f(x) + f(y) + f(z) = \pi$$
 হলে দেখাও

$$\sqrt{3}, x^2 + y^2 + z^2 + 2xyz = 1.$$

46. (ক)
$$\sin^{-1} m + \sin^{-1} n = \frac{\pi}{2}$$
 হলে, প্রমাণ কর যে,

$$m^2 + n^2 = 1.$$

[DB'19]

[SB'17]

(ক) দেখাও যে,
$$\cos(2\tan^{-1}\frac{y}{x}) = \frac{x^2 - y^2}{x^2 + y^2}$$

(খ) উদ্দীপকে
$$A + P = \varphi$$
 হলে প্রমাণ কর যে,
$$x^2 - 2xy \cos \varphi + y^2 = r^2 \sin^2 \varphi$$

48.
$$\sin \theta = \frac{4}{5}$$

(খ) উদ্দীপকের আলোকে প্রমাণ কর যে,

$$\sec^{-1}\sqrt{5} + \frac{1}{2}\theta - \sin^{-1}\frac{1}{\sqrt{5}} = \tan^{-1}2.$$
 [CB'17]

Type-04: ত্রিকোণমিতিক সমীকরণের সমাধান সংক্রান্ত সাধারণ সমস্যা

* Concept

Note: সমীকরণ সমাধানের ক্ষেত্রে সীমা অবশ্যই খেয়াল রাখতে হবে। সীমা উল্লেখ না থাকলে সাধারণ আকারে সমাধান বের করবে।

- (i) $\sin \theta = 0$ হলে, সাধারণ সমাধান হবে, $\theta = n\pi$; $n \in \mathbb{Z}$
- (ii) $\cos \theta = 0$ হলে, সাধারণ সমাধান হবে, $\theta = (2n + 1) \frac{\pi}{2}$;
- (iii) $\tan \theta = 0$ হলে, সাধারণ সমাধান হবে, $\theta = n\pi$; $n \in \mathbb{Z}$
- (iv) $\cot \theta = 0$ হলে, সাধারণ সমাধান হবে, $\theta = (2n + 1)\frac{\pi}{2}$
- (v) $\sin \theta = 1$ হলে, $\theta = (4n+1)\frac{\pi}{2}$; $n \in \mathbb{Z}$
- (vi) cos θ = 1 হলে, θ = 2nπ; n ∈ Z
- (vii) $\tan\theta=1$ হলে, $\theta=(4n+1)\frac{\pi}{4}=n\pi+\frac{\pi}{4}, n\in\mathbb{Z}$

- (viii) $\sin \theta = -1$ হলে, $\theta = (4n-1)\frac{\pi}{2}$; $n \in \mathbb{Z}$
- (ix) $\cos \theta = -1$ হলে, $\theta = (2n + 1) \pi$; $n \in \mathbb{Z}$
- (x) $\tan \theta = -1$ হলে, $\theta = (4n-1)\frac{\pi}{4} = n\pi \frac{\pi}{4}$, $n \in \mathbb{Z}$
- (xi) $\sin \theta = \sin \alpha$ বা, $\csc \theta = \csc \alpha$ হলে, $\theta = n\pi + (-1)^n \alpha$; $n \in \mathbb{Z}$
- (xii) $\cos \theta = \cos \alpha$ বা, $\sec \theta = \sec \alpha$ হলে, $\theta = 2n\pi \pm \alpha$; $n \in \mathbb{Z}$
- (xiii) $\tan \theta = \tan \alpha$ বা, $\cot \theta = \cot \alpha$ হলে, $\theta = n\pi + \alpha$; $n \in \mathbb{Z}$

উপরোক্ত সূত্রগুলো ত্রিকোণমিতিক সমীকরণ সমাধানের জন্য অপরিহার্য। সৃজনশীল প্রশ্নে নানান গাণিতিক অপারেশনের পর উক্ত সূত্রগুলো প্রয়োগ করে সমাধান করা হয় যা পরবর্তী টাইপগুলোতে বর্ণনা করা হয়েছে। তবে বোর্ড পরীক্ষায় আসা বেশ কিছু MCQ-এ এসব সূত্র প্রয়োগ করে সমাধান করা যায়।

উদাহরণ: $\mathbf{n} \in \mathbb{Z}$ হলে $\sin 2 \theta = 1$ সমীকরণের সাধারণ সমাধান কোনটি?

[RB'23]

সমাধান: $\sin 2\theta = 1 \Rightarrow 2\theta = (4n+1)\frac{\pi}{2} \div \theta = (4n+1)\frac{\pi}{4}$

সজনশীল প্রশ্ন (ক, খ ও গ)

্রিই টাইপ থেকে বিগত বোর্ড পরীক্ষায় কোনো সৃজনশীল প্রশ্ন আসেনি।

Education

Type-05: বর্গসূত্রের প্রয়োগ সংক্রান্ত সমস্যা

* Concept

অপ্রাসঙ্গিক/ অবাস্তর মৃশ: ত্রিকোণমিতিক সমীকরণ সমাধান করার সময় সমীকরণের উভয়পক্ষে বর্গ করলে (বা ঘাত বৃদ্ধি করলে) প্রাপ্ত সমাধানের মূলগুলোর প্রত্যেকটি প্রদত্ত সমীকরণটি সিদ্ধ করে না। যে মূলগুলো সিদ্ধ করে না তাদেরকে অপ্রাসঙ্গিক/ অবান্তর মূল বলে। এক্ষেত্রে হদ্ধি পরীক্র করে অবান্তর মূলগুলোকে বাদ দিতে হবে।

সৃজনশীল প্রশ্ন (ক, খ ও গ)

[এই টাইপ থেকে বিগত বোর্ড পরীক্ষায় কোনো সৃজনশীল প্রশ্ন আসেনি।]

(ক) $\sin \theta + \cos \theta = \sqrt{(2 \sin 2\theta)}$ সমীকরণটি সমাধান [সরকারি বিজ্ঞান কলেজ, ঢাকা]

(ক) Solⁿ: প্রদত্ত সমীকরণ: $\sin \theta + \cos \theta = \sqrt{2 \sin 2\theta}$ $\Rightarrow (\sqrt{\sin \theta})^2 - 2\sqrt{\sin \theta} \sqrt{\cos \theta} + (\sqrt{\cos \theta})^2 = 0$ $\Rightarrow (\sqrt{\sin \theta} - \sqrt{\cos \theta})^2 = 0 \Rightarrow \sqrt{\sin \theta} = \sqrt{\cos \theta}$ $\Rightarrow \sqrt{\tan \theta} = 1 \Rightarrow \tan \theta = 1$ [বর্গ করে] $\Rightarrow \theta = n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$

কিন্তু n বিজোড় হলে θ তৃতীয় চতুর্ভাগে অবস্থান করে যেখানে $\sin\theta$ ও $\cos\theta$ ঋণাত্মক। ফলে $\sqrt{\sin\theta}$ ও $\sqrt{\cos\theta}$ অবান্তব হবে। একই সাথে ২য় ও ৪র্থ চতুর্ভাগে অবস্থানের জন্যও √sin θ ও $\sqrt{\cos \theta}$ এর যেকোনো একটি অবাস্তব হবে।

∴ নির্ণেয় সমাধান: $2n\pi + \frac{\pi}{4}$, $n \in \mathbb{Z}$ (Ans.)

 $\alpha = \sin \theta$ এবং $\beta = \cos \theta$ [হালিশহর ক্যান্টনমেন্ট পাবলিক স্কুল এন্ড কলেজ, চর্ট্যাম (গ) সমাধান কর: $\alpha + \beta = \sqrt{4\alpha\beta}$, যখন $0 \le \theta \le \pi$

(গ) Solⁿ: দেওয়া আছে, $\alpha + \beta = \sqrt{4\alpha\beta}$ $\Rightarrow \alpha^2 + \beta^2 + 2\alpha\beta = 4\alpha\beta \Rightarrow (\alpha - \beta)^2 = 0$ $\Rightarrow \alpha = \beta \Rightarrow \sin \theta = \cos \theta \Rightarrow \tan \theta = 1$ $\therefore \theta = n\pi + \frac{\pi}{4}; n \in \mathbb{Z}$ এখন, $0 \le \theta \le \pi$ $\Rightarrow 0 \le n\pi + \frac{\pi}{4} \le \pi$ $0 \le n + \frac{1}{4} \le 1 \Rightarrow -\frac{1}{4} \le n \le \frac{3}{4}$.: সীমার মধ্যে n এর মান: 0 $\therefore \theta = 0 \cdot \pi + \frac{\pi}{4} = \frac{\pi}{4} \text{ (Ans.)}$

Type-06: sin θ , cos θ , tan θ , sec θ এর ছিঘাতরাশি সম্বলিত পদ **থাক্**লে

¥ Concept

এক্ষেত্রে পূর্ণবর্গ রাশি বানাতে হবে অথবা দ্বিঘাত সমীকরণের ন্যায় সমাধান করতে হবে। দ্বিঘাত ত্রিকোণমিতিক সমীকরণে আমাদেরকে প্রথমেই ভিন্ন ভিন্ন ত্রিকোণমিতিক অনুপাতকে একই ত্রিকোণমিতিক অনুপাতে রূপান্তরিত করতে হবে। তারপর, দ্বিঘাত সমীকরণ যেভাবে সমাধান করা হয় সেভাবে সমাধান করতে হবে।

সূজনশীল প্রশ্ন (ক, খ ও গ)

 $A = \cos x - \cos 2x \text{ age } R = 1 - \cos x$ [RB'23] (গ) সমাধান কর: $\frac{A}{R} = 1$ যখন $0 < x < \pi$

(গ) Sol": দেওয়া আছে, A = cos x - cos 2x $R = 1 - \cos x \, \operatorname{agg} \frac{A}{R} = 1$ $[R \neq 0 : 1 - \cos x \neq 0 : R = 0$ হলে, সমীকরণের বামপক্ষ অসংজ্ঞায়িত হয়ে যাবে।]

$$\Rightarrow \frac{\cos x - \cos 2x}{1 - \cos x} = 1 \Rightarrow \cos x - \cos 2x = 1 - \cos x$$

$$\Rightarrow 2\cos x - (2\cos^2 x - 1) - 1 = 0$$

$$\Rightarrow 2\cos x - 2\cos^2 x + 1 - 1 = 0$$

$$\Rightarrow \cos x - \cos^2 x = 0 \Rightarrow \cos x (1 - \cos x) = 0$$

কিন্তু
$$1 - \cos x \neq 0$$
 $\therefore \cos x = 0$

$$x = (2n+1)\frac{\pi}{2} [n \in \mathbb{Z}]$$

$$n = 0$$
 হলে, $x = \frac{\pi}{2}$; $n = 1$ হলে, $x = \frac{3\pi}{2}$ [অগ্রহণযোগ্য]

$$\therefore$$
 নির্ণেয় সমাধান $x = \frac{\pi}{2}$ (Ans.)

্যু দুশ্যকম্প-২:
$$f(x) = \cot\left(\frac{\pi}{2} - x\right)$$

MB'23

(গ) দৃশ্যকম্প-২ এর সাহায্যে $\{f(x)\}^2 + 4\{f(x)\} - 5 = 0$ সমীকরণটি সমাধান কর।

(গ) Solⁿ: দেওয়া আছে, $f(x) = \cot\left(\frac{\pi}{2} - x\right)$ প্রশামতে, $\{f(x)\}^2 + 4f(x) - 5 = 0$ $\Rightarrow \cot^2\left(\frac{\pi}{2} - x\right) + 4\cot\left(\frac{\pi}{2} - x\right) - 5 = 0$ $\Rightarrow \tan^2 x + 4 \tan x - 5 = 0$ $\Rightarrow \tan^2 x + 5 \tan x - \tan x - 5 = 0$

⇒
$$(\tan x + 5)(\tan x - 1) = 0$$

₹য়, $\tan x = -5$
⇒ $\tan x = \tan \alpha$

$$\Rightarrow x = n\pi + \frac{\pi}{4}, [n \in \mathbb{Z}]$$

$$[\alpha = \tan^{-1}(-5)]$$

$$\therefore x = n\pi + \alpha, [n \in \mathbb{Z}] \text{ (Ans.)}$$

- 03. দৃশ্যকম্প-২: $f(x) = \cos\left(\frac{\pi}{2} x\right)$. |Ctg.B'22|(গ) দৃশ্যকম্প-২ হতে $2\{f(x)\}^2 11 \ f(x) + 5 = 0$, সমীকরণটির সমাধান কর। যেখানে $0 \le x \le 2\pi$
- (1) Sol^n : $f(x) = cos(\frac{\pi}{2} x) = sin x$ $Artan = 2 sin^2 x - 11 sin x + 5 = 0$ $\Rightarrow 2 sin^2 x - 10 sin x - sin x + 5 = 0$ $\Rightarrow 2 sin x (sin x - 5) - 1(sin x - 5) = 0$ $\Rightarrow 2 sin x = 1 [sin x - 5 \neq 0]$ $\Rightarrow sin x = \frac{1}{2} = sin \frac{\pi}{6} \therefore x = n\pi + (-1)^n \frac{\pi}{6}$; $[n \in \mathbb{Z}]$

n এর মান	$x = n\pi + (-1)^n \frac{\pi}{6}$	গ্রহণযোগ্য মান
0	π 6	<u>π</u>
1	<u>5π</u> 6	<u>5π</u>
2	13n 6	
3	17π 6	

- : নির্ণেয় সমাধান: $\frac{\pi}{6}$ এবং $\frac{5\pi}{6}$ (Ans.)
- দৃশ্যকল্প-১: $2\sin^2\theta 2 = \cos 2\theta$ [Din.B'22] (খ) দৃশ্যকল্প-১ এর সমীকরণ নির্ণয় কর যেখানে $-2\pi \le \theta \le 2\pi$.
- (খ) Soln: দেওয়া আছে, $2\sin^2\theta 2 = \cos 2\theta$ $\Rightarrow 2\sin^2\theta 1 1 = \cos 2\theta$ $\Rightarrow -\cos 2\theta 1 = \cos 2\theta \Rightarrow 2\cos 2\theta = -1$ $\Rightarrow \cos 2\theta = -\frac{1}{2} = \cos\frac{2\pi}{3} \Rightarrow 2\theta = 2n\pi \pm \frac{2\pi}{3}$ $\Rightarrow \theta = n\pi \pm \frac{\pi}{3}$; $[n \in \mathbb{Z}]$ n = -2 হলে, $\theta = -\frac{7\pi}{3}$, $-\frac{5\pi}{3}$; n = -1 হলে, $\theta = -\frac{4\pi}{3}$, $-\frac{2\pi}{3}$; n = 0 হলে, $\theta = -\frac{\pi}{3}$, $\frac{\pi}{3}$ n = 1 হলে, $\theta = \frac{2\pi}{3}$, $\frac{4\pi}{3}$; n = 2 হলে, $\theta = \frac{5\pi}{3}$, $\frac{7\pi}{3}$ $\therefore \theta = -\frac{5\pi}{3}$, $-\frac{4\pi}{3}$, $-\frac{2\pi}{3}$, $-\frac{\pi}{3}$, $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (Ans.)
- 05 (ক) cos2θ + sinθ = 1 এর সাধারণ সমাধান বের কর।

IDR'21

- (ক) $S_{0}I^{n}$: $cos2\theta + sin\theta = 1 \Rightarrow 1 2 sin^{2}\theta + sin\theta = 1$ $\Rightarrow 2 sin^{2}\theta - sin\theta = 0 \Rightarrow sin\theta(2sin\theta - 1) = 0$ ইয়, $sin\theta = 0 : \theta = n\pi$; অথবা, $sin\theta = sin\frac{\pi}{6} \Rightarrow \theta = n\pi + (-1)^{n}\frac{\pi}{6}$ $: \theta = n\pi$ অথবা $n\pi + (-1)^{n}\frac{\pi}{6}$ [যেখানে, $n \in \mathbb{Z}$]
- 06. (ক) সমাধান কর: $\tan^2 \theta 3 \csc^2 \theta + 1 = 0$.
- (Φ) Soln: $\tan^2 \theta 3 \csc^2 \theta + 1 = 0$ [Ctg.B'21] $\Rightarrow (1 + \tan^2 \theta) - 3 \csc^2 \theta = 0$ $\Rightarrow \sec^2 \theta = 3 \csc^2 \theta \Rightarrow \frac{1}{\cos^2 \theta} = \frac{3}{\sin^2 \theta}$ $\Rightarrow \tan^2 \theta = 3 \Rightarrow \tan \theta = \pm \sqrt{3} \Rightarrow \tan \theta = \pm \tan \frac{\pi}{3}$ $\Rightarrow \tan \theta = \tan \left(\pm \frac{\pi}{3}\right) \therefore \theta = n\pi \pm \frac{\pi}{3}, [n \in \mathbb{Z}] \text{ (Ans.)}$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

- তৃশ্যকম্প-২: f(x) = sin x. |JB'21|
 (গ) দৃশ্যকম্প-২ হতে 2{f(x)}² + 5f(x) 3 = 0
 সমীকরণটির সমাধান কর।
- (1) $S_{0}I^{n}$: $2 \sin^{2} x + 5 \sin x 3 = 0$ $\Rightarrow 2 \sin^{2} x + 6 \sin x - \sin x - 3 = 0$ $\Rightarrow 2 \sin x (\sin x + 3) - (\sin x + 3) = 0$ $\Rightarrow (\sin x + 3) (2 \sin x - 1) = 0$ CPCQ, $\sin x \neq -3$ $\therefore \sin x = \frac{1}{2}$; $\sin x = \sin \frac{\pi}{6}$ $\therefore x = n\pi + (-1)^{n} \frac{\pi}{6}$; $[n \in \mathbb{Z}]$ (Ans.)
- ত্তি দৃশ্যকম্প-১: $f(x) = \sqrt{2}x^2 3x + \sqrt{2}$. [BB'19] (খ) দৃশ্যকম্প-১ হতে সমাধান কর: $f(\sin\theta) = 0$.
- (খ) Sol^n : দেওয়া আছে, $f(x)=\sqrt{2}x^2-3x+\sqrt{2}$ $\therefore f(\sin\theta)=\sqrt{2}\sin^2\theta-3\sin\theta+\sqrt{2}$ এখন প্রশ্নানুসারে, $\sqrt{2}\sin^2\theta-3\sin\theta+\sqrt{2}=0$ $\Rightarrow \sin\theta=\frac{3\pm\sqrt{9-8}}{2\sqrt{2}}=\frac{3\pm1}{2\sqrt{2}}$ হয় $\sin\theta=\frac{1}{\sqrt{2}}=\sin\frac{\pi}{4}\Rightarrow\theta=n\pi+(-1)^n\frac{\pi}{4}$ $[n\in\mathbb{Z}]$ অথবা, $\sin\theta=\sqrt{2}\Rightarrow\sin\theta=\sin\alpha$; [যা অগ্রহণযোগ্য]
- চ্নাকম্প-২: 4(sin² θ + cosθ) = 5, -2π < θ < 2π
 [DB, SB, JB, Din.B'18]
 (গ) দৃশ্যকম্প-২ এ বর্ণিত সমীকরণটি সমাধান কর।
- (গ) Soln: $4 (\sin^2 \theta + \cos \theta) = 5$ $\Rightarrow 4 (1 - \cos^2 \theta + \cos \theta) = 5$ $\Rightarrow 4 - 4 \cos^2 \theta + 4 \cos \theta = 5$ $\Rightarrow 4 \cos^2 \theta - 4 \cos \theta + 1 = 0$ $\Rightarrow (2\cos \theta - 1)^2 = 0$ $\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}, [n \in \mathbb{Z}]$ $\Rightarrow n = 0, 1, -1$ বসিয়ে; $\theta = \frac{\pi}{3}, -\frac{5\pi}{3}, -\frac{\pi}{3}, \frac{5\pi}{3}$ (Ans.)
- ি f(x) = tanx. [RB'17] (গ) $\{f(x)\}^2 + f'(x) = 3f(x)$ হলে বিশেষ সমাধান নির্ণয় কর যখন $0 \le x \le 2\pi$.
- (গ) Soln: দেওয়া আছে, $f(x) = \tan x : f'(x) = \frac{d}{dx}(\tan x) = \sec^2 x$ প্রদত্ত সমীকরণ, $\{f(x)\}^2 + f'(x) = 3f(x)$ $\Rightarrow \tan^2 x + \sec^2 x = 3 \tan x$ $\Rightarrow \tan^2 x + 1 + \tan^2 x 3\tan x = 0$ $\Rightarrow 2 \tan^2 x 3\tan x + 1 = 0$ $\Rightarrow 2 \tan^2 x 2\tan x \tan x + 1 = 0$ $\Rightarrow 2 \tan^2 x 2\tan x \tan x + 1 = 0$ $\Rightarrow 2 \tan^2 x 1 (\tan x 1) = 0$ $\Rightarrow (2\tan x 1)(\tan x 1) = 0$ $\therefore 2\tan x 1 = 0 : \tan x = \frac{1}{2}$ $\therefore x = n\pi + \tan^{-1}\left(\frac{1}{2}\right) [n \in \mathbb{Z}]$

অখবা, $tanx - 1 = 0 \Rightarrow tanx = 1 \Rightarrow tanx = tan \frac{\pi}{4}$

$$\therefore x = n\pi + \frac{\pi}{4}$$
; যখন, $n \in \mathbb{Z}$

$$n = 0$$
 হলে, $x = \tan^{-1}\left(\frac{1}{r}\right)$

এবং
$$x = \frac{\pi}{4}$$
; $n = 1$ হলে, $x = \pi + \tan^{-1}\left(\frac{1}{2}\right)$

এবং
$$x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$
; $n = 2$ হলে, $x = 2\pi + \tan^{-1}(\frac{1}{2})$

এবং
$$x = 2\pi + \frac{\pi}{4} = \frac{9\pi}{4} > 2\pi$$

নির্দিষ্ট সীমার মধ্যে সমাধানসমূহ

$$\tan^{-1}\left(\frac{1}{2}\right), \pi + \tan^{-1}\left(\frac{1}{2}\right), \frac{\pi}{4}, \frac{5\pi}{4}$$
 (Ans.)

 $h(x) = \cos x$

(গ) $2\{h(x)\}^2 + \{h(2x)\}^2 = 2$ সমীকরণটির সাধারণ সমাধান নির্ণয় কর।

(গ) Sol": দেওয়া আছে,
$$h(x) = \cos x : h(2x) = \cos 2x$$

প্রদন্ত সমীকরণ, $2\{h(x)\}^2 + \{h(2x)\}^2 = 2$
 $\Rightarrow 2\cos^2 x + \cos^2 2x = 2$
 $\Rightarrow 1 + \cos 2x + \cos^2 2x - 2 = 0$
 $\Rightarrow \cos^2 2x + \cos 2x - 1 = 0$
 $\Rightarrow \cos 2x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1(-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{5}}{2}$

কিন্তু
$$\frac{-1-\sqrt{5}}{2}$$
 গ্রহণযোগ্য নয়। কেননা তা -1 অপেক্ষা ছোট ফ্র

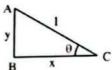
$$\therefore \cos 2x = \frac{-1+\sqrt{5}}{2} \Rightarrow \cos 2x = \cos \alpha$$

$$\forall \text{fi.} \ \alpha = \cos^{-1}\left(\frac{-1+\sqrt{5}}{2}\right) \Rightarrow 2x = 2n\pi \pm \alpha$$

$$\therefore x = n\pi \pm \frac{\alpha}{2}$$
; যেখানে $\alpha = \cos^{-1}\left(\frac{-1+\sqrt{5}}{2}\right)$ $[n \in \mathbb{Z}]$

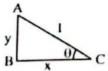
Type-07: $a\cos\theta+b\sin\theta=c$ [যেখানে $|c|\leq\sqrt{a^2+b^2}$] আকৃতির ত্রিকোণমিতিক সমীকরণ সংক্রান্ত সমস্যা

& Concept


এ ধরনের অঙ্কে উভয়পক্ষকে $\sqrt{a^2+b^2}$ দারা ভাগ করে $\cos(A\pm B)$ এর সূত্র প্রয়োগ করাই উত্তম।

Note: $a\cos\theta + b\sin\theta = c$; সমীকরণটি সমাধান করতে পারার শর্ত: $|c| \leq \sqrt{a^2 + b^2}$

সৃজনশীল প্রশ্ন (ক, খ ও গ)


01.

[Ctg.B'23]

(গ) উদ্দীপক অনুসারে $x+y=\sqrt{2}$ সমীকরণটি সমাধান কর यथन $-2\pi < \theta < 2\pi$.

(17) Sol":

দেওয়া আছে, $x + y = \sqrt{2} \Rightarrow \cos \theta + \sin \theta = \sqrt{2}$

$$\Rightarrow \frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta = 1$$

$$\Rightarrow \cos\left(\frac{\pi}{4}\right)\cos\theta + \sin\left(\frac{\pi}{4}\right)\sin\theta = 1$$

$$\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = 1 \Rightarrow \theta - \frac{\pi}{4} = 2n\pi$$

$$\Rightarrow \theta = 2n\pi + \frac{\pi}{4} [n \in \mathbb{Z}]$$

$$\therefore -2\pi < \theta < 2\pi$$
 ব্যবধিতে $\theta = -\frac{7\pi}{4}, \frac{\pi}{4}$ (Ans.)

[BB'23] $g(x) = \cos x$

(গ) সমাধান কর: $g(x) + \sqrt{3}g'(x) = \sqrt{2}$,

यथन-π < x < π

$$S_0I^n$$
: $g(x) = \cos x \Rightarrow g'(x) = -\sin x$
 $g(x) + \sqrt{3}g'(x) = \sqrt{2} \Rightarrow \cos x - \sqrt{3}\sin x = \sqrt{2}$

$$\Rightarrow \frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x = \frac{1}{\sqrt{2}} \Rightarrow \cos\frac{\pi}{3}\cos x - \sin\frac{\pi}{3}\sin x = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \cos\left(x + \frac{\pi}{3}\right) = \cos\frac{\pi}{4} \Rightarrow x + \frac{\pi}{3} = 2n\pi \pm \frac{\pi}{4}$$

$$\Rightarrow x = 2n\pi \pm \frac{\pi}{4} - \frac{\pi}{3} \ [n \in \mathbb{Z}]$$

$$-\pi$$
 থেকে π ব্যবধির মধ্যে $x = -\frac{\pi}{12}, -\frac{7\pi}{12}$ (Ans.)

 $g(x) = \sin x.$

(গ)
$$g\left(\pi g\left(\frac{\pi}{2}-x\right)\right) = g\left(\frac{\pi}{2}-\pi g(x)\right)$$
 হলে দেখাও যে,
$$x = \pm \frac{\pi}{4} + \cos^{-1}\frac{1}{2\sqrt{2}}.$$

(গ) Sol": দেওয়া আছে, g(x) = sin x

এখন,
$$g\left(\pi g\left(\frac{\pi}{2}-x\right)\right)=g\left(\frac{\pi}{2}-\pi g(x)\right)$$

$$\Rightarrow \sin\left\{\pi \sin\left(\frac{\pi}{2} - x\right)\right\} = \sin\left(\frac{\pi}{2} - \pi \sin x\right)$$

$$\Rightarrow \sin(\pi\cos x) = \cos(\pi\sin x)$$

$$\Rightarrow \sin(\pi\cos x) = \sin\left(\frac{\pi}{2} \pm \pi\sin x\right)$$

$$\Rightarrow \pi \cos x = \frac{\pi}{2} \pm \pi \sin x \Rightarrow \cos x = \frac{1}{2} \pm \sin x$$

$$\Rightarrow \frac{1}{\sqrt{2}}\cos x \pm \frac{1}{\sqrt{2}}\sin x = \frac{1}{2\sqrt{2}}$$

$$\Rightarrow \cos\frac{\pi}{4}\cos x \pm \sin\frac{\pi}{4}\sin x = \frac{1}{2\sqrt{2}} \Rightarrow \cos\left(x \pm \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$$

$$x = \pm \frac{n}{4} + \cos^{-1} \frac{1}{2\sqrt{2}}$$
 (Showed)

ISB'2

(গ) সমাধান কর:
$$f\left(\frac{\pi}{2} - \theta\right) + \sqrt{3}f(\theta) = \sqrt{2}$$
।

(1) Soln:
$$f\left(\frac{\pi}{2} - \theta\right) + \sqrt{3}f(\theta) = \sqrt{2}$$

$$\Rightarrow \cos \theta + \sqrt{3} \sin \theta = \sqrt{2} \Rightarrow \frac{1}{2} \cos \theta + \frac{\sqrt{3}}{2} \sin \theta = \frac{1}{\sqrt{2}}$$

$$\left[\sqrt{1^2 + \left(\sqrt{3}\right)^2} = 2 দ্বারা উভয় পক্ষকে ভাগ করে \right]$$

$$\Rightarrow \sin \frac{\pi}{6} \cos \theta + \sin \theta \cdot \cos \frac{\pi}{6} = \sin \frac{\pi}{4}$$

$$\Rightarrow \sin\left(\theta + \frac{\pi}{6}\right) = \sin\frac{\pi}{4} \div \theta + \frac{\pi}{6} = n\pi + (-1)^n \frac{\pi}{4}$$

$$\theta = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{6} [n \in \mathbb{N}]$$

$$h(\theta) = \cos\theta - \sin\theta$$

[BB'22]

(গ)
$$(-\pi,\pi)$$
 ব্যবধিতে $h(\theta)=\frac{1}{\sqrt{2}}$ সমীকরণটির সমাধান
নির্ণয় কর।

(1) Solⁿ:
$$h(\theta) = \frac{1}{\sqrt{2}} \Rightarrow \cos \theta - \sin \theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \frac{1}{\sqrt{2}}\cos\theta - \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{2}$$

$$[\sqrt{1^2+1^2}=\sqrt{2}$$
 দ্বারা উভয়পক্ষকে ভাগ করে পাই]

$$\Rightarrow \cos \frac{\pi}{4} \cos \theta - \sin \frac{\pi}{4} \cdot \sin \theta = \cos \frac{\pi}{3}$$

$$\Rightarrow \cos\left(\theta + \frac{\pi}{4}\right) = \cos\frac{\pi}{3} \Rightarrow \theta + \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{3}$$

(+) চিহ্ন নিয়ে,
$$\theta + \frac{\pi}{4} = 2n\pi + \frac{\pi}{3} \Rightarrow \theta = 2n\pi + \frac{\pi}{12}$$

$$\therefore \theta = (24n + 1) \frac{\pi}{12}; [n \in \mathbb{Z}]$$

(–) চিহ্ন নিয়ে,
$$\theta + \frac{\pi}{4} = 2n\pi - \frac{\pi}{3} \Rightarrow \theta = 2n\pi - \frac{7\pi}{12}$$

$$\cdot \theta = (24n - 7) \frac{\pi}{12} ; [n \in \mathbb{Z}]$$

n এর	θ =	θ =	গ্রহণযোগ্য
মান	$(24n+1)\frac{\pi}{12}$	$(24n-7)\frac{\pi}{12}$	মান
-2	$-\frac{47}{12}\pi$	$-\frac{55\pi}{12}$	
-1	_ 23π	$-\frac{31\pi}{12}$	
0	12 1 12	$-\frac{7\pi}{}$	$\frac{\pi}{-1}$, $-\frac{7\pi}{100}$
		12 17m	12' 12
1	25π 12	$\frac{17\pi}{12}$	
2	49π	41π	0
-	12	12	

: নির্ণেয় সমাধান: $\frac{\pi}{12}$, $-\frac{7\pi}{12}$ (Ans.)

06 উদ্দীপক-১: f(x) = cosx.

ICB'22

(খ)
$$(-2\pi, 2\pi)$$
 ব্যবধিতে $f(x) + \frac{1}{\sqrt{3}} f(\frac{\pi}{2} - x) = \frac{1}{\sqrt{3}}$

সমীকরণটি সমাধান কর।

(খ) Solⁿ: প্রদন্ত রাশি,
$$\cos x + \frac{1}{\sqrt{3}}\cos\left(\frac{\pi}{2} - x\right) = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \cos x + \frac{1}{\sqrt{3}} \sin x = \frac{1}{\sqrt{3}} \left[\sqrt{1 + \left(\frac{1}{\sqrt{3}}\right)^2}$$
 দ্বারা ভাগ করে

$$\Rightarrow \frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = \frac{1}{2}$$

$$\Rightarrow \cos x \cos \frac{\pi}{6} + \sin x \sin \frac{\pi}{6} = \cos \frac{\pi}{3}$$

$$\Rightarrow \cos\left(x - \frac{\pi}{6}\right) = \cos\frac{\pi}{3} : x - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}$$

Educationblog24.com

উচ্চতর গণিত ২য় পত্ত : তাধ্যায়-০৭

' + ' ठिङ् निता : x = 2nn +
$$\frac{n}{2} = \frac{n}{2} (4n + 1); [n \in \mathbb{Z}]$$

$$n = 0$$
 হলে, $x = \frac{\pi}{2}$; $n = 1$ হলে, $x = \frac{4\pi}{2} \notin (-2\pi, 2\pi)$:

$$n=-1 \in \mathbb{N} \times =-\frac{3n}{2}$$

(-) िष्ट् निरम्
$$x = 2n\pi - \frac{\pi}{6} = \frac{\pi}{6} (12n - 1); [n ∈ \mathbb{Z}]$$

$$x = -\frac{\pi}{6}$$
 [यथन $n = 0$], $x = \frac{11\pi}{6}$ $[n = 1]$.

$$x = -\frac{13\pi}{6} \notin (-2\pi, 2\pi)$$

$$\therefore$$
 নির্বেয় সমাধান: $\frac{\pi}{2}, \frac{11\pi}{6}, -\frac{\pi}{6}, -\frac{3\pi}{2}$ (Ans.)

(গ)
$$f(x) + \sqrt{3} f\left(\frac{n}{2} - x\right) = \sqrt{2}$$
 হলে সমীকরণটির
সমাধান কর।

(গ) Solⁿ:
$$f(x) + \sqrt{3}f\left(\frac{\pi}{2} - x\right) = \sqrt{2}$$

$$\Rightarrow \cos x + \sqrt{3}\cos\left(\frac{\pi}{2} - x\right) = \sqrt{2}$$

$$\Rightarrow \cos x + \sqrt{3} \sin x = \sqrt{2}$$

$$\Rightarrow \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x = \frac{\sqrt{2}}{2}$$
 [উভয় পক্ষকে 2 দ্বারা ভাগ করে]

$$\Rightarrow \cos\frac{\pi}{3}\cos x + \sin\frac{\pi}{3}\sin x = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \cos\left(x - \frac{\pi}{3}\right) = \cos\frac{\pi}{4} \Rightarrow x - \frac{\pi}{3} = 2n\pi \pm \frac{\pi}{4}$$

$$\Rightarrow x = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{3}$$

$$\Rightarrow x = 2n\pi + \frac{7\pi}{12}, 2n\pi + \frac{\pi}{12} [n \in \mathbb{Z}]$$

$$\therefore x = 2n\pi + \frac{7\pi}{12}, 2n\pi + \frac{\pi}{12} [n \in \mathbb{Z}] \text{ (Ans.)}$$

$$g(x) = \cos x; h(x) = \sin x.$$

[DB'21]

(খ) উদ্দীপকের আলোকে $\sqrt{3}g(\theta)+g\left(\frac{\pi}{2}-\theta\right)=1$ সমীকরণটি সমাধান কর। যখন $0<\theta<2\pi$.

(গ) $g\{\pi h(\theta)\} = h\{\pi g(\theta)\}$ হলে দেখাও যে,

$$\theta = \pm \frac{\pi}{4} + \tan^{-1} \sqrt{7}.$$

(
$$\forall$$
) Solⁿ: $\sqrt{3}g(\theta) + g(\frac{\pi}{2} - \theta) = 1$

$$\Rightarrow \sqrt{3}\cos\theta + \cos\left(\frac{\pi}{2} - \theta\right) = 1$$

$$\Rightarrow \sqrt{3}\cos\theta + \sin\theta = 1 \Rightarrow \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta = \frac{1}{2}$$

$$\Rightarrow \cos\theta\cos\frac{\pi}{6} + \sin\theta\sin\frac{\pi}{6} = \cos\frac{\pi}{3}$$

$$\Rightarrow \cos\left(\theta - \frac{\pi}{6}\right) = \cos\frac{\pi}{3} \Rightarrow \theta - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}$$

$$\Rightarrow \theta = 2n\pi \pm \frac{\pi}{2} + \frac{\pi}{4} \quad [n \in \mathbb{Z}]$$

হয়,
$$\theta = 2n\pi + \frac{\pi}{2}$$
 অথবা, $\theta = 2n\pi - \frac{\pi}{6}$

	2	6	
n	$\theta = 2n\pi + \frac{\pi}{2}$	$\theta = 2n\pi - \frac{\pi}{6}$	গ্রহণযোগ্য মান
0	$\frac{\pi}{2}$	$-\frac{6}{\pi}$	n 2
1	5 n 2	11n 6	11n 6

$$\therefore \theta = \frac{\pi}{2}, \frac{11\pi}{6} \text{ (Ans.)}$$

$$g\{\pi h(\theta)\} = h\{\pi g(\theta)\} \Rightarrow \cos(\pi h(\theta)) = \sin(\pi g(\theta))$$

$$\Rightarrow$$
 cos(πsinθ) = sin(πcosθ)

$$\Rightarrow \sin(\frac{\pi}{2} \pm \pi \sin\theta) = \sin(\pi \cos\theta)$$

$$\Rightarrow \frac{\pi}{2} \pm \pi \sin\theta = \pi \cos\theta \Rightarrow \frac{1}{2} \pm \sin\theta = \cos\theta$$

$$\Rightarrow \frac{1}{2} = \cos\theta \pm \sin\theta \Rightarrow \frac{1}{\sqrt{2}} \cos\theta \pm \frac{1}{\sqrt{2}} \sin\theta = \frac{1}{2\sqrt{2}}$$

$$\Rightarrow$$
 cosθ cos $\frac{\pi}{4}$ ± sinθ sin $\frac{\pi}{4}$ = $\frac{1}{2\sqrt{2}}$

$$\Rightarrow \cos\left(\theta \pm \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}} \Rightarrow \theta \pm \frac{\pi}{4} = \cos^{-1}\left(\frac{1}{2\sqrt{2}}\right)$$

$$\Rightarrow \theta \pm \frac{\pi}{4} = \tan^{-1}(\sqrt{7}) \Rightarrow \theta = \pm \frac{\pi}{4} + \tan^{-1}(\sqrt{7}) \text{ (Showed)}$$

$f(x) = \cos x$

(খ) উদ্দীপকের আলোকে সমাধান কর:

$$(2+\sqrt{3})f(2\theta)=1-f(\frac{\pi}{2}-2\theta).$$

(*) Sol*:
$$(2 + \sqrt{3})\cos 2\theta = 1 - \cos(\frac{\pi}{2} - 2\theta) = 1 - \sin 2\theta$$

$$\Rightarrow (2 + \sqrt{3})\cos 2\theta + \sin 2\theta = 1$$

$$\Rightarrow \frac{2+\sqrt{3}}{\sqrt{(4+4\sqrt{3}+3)+1}}\cos 2\theta + \frac{1}{\sqrt{(8+4\sqrt{3})}}\sin 2\theta = \frac{1}{\sqrt{8+4\sqrt{3}}}$$

$$\Rightarrow \frac{2+\sqrt{3}}{\sqrt{(8+4\sqrt{3})}}\cos 2\theta + \frac{1}{\sqrt{(8+4\sqrt{3})}}\sin 2\theta = \frac{1}{\sqrt{(8+4\sqrt{3})}}$$

$$\Rightarrow$$
 cosacos20 + sinasin20 = sina

$$[\cos\alpha = \frac{2+\sqrt{3}}{\sqrt{8}+4\sqrt{3}}, \sin\alpha = \frac{1}{\sqrt{8+4\sqrt{3}}} : \tan\alpha = \frac{1}{2+\sqrt{3}}]$$

$$\Rightarrow \cos(2\theta - \alpha) = \cos\left(\frac{\pi}{2} - \alpha\right) \Rightarrow 2\theta - \alpha = 2n\pi \pm \left(\frac{\pi}{2} - \alpha\right)$$

হয়,
$$2\theta - \alpha = 2n\pi + \frac{\pi}{2} - \alpha \Rightarrow \theta = n\pi + \frac{\pi}{4}, [n \in \mathbb{Z}]$$

অথবা,
$$2\theta - \alpha = 2n\pi - \frac{\pi}{2} + \alpha \Rightarrow 2\theta = 2n\pi - \frac{\pi}{2} + 2\alpha$$

$$\therefore \theta = n\pi - \frac{\pi}{4} + \alpha$$
 খেখানে, $\alpha = \tan^{-1} \frac{1}{2+\sqrt{3}}$ এবং $[n \in \mathbb{Z}]$

$g(a) = \sin a$

(গ) সমাধান কর:
$$g\left(\frac{\pi}{2}-x\right)+g(x)=\frac{1}{\sqrt{2}}$$

(17) Soln:
$$g(\frac{\pi}{2} - x) + g(x) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sin\left(\frac{\pi}{2} - x\right) + \sin x = \frac{1}{\sqrt{2}} \Rightarrow \sin x + \cos x = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{1}{2}$$

$$\Rightarrow \cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \sin x = \frac{1}{2}$$

$$\Rightarrow \cos\left(x - \frac{\pi}{4}\right) = \cos\frac{\pi}{3} : x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{3} ; [n \in \mathbb{Z}]$$

$$(+) \Rightarrow x - \frac{\pi}{4} = 2n\pi + \frac{\pi}{3}$$

$$\Rightarrow x = 2n\pi + \frac{7\pi}{12} ; [n \in \mathbb{Z}] \text{ (Ans.)}$$

$$(-) \Rightarrow x - \frac{\pi}{4} = 2n\pi - \frac{\pi}{4}$$

$$\Rightarrow x = 2n\pi - \frac{\pi}{12} ; [n \in \mathbb{Z}] (Ans.)$$

সমাধান কর, যেখানে $-2\pi < x < 2\pi$.

(খ) Solⁿ:
$$a = \sqrt{3}$$
 ও $b = 1$ হলে, $\sqrt{3} \sin x + \cos x = 1$

$$\Rightarrow \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x = \frac{1}{2}$$

$$\Rightarrow \cos x \cos \frac{\pi}{3} + \sin x \sin \frac{\pi}{3} = \frac{1}{2}$$

$$\Rightarrow \cos\left(x - \frac{\pi}{3}\right) = \cos\frac{\pi}{3}$$

$$\Rightarrow x - \frac{\pi}{3} = 2n\pi \pm \frac{\pi}{3} \Rightarrow x = 2n\pi \pm \frac{\pi}{3} + \frac{\pi}{3}$$

হয়,
$$x=2n\pi+\frac{2\pi}{3}$$
, $[n\in\mathbb{Z}]$ অথবা, $x=2n\pi$ $[n\in\mathbb{Z}]$

	$x = 2n\pi + \frac{2\pi}{3}$	$x = 2n\pi$	গ্রহণযোগ্য মান (-2π < x < 2π)
n = 0	$2\frac{\pi}{3}$	0	$0,\frac{2\pi}{3}$
n = 1	$\frac{8\pi}{3}$	2π	কোনোটিই নয়
n = -1	$-\frac{4\pi}{3}$	-2π	$-\frac{4\pi}{3}$

$$x = 0, \frac{2\pi}{3}, -\frac{4\pi}{3}$$
 (Ans.)

টি উদ্দীপক-২:
$$f(\alpha) = \cos \alpha, g(\alpha) = \sin 2\alpha, h(\alpha) = \frac{1}{\sqrt{2}}$$
[BB'21]

(গ) উদ্দীপক-২ এর আলোকে সমাধান কর:

$$f(\alpha) + g\left(\frac{\alpha}{2}\right) = h(\alpha)$$
, যখন $-2\pi \le \alpha \le 2\pi$.

(গ) Solⁿ:
$$f(\alpha) + g(\frac{\alpha}{2}) = h(\alpha)$$

$$\Rightarrow \cos \alpha + \sin \left(2 \times \frac{\alpha}{2}\right) = \frac{1}{\sqrt{2}} \Rightarrow \cos \alpha + \sin \alpha = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \frac{1}{\sqrt{2}}\cos\alpha + \frac{1}{\sqrt{2}}\sin\alpha = \frac{1}{2}$$

$$\Rightarrow \cos\alpha\cos\frac{\pi}{4} + \sin\alpha\sin\frac{\pi}{4} = \frac{1}{2}\left[\cos\frac{\pi}{4} = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}\right]$$

$$\Rightarrow \cos\left(\alpha - \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{3}\right) :: \alpha - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{3}$$

$$\Rightarrow \alpha = 2n\pi + \frac{\pi}{4} \pm \frac{\pi}{2} \quad [n \in \mathbb{Z}]$$

'+' निरम्,
$$\alpha = 2n\pi + \frac{7\pi}{12}$$
; '-' निरम्, $\alpha = 2n\pi - \frac{\pi}{12}$

	12	12
n	$2n\pi + \frac{7\pi}{12}$	$2n\pi - \frac{\pi}{12}$
-1	$-\frac{17}{12}\pi$	
0	7 n 12	- n
1		23m
•		12

$$\therefore \alpha = -\frac{17\pi}{12}, \frac{7\pi}{12}, -\frac{\pi}{12}, \frac{23\pi}{12} \text{ (Ans.)}$$

দৃশ্যকম্প-২: $f(x) = \sin x$.

[RB'19]

(গ) সমাধান কর: দৃশ্যকম্প-২ থেকে
$$\sqrt{3}f(x) - f\left(\frac{\pi}{2} + x\right)$$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

(1) Solⁿ:
$$\sqrt{3} f(x) - f\left(\frac{\pi}{2} + x\right) = 2$$

$$\Rightarrow \sqrt{3}\sin x - \sin\left(\frac{\pi}{2} + x\right) = 2$$

$$\Rightarrow \sqrt{3}\sin x - \cos x = 0 \Rightarrow \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x = 1$$

$$\Rightarrow \sin x \cos \frac{\pi}{6} - \cos x \sin \frac{\pi}{6} = 1 \Rightarrow \sin \left(x - \frac{\pi}{6}\right) = 1$$

$$\therefore x - \frac{\pi}{6} = (4n+1)\frac{\pi}{2}; [n \in \mathbb{Z}] : x = (4n+1)\frac{\pi}{2} + \frac{\pi}{6}$$

n	$(4n+1)\frac{\pi}{2}$; $[n \in \mathbb{Z}]$. $(4n+1)\frac{\pi}{2} + \frac{\pi}{6}$	গ্রহণযোগ্য মান
0	$\frac{2\pi}{3}$	<u>2π</u>
1	<u>8π</u> 3	×
-1	$-\frac{4\pi}{3}$	$-\frac{4\pi}{3}$
-2	$-\frac{10\pi}{3}$	×

: নির্ণেয় সমাধান,
$$x = \frac{2\pi}{3}, -\frac{4\pi}{3}$$
 (Ans.)

$\mathbf{14.} \quad \mathbf{f}(\mathbf{x}) = \sin \mathbf{x}, \mathbf{g}(\mathbf{x}) = \cos \mathbf{x}$

[CB'17]

(গ) উদ্দীপকের আলোকে সমাধান কর: $\sqrt{3}g(x) + f(x) = \sqrt{3}$.

(গ) Soln: দেওয়া আছে, f(x) = sinx এবং g(x) = cosx

প্রদত্ত রাশি,
$$\sqrt{3}$$
 g(x) + f(x) = $\sqrt{3}$

$$\Rightarrow \sqrt{3} \cos x + \sin x = \sqrt{3}$$

⇒
$$\frac{1}{2}$$
sinx + $\frac{\sqrt{3}}{2}$ cosx = $\frac{\sqrt{3}}{2}$ [2 দ্বারা ভাগ করে]

$$\Rightarrow \sin x. \sin \frac{\pi}{6} + \cos x \cos \frac{\pi}{6} = \cos \frac{\pi}{6}$$

$$\Rightarrow \cos\left(x - \frac{\pi}{6}\right) = \cos\frac{\pi}{6}$$

$$\Rightarrow$$
 x $-\frac{\pi}{6}=2n\pi\pm\frac{\pi}{6}$ যেখানে, $[n\in\mathbb{Z}]$

$$\Rightarrow x = 2n\pi \pm \frac{\pi}{6} + \frac{\pi}{6} \Rightarrow x = 2n\pi, 2n\pi + \frac{\pi}{3},$$

যখন, [n ∈ Z]

 \therefore নির্ণেয় সমাধান: $x=2n\pi,2n\pi+\frac{\pi}{3}$ যেখানে $[n\in\mathbb{Z}]$

(Ans.)

$A = \cos\theta, B = \sin\theta$

[Din.B'17]

(খ)
$$A + \sqrt{3}B = \sqrt{2}$$
 হলে, সমীকরণটি সমাধান কর।

(খ) Soln: দেওয়া আছে,
$$A = \cos\theta$$
, $B = \sin\theta$

এখন, A +
$$\sqrt{3}$$
B = $\sqrt{2}$

$$\Rightarrow \cos\theta + \sqrt{3}\sin\theta = \sqrt{2}$$

উভয়পক্ষকে
$$\sqrt{1^2 + \left(\sqrt{3}\right)^2}$$
 অর্থাৎ 2 দ্বারা ভাগ করে পাই,

$$\frac{1}{2}\cos\theta + \frac{\sqrt{3}}{2}\sin\theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \cos\left(\theta - \frac{\pi}{3}\right) = \cos\frac{\pi}{4}$$

$$\Rightarrow \theta - \frac{\pi}{3} = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{3}$$

$$\therefore \theta = 2n\pi + \frac{7\pi}{12}$$
, $2n\pi + \frac{\pi}{12}$ যখন $[n \in \mathbb{Z}]$ (Ans.)

16. দৃশ্যকল্প-২: $\sqrt{3} \sin \theta = 2 + \cos \theta$

[ঢাকা রেসিডেনসিয়াল মডেল কলেজ, ঢাকা]

(গ) দৃশ্যকম্প-২ এর সমাধান কর যখন $-2\pi < \theta < 2\pi$

(গ) Solⁿ: দেওয়া আছে,
$$\sqrt{3}\sin\theta = 2 + \cos\theta$$

$$\Rightarrow \sqrt{3} \sin \theta - \cos \theta = 2$$

$$\Rightarrow \frac{\sqrt{3}}{2}\sin\theta - \frac{1}{2}\cos\theta = 1$$

$$\Rightarrow \sin\theta\cos\frac{\pi}{6} - \cos\theta\sin\frac{\pi}{6} = 1$$

$$\Rightarrow \sin\left(\theta - \frac{\pi}{6}\right) = 1$$

$$\therefore \theta - \frac{\pi}{6} = (4n+1)\frac{\pi}{2}$$

$$\Rightarrow \theta = (4n+1)\frac{\pi}{2} + \frac{\pi}{6}; [n \in \mathbb{Z}]$$

 \therefore সীমার মধ্যে নির্ণেয় সমাধান: $\frac{2\pi}{3}$, $-\frac{4\pi}{3}$ (Ans.)

নিজে করো

17. $f(x) = \cos x$

(খ) সমাধান কর:
$$\sqrt{2}f(x) - \sqrt{2}f(\frac{\pi}{2} - x) = 1$$
; যখন $-\pi < x < \pi$.

[Ans:
$$x = \frac{\pi}{12}, \frac{-7\pi}{12}$$
]
[JB'19]

18.
$$g(x) = \cos x$$
.

(গ) সমাধান কর:
$$\sqrt{3} g(x) + g(\frac{\pi}{2} + x) = 1$$
 যখন $-2\pi < x < 2\pi$.

[Ans:
$$x = \left\{\frac{\pi}{6}, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{-11\pi}{6}\right\}$$
]
[DB'17]

19. দৃশ্যকম্প-২:
$$\sqrt{3}\sin\theta = 2 + \cos\theta$$
.

[Ans:
$$\theta = -\frac{4\pi}{3}, \frac{2\pi}{3}$$
]

(গ) দৃশ্যকম্প-২ এর সমাধান কর যখন $-2\pi < \theta < 2\pi$.

Type-08: sin θ , cos θ ইত্যাদি ত্রিকোণমিতিক অনুপাত যোগ আকারে থাকলে

Concept

যখন সমীকরণে $\sin\theta$ এবং $\cos\theta$ কোণের অনুপাত সমূহ যোগ আকারে থাকে, তখন $\sin C \pm \sin D$, $\cos C \pm \cos D$, $\cos 2A$, $\sin 2A$, sin 3A এবং cos 3A এর সূত্র প্রয়োজন অনুসারে ব্যবহার করতে হবে। এখানে মূল লক্ষ্য হলো common নেওয়া।

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

সূজনশীল প্রশ্ন (ক, খ ও গ)

উদ্দীপক-২: f(θ) = sin θ

[DB'23]

(গ) উদ্দীপক-২ এর সাহায্যে, সমাধান কর:

$$f(x) - \sqrt{1 - \{f(x)\}^2} = 1, -2\pi < x < 2\pi$$

(গ) Solⁿ: দেওয়া আছে,
$$f(\theta) = \sin \theta$$

প্রমতে,
$$f(x) - \sqrt{1 - \{f(x)\}^2} = 1 \Rightarrow \sin x - \sqrt{1 - \sin^2 x} = 1$$

$$\Rightarrow$$
 sin x - cos x = 1 (i)

$$\Rightarrow 2\sin\frac{x}{2} \cdot \cos\frac{x}{2} - 2\cos^2\frac{x}{2} = 0 \Rightarrow 2\cos\frac{x}{2}\left(\sin\frac{x}{2} - \cos\frac{x}{2}\right) = 0$$

হয়,
$$2\cos\frac{x}{2}=0$$

অথবা,
$$\sin\frac{x}{2} - \cos\frac{x}{2} = 0$$

$$\Rightarrow \cos \frac{x}{2} = 0$$

$$\Rightarrow \tan \frac{x}{2} = 1$$

$$\Rightarrow \frac{x}{2} = \frac{(2n+1)\pi}{2}$$

$$\Rightarrow \frac{x}{2} = n\pi + \frac{\pi}{4}$$

$$\therefore x = (2n+1)\pi, [n \in \mathbb{Z}$$

$$\therefore x = (2n+1)\pi, [n \in \mathbb{Z}] \quad \therefore x = 2n\pi + \frac{\pi}{2}, [n \in \mathbb{Z}]$$

n	$(2n+1)\pi$	$2n\pi + \frac{\pi}{2}$
0	π (√)	$\frac{\pi}{2}(\sqrt{)}$
1	3π (×)	5π/ ₂ (×)
-1	-π (√)	$-\frac{3}{2}\pi(\sqrt{)}$
-2	-3π (×)	$-\frac{7\pi}{2}$ (×)

∴ $-2\pi < x < 2\pi$ ব্যবধিতে নির্ণেয় সমাধান:

$$x = -\frac{3\pi}{2}, -\pi, \frac{\pi}{2}, \pi.$$
 (Ans.)

Note: (i) সমীকরণকে $\sqrt{1^2 + 1^2} = \sqrt{2}$ দিয়ে ভাগ করেও সমীকরণটি সমাধান করা যাবে।

$f(x) = \sin x$

ISB'231

(গ) উদ্দীপকের আলোকে f(x) + f(2x) + f(3x) = 0সমীকরণটি সমাধান কর, যখন $0 \le x \le \pi$.

(গ) Sol": দেওয়া আছে, f(x) = sin x

এখানে,
$$f(x) + f(2x) + f(3x) = 0, 0 \le x \le \pi$$

$$\Rightarrow$$
 sin x + sin 2x + sin 3x = 0

$$\Rightarrow$$
 sin x + sin 3x + sin 2x = 0

$$\Rightarrow 2\sin\frac{x+3x}{2}\cos\frac{x-3x}{2} + \sin 2x = 0$$

$$\Rightarrow$$
 2 sin 2x cos x + sin 2x = 0

$$\Rightarrow$$
 sin 2x (2 cos x + 1) = 0

$$2x = 0$$
 $2\cos x + 1 = 0$

$$\Rightarrow 2x = n\pi$$

$$\Rightarrow \cos x = -\frac{1}{2} = \cos \frac{2\pi}{3}$$

$$\therefore x = \frac{n\pi}{2}, [n \in \mathbb{Z}]$$

$$\therefore x = \frac{n\pi}{2}, [n \in \mathbb{Z}] \qquad \therefore x = 2n\pi \pm \frac{2\pi}{3}, [n \in \mathbb{Z}]$$

$$n = 0$$
 হলে, $x = 0, \frac{2\pi}{3}$; $n = 1$ হলে, $x = \frac{\pi}{2}$;

n = 2 হলে, x = π
$$\therefore$$
 নির্ণেয় সমাধান $0, \frac{\pi}{2}, \frac{2\pi}{3}, \pi$ (Ans.)

03. $g(\theta) = \cos \theta - \cos 7\theta$.

(গ) যদি
$$g(\theta) = \sin 4\theta$$
 হয়, তাহলে θ এর মান নির্ণয় হ

(গ) Sol":দেওয়া আছে,
$$g(\theta) = \cos \theta - \cos 7\theta$$

$$\Rightarrow \sin 4\theta = \cos \theta - \cos 7\theta \Rightarrow \sin 4\theta = 2\sin 4\theta \sin 3\theta$$

$$\Rightarrow 2 \sin 4\theta \sin 3\theta - \sin 4\theta = 0 \Rightarrow \sin 4\theta (2 \sin 3\theta - 1) = 0$$

$$\Rightarrow 4\theta = n\pi$$

$$\Rightarrow \sin 3\theta = \frac{1}{2} = \sin \frac{\pi}{4}$$

$$\Rightarrow \theta = \frac{n\pi}{4}$$

$$\Rightarrow 3\theta = n\pi + (-1)^n \frac{\pi}{6}$$

$$\therefore \theta = \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$$

$$\therefore$$
 নির্ণেয় সমাধান, $\theta = \frac{n\pi}{4}, \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$

(যেখানে [n ∈ Z]) (Ans.)

04. দৃশ্যকম্প-২: f(x) = sin x.

[Din.B'23

$$f(3x)=1+f\left(rac{\pi}{2}-x
ight)+f\left(rac{\pi}{2}-2x
ight)$$
 সমীকরণটির

সমাধান কর।

(গ) Sol":দেওয়া আছে, f(x) = sin x এবং

$$f(x) + f(2x) + f(3x) = 1 + f(\frac{\pi}{2} - x) + f(\frac{\pi}{2} - 2x)$$

$$\Rightarrow$$
 sin x + sin 2x + sin 3x = 1 + cos x + cos 2x

$$\Rightarrow \sin x + \sin 3x + \sin 2x = 1 + \cos x + 2\cos^2 x - 1$$

$$\Rightarrow$$
 2 sin 2x · cos x + sin 2x = cos x (2 cos x + 1)

$$\Rightarrow \sin 2x (2\cos x + 1) = \cos x (2\cos x + 1)$$

$$\Rightarrow (2\cos x + 1)(\sin 2x - \cos x) = 0$$

$$\Rightarrow (2\cos x + 1)(2\sin x \cos x - \cos x) = 0$$

$$\Rightarrow (2\cos x + 1)(2\sin x - 1) \cdot \cos x = 0$$

এখন,
$$2\cos x + 1 = 0 \Rightarrow \cos x = \frac{-1}{2}$$
 $\therefore x = 2n\pi \pm \frac{2\pi}{3}$

$$\cos x = 0 : x = (2n+1)\frac{\pi}{2} [n \in \mathbb{Z}]$$

$$2 \sin x = 1 \Rightarrow \sin x = \frac{1}{2} \Rightarrow \sin x = \sin \frac{\pi}{6}$$

$$\therefore x = n\pi + (-1)^n \frac{\pi}{6} \ [n \in \mathbb{Z}]$$

$$n = -1$$
 হলে, $x = \frac{4\pi}{3}, \frac{\pi}{2}, \frac{7\pi}{6}$; $n = -2$ হলে,

$$x = -\frac{3\pi}{2}, \frac{11\pi}{6}$$

∴ নির্ণেয় সমাধানসমূহ:
$$\frac{4\pi}{3}$$
, $\frac{3\pi}{2}$, $\frac{5\pi}{6}$, $\frac{2\pi}{3}$, $\frac{\pi}{6}$, $\frac{\pi}{2}$ (Ans.)

🚺 উদীপক-২: f(x) = sin x ও g(x) = cos x

(গ)
$$f(x) + g(x) = g(2x) + f(2x)$$
 সমীকরণটি সমাধান
কর। $[DB'22; SB'21]$

- (1) Soln: f(x) + g(x) = g(2x) + f(2x) $\Rightarrow \sin x + \cos x = \sin 2x + \cos 2x$
 - $\Rightarrow \cos x \cos 2x = \sin 2x \sin x$
 - $\Rightarrow 2 \sin \frac{3x}{2} \sin \frac{x}{2} = 2 \sin \frac{x}{2} \cdot \cos \frac{3x}{2}$
 - হয়, $\sin \frac{x}{2} = 0 \Rightarrow \frac{x}{2} = n\pi$; [n ∈ ℤ]
 - $\Rightarrow x = 2n\pi$ অথবা, $\sin \frac{3x}{2} = \cos \frac{3x}{2}$
 - $\Rightarrow \tan \frac{3x}{2} = 1 = \tan \frac{\pi}{4} \Rightarrow \frac{3x}{2} = n\pi + \frac{\pi}{4} = (4n + 1)\frac{\pi}{4}$
 - $\therefore x = (4n + 1)\frac{\pi}{6}, [n \in \mathbb{Z}] \text{ (Ans.)}$
- 06. দৃশ্যকম্প-২: f(x) = cos x.

[Ctg.B'21]

- (গ) দৃশ্যকম্প-২ এর আলোকে f(x) + f(3x) + f(5x)+f(7x)=0 সমীকরণটি সমাধান কর. যেখানে $0 < x < \pi$.
- (51) Sola: f(x) + f(3x) + f(5x) + f(7x) = 0
 - $\Rightarrow \cos x + \cos 3x + \cos 5x + \cos 7x = 0$
 - $\Rightarrow (\cos x + \cos 7x) + (\cos 3x + \cos 5x) = 0$
 - \Rightarrow 2 cos 4x cos 3x + 2 cos 4x cos x = 0
 - \Rightarrow 2 cos 4x (cos 3x + cos x) = 0
 - $\Rightarrow \cos 4x \times 2 \cos 2x \cos x = 0$
 - \Rightarrow cos 4x cos 2x cos x = 0
 - হয়, cos 4x = 0

অথবা, cos 2x = 0

- $\Rightarrow 4x = (2n+1)^{\frac{\pi}{2}}$
- $\Rightarrow 2x = (2n+1)\frac{\pi}{2}$
- $\therefore x = (2n+1)\frac{\pi}{6},$
- $\therefore x = (2n+1) \cdot \frac{\pi}{4},$
- $[n \in \mathbb{Z}]$
- $[n \in \mathbb{Z}]$
- অথবা, cot x = 0
- $\Rightarrow x = (2n+1)^{\frac{\pi}{n}}, [n \in \mathbb{Z}]$

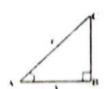
	$x = (2n + 1)\frac{\pi}{8}$	$x = (2n+1)\frac{\pi}{4}$	$x = (2n+1)\frac{\pi}{2}$	গ্রহণযোগ্য মান 0 < x < π
n = 0	<u>n</u>	<u>n</u>	<u>π</u> 2	$\frac{\pi}{8}$, $\frac{\pi}{4}$, $\frac{\pi}{2}$
n = 1	3 n	3 n	$\frac{3\pi}{2}$	$\frac{3\pi}{8}$, $\frac{3\pi}{4}$
n = 2	5 m	5n	$\frac{5\pi}{2}$	$\frac{5\pi}{8}$
n = 3	711	7 n	$\frac{7\pi}{2}$	$\frac{7\pi}{8}$

- $\therefore x = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{\pi}{2}$ (Ans.)
- $f(\theta) = \cos \theta$.

[Din.B'21]

- (গ) সমাধান কর: $f(\theta) + f(2\theta) + f(3\theta) = 0$, यथन $-2\pi \le 0 \le 2\pi$.
- (9) Sola: $\cos\theta + \cos 2\theta + \cos 3\theta = 0$
 - $\Rightarrow 2\cos 2\theta \cos \theta + \cos 2\theta = 0$
 - $\Rightarrow \cos 2\theta(2\cos \theta + 1) = 0$
 - এখানে, $\cos 2\theta = 0$: $\theta = (2n+1)\frac{\pi}{4}$; $[n \in \mathbb{Z}]$
 - আবার, $\cos\theta = -\frac{1}{2}$: $\theta = 2n\pi \pm \frac{2\pi}{3}$; $[n \in \mathbb{Z}]$

Educationblog24


উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

১ম ক্ষেত্রে n = 0, 1, 2, 3, -1, -2, -3, -4 বসিয়ে পাই.

- $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, -\frac{\pi}{4}, -\frac{3\pi}{4}, -\frac{5\pi}{4}, -\frac{7\pi}{4}$
- ২য় ক্ষেত্রে n = 0, 1, -1 বসিয়ে পাই, $\theta = \pm \frac{2\pi}{3}, \pm \frac{4\pi}{3}$
- $\theta = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}, \pm \frac{5\pi}{4}, \pm \frac{7\pi}{4}, \pm \frac{2\pi}{2}, \pm \frac{4\pi}{3}$ (Ans.)
- $\mathbf{08.} \quad \mathbf{g}(\mathbf{x}) = \sin \mathbf{x}.$
 - (গ) $g(5\theta) \sqrt{3}g(\theta) = g(3\theta)$ সমীকরণটির সাধারণ সমাধান নির্ণয় কর।
- (1) Solⁿ: $\sin 5\theta \sqrt{3}\sin \theta = \sin 3\theta$
 - $\Rightarrow \sin 5\theta \sin 3\theta = \sqrt{3}\sin \theta$
 - $\Rightarrow 2\sin\theta\cos 4\theta = \sqrt{3}\sin\theta \Rightarrow \sin\theta(2\cos 4\theta \sqrt{3}) = 0$
 - $\sin\theta = 0$ হলে $\theta = n\pi$: $n \in \mathbb{Z}$ (Ans.)
 - আবার, $2\cos 4\theta = \sqrt{3} \Rightarrow \cos 4\theta = \frac{\sqrt{3}}{2}$
 - $\Rightarrow 4\theta = 2n\pi \pm \frac{\pi}{6} \Rightarrow \theta = \frac{n\pi}{2} \pm \frac{\pi}{24}; [n \in \mathbb{Z}] \text{ (Ans.)}$
- 09. উদ্দীপক: দৃটি বিপরীত ত্রিকোণমিতিক ফাংশন হলো
 - $\sqrt{2}x = \sin^{-1}A, \frac{-x}{2} = \cos^{-1}B$

[CB'19]

- (a) A B = 0 হলে x এর সমাধানের জন্য সাধারণ রাশিমালা বের কর।
- (4) Solo: $A B = 0 \Rightarrow A = B \Rightarrow \sin(\sqrt{2}x) = \cos(-\frac{x}{2})$
 - $\Rightarrow \cos\left(\frac{\pi}{2} \sqrt{2}x\right) = \cos\left(-\frac{x}{2}\right)$
 - $\Rightarrow \frac{\pi}{2} \sqrt{2}x = 2n\pi \pm \frac{-x}{2} \Rightarrow \pi 2\sqrt{2}x = 4n\pi \pm (-x)$
 - $\Rightarrow \pi 4n\pi = (2\sqrt{2} \pm 1)x$
 - $\therefore x = \frac{(1-4n)\pi}{2\sqrt{2}+1}, [n \in \mathbb{Z}] \text{ (Ans.)}$
- 🛈 উদ্দীপক-২: cosθ cosθθ = sin5θ [Ctg.B'17]
 - (গ) উদ্দীপক-২ এর সাধারণ সমাধান নির্ণয় কর।
- (গ) Solⁿ: $\cos\theta \cos \theta = \sin \theta$
 - $\Rightarrow 2 \sin 5\theta \sin 4\theta = \sin 5\theta \Rightarrow \sin 5\theta (2\sin 4\theta 1) = 0$
 - $\therefore \sin 5\theta = 0 \Rightarrow \theta = \frac{n\pi}{5} \Rightarrow 2\sin 4\theta 1 = 0$
 - $\Rightarrow 2 \sin 4\theta = 1 \Rightarrow \sin 4\theta = \frac{1}{2} = \sin \frac{\pi}{6}$
 - $\Rightarrow 4\theta = n\pi + (-1)^n \frac{\pi}{6} : \theta = \frac{n\pi}{4} + (-1)^n \frac{\pi}{4}$
 - \therefore নির্থেয় সমাধান, $\theta=rac{n\pi}{5},rac{n\pi}{4}+(-1)^nrac{\pi}{24}$; $[n\in\mathbb{Z}]$
 - মখন n এর মান শূনা অথবা অনা যেকোনো পূর্ণসংখ্যা। (Ans.)

[SB'17]

- (গ) $f(\theta) = \frac{1}{2}$ হলে $-\pi \le x \le \pi$ ব্যবধিতে
 - $f(2\theta) f(\theta) = 2$ সমীকরণটি সমাধান কর।

П.

(1) Sol":
$$f(\theta) = \frac{r}{x} = \sec\theta$$
; $f(2\theta) = \sec 2\theta$

$$\therefore \frac{1}{\cos 2\theta} - \frac{1}{\cos \theta} = 2 \therefore \frac{\cos \theta - \cos 2\theta}{\cos 2\theta \cos \theta} = 2$$

$$\therefore \cos \theta - \cos 2\theta = 2 \cos 2\theta \cdot \cos \theta$$

$$\therefore \cos \theta - \cos 2\theta = \cos \theta + \cos 3\theta$$

$$\cos 3\theta + \cos 2\theta = 0$$

$$\therefore 2\cos\frac{5\theta}{2}\cos\frac{\theta}{2} = 0 \therefore \cos\frac{5\theta}{2} = 0$$
 এবং $\cos\frac{\theta}{2} = 0$

এখন,
$$\cos \frac{5\theta}{2} = 0$$
; $\therefore \theta = \frac{2n\pi + \pi}{5}$, $[n \in \mathbb{Z}]$

এবং
$$\cos \frac{\theta}{2} = 0$$
 : $\theta = 2n\pi + \pi$, $[n \in \mathbb{Z}]$

$$n=1$$
 হলে, $\theta=\frac{3\pi}{5}$, 3π , $n=-2$ হলে, $\theta=-\frac{3\pi}{5}$, -3π

$$n=-1$$
 হলে, $\theta=-\frac{\pi}{5}$, $-\pi$; $n=0$ হলে, $\theta=\frac{\pi}{5}$, π

: নির্ণেয় সমাধান,
$$\theta = \frac{\pi}{5}, \pi, -\frac{\pi}{5}, -\pi, \frac{3\pi}{5}, \frac{-3\pi}{5}$$
 (Ans.)

12 দৃশ্যকম্প- ২: 2 sin 2θ + 2(sin θ + cos θ) + 1 = 0

(গ) দৃশ্যকম্প-২ এ বর্ণিত সমীকরণটির সাধারণ সমাধান নির্ণয় [JB'17]

(গ) Sol*: প্রদত্ত সমীকরণটি,
$$2\sin 2\theta + 2(\sin \theta + \cos \theta) + 1 = 0$$

$$\Rightarrow$$
 2sin2 θ + 2sin θ + 2cos θ + 1 = 0

$$\Rightarrow 4\sin\theta\cos\theta + 2\sin\theta + 2\cos\theta + 1 = 0$$

$$\Rightarrow 2\sin\theta(2\cos\theta + 1) + 1(2\cos\theta + 1) = 0$$

$$\Rightarrow (2\sin\theta + 1)(2\cos\theta + 1) = 0$$

হয়,
$$2\sin\theta + 1 = 0$$
 অথবা,

$$\Rightarrow 2\sin\theta = -1$$

$$\Rightarrow \sin\theta = -\frac{1}{2}$$

$$\Rightarrow \sin\theta = \sin\left(-\frac{\pi}{6}\right)$$

$$\Rightarrow \theta = n\pi + (-1)^n \left(-\frac{\pi}{6}\right), \quad \therefore \theta = 2n\pi \pm \frac{2\pi}{3},$$

$$[n \in \mathbb{Z}]$$

অথবা,
$$2\cos\theta + 1 = 0$$

$$\Rightarrow 2\cos\theta = -1$$

$$\Rightarrow \cos\theta = -\frac{1}{2}$$

$$\Rightarrow \cos\theta = \cos\frac{2\pi}{3}$$

$$\therefore \theta = 2n\pi \pm \frac{2\pi}{2}$$

$$[n \in \mathbb{Z}]$$

সূতরাং,
$$\theta = n\pi + (-1)^n \left(-\frac{\pi}{6}\right)$$
, $2n\pi \pm \frac{2\pi}{3}$ যেখানে $[n \in \mathbb{Z}]$ (Ans.)

13.
$$f(x) = \sin x$$
 [সরকারি এডওয়ার্ড কলেজ, পাইন
(খ) $f\left(\frac{\pi}{2} + x\right) + f(x) = f\left(\frac{5\pi}{2} - 2x\right) + f(2x)$

সমীকরণটি সমাধান কর যখন
$$-2\pi \le x \le 2\pi$$

প্রদত্ত সমীকরণ:
$$f\left(\frac{\pi}{2} + x\right) + f(x) = f\left(\frac{5\pi}{2} - 2x\right) + f(2x)$$

$$\Rightarrow \sin\left(\frac{\pi}{2} + x\right) + \sin x = \sin\left(\frac{5\pi}{2} - 2x\right) + \sin 2x$$

$$\Rightarrow$$
 cos x + sin x = cos 2x + sin 2x

$$\Rightarrow \cos x - \cos 2x = \sin 2x - \sin x$$

$$\Rightarrow 2\sin\frac{3x}{2}\sin\frac{x}{2} = 2\cos\frac{3x}{2}\sin\frac{x}{2}$$

$$\Rightarrow \sin\frac{x}{2}\left(\sin\frac{3x}{2} - \cos\frac{3x}{2}\right) = 0 \ \overline{\xi}\overline{x}, \ \sin\frac{3x}{2} - \cos\frac{3x}{2} = 0$$

$$\Rightarrow \tan \frac{3x}{2} = 1 \Rightarrow \frac{3x}{2} = (4m + 1)\frac{\pi}{4}$$

$$\therefore x = \frac{(4m+1)\pi}{6}; m \in \mathbb{Z}$$

অথবা,
$$\sin \frac{x}{2} = 0 \Rightarrow \frac{x}{2} = n\pi$$

$$x = 2n\pi; n \in \mathbb{Z}$$

n	2nπ	$\frac{4n+1}{6}\pi$
0	0	<u>п</u> 6
1	2π	<u>5π</u> 6
2	•	9π 6
3	•	-
-1	-2π	-3π 6
-2	•	-7π 6
-3	•	<u>-11π</u> 6

: সমাধান, $x = 0, \pm 2\pi, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{9\pi}{6}, \frac{-3\pi}{6}, \frac{-7\pi}{6}, \frac{-11\pi}{6}$

নিজে করো

$$14. \quad f(x) = \cos x - \cos 7x$$

(খ)
$$f(\alpha) = \sin 4\alpha$$
 সমীকরণের সাধারণ সমাধান নির্ণয় কর।

[Ans:
$$\alpha = \frac{n\pi}{3} + (-1)^n \frac{\pi}{18} [n \in \mathbb{Z}]$$
]

15.
$$f(x) = \sin x \text{ and } g(y) = \cos y$$
. [JB'22]

(4)
$$f(x) + g(\frac{\pi}{2} - 2x) + f(3x) = 1 + g(x) + f(\frac{\pi}{2} - 2x)$$

সমীকরণটির সমাধান কর। [Ans:
$$x = (2n + 1)\frac{\pi}{2}$$

$$2n\pi\pm\tfrac{2\pi}{3},n\pi+(-1)^n\tfrac{\pi}{6}\left[n\in\mathbb{Z}\right]]$$

16.
$$f(x) = \sin x$$
.

$$f(x) = \sin x$$
.

(গ) সমাধান কর:
$$1 + f(\frac{\pi}{2} - 2x) + f(\frac{\pi}{2} - 4x)$$

IRB'21

$$+f\left(\frac{\pi}{2}-6x\right)=0 \text{ [Ans: } x=(2n+1)\frac{\pi}{4}, [n\in\mathbb{Z}]$$

$$17. \quad f(x) = \sin x \qquad \qquad |CB'|$$

$$I(x) = \sin x \qquad \qquad ICB.2$$

(গ) সমাধান কর:
$$f\left(\frac{n}{2}-\theta\right)+f(\theta)=f\left(\frac{n}{2}-2\theta\right)+f(2\theta)$$

[Ans:
$$\theta = 2n\pi$$
; $(4n + 1)$]

18.
$$A = \cos\theta$$
, $B = \sin\theta$, $C = \cos 2\theta$, $D = \sin 2\theta$
[Din.B*17]

আছে কিনা যাচাই কর।

(গ)
$$A + B = C + D$$
 সমীকরণটির $\left[0, \frac{\pi}{2}\right]$ ব্যবধিতে সমাধান

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

Type-09: sin θ, cos θ ইত্যাদি ত্রিকোণমিতিক অনুপাত গুণ আকারে থাকলে

Concept

sine এবং cosine গুণ আকারে থাকলে 2 sin A cos B; 2 cos A sin B; 2 cos A cos B; 2 sin A sin B; এর সূত্রগুলো প্রয়োজন অনুসারে ব্যবহার করতে হবে। এখানেও মূল লক্ষ্য হলো common নেওয়া।

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- $f(x) = \sin \alpha x, g(x) = \sin \beta x.$ [RB'22] (গ) $\alpha = 1, \beta = 3$ হলে $-\pi$ হতে π ব্যবধির মধ্যে 2f(x).g(x) = 1 সমীকরণের সমাধান নির্ণয় কর।
- (17) Sola: $2 \sin x \cdot \sin 3x = 1 \Rightarrow 2 \sin x (3 \sin x 4 \sin^3 x) = 1$ $\Rightarrow 6\sin^2 x - 8\sin^4 x = 1$
 - $\Rightarrow 8 \sin^4 x 6 \sin^2 x + 1 = 0$
 - $\Rightarrow 8 \sin^4 x 4 \sin^2 x 2 \sin^2 x + 1 = 0$
 - $\Rightarrow 4 \sin^2 x (2 \sin^2 x 1) 1(2 \sin^2 x 1) = 0$
 - হয়, $2 \sin^2 x 1 = 0 \Rightarrow \sin x = \pm \frac{1}{\sqrt{2}}$
 - $\Rightarrow \sin x = \sin \left(\pm \frac{\pi}{4} \right) \Rightarrow x = n\pi + (-1)^n \left(\pm \frac{\pi}{4} \right)$
 - $\therefore x = n\pi \pm \frac{\pi}{4} = (4n \pm 1) \frac{\pi}{4} [\because n \in \mathbb{Z}]$
 - অথবা, $4 \sin^2 x 1 = 0 \Rightarrow \sin x = \pm \frac{1}{2}$
 - $\Rightarrow \sin x = \sin \left(\pm \frac{\pi}{6} \right) \Rightarrow x = n\pi + (-1)^n \left(\pm \frac{\pi}{6} \right)$
 - $\Rightarrow x = n\pi + \frac{\pi}{} \therefore x = (6n \pm 1)^{\frac{\pi}{}}$

n এর মান	$x=(4n\pm 1)\frac{\pi}{4}$	$x=(6n\pm 1)\frac{\pi}{6}$	গ্ৰহণযোগ্য মান
-2	$-\frac{7\pi}{4}, -\frac{9\pi}{4}$	$-\frac{11\pi}{6}, -\frac{13\pi}{6}$	
-1	$-\frac{3\pi}{4}, -\frac{5\pi}{4}$	$-\frac{7\pi}{6}, -\frac{5\pi}{4}$	$-\frac{3\pi}{4}$
0	$\frac{\pi}{4}$, $-\frac{\pi}{4}$	$\frac{\pi}{6}$, $-\frac{\pi}{6}$	$-\frac{\pi}{4}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{4}$
1	$\frac{3\pi}{4}$, $\frac{5\pi}{4}$	$\frac{7\pi}{6}$, $\frac{5\pi}{6}$	$\frac{3\pi}{4}$, $\frac{5\pi}{6}$
2	$\frac{7\pi}{4}, \frac{9\pi}{4}$	$\frac{11\pi}{6}, \frac{13\pi}{6}$	

- : নির্ণেয় সমাধান: $-\frac{3\pi}{4}$, $-\frac{\pi}{4}$, $-\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{6}$ (Ans.)
- [SB'21] $g(x) = \cos x$ (ক) সমাধান কর: 2 ($\cos^2 x - \sin^2 x$) = $\sqrt{3}$
 - (গ) সমাধান কর: 4g(x)g(2x)g(3x) = 1, যখন $0 < x < \pi$
- (4) Solo: $2(\cos^2 x \sin^2 x) = \sqrt{3} \Rightarrow \cos 2x = \frac{\sqrt{3}}{2}$ $\Rightarrow \cos 2x = \cos \frac{\pi}{6} :: 2x = 2n\pi \pm \frac{\pi}{6}$
- $\Rightarrow x = n\pi \pm \frac{\pi}{12}; [n \in \mathbb{Z}] \text{ (Ans.)}$ (\mathfrak{I}) Solⁿ: $4\cos x \cos 2x \cos 3x = 1$ \Rightarrow 2(cos 4x + cos 2x) cos 2x = 1 $\Rightarrow 2\cos 4x\cos 2x + 2\cos^2 2x - 1 = 0$ \Rightarrow 2 cos 4x cos 2x + cos 4x = 0 \Rightarrow cos 4x (2 cos 2x + 1) = 0 : cos 4x = 0

- আবার, $\cos 2x = -\frac{1}{2} \Rightarrow \cos 2x = \cos \frac{2\pi}{3}$ $\therefore 2x = 2n\pi \pm \frac{2\pi}{3} \Rightarrow x = n\pi \pm \frac{\pi}{3}; [n \in \mathbb{Z}]$ ১ম ক্ষেত্রে, n=0,1,2,3 বসিয়ে $x=\frac{\pi}{8},\frac{3\pi}{8},\frac{5\pi}{8},\frac{7\pi}{8}$ ২য় ক্ষেত্রে, n = 0, 1 বসিয়ে $x = \frac{\pi}{3}, \frac{2\pi}{3}$ $x = \frac{\pi}{3}, \frac{\pi}{9}, \frac{3\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{2\pi}{9}$ (Ans.)
- \mathbf{G} দৃশ্যকম্প-১: $\mathbf{f}(\theta) = \sin \theta$. [JB'21] (খ) দৃশ্যকম্প-১ এর আলোকে $2f(\frac{\pi}{2}-\theta) \cdot f(\frac{\pi}{2}-3\theta)$ +1 = 0 সমীকরণের সমাধান কর।
- (4) Solⁿ: $2f\left(\frac{\pi}{2} \theta\right) \cdot f\left(\frac{\pi}{2} 3\theta\right) + 1 = 0$ $\Rightarrow 2\sin\left(\frac{\pi}{2} - \theta\right)\sin\left(\frac{\pi}{2} - 3\theta\right) + 1 = 0$ $\Rightarrow 2\cos\theta\cos 3\theta + 1 = 0$ \Rightarrow cos 4θ + cos 2θ + 1 = 0 $\Rightarrow 2\cos^2 2\theta + \cos 2\theta = 0$ $\Rightarrow \cos 2\theta (2\cos 2\theta + 1) = 0$ $\therefore \cos 2\theta = 0 \therefore \theta = (2n+1)^{\frac{\pi}{4}}; [n \in \mathbb{Z}] \text{ (Ans.)}$ আবার, $\cos 2\theta = -\frac{1}{2} \Rightarrow \cos 2\theta = \cos \frac{2\pi}{3}$; $\theta = n\pi \pm \frac{\pi}{2}$; $[n \in \mathbb{Z}]$ (Ans.)
- 14. দৃশ্যকম্প-২: 4 cos x cos 2x cos 3x = 1.[CB'21] (গ) দৃশ্যকম্প-২ এর সমীকরণটি 0 < x < π ব্যবধিতে সমাধান কর।
- (গ) Solⁿ: $4\cos x \cos 2x \cos 3x = 1$ \Rightarrow 2 cos 2x (cos 4x + cos 2x) = 1 \Rightarrow 2 cos 2x cos 4x = 1 - 2 cos² 2x $\Rightarrow 2\cos 2x\cos 4x = -\cos 4x \left[\because \cos 2x = 2\cos^2 x - 1\right]$ \Rightarrow cos 4x (2 cos 2x + 1) = 0
 - $\therefore \cos 4x = 0$ অথবা 2 cos 2x = -1

x	$\frac{n\pi}{4} + \frac{\pi}{8}$	$n\pi + \frac{\pi}{3}$	$n\pi - \frac{\pi}{3}$
0	<u>n</u> 8	π 3	×
1	3 n 8	×	$\frac{2\pi}{3}$

 $\therefore x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{2}, \frac{2\pi}{2}$

 \Rightarrow x = $(2n + 1)\frac{\pi}{n}$; $[n \in \mathbb{Z}]$

নিজে করো

05. $h(x) = \sin x$.

(গ) $0 \le \theta \le 2\pi$ ব্যবধিতে $2h(\theta) \cdot h(3\theta) = 1$ সমীকরণটির সমাধান কর।

[Ans:
$$\theta = \frac{\pi}{6}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{11\pi}{6}$$

Type-10: cot θ, tan θ, sec θ, cosec θ বিশিষ্ট ত্রিকোণমিতিক সমীকরণ সংক্রান্ত সমস্যা

Concept

এই টাইপের সমস্যাণ্ডলোতে tan বা cot এর সূত্র আনার চেষ্টা করতে হবে। যদি সূত্র না আনা যায়,

তাহলে, $\tan\theta = \frac{\sin\theta}{\cos\theta}$, $\cot\theta = \frac{\cos\theta}{\sin\theta}$, $\sec\theta = \frac{1}{\cos\theta}$, $\csc\theta = \frac{1}{\sin\theta}$ আকারে ভেঙ্গে সমাধান করতে হবে। $\tan\theta$ ও $\sec\theta$ থাক্ত্রে $\theta \neq 0$ এবং $\cot\theta$ ও $\csc\theta$ থাকলে $\sin\theta \neq 0$ বিবেচনা করতে হবে।

সূজনশীল প্রশ্ন (ক, খ ও গ)

01 দুশ্কেশ-২: g(x) = cotx. [BB'23; Din.B'19]

(গ) সমাধান কর: $g\left(\frac{\pi}{2}-\theta\right)$. $g\left(\frac{3\pi}{2}-2\theta\right)=1$, যখন $0\leq\theta\leq\pi$.

(1) Solⁿ: $g\left(\frac{\pi}{2} - \theta\right) \cdot g\left(\frac{3\pi}{2} - 2\theta\right) = 1$ $\Rightarrow \cot\left(\frac{\pi}{2} - \theta\right) \cot\left(\frac{3\pi}{2} - 2\theta\right) = 1$

 \Rightarrow tanθ. tan2θ = 1 \Rightarrow sinθsin2θ = cosθcos2θ

 \Rightarrow cosθcos2θ - sinθsin2θ = 0 \Rightarrow cos(θ + 2θ) = cos $\frac{\pi}{2}$

 $\therefore 3\theta = (2n+1)\frac{\pi}{2} \ \therefore \theta = (2n+1) \cdot \frac{\pi}{6} \ [n \in \mathbb{Z}]$

 \therefore n = 0 হলে, $\theta = \frac{\pi}{6}$

n = 1 হলে, $\theta = \frac{\pi}{2}$; যা অগ্রহণযোগ্য

n=2 হলে, $\theta=\frac{5\pi}{6}$ \therefore $\theta=\left\{\frac{\pi}{6},\frac{5\pi}{6}\right\}$ (Ans.)

(গ) যদি f(z) = 1 হয় তবে z এর মান নির্ণয় কর যখন

 $-\frac{\pi}{2} \le z \le \frac{\pi}{2}$

(প) Sol*: দেওয়া আছে, f(z) = 1 ⇒ tan z tan 3z = 1

 $\Rightarrow \frac{\sin z \sin 3z}{\cos z \cos 3z} = 1 \Rightarrow \sin z \sin 3z = \cos z \cos 3z$

 $\Rightarrow \cos z \cos 3z - \sin z \sin 3z = 0 \Rightarrow \cos 4z = 0$

 \Rightarrow 4z = $(2n+1)\frac{\pi}{2}$ \therefore z = $(2n+1)\frac{\pi}{8}$; যেখানে $[n \in \mathbb{Z}]$

যেহেতু, $\frac{-\pi}{2} \le z \le \frac{\pi}{2}$ তাই, n = -2, -1, 0, 1 নিয়ে পাই

 $z = -\frac{3\pi}{8}, -\frac{\pi}{8}, \frac{\pi}{8}, \frac{3\pi}{8}$ (Ans.)

🔞 উদ্দীপক-২: f(x) = sec x. |BB'21|

(গ) উদ্দীপক-২ এর আলোকে f(x). f(3x) + 2 = 0 সমীকরণের সাধারণ সমাধান নির্ণয় কর।

(1) Soln: $f(x) \cdot f(3x) + 2 = \sec x \cdot \sec(3x) + 2 = 0$

 $\Rightarrow \frac{1}{\cos x \cos 3x} + 2 = 0 \left[\cos x \neq 0 ; \cos 3x \neq 0\right]$

 $\Rightarrow 2\cos 3x \cdot \cos x + 1 = 0$

 $\Rightarrow \cos(3x + x) + \cos(3x - x) = -1$

 $\Rightarrow \cos 2x = -(1 + \cos 4x)$

 $\Rightarrow \cos 2x = -(2\cos^2 2x)$

 $\Rightarrow \cos 2x (1 + 2\cos 2x) = 0$

 $\therefore \cos 2x = 0 \Rightarrow 2x = n\pi + \frac{\pi}{2} \Rightarrow x = \frac{n\pi}{2} + \frac{\pi}{4}$

 $\Rightarrow x = (2n+1)\frac{\pi}{4}; n \in \mathbb{Z}$

অথবা, $\cos 2x = -\frac{1}{2} = \cos \left(\pi - \frac{\pi}{3}\right) \Rightarrow 2x = 2n\pi \pm \left(\frac{2\pi}{3}\right)$

 $\Rightarrow x = n\pi \pm \frac{\pi}{3} = (3n \pm 1)\frac{\pi}{3}; [n \in \mathbb{Z}] \text{ (Ans.)}$

 $f(x) = \csc x - \cot x$

-:--1 (24)

[MB'21

(খ) $f(\theta) = \frac{3}{4}$ হলে, দেখাও যে, $\theta = \pm \sin^{-1}\left(\frac{24}{25}\right)$.

(*) Solⁿ: $f(\theta) = \frac{3}{4} \Rightarrow \csc\theta - \cot\theta = \frac{3}{4} \dots \dots (i)$

আবার, $\csc^2\theta - \cot^2\theta = 1$

 $\Rightarrow (\csc\theta - \cot\theta)(\csc\theta + \cot\theta) = 1$

 \Rightarrow cosecθ + cotθ = $\frac{4}{3}$ (ii)

এখন, (ii) – (i) \Rightarrow $2\cot\theta = \frac{7}{12} \Rightarrow \cot^2\theta = \frac{49}{576}$

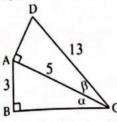
 $\Rightarrow \csc^2\theta = 1 + \frac{49}{576} \Rightarrow \csc^2\theta = \frac{625}{576}$

 $\Rightarrow \sin^2 \theta = \frac{576}{625} \Rightarrow \sin \theta = \pm \frac{24}{25}$

 $\therefore \theta = \pm \sin^{-1}\left(\frac{24}{25}\right)$ (Showed)

05. (ক) সমাধান কর: tan 2x – tan x = 0.

(Φ) Solⁿ: $\tan 2x - \tan x = 0 \Rightarrow \frac{\sin 2x}{\cos 2x} = \frac{\sin x}{\cos x}$


 $\Rightarrow \sin 2x \cos x - \cos 2x \sin x = 0 \Rightarrow \sin x = 0$

 $\therefore x = n\pi; [n \in \mathbb{Z}] \text{ (Ans.)}$

$$06. \quad f(x) = \tan x$$

[সরকারি বিজ্ঞান কলেজ, ঢাকা]

(খ) f(x) + f(2x) + f(3x) = 0 সমীকরণের সমাধান নির্ণয় কর।

(খ) Soln: দেওয়া আছে, f(x) = tan x

প্রদত্ত সমীকরণ:
$$f(x) + f(2x) + f(3x) = 0$$

$$\Rightarrow \tan x + \tan 2x + \tan 3x = 0$$

$$\Rightarrow \tan x + \tan 2x + \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} = 0$$

Educationblog24
উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

$$\Rightarrow \tan x + \tan 2x \left(1 + \frac{1}{1 - \tan x \tan 2x}\right) = 0$$

$$\Rightarrow (\tan x + \tan 2x) \left(\frac{2 - \tan x \tan 2x}{1 - \tan x \tan 2x} \right) = 0$$

$$\Rightarrow \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} (2 - \tan x \tan 2x) = 0$$

$$\Rightarrow \tan 3x (2 - \tan x \tan 2x) = 0$$

হয়,
$$\tan x \tan 2x = 2 \Rightarrow \frac{2 \tan^2 x}{1 - \tan^2 x} = 2 \Rightarrow 4 \tan^2 x = 2$$

$$\Rightarrow \tan x = \pm \frac{1}{\sqrt{2}} = \tan \alpha$$

$$\Rightarrow x = n\pi + \alpha = n\pi \pm \tan^{-1} \frac{1}{\sqrt{2}}; n \in \mathbb{Z}$$

অথবা,
$$\tan 3x = 0 \Rightarrow 3x = m\pi : x = \frac{m\pi}{3}; m \in \mathbb{Z}$$

$$\therefore$$
 নির্ণেয় সমাধান: $x=rac{m\pi}{3}$, $n\pi\pm tan^{-1}rac{1}{\sqrt{2}}$; m, $n\in\mathbb{Z}$

MCQ প্রশ্নের জন্য এই অধ্যায়ের বিভিন্ন টাইপের তুলনামূলক গুরুত্ব:

তক্তত্	টাইপ	টাইপের নাম	যতবার প্রশ্ন	ৈয়ে বোর্ডে যে বছর এসেছে MCQ	
			এসেছে		
00	T-01	গ্রাফ সংক্রান্ত	02	SB'21; CB'21	
000	T-02	মান সংক্রান্ত	78	DB'23, 22, 21, 19, 17; RB'23, 22, 21, 17; Ctg.B'23, 22, 21, 19, 17; BB'23, 22, 21; JB'23, 22, 21, 19, 17; CB'23, 22, 21, 17; Din.B'23, 22, 21, 17; MB'23, 22, 21, 19; Mad.B'23; SB'19, 17; All.B'18	
000	T-03	বিপরীত ত্রিকোণমিতিক সমীকরণের প্রমাণ ও সমাধান সংক্রান্ত সমস্যা	27	DB'23, 22, 19; RB'23, 22, 21, 17; Ctg.B'23, 17; BB'23, 22, 17; MB'23, 21; Mad.B'23; SB'22, 21; JB'21; CB'21; Din.B'21, 19, 17;	
	T-04	ত্রিকোণমিতিক সমীকরণের সমাধান সংক্রান্ত সাধারণ সমস্যা	-		
000	T-05	বর্গসূত্রের প্রয়োগ সংক্রান্ত সমস্যা	11	SB'23; CB'2, 193; Ctg.B'22; RB'21; SB'21, 19; BB'21; Din.B'21; All.B'18; DB'17	
00	T-06	sin θ , cos θ , tan θ , sec θ এর দ্বিঘাতরাশি সম্বলিত পদ থাকলে	02	SB'22; RB'17	
000	T-07	$a\cos\theta + b\sin\theta = c$ [যেখানে $ c \le \sqrt{a^2 + b^2}$] আকৃতির ত্রিকোণমিতিক সমীকরণ সংক্রান্ত সমস্যা	09	SB'23, 19; JB'23; CB'23, 22; Din.B'23; BB'22, 21; Ctg.B'22; SB'19	
00	T-08	sin θ , cos θ ইত্যাদি ত্রিকোণমিতিক অনুপাত যোগ আকারে থাকলে	03	BB'21; Din.B'21; JB'19	
0	T-09	sin θ , cos θ ইত্যাদি ত্রিকোণমিতিক অনুপাত গুণ আকারে থাকলে	01	DB'23	
000	T-10	cot θ , tan θ , sec θ , cosec θ বিশিষ্ট ত্রিকোণমিতিক সমীকরণ সংক্রান্ত সমস্যা	48	Ctg.B'23, 22, 21; BB'23, 22, 21, 19, 17; JB'23, 22, 21, 17; CB'23, 22, 21, 19, 17; Din.B'23, 22, 21, 19, 17; MB'23, 22, 21; Mad.B'23; DB'22, 21, 19, 17; RB'22, 21, 19; All.B'18;	

বিগত বোর্ড পরীক্ষাসমূহের MCQ প্রশ্ন

01. $\frac{1}{2}\sin^{-1}\frac{4}{5} = ?$

[DB'23; JB'19]

- (a) $\tan^{-1}\left(\frac{1}{2}\right)$
- (b) $tan^{-1}(2)$
- (c) $\cos^{-1}\left(\frac{3}{4}\right)$
- (d) $\sin^{-1}\left(\frac{2}{5}\right)$
- 02. নিচের কোনটি সঠিক

- [DB'23]
- (i) $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$
- (ii) $tan^{-1}x + cot^{-1}x = \pi$
- (iii) $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$

নিচের কোনটি সঠিক?

- (b) ii
- (d) i, iii
- 03. $\tan \theta = 0$ হলে θ এর সাধারণ সমাধান—
- [DB'23]

- (a) $(2n + 1)\pi$
- (b) nπ

- 04. $4\left(\cos^{-1}\frac{2}{\sqrt{5}} + \tan^{-1}\frac{1}{3}\right) = \overline{\Phi}$
- [RB'23]

- 05. $\sin^{-1}\frac{1}{x} = \tan^{-1}\frac{2}{3}$ হলে $x = \overline{\Phi}$ ত? [RB, MB, Mad.B'23]

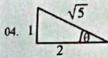
- 06. cos(sin-1 x) এর মান কোনটি?
- [RB'23]

- (a) $\sqrt{x^2 1}$
- (b) $\sqrt{1-x^2}$
- (c) $x^2 + 1$
- (d) $1 x^2$

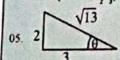
- $07. \quad n \in \mathbb{Z}$ হলে $\sin 2\theta = 1$ সমীকরণের সাধারণ সমাধান কোন

 - (a) $(4n + 1)\frac{\pi}{4}$
- (b) $(4n + 1)\frac{\pi}{2}$
- (c) $(4n-1)\frac{\pi}{4}$ (d) $(4n-1)\frac{\pi}{2}$
- $08. \sin 2\theta \cos 2\theta = 0$ সমীকরণের সাধারণ সমাধান—
 - Ctg.B'2

- $(a) \frac{n\pi}{2} + \frac{\pi}{4}$
- $(b) \frac{n\pi}{2} \frac{\pi}{4}$
- $(c)\,\frac{n\pi}{2}-\frac{\pi}{8}$
- $(d) \frac{n\pi}{2} + \frac{\pi}{8}$
- $09. \cos^{-1}\left(\frac{2}{3}\right)$ এর মান হলো—
- [Ctg.B, JB'2


[Ctg.B'2

- (a) $\tan^{-1} \frac{\sqrt{5}}{2}$
- (b) $\sin^{-1}\frac{3}{2}$
- (c) $\sec^{-1}\frac{2}{3}$
- (d) $\cot^{-1} \frac{\sqrt{5}}{3}$
- 10. $\tan^{-1} \frac{3}{4}$ এর মান কোনটি?
- (b) $\frac{1}{2} \sin^{-1} \frac{24}{25}$
- (a) $\frac{1}{2} \tan^{-1} \frac{24}{25}$ (c) $\frac{1}{2}\sin^{-1}\frac{24}{7}$
- (d) $\frac{1}{2} \tan^{-1} \frac{7}{24}$
- 11. $\sin\left(x-\frac{3\pi}{2}\right)=0, n\in\mathbb{Z}$ এর সমাধান কোনটি? [Ctg.B'2.
 - (a) $2n\pi + \frac{3\pi}{2}$
- (b) $2n\pi \frac{3\pi}{2}$
- (c) $n\pi \frac{3\pi}{2}$
- (d) $n\pi + \frac{3\pi}{2}$


MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

- 05. d 06. b 07. a 08. d 09. a 10. b 11. d 03. b 02. d 01. a
- 01. $4\sqrt{3}, \frac{1}{5}\sin^{-1}\frac{4}{5} = \theta \Rightarrow \sin^{-1}\frac{4}{5} = 2\theta \Rightarrow \sin 2\theta = \frac{4}{5}$
 - $\therefore \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{2 \sin \theta \sin \theta}{2 \cos \theta \sin \theta} = \frac{1 \cos 2\theta}{\sin 2\theta} = \frac{1 \sqrt{1 \sin^2 2\theta}}{\sin 2\theta}$

$$= \frac{1 - \sqrt{1 - \frac{16}{25}}}{\frac{2}{5}} = \frac{\frac{2}{5}}{\frac{2}{5}} = \frac{1}{2} :: \theta = \tan^{-1}\left(\frac{1}{2}\right)$$

$$4\left(\cos^{-1}\frac{2}{\sqrt{5}} + \tan^{-1}\frac{1}{3}\right) = 4\left(\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}\right)$$
$$= 4\left(\tan^{-1}\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} + \frac{1}{3}}\right) = 4\tan^{-1}(1) = 4 \times \frac{\pi}{4} = \pi$$

$$\tan^{-1}\frac{2}{3} = \sin^{-1}\frac{2}{\sqrt{13}} \div \sin^{-1}\frac{1}{x} = \tan^{-1}\frac{2}{3} \Rightarrow \sin^{-1}\frac{1}{x} = \sin^{-1}\frac{2}{\sqrt{13}}$$
$$\Rightarrow \sin^{-1}\frac{1}{x} = \sin^{-1}\frac{1}{\sqrt{13}} \div x = \frac{\sqrt{13}}{2}$$

- $\int_{0}^{\infty} \sin^{-1} x = \cos^{-1} \sqrt{1 x^2}$
 - $\cos(\sin^{-1} x) = \cos(\cos^{-1} \sqrt{1 x^2}) = \sqrt{1 x^2}$
- 07. $\sin 2\theta = 1 \Rightarrow 2\theta = (4n+1)\frac{\pi}{2} \div \theta = (4n+1)\frac{\pi}{4}$
- 08. $\sin 2\theta \cos 2\theta = 0 \Rightarrow \sin 2\theta = \cos 2\theta$ $\Rightarrow \tan 2\theta = 1 = \tan \frac{\pi}{4} \Rightarrow 2\theta = n\pi + \frac{\pi}{4} : \theta = \frac{n\pi}{2} + \frac{\pi}{8}; n \in \mathbb{Z}$
- $09. \quad \cos^{-1}\left(\frac{2}{3}\right) = \tan^{-1}\left(\frac{\sqrt{5}}{2}\right)$ $= \sec^{-1}\left(\frac{3}{2}\right) = \cot^{-1}\left(\frac{2}{\sqrt{3}}\right)$

- 10. $\tan^{-1}\frac{3}{4} = \frac{1}{2} \times 2 \tan^{-1}\frac{3}{4} = \frac{1}{2} \times \sin^{-1}\frac{2x_{\frac{1}{4}}^2}{1+(\frac{1}{2})^2} = \frac{1}{2}\sin^{-1}\frac{24}{25}$
- 11. $\sin\left(x \frac{3\pi}{2}\right) = 0 \Rightarrow x \frac{3\pi}{2} = n\pi : x = n\pi + \frac{3\pi}{2}$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

 $12. \csc^2 \left(\tan^{-1}\frac{1}{2}\right) - \sec^2 \left(\cot^{-1}\sqrt{3}\right)$ এর মান নিচের

[SB'23; Ctg.B'22; BB'21; DB'17]

- (a) $\frac{11}{3}$ (b) $\frac{13}{3}$ (c) $\frac{35}{9}$

- 13. $\sin^{-1}\frac{2a}{1+a^2} + \cot^{-1}\frac{1-b^2}{2b} = 2\tan^{-1}x$ হলে x এর মান-

[SB'23]

- (a) a + b
- $(c)\frac{a-b}{1+ab}$
- $(d)\frac{a+b}{1-ab}$
- 14. n পূর্ণসংখ্যা হলে, $\cos 3\theta = \frac{1}{2}$ সমীকরণের সমাধান কোনটি?

- (a) $\frac{2}{3}$ n $\pi \frac{\pi}{9}$
- (b) $\frac{2}{3}$ n π + $\frac{\pi}{9}$
- $(c)^{\frac{2}{3}} n\pi \pm \frac{\pi}{9}$
- $(d) \frac{3}{2} n\pi \pm \frac{\pi}{9}$
- 15. $\cos\theta \sin\theta = 0$ হলে θ এর মান কত?
- [SB'23]

- - (a) 30° (b) 45°
- $(c)60^{\circ}$
- (d) 120°
- 16. tan⁻¹ x + tan⁻¹ y = কত? যখন (xy > 1)

- (a) $\tan^{-1} \frac{x+y}{1-xy}$
- (b) $\tan^{-1} \frac{x+y}{1-xy} \pi$
- (c) $\tan^{-1} \frac{x+y}{1-xy} + \pi$ (d) $\tan^{-1} \frac{x+y}{1-xy} + \frac{\pi}{2}$
- 17. $\cos^{-1}\left\{\cos\left(-\frac{\pi}{3}\right)\right\} = \overline{\Phi}$ ত?

[BB'23]

- (a) $-\frac{\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $-\frac{2\pi}{3}$

18. বিপরীত বৃত্তীয় ফাংশনের ক্ষেত্রে-

- (i) $\sin^{-1}(-x) = -\sin^{-1}x (-1 \le x \le 1)$
 - (ii) $\sin^{-1}\left(\sin\frac{3\pi}{4}\right) = \frac{3\pi}{4}$
 - (iii) $\sec^{-1}(-x) = \pi \sec^{-1}x (|x| \ge 1)$

নিচের কোনটি সঠিক?

(a i, ii

- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- sin θ = sin α হলে θ এর মান কত? (যেখানে α একটি ধ্রুবক [BB'23]

 - (a) $n \pi + (-1)^n \alpha$, $n \in \mathbb{Z}$ (b) $n \pi \pm (-1)^n \alpha$, $n \in \mathbb{Z}$
 - (c) $n \pi \pm \alpha, n \in \mathbb{Z}$
- (d) $n \pi (-1)^n \alpha, n \in \mathbb{Z}$
- sin θ + cos θ এর বৃহত্তম মান কত? (a) $+\sqrt{2} + 1$ (b) $\sqrt{2}$
 - (c) 1
- sin x + cosec x = -2 এবং n ∈ Z হলে x এর মান কত?

[JB'23]

[BB'23]

- (a) $2n\pi + \frac{\pi}{3}$
- (b) $2n\pi \frac{\pi}{2}$
- (c) 2nm
- (d) $2n\pi \pi$
- 22. $\cos^{-1}\{-\sin{(\tan^{-1}{2}+\cot^{-1}{2})}\}$ এর মান কত?

[JB'23]

- (a) $-\frac{\pi}{2}$
- (b) 0
- (c) $\frac{\pi}{2}$
- (d) n

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

12. a	13. d	14. c	15. b	16. c	17. b	18. b	19. a	20. b	21. b	22. d

- 12. $\csc^2\left(\tan^{-1}\frac{1}{2}\right) \sec^2\left(\cot^{-1}\sqrt{3}\right) \quad \left[\because \tan^{-1}\frac{1}{2} = \sin^{-1}\frac{1}{\sqrt{5}}\right]$
 - $\csc^{-1}\sqrt{5}$ and $\cot^{-1}\sqrt{3} = \cos^{-1}\frac{\sqrt{3}}{2} = \sec^{-1}\frac{2}{\sqrt{3}}$
 - $= \csc^2(\csc^{-1}\sqrt{5}) \sec^2(\sec^{-1}\frac{2}{\sqrt{3}})$
 - $=(\sqrt{5})^2-(\frac{2}{\sqrt{3}})^2=5-\frac{4}{3}=\frac{11}{3}$
- 13. $\sin^{-1}\frac{2a}{1+a^2} + \cot^{-1}\frac{1-b^2}{2b} = 2\tan^{-1}x$
 - $\Rightarrow 2 \tan^{-1} a + \tan^{-1} \frac{2b}{1-b^2} = 2 \tan^{-1} x$
 - $\Rightarrow 2 \tan^{-1} a + 2 \tan^{-1} b = 2 \tan^{-1} x$
 - $\left[\because 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} = \sin^{-1} \frac{2x}{1+x^2}\right]$ $\Rightarrow \tan^{-1} a + \tan^{-1} b = \tan^{-1} x \Rightarrow \tan^{-1} \frac{a+b}{1-ab} = \tan^{-1} x \cdot x = \frac{a+b}{1-ab}$
- 14. $\cos 3\theta = \frac{1}{3} = \cos \frac{\pi}{3} \Rightarrow 3\theta = 2n\pi \pm \frac{\pi}{3}$
 - $[\because \cos\theta = \cos\alpha :: \theta = 2n\pi \pm \alpha] :: \theta = \frac{2}{3}n\pi \pm \frac{\pi}{9}$
- 15. $\cos\theta \sin\theta = 0 \Rightarrow \sin\theta = \cos\theta \Rightarrow \tan\theta = 1 \Rightarrow \theta = 45^{\circ}$
- 16. xy > 1 হওয়ায় x > 0,y > 0 ভাই x + y ধনাত্মক এবং 1 − xy ঋণাত্মক
 - $\frac{x+y}{1-xy}$ we find $x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy} + \pi$

- 17. $\cos^{-1}\left\{\cos\left(-\frac{\pi}{2}\right)\right\} = \cos^{-1}\left\{\cos\frac{\pi}{2}\right\} = \frac{\pi}{2}$
- 18. $\sin^{-1}\left(\sin\frac{3\pi}{4}\right) = \pi \frac{3\pi}{4} = \frac{\pi}{4}$ সুতরাং (i) ও (iii) নং সঠিক।
- 19. $\sin \theta = \sin \alpha$ হলে, $\theta = n\pi + (-1)^n \alpha, n \in \mathbb{Z}$
- 20. $f(x) = \sin x + \cos x; f'(x) = \cos x \sin x$
 - For maximum value, $f'(x) = 0 \Rightarrow \cos x = \sin x$
 - $\Rightarrow \tan x = 1 = \tan \frac{\pi}{4} : x = \frac{\pi}{4}$
 - \therefore বৃহত্তম মান, $f\left(\frac{\pi}{4}\right) = \sin\frac{\pi}{4} + \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$
- 21. $\sin x + \csc x = -2 \Rightarrow \sin x + \frac{1}{\sin x} = -2$
 - $\Rightarrow \sin^2 x + 1 = -2\sin x \Rightarrow \sin^2 x + 2\sin x + 1 = 0$
 - $\Rightarrow (\sin x + 1)^2 = 0 \Rightarrow \sin x + 1 = 0 \Rightarrow \sin x = -1$
 - $\Rightarrow x = (4n-1)\frac{\pi}{2} = 2n\pi \frac{\pi}{2}, n \in \mathbb{Z}$
- 22. cos-1{-sin (tan-1 2 + cot-1 2)}
 - $=\cos^{-1}\left\{-\sin\frac{\pi}{2}\right\}=\cos^{-1}(-1)=\pi$

- 23. $2(3\cos\theta 4\cos^3\theta) = -1$ এর সমাধান নিচের কোনটি?

[JB'23]

- (a) $2n\pi \pm \frac{\pi}{2}$
- (b) $\frac{2n\pi}{3} \pm \frac{\pi}{9}$
- (c) $2n\pi \pm \frac{\pi}{4}$
- (d) $\frac{2n\pi}{3} \pm \frac{\pi}{10}$
- 24. $\cos^2\left(\tan^{-1}\frac{1}{\sqrt{2}}\right)$ এর মান কত?

ICB'231

- 25. f(x) = cos⁻¹ x ফাংশনের রেঞ্জ কত?

[CB'23]

- (a) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- $(c)(0,\pi)$
- (d) $[0, \pi]$

(c) $\frac{4}{3}$

26. $\csc\theta + \cot\theta = \sqrt{3}(0 < \theta < \pi)$ হলে, θ এর মান কত?

[CB'23]

- $(a)^{\frac{\pi}{4}}$

- 27. n একটি পূর্ণসংখ্যা হলে $\sin 2\theta = 1$ সমীকরণের সাধারণ সমাধান কোনটি? [CB'23]
 - (a) $(4n + 1)^{\frac{\pi}{4}}$
- (b) $(4n-1)\frac{\pi}{4}$
- (c) $(2n + 1)\frac{\pi}{2}$
- (d) $(2n-1)\frac{\pi}{2}$
- 28. tan (sec⁻¹ a) এর মান-

24. a

[Din.B'23]

28. c

- (a) $\frac{\sqrt{b^2-a^2}}{a}$ (b) $\frac{a}{\sqrt{b^2-a^2}}$ (c) $\frac{\sqrt{a^2-b^2}}{b}$ (d) $\frac{b^2}{\sqrt{a^2-b^2}}$

26. c

27. a

29. $\cos x + 2 + \sec x = 0$ সমীকরণের সাধারণ সমাধান ক্র

[Din.B'23]

[Din.B'23]

- (a) 2nπ
- (b) $(2n + 1)\pi$
- (c) $(2n + 1)^{\frac{\pi}{2}}$
- (d) $(2n + 1)^{\frac{n}{4}}$
- 30. $2 \tan^{-1} \frac{1}{5} = \overline{\Phi \circ}$?

(b) $\tan^{-1} \frac{5}{13}$

- (a) $\tan^{-1} \frac{5}{12}$
- (d) $\tan^{-1} \frac{5}{26}$
- (c) $\tan^{-1} \frac{5}{24}$ 31. $\sin\left(x-\frac{\pi}{4}\right)=1$ এর সমাধান কোনটি?
- [Din.B'23]
- (a) $-\frac{\pi}{4}$ (b) $\frac{\pi}{4}$
- $(c)\frac{\pi}{2}$
- $(d)\frac{3\pi}{4}$

[Din.B'23]

[MB'23]

34. c

32. tan-1 x এর ডোমেন-

(a) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

- (b) [-1,1]
- (c) $[-2\pi, 2\pi]$
- (d) R
- 33. $tan^{-1}p + tan^{-1}q = \frac{\pi}{4}$ হলে— (a) pq = 1
 - (b) p + q = 0
 - (c) p + q pq = 1
- (d) p + q + pq = 1
- $34. \cos^2 x + 2\sin x = 2$ সমীকরণের সাধারণ সমাধান (যখন
 - $n \in \mathbb{Z}$

[MB'23]

33. d

- (a) $(4n-1)\frac{\pi}{2}$
- (b) nπ

32. d

(c) $(4n + 1)^{\frac{n}{2}}$

30. a

(d) $(2n + 1)\pi$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

29. b

23.	$2(3\cos\theta - 4\cos^3\theta) = -1 \Rightarrow 2(-\cos 3\theta) = -1$
	$\Rightarrow \cos 3\theta = \frac{1}{2} = \cos \frac{\pi}{2} \Rightarrow 3\theta = 2n\pi \pm \frac{\pi}{2} : \theta = \frac{2n\pi}{3} \pm \frac{\pi}{9}$

25. d

- 24. $\cos^2\left(\tan^{-1}\frac{1}{\sqrt{2}}\right) = \cos^2\left(\cos^{-1}\frac{\sqrt{2}}{\sqrt{3}}\right) = \left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2 = \frac{2}{3}$
- 26. $\cos \theta + \cot \theta = \sqrt{3}$

$$\Rightarrow \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta} = \sqrt{3}$$

 $\Rightarrow 1 + \cos \theta = \sqrt{3} \sin \theta$

- $\Rightarrow 1 + 2\cos\theta + \cos^2\theta = 3(1 \cos^2\theta)$
- $\Rightarrow 4\cos^2\theta + 2\cos\theta 2 = 0$
- $\Rightarrow 2\cos^2\theta + \cos\theta 1 = 0$
- $\Rightarrow 2\cos^2\theta + 2\cos\theta \cos\theta 1 = 0$
- $\Rightarrow 2\cos\theta(\cos\theta+1)-(\cos\theta+1)=0$ $\Rightarrow (2\cos\theta - 1)(\cos\theta + 1) = 0$
- 27. $\sin 2\theta = 1 \Rightarrow 2\theta = (4n + 1)\frac{\pi}{2} : \theta = (4n + 1)\frac{\pi}{4}$
- 28. $\tan\left(\sec^{-1}\frac{a}{b}\right) = \tan\left(\tan^{-1}\frac{\sqrt{a^2-b^2}}{b}\right) = \frac{\sqrt{a^2-b^2}}{b}$

- (यदञ्. (0 < θ < π) $\cos\theta \neq -1$ $\therefore 2\cos\theta - 1 = 0$
- $\Rightarrow \cos \theta = \frac{1}{2} = \cos \frac{\pi}{3}$
- $\Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}$ $0 < \theta < \pi$
- শর্তমতে, 0 = -

29. প্রদত্ত সমীকরণ, cos x + 2 + sec x = 0 $\Rightarrow \cos x + \frac{1}{\cos x} = -2 \Rightarrow \cos^2 x + 1 = -2\cos x$

31. d

- $\Rightarrow \cos^2 x + 2\cos x + 1 = 0 \Rightarrow (\cos x + 1)^2 = 0 \Rightarrow \cos x = -1$ $x = (2n + 1)\pi, n \in \mathbb{Z}$
- 30. $2 \tan^{-1} \frac{1}{5} = \tan^{-1} \frac{\frac{5}{5}}{1 \frac{1}{2}} = \tan^{-1} \left(\frac{2}{5} \times \frac{5^2}{24} \right) = \tan^{-1} \frac{10}{24} = \tan^{-1} \frac{5}{12}$
- 31. প্রদত্ত সমীকরণ, $\sin\left(x-\frac{\pi}{4}\right)=1 \Rightarrow \sin\left(x-\frac{\pi}{4}\right)=\sin\frac{\pi}{4}$
 - $\Rightarrow x \frac{\pi}{4} = \frac{\pi}{2} \therefore x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$
- 33. $\tan^{-1} p + \tan^{-1} q = \frac{\pi}{4} \Rightarrow \tan^{-1} \frac{p+q}{1-pq} = \frac{\pi}{4}$
 - $\Rightarrow \frac{p+q}{1-pq} = \tan\left(\frac{n}{4}\right) \Rightarrow p+q = 1-pq : p+q+pq = 1$
- 34. $\cos^2 x + 2\sin x = 2 \Rightarrow 1 \sin^2 x + 2\sin x 2 = 0$
 - $\Rightarrow \sin^2 x 2\sin x + 1 = 0 \Rightarrow (\sin x 1)^2 = 0 \Rightarrow \sin x = 1$
 - $x = (4n + 1)^{\frac{n}{2}}$

Educationblog24. উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

35. $\sin^{-1}\frac{1}{\sqrt{2}} + \cos^{-1}\frac{1}{\sqrt{2}}$ এর মান কোনটি?

[MB'23; RB, Ctg.B, MB, JB, CB'22; DB'21]

- (d) n
- $36. \sin\left(\tan^{-1}\frac{1}{2}\right)$ এর মান কত?

[Mad.B'23]

(d) √5

- (c) 2
- $_{37.}$ tan θ = $-\sqrt{3}$ হলে θ এর মান নিচের কোনটি?

[Mad.B'23]

- (a) $n\pi + \frac{2\pi}{3}$; $n \in \mathbb{Z}$ (b) $n\pi + \frac{\pi}{3}$; $n \in \mathbb{Z}$
- (c) $2n\pi + \frac{2\pi}{3}$; $n \in \mathbb{Z}$ (d) $2n\pi + \frac{\pi}{3}$; $n \in \mathbb{Z}$
- $38. 2 \sin \theta 1 = 0$ হলে θ এর মান নিচের কোনটি?

[Mad.B'23]

- (a) $n\pi + \frac{\pi}{6}$; $n \in \mathbb{Z}$ (b) $2n\pi + \frac{\pi}{6}$; $n \in \mathbb{Z}$
- (c) $2n\pi (-1)^n \frac{\pi}{4}$; $n \in \mathbb{Z}$ (d) $n\pi + (-1)^n \frac{\pi}{4}$; $n \in \mathbb{Z}$
- 39. $\sin \cot^{-1} \tan \cos^{-1} \frac{3}{4} = \overline{\Phi}$ [DB, RB, SB'22]

- (a) $\frac{3}{4}$ (b) $\frac{5}{4}$ (c) $\frac{4}{3}$
- $(d) \frac{3}{\sqrt{7}}$
- 40. n একটি পূর্ণসংখ্যা হলে $\cos 3\theta = \frac{1}{2}$ সমীকরণের সাধারণ

সমাধান কোনটি?

[DB, SB, MB, BB'22]

- (a) $(6n-1)^{\frac{\pi}{9}}$
- (b) $\frac{2n\pi}{3} + \frac{\pi}{3}$
- (d) $(2n+1)\frac{\pi}{6}$
- 41. $\sec x = \sec (x + \pi)$ এর সাধারণ সমাধান:

[DB'22]

- (a) $(2n + 1)^{\frac{\pi}{2}}$
- (b) $(4n + 1)^{\frac{n}{2}}$
- (c) $n\pi + \frac{\pi}{4}$
- (d) $n\pi + \frac{3\pi}{4}$

- 42. $\sin^{-1}\left(\frac{2}{\sqrt{5}}\right) + \tan^{-1}x = \frac{\pi}{4}$ হলে x এর মান—
- (a) $\frac{1}{3}$ (b) $\frac{-1}{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{-1}{\sqrt{3}}$
- 43. $\cos^{-1}\left(\frac{-1}{2}\right)$ এর মুখ্যমান কত?

- (a) $\frac{\pi}{2}$ (b) $\frac{-2\pi}{3}$ (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$

- 44. $-\pi \le x \le \pi$ ব্যবধিতে $\sin x = -\frac{1}{2}$ স্মীকরণের সমাধান-

[Ctg.B'22]

- (a) $-\frac{\pi}{6}$, $-\frac{5\pi}{6}$ (b) $-\frac{\pi}{6}$, $\frac{5\pi}{6}$ (c) $\frac{\pi}{6}$, $-\frac{5\pi}{6}$ (d) $\frac{\pi}{6}$, $\frac{5\pi}{6}$

- 45. cosec²(sec⁻¹ √5) এর মান-
- [Ctg.B'22; CB'21]

- (a) $\frac{5}{4}$ (b) $\frac{4}{5}$ (c) $\frac{\sqrt{5}}{2}$ (d) $\frac{2}{\sqrt{5}}$

 $46. \cos 2\theta = -1$ হলে

[Ctg.B'22]

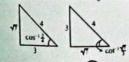
- (a) $\theta = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$
- (b) $\theta = (2n + 1)\pi, n \in \mathbb{Z}$
- (c) $\theta = (4n-1)\frac{\pi}{2}$, $n \in \mathbb{Z}$
- (d) $\theta = (4n+1)\frac{\pi}{2}, n \in \mathbb{Z}$
- 47. যদি $\sec \theta = -2$ এবং $\frac{\pi}{2} < \theta < \pi$ হয়, তবে θ এর মান

কত?

[RB'22]

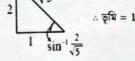
- (a) $-\frac{2\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $-\pi$ (d) π
- 48. $\cot^{-1} p = \csc^{-1} \frac{3}{2}$ হলে p = ?

[RB'22]


(b) $\frac{3}{\sqrt{5}}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

47. b 48. d 43. d 46. a 42. b 39. a 40. c 38. d 36. a 37. a


35. $\sin^{-1}\frac{1}{\sqrt{5}} + \cos^{-1}\frac{1}{\sqrt{5}} = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$

- 36. $\sin\left(\tan^{-1}\frac{1}{2}\right) = \sin\left(\sin^{-1}\frac{1}{\sqrt{5}}\right) = \frac{1}{\sqrt{5}}\sqrt{\frac{5}{2}}$
- 37. $\tan \theta = -\sqrt{3} = \tan \frac{2\pi}{3} \Rightarrow \theta = n\pi + \frac{2\pi}{3}; n \in \mathbb{Z}$
- 38. $2 \sin \theta 1 = 0 \Rightarrow \sin \theta = \frac{1}{2} = \sin \frac{\pi}{6}$ $\theta = n\pi + (-1)^n \frac{\pi}{6}; n \in \mathbb{Z}$
- 39. $\sin \cot^{-1} \tan \tan^{-1} \frac{\sqrt{7}}{3} = \sin \cot^{-1} \frac{\sqrt{7}}{3} = \sin \sin^{-1} \frac{3}{4} = \frac{3}{4}$

Shortcut: sin cot tan cos-1x = x

40. $\cos 3\theta = \cos \frac{\pi}{3} \Rightarrow 3\theta = 2n\pi \pm \frac{\pi}{3} \therefore \theta = \frac{2n\pi}{3} \pm \frac{\pi}{9}$ (সঠিক উত্তর নেই) । secx = sec (π + x) এর কোন সাধারণ সমাধান নেই।

 $\sin^{-1}\frac{2}{\sqrt{5}} + \tan^{-1}x = \frac{\pi}{4} \Rightarrow \tan^{-1}x + \tan^{-1}2 = \frac{\pi}{4}$ $\Rightarrow \tan^{-1}\frac{2+x}{1-2x} = \frac{\pi}{4} \Rightarrow 2+x = 1-2x \Rightarrow x = -\frac{1}{3}$

- 45. 2 $\cos ec^2 \left(\csc^{-1} \frac{\sqrt{5}}{2} \right) = \frac{5}{4}$
- 46. $\cos 2\theta = -1 \Rightarrow 2\theta = (2n+1)\pi : \theta = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$
- 47. $\sec \theta = -2 \Rightarrow \cos \theta = -\frac{1}{2} : \theta = \frac{2\pi}{3}$
- 48. $\tan^{-1}\frac{1}{p} = \tan^{-1}\frac{2}{\sqrt{5}} : p = \frac{\sqrt{5}}{2}$

380

- 49. tan 3θ = 1 সমীকরণের সমাধান কোনটি?

- $(a) \frac{n\pi}{3} + \frac{\pi}{12}$
- (b) $\frac{n\pi}{3} + \frac{\pi}{6}$

(c) $\frac{3n\pi}{c}$

- (d) nπ
- 50. বিপরীত ত্রিকোণমিতিক ফাংশনের ক্ষেত্রে-
- [SB'22; CB'21]
- (i) sin⁻¹ x এর ডোমেন [−1, 1]
- (ii) cos⁻¹ x এর রেঞ্জ [0, π]
- (iii) tan⁻¹ x এর ডোমেন (-∞,∞)

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- cos θ + sin θ = √2 হলে θ মান−
- [SB'22]

- (a) 2nπ
- (b) $(2n + 1)\pi$
- (c) $2n\pi + \frac{\pi}{4}$
- (d) $(2n 1)\pi$
- 52. বিপরীত বৃত্তীয় ফাংশনের ক্ষেত্রে-
- [SB'22]
- (i) $\sin^{-1} x + \sin^{-1} y = \sin^{-1} \{x \sqrt{1 y^2} + y \sqrt{1 x^2}\}$ যেখানে $-1 \le x, y \le 1$ এবং $x^2 + y^2 \le 1$
- (ii) $\cos^{-1} x + \cos^{-1} y = \cos^{-1} \{xy y\}$
- $\sqrt{(1-x^2)(1-y^2)}$ যেখানে $-1 \le x, y \le 1$
- এবং x + y ≥ 0
- (iii) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$
- যেখানে x > 0, y > 0 এবং 0 ≤ xy ≤ 1

নিচের কোনটি সঠিক?

(a) i, ii

- (b) i, iii
- (c) ii, iii
- 53. $\tan\left(\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}\right)$ এর মান কত?
 - [BB'22; Din.B'21; SB'17]

- (a) 2
- (b) 1
- (c) 3

52. d 53. b

(d)5

- [RB'22] | 54. tan (cos⁻¹ x) = sin(tan⁻¹ 2) হলে x এর মান কত?

 - (a) $\frac{\sqrt{5}}{3}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{\sqrt{3}}$

- 55. $\arctan\left\{\sin\left(\arccos\frac{\sqrt{2}}{\sqrt{3}}\right)\right\}$ এর মান কত? [BB'22]
- (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$
- 56. $cosec θ + cot θ = \sqrt{3}$ হলে, θ এর মান কত?
 - $(0 < \theta < 2\pi)$

- $(a)^{\frac{\pi}{2}}$
- (b) $\frac{\pi}{4}$
- (c) $\frac{\pi}{3}$

নিচের তথ্যের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$f(x) = \tan x$$
 এবং $g(x) = \sin^{-1} x$

- 57. $g(y) + g(\sqrt{1 y^2})$ এর মান কোনটি? [BB'22; Din.B'2]
- (b) 2π
- $(c)^{\frac{\pi}{2}}$

[CB, BB'22

- 58. f(x)f(2x) = 1 হলে, x এর মান কত?
 - (b) $n\pi \pm \frac{\pi}{3}$, $n \in \mathbb{Z}$
 - (a) $n\pi \pm \frac{\pi}{6}$, $n \in \mathbb{Z}$
 - (c) $2n\pi \pm \frac{\pi}{3}$, $n \in \mathbb{Z}$ (d) $2n\pi \pm \frac{\pi}{6}$, $n \in \mathbb{Z}$
- 59. $\tan \theta + 1 = 0$ এর সাধারণ সমাধান কোনটি? [JB'22]
 - $(a) (4n-1)\frac{\pi}{4}; n \in \mathbb{Z}$
- (b) $(4n+1)\frac{\pi}{4}$; $n \in \mathbb{Z}$
- (c) $(8n-1)\frac{\pi}{4}$; $n \in \mathbb{Z}$ (d) $(8n+1)\frac{\pi}{4}$; $n \in \mathbb{Z}$
- 60. cos cot⁻¹ 2 এর মান কত? [JB, MB'22; DB, JB'21

 - (a) $\frac{1}{2}$
- (b) $\frac{2}{\sqrt{5}}$
- (c) $\frac{\sqrt{5}}{2}$
- [RB, JB'22
- 61. tan⁻¹ 2 + tan⁻¹ 3 এর মান কত?
 - (c) $\frac{3\pi}{4}$
 - (a) $-\frac{\pi}{4}$ (b) $\frac{\pi}{4}$

- 62. $\sin 2\theta + 3 \sin \theta = 0$ হলে θ এর মান কোনটি? [CB'22

58. a

- (a) $(2n + 1)^{\frac{\pi}{2}}$ (c) $(2n + 1)\pi$
- (b) $(4n + 1)^{\frac{\pi}{2}}$

57. c

(d) nπ

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

56. c

49. $\tan 3\theta = \tan \frac{\pi}{4} \Rightarrow 3\theta = n\pi + \frac{\pi}{4} \Rightarrow \theta = \frac{n\pi}{3} + \frac{\pi}{12}$

51. c

51.
$$\frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta = 1 \Rightarrow \cos\theta\cos\frac{\pi}{4} + \sin\theta\sin\frac{\pi}{4} = 1$$
$$\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = 1 \Rightarrow \theta - \frac{\pi}{4} = 2n\pi \Rightarrow \theta = 2n\pi + \frac{\pi}{4}$$

- 53. $\tan\left(\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}\right) = \tan\tan^{-1}\frac{\frac{1}{2}+\frac{1}{2}}{1-\frac{1}{2}} = \tan\left(\tan^{-1}\frac{2+3}{5}\right)$
- $= \tan(\tan^{-1} 1) = 1$ 54 $\tan\left(\cos^{-1}\frac{x}{i}\right) = \sin(\tan^{-1}2) \Rightarrow \frac{\sqrt{1-x^2}}{x} = \frac{2}{\sqrt{1+4}}$ $\Rightarrow 2x = \sqrt{5(1-x^2)} \Rightarrow 4x^2 = 5 - 5x^2 \Rightarrow 9x^2 = 5 \therefore x = \frac{\sqrt{8}}{3}$
- 55. $\arctan\left\{\sin\left(\cos^{-1}\frac{\sqrt{2}}{\sqrt{3}}\right)\right\} = \tan^{-1}\left\{\sin\left(\cos^{-1}\sqrt{\frac{2}{3}}\right)\right\}$ $= \tan^{-1} \left\{ \frac{1}{\sqrt{3}} \right\} = \frac{\pi}{6}$

56. $\frac{1+\cos\theta}{\sin\theta} = \frac{2\cos^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = \cot\frac{\theta}{2} = \sqrt{3} \div \tan\frac{\theta}{2} = \frac{1}{\sqrt{3}} = \tan\frac{\pi}{6} \Rightarrow \frac{\theta}{2} = \frac{\pi}{6}$

59. a

- 57. $\sin^{-1} y + \sin^{-1} \sqrt{1 y^2} = \sin^{-1} y + \cos^{-1} y = \frac{\pi}{4}$
- 58. $\tan x \tan 2x = \frac{2 \tan^2 x}{1 \tan^2 x} = 1$; $\tan^2 x = \frac{1}{3} \therefore x = n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z}$
- 59. $\tan \theta = -1 = -\tan \frac{\pi}{4} = \tan \left(-\frac{\pi}{4}\right)$ $\Rightarrow \theta = n\pi - \frac{\pi}{4} = \frac{\pi}{4}(4n - 1), n \in \mathbb{Z}$
- 60. $\cos \cot^{-1} 2 = \cos \cos^{-1} \frac{2}{\sqrt{5}} = \frac{2}{\sqrt{5}}$
- 61. $\tan^{-1}\frac{2+3}{1-23} = \tan^{-1}\frac{5}{-5} = \frac{36}{4}$
- 62. $2 \sin \theta \cos \theta + 3 \sin \theta = 0 \Rightarrow \sin \theta (2 \cos \theta + 3) = 0$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : তাধ্যায়-০৭

- $63. \sin\left(\frac{\pi}{2} \cos^{-1} x\right) =$ কত?
- [Din.B'22]

- (a) sin x (b) x
- (c) 1 x (d) 1 + x
- 64. $2 \sin^{-1} x = \sin^{-1} y$ সমীকরণে $x = \frac{\sqrt{3}}{2}$ হলে y এর মান
 - [Din.B'22]

- (a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{\sqrt{3}}{2}$
- (d) 1

নিচের তথ্যের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$\cot \theta = \mathbf{k}$$
 সমীকরণটির সমাধান $\theta = \mathbf{n}\pi + \alpha$

65. $k = \frac{1}{\sqrt{3}}$ হলে $\alpha = \Phi \circ$?

[Din.B'22]

- (b) $\frac{\pi}{4}$

- 66. k = 1 এবং $\frac{\pi}{4} < \theta < 2\pi$ হলে θ এর মান কত?

[Din.B'22]

- $(a) \frac{3\pi}{2}$
- (b) $\frac{5\pi}{4}$ (c) $\frac{3\pi}{4}$
- $(d)^{\frac{\pi}{2}}$
- 67. অবান্তর মূল ত্রিকোণমিতিক সমীকরণকে-
- [MB'22]

- (i) সিদ্ধ করে না
- (ii) বর্গ করলে পাওয়া যায়
- (iii) বর্গমূল করলে পাওয়া যায়

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 68. $\theta = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$ হবে যখন-
- [DB'21]

- (a) $\cos \theta = 0$
- (b) $\sin \theta = 0$
- (c) $\cos \theta = 1$
- (d) $\sin \theta = 1$
- 69. $2 tan^{-1} √2 = θ$ হলে-

[DB'21]

- (i) $\tan \frac{\theta}{2} = \sqrt{2}$
- (ii) $\cot \theta = -\frac{1}{2\sqrt{2}}$
- (iii) $\sin \theta = \frac{2\sqrt{2}}{3}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

70. $x = \sin \cos^{-1} y$ হলে, $x^2 + y^2$ এর মান হবে-

- (b) 1
- (c) -1 (d) 0
- 71. $\frac{1}{2}$ cosec⁻¹ $\left(\frac{1+x^2}{2x}\right)$ এর মান কোনটি?

- (a) 2 tan-1 x
- (b) $tan^{-1} x$
- (c) $\frac{1}{2} \sin^{-1} x$
- $(d)^{\frac{1}{2}} tan^{-1} x$
- 72. নিচের কোনটি সঠিক?

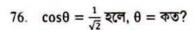
- [RB'21]
- (a) $\cos^{-1}\frac{4}{5} = \tan^{-1}\frac{5}{4}$ (b) $\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{3}{5}$
- (c) $\cos^{-1}\frac{4}{5} = \csc^{-1}\frac{3}{5}$ (d) $\cos^{-1}\frac{4}{5} = \tan^{-1}\frac{4}{3}$
- 73. $\tan^2(\cos^{-1}\frac{\sqrt{3}}{2})$ এর মান কত?

[RB, SB'21; SB, CB'19]

- (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{2}{\sqrt{3}}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{3}$

- 74. নিচের তথ্যগুলো লক্ষ কর:
- [RB'21]
- (i) $tan^{-1} x + cot^{-1} x = \pi$
 - (ii) $\tan^{-1} \frac{x}{\sqrt{1-x^2}} = \sec^{-1} \frac{1}{\sqrt{1-x^2}}$
 - (iii) $\cos^{-1} x + \cos^{-1} y = \cos^{-1} \{xy \sqrt{(1-y^2)(1-x^2)}\}$

উপরের তথ্যের প্রেক্ষিতে নিচের কোনটি সঠিক?


- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 75. $\sin \theta = \frac{\sqrt{3}}{2}$ হলে, $\theta = \overline{\Phi}$ ত?
- [RB'21]
- (a) $n\pi + (-1)^n \frac{\pi}{6}$; $n \in \mathbb{Z}$
- (b) $2n\pi + (-1)^n \frac{\pi}{4}$; $n \in \mathbb{Z}$
- (c) $n\pi + (-1)^n \frac{\pi}{3}$; $n \in \mathbb{Z}$
- (d) $2n\pi + (-1)^n \frac{\pi}{3}$; $n \in \mathbb{Z}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

63. b	64. c	65. c	66. b	67. a	68. a	69. d	70. b	71. b	72. b	73. d	74. c	75. c

- 63. $\cos \cos^{-1} x = x$
- 64 2. $\sin^{-1} \frac{\sqrt{3}}{2} = \sin^{-1} y \Rightarrow 2. \frac{\pi}{3} = \sin^{-1} y : y = \frac{\sqrt{3}}{2}$
- 65. $\cot \theta = \frac{1}{\sqrt{3}} \Rightarrow \tan \theta = \tan \frac{\pi}{3} \Rightarrow \theta = n\pi + \frac{\pi}{3}$
- 66 $\cot \theta = 1 \Rightarrow \tan \theta = \tan \frac{\pi}{4} \Rightarrow \theta = n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$
 - n=1 erg $\theta=\frac{5\pi}{2}$
- 69. $\tan^{-1}\sqrt{2} = \frac{\theta}{2} \div \tan \frac{\theta}{2} = \sqrt{2} \div \tan \theta = \frac{2\tan \frac{\theta}{2}}{1-\tan^2 \frac{\theta}{2}} = \frac{2\sqrt{2}}{1-2} = -2\sqrt{2}$
 - $\therefore \cot \theta = -\frac{1}{2\sqrt{2}} \therefore \sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \theta} = \frac{2 \times \sqrt{2}}{1 + 2} = \frac{2\sqrt{2}}{3}$

- 70. $\sin^{-1} x = \sin^{-1}(\sin(\cos^{-1} y))$
 - $\Rightarrow \sin^{-1} x = \cos^{-1} y = \sin^{-1} \sqrt{1 y^2}$
 - $x = \sqrt{1 y^2} \Rightarrow x^2 = 1 y^2 \cdot x^2 + y^2 = 1$
- 71. $\frac{1}{2} \operatorname{cosec}^{-1} \left(\frac{1+x^2}{2x} \right) = \frac{1}{2} \sin^{-1} \frac{2x}{1+x^2} = \frac{1}{2} \times 2 \tan^{-1} x = \tan^{-1} x$
- 72. $5 / 3 \sim \cos^{-1} \frac{4}{5} = \sin^{-1} \frac{3}{5}$
- 73. $\{\tan 30\}^2 = \frac{1}{3}$
- 74. $tan^{-1}x + cot^{-1}x = \frac{\pi}{2}$
- 75. $\sin \theta = \sin \frac{\pi}{1} : \theta = n\pi + (-1)^n \frac{\pi}{2} : n \in \mathbb{Z}$

[RB'21]

- (a) $2n\pi + \frac{\pi}{4}$; $n \in \mathbb{Z}$
 - (b) $2n\pi \pm \frac{\pi}{4}$; $n \in \mathbb{Z}$
- (c) $2n\pi \frac{\pi}{4}$; $n \in \mathbb{Z}$ (d) $n\pi \pm \frac{\pi}{4}$; $n \in \mathbb{Z}$
- 77. $\sin^{-1} x$ এর মুখ্যমানের সীমা নিচের কোনটি?

[RB'21]

- (a) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- (c) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
- (d) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- 78. f(x) = cosec (cot⁻¹ x) হলে f(2) এর মান কত?
 - (a) $\frac{1}{\sqrt{5}}$

- (b) $\frac{1}{2}$
- [Ctg.B'21]

(c) √5

- (d) 3
- 79. নিচের কোনটি sin(2 sin-1 x) এর মান?
- [Ctg.B'21]

- (a) $2x\sqrt{x^2-1}$
- (b) $2x\sqrt{1-x^2}$
- (c) $\frac{2x}{1-x^2}$
- (d) $\frac{2x}{1+x^2}$
- 80. $2\cos\theta + 1 = 0$ এর সাধারণ সমাধান কোনটি? [Ctg.B'21]
 - (a) $2n\pi \pm \frac{\pi}{6}$, $n \in \mathbb{Z}$
- (b) $2n\pi \pm \frac{\pi}{3}$, $n \in \mathbb{Z}$
- (c) $2n\pi \pm \frac{2\pi}{3}$, $n \in \mathbb{Z}$ (d) $2n\pi \pm \frac{5\pi}{6}$, $n \in \mathbb{Z}$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

$$p = \cos \theta, q = \sin \theta$$

- 81. sec θ এর মান কোনটি?
- [Ctg.B'21]

- (a) $\frac{1}{\sqrt{1-a^2}}$
- (b) $\sqrt{1-q^2}$
- (c) $\frac{1}{\sqrt{a^2-1}}$
- (d) $\sqrt{q^2 1}$

- 82. $p \sqrt{3}q = 0$ এর সাধারণ সমাধান কোনটি? $[Ctg.B, BB'_{211}]$
 - (a) $n\pi \frac{\pi}{6}$, $n \in \mathbb{Z}$
- (b) $n\pi \frac{\pi}{2}$, $n \in \mathbb{Z}$
- (c) $n\pi + \frac{\pi}{6}$, $n \in \mathbb{Z}$
- (d) $n\pi \frac{\pi}{2}$, $n \in \mathbb{Z}$
- 83. যদি $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ হয়, তবে-
 - (ii) x = 0 (iii) x > 0(i) $x \leq -1$

নিচের কোনটি সঠিক?

- (b) i, iii (a) i, ii
- (c) ii, iii
- (d) i, ii, iii

[SB'21]

[SB'21]

- 84. $\cot^{-1} 3 = ?$ (a) $\sin^{-1} \frac{3}{\sqrt{10}}$
- (b) $\cos^{-1} \frac{1}{\sqrt{10}}$
- (c) $\frac{1}{2} \tan^{-1} \frac{3}{5}$
- (d) $\frac{1}{2} \sin^{-1} \frac{3}{5}$
- 85. [0°, 180°] ব্যবধিতে √3 tan x + 1 = 0 সমীকরণের

সমাধান কোনটি?

(d) 150°

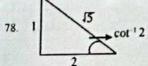
- (a) 30°
- $(b) 60^{\circ}$
- (c) 120°

[SB'21]

- 86. $\sin^3 \theta + \sin \theta \cos^2 \theta = -1$ হলে, নিচের কোনটি সতা? [SB'21]
 - (a) $\theta = n\pi$
- (b) $\theta = (2n+1)\pi$
- (c) $\theta = (4n 1)\frac{\pi}{2}$ (d) $\theta = (4n + 1)\frac{\pi}{2}$
- 87. $\tan^{-1}\frac{1}{\sqrt{3}} + \tan^{-1}x = \frac{\pi}{2}$ হলে, x = ?

(a) $\frac{1}{\sqrt{3}}$

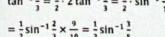
- (b) $-\frac{1}{\sqrt{2}}$


- (d) $-\sqrt{3}$
- 88. $-2(\cos^2 x \sin^2 x) = 1$ এর সমাধান নিচের কোনটি?

[SB'21]

- (a) $n\pi \pm \frac{\pi}{3}$
- (b) $n\pi \pm \frac{\pi}{4}$
- (c) $2n\pi \pm \frac{\pi}{2}$
- (d) $2n\pi \pm \frac{\pi}{4}$

MCO উত্তরমালা ও ব্যাখ্যামূলক সমাধান


82. c 83. c 84. d 85. d 86. c 87. c 79. b 80. c 81. a 88. a 78. c 77. c 76. b

 $F(x) = \csc(\cot^{-1} x)$; $f(2) = \csc(\cot^{-1} 2)$ = cosec (cosec⁻¹ $\sqrt{5}$) = $\sqrt{5}$

- 79. $\sin(2\sin^{-1}x) = 2x\sqrt{1-x^2}$
- 80. $2\cos\theta + 1 = 0 \Rightarrow \cos\theta = -\frac{1}{2} = \cos\frac{2\pi}{3} : \theta = 2n\pi \pm \frac{2\pi}{3}$
- 81. $\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\sqrt{1-\sin^2 \theta}} = \frac{1}{\sqrt{1-q^2}}$
- 82. $p \sqrt{3}q = 0 \Rightarrow \cos\theta \sqrt{3}\sin\theta = 0 \Rightarrow \cos\theta = \sqrt{3}\sin\theta$ $\Rightarrow \tan \theta = \frac{1}{\sqrt{3}} = \tan \frac{\pi}{4} :: \theta = n\pi + \frac{\pi}{4}$

84. $\cot^{-1} 3 = \sin^{-1} \frac{1}{\sqrt{10}} = \cos^{-1} \frac{3}{\sqrt{10}}$ $\tan^{-1}\frac{1}{3} = \frac{1}{2} \cdot 2 \tan^{-1}\frac{1}{3} = \frac{1}{2} \cdot \sin^{-1}\frac{\frac{1}{3}}{1+\frac{1}{2}}$

- 85. $\tan x = -\frac{1}{\sqrt{3}} = \tan \left(\pi \frac{\pi}{6} \right) : x = \frac{5\pi}{6}$
- 86. $\sin\theta (\sin^2\theta + \cos^2\theta) = -1 \Rightarrow \sin\theta = -1$

 $\theta = (4n-1)\frac{\pi}{2}; n \in \mathbb{Z}$

87. $\tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{2} - \tan^{-1} x \Rightarrow \cot^{-1} \sqrt{3} = \frac{\pi}{2} - \tan^{-1} x$ $\Rightarrow \sqrt{3} = \cot\left(\frac{\pi}{3} - \tan^{-1}x\right) = \tan\tan^{-1}x : x = \sqrt{3}$

विकल्प: $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$: $\tan^{-1} \frac{1}{\sqrt{3}} + \cot^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{2}$ $\tan^{-1}\frac{1}{\sqrt{3}} + \tan^{-1}\sqrt{3} = \frac{\pi}{3} : x = \sqrt{3}$

88. $\cos 2x = -\frac{1}{3} : 2x = 2n\pi \pm \frac{2\pi}{3} \Rightarrow x = n\pi \pm \frac{\pi}{3}$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

- 89. cot k = 1 হলে cot tan-1 sec sin-1 cot k এর মান কড?
 - (a) =

- [BB'21]

(c) $\frac{\sqrt{3}}{2}$

- (d) 2
- 90. $2 \sin \frac{\theta}{2} 1 = 0$ এর সাধারণ সমাধান কোনটি? [BB'21]
 - (a) $2n\pi \frac{\pi}{3}$
- (b) $2n\pi + \frac{\pi}{3}$
- (c) $n\pi + (-1)^n \frac{\pi}{4}$
- (d) $2n\pi + (-1)^n \frac{\pi}{3}$
- g_1 . $f(x) = \sin^{-1} x \ \overline{x}$
- [BB, Din.B'21]
- (i) $f(x) + f(\sqrt{1-x^2}) = \frac{\pi}{3}$
- (ii) cosec $\{f(x)\}=\frac{1}{x}$
- (iii) $f(1) = \frac{\pi}{2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 92. cot θ . cot $2\theta = 1$ সমীকরণের সমাধান-[Din.B, BB'21] (a) 2nπ
 - (b) $(2n + 1)^{\frac{n}{2}}$
 - (c) $\frac{2n\pi}{3}$
- (d) $(2n-1)^{\frac{\pi}{n}}$
- 93. sin x = cos x হয় তবে x এর মান কত?
- [JB'21]

 $(a)^{\frac{\pi}{2}}$

 $(c)\frac{5\pi}{c}$

- 94. $\sin^{-1}\frac{2}{5} + \sin^{-1}\frac{\sqrt{21}}{5}$ এর মান কত?
- [JB'21]

(a) n

- (c) 2n
- 95. 3 sec-1(2) = cos-1 x হলে x এর মান কত? [JB'21]
 - (a) $\frac{1}{3}$

(b) $-\frac{1}{2}$

(c) $\frac{1}{2}$

(d) -1

- 96. বিপরীত বৃতীয় ফাংশনের ক্ষেত্রে-
- (i) $\sin^{-1}\frac{1}{2}$ এর পূরক কোণ $\cos^{-1}\frac{1}{2}$
- (ii) $\csc^{-1} \frac{1}{x} = \sec^{-1} \frac{1}{\sqrt{1-x^2}}$
- (iii) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$ $\sqrt{1 + xy} = 1$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

$$\tan^{-1} 3 = A, \tan^{-1} 2 = B$$
 and $A + B + C = \pi$

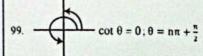
- 97. নিচের কোন সম্পর্কটি সতা?
- [JB'21]
- (a) $A B = \frac{\pi}{2}$
- (b) $\cot B = 2$
- (c) $\cot^{-1} 2 = \frac{\pi}{2} + B$
- (d) $\cot^{-1} 2 = \frac{\pi}{2} B$
- 98. কোন সম্পর্কটি সঠিক?

- [CB'21]
- (a) $2 \tan^{-1} x = \sin^{-1} \frac{2x}{1-x^2}$
- (b) $3 \tan^{-1} x = \tan^{-1} \frac{x^3 3x}{1 3x^2}$
- (c) $2\cos^{-1}x = \cos^{-1}(1 2x^2)$
- (d) $3 \sin^{-1} x = \sin^{-1} (3x 4x^3)$
- 99. $\theta = (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$ यिन-
 - (b) $\cos \theta + 1 = 0$

[CB'21]

- (a) $\cot \theta = 0$ (c) $\sin \theta = 1$
- (d) $\cos \theta = 1$
- নিচের উদ্দীপকের আলোকে পরবর্তী দৃটি প্রশ্নের উত্তর দাও:
- 4(cos²x + sin x) = 5 একটি ত্রিকোণমিতিক সমীকরণ।
- 100. x এর মান কড?

[CB'21]


- (a) $2n\pi \pm \frac{\pi}{2}$, $n \in \mathbb{Z}$
- (b) $n\pi + (-1)^n \frac{\pi}{2}$, $n \in \mathbb{Z}$
- (c) $n\pi + (-1)^n \frac{\pi}{\epsilon}$, $n \in \mathbb{Z}$
- (d) $2n\pi \pm \frac{\pi}{6}$, $n \in \mathbb{Z}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

00											
89. c	90. d	91. d	92	93. b	94. b	95. d	96. a	97. d	98 d	99 a	100 c
										//. a	100.0

- 89. $\cot \tan^{-1} \sec \sin^{-1} \frac{1}{2} = \cot \tan^{-1} \left(\frac{1}{\cos(\frac{\pi}{2})} \right) = \cot \tan^{-1} \left(\frac{2}{\sqrt{3}} \right)$
- $=\frac{1}{\tan(\tan^{-1/2})}=\frac{\sqrt{3}}{2}$
- 90. $\sin\frac{\theta}{2} = \frac{1}{2} = \sin\frac{\pi}{6}$; $\frac{\theta}{2} = n\pi + (-1)^n \frac{\pi}{6}$
- 91. (i) $\sin^{-1} x + \sin^{-1} \sqrt{1 x^2} = \sin^{-1} x + \cos^{-1} x = \frac{\pi}{3}$
 - (ii) cosec (sin⁻¹ x) = cosec (cosec⁻¹ $\frac{1}{x}$) = $\frac{1}{x}$; (iii) sin⁻¹ 1 = $\frac{\pi}{2}$
- 92. (সঠিক উত্তর নেই); $\frac{\cos \theta \cos 2\theta}{\sin \theta \sin 2\theta} = 1 \Rightarrow \cos \theta \cos 2\theta \sin \theta \sin 2\theta = 0$ $\Rightarrow \cos(2\theta + \theta) = 0 :: 3\theta = (2n+1)\frac{\pi}{2} :: \theta = (2n+1)\frac{\pi}{6}$
- 93. $\tan x = 1, x = n\pi + \frac{\pi}{4}[n = 1]$
- 95. $3 \cdot \frac{\pi}{3} = \cos^{-1} x \Rightarrow \cos^{-1} x = \frac{\pi}{3} \cdot 3 \Rightarrow x = \cos \pi \Rightarrow x = -1$

- 96. (ii) θ $x : \theta = \sec^{-1} \frac{1}{\sqrt{1-x^2}}$
- 97. $\cot^{-1} 2 = \frac{\pi}{2} \tan^{-1} 2 = \frac{\pi}{2} B \left[\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$

100. $4 - 4\sin^2 x + 4\sin x = 5 \implies 4\sin^2 x - 4\sin x + 1 = 0$ $\Rightarrow (2 \sin x - 1)^2 = 0 \Rightarrow \sin x = \frac{1}{2} = \sin \frac{\pi}{4} : x = n\pi + (-1)^n \frac{\pi}{4}$

- 101. x এর মান কত. যখন 0 < x < 2π.
- [CB'21]

- (b) $\frac{\pi}{6}$, $\frac{5\pi}{6}$ (c) $\frac{\pi}{3}$, $\frac{2\pi}{3}$ (d) $\frac{\pi}{6}$, $\frac{11\pi}{6}$
- 102. $\cos 2\theta = \frac{1}{2}$ সমীকরণের সাধারণ সমাধান কোনটি? (n একটি
 - পূৰ্ণ সংখ্যা)

[Din.B'21]

- (a) $2n\pi \pm \frac{\pi}{6}$
- (b) $2n\pi \pm \frac{\pi}{3}$
- (c) $n\pi \pm \frac{\pi}{6}$
- (d) $n\pi \pm \frac{\pi}{3}$
- 103. যদি f(x) = tan-1 x হলে-
- [Din.B'21]
- (i) $2f(x) = \tan^{-1} \frac{2x}{1-x^2}$
- (ii) $2f(x) = \sin^{-1} \frac{2x}{1-x^2}$
- (iii) $2f(x) = \cos^{-1} \frac{1-x^2}{1+x^2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 104. sec²(tan⁻¹ 2) + cosec²(cot⁻¹ 3) = কত?

[Din.B'21; All.B'18]

- (a) 5
- (b) 7
- (c) 11
- 105. $f(\theta)=\cos\theta$, $f(\theta)=f(\alpha)$ এবং $n\in\mathbb{Z}$ হলে, θ এর মান-

[MB'21]

- (a) $2n\pi \pm \alpha$
- (b) $n\pi \pm \alpha$
- (c) $n\pi + (-1)^n\alpha$
- (d) $n\pi (-1)^n \alpha$
- 106. $2 \sin 2\theta = 1$ সমীকরণটির সাধারণ সমাধান-[MB'21]

 - (a) $n\pi (-1)^n \frac{\pi}{6}$, $n \in \mathbb{Z}$
 - (b) $n\pi + (-1)^n \frac{\pi}{6}$; $n \in \mathbb{Z}$
 - $(c) \frac{n\pi}{2} (-1)^n \frac{\pi}{12}, n \in \mathbb{Z}$
 - $(d) \frac{n\pi}{2} + (-1)^n \frac{\pi}{12}, n \in \mathbb{Z}$
- 107. f(x) = cos⁻¹ x এর ডোমেন-
- [MB'21]
- (a) [-1, 1] (b) (-1, 1] (c) (-1, 1)
- (d)[-1,1)

- 108. বিপরীত বৃত্তীয় ফাংশনের ক্ষেত্রে-
- (i) $\cos^{-1} x + \cos^{-1} y = \cos^{-1} \{xy \sqrt{(1-x^2)(1-x^2)}\}$
- (ii) $2 \tan^{-1} x = \cos^{-1} \frac{2x}{1-x^2}$
- (iii) $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 109. $(\tan^{-1} \sqrt{3})$ এর মান নিচের কোনটি?
- [DB'19]

- (a) $\frac{1}{2}$
- (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{\sqrt{3}}{2}$
- 110. $\cot\theta = -\frac{1}{\sqrt{3}}$ হলে, θ এর মান কত হবে?

যখন 180° < 0 < 360°.

[DB'19]

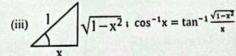
- (a) 210°
- (b) 240°
- (c) 300°
- (d) 330°
- 111. (i) $\csc^{-1}x + \sec^{-1}x = \frac{\pi}{2}$
- [DB'19]
- (ii) $2 \cot^{-1} x = \cot^{-1} \frac{x^2 1}{2x}$
- (iii) $\cos^{-1} x = \tan^{-1} \frac{x}{\sqrt{1-x^2}}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 112. sinθ + 1 = 0 হলে, θ =?
- [RB'19]
- (a) $(4n-1)\frac{\pi}{2}$, $n \in \mathbb{Z}$
- (b) $(4n + 1)^{\frac{\pi}{2}}$, $n \in \mathbb{Z}$
- (c) $(2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$
- (d) $(2n-1)\pi$, $n \in \mathbb{Z}$
- 113. sin tan⁻¹ a এর মান-
- [Ctg.B'19]

- (a) $\frac{a}{\sqrt{a^2+b^2}}$
- (b) $\frac{\sqrt{a^2+b^2}}{a^2}$
- (c) $\frac{b}{\sqrt{a^2+b^2}}$
- $(d) \frac{\sqrt{a^2+b^2}}{b}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান


101 b 102 c 103 b	104. d	105. a	106. d	107. a	108. b	109	110. c	111. a	112. a	113. a	
1 101 h 1 102. C 1 103. U 1	10										

101.

n	$n\pi + (-1)^n \frac{\pi}{6}$
0	# 1 6
1	5π
1000	6
2	×

- 102. $2\theta = 2n\pi \pm \frac{\pi}{3} \Rightarrow \theta = n\pi \pm \frac{\pi}{4}$
- 103. $2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}$
- 104. 1 + tan2(tan-12) + 1 + cot2(cot-13) $= 1 + 2^2 + 1 + 3^2 = 1 + 4 + 1 + 9 = 15$
- 105. $\cos \theta = \cos \alpha : \theta = 2n\pi \pm \alpha; n \in \mathbb{Z}$
- 106. $\sin 2\theta = \frac{1}{2} :: \theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{12}, n \in \mathbb{Z}$
- 108. Φ 7 2 tan⁻¹ $x = \cos^{-1} \frac{1-x^2}{1+x^2}$

- 109. (সঠিক উত্তর নেই); সঠিক উত্তর: $60^\circ = \frac{\pi^\circ}{}$
- 111. (ii) $2 \cot^{-1} x = 2 \tan^{-1} \frac{1}{x} = \tan^{-1} \frac{\frac{2}{x}}{\frac{1-x}{1-x}} = \tan^{-1} \frac{2x}{x^2-1} = \cot^{-1} \frac{x^2-1}{2x}$

112. $\sin \theta + 1 = 0 \Rightarrow \sin \theta = -1 : \theta = (4n-1)\frac{\pi}{2}$; $n \in \mathbb{Z}$

113. $\sin \sin^{-1} \frac{a}{\sqrt{a^2 + b^2}} = \frac{a}{\sqrt{a^2 + b^2}} \sqrt{a^2 + b^2}$

Educationblog24.com

HSC প্রশ্নব্যাংক ২০২৫

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

114. sin⁻¹ x এর ডোমেন-

[Ctg.B'19]

(a)
$$[-\pi, \pi]$$

(b)
$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

(a)
$$[-\pi, \pi]$$
 (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (c) $[-1, 1]$ (d) $(-\infty, \infty)$

(a)
$$(2n + 1)\pi$$

(b)
$$(2n+1)^{\frac{\pi}{2}}$$

(d)
$$(2n+1)^{\frac{\pi}{4}}$$

(d)
$$(2n+1)\frac{\pi}{4}$$

116. sin (2 tan-1 x) এর সমান কোনটি?

(a)
$$\frac{2x}{1-x^2}$$

(b)
$$\frac{1-x^2}{1+x^2}$$

(b)
$$\frac{1-x^2}{1+x^2}$$
 (c) $\frac{1+x^2}{1-x^2}$

(d)
$$\frac{2x}{1+x^2}$$

ান্ত্রন একটি পূর্ণ সংখ্যা হলে
$$\sin 2\theta = \frac{1}{2}$$
 সমীকরণের সাধারণ সমাধান কোনটি?

[Din.B, BB'19]

(a)
$$n\pi + \frac{\pi}{12}$$

(b)
$$n\pi + (-1)^n \frac{\pi}{6}$$

(c)
$$n\pi - \frac{\pi}{12}$$

$$(d) \frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$$

118.
$$\sin x \cos x = \frac{1}{4}$$
 হলে x এর মান কত?

$$(a) \frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$$

(b)
$$2n\pi + (-1)^n \frac{\pi}{12}$$

(c)
$$\frac{n\pi}{2}$$
 + $(-1)^n \frac{\pi}{6}$

(d)
$$n\pi + (-1)^n \frac{\pi}{6}$$

[CB'19]

(i)
$$\theta = \frac{\pi}{3}$$
; $0 < \theta < \frac{\pi}{2}$

(ii)
$$\theta = 2n\pi \pm \frac{\pi}{3}$$
; $n \in \mathbb{Z}$

(iii)
$$\theta = 2n\pi \pm \frac{\pi}{6}$$
; $n \in \mathbb{Z}$

নিচের কোনটি সঠিক?

120. যদি $\sin^{-1} x = 2\theta$ হয়, তবে $\cos 2\theta$ এর মান কত?

[Din.B'19]

(a)
$$1 - x^2$$

(b)
$$2x^2 - 1$$

(c)
$$1 - 2x^2$$

(d)
$$\sqrt{1-x^2}$$

121.
$$\cos\left\{2\left(\sin^{-1}\frac{3x}{2}+\cos^{-1}\frac{3x}{2}\right)\right\}=p$$
 হলে p এর মান কত?

[Din.B'19]

$$(c) -1$$

(d)
$$\frac{\pi}{2}$$

122.
$$\sin\left(x-\frac{\pi}{2}\right)=0, n\in\mathbb{Z}$$
 সমীকরণের সমাধান কোনটি?

[All.B'18]

(a)
$$n\pi + \frac{\pi}{2}$$

(b)
$$2n\pi + \frac{\pi}{2}$$

(c)
$$n\pi - \frac{\pi}{2}$$

(d)
$$2n\pi - \frac{\pi}{2}$$

123.
$$\triangle$$
ABC এ $A = \sin^{-1}\frac{1}{2}$, $B = \cos^{-1}\frac{1}{2}$ এবং C এর বহিঃস্থ কোণ

$$\theta$$
 হলে, $2 \sin \theta - \sin C$ এর মান কোনটি?

নিচের উদ্দীপকের আলোকে পরবর্তী দুটি প্রশ্নের উত্তর দাও:

 $\cot \theta = k$ সমীকরণটির সমাধান $\theta = n\pi + \alpha$.

124. k =
$$\frac{1}{\sqrt{3}}$$
 হলে, α = কত?

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{3}$$

$$(d) =$$

125. k = 1 এবং $\frac{\pi}{4} < \theta < 2\pi$ হলে, θ এর মান কত? [DB'17]

(a)
$$\frac{3\pi}{2}$$

(b)
$$\frac{5\pi}{4}$$

(c)
$$\frac{3\pi}{4}$$

[RB'17]

[RB'17]

126. $\sin x + \cos x = 0$ এবং $n \in \mathbb{Z}$ হলে x এর মান কোনটি?

(b)
$$n\pi - \frac{\pi}{4}$$

(c)
$$n\pi + \frac{\pi}{4}$$

(d)
$$(2n+1)\frac{\pi}{2}$$

127.
$$\frac{1}{2}\cos^{-1}\left(\frac{9}{41}\right) = ?$$

(a)
$$\sin^{-1}\left(\frac{40}{41}\right)$$

(b)
$$\sec^{-1}\left(\frac{9}{41}\right)$$

(c)
$$\tan^{-1}\left(\frac{4}{5}\right)$$

(d)
$$\tan^{-1}\left(\frac{5}{4}\right)$$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

114. c | 115. c | 121. c | 122. a | 123. b | 124. c | 125. b | 126. b 116. d 117. d

115.
$$\cos x + \frac{1}{\cos x} = 2 \implies \cos^2 x + 1 = 2\cos x$$

 $\implies \cos^2 x - 2\cos x + 1 = 0 \implies (\cos x - 1)^2 = 0 \implies \cos x = 1$

$$\therefore x = 2n\pi; n \in \mathbb{Z}$$

116.
$$\sin(2\tan^{-1}x) = \sin\sin^{-1}\frac{2x}{1+x^2} = \frac{2x}{1+x^2}$$

117.
$$\sin 2\theta = \sin \frac{\pi}{6} : 2\theta = (-1)^n \frac{\pi}{6} + n\pi \Rightarrow \theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$$

118.
$$2 \sin x \cos x = \frac{1}{2} \Rightarrow \sin 2x = \sin \frac{\pi}{6}$$

$$2x = n\pi + (-1)^n, \frac{\pi}{6} : x = \frac{n\pi}{2} + (-1)^n, \frac{\pi}{12}$$

119.
$$\cos \theta = \cos \frac{\pi}{3} : \theta = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$$

120.
$$x = \sin 2\theta \Rightarrow x^2 = 1 - \cos^2 2\theta \Rightarrow \cos^2 2\theta = 1 - x^2$$

$$\Rightarrow \cos 2\theta = \sqrt{1 - x^2}$$

121.
$$\cos\left\{2\left(\sin^{-1}\frac{3x}{2} + \cos^{-1}\frac{3x}{2}\right)\right\} = p \Rightarrow \cos\left\{2 \cdot \frac{\pi}{2}\right\} = p$$

$$\Rightarrow p = \cos \pi = -1$$

122.
$$\sin\left(x - \frac{\pi}{2}\right) = 0 \Rightarrow -\sin\left(\frac{\pi}{2} - x\right) = 0 \Rightarrow \cos x = 0 = \cos\frac{\pi}{2}$$

$$\therefore x = (2n+1)\frac{\pi}{2} = n\pi + \frac{\pi}{2}$$

বিকম্প:
$$\sin\left(x - \frac{\pi}{2}\right) = 0 \Rightarrow x - \frac{\pi}{2} = n\pi \Rightarrow x = n\pi + \frac{\pi}{2}$$

123.
$$A + B = \sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2} = \frac{\pi}{2}$$

 $\therefore C = \frac{\pi}{2}, \theta = \frac{\pi}{2} \therefore 2 \sin \theta - \sin C = 2 \times 1 - 1 = 1$

125.
$$\cot \theta = 1 \Rightarrow \tan \theta = 1 \Rightarrow \tan \theta = \tan \frac{\pi}{4} \Rightarrow \theta = n\pi + \frac{\pi}{4} = \frac{S\pi}{4} [n = 1]$$

126.
$$\sin x = -\cos x \Rightarrow \tan x = -1 \Rightarrow \tan x = \tan \left(-\frac{\pi}{4}\right) \Rightarrow x = n\pi - \frac{\pi}{4}$$

127.
$$\frac{1}{2}\cos^{-1}\left(\frac{9}{41}\right) = \theta \Rightarrow \cos 2\theta = \frac{9}{41}$$

$$\therefore \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{2 \sin \theta \cos \theta}{2 \cos^2 \theta} = \frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{\sqrt{1 - \cos^2 2\theta}}{1 + \cos 2\theta} = \frac{\sqrt{1 - \left(\frac{\theta}{41}\right)^2}}{1 + \frac{\theta}{41}} = \frac{4}{5}$$

- 128. $\sin^{-1}\left(\frac{2}{\sqrt{5}}\right) + \tan^{-1}x = \frac{\pi}{2}$ হলে, x এর মান কোনটি? [RB'17]
- (c) 2
- [Ctg.B'17] 129. θ = (2n + 1) π, n ∈ Z হবে যখন-
 - (a) $\sin \theta = 1$
- (b) $\cos \theta = 1$
- (c) $\sin \theta = -1$
- (d) $\cos \theta = -1$
- 130. বিপরীত বৃত্তীয় ফাংশনের ক্ষেত্রে-
- [Ctg.B'17]
- (i) $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$
- (ii) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}$
- (iii) $3 \sin^{-1} x = \sin^{-1} (3x 4x^3)$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- 131. tan⁻¹ x ফাংশনের রেঞ্জ কোনটি?
- [SB'17]

- (a) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- (b) (-1,1)
- (c) $\left(\frac{\pi}{2}, \pi\right)$
- (d) $(0, \pi)$
- 132. f(x) = sin x এর মুখ্য সমাধান নিচের কোনটি? [SB'17] (c)[1,1]
 - (a) [0, 1]
- (b)[1,0]
- (d)[-1,1]
- 133. 2cosθ − 1 = 0 হলে θ =? [BB'17]
 - (a) $2n\pi \pm \frac{\pi}{6}$
- (b) $n\pi \pm \frac{\pi}{6}$
- (c) $n\pi \pm \frac{\pi}{3}$
- (d) $2n\pi \pm \frac{\pi}{3}$
- 134. f(x) = tan⁻¹ x হলে-
- [BB'17]

- (i) $f(1) = \frac{\pi}{4}$
 - (ii) $f\left(\frac{1}{2}\right) + f\left(\frac{1}{3}\right) = \frac{\pi}{4}$
- (iii) $f(2x) = \cos^{-1} \frac{1-x^2}{1+x^2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 135. $\cot^{-1} p = \csc^{-1} \frac{3}{2}$ হলে p = ?
- [BB'17]

- - (a) $\frac{2}{\sqrt{5}}$ (b) $\frac{\sqrt{5}}{3}$
- (c) $\frac{\sqrt{5}}{2}$
- $(d)\frac{3}{\sqrt{5}}$

- 136. $\sec^{-1}\left(\frac{25}{24}\right) + \sin^{-1}\left(\frac{24}{25}\right)$ এর মান কত?

- 137. $2\cos\frac{\theta}{5} + 1 = 0$ এর সাধারণ সমাধান কোনটি?
 - (a) $(2n+1)\frac{5\pi}{3}$
- (b) $(2n+1)\frac{10\pi}{3}$
- (c) $10n\pi \pm \frac{10\pi}{3}$ (d) $10n\pi \pm \frac{5\pi}{3}$
- 138. 2(sec⁻¹ x + cosec⁻¹x) এর মান কত? CB'17
- (b) $\frac{\pi}{2}$ 139. f(x) = cosec (cot⁻¹ x) একটি ব্রিকোণমিতিক ফাংশন হচ
 - f(2) এর মান কোনটি?
- (b) $\frac{1}{\sqrt{5}}$ (c) 2 (d) $\frac{1}{2}$

CB'I

- 140. $\sin \theta = \frac{1}{\sqrt{2}}$ হলে-
 - (i) θ এর মুখ্যমান $\frac{\pi}{4}$ (ii) $\theta = \frac{\{4n + (-1)^n\}\pi}{4}$, $n \in \mathbb{Z}$
 - (iii) $\theta = \frac{(4n+1)\pi}{2}$, যখন, $n \in \mathbb{Z}$

নিচের কোনটি সঠিক?

- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুটি প্রশ্নের উত্তর দাও:

$$y = \sin^{-1} \frac{\sqrt{3}}{2} + \cos^{-1} x$$
 সমীকরণে–

- 141. y = 90° হলে x এর মান কোনটি?
 - [Din.B'1' $(c)\frac{\sqrt{3}}{2} \qquad (d)\frac{2}{\sqrt{3}}$

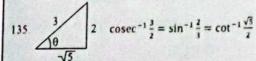
- (b) $\frac{1}{\sqrt{2}}$

- 142. $x = \frac{3\sqrt{3}}{\sqrt{31}}$ হলে y- এর মান কোনটি?

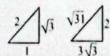
 - (a) $\tan^{-1} \frac{5\sqrt{3}}{-7}$
- (b) $\tan^{-1} \frac{11}{\sqrt{3}}$
- (c) $\tan^{-1} \frac{-\sqrt{3}}{11}$
- (d) $\tan^{-1} \frac{7}{5\sqrt{3}}$
- 143. $\sin 2\theta + 3 \sin \theta = 0$ হলে, θ এর মান কোনটি?

[Din.B'1'

- (a) $(2n + 1)\pi$
- (b) $(4n + 1)\frac{\pi}{2}$
- (c) $(2n + 1)\frac{\pi}{2}$
- (d) nπ


MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

Г	128. b	129. d	130. c	131. a	132. d	133. d	134. a	135. c	136. c	137. c
-	138. c	139. a	140. a	141. c	142. b	143. d				


128.
$$\sin^{-1}\frac{2}{\sqrt{5}} + \cos^{-1}\frac{2}{\sqrt{5}} = \frac{\pi}{2} : \cos^{-1}\frac{2}{\sqrt{5}} = \tan^{-1}x$$

$$\Rightarrow \tan^{-1}\frac{1}{2} = \tan^{-1}x \Rightarrow x = \frac{1}{2}$$

- 133. $\cos \theta = \frac{1}{2} = \cos \frac{\pi}{3} : \theta = 2\pi \pi \pm \frac{\pi}{3}$
- 134. $2 \tan^{-1} x = \cos^{-1} \frac{1-x^2}{1+x^2}$

- 136. $\sec^{-1}\left(\frac{25}{24}\right) + \sin^{-1}\left(\frac{24}{25}\right) = \cos^{-1}\left(\frac{24}{25}\right) + \sin^{-1}\left(\frac{24}{25}\right) = \frac{\pi}{2}$ 137. $2\cos\frac{\theta}{5} + 1 = 0 \therefore \cos\frac{\theta}{5} = -\frac{1}{2} \therefore \frac{\theta}{5} = 2n \pi \pm \frac{2\pi}{3} \therefore \theta = 10 n\pi \pm \frac{10\pi}{3}$
- 139. $\operatorname{cosec}(\cot^{-1} 2) = \sqrt{1 + \cot^2(\cot^{-1} 2)} = \sqrt{1 + 2^2} = \sqrt{5}$ 140. $\sin \theta = \frac{1}{\sqrt{2}} : \theta = \frac{\pi}{2} = n\pi + (-1)^n \frac{\pi}{4} = \frac{(4n+(-1)^n)\pi}{4} : n \in \mathbb{Z}$
- 142. $\sin^{-1}\frac{\sqrt{3}}{2} + \cos^{-1}\frac{3\sqrt{3}}{\sqrt{3}1} = \tan^{-1}\sqrt{3} + \tan^{-1}\frac{2}{3\sqrt{3}} = \tan^{-1}\frac{\sqrt{3} + \frac{1}{1\sqrt{3}}}{1 \sqrt{3} + \frac{1}{2\sqrt{3}}}$

143 $\sin 2\theta + 3\sin \theta = 0 \Rightarrow 2\sin \theta \cos \theta + 3\sin \theta = 0$ $\Rightarrow \sin\theta (2\cos\theta + 3) = 0$ $\sin \theta = 0, \cos \theta = -\frac{3}{2}$ $\sin \theta = n\pi$ কাবণ $\cos \theta \neq -\frac{3}{2}$

বিভিন্ন কলেজের টেস্ট পরীক্ষার MCQ প্রশ্ন

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

tan⁻¹ 2 = A, tan⁻¹ 3 = B এবং A + B + C = π

144. উদ্দীপকটিতে-(i) tan⁻¹ 2 এর পূরক কোণ cot⁻¹ 2

- (ii) C এর পূরক কোণ 🛣
- (iii) A − B এর পূরক কোণ π/2 + tan⁻¹ 1/2

নিচের কোনটি সঠিক?

- (a) i, ii
- (c) ii, iii
- (d) i, ii, iii
- (b) i, iii 145. sin⁻¹(0.001) + cos⁻¹(0.001) এর মান কত?

[সিলেট ক্যাডেট কলেজ।

[রংপুর ক্যাডেট কলেজ।

- (a) 0.25
- (b) 1

- 146. নিচের কোনটি সত্য?।ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা।
 - (i) sin θ এর রেঞ্জ [-1, 1] (ii) $\cos^{-1}(-x) = \cos^{-1} x$
 - (iii) $\sin^{-1} \frac{3}{\sqrt{5}} + \sec^{-1} \frac{\sqrt{5}}{3} = \frac{\pi}{2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 147. বিপরীত ত্রিকোণমিতিক ফাংশনের ক্ষেত্রে-

আদমজী ক্যান্টনমেন্ট কলেজ, ঢাকা

- (i) $\tan^{-1} x$ এর রেঞ্জ $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- (ii) $\cot^{-1} x$ এর রেঞ্জ $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- (iii) sin⁻¹ x এর ডোমেইন [−1, 1]

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 148. tan 2x + tan 5x = 0 এর সমাধান নিচের কোনটি?

আদমজী ক্যান্টনমেন্ট কলেজ, ঢাকা

- (a) $7n\pi$; $n \in \mathbb{Z}$
- (b) $(7n+1)\pi$; $n \in \mathbb{Z}$
- (c) $(7n-1)\pi$; $n \in \mathbb{Z}$
- $(d)\frac{n\pi}{7}$; $n \in \mathbb{Z}$

149. tan θ cos θ = 1 সমীকরণের সাধারণ সমাধান-

[উত্তরা হাই স্কুল এন্ড কলেজ, ঢাকা]

- (a) $(2n+1)\frac{\pi}{4}$, $n \in \mathbb{Z}$
- (b) $(4n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$
- $(c)\frac{n\pi}{4}, n \in \mathbb{Z}$
- $(d) (2n-1) \frac{\pi}{4}, n \in \mathbb{Z}$
- 150. $f(x) = \csc(\cot^{-1} x)$ একটি ত্রিকোণমিতিক ফাংশন হলে,
 - f(2) এর মান কোনটি? [চট্টগ্রাম ক্যান্টনমেন্ট পাবলিক কলেজ]
- (b) $\frac{1}{\sqrt{5}}$
- (c) 2

নিচের তথ্যের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

- 151. sin⁻¹ x এর রেঞ্জ কোনটি? [বাংলাদেশ নৌবাহিনী কলেজ, চট্টগ্রাম]
 - (a) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- $(c)(0,\pi)$
- (d) $[0, \pi]$
- 152. কোন মানটি $\sin x + \sin 2x + \sin 3x = 0$ সমীকরণকে সিদ্ধ করে?

[যশোর শিক্ষাবোর্ড সরকারি মডেল স্কুল এন্ড কলেজ]

- $(c)\frac{\pi}{4}$
- 153. n ∈ \mathbb{Z} এবং $4\sin 4\theta + 1 = \sqrt{5}$ হলে, $\theta = \overline{\Phi}$ ত?

- (a) $n\pi + (-1)^n \frac{\pi}{10}$
- (b) $2n\pi + \frac{\pi}{10}$
- $(c)\,\frac{n\pi}{2}+\frac{\pi}{20}$
- $(d)\frac{n\pi}{4}+(-1)^n\frac{\pi}{40}$
- 154. $\frac{\cos \theta}{1+\sin \theta}$ + $\tan \theta$ = 2 সমীকরণের সমাধান কোনটি? যেখানে n শূন্য বা যেকোনো পূর্ণসংখ্যা-

[আইডিয়াল স্কুল অ্যান্ড কলেজ, মতিঝিল, ঢাকা]

- (a) $(4n-1)\frac{\pi}{2}$
- (b) $(4n + 1)\frac{\pi}{2}$
- (c) $2n\pi \pm \frac{\pi}{2}$
- (d) $n\pi + \frac{\pi}{2}$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

151. b 152. a 153. d 154. c 149. b 147. a 144. d 145. d 146. d

144. (i) $\tan^{-1} 2 + \cot^{-1} 2 = \frac{\pi}{2}$.. $\tan^{-1} 2$ এর পূরক কোণ $\cot^{-1} 2$

(ii) $\tan^{-1} 2 + \tan^{-1} 3 = \tan^{-1} \frac{2+3}{1-6} = \tan^{-1} (-1) = \frac{3\pi}{4} = A + B$

 \therefore C = π - (A + B) = π - $\frac{3\pi}{4}$ = $\frac{\pi}{4}$ \therefore C এর পূরক কোণ = $\frac{\pi}{2}$ - $\frac{\pi}{4}$ = $\frac{\pi}{4}$

(iii) A - B = $\tan^{-1} 2 - \tan^{-1} 3 = \tan^{-1} \frac{2-3}{1+6} = \tan^{-1} \left(-\frac{1}{7}\right) = -\tan^{-1} \frac{1}{7}$

(A - B) + (A - B) এর পূরক কোণ = $\frac{n}{2}$

 $\Rightarrow -\tan^{-1}\frac{1}{7} + (A - B)$ এর পুরক কোণ = $\frac{\pi}{2}$

∴ (A – B) এর প্রক কোণ = π/2 + tan⁻¹ 1/7

146. $\sin^{-1}\frac{3}{\sqrt{5}} + \sec^{-1}\frac{\sqrt{5}}{3} = \sin^{-1}\frac{3}{\sqrt{5}} + \cos^{-1}\frac{3}{\sqrt{5}} = \frac{\pi}{2}$

147. sin-1 x এর ডোমেইন = R

 $\frac{\sin 2x}{\cos 2x} + \frac{\sin 5x}{\cos 5x} = 0 \Rightarrow \frac{\sin 2x \cos 5x + \sin 5x \cos 2x}{\cos 2x \cos 5x} = 0$ $\Rightarrow \sin 7x = 0 \Rightarrow 7x = n\pi : x = \frac{n\pi}{7}; n \in \mathbb{Z}$

- 149. $\tan \theta \cos \theta = 1 \Rightarrow \frac{\sin \theta}{\cos \theta} \cdot \cos \theta = 1 \Rightarrow \sin \theta = 1$ $\therefore \theta = (4x+1)\frac{\pi}{2}; n \in \mathbb{Z}$
- 150. $f(x) = \csc(\cot^{-1} x) = \csc(\csc^{-1} \sqrt{1 + x^2}) = \sqrt{1 + x^2}$ $f(2) = \sqrt{1 + 2^2} = \sqrt{5}$
- 152. $\sin x + \sin 2x + \sin 3x = 0 \Rightarrow 2 \cdot \sin \frac{x+3x}{2} \cos \frac{3x-x}{2} + \sin 2x = 0$ $\Rightarrow 2\sin 2x\cos x + \sin 2x = 0 \Rightarrow \sin 2x(2\cos x + 1) = 0$ $2x = 0 : 2x = n\pi \Rightarrow x = \frac{n\pi}{2}$
 - n=1 হলে, $x=\frac{\pi}{2}$

153. $4 \sin 4\theta + 1 = \sqrt{5} \Rightarrow \sin 4\theta = \frac{\sqrt{5}-1}{4} = \sin(\frac{\pi}{10})$

 $\Rightarrow 4\theta = n\pi + (-1)^n \frac{\pi}{10} : \theta = \frac{n\pi}{4} + (-1)^n \frac{\pi}{40}$

 $\Rightarrow \frac{1}{\cos \theta} = 2 \Rightarrow \cos \theta = \frac{1}{2} = \cos \frac{\pi}{3} : \theta = 2n\pi \pm \frac{\pi}{3}$

সাজেশনভিত্তিক মডেল টেস্ট: অধ্যায়-০৭

পূৰ্ণমান: ৫০

MCQ

সময়: ৫০ মিট

- 01. $\cos \theta = \frac{1}{\sqrt{2}}$ হলে $\theta = \overline{\Phi}$ ত?
 - (a) $n\pi + (-1)^n \frac{\pi}{4}$ (b) $n\pi \pm \frac{\pi}{4}$
 - (c) $2n\pi \pm \frac{\pi}{4}$
- (d) $(2n + 1)\frac{\pi}{2}$
- 02. sin 2x = 0 হলে x =? [n ∈ Z]
- (b) $n\pi$ (c) $2n\pi$
- (d) $n\pi + \frac{\pi}{4}$
- 03. $\frac{1}{2}\sin^{-1} x = \tan^{-1} y$ হলে কোনটি সঠিক?
 - $(a) x = \frac{2y}{1-y^2}$
- (b) $x = \frac{2y}{1+y^2}$
- (c) $x = \frac{1-y^2}{2y}$
- (d) $x = \frac{1-y^2}{1+y^2}$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: $\tan x = \sqrt{3}; \frac{\pi}{2} < x < 2\pi$

- 04. প্রদত্ত ত্রিকোণমিতিক সমীকরণের সাধারণ সমাধান কোনটি?
- (a) $n\pi + \frac{\pi}{3}$ (b) $n\pi \frac{\pi}{3}$ (c) $n\pi \pm \frac{\pi}{3}$ (d) $n\pi + \frac{\pi}{6}$
- 05. প্রদত্ত সীমার মধ্যে সমাধান কত?
- (b) $\frac{\pi}{3}$

- 06. বিপরীত বৃত্তীয় ফাংশনের ক্ষেত্রে-
 - (i) $\sin^{-1}\left(\frac{1}{2}\right)$ এর মুখ্যমান 30°
 - (ii) $\sin^{-1} x = \sec^{-1} \frac{1}{\sqrt{1-x^2}}$
 - (iii) $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$

নিচের কোনটি সঠিক?

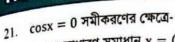
- (b) i, iii
- (c) ii, iii
- 07. $\sin \theta \cos \theta = 0$ সমীকরণের সমাধান কোনটি? [যেখানে $0 \le \theta \le \frac{\pi}{2}$
- $(b)\frac{\pi}{2} \qquad (c)\frac{\pi}{4}$
- 08. $\cos^{-1} \frac{1}{\sqrt{5}} = \sin^{-1} x$ হলে, x এর মান কোনটি?
 - (a) $\frac{1}{\sqrt{5}}$ (b) $\frac{2}{\sqrt{5}}$ (c) $\frac{\sqrt{5}}{2}$ (d) $\sqrt{5}$

- 09. $\tan^{-1}(-1) + \cot^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{2}$ এর মান-

- (a) $\frac{\pi}{4}$ (b) $\frac{3\pi}{4}$ (c) $-\frac{\pi}{4}$ (d) $-\frac{3\pi}{4}$ 10. $y = \cos^{-1} x$, $(x \in \mathbb{R}, \, at -1 \le x < 1)$ এর লেখচিত্র–

- 11. ত্রিকোণমিতিক সমীকরণের সমাধানের ক্ষেত্রে—
 - (i) $2 \sin \theta 1 = 0$ হলে $\theta = n\pi + (-1)^n \frac{\pi}{6}$; n ∈ χ
 - (ii) $2\cos\theta 2 = 0$ হলে $\theta = 2n\pi \pm \frac{\pi}{2}$; $n \in \mathbb{Z}$
 - (iii) $\tan \theta = \tan \frac{3\pi}{4}$ হলে $\theta = (4n-1)\frac{\pi}{4}$; $n \in \mathbb{Z}$

নিচের কোনটি সঠিক?


- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- cot(cos⁻¹ x) এর মান কোনটি?
 - $(a)^{\frac{\sqrt{1-x^2}}{n}}$
- $(c)\frac{\sqrt{1+x^2}}{x}$
- 13. $f(x) = \sin^{-1} x \ \overline{x}$
 - (i) $f(x)f(\sqrt{1-x^2}) = \frac{\pi}{2}$ (ii) $cosec\{f(x)\} = \frac{1}{x}$
 - (iii) $f(1) = \frac{\pi}{2}$

নিচের কোনটি সঠিক?

- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 14. sinθ = sinα হলে θ এর মান কোনটি? $[n \in \mathbb{Z}]$
 - (a) $2n\pi \pm \alpha$
- (b) $n\pi + \alpha$
- (c) $2n\pi + (-1)^n a$
- $(d) n\pi + (-1)^n \alpha$
- 15. $\frac{1}{2}\cos^{-1}\frac{1-x^2}{1+x^2}+\cot^{-1}x$ এর মান কত?
- (b) $-\frac{\pi}{2}$
- (c) $\pm \frac{\pi}{2}$
- 16. $\sin{\{2(\sin^{-1}x+\cos^{-1}x)\}}=a$ হলে $a=\overline{\Phi}$ ত?
- (b) -1
- (c) 2
- 17. tanθ অসংজ্ঞায়িত হলে θ এর মান-
 - (a) $(2n + 1)\pi$
- (b) $(2n + 1)^{\frac{\pi}{2}}$
- (c) 2nm
- (d) $(2n-1)\pi$
- 18. cos(2 tan⁻¹ x) এর মান কোনটি?
 - (a) $\frac{2x}{1-x^2}$

- 19. $\tan^2 \theta + 2 \sec^2 \theta = 5$ সমীকরণটির সমাধান কত? $[n \in \mathbb{Z}]$
 - (a) $\theta = \frac{\pi}{4} (2n + 1)$ (b) $\theta = \frac{n\pi + \pi}{6}$

- (c) 2nm
- 20. sinx + 2 = 3 হলে 0° < x < 360° ব্যবধিতে x এর মান কত?
 - (a) 30°
- (b) 90°
- (c) 45°

- (i) এর সাধারণ সমাধান $x = (2n + 1)\frac{\pi}{2}$
 - (ii) একটি বিশেষ সমাধান হবে 🖰
 - (iii) এর সাধারণ সমাধান x = nπ

নিচের কোনটি সঠিক?

- (b) i, ii
- (c) ii, iii
- (d) ii
- 22. tan-1 x এর মুখ্য মানের সীমা কোনটি?
- $(b) \frac{\pi}{2} \le x < \frac{\pi}{2}$
- (a) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (c) $-\frac{\pi}{2} < x \le \frac{\pi}{2}$
 - (b) $-\frac{\pi}{2} \le x < \frac{\pi}{2}$ (d) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
- 23. $n \in \mathbb{Z}$ হলে, $\cos 2x = \frac{1}{\sqrt{2}}$ এর সাধারণ সমাধান কোনটি?
 - (a) $(8n \pm 1)\frac{\pi}{8}$
- (b) $(8n \pm 1)\frac{\pi}{4}$
- (c) $(n \pm 1) \frac{\pi}{8}$
- (d) $(n \pm 1)^{\frac{\pi}{4}}$
- 24. $tan^2 θ 2\sqrt{3} tan θ + 3 = 0 এর সমাধান কোনটি?$ [যেখানে 0 < θ < π]

 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$
- (c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{4}$
- 25. $\sec^{-1} x + \csc^{-1} x = \overline{\Phi}$
- (b) $\frac{\pi}{a}$
- (c) $-\frac{\pi}{2}$ (d) $\frac{\pi}{2}$
- 26. নিচের ফাংশনগুলোর ক্ষেত্রে—
 - (i) $\sin^{-1} x = \csc^{-1} \frac{1}{x}, -1 \le x \le 1$
 - (ii) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}$
 - (iii) tan⁻¹ x এর ডোমেন (-∞, ∞)

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- 27. $2 \tan^{-1} x = ? (0 \le x < 1)$
 - (i) $\sin^{-1} \frac{2x}{1+x^2}$ (ii) $\cos^{-1} \frac{1-x^2}{1+x^2}$ (iii) $\tan^{-1} \frac{2x}{1-x^2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii (d) i, ii, iii
- 28. $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = ?$
- (b) $\frac{\pi}{2}$
- $(c) \frac{\pi}{4} \qquad (d) \frac{\pi}{4}$
- 29. কয়েকটি গাণিতিক উক্তি হচ্ছে-
 - (i) $\sin^{-1} x = \frac{1}{\sin x}$
 - (ii) $\cos^{-1} x = \sec^{-1} \frac{1}{x}$
 - (iii) $tan^{-1} x = cos^{-1} \frac{1}{\sqrt{1+x^2}}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- $30. \sin^{-1} x$ ও $\cos^{-1} x$ প্রতিটি এক একটি কোণ হলে-
 - (i) $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$
 - (ii) $3 \sin^{-1} x = \sin^{-1} (4x^3 3x)$
 - (iii) $3\cos^{-1}x = \cos^{-1}(4x^3 3x)$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : তাধ্যায়-০৭

নিচের উদ্দীপকের আপোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

- $A = \cos^{-1} x,$ $B = \cos^{-1} y$
- 31. A = 0 হলে নিচের কোনটি সঠিক?
 - (a) x = 1

- (b) x = 2 (c) x = 3(d) x = 4
- 32. $A B = \frac{\pi}{2}$ হলে নিচের কোনটি সঠিক?
 - (a) $x\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$
 - (b) $x\sqrt{1-y^2} v\sqrt{1-x^2} = 1$
 - (c) $xy + \sqrt{(1-x^2)(1-y^2)} = 0$
 - (d) $xy \sqrt{(1-x^2)(1-y^2)} = 0$
- 33. $\frac{1}{2}$ cosec⁻¹ $\frac{1+x^2}{2x}$ এর মান কত?
 - (a) $2 \tan^{-1} x$
- (b) tan-1 x
- $(c)^{\frac{1}{2}} \sin^{-1} x$
- $(d)^{\frac{1}{2}} \tan^{-1} x$
- 34. $\tan\left\{\frac{1}{2}\sin^{-1}\frac{2x}{1+x^2} + \frac{1}{2}\cos^{-1}\frac{1-x^2}{1+x^2}\right\} = \overline{\Phi}$
 - (a) $\frac{1-x^2}{1+x^2}$ (b) $\frac{2x}{1-x^2}$ (c) $\frac{2x}{1+x^2}$ (d) 0

- 35. arc $\tan \left\{ \sin \left(\arccos \frac{\sqrt{2}}{\sqrt{2}} \right) \right\}$ এর মান কত?
 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$

- 36. $\sin 4\theta = \sin 2\theta$ (যেখানে $0 < \theta < 90^{\circ}$); $\theta = ?$
 - (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$
- (c) $\frac{\pi}{12}$ (d) $\frac{\pi}{4}$
- 37. $tan^{-1}(p) = sin^{-1} \frac{2}{3}$ হলে, p এর মান কোনটি?
 - (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{2}{\sqrt{5}}$ (c) $\frac{3}{\sqrt{5}}$

- 38. $\sin^{-1}\frac{2a}{1+a^2}-\cos^{-1}\frac{1-b^2}{1+b^2}=2\tan^{-1}x$ হলে, x এর মান
 - (a) a + b
- $(c)\frac{a-b}{1+ab}$
- $(d)\frac{1+ab}{a-b}$
- 39. cos 3x = −1 হলে x =?
- (a) $(2n + 1)\frac{\pi}{12}$ (b) $(2n + 1)\frac{\pi}{6}$ (c) $(2n + 1)\frac{\pi}{3}$ (d) $(2n + 1)\frac{\pi}{2}$
- 40. $\tan\left\{\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)\right\} =$ কত?
 - (a) -1 (b) 1
- (c) $-\frac{1}{2}$
- 41. $2 \cos x + 1 = 0$ সমীকরণের সাধারণ সমাধান কোনটি? [यिখान n ∈ Z]
 - (a) $n\pi \pm \frac{\pi}{2}$
- (b) $2n\pi \pm \frac{\pi}{3}$
- (c) $2\left(n\pi \pm \frac{\pi}{3}\right)$ (d) $n\pi \pm \frac{2\pi}{3}$
- 42. $\sin^{-1} \frac{1}{2}$ এর মুখ্যমান নিচের কোনটি?
 - (a) 30°
- (b) 90°
- (c) 90°
- (d) 180°

- 43. $2 \sin^{-1} \frac{1}{5} = \sin^{-1} \frac{2p\sqrt{6}}{5}$ হলে p এর মান কত?
 - (a) $\frac{1}{5}$

 $(b)^{\frac{2}{-}}$

 $(c)^{\frac{3}{5}}$

- $(d)^{\frac{4}{5}}$
- 44. $\tan^{-1} \sin \tan^{-1} x = \cos^{-1} \sqrt{\frac{3}{5}}$ সমীকরণের সমাধান কোনটি?
 - (a) $\frac{1}{\sqrt{2}}$

(b) $\sqrt{2}$

 $(c)\,\frac{1}{\sqrt{3}}$

- (d) $\sqrt{3}$
- 45. $\sin\left(2\sin^{-1}\frac{1}{2}\right)$ এর মান—
 - (a) $\frac{1}{2}$

(b) 1

(c) $\frac{1}{\sqrt{2}}$

(d) $\frac{\sqrt{3}}{2}$

- 46. x এর কোন মানের জন্য $f(x) = \sec x$ এর বিপরীত ফাংশন $f^{-1}(x) = \sec^{-1} x$ হবে?
 - (a) $x \in [0, \pi]$
- (b) $x \in \left[0, \frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right]$
- (c) $x \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$
- (d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
- 47. $\sin \cot^{-1} \tan \cos^{-1} x = ?$
 - (a) $\sqrt{1-x^2}$ (b) x
- (c) √x
- 48. tan⁻¹ 6 + tan⁻¹ ⁷ এর মান-
 - $(a)^{\frac{\pi}{2}}$
- (b) $\frac{3\pi}{3}$
- $(c)\frac{3\pi}{4}$
- $(d)\frac{\pi}{3}$

 $(d)\frac{1}{\sqrt{2}}$

- 49. tan-1 1 + tan-1 2 + tan-1 3 এর মান-
 - (a) 0
- (b) $\frac{\pi}{2}$
- (c) n
- $(d) 2\pi$
- 50. যদি $A + B + C = \pi$, $tan^{-1} 2 = A$ এবং $tan^{-1} 3 = B$ হয় তবে C = ?
 - (a) 2
- (b) $\frac{\pi}{2}$
- $(c)\frac{\pi}{4}$
- $(d) \frac{2\pi}{3}$

পূৰ্ণমান: ৫০

CQ

সময়: ২:৩৫ মিনি

(যেকোনো পাঁচটি প্রশ্নের উত্তর দাও:)

- 01. yα 1
 - (ক) α ও θ কে sine এর বিপরীত ত্রিকোণমিতিক অনুপাতের সাহায্যে প্রকাশ কর।
 - (খ) $x + y = \sqrt{2}$ হলে θ নির্ণয় কর।
 - (গ) $\alpha + \theta = \frac{\pi}{2}$ হলে দেখাও যে, $x^2 + y^2 = 1$
- 02. $f(x) = \cos x$ এবং $g(x) = \tan^{-1} x$
 - (ক) দেখাও যে, $g(\frac{1}{2}) + g(\frac{1}{3}) = \frac{\pi}{4}$ ।
 - (খ) প্রমাণ কর যে, $2g\left(\sqrt{\frac{a-b}{a+b}}.\tan\frac{\theta}{2}\right) = \cos^{-1}\frac{b+af(\theta)}{a+bf(\theta)}$ । 4
 - (গ) সমাধান কর: $\sqrt{3}f(x) + f(\frac{\pi}{2} x) = 1, -2\pi < x < 2\pi + 4$
- 03. $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = p$
 - (ক) $\left(\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17}\right)$ কে সাইনের বিপরীত ত্রিকোণমিতিক অনুপাতে প্রকাশ কর।
 - (খ) $x = -\cos\theta$; $y = \cos 3\theta$ এবং z = 0 হলে p নির্ণয় কর।
 - (গ) $p = \pi$ হলে প্রমাণ কর যে, $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$

- 04. $P = \cos \theta$ এবং $Q = \sin \theta$; এখানে θ জ্যামিতিক কোণ।
 - (ক) $Q = \frac{\sqrt{3}}{2}$ হলে, θ নির্ণয় কর।
 - (খ) $P + \sqrt{3}Q = \sqrt{2}$ হলে, θ নির্ণয় কর।
 - (গ) P³ PQ Q³ = 1 হলে প্রমাণ করে যে, θ কখনোই একটি সৃক্ষ্মকোণী ত্রিভুজের অন্তঃস্থ কোণ হতে পারে না। 4
- 05. α ও β দুইটি বাস্তব সংখ্যা যেখানে $\alpha=\frac{x}{a}$ এবং $\beta=\frac{y}{b}$ ।
 - (ক) $\sin^{-1}\frac{2}{5x} = \frac{\pi}{3}$ হলে $\sec^{-1}\frac{5x}{2}$ এর মান কত?
 - (খ) উদ্দীপকের a = b = 2 এবং $\cos^{-1} \alpha + \cos^{-1} \beta = \theta$ হলে দেখাও যে, $\frac{1}{4}x^2 - \frac{1}{2}xy\cos\theta + \frac{1}{4}y^2 = \sin^2\theta$ । 4
 - (গ) যদি উদ্দীপকের a=2 এবং b=3 হয় তবে সমাধান কর $\sec^{-1}\alpha \sec^{-1}\beta = \sec^{-1}3 \sec^{-1}2$ ।
- $06. \quad y = f(x) = \sin x$
 - (ক) f⁻¹(x) ফাংশন হলে ডোমেন নির্ণয় কর।
 - (খ) f⁻¹(x) এর লেখচিত্র অঙ্কন কর। [−1 < x < 1 মুখ্যমানের ভিত্তিতে]
 - (গ) $x = \sin^{-1}\frac{1}{2} + \cos^{-1}\frac{5}{13}$ হলে দেখাও যে, $y = \frac{5+12\sqrt{3}}{26}$
- 07. $\cos\left(\tan^{-1}\frac{1}{3} + \tan^{-1}3\right)$, $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z$ দৃটি রাশি এবং $\cot\theta + \tan\theta = 2\sec\theta$ একটি সমীকরণ।
 - (ক) ১ম রাশির মান নির্ণয় কর।
 - (খ) ২য় রাশিটির মান π হলে দেখাও যে, $x + y + z = xyz^{-4}$
 - (গ) সমীকরণটি $-2\pi < \theta < 2\pi$ ব্যবধিতে সমাধান কর। 4

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৭

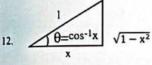
উত্তরমালা

MCQ

M

01. c	02. a	03. b	04. a	05. d	06. d	07. с	08. ь	09. a	10. b	11. b	12. b	13. c	14. d	15. a
16. d	17. b	18. b	19. d	20. b	21. b	22. a	23. a	24. b	25. d	26. c	27. d	28. c	29. с	30. b
31. a	32. c	33. b	34. b	35. d	36. b	37. b	38. c	39. c	40. b	41. c	42. a	43. b	44. b	45. d
46. c	47. b	48. c	49. c	50. c							2 2 H-12		12-12	

$$08. \quad \sin^{-1} \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2} = \sin^{-1} x \implies \sqrt{1 - \frac{1}{5}} = x \therefore x = \frac{2}{\sqrt{5}}$$


11. (i)
$$2\sin\theta - 1 = 0 \Rightarrow \sin\theta = \sin\frac{\pi}{6}$$

$$\theta = n\pi + (-1)^n \frac{\pi}{6}$$

(ii)
$$2\cos\theta - 2 = 0 \Rightarrow \cos\theta = 1 : \theta = 2n\pi$$

(iii)
$$\tan\theta = \tan\frac{3\pi}{4} \Rightarrow \tan\theta = \tan\left(-\frac{\pi}{4}\right)$$

$$\theta = n\pi - \frac{\pi}{4} = (4n - 1)\frac{\pi}{4}$$

$$\cot\theta = \frac{x}{\sqrt{1-x^2}}$$

15.
$$\sqrt[4]{g}$$
, $x = \tan \alpha \div \frac{1}{2} \cos^{-1} \frac{1-x^2}{1+x^2} = \frac{1}{2} \times 2 \tan^{-1} x = \tan^{-1} x$

$$\therefore \tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$$

18.
$$\cos(2\tan^{-1}x) = \cos(\cos^{-1}\frac{1-x^2}{1+x^2}) = \frac{1-x^2}{1+x^2}$$

19.
$$\tan^2 \theta + 2 \sec^2 \theta = 5 \Rightarrow \sec^2 \theta = 2 \Rightarrow \cos \theta = \pm \frac{1}{\sqrt{2}}$$

$$\therefore \theta = 2n\pi \pm \frac{\pi}{4}$$

23.
$$\cos 2x = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4} \Rightarrow 2x = 2n\pi \pm \frac{\pi}{4}$$

$$\Rightarrow x = n\pi \pm \frac{\pi}{8} : x = (8n \pm 1) \frac{\pi}{8}$$

36.
$$\sin 4\theta = \sin 2\theta \Rightarrow 2\sin 2\theta \cos 2\theta = \sin 2\theta$$

$$\Rightarrow \cos 2\theta = \frac{1}{2} \Rightarrow 2\theta = \frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{6}$$

38.
$$\sin^{-1}\frac{2a}{1+a^2}-\cos^{-1}\frac{1-b^2}{1+b^2}=2\tan^{-1}x$$

$$\Rightarrow 2 \tan^{-1} a - 2 \tan^{-1} b = 2 \tan^{-1} x$$

$$\Rightarrow tan^{-1}\frac{a-b}{1+ab}=tan^{-1}x \mathrel{\dot{\cdot}\cdot} x=\frac{a-b}{1+ab}$$

44.
$$tan^{-1} sin tan^{-1} x = cos^{-1} \sqrt{\frac{3}{5}}$$

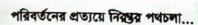
$$\Rightarrow \tan^{-1} \sin \sin^{-1} \frac{x}{\sqrt{1+x^2}} = \tan^{-1} \left(\frac{\sqrt{2}}{\sqrt{3}}\right)$$

$$\Rightarrow \frac{x}{\sqrt{1+x^2}} = \sqrt{\frac{2}{3}} \Rightarrow 3x^2 = 2 + 2x^2 \therefore x = \sqrt{2}$$

CQ

- 01. (4) $\alpha = \sin^{-1}(x), \theta = \sin^{-1}(y)$
 - (4) $\theta = \frac{\pi}{4}$
- 02. (1) $x = -\frac{3\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{2}, \frac{11\pi}{6}$
- 03. (本) sin-1 77 gs
- 04. (季) 60°
 - (4) $2n\pi + \frac{7\pi}{12}, 2n\pi + \frac{\pi}{12}$

- 05. (本) ^π/₆
 - (গ) x = 6
- 06. (季) [-1,1]
- - (1) $\theta = -\frac{11\pi}{6}, -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}$


আমি কাউকে কিছু শিখিয়ে দিতে পারি না, আমি কেবল চিন্তার রসদ যোগাতে পারি।

- Socrates

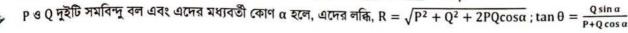
অধ্যায় ০৮

স্থিতিবিদ্যা

সৃজনশীল (ক), (খ) ও (গ) নং প্রশ্নের জন্য এ অধ্যায়ের গুরুত্বপূর্ণ টাইপসমূহ:

_	টাইপ	টাইপের নাম		তবার এ এসেয়ে		যে বোর্ভে যে বছর এসেছে
68-6	UIZ.I	URGHI AIM	1	4	_ न	CQ
000	T-01	দুইটি বলের লব্ধি নির্ণয়ের ক্ষেত্রে সামান্তরিক সূত্রের প্রয়োগ	24		03	CB'23; Ctg.B'22, 17; JB'22, 21, 19, 18; Din.B'22, 21, 19, 18, 17; MB'22, 21; RB'21, 19, 17; SB'21, 19, 18; BB'21, 19; DB'19, 18, 17
000	T-02	দুইটি বলের অন্তর্ভুক্ত কোণ নির্ণয় ও sine সূত্রের প্রয়োগ সংক্রান্ত	11	12	01	DB'23, 21, 19; RB'23; Sb'23, 21, 17; BB'23, 22; JB'23, 22, 19; CB'23, 22, 21; MB'23, 22; Ctg.B'22, 19; Din.B'22, 19
0	T-03	লব্ধির দিক অপরিবর্তিত থাকা	-	02	-	RB'19; BB'17
000	T-04	দুই বা দুই এর অধিক বলের লব্ধি নির্ণয়ের ক্ষেত্রে লম্বাংশ সূত্রের প্রয়োগ	09	08	05	Ctg.B'23, 22, 21; BB'23, 21; BB'23, 21, 17; JB'23, 22, 21, 17; Din.B'23, 22; MB'22, 21; DB'21; RB'21; CB'21; SB'17
	T-05	বলের সংযোজন ও বিভাজন	-		-	•
00	T-06	তিনটি সমবিন্দু বল সাম্যাবস্থা সৃষ্টি করলে তা হতে বলত্রয়ের অন্তর্গত কোণ নির্ণয়	06		-	BB'22, 17; Din.B'21; MB'21; Ctg.B'19; JB'19
000	T-07	তিনটি বল সাম্যাবস্থায় থাকার শর্ত (লামির সূত্র)	03	15	02	RB'23, 17; SB'23, 22, 19, 17; BB'23, 22, 21, 19 DB'22, 21; JB'22, 21; Ctg.B'21; CB'21, 19, 17
000	T-08	তিনটি বল সাম্যাবস্থায় থাকলে তা থেকে বিভিন্ন অজানা রাশির মান নির্ণয়	-	07	06	DB'23; Din.B'23, 21, 19; MB'23, 21; RB'21; CB'19; JB'17
000	T-09	সদৃশ সমান্তরাল বল এর লব্বি	-	04	11	DB'22, 21, 17; Ctg.B'22, 19; SB'22; BB'22, 17 CB'22; MB'22; RB'21; JB'21
000	T-10	সদৃশ সমান্তরাল বলের ক্ষেত্রে ত্রিভূজ		08	12	DB'23, 22, 18, Ctg.B'23, BB'23, 21; RB'21; SB'21, 19, 18; JB'21, 18, CB'21, 17, MB'21; Din.B'18
000	T-II	অসদৃশ/বিসদৃশ সমান্তরাল বলের লব্ধি নির্থয়ের সূত্র	03	01	11	SB'23, 21; CB'23, 21; JB'22, 17; Db'21, 17; Ctg.B'21, BB'21, 19; Din.B'21, 17; RB'19
000	1-12	সমান্তরাল বলের পরি নির্ণয় এর সূত্র প্রয়োগ করে চাপ ও প্রতিক্রিয়া বল নির্ণয়		02	07	RB'23, JB'23, 22, 21; Din.B'23, MB'23, 21; BB'21; Ctg.B'17

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮


CQ প্রশ্ন ও সমাধান (ক, খ ও গ)

Type-01: দুইটি বলের লব্ধি নির্ণয়ের ক্ষেত্রে সামান্তরিক সূত্রের প্রয়োগ

Concept

- (i) মধ্যবতী কোণ, $\alpha=0^\circ$ হলে, $R=R_{max}=P+Q$ (বৃহত্তম লিরি)
- (ii) মধ্যবতী কোণ, α = 180° হলে, R = R_{min} = P~Q (ক্ষুদ্রতম লিক্কি)
- (iii) $\alpha = 90^{\circ}$ হলে লব্ধি, $R_p = \sqrt{P^2 + Q^2}$ [p ⇒ Perpendicular (লম্ব)]
- (iv) P = Q হলে, $R_e = 2P \cos \frac{\alpha}{2}$; $\theta = \frac{\alpha}{2} [e \Rightarrow Equal (সমান)]$

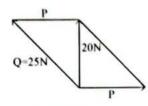
Shortcut for MCQ: $(P + Q)^2 + (P \sim Q)^2 = 2(P^2 + Q^2) \Rightarrow R_{max}^2 + R_{min}^2 = 2R_p^2$

[যেখানে, Q হলো, P ও R এর মধ্যবর্তী কোণ]

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- 🔟 (ক) 4N ও 3N মানের দুইটি বল পরস্পর 120° কোণে ক্রিয়া করলে তাদের লব্ধি নির্ণয় কর।
- (ক) Solⁿ: লব্ধি বল, $R = \sqrt{4^2 + 3^2 + 2 \cdot 4 \cdot 3 \cos 120^\circ}$ $=\sqrt{16+9-12}=\sqrt{13}$ N (Ans.)
- 📆 (ক) 120° কোণে ক্রিয়ারত দুটি সমান বলের লব্ধি 9N হলে সমান বল দুটি নির্ণয় কর। [DB'22; JB'21]
- (ক) Sol": মনে করি, সমান বল দুটি F. এখানে, R = 9N এবং প্রশ্নতে, $R = 2F \cos \frac{\alpha}{2} \Rightarrow 9 = 2F \cos \frac{120^{\circ}}{2}$ \Rightarrow 9 = 2F cos 60° \therefore F = 9N (Ans.)
- 🔢 (ক) কোনো বিন্দুতে পরস্পর α কোণে ক্রিয়ারত P মানের দুইটি 🎒ন বলের লব্ধির মান নির্ণয় কর।|Ctg.B'22; MB'22|
- (4) Solh: $R = \sqrt{P^2 + P^2 + 2 \cdot P \cdot P \cdot \cos \alpha}$ $\Rightarrow R = \sqrt{2P^2 + 2P^2 \cos \alpha} \Rightarrow R = \sqrt{2P^2(1 + \cos \alpha)}$ $\Rightarrow R = \sqrt{2P^2 \times 2\cos^2\frac{\alpha}{2}} \Rightarrow R = \sqrt{4P^2\cos^2\frac{\alpha}{2}}$ $\therefore R = 2P \cos \frac{\alpha}{2} \text{ (Ans.)}$
- 🛂 একটি বিন্দুতে α কোণে ক্রিয়ারত P ও Q (P > Q) মানের বলম্বয়ের বৃহত্তম ও ক্ষুদ্রতম লব্ধির মান যথাক্রমে L ও M।
 - (গ) দেখাও যে, বলম্বয়ের লব্ধির মান্ $L \cos^2 \frac{\alpha}{2} + M \sin^2 \frac{\alpha}{2}$
- (গ) Solⁿ: প্রশ্নমতে, L = P + Q; M = P Q; বলদ্বয়ের লব্ধির মান = $\sqrt{P^2 + Q^2 + 2PQ \cos \alpha}$ $= \sqrt{P^2 \left(\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2}\right) + Q^2 \left(\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2}\right) + 2PQ \left(\cos^2\frac{\alpha}{2} - \sin^2\frac{\alpha}{2}\right)}$

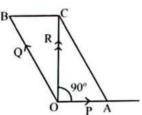
- $= \sqrt{\left(\cos^2\frac{\alpha}{2}\right)(P^2 + 2PQ + Q^2) + \left(\sin^2\frac{\alpha}{2}\right)(P^2 2PQ + Q^2)}$ $= \sqrt{\left(\cos^2\frac{\alpha}{2}\right)(P+Q)^2 + \left(\sin^2\frac{\alpha}{2}\right)(P-Q)^2}$ $= \sqrt{L^2 \cos^2 \frac{\alpha}{2} + M^2 \sin^2 \frac{\alpha}{2}}$ (দেখানো হল) [প্রশ্নে, L ও M এর জায়গায় L² ও M² হবে]
- (ক) দুটি বলের সর্বোচ্চ ও সর্বনিমু লব্ধির মান যথাক্রমে 9N ও 05. 4N হলে বলদ্বয় নির্ণয় কর। [SB'21]
- (ক) Sol": ধরি, বলদ্বয় P ও Q এবং P > Q প্রশ্নমতে, P + Q = 9N (i); $P - Q = 4N \cdots (ii)$ (i) + (ii) \Rightarrow 2P = 13N \Rightarrow P = $\frac{13}{2}$ N (i) – (ii) \Rightarrow 2Q =5N \Rightarrow Q = $\frac{5}{2}$ N .: বলদ্বয় 13 N, 5 N (Ans.)
- (ক) পরস্পর 60° কোণে ক্রিয়ারত দুইটি সমান বলের লব্ধি 12N, বলঘয় নির্ণয় কর। [BB'21]
- (ক) Sol": ধরি, সমান বলদ্বয় F প্রশ্নতে, $R = 12 \Rightarrow 2F \cos \frac{60^{\circ}}{2} = 12 \Rightarrow F \times \frac{\sqrt{3}}{2} = 6$ $\Rightarrow F = \frac{12}{\sqrt{3}}N = 4\sqrt{3}N \text{ (Ans.)}$
- 📆 (ক) P ও Q দুইটি বলের বৃহত্তম লব্ধির মান ক্ষুদ্রতম লব্ধির মানের দ্বিগুণ হলে বল দুইটির অনুপাত নির্ণয় কর। [JB'21]
- (ক) Sol": প্রশ্নমতে, P + Q = 2(P Q) \Rightarrow P + Q = 2P - 2Q \Rightarrow 3Q = P \Rightarrow $\frac{P}{0}$ = 3 : P: Q = 3: 1 (Ans.)

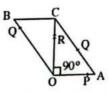


Educationblog24.com

HSC প্রস্নব্যাংক ২০২৫

(ক) 4N ও 3N মানের দুইটি বল 90° কোণে ক্রিয়ারত থাকলে তাদের লব্বির মান কত? (JB'21)


- (ক) Solⁿ: লজির মান = √4² + 3² + 2 · 3 · 4 · cos 90
 = 5N (Ans.)
- (ক) কোনো বিন্দৃতে ক্রিয়ারত P ও Q বলছয়ের লক্তি 20N যা P বলের সাথে লয়। Q এর মান 25N হলে P এর মান কত? (MB'21)
- (季) Soln:


শর্তমতে, $P = \sqrt{25^2 - 20^2}N = 15N$ (Ans.)

10. দৃশ্যকম্প-১:

[BB'19]

- (খ) দৃশ্যকম্প-১ হতে যদি $\mathbf{R} = \frac{2}{3}\,\mathbf{Q}$ হয় তবে, \mathbf{P} ও \mathbf{Q} বলের অনুপাত নির্ণয় কর।
- (역) Soln:

ΔΟΑC-এ: পিথাগোরাসের উপপাদ্য অনুসারে পাই,

$$CA^2 = OC^2 + OA^2 \Rightarrow Q^2 = R^2 + P^2$$

$$\Rightarrow Q^2 = \left(\frac{2}{3}Q\right)^2 + P^2\left[\because R = \frac{2}{3}Q\right]$$

$$\Rightarrow \frac{5}{9}Q^2 = P^2 \Rightarrow \frac{P^2}{Q^2} = \frac{5}{9} : \frac{P}{Q} = \frac{\sqrt{5}}{3}$$

∴ P: Q = $\sqrt{5}$: 3 (Ans.)

P ও Q দুইটি বল যেখানে P > Q.

[JB'19]

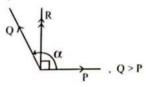
(গ) যদি উদ্দীপকে উল্লিখিত বলঘয়ের বৃহত্তম ও ক্ষুদ্রতম লবি যথাক্রমে F ও G হয় এবং উহারা পরস্পর একটি বিন্দুতে
α কোণে ক্রিয়াশীল হয় তবে বল দুইটির লবিকে F, G ও $\frac{\alpha}{2}$ এর মাধ্যমে প্রকাশ কর।

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

(91) Sol": Gu

F = P + Q; G = P - Q

 \therefore निक R रूरन $R^2 = F^2 + G^2 + 2FG\cos\alpha$


$$= F^2 + G^2 + 2FG\left(2\cos^2\frac{\alpha}{2} - 1\right)$$

$$= (F - G)^2 + 4FG\cos^2\frac{\alpha}{2}$$

 \therefore लिक, R = $\sqrt{(F-G)^2 + 4FG\cos^2\frac{\alpha}{2}}$ (Ans.)

🔯 দৃশ্যকম্প-১:

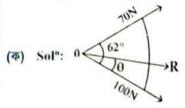
[Din.B'19

(খ) R = 15 N এবং P ও Q বলদ্বরের বৃহত্তম লব্ধি 25 হলে, বলদ্বয় নির্ণয় কর।

(খ) Sol": প্রশামতে, P + Q = 25N (i)

আবার,
$$\tan 90^\circ = \frac{Q \sin \alpha}{P + Q \cos \alpha} \Rightarrow P + Q \cos \alpha = 0$$

$$\Rightarrow$$
 Qcos $\alpha = -P$


আবার, $R^2 = P^2 + Q^2 + 2PQ\cos\alpha$

$$= P^2 + Q^2 + 2P(-P) = Q^2 - P^2 = (Q - P)(Q + P)$$

$$\Rightarrow Q - P = \frac{15^2}{25} = 9N \dots (ii)$$

(i) + (ii)
$$\Rightarrow$$
 Q = 17N \therefore P = 8N (Ans.)

ক) 100N ও 70N মানের দুইটি বলের লব্ধি কোনো বিন্দুর্
ক্রিয়া করে। এদের মধ্যবর্তী কোণের পরিমাণ 62° হলে ব
দুইটির লব্ধির মান ও দিক নির্ণয় কর। [DB, Din,B'1]

লব্ধির মান, $R = \sqrt{(100)^2 + (70)^2 + 2 \cdot 100 \cdot 70 \cos 62^2}$ = 146.54 N (প্রায়)

এবং লব্ধির দিক,
$$\theta = \tan^{-1} \left(\frac{70 \sin 62^{\circ}}{100 + 70 \cos 62^{\circ}} \right)$$

$$= an^{-1} \left(\frac{61.80}{132.86} \right) = 24.95^{\circ}$$
 (প্রায়) [100 N বলের সাথে]

HSC अभवाश्क २०२०

The second second

[RB'17]

(ক) বলের অংশক ও দরি ব্যাখ্যা কর।

- (খ) দৃশাকস্প-১ এ $\frac{1}{2}$ P বসকে কোন বাছ বরাবর স্থানান্তর করা যাবে? যদি বসম্বয়ের সন্ধি P বলের $\frac{\sqrt{5}}{2}$ গুণ হয় তবে বসম্বয়ের অন্তর্গত কোণ ও সন্ধির দিক নির্ণয় কর।
- (क) ১০০ কোনো বস্তুকণার উপর একই সময়ে একাধিক বল কার্যরত হলে এদের সমিলিত ক্রিয়াঞ্চল যদি বস্তুকণার উপর নির্দিষ্ট দিকে একটি মাত্র বলের ক্রিয়া-জলের সমান হয়, তবে ঐ একটিমাত্র বলকে উপরিউক্ত একাধিক বলের লব্ধি বলে এবং একাধিক বলের প্রত্যাকটিকে লব্ধি বলের অংশক বা উপাংশ বলে।
 হিত্রে ও বিন্দুতে ক্রিয়ারত ট ও ত্ব বল দুইটির সমিলিত ক্রিয়াফল একটি মাত্র মি বলের ক্রিয়াফলের সমান হলে, ট ও ত্ব এর লব্ধি হলো মি এবং ট ও ত্ব হলো মি এর অংশক বা উপাংশ। তেইর সংক্রেতে লব্ধি, মি = ট + ত্ব
- সংক্রেড লব্ধি, $\vec{R} = \vec{P} + \vec{Q}$ (খ) Sel*: দৃশ্যকল্প-১ এ $\frac{1}{2}\vec{P}$ বলকে AC বাহু বরাবর স্থানান্তর করা যাবে যেহেতু OACB একটি সামান্তরিক। প্রশ্নমতে, লব্ধির মান = $\frac{\sqrt{5}P}{2}$ \therefore P ও $\frac{1}{2}$ P বল দুইটি লব্ধি = $\frac{\sqrt{5}P}{2}$ $\left(\frac{\sqrt{5}P}{2}\right)^2 = P^2 + \left(\frac{1}{2}P\right)^2 + 2 \cdot P \cdot \frac{1}{2} \cdot P \cos \alpha$ $\Rightarrow \frac{5P^2}{4} = P^2 + \frac{P^2}{4} + P^2 \cos \alpha \Rightarrow P^2 \cos \alpha = 0$ $\Rightarrow \cos \alpha = 0 \ \therefore \ \alpha = 90^\circ$ (Ans.)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

্ৰ বলম্বয়ের অন্তৰ্গত কোণ α = 90°

$$tan\theta = \frac{\frac{P}{2}sin\alpha}{P + \frac{P}{2}cos\alpha}$$

$$\Rightarrow tan\theta = \frac{\frac{P}{2}sin90^{\circ}}{P}$$

$$\Rightarrow \tan\theta = \frac{\frac{P}{2}\sin 90^{\circ}}{P + \frac{P}{2}\cos 90^{\circ}} = \frac{\frac{P}{2}}{P + 0} = \frac{P}{2} \times \frac{1}{P}$$
$$\Rightarrow \tan\theta = \frac{1}{2} : \theta = \tan^{-1}\left(\frac{1}{2}\right) = 26.56^{\circ}$$

দৃশ্যকম্প-১: একই বিন্দুতে কার্যরত দৃটি বল P ও Q এর শর্কি R। Q কে দ্বিগুণ করলে R দ্বিগুণ হয় আবার Q কে বিপরীতমুখী করলেও R দ্বিগুণ হয়। [চুয়াডাঙ্গা সরকারি কলেজ]

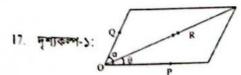
(খ) দৃশ্যকম্প-১: হতে প্রমাণ কর যে, $P:Q:R=\sqrt{2}:\sqrt{3}:\sqrt{2}$

(খ) Sol®: ধরি, P এবং Q এর মধ্যবতী কোণ α এবং Q কে বিপরীতমুখী করলে মধ্যবতী কোণের মান হবে (π – α)
 P এবং Q এর লব্ধি হলো R.
 প্রথমক্ষেত্রে, R² = P² + Q² + 2PQ cos α(i)

ঘর্ষাক্তের,
$$(2R)^2 = P^2 + (2Q)^2 + 2P \cdot 2Q \cdot \cos \alpha$$

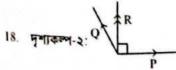
$$\Rightarrow 4R^2 = P^2 + Q^2 - 2PQ \cos \alpha \dots \dots \dots (iii)$$

$$\Rightarrow P^2 + 2Q^2 - 4R^2 = 0 \dots (v)$$


বজ্রগুণন পদ্ধতিতে (iv) এবং (v) থেকে পাই,

$$\frac{P^2}{-8+10} = \frac{Q^2}{-5+8} = \frac{R^2}{4-2}$$

$$\therefore P:Q:R=\sqrt{2}:\sqrt{3}:\sqrt{2}$$
 (প্রমাণিত)


নিজে করো

16. (ক) 5N এবং 12N দৃটি বল একটি বিন্দৃতে 45° কোণে ক্রিয়ারত থাকলে, বল দৃটির লব্ধি নির্ণয় কর। [JB'22] [Ans: 15.93N]

[MB'22]

(ক) P = Q, $R = 3\sqrt{3}$ N এবং $\alpha = 60^{\circ}$ হলে সমান বলদ্বয় নির্ণয় কর। [Ans: P = 3N]

[Din.B'21]

(গ) দৃশাকল্প-২ এ Q = 13N এবং P ও Q এর লব্ধি R = 12N হলে, P এর মান নির্ণয় কর। [Ans: 5N]

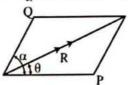
- 19. (ক) 8N ও 6N মানের দুটি বল পরস্পর 120° কোণে ক্রিয়া করলে তাদের লব্ধি নির্ণয় কর। [DB'19] [Ans: 2√13N]
- ক) কোনো বিন্দুতে পরস্পর 120° কোণে ক্রিয়ারত একই
 মানের দুইটি বলের লব্ধি 4N হলে, বলদ্বয় নির্ণয় কর।

[RB'19] [Ans: 4N]

ক) S মানের দুইটি সমান বল পরস্পর 120° কোণে ক্রিয়ারত
 হলে, এদের লব্ধির মান নির্ণয় কর। [RB'21; SB'19]

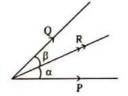
[Ans: R = S]

- 22. (ক) 60° কোণে ক্রিয়ারত দুইটি সমান বলের লব্ধি কত?
 [DB, SB, JB, Din.B'18] [Ans: √3 F, 30°]
- 23. (ক) 8N ও 5N মানের দুইটি বল 60° কোণে ক্রিয়ারত বলছয়ের লব্ধির মান কত? |Ctg.B'17| [Ans: √129N]

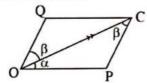

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

Type-02: দুইটি বলের অন্তর্ভুক্ত কোণ নির্ণয় ও sine সূত্রের প্রয়োগ সংক্রান্ত

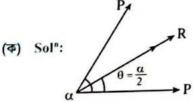

Concept

সামান্তরিকের সূত্র এবং বলের sine সূত্র প্রয়োজন অনুসারে ব্যবহার করতে হবে।



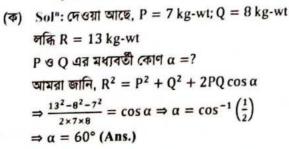
সামান্তরিক সূত্র হতে পাই, $\cos\alpha=\frac{R^2-(P^2+Q^2)}{2PQ}$ এবং $\tan\theta=\frac{Q\sin\alpha}{P+Q\cos\alpha}$

$$ho$$
 বলের sine সূত্রানুসারে, $\frac{P}{\sin \beta} = \frac{Q}{\sin \alpha} = \frac{R}{\sin (\alpha + \beta)} \begin{bmatrix} \beta = Q \circ R \text{ এর মধ্যবর্তী কোণ} \\ \alpha = P \circ R \text{ এর মধ্যবর্তী কোণ} \\ \alpha + \beta = P \circ Q \text{ এর মধ্যবর্তী কোণ} \end{bmatrix}$


Note: লব্ধি বৃহত্তর বলের দিকে বেশি হেলে থাকে।

সূজনশীল প্রশ্ন (ক, খ ও গ)

(ক) কোনো বিন্দুতে α কোণে ক্রিয়ারত P মানের দুইটি সমান বলের লব্ধি θ কোণ সৃষ্টি করলে, দেখাও যে, $\theta=\frac{\alpha}{2}$


[DB'23; Din.B'22; Din.B'19]

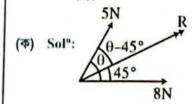
আমরা জানি,
$$\tan \theta = \frac{P \sin \alpha}{P + P \cos \alpha} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{2 \cos^2 \frac{\alpha}{2}}$$

$$= \tan \frac{\alpha}{2} : \theta = \frac{\alpha}{2} \text{ (Showed)}$$

(ক) 7 ও ৪ কিলোগ্রাম ওজনের দুইটি বলের লব্ধি 13 কিলোগ্রাম হলে বলম্বয়ের মধ্যবর্তী কোণ নির্ণয় কর। |RB'23|

(ক) দুটি সমান বলের লব্ধির বর্গ বল দুটির গুণফলের তিন গুণের সমান হলে, বল দুটির অন্তর্ভুক্ত কোণ নির্ণয় কর। [SB'23]

 (ক) Sol": ধরি, সমান বলদ্বয় P, এদের লব্ধি R এবং সমান বলদ্বয়ের অন্তর্ভুক্ত কোণ θ


$$\therefore$$
 लिक्कि, $R = \sqrt{P^2 + P^2 + 2 \cdot P \cdot P \cdot \cos \theta}$
= $\sqrt{2P^2 + 2P^2 \cos \theta} \dots \dots \dots (i)$

এবং
$$R^2 = 3 \times P \times P = 3P^2 \dots \dots (ii)$$

(i) ও (ii) হতে পাই,
$$(\sqrt{2P^2 + 2P^2 \cos \theta})^2 = 3P^2$$

 $\Rightarrow 2P^2 + 2P^2 \cos \theta = 3P^2 \Rightarrow 2P^2 \cos \theta = P^2$

$$\Rightarrow \cos \theta = \frac{1}{2} = \cos \frac{\pi}{3} : \theta = \frac{\pi}{3}$$

(ক) 8N ও 5N মানের দুটি বলের লব্ধি বৃহত্তর বলের সাথে 45°
কোণ উৎপন্ন করলে বল দুটির মধ্যবর্তী কোণের মান নির্ণয়
কর।
(JB'23)

ধবি, বলদ্বয়ের মধ্যবতী কোণ θ এবং লব্ধি R.

$$\therefore \frac{5}{\sin 45^{\circ}} = \frac{8}{\sin(\theta - 45^{\circ})} \Rightarrow \sin(\theta - 45^{\circ}) = \frac{8 \sin 45^{\circ}}{5}$$

$$\Rightarrow \sin(\theta - 45^\circ) = \frac{4\sqrt{2}}{5} > 1 \ [\because -1 \le \sin x \le 1]$$

তাই, এমন θ এর এমন মান নেই যা প্রদত্ত শর্তকে পূরণ করে।

📆 দৃশ্যকম্প-১: একটি বিন্দুতে P = Q মানের দুইটি বল 20 কোণে ক্রিয়ারত হলে লব্ধি 2R এবং 2φ কোণে ক্রিয়ারত হলে লব্ধি R. (খ) দৃশ্যকল্প-১ হতে প্রমাণ কর যে, θ = cos⁻¹ (2 cos φ).

[CB'23; DB'21]

(খ) Solⁿ: প্রশ্নতে,
$$R^2 = P^2 + Q^2 + 2P \cdot Q \cos(2\varphi)$$

 $\Rightarrow R^2 = P^2 + P^2 + 2P^2 \cos(2\varphi) \ [\because P = Q]$

$$\Rightarrow R^2 = 2P^2\{1 + \cos(2\varphi)\}$$

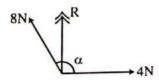
$$R^2 = 4P^2 \cos^2(\phi) \dots \dots (i)$$

আবার,
$$(2R)^2 = P^2 + Q^2 + 2PQ \cos 2\theta$$

$$\Rightarrow 4R^2 = P^2 + P^2 + 2P^2 \cos 2\theta$$

$$\Rightarrow 4(4P^2\cos^2\varphi) = 2P^2(1+\cos 2\theta)$$

$$\Rightarrow 4(4P^2\cos^2\phi) = 4P^2\cos^2\theta$$


$$\Rightarrow 16\cos^2 \varphi = 4\cos^2 \theta$$

কোণ নির্ণয় কর।

$$\Rightarrow 4\cos^2 \varphi = \cos^2 \theta \Rightarrow \cos \theta = 2\cos \varphi$$

$$\theta = \cos^{-1}(2\cos\varphi)$$
 (প্রমাণিত)

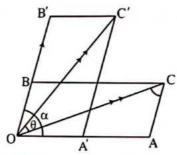
- 06. দৃশ্যকম্প-১: F_1 ও F_2 বলদ্বয়ের অন্তর্গত কোণ lpha; বলদ্বয় পরস্পর অবস্থান বিনিময় করলে তাদের লব্ধি θ কোণে সরে যায়। [Ctg.B'22] (ক) কোনো বিন্দুতে ক্রিয়ারত 4N ও 8N মানের দুইটি বলের লব্ধি 4N বলের ক্রিয়ারেখার উপর লম্ব হলে, তাদের অন্তর্গত
 - (খ) দৃশ্যকম্প-১ হতে প্রমাণ কর যে, $\tan \frac{\theta}{2} = \frac{F_1 F_2}{F_1 + F_2} \tan \frac{\alpha}{2}$.
- (本) Soln:

মনে করি, অন্তর্গত কোণ α

প্রামতে,
$$4 + 8 \cos \alpha = 0 \Rightarrow 8 \cos \alpha = -4$$

$$\Rightarrow \cos \alpha = -\frac{4}{8} \Rightarrow \cos \alpha = -\frac{1}{2}$$

$$\alpha = 120^{\circ}$$
 (Ans.)


(খ) Sol": মনে করি, F₁ ও F₂ বল দুটি যথাক্রমে OA ও OB দ্বারা সূচিত হলো ও এদের লব্ধি OACB সামান্তরিকের কর্ণ OC দ্বারা সূচিত হবে। ধরি, বল দুটির অবস্থান বিনিময় করলে OB' ও OA' যথাক্রমে F_1 ও F_2 নির্দেশ করে এবং এদের লব্ধি OA'C'B'সামান্তরিকের কর্ণ OC' দ্বারা সূচিত হবে।

শর্তানুসারে, $\angle COC' = \theta$ ও $\angle AOB = \alpha$

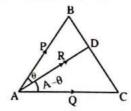
উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

Educationblog24.com

$$\triangle AOC \cong \triangle C'OB'$$
, $\therefore \angle AOC = \angle B'OC' = x$ (ধরি)

$$\therefore 2x + \theta = \alpha \Rightarrow x = \frac{\alpha - \theta}{2} \therefore \angle AOC = \frac{1}{2}(\alpha - \theta)$$

$$\therefore \angle BOC = x + \theta = \frac{1}{2}(\alpha - \theta) + \theta = \frac{1}{2}(\alpha + \theta) = \angle ACO$$


এখন,
$$\triangle OAC$$
 এ, $\frac{OA}{\sin ACO} = \frac{AC}{\sin AOC} \Rightarrow \frac{F_1}{\sin \frac{\alpha + \theta}{2}} = \frac{F_2}{\sin \frac{\alpha - \theta}{2}}$

$$\Rightarrow \frac{F_1}{F_2} = \frac{\sin\frac{1}{2}(\alpha + \theta)}{\sin\frac{1}{2}(\alpha - \theta)} \Rightarrow \frac{F_1 - F_2}{F_1 + F_2} = \frac{\sin\frac{1}{2}(\alpha + \theta) - \sin\frac{1}{2}(\alpha - \theta)}{\sin\frac{1}{2}(\alpha + \theta) + \sin\frac{1}{2}(\alpha + \theta)}$$

$$\Rightarrow \frac{F_1 - F_2}{F_1 + F_2} = \frac{2\cos\frac{1}{2}\alpha\sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\alpha\cos\frac{1}{2}\theta} \Rightarrow \frac{F_1 - F_2}{F_1 + F_2} = \cot\frac{1}{2}\alpha \cdot \tan\frac{1}{2}\theta$$

$$\tan \frac{\theta}{2} = \frac{F_1 - F_2}{F_1 + F_2} \tan \frac{\alpha}{2}$$
 (Proved)

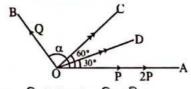
- 🕠 উদ্দীপক-১: দুইটি বল ABC ত্রিভুজের AB ও AC বাহু বরাবর ক্রিয়া করে এবং এদের মান যথাক্রমে cosB ও cosC এর সমানুপাতিক। [BB'22' Ctg.B'19; SB'17]
 - (च) উদ্দীপক-১ ব্যবহার করে দেখাও যে, বলদ্বয়ের লব্ধি A কোণকে $\frac{1}{2}(A + B - C)$ ও $\frac{1}{2}(C + A - B)$ এই দুই অংশে
- Solⁿ: মনে করি, A বিন্দুতে AB বরাবর P = k cos B মানের ও AC বরাবর Q = k cos C মানের 2টি বল ক্রিয়ারত আছে। ধরি, বল 2টি লব্ধির মান, R যা AD রেখা বরাবর ক্রিয়াশীল। $\therefore \angle BAD = \theta \ \Im \angle CAD = A - \theta$

এখন,
$$\tan \theta = \frac{Q \sin A}{P + Q \sin A} = \frac{k \cos C \sin A}{k \cos B + k \cos C \cos A}$$

$$= \frac{\cos C \sin A}{\cos \{\pi - (C + A)\} + \cos C \cos A} = \frac{\cos C \sin A}{-\cos (C + A) + \cos A \cos C}$$

$$= \frac{\cos C \sin A}{-\{\cos A \cos C - \sin A \sin C\} + \cos A \cos C}$$

$$= \frac{\cos C \sin A}{\sin A \sin C - \cos A \cos C + \cos A \cos C} = \frac{\cos C \sin A}{\sin C \sin A} = \cot C$$


$$\Rightarrow \tan \theta = \cot C = \tan \left(\frac{\pi}{2} - C\right)$$

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-_{০৮}

আবার, $A - \theta = A - \frac{1}{2}(A + B - C)$ = $\frac{1}{2}(2A - A - B + C) = \frac{1}{2}(C + A - B)$ সূতরাং, বলদ্বয়ের লব্ধি A কোণকে $\frac{1}{2}(A + B - C)$ ও $\frac{1}{2}(C + A - B)$ এই দুই অংশে বিভক্ত করে। (Showed)

- 08 উদ্দীপক-১: কোনো কণার উপর একই সময়ে ক্রিয়াশীল P এবং Q(P>Q) দুটি বলের লব্ধি P বলের সাথে 60° কোণ উৎপদ্ম করে। P বলকে দিগুণ করলে উক্ত কোণটি পূর্বের কোণের অর্ধেক হয়।
- (খ) P এবং Q বলের মধ্যবর্তী কোণের পরিমাণ নির্ণয় কর।
 (খ) Solⁿ: মনে করি, P ও Q (P > Q) বলদ্বয় O বিন্দুতে যথাক্রমে
 OA ও OB বরাবর ক্রিয়াশীল।

১ম ক্ষেত্রে, লব্ধি OC বরাবর ক্রিয়াশীল। ২য় ক্ষেত্রে, লব্ধি OD বরাবর ক্রিয়াশীল।

অর্থাৎ,
$$\tan 60^\circ = \frac{Q \sin \alpha}{P + Q \cos \alpha} \dots \dots (i)$$

$$\tan 30^{\circ} = \frac{Q \sin \alpha}{2P + Q \cos \alpha} \dots \dots \dots (ii)$$

(i) ÷ (ii)
$$\Rightarrow \tan 60^{\circ} \div \tan 30^{\circ} = \frac{Q \sin \alpha}{P + Q \cos \alpha} \times \frac{2P + Q \cos \alpha}{Q \sin \alpha}$$

$$\Rightarrow \sqrt{3} \div \frac{1}{\sqrt{3}} = \frac{2P + Q\cos\alpha}{P + Q\cos\alpha} \Rightarrow \sqrt{3} \times \sqrt{3} = \frac{2P + Q\cos\alpha}{P + Q\sin\alpha}$$

$$\Rightarrow$$
 3P + 3Q cos α = 2P + Q cos α

$$\Rightarrow P = -2Q \cos \alpha (iii)$$

(i)
$$\Rightarrow \tan 60^{\circ} = \frac{Q \sin \alpha}{-2Q \cos \alpha + Q \cos \alpha} = \frac{Q \sin \alpha}{-Q \cos \alpha}$$

$$\Rightarrow \sqrt{3} = -\tan \alpha \Rightarrow \tan \alpha = -\sqrt{3} \Rightarrow \tan \alpha = -\tan 60^{\circ}$$

$$\Rightarrow \tan \alpha = \tan(180^{\circ} - 60^{\circ}) \Rightarrow \tan \alpha = \tan 120^{\circ}$$

- $\alpha = 120^{\circ}$
- ∴ P ও Q বলের মধ্যবর্তী কোণ 120° (Ans.)
- (क) α কোণে ক্রিয়ারত 3 ও 2 একক মানের বলধয়ের লি R এবং একই কোণে ক্রিয়ারত 6 ও 2 একক মানের বলধয়ের লির্ক্কি 2R. α এর মান নির্ণয় কর। [CB'22]
- (ক) Solⁿ: ১ম কেরে, R² = 3² + 2² + 2 · 3 · 2 · cos α

$$\Rightarrow R^2 = 9 + 4 + 12 \cos \alpha$$

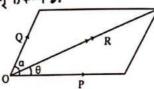
$$\Rightarrow R^2 = 13 + 12 \cos \alpha \dots \dots \dots (1)$$

३श टकट्टा,
$$(2R)^2 = 6^2 + 2^2 + 2 \cdot 6 \cdot 2 \cos \alpha$$

$$\Rightarrow 4R^2 = 36 + 4 + 24\cos\alpha$$

$$\Rightarrow 4(13 + 12\cos\alpha) = 36 + 4 + 24\cos\alpha$$

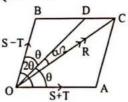
$$\Rightarrow 52 + 48\cos\alpha = 40 + 24\cos\alpha$$


$$\Rightarrow$$
 48 cos α - 24 cos α = 40 - 52 \Rightarrow 24 cos α = -12

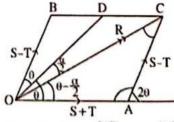
$$\Rightarrow \cos \alpha = -\frac{12}{24} = -\frac{1}{2} = \cos 120^{\circ}$$

∴ α = 120° সূতরাং, α এর মান 120° (Ans.)

[MB'22; JB']



- (খ) দৃশ্যকল্প-১ এ $\alpha = 3\theta$ হলে প্রমাণ কর যে, $R = \frac{P^2 Q^2}{Q}; (P > Q).$
- (খ) Soln: দেওয়া আছে, $\alpha=3\theta$; বলের sine সূত্র হতে পাই, $\frac{P}{\sin(\alpha-\theta)} = \frac{Q}{\sin\theta} = \frac{R}{\sin\alpha} \Rightarrow \frac{P}{\sin(3\theta-\theta)} = \frac{Q}{\sin\theta} = \frac{R}{\sin3\theta}$ $\Rightarrow \frac{P}{\sin2\theta} = \frac{Q}{\sin\theta} = \frac{R}{\sin3\theta} \Rightarrow \frac{P}{2\sin\theta\cos\theta} = \frac{Q}{\sin\theta} = \frac{R}{3\sin\theta-4\sin^2\theta}$ এখন, $\frac{Q}{\sin\theta} = \frac{R}{3\sin\theta-4\sin^2\theta} \dots \dots \dots (i)$ আবার, $\frac{P}{2\sin\theta\cos\theta} = \frac{Q}{\sin\theta} \Rightarrow \frac{P}{2\cos\theta} = \frac{Q}{1}$


$$\therefore \cos \theta = \frac{P}{2Q} \dots \dots (ii)$$

- (i) থেকে পাই, $\frac{Q}{\sin \theta} = \frac{R}{3 \sin \theta 4 \sin^3 \theta}$ $\Rightarrow Q = \frac{R}{3 4 \sin^2 \theta} \Rightarrow Q = \frac{R}{3 4 (1 \cos^2 \theta)}$ $\Rightarrow Q = \frac{R}{3 4 + 4 \cos^2 \theta} \Rightarrow Q = \frac{R}{4 \cos^2 \theta 1}$ $\Rightarrow Q = \frac{R}{4 \times \frac{P^2}{102} 1} [(ii)$ নং হতে মান বসিয়ে]
- $\Rightarrow Q = \frac{\frac{4Q^2}{R}}{\frac{P^2}{Q^2 1}} \Rightarrow R = Q \times \left(\frac{P^2}{Q^2} 1\right) \Rightarrow R = Q\left(\frac{P^2 Q^2}{Q^2}\right)$
- $\therefore R = \frac{P^2 Q^2}{Q}; (P > Q) \text{ (Proved.)}$
- া দৃশ্যকম্প-১:

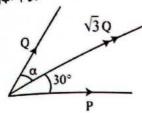
[DB'2

- (খ) দৃশ্যকম্প-১ এর আলোকে প্রমাণ কর যে, $T \tan\theta = S \tan\frac{\alpha}{2}.$
- (역) Soln:

 Δ OAC এ \sin সূত্রানুসারে, $\frac{S+T}{\sin(\theta+\frac{\alpha}{2})} = \frac{S-T}{\sin(\theta-\frac{\alpha}{2})}$

$$\Rightarrow \frac{S+T}{S-T} = \frac{\sin\left(\theta + \frac{\alpha}{2}\right)}{\sin\left(\theta - \frac{\alpha}{2}\right)} \Rightarrow \frac{S+T+S-T}{S+T-S+T} = \frac{\sin\left(\theta + \frac{\alpha}{2}\right) + \sin\left(\theta - \frac{\alpha}{2}\right)}{\sin\left(\theta + \frac{\alpha}{2}\right) - \sin\left(\theta - \frac{\alpha}{2}\right)}$$

$$\Rightarrow \frac{s}{T} = \frac{2\sin\theta\cos\frac{\alpha}{2}}{2\cos\theta\sin\frac{\alpha}{2}} \Rightarrow \frac{s}{T} = \tan\theta\cot\frac{\alpha}{2} \Rightarrow \frac{s}{\cot\frac{\alpha}{2}} = T\tan\theta$$


 $\therefore \operatorname{Ttan}\theta = \operatorname{Stan}\frac{\alpha}{2} \left(\operatorname{Proved} \right)$

Educationblog24.com

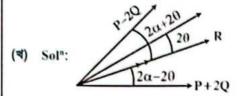
উচ্চতর গণিত ২য় পত্ত : অধ্যায়-০৮

न्याकल्ल-ऽ:

(খ) দৃশ্যকম্প-১ হতে প্রমাণ কর যে, P = Q ও P = 20.

(ব) দৃশ্যক্তা-১ হতে প্রধাণ কর বে,
$$P = Q \otimes P =$$
(ব) Soln: চিত্রান্যায়ী, $Q = \frac{\sqrt{3}Q \sin 30^{\circ}}{\sin(30^{\circ} + \alpha)} \cdots \cdots$ (i)
$$\sin(30 + \alpha) = \frac{\sqrt{3}}{2}$$
১ম ক্ষেত্রে, $\sin(30^{\circ} + \alpha) = \sin 60^{\circ} \therefore \alpha = 30^{\circ}$
২য় ক্ষেত্রে, $\sin(30^{\circ} + \alpha) = \sin 120^{\circ} \therefore \alpha = 90^{\circ}$

$$P = \frac{\sqrt{3}Q \sin \alpha}{\sin(30^{\circ} + \alpha)} \cdots \cdots (ii)$$


(ii)
$$\div$$
 (i) $\Rightarrow \frac{P}{Q} = \frac{\sin \alpha}{\sin 30^{\circ}} \Rightarrow P = 2Q \sin \alpha$

$$\alpha = 30^{\circ}$$
 হলে, $P = 2Q \times \sin 30^{\circ} \Rightarrow P = Q$

$$\alpha = 90^{\circ}$$
 হলে, $P = 2Q \cdot \sin 90^{\circ} \Rightarrow P = 2Q$

া কোনো বিন্দৃতে 4α কোণে কার্যরত $R_1 = P + 2Q$ এবং $R_2 = P - 2Q$ দ্বাটি বস্তু । কেরি ক্রম করেন্স চাকা

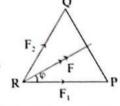
 $R_2 = P - 2Q$ দৃটি বল। [হলি ক্রস কলেজ, ঢাকা]
(খ) R_1 এবং R_2 বল দৃইটির লব্ধি এদের অন্তর্গত কোণের সমন্বিখন্তকের সাথে 2θ কোণ উৎপন্ন করে। দেখাও যে, $P \tan 2\theta = 2Q \tan 2\alpha$

বলের sine সূত্র হতে পাই,

$$\begin{split} &\frac{P+2Q}{\sin(2\alpha+2\theta)} = \frac{P-2Q}{\sin(2\alpha-2\theta)} \\ \Rightarrow &\frac{P+2Q}{P-2Q} = \frac{\sin(2\alpha+2\theta)}{\sin(2\alpha-2\theta)} \\ \Rightarrow &\frac{P+2Q+P-2Q}{P+2Q-P+2Q} = \frac{\sin(2\alpha+2\theta)+\sin(2\alpha-2\theta)}{\sin(2\alpha+2\theta)-\sin(2\alpha-2\theta)} \left[\text{(याজन-विद्याजन करत]} \right. \\ \Rightarrow &\frac{2P}{4Q} = \frac{2\sin 2\alpha\cos 2\theta}{2\cos 2\alpha\sin 2\theta} \Rightarrow \frac{P}{2Q} = \frac{\tan 2\alpha}{\tan 2\theta} \\ \therefore & P \tan 2\theta = 2Q \tan 2\alpha \text{ (Showed)} \end{split}$$

নিজে করো

[SB'21]


14. (ক) যদি কোনো বিন্দুতে ক্রিয়ারত a ও b (a > b) বলের লব্ধি তাদের অন্তর্গত কোণকে এক-তৃতীয়াংশ বিভক্ত করে, তবে বলদ্বয়ের অন্তর্গত কোণ নির্ণয় কর। [BB'23]

 $[Ans: \theta = \cos^{-1}\frac{a}{2b}]$

(क) একই বিন্দুতে ক্রিয়ারত 8N ও 5N মানের বলছয়ের লিজ 7N
হলে, বলছয়ের মধ্যবতী কোণ নির্ণয় কর। [MB'23]
[Ans: α = 120°]

16. (ক) কোনো বিন্দুতে ক্রিয়ারত P ও 2P মানের বলছয়ের লিজি
যদি P এর ক্রিয়ারেখার উপর লম্ব হয় তবে বলছয়ের
মধ্যবর্তী কোণ নির্ণয় কর। [CB'21] [Ans: θ = 120°]

17. দৃশ্যকম্প-২: $P \otimes Q(P > Q)$ বল দৃটি পরস্পর α কোণে ক্রিয়ারত। এদের অবস্থান বিনিময় করলে লব্ধি θ কোণে ঘুরে যায়। $|DB'| P = \frac{P-Q}{P+Q} \tan \frac{\alpha}{2}$.

[SB'17]

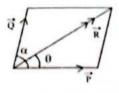
(খ) দৃশ্যকম্প-১ এ $F_1 \propto cosP, F_2 \propto cosQ$ এবং F_1, F_2 এর লব্ধি F হলে দেখাও যে, $R - \phi = \frac{1}{2} (R + Q - P)$

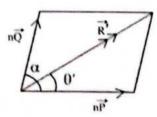
ДО

Type-03: লব্ধির দিক অপরিবর্তিত থাকা

Concept

 \vec{P} এবং \vec{Q} এর লব্ধি \vec{R} । \vec{P} এবং \vec{Q} এর মধ্যবর্তী কোণ α , \vec{P} এবং \vec{R} এর মধ্যবর্তী কোণ θ হলে, $an \theta = \frac{Q \sin \alpha}{P + Q \cos \alpha}$

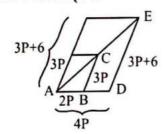

এখন, \vec{P} এর পরিবর্তে $n\vec{P}$ ও \vec{Q} এর পরিবর্তে $n\vec{Q}$ ক্রিয়া করলে যদি লব্ধি


R' इया

এবং R' ও nP এর মধ্যবর্তী কোণ 0' হলে,

$$\tan \theta' = \frac{nQ\sin \alpha}{nP + nQ\cos \alpha} = \frac{Q\sin \alpha}{P + Q\cos \alpha} = \tan \theta$$

 $\theta = \theta'$ [MCQ এর জন্য মনে রাখবে]


অর্থাৎ, একই বিন্দুতে ক্রিয়াশীল দুইটি বলকে সমান অনুপাতে বৃদ্ধি বা হ্রাস করা হলে লব্ধির দিক অপরিবর্তিত থাকে। অথবা, এভাবে চিন্তা করা যায়, প্রথম বলকে যতগুণ বাড়ানো হবে, ২য় বলকেও ততগুণ বাড়ালে লব্ধির দিক অপরিবর্তিত থাকে।

সদৃশকোণী ত্রিভূজের ধর্ম ব্যবহার করেও সমস্যাগুলো সমাধান করা যায়।

Shortcut for MCQ:
$$\left(\frac{2\pi}{2\pi}\frac{dP}{dP}\right)_{2\pi} = \left(\frac{2\pi}{2\pi}\frac{dP}{dP}\right)_{2\pi} \div \frac{P}{Q} = \frac{nP}{nQ}$$

সূজনশীল প্রশ্ন (ক, খ ও গ)

- া দৃশ্যকম্প-১: কোনো বিন্দুতে 2P এবং Q মানের দুইটি বল ক্রিয়ারত আছে।
 - (খ) দৃশ্যকম্প-১ এ যদি Q = 3P হয় এবং ১ম বলটিকে দিগুণ ও ২য় বলটির মান 6 একক করে বৃদ্ধি পায় তবে লব্ধির দিক অপরিবর্তিত থাকে। Q এর মান নির্ণয় কর।
- (খ) Soln: ΔABC ও ΔADE সৃদশ।

- 02 দৃশ্যকল্প-১: কোনো বিন্দুতে P এবং 3P দুইটি বল ক্রিয়াশীল [BB'17
 - (খ) দৃশ্যকম্প-১ এ, প্রথমটিকে চারগুণ ও বিতীয়টির মান 18 একক বৃদ্ধি করলে উভয়ক্ষেত্রে লব্ধির দিক অপরিবর্তি: থাকে। P এর মান নির্ণয় কর।
- Sol": মনে করি, P এবং 3P বলদ্বয় α কোণে ক্রিয়ারত এব তাদের লব্ধি P এর সাথে θ কোণ উৎপন্ন করে।

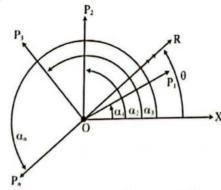
$$\therefore \tan\theta = \frac{_{3P\sin\alpha}}{_{P+3P\cos\alpha}}$$

আবার, বলদ্বয় 4P এবং 3P + 18 হলে, $tan\theta = \frac{(3P+18)sin\alpha}{4P+(3P+18)cos}$

মার্তমতে,
$$\frac{3P \sin \alpha}{P+3P \cos \alpha} = \frac{(3P+18)\sin \alpha}{4P+18\cos \alpha+3P\cos \alpha}$$

$$\Rightarrow \frac{4P+18\cos \alpha+3P\cos \alpha}{P+3P \cos \alpha} = \frac{3P+18}{3P}$$

⇒
$$\frac{4P+18\cos\alpha+3P\cos\alpha-P-3P\cos\alpha}{P+3P\cos\alpha} = \frac{3P+18-3P}{3P}$$
 [বিয়োজন করে
⇒ $\frac{3P+18\cos\alpha}{P+3P\cos\alpha} = \frac{18}{3P}$ ⇒ $\frac{3P+18\cos\alpha}{P(1+3\cos\alpha)} = \frac{18}{3P}$ ⇒ $\frac{3P+18\cos\alpha}{1+3\cos\alpha} = 6$


$$\Rightarrow 3P + 18\cos\alpha = 6 + 18\cos\alpha$$

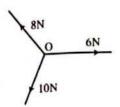
$$\Rightarrow$$
 3P = 6 \therefore P = 2 (Ans.)

Type-04: দূই বা দূই এর অধিক বলের লব্ধি নির্ণয়ের ক্ষেত্রে লম্বাংশ সূত্রের প্রয়োগ

(Concept

লম্বাংশ উপপাদ্য: কোনো সমতলে নির্দিষ্ট দিকে একই বিন্দুতে একই সময়ে ক্রিয়ারত দুই বা ততোধিক বলের লম্বাংশের বীজগাণিতিক সমষ্টি । একই দিকে বলগুলোর লব্ধির লম্বাংশের সমান।

(i)
$$R\cos\theta = P_1\cos\alpha_1 + P_2\cos\alpha_2 + P_3\cos\alpha_3 + \dots + P_n\cos\alpha_n = R_x$$

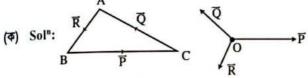

(ii)
$$R \sin \theta = P_1 \sin \alpha_1 + P_2 \sin \alpha_2 + P_3 \sin \alpha_3 + \dots + P_n \sin \alpha_n = R_y$$

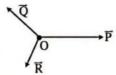
এখন,
$$\tan\theta = \frac{R_y}{R_x}$$
 এবং $R = \sqrt{R_x^2 + R_y^2}$

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

সৃজনশীল প্রশ্ন (ক, খ ও গ)

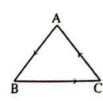
01.

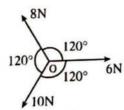



[Ctg.B'23]

চিত্ৰ-২

- (ক) তিনটি বলের মান ও দিক ABC ত্রিভূজের বাহু বরাবর একইক্রমে গৃহীত হলে ভেক্টর পদ্ধতিতে বলত্রয়ের লব্ধি নির্ণয় কর।
- (গ) ২নং চিত্রে বলগুলোর ক্রিয়ারেখা কোনো সমবাহু ক্রিছুজের বাহুতলোর সমান্তরাল বাহু বরাবর হলে তাদের লব্ধি মান নির্ণয় কর।

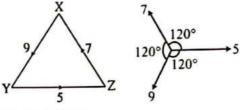



মনে করি, O বিন্দুতে ক্রিয়ারত \vec{P}, \vec{Q} এবং \vec{R} বলত্রয়কে ΔABC এর BC, CA এবং AB বাহুগুলো দ্বারা একইক্রমে মানে ও দিকে সূচিত করা যায়।

অর্থাৎ, $\overrightarrow{BC} = \overrightarrow{P}$, $\overrightarrow{CA} = \overrightarrow{Q}$ এবং $\overrightarrow{AB} = \overrightarrow{R}$ । এখন, ΔABC -এ ভেক্টর যোগের ত্রিভুজবিধি অনুসারে,

$$\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{BA} \Rightarrow \overrightarrow{BC} + \overrightarrow{CA} = -\overrightarrow{AB}$$

$$\Rightarrow \overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB} = \underline{0} : \overrightarrow{P} + \overrightarrow{Q} + \overrightarrow{R} = \underline{0} \text{ (Ans.)}$$


(গ) Sol":

যেহেতু বলগুলোর ক্রিয়ারেখা সমবাহু ত্রিভুজের বাহুগুলোর সমান্তরাল, সুতরাং প্রত্যেকটি বল পরস্পরের সাথে 120° কোণে ক্রিয়ারত। এখন, 6N বলের দিকে সবগুলো বলের উপাংশ, $F_x = 6 \times \cos 0^\circ + 8 \times \cos 120^\circ + 10 \times \cos 240^\circ$ $=6-8\times\frac{1}{2}-10\times\frac{1}{2}=6-4-5=-3N$ এবং 6N বলের লম্ব দিকে সবগুলো বলের উপাংশ, $F_y = 6 \times \sin 0^\circ + 8 \times \sin 120^\circ + 10 \times \sin 240^\circ$ $= 8 \times \frac{\sqrt{3}}{2} - 10 \times \frac{\sqrt{3}}{2} = 4\sqrt{3} - 5\sqrt{3} = -\sqrt{3} \text{ N}$ \therefore নির্ণেয় লব্ধি = $\sqrt{F_x^2 + F_y^2} = \sqrt{(-3)^2 + (-\sqrt{3})^2}$ $=\sqrt{9+3}=2\sqrt{3}$ N (Ans.)

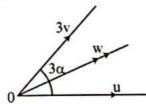
- দৃশ্যকম্প-১: XYZ সমবাহ ত্রিভুজের YZ, ZX এবং XY বাহুর সমান্তরাল যথাক্রমে 5, 7 এবং 9 একক মানের তিনটি বল ক্রিয়ারত।
 - (খ) দৃশ্যকম্প-১ হতে বলত্রয়ের লব্ধি নির্ণয় কর। [JB'23]
- (খ) Sol":

বলগুলোর x-উপাংশ,

$$F_x = 5 + 7\cos 120^\circ + 9\cos(-120^\circ) = 5 - \frac{7}{2} - \frac{9}{2} = -3$$

বলগুলোর y-উপাংশ, $F_y = 7\sin 120^\circ + 9\sin(-120^\circ)$

$$=\frac{7\sqrt{3}}{2}-\frac{9\sqrt{3}}{2}=-\sqrt{3}$$

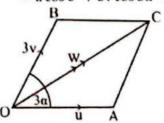

$$=\frac{7\sqrt{3}}{2}-\frac{9\sqrt{3}}{2}=-\sqrt{3}$$
 \therefore লব্ধি বলের মান = $\sqrt{(-3)^2+\left(-\sqrt{3}\right)^2}=2\sqrt{3}$ একক

∴ দিক =
$$\pi$$
 + tan⁻¹ $\left| \frac{\sqrt{3}}{3} \right|$ = π + $\frac{\pi}{6}$ = $\frac{7\pi}{6}$ (yz এর ধনাত্মক দিকের সাথে।) (Ans.)

03. দৃশ্যকল্প-১:

[Din.B'23]

ð


(খ) দৃশ্যকম্প-১ এ u এর দিক বরাবর w এর লম্বাংশ 3v হলে

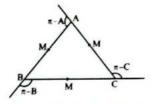
দেখাও যে,
$$\alpha = \frac{2}{3} \sin^{-1} \left(\sqrt{\frac{u}{6v}} \right)$$

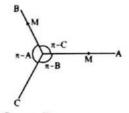
এবং
$$w = \sqrt{9v^2 - u^2 + 6uv}$$
.

(খ) Sol": OACB সামান্তরিকের, $u = \overrightarrow{OA}, w = \overrightarrow{OC}$ ও $3v = \overrightarrow{OB}$ OA বরাবর u ও 3v বলের লম্বাংশের সমষ্টি

 $= u \cos 0^{\circ} + 3v \cos 3\alpha = u + 3v \cos 3\alpha$

যেকোনো সরলরেখা বরাবর লব্ধির লম্বাংশ এবং অংশক বলগুলোর লম্বাংশের সমষ্টি পরস্পর সমান।


HSC প্রয়ব্যাংক ২০২৫


প্রশ্নমতে, $3v = u + 3v \cos 3\alpha$ $\Rightarrow 3v(1 - \cos 3\alpha) = u \Rightarrow 3v \cdot 2 \cdot \sin^2 \frac{3\alpha}{2} = u$ $\Rightarrow \sin^2 \frac{3\alpha}{2} = \frac{u}{6v} \Rightarrow \sin \frac{3\alpha}{2} = \sqrt{\frac{u}{6v}} \Rightarrow \frac{3\alpha}{2} = \sin^{-1} \sqrt{\frac{u}{6v}}$ $\therefore \alpha = \frac{2}{3} \sin^{-1} \sqrt{\frac{u}{6v}} \text{ (Showed)}$ $এখন, লব্দি w = \sqrt{u^2 + (3v)^2 + 2 \cdot u \cdot 3v \cdot \cos 3\alpha}$ $= \sqrt{9v^2 + u^2 + 6uv \cos 3\alpha}$ $= \sqrt{9v^2 + u^2 + 6uv \times \left(1 - \frac{u}{3v}\right)}$ $= \sqrt{9v^2 + u^2 + 6uv - 2u^2}$

- উদ্দীপক-২: Μ মানের তিনটি বল একটি বিন্দুতে এরপভাবে কার্যরত যেন এদের দিক ΔΑΒС এর BC, CA এবং AB বাহুর সমান্তরাল। IJB'221
 - (গ) প্রমাণ কর যে, বলত্রয়ের লব্ধির পরিমাণ $M\sqrt{3} 2\cos A 2\cos B 2\cos C$.

 $w = \sqrt{9v^2 - u^2 + 6uv}$ (Showed)

(গ) Soln: মনে করি, O বিন্দুতে ΔABC এর BC, CA, AB বাহুর সমান্তরাল বরাবর M মানের তিনটি বল ক্রিয়াশীল। পর্যায়ক্রমে বলগুলোর মধ্যবতী কোণ π — C, π — A, π — B। বল তিনটির লব্ধি F।

OA এর উপর লম্ব বরাবর লম্বাংশ নিয়ে পাই,

 $F \sin \theta = M \sin 0^{\circ} + M \sin(\pi - C) + M \sin(-(\pi - B))$

- $= M \sin C M \sin(\pi B)$
- $= M \sin C M \sin B \dots \dots (ii)$

OA বরাবর বলগুলোর লম্বাংশ নিয়ে পাই,

 $F\cos\theta = M\cos0^{\circ} + M\cos(\pi - C) + M\cos\{-(\pi - B)\}$

- = M M cos C M cos B (i)
- এখন, (i)² + (ii)² ⇒

 $F^{2}\cos^{2}\theta + F^{2}\sin^{2}\theta = (M - M\cos C - M\cos B)^{2} + (M\sin C - M\sin B)^{2}$

⇒ $F^{2}(\cos^{2}\theta + \sin^{2}\theta) = M^{2} + M^{2}\cos^{2}C + M^{2}\cos^{2}B$ $-2M^{2}\cos C - 2M^{2}\cos B + 2M^{2}\cos B\cos C + M^{2}\sin^{2}C$ $+M^{2}\sin^{2}B - 2M^{2}\sin B\sin C$

- ⇒ $F^2 = M^2 + M^2(\cos^2 C + \sin^2 C)$ + $M^2(\cos^2 B + \sin^2 B) - 2M^2 \cos C - 2M^2 \cos B$ + $2M^2(\cos B \cos C - \sin B \sin C)$
- $\Rightarrow F^2 = M^2 + M^2 + M^2 2M^2 \cos B 2M^2 \cos C$ $+2M^2 \cos(B + C)$ $[\because \cos(A + B) = \cos A \cos B \sin A \sin B]$

⇒ $F^2 = 3M^2 - 2M^2 \cos B - 2M^2 \cos C + 2M^2 \cos(\pi - A)$ ⇒ $F^2 = 3M^2 - 2M^2 \cos B - 2M^2 \cos C - 2M^2 \cos A$ ⇒ $F^2 = M^2(3 - 2\cos A - 2\cos B - 2\cos C)$ ∴ $F = M\sqrt{3 - 2\cos A} - 2\cos B - 2\cos C$ সূতরাং, বলত্রয়ের লব্ধির পরিমাণ, $M\sqrt{3 - 2\cos A} - 2\cos B - 2\cos C$ (Proved)

15N P α°

20°

5N

[Din.B'22]

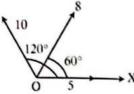
- (খ) চিত্র-১ এর বলগুলো P বিন্দুতে সাম্যাবস্থায় থাকলে F এর α এর মান নির্ণয় কর।
- (খ) Solⁿ: 5N বরাবর লম্বাংশ নিয়ে পাই,
 5 cos 0° + F cos α + 15 cos(180° + 20°) +
 25 cos 270° = 0 [∵ সাম্যবস্থায় ধরে লব্ধি, R = 0]
 ⇒ F cos α = 9.09 (i)
 আবার, 5N এর লম্ব বরাবর লম্বাংশ নিয়ে পাই,
 5 sin 0° + F sin α + 15 sin(180° + 20°)
 +25 sin(270°) = 0
 ⇒ F sin α = 30.13 (ii)
 এখন, (i)² + (ii)² ⇒ F² = (9.09)² + (30.13)²
 ∴ F = 31.47 N (প্রায়)
 আবার, (ii) ÷ (i) ⇒ tan α = 30.13 / 9.09 [১ম চতুর্ভাগে]
 ∴ α = 73.21° (প্রায়) (Ans.)
- (ক) বলের লম্বাংশ এর সংজ্ঞা দাও।

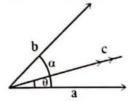
[DB, Ctg.B, CB'21; BB'17

- (ক) Sol": লব্ধি বলকে যখন পরস্পর সমকোণে অবস্থিত দুইটি অংশকে বিভক্ত করা হয়়, তখন অংশকদ্বয়ের প্রত্যেকটিকে লব্ধিং লয়াংশ বলে।
- একটি বিন্দৃতে α কোণে ক্রিয়ারত P ও Q (P > Q) মানের বলঘয়ের বৃহত্তম ও ক্ষুদ্রতম লব্ধির মান যথাক্রমে L ও M।
 (খ) P এর দিক বরাবর লব্ধির লম্বাংশের পরিমাণ Q হলে প্রমাণ

কর খে, $\alpha = \cos^{-1} \frac{Q-P}{Q}$ [RB'21]

(*f) SoI*: Q α → Γ


প্রশ্নমতে, $Q = P + Q \cos \alpha \Rightarrow \cos \alpha = \frac{Q - P}{Q}$ $\Rightarrow \alpha = \cos^{-1} \frac{Q - P}{Q}$ (প্রমাণিত)


🔯 (ক) মূল বিন্দুতে 5, ৪ ও 10 একক মানের তিনটি বল 🗴 -অক্ষের সাথে যথাক্রমে 0°, 60° ও 120° কোণে ক্রিয়া করছে। OX বরাবর বলগুলোর লম্বাংশের সমষ্টি নির্ণয় কর।

[CB'21]

(ক) Sel": OX বরাবর লম্বাংশ, $= 5 \cos 0^{\circ} + 8 \cos 60^{\circ} + 10 \cos 120^{\circ} = 5 + 4 - 5$ একক = 4 একক (Ans.)

- 📆 (ক) কোনো বিন্দুতে ক্রিয়ারত a ও b বেগছয়ের লব্ধি c এবং a এর দিক বরাবর c এর লম্বাংশের পরিমাণ b হলে দেখাও $Q = \sqrt{b^2 - a^2 + 2ab}$ [BB'23]
- (ক) Sol": a ও b বেগছয়ের লব্ধি c হলে, $c^2 = a^2 + b^2 + 2ab \cos \alpha \dots \dots \dots (i)$

অন্তর্ভুক্ত কোণ α হলে, $\cos \theta = a + b \cos \alpha = b$

$$\Rightarrow b \cos \alpha = b - a \div \cos \alpha = \frac{b - a}{b}$$
(i)
$$\Rightarrow c^2 = c^2 + b^2 + 2ab \times \frac{b - a}{b} = c^2 + b^2$$

(i)
$$\Rightarrow$$
 $c^2 = a^2 + b^2 + 2ab \times \frac{b-a}{b} = a^2 + b^2 + 2ab - 2a^2$

$$= b^2 - a^2 + 2ab$$

$$\therefore c = \sqrt{b^2 - a^2 + 2ab}$$
 (দেখানো হলো)

10.

[সরকারি সিটি কলেজ, চট্টগ্রাম]

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

- (খ) দৃশ্যকম্প-১ এর P. Q বলম্বয় এবং তাদের লব্ধির O বিন্দুতে ক্রিয়ারত হলে, P এবং Q এর সরলতম সম্পর্ক প্রতিষ্ঠা কর।
- (গ) দৃশ্যকল্প-২ এর চিত্র ABEDCF একটি সুষম ষড়ভুজ হলে, A বিন্দুত ক্রিয়ারত বলগুলির লব্ধি নির্ণয় কর।
- (খ) Soln: P বল বরাবর উপাংশ নিয়ে পাই, $P + Q \cos \alpha = \frac{Q}{2} \cos 90^{\circ} : P + Q \cos \alpha = 0 (i)$ আবার, P এর লম্ব বরাবর উপাংশ নিয়ে পাই, $Q \sin \alpha + P \sin 0^\circ = \frac{Q}{2} \sin 90^\circ$

$$\Rightarrow \sin \alpha = \frac{1}{2} : \alpha = 30^{\circ} অথবা 150^{\circ}$$

থেহেতু $\alpha > 90^{\circ}$

অতএব, P এবং Q এর মধ্যবতী কোণ হলো 150°.

α = 150° সমীকরণ (i) এ বসিয়ে পাই, $P + Q \cos 150^\circ = 0 \Rightarrow P = -Q \times \frac{-\sqrt{3}}{2} \therefore 2P = \sqrt{3}Q$

$$\therefore 2P = \sqrt{3}Q \text{ (Ans.)}$$

(গ) Soln: সুষম ষড়ভুজের প্রত্যেকটি অন্তঃস্থ কোণ $=\frac{2\times6-4}{6}\times90^{\circ}=120^{\circ}$

 $\therefore \angle BAE = \angle EAD = \angle DAC = \angle CAF = 30^{\circ}$

धित, वनश्रानात निक्ष श्राना R এवः निक्षत िमक श्राना 0।

এখন AB বরাবর বলগুলির উপাংশ নিয়ে পাই,

 $R\cos\theta = 2 + \sqrt{3}\cos 30^{\circ} + 5\cos 60^{\circ} + \sqrt{3}\cos 90^{\circ}$ +2 cos 120°

 $R\cos\theta = 5 \dots \dots (i)$

আবার, AB এর লম্ব বরাবর উপাংশ নিয়ে পাই,

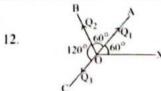
 $R \sin \theta = 0 + \sqrt{3} \sin 30^{\circ} + 5 \sin 60^{\circ} + \sqrt{3} \sin 90^{\circ} +$

 $2 \sin 120^\circ = 5\sqrt{3} \dots \dots (ii)$

$$(i)^2 + (ii)^2 \Rightarrow R^2 = 5^2 + (5\sqrt{3})^2 \therefore R = 10$$

এবং (ii) \div (i) $\Rightarrow \frac{R \sin \theta}{R \cos \theta} = \frac{5\sqrt{3}}{5} \Rightarrow \tan \theta = \sqrt{3}$ $\therefore \theta = 60^{\circ}$

∴ A বিন্দুতে ক্রিয়ারত লব্ধির মান হলে 10 যা AB এর সাথে 60° কোণে ক্রিয়ারত। (Ans.)



নিজে করো

[Ctg.B'22; MB'22]

(গ) দৃশ্যকম্প-২ এ P = 6 N, Q = 9 N ও R = 5 N হলে বলগুলোর লব্ধির মান ও দিক নির্ণয় কর।

[Ans: α = 106.102° (প্রায়)]

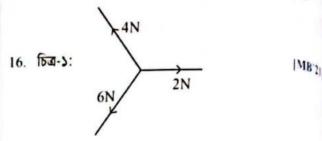
[BB'21]

(গ) দৃশ্যকল্প-২ এ বলত্রয়ের লব্ধির মান ও দিক নির্ণয় কর।

[Ans:
$$\theta = \tan^{-1} \left\{ \frac{\sqrt{3}(Q_1 + Q_2 - Q_3)}{(Q_1 - Q_2 - Q_3)} \right\}$$
]

পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা...

Educationblog24.com

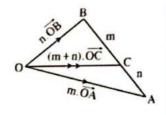

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

দৃশ্যকম্প-১: কোনো একটি বিন্দৃতে পরস্পর 120° কোণে
 3N,4N,6N বলত্রয় ক্রিয়ারত আছে। [JB'21]

(খ) দৃশ্যকম্প-১ হতে বলগুলোর লব্ধি নির্ণয় কর।

[Ans: 220.89°]

- 14. দৃশ্যকম্প-১: কোনো বিন্দুতে কার্যরত Q R, Q, Q + R মানের বলগুলোর দিক একইক্রমে কোনো সমবাহু ত্রিভুজের বাহুগুলোর সমান্তরাল। [Ctg.B, CB'21]
 - (খ) দৃশ্যকল্প-১ এর বলগুলোর লব্ধি নির্ণয় কর। [Ans: $\frac{7\pi}{6}$]
- 15. (ক) কোনো বিন্দুতে ক্রিয়ারত $u_1 \otimes u_2$ মানের দুইটি বেগের লব্ধির মান u এবং u_1 এর দিক বরাবর u এর লম্বাংশের পরিমাণ u_2 হলে দেখাও যে, $u = \sqrt{u_2^2 u_1^2 + 2u_1u_2}$ । [SB'17]


- (খ) চিত্র-১ এ বলগুলির ক্রিয়ারেখা কোনো সমবাহ ক্রিজ বাহুগুলির সমান্তরাল বরাবর হলে, তাদের লব্ধি মান নির্ কর। [Ans: 2√3]
- ক) 4N ও 2√3N মানের বলদ্বয় 30° কোণে ক্রিয়া করে।
 য়ানের বল বরাবর বলদ্বয়ের লদ্বাংশের সমষ্টি নির্ণয় কর।
 [JB'17] [Ans: 7N

Type-05: বলের সংযোজন ও বিভাজন

PConcept

(m, n) উপপাদ্য:

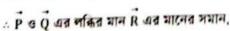
দুইটি সমবিন্দু বল m. \overrightarrow{OA} এবং n. \overrightarrow{OB} (m > 0, n > 0) এর লব্ধির মান (m + n). \overrightarrow{OC} , যেখানে C বিন্দুটি AB কে এমনভাবে অন্তর্বিভক্ত করে যেন m. AC = n. BC বা AC: BC = n: m হয় (C বিন্দু AB কে n: m অনুপাতে অন্তর্বিভক্ত করে)।

সৃজনশীল প্রশ্ন (ক, খ ও গ)

[এই টাইপ থেকে বিগত বোর্ড পরীক্ষায় কোনো সৃজনশীল প্রশ্ন আসেনি]

Type-06: তিনটি সমবিন্দু বল সাম্যাবস্থা সৃষ্টি করলে তা হতে বল্ময়ের অন্তর্গত কোণ নির্ণয়

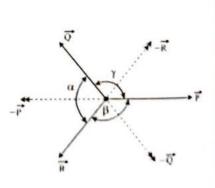
*Concept


এবানে,
$$\vec{P} + \vec{Q} + \vec{R} = 0$$

$$\vec{P} + \vec{Q} = -\vec{R}$$

$$\vec{Q} + \vec{R} = -\vec{P}$$

$$\vec{P} + \vec{R} = -\vec{Q}$$


যেহেতু বল তিনটির লব্ধি = 0 তাই যেকোনো দুইটি বলের লব্ধির মান তৃতীয় বলটির সমান এবং লব্ধির দিক তৃতীয় বলটির দিকের বিপরীত দিকে কার্যরত হবে।

$$\therefore R^2 = P^2 + Q^2 + 2 PQ \cos y \Rightarrow \cos y = \frac{R^2 - P^2 - Q^2}{2PQ}$$

অনুরূপভাবে,
$$\cos \alpha = \frac{P^2 - Q^2 - R^2}{2QR}$$
 এবং $\cos \beta = \frac{Q^2 - P^2 - R^2}{2PR}$

এভাবে এদের মধ্যবতী কোণগুলো নির্ণয় করা যাবে।

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

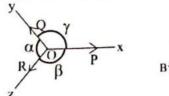
সৃজনশীল প্রশ্ন (ক, খ ও গ)

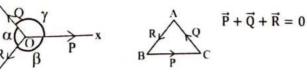
- 🎁 (ক) কোনো বিন্দুতে ক্রিয়াশীল 3P,4P ও 5P মানের বলত্রয় সাম্যাবস্থায় থাকলে প্রমাণ কর যে, প্রথম বল দুইটি পরস্পর लग्र। [Din.B'21; MB'21]
- (ক) Soln: প্রশ্নমতে, $\sqrt{(3P)^2 + (4P)^2 + 2 \cdot 3P \cdot 4P \cdot \cos\theta} = 5P$ $\Rightarrow 25P^2 + 24P^2\cos\theta = 25P^2 \Rightarrow 24P^2\cos\theta = 0$ ∴ θ = 90° ∴ 3P ও 4P পরস্পর লম্ব (প্রমাণিত)
- 🧓 (ক) কোন বিন্দুতে 1, 2 এবং √3 একক বলত্রয় ক্রিয়া করে সাম্যাবস্থা সৃষ্টি করে। বলগুলোর মধ্যবর্তী কোণ নির্ণয় কর। [Ctg.B'19]
- (4) Solⁿ: P = 1, Q = 2, R = $\sqrt{3}$ $P^2 + R^2 = 1 + 3 = 4 = 2^2 = Q^2$ অর্থাৎ P ও R এর মধ্যবতী কোণ 90° (Ans.)
- P ও Q দুইটি বল যেখানে P > Q. [JB'19] (ক) যদি P, Q, R বলত্রয় সাম্যাবস্থায় থাকে এবং $\sqrt{2}$ P = $\sqrt{2}$ Q = R হয় তবে P, Q এবং R, P এর মধ্যবর্তী কোণ নির্ণয় কর।

(Φ) Solⁿ: $\sqrt{2}P = \sqrt{2}Q = R$ যেহেতু, বলত্রয় সাম্যাবস্থায় আছে, $R^2 = P^2 + Q^2 + 2PQ \cos(P \wedge Q)$

- 🔃 (ক) একটি বিন্দুর উপর ক্রিয়ারত বল তিনটি সাম্যাবস্থায় থাকলে এবং শেষ বল দুইটির মধ্যবর্তী কোণ 45° হলে বল তিনটির মধ্যে সম্পর্ক প্রতিষ্ঠা কর।
- (ক) Soln: মনে করি, কোন বিন্দুতে ক্রিয়ারত তিনটি বল R, P, Q; P, Q এর মধ্যবতী কোণ 45°। বল তিনটি সাম্যাবস্থায় থাকলে R হবে P ও Q বলের লব্ধির সমান এবং এর দিক হবে P ও Q বলের লব্ধির বিপরীত দিক। $\therefore R^2 = P^2 + Q^2 + 2PQ\cos 45^\circ$
 - $\Rightarrow R^2 = P^2 + Q^2 + 2PQ \cdot \frac{1}{\sqrt{2}}$
 - $∴ R^2 = P^2 + Q^2 + \sqrt{2}PQ$; ইহা নির্ণেয় সম্পর্ক। (Ans.)

নিজে করো

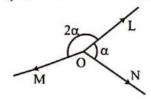

- 05. (ক) 5N, 7N ও 8N মানের বলত্রয় একটি কণার উপর ক্রিয়া করে ভারসাম্য সৃষ্টি করেছে। 8N ও 5N মানের বলদ্বয়ের ক্রিয়ারেখার মধ্যবতী কোণ নির্ণয় কর। |BB'22| [Ans: α = 120°]
- (ক) 3N, 7N ও 5N বলত্রয় একটি বস্তুর উপর ক্রিয়া করে ভারসাম্য সৃষ্টি করলে 3N ও 5N বলদ্বয়ের মধ্যবতী কোণ নির্ণয় কর। [MB'21] [Ans: 60°]


Type-07: তিনটি বল সাম্যাবস্থায় থাকার শর্ত (লামির সূত্র)

Concept

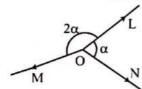
বলের ত্রিভুজ সূত্র: যদি এক বিন্দুতে ক্রিয়ারত তিনটি বলের মান ও দিক কোনো ত্রিভুজের তিনটি বাহু দ্বারা একইক্রমে মানে ও দিকে (অবস্থানে নয়) সূচিত করা যায়, তবে তারা সাম্যাবস্থায় থাকবে।

- বলের সাম্যাবস্থার লামির উপপাদ্য: যদি কোনো সমতলের উপর একই বিন্দুতে একই সময়ে তিনটি ভিন্ন ভিন্ন দিক বরাবর ক্রিয়ারত তিনটি বল সাম্যাবস্থার সৃষ্টি করে, তবে এদের প্রত্যেকটি বলের মান অপর দুইটি বলের ক্রিয়ারেখার অন্তর্গত কোণের বা প্রথমোক্ত বলটির বিপরীত কোণের সাইন (sine) এর সমানুপাতিক। $\therefore \frac{P}{\sin \alpha} = \frac{Q}{\sin \beta} = \frac{R}{\sin \gamma}$
- Note: n টি সমান বল 360° কে সমান n ভাগে ভাগ করলে তাদের লিক্কি = 0, সেক্ষেত্রে তাদের যেকোনো দুইটি বলের মধ্যবতী কোণ = $\frac{360^\circ}{2}$.



- **লম্ববিন্দু:** লম্ববিন্দু হলো শীর্ষ থেকে বিপরীত বাহুগুলোর উপর অঙ্কিত লম্বণ্ডলোর ছেদবিন্দু।
- **অন্তঃকেন্দ্র:** অন্তঃকেন্দ্র হলো কোনো ত্রিভুজের কোণের সমদ্বিখণ্ডকগুলোর ছেদবিন্দু।
- পরিকেন্দ্র: পরিকেন্দ্র হলো কোনো ত্রিভুজের বাহুগুলোর লম্ব সমদ্বিখণ্ডকগুলোর ছেদবিন্দু।

সূজনশীল প্রশ্ন (ক, খ ও গ)


011 দৃশ্যকম্প-১:

[RB'23; Ctg.B, CB'21; SB'17]

(খ) দৃশ্যকম্প-১ এর আলোকে L, M, N বল তিনটি O বিন্দুতে ভারসাম্য সৃষ্টি করেছে। প্রমাণ কর যে, $N^2 = M(M - L)$

(খ) Sol": লামির উপপাদ্য হতে পাই, $\frac{M}{\sin \alpha} = \frac{N}{\sin 2\alpha} = \frac{L}{\sin \angle MON}$

$$\Rightarrow \frac{M}{\sin \alpha} = \frac{N}{\sin 2\alpha} = \frac{L}{\sin \{360^{\circ} - (2\alpha + \alpha)\}}$$

$$\Rightarrow \frac{M}{\sin \alpha} = \frac{N}{\sin 2\alpha} = \frac{L}{-\sin 3\alpha}$$

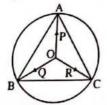
$$\Rightarrow \frac{M}{\sin \alpha} = \frac{N}{\sin 2\alpha} = \frac{L}{-\sin 3\alpha} = \frac{M-L}{\sin \alpha + \sin 3\alpha}$$

$$\Rightarrow \frac{M}{\sin \alpha} = \frac{N}{\sin 2\alpha} = \frac{L}{-\sin 3\alpha} = \frac{M - L}{4 \sin \alpha - 4 \sin^3 \alpha}$$

$$\Rightarrow \frac{M}{\sin \alpha} = \frac{N}{\sin 2\alpha} = \frac{L}{-\sin 3\alpha} = \frac{M-L}{4\sin \alpha - 4\sin^3 \alpha}$$

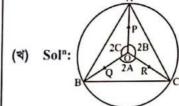
$$= \frac{M(M-L)}{4\sin^2 \alpha - 4\sin^4 \alpha} = \frac{N^2}{(\sin 2\alpha)^2}$$

৫ম অনুপাত নিয়ে পাই,


$$\frac{M(M-L)}{4\sin^2\alpha(1-\sin^2\alpha)} = \frac{M(M-L)}{4\sin^2\alpha(\cos^2\alpha)} = \frac{M(M-L)}{\sin^22\alpha}$$

$$\therefore$$
 ৫ম ও ৬ষ্ঠ অনুপাত নিয়ে পাই, $\frac{M(M-L)}{\sin^2 2\alpha} = \frac{N^2}{\sin^2 2\alpha}$

$$\therefore N^2 = M(M - L) (Proved)$$


দৃশ্যকম্প-১: 02.

[SB'23]

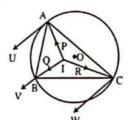
চিত্রে 🔾 ত্রিভুজটির পরিকেন্দ্র

(খ) দৃশ্যকল্প-১ এ P, Q ও R বল তিনটি সাম্যাবস্থায় থাকলে প্রমাণ কর যে, $\frac{P}{a^2(b^2+c^2-a^2)} = \frac{Q}{b^2(a^2+c^2-b^2)} = \frac{R}{c^2(a^2+b^2-c^2)}$

মনে করি, ΔABC এর পরিকেন্দ্র O। O এবং OA, OB এবং বরাবর P, Q এবং R মানের তিনটি বল ক্রিয়া করে সাম্যাক্ত আছে। ABC বৃত্তে ∠BAC, BC চাপের উপর দণ্ডায়মান বৃ কোণ এবং ∠BOC, BC চাপের উপর দণ্ডায়মান কেন্দ্রস্থ কোণ ∴ ∠BOC = 2∠BAC = 2A [একই চাপের উপর দগুয় কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিখণ]

অনুরূপভাবে প্রমাণ করা যায় ∠AOC = 2B,∠AOB = 2C এখন, লামির উপপাদ্য অনুসারে.

$$\Rightarrow \frac{P}{\sin \angle BOC} = \frac{Q}{\sin \angle AOC} = \frac{R}{\sin \angle AOB}$$

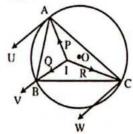

$$\Rightarrow \frac{P}{\sin 2A} = \frac{Q}{\sin 2B} = \frac{R}{\sin 2C}$$

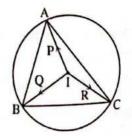
$$\Rightarrow \frac{P}{2 \sin A \cos A} = \frac{Q}{2 \sin B \cos B} = \frac{R}{2 \sin C \cos C}$$

$$\Rightarrow \frac{P}{2 \times \frac{A}{2R^{7}} \times \frac{b^{2} + c^{2} - a^{2}}{2bc \ a}} = \frac{Q}{2 \frac{b}{2R^{7}} \frac{c^{2} + a^{2} - b^{2}}{2ca \ b}} = \frac{R}{2 \frac{c}{2R^{7}} \frac{a^{2} + b^{2} - c^{2}}{2ab \ c}}$$

$$[\because \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R] [R' = \% \text{ Asgo Bas as Jinh Asjon Bas and Bas as Jinh Asjon Bas as Jinh As$$

 $\therefore \frac{P}{a^2(b^2+c^2-a^2)} = \frac{Q}{b^2(a^2+c^2-b^2)} = \frac{R}{c^2(a^2+b^2-c^2)} \text{ (Provection of the provection of the pro$




(খ) উদ্দীপকে অন্তঃকেন্দ্ৰ I গামী P, Q, R বল তিনটি সাম্যাব্ থাকলে দেখাও যে,

P: Q: R = $\sin\left(\frac{\pi}{2} - \frac{A}{2}\right)$: $\sin\left(\frac{\pi}{2} - \frac{B}{2}\right)$: $\sin\left(\frac{\pi}{2} - \frac{C}{2}\right)$

(뉙) Soln:

03.

[BB'23; SB, BB'2

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

ABC ত্রিভুজের অন্তঃকেন্দ্র I, সূতরাং IA, IB ও IC কোণ তিনটির সমদ্বিখণ্ডক।

$$\Rightarrow \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ} \Rightarrow \frac{B}{2} + \frac{C}{2} = 90^{\circ} - \frac{A}{2} \dots \dots \dots (i)$$

$$\Rightarrow \angle BIC + \frac{B}{2} + \frac{C}{2} = 180^{\circ}$$

$$\angle BIC = 180^{\circ} - \left(\frac{B}{2} + \frac{C}{2}\right) = 180^{\circ} - \left(90^{\circ} - \frac{A}{2}\right) = 90^{\circ} + \frac{A}{2}$$

এখন, P, Q, R মানের বলত্রয় ক্রিয়াশীল হয়ে সাম্যাবস্থায় থাকলে লামির সূত্র থেকে আমরা পাই,

$$\frac{P}{\sin BIC} = \frac{Q}{\sin CIA} = \frac{R}{\sin AIB}$$

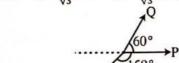
$$\Rightarrow \frac{P}{\sin(90^{\circ} + \frac{A}{2})} = \frac{Q}{\sin(90^{\circ} + \frac{B}{2})} = \frac{R}{\sin(90^{\circ} + \frac{C}{2})}$$

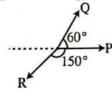
$$\Rightarrow \frac{P}{\cos \frac{A}{2}} = \frac{Q}{\cos \frac{B}{2}} = \frac{R}{\cos \frac{C}{2}} \Rightarrow \frac{P}{\sin(\frac{\pi}{2} - \frac{A}{2})} = \frac{Q}{\sin(\frac{\pi}{2} - \frac{B}{2})} = \frac{R}{\sin(\frac{\pi}{2} - \frac{C}{2})}$$

$$\Rightarrow P: Q: R = \sin(\frac{\pi}{2} - \frac{A}{2}) : \sin(\frac{\pi}{2} - \frac{B}{2}) : \sin(\frac{\pi}{2} - \frac{C}{2})$$

(দেখানো হলো)

- 📶 উদ্দীপক-১: P,Q,R বলত্রয় একটি বিন্দুতে ক্রিয়া করে সাম্যাবস্থার সৃষ্টি করে। P ও Q এর মধ্যবর্তী কোণ 60° এবং P ও R এর মধ্যবর্তী কোণ 150°।
 - (খ) প্রমাণ কর যে, $P = Q = \frac{R}{\sqrt{3}}$
- (ব) Sol": দেওয়া আছে, P A Q = 60°, R A P = 150°


$$\therefore Q \land R = 360^{\circ} - (150^{\circ} + 60^{\circ}) = 150^{\circ}$$


যেহেতু, P,Q,R বল তিনটি সাম্যাবস্থার সৃষ্টি করে, সেহেতু,

$$\frac{P}{\sin(Q \land R)} = \frac{Q}{\sin(R \land P)} = \frac{R}{\sin(P \land Q)}$$

$$\Rightarrow \frac{P}{\sin 150^{\circ}} = \frac{Q}{\sin 150^{\circ}} = \frac{R}{\sin 60^{\circ}} \Rightarrow \frac{P}{\frac{1}{2}} = \frac{Q}{\frac{1}{2}} = \frac{R}{\frac{\sqrt{3}}{2}}$$

$$\Rightarrow P = Q = \frac{R}{\sqrt{3}} \therefore P = Q = \frac{R}{\sqrt{3}} (Proved)$$

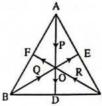
[Ctg.B'21]

- (क) সাম্যাবস্থায় লামির সূত্রটি লিখ।
- (গ) দৃশ্যকম্প-২ এ O ত্রিভুজের অন্তঃকেন্দ্র। P, Q ও R বল তিনটি সাম্যাবস্থায় থাকলে প্রমাণ কর যে,

$$\frac{p^{2}}{a(b+c-a)} = \frac{Q^{2}}{b(c+a-b)} = \frac{R^{2}}{c(a+b-c)}$$

(ক) Soln: "ভিন্ন ভিন্ন রেখা বরাবর কার্যরত তিনটি সমবিন্দু সমতলীয় বল সাম্যাবস্থায় থাকলে, তাদের প্রতিটি বলের মান অপর দুইটির অন্তর্গত কোণের সাইনের সমানুপাতিক হবে।"

Solⁿ: O অন্তঃকেন্দ্র হওয়ায়, $\angle OBD = \angle OBF = \frac{1}{2} \angle B$


$$\angle OCD = \angle OCA = \frac{1}{2} \angle C$$

$$\therefore \angle OBD + \angle OCD + \angle BOC = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} \angle B + \frac{1}{2} \angle C + \angle BOC = 180^{\circ}$$

$$\Rightarrow \angle BOC = 180^{\circ} - \frac{1}{2}(\angle B + \angle C)$$

$$= 180^{\circ} - \frac{1}{2}(180^{\circ} - \angle A) = 90^{\circ} + \frac{1}{2}\angle A$$

এখন, সাম্যাবস্থায় লামির উপপাদ্য অনুসারে,

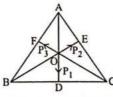
$$\frac{P}{\sin \angle EOF} = \frac{Q}{\sin \angle DOF} = \frac{R}{\sin \angle DOE}$$

$$\Rightarrow \frac{P}{\sin \angle BOC} = \frac{Q}{\sin \angle AOC} = \frac{R}{\sin \angle AOB} [$$
 [বিপ্রতীপ কোণ]
$$\Rightarrow \frac{P}{\sin (90^{\circ} + \frac{A}{2})} = \frac{Q}{\sin (90^{\circ} + \frac{B}{2})} = \frac{R}{\sin (90^{\circ} + \frac{C}{2})}$$

$$\Rightarrow \frac{P}{\cos\frac{A}{2}} = \frac{Q}{\cos\frac{B}{2}} = \frac{R}{\cos\frac{C}{2}} \Rightarrow \frac{P^2}{\cos^2\frac{A}{2}} = \frac{Q^2}{\cos^2\frac{B}{2}} = \frac{R^2}{\cos^2\frac{C}{2}}$$

$$\Rightarrow \frac{P^2}{2\cos^2\frac{A}{2}} = \frac{Q^2}{2\cos^2\frac{B}{2}} = \frac{R^2}{2\cos^2\frac{C}{2}}$$

$$\Rightarrow \frac{1 + \cos A}{P^2} = \frac{1 + \cos B}{Q^2} = \frac{R^2}{1 + \frac{b^2 + c^2 - a^2}{2b^2}} = \frac{R^2}{1 + \frac{a^2 + b^2 - c^2}{2b^2}}$$


$$\Rightarrow \frac{P^2 \times 2bc}{(b+c)^2 - a^2} = \frac{Q^2 \times 2ca}{(c+a)^2 - b^2} = \frac{R^2 \times 2ab}{(a+b)^2 - c^2}$$

$$\Rightarrow \frac{P^2 \times bc}{(b+c+a)(b+c-a)} = \frac{Q^2 \times ca}{(c+a+b)(c+a-b)} = \frac{R^2 \times ab}{(a+b+c)(a+b-c)}$$

$$\Rightarrow \frac{P^2 \times abc}{a(b+c-a)} = \frac{Q^2 \times abc}{b(c+a-b)} = \frac{R^2 \times abc}{c(a+b-c)}$$

$$\Rightarrow \frac{P^2}{a(b+c-a)} = \frac{Q^2}{b(c+a-b)} = \frac{R^2}{c(a+b-c)} (Proved)$$

[BB'21]

- (খ) দৃশ্যকম্প-১ এ O, ABC আিছজের লম্বকেন্দ্র এবং P_1, P_2, P_3 বলত্রয় সাম্যাবস্থার সৃষ্টি করলে প্রমাণ কর যে, $P_1: P_2: P_3 = BC: CA: AB.$
- (역) Soln:


06.

$$\angle DOE = 180^{\circ} - C$$

 $\angle DOF = 180^{\circ} - B$

$$\frac{BC}{\sin A} = \frac{CA}{\sin B} = \frac{AB}{\sin C} = 2R$$
[এখানে, R ত্রিভূজটির

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

লামির সূত্রানুযায়ী $\frac{P_1}{\sin \angle EOF} = \frac{P_2}{\sin \angle DOF} = \frac{P_3}{\sin \angle DOE}$

$$\Rightarrow \frac{P_1}{\sin(180^\circ - A)} = \frac{P_2}{\sin(180^\circ - B)} = \frac{P_3}{\sin(180^\circ - C)}$$

$$\Rightarrow \frac{P_1}{\sin A} = \frac{P_2}{\sin B} = \frac{P_3}{\sin C} \Rightarrow \frac{P_1}{\frac{BC}{2R}} = \frac{P_2}{\frac{CA}{2R}} = \frac{P_3}{\frac{AB}{2R}}$$

$$\Rightarrow \frac{P_1}{BC} = \frac{P_2}{CA} = \frac{P_3}{AB} \therefore P_1: P_2: P_3 = BC: CA: AB (Proved)$$

07. O হলো বৃত্তটির কেন্দ্র।

[SB'19]

(খ) X, Y, Z বলত্রয় সাম্যাবস্থায় থাকলে দেখাও যে,

 $X : Y : Z = a \cos A : b \cos B : c \cos C$

(খ) Soln: ∠BOC = 2∠A [কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিওণ]
 অনুরূপে ∠AOC = 2∠B; ∠AOB = 2∠C

এখন,
$$\frac{X}{\sin 2A} = \frac{Y}{\sin 2B} = \frac{Z}{\sin 2C}$$

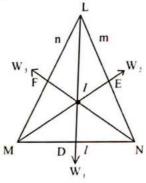
$$\Rightarrow \frac{X}{2sinAcosA} = \frac{Y}{2sinBcosB} = \frac{Z}{2sinCcosC}$$

$$\Rightarrow \frac{X}{\frac{a}{2R} \times \cos A} = \frac{Y}{\frac{b}{2R} \times \cos B} = \frac{Z}{\frac{c}{2R} \times \cos C}$$

 \therefore X: Y: Z = a cosA: b cosB: c cosC (Showed)

08 চিত্ৰ-১:

[CB'19]


প্রতিটি চিত্রে A ও B বিন্দুতে হান্ধা মসৃণ দড়ির দুই প্রান্ত বাঁধা যার ভেতর দিয়ে বিভিন্ন ওজন অবাধে গড়িয়ে চলতে পারে। (ক) ১ নং চিত্রের ক্ষেত্রে দড়ির ভেতর দিয়ে একটি ওজন কর্ত্ত ছেড়ে দিলে সেটি কোথায় কীভাবে ঝলবে চিত্র অয়নপুর দেখাও।

(ক) Soln: O বরাবর নিচের দিকে ক্রিয়া করবে,

দৃশ্যকম্প-২:

RB'I

LD, ME ও NF যথাক্রমে MN, NLও LM এর উপর লম্ব।

- (গ) দৃশ্যকল্প-২ এ উল্লিখিত বলগুলির লব্ধি শূন্য হলে প্রমা কর যে, $W_1 = W_2 = W_3$ যখন I = m = n.
- (গ) Soln: LMN ত্রিভুজের L, M, N কৌণিক বিন্দু হতে বিপরী বাহুর উপর লম্বভাবে ক্রিয়ারত তিনটি বল W₁, W₂, W₃ এর লরি শূন্য।

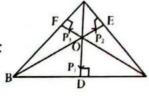
লামির সূত্র থেকে পাই,
$$\frac{W_1}{\text{sinFIE}} = \frac{W_2}{\text{sinDIF}} = \frac{W_3}{\text{sinEID}}$$

$$\Rightarrow \frac{W_1}{\sin(\pi - L)} = \frac{W_2}{\sin(\pi - M)} = \frac{W_3}{\sin(\pi - N)}$$

$$\Rightarrow \frac{W_1}{\sin L} = \frac{W_2}{\sin M} = \frac{W_3}{\sin N} \dots \dots \dots (i)$$

আবার, ΔMNL হতে ত্রিভুজের সাইন সূত্র থেকে পাই,

$$\frac{1}{\sin L} = \frac{m}{\sin M} = \frac{n}{\sin N} \dots \dots (ii)$$


(i) ও (ii) হতে পাই,
$$\frac{W_1}{I} = \frac{W_2}{m} = \frac{W_3}{n}$$

আবার, দেওয়া আছে, l = m = n

$$\therefore W_1 = W_2 = W_3 \text{ (প্রমাণিত)}$$

নিজে করো

[DB'22; JB'21]

(খ) উদ্দীপক-১ এ উল্লিখিত ত্রিভুজটির লম্বকেন্দ্র O। P₁, P₂, P₃ তিনটি বল যথাক্রমে OD, OE, OF বরাবর ক্রিয়া কর্মে সাম্যাবস্থায় আছে। প্রমাণ কর যে,

$$\frac{P_1}{a^2(b^2+c^2-a^2)} = \frac{P_2}{b^2(c^2+a^2-b^2)} = \frac{P_3}{c^2(a^2+b^2-c^2)}$$

Educationblog24.com

উক্তর গণিত ২<u>৪ মত্র</u> ভাষ্টার-৩৮

11. 7-114-4-3:

DET

(ব) দুশাকল্প-১ এর আলোকে O. ABC নিভাজের অন্তর্যুক্ত এবং বলত্তর সাম্যাবস্থার থাকলে দেখাও যে $P_1^2; P_2^2; P_3^2 = (1 + \cos A); (1 + \cos B); (1 + \cos C).$

C B 1

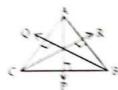
 () 1 तनवार ८११ए धर नद् । कन्न इत्य व्यक्तिय १३, ३१ थ 17 राइट डेन्ट व्यक्तार क्रिया कल সমारकार शहक व्यवप्र कवार स्थाकार १.९.१ विन्ति सन् समावसावकार किया ब्यान ग्रास्त्र गाँव विवृक्षानि महार्यव्यक्त क्रिया करा

হ' নিমীপুত্রে কেন্দ্রের সামাত্রের থকার কেন্দ্রে প্রমাণ কর A. P.Q.R = n.y.z

Type-08: তিনটি বল সাম্যাবহার থাকলে তা থেকে বিভিন্ন অজানা রাশির মান নির্ণয়

Concept

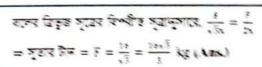
দামির সূত্র: একই বিন্দৃতে ভিন্ন ভিন্ন রেখা বরাবর ক্রিয়ারত তিনটি সমতলীয় বল যদি সাম্যাবক্রয় থাকে ভবে প্রত্যেকটি বলের মান অপর বল দুইটির অন্তর্ভুক্ত কোণের সাইন (sine) এর সমানুপাতিক



বলের ত্রিভুজ সূত্রের বিপরীত সূত্র: একটি বিস্তুতে কার্যরত তিনটি বল সামাত্রের থাকলে ভালেরকে কোনো ত্রিভূজের তিনটি বাহ হারা মানে ও লিকে (অবহানে নহ) একই ক্রমে সৃচিত করা যায় ্সেক্সেরে, যে বলটি যে বাছ বরাবর ক্রিয়ারত তা ঐ বাহর দৈর্ঘ্যের সমানুপাতিক।

$$\begin{array}{ccc}
\overrightarrow{Q} & & \overrightarrow{R} & \wedge & \overrightarrow{Q} \\
0 & \overrightarrow{P} & & \overrightarrow{R} & \wedge & \overrightarrow{Q} \\
\overrightarrow{P} & & & \overrightarrow{P} & C
\end{array}; \frac{p}{p_{C}} = \frac{Q}{GA} = \frac{A}{AA}$$

বলের লয় ত্রিভুজ সূত্র: কোন বিন্দুতে ক্রিয়ারত তিনটা বলের মান যদি ত্রিভুজের ভিনটি बाह्द प्रमानुभाठिक दश এবং देशता यनि बनुषकी यहत देशत कर रतारत किया काउ তবে বলগুলো সৃষ্টিত থাকবে।

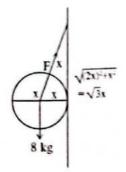


$$\frac{F}{BC} = \frac{C}{AC} = \frac{R}{AB}$$

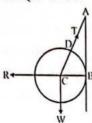
সজনশীল প্ৰশ্ন (ক. খ ও গ)

💶 টদীপক-১: x cm দৈৰ্ঘ্যবিশিষ্ট একটি সূতার একপ্ৰান্ত একটি উলম্ব দেওয়ালে আটকানো এবং অন্য প্রান্ত x cm ব্যাসার্থবিশিষ্ট একটি সুষম গোলকের সাথে যুক্ত আছে।

(ব) উদ্দীপক-১ এর গোলকের ওজন ৪ kg হলে সূতার টাদ নির্ণয় কর।



Don.B'13; RB'21


(ব) দুশাকলা-১ d CD = r বানার্যবিপিট একটি সুব্য গোলকের রত্যের AD = 1 দৈখাবিদির একটি বন্দবাবদাধীর সূত্যের সাহায়ে কোনো খাড়া দেয়ালে আটকানো। এটি দেয়ালকে ৪ বিভূতে স্পর্ণ করে। এমাথ কর যে দেয়ালের প্রতিটিয়া বল,

$$R = \frac{w_0}{\sqrt{2at+2}}$$

(₹) Soln:

Solⁿ: দেওয়া আছে, CD = r আর AD = l. সাম্যাবস্থার জন্য গোলকের ওজন (W), দেয়ালের প্রতিক্রিয়া (R) ও সূতার টান (T), C বিন্দুতে সাম্যাবস্থায় থাকবে।

সুতরাং, লামির উপপাদ্য অনুসারে,

$$\frac{T}{\sin(W \wedge R)} = \frac{W}{\sin(R \wedge T)} = \frac{R}{\sin(T \wedge W)}$$
এখানে, W \wedge R = 90°

আর T
$$\wedge$$
 R = 180° – \angle ACB, T \wedge W = 90° + \angle ACB

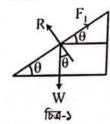
$$\Rightarrow \frac{W}{\sin(180^{\circ} - \angle ACB)} = \frac{R}{\sin(90^{\circ} + \angle ACB)}$$

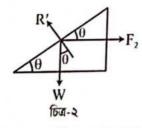
AC=CB+AD=
$$l+r$$

AB= $\sqrt{(l+r)^2-r^2} = \sqrt{2rl+l^2}$

$$\Rightarrow \frac{W}{\sin(\angle ACB)} = \frac{R}{\cos(\angle ACB)} \Rightarrow \frac{W}{\frac{AB}{AC}} = \frac{R}{\frac{CB}{AC}} \Rightarrow R = \frac{W \times CB}{AB}$$

$$\therefore R = \frac{W \times r}{\sqrt{2rl + l^2}}$$


সূতরাং, দেয়ালের প্রতিক্রিয়া বল $R = \frac{W \times r}{\sqrt{2rI + I^2}}$


$$\therefore R = \frac{Wa}{\sqrt{2al+l^2}} [r = a ধরে] (Proved)$$

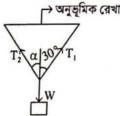
দৃশ্যকল্প-২: একটি হেলানো মসৃণ সমতলের দৈর্ঘ্য ও ভূমির 03. সমাস্তরাল বরাবর যথাক্রমে F_1 ও F_2 বলঘয় ক্রিয়ারত থেকে প্রত্যেকে এককভাবে তলের উপরস্থ W ওজনের একটি বস্তুকে [MB'23] স্থিরভাবে ধরে রাখতে পারে।

(গ) প্রমাণ কর যে,
$$W = \frac{F_1 \, F_2}{\sqrt{F_2^2 - F_1^2}}$$

(গ) Soln:

ধরি, θ কোণে তলটি হেলানো রয়েছে। W = বস্তুর ওজন।

চিত্ৰ-১ হতে,
$$\frac{W}{\sin 90^{\circ}} = \frac{F_1}{\sin(180^{\circ} - \theta)} \Rightarrow W = \frac{F_1}{\sin \theta}$$

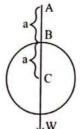

$$\Rightarrow$$
 cosec $\theta = \frac{W}{F_1} \dots \dots (i)$

চিত্ৰ-২ হতে,
$$\frac{W}{\sin(90^\circ + \theta)} = \frac{F_2}{\sin(180^\circ - \theta)}$$

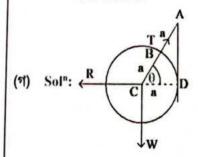
$$\Rightarrow \frac{W}{\cos \theta} = \frac{F_2}{\sin \theta} \Rightarrow \cot \theta = \frac{W}{F_2} \dots \dots \dots (ii)$$

$$\begin{aligned} &(i)^2 - (ii)^2 \Rightarrow \csc^2 \theta - \cot^2 \theta = \frac{W^2}{F_1^2} - \frac{W^2}{F_2^2} = 1 \\ &\Rightarrow W^2 \times \frac{F_2^2 - F_1^2}{F_1^2 F_1^2} = 1 \Rightarrow W^2 = \frac{F_1^2 F_2^2}{F_2^2 - F_1^2} \\ &\Rightarrow W = \frac{F_1 F_2}{\sqrt{F_2^2 - F_1^2}} \text{ (প্রমাণিত)} \end{aligned}$$

w এর ওজনের বস্তুটি দুইটি সুতার সাহায্যে বেঁধে $rac{1}{2} rac{1}{2}$ 04. [Din.B'21; MB'2] সাম্যাবস্থায় রাখা হল।



- (খ) α এর মান কত হলে T_2 টানের মান সর্বনিমু হবে?
- (গ) $\alpha = 30^{\circ}$ হলে, T_1 ও T_2 নির্ণয় কর যখন, W = 10N
- Soln: সাম্যাবস্থায় লামির সূত্রানুসারে,


 $\frac{T_2}{\sin 150^\circ} = \frac{T_1}{\sin \alpha} = \frac{W}{\sin (\alpha + 30^\circ)} \Rightarrow T_2 = \frac{W \sin 150^\circ}{\sin (\alpha + 30^\circ)}$ এখন $\sin{(\alpha + 30)}$ সর্বোচ্চ হলে T_2 সর্বনিম হবে। সেক্লেরে $\alpha + 30^{\circ} = 90^{\circ}$; $\alpha = 60^{\circ}$ (Ans.)

- (গ) Soln: α = 30° এবং W = 10N হলে, $\therefore T_1 = T_2 = \sin 30^{\circ} \cdot \frac{10}{\sin 60^{\circ}} = \frac{1}{2} \cdot \frac{10}{\sqrt{3}} \times 2 = \frac{10}{\sqrt{3}} N$ $T_1 = T_2 = \frac{10}{\sqrt{3}} N \text{ (Ans.)}$
- 05. ठिज-२:

[MB'21]

(গ) চিত্র-২ এ AB সূতার A প্রাস্ত একটি খাড়া দেয়ালে আটকানো এবং গোলকটির ওজন W হলে AB সুতা^{টির} টান নির্ণয় কর।

লামির উপপাদ্য অনুযায়ী, $\frac{T}{\sin 90^\circ} = \frac{W}{\sin(\pi - \theta)}$

$$\Rightarrow T = \frac{W}{\sin \theta}$$

$$\Rightarrow T = \frac{W}{\frac{AD}{AC}} \Rightarrow T = W \times \frac{AC}{AD}$$

$$\Rightarrow T = W \times \frac{2a}{\sqrt{4a^2 - a^2}}$$

$$\Rightarrow T = W \times \frac{2a}{\sqrt{3}a}$$

$$\Rightarrow T = \frac{2}{\sqrt{3}} W \text{ (Ans.)}$$

ঢ়ৃশ্যকম্প-১: L, M, N মানের সৃষ্টিত তিনটি বলের ক্রিয়ারেখা ABC ত্রিভুজের BC, CA, AB বাহুর সমান্তরাল। বাহু তিনটির দৈর্ঘ্য যথাক্রমে 25, 60, 65 সে.মি। L ও M মানের বল্বয়ের সমষ্টি 51 গ্রাম ওজন। [JB'17]

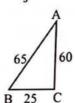
(খ) দৃশ্যকম্প-১ হতে বলগুলির মান নির্ণয় কর।

(খ) Sol": দেওয়া আছে, BC = 25 সে.মি. ; CA = 60 সে.মি. ; AB = 65 সে.মি.

:. △ABC এর ∠C = 90°

যেহেতু বলগুলো সৃষ্থিত এবং ΔABC এর বাহুগুলোর সমান্তরাল কাজেই,

Educationblog24.com


উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

$$\frac{L}{BC} = \frac{M}{CA} = \frac{N}{AB} \Rightarrow \frac{L}{25} = \frac{M}{60} = \frac{N}{65}$$

$$\Rightarrow \frac{L}{5} = \frac{M}{12} = \frac{N}{13} \Rightarrow \frac{L}{5} = \frac{M}{12}$$

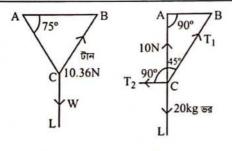
$$\Rightarrow 12L = 5M : M = \frac{12}{5}L (i)$$

আবার,
$$\frac{M}{12} = \frac{N}{13} \Rightarrow 13M = 12N$$

$$\Rightarrow \frac{13\cdot12}{5}$$
 L = 12N [(i) হতে]

$$L = \left(\frac{5 \times 12}{13 \times 12}\right) N : L = \frac{5}{13} N (ii)$$

$$\therefore \frac{L+M}{5+12} = \frac{N}{13} \Rightarrow \frac{51}{17} = \frac{N}{13} \Rightarrow N = 39$$
;


এখন N এর মান (ii) এ বসিয়ে পাই, $L = \frac{5}{13} \times 39$

L এর মান (i) এ বসিয়ে পাই, $M = \frac{12}{5} \times 15$ ∴ M = 36

∴ L = 15 গ্রাম ওজন, M = 36 গ্রাম ওজন এবং N = 39 গ্রাম ওজন। (Ans.)

নিজে করো

07.

চিত্ৰ-২

চিত্ৰ-৩

[CB'19]

প্রতিটি চিত্রে A ও B বিন্দুতে হাল্কা মসৃণ দড়ির দুই প্রান্ত বাঁধা যার ভেতর দিয়ে বিভিন্ন ওজন অবাধে গড়িয়ে চলতে পারে।

(খ) ২ নং চিত্রের ক্ষেত্রে W ওজন সাম্যাবস্থায় থাকলে W এর মান কত নিউটন নির্ণয় কর।

[Ans: 20.014N]

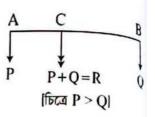
(গ) ৩ নং চিত্রে C বিন্দুতে 20 kg ভরকে সাম্যাবস্থায় ঝুলানোর জন্য T_1 এবং T_2 এর মান কত হওয়া প্রয়োজন তা নিউটন এককে নির্ণয়

[Ans: 263.044N]

08. দৃশ্যকম্প-২: 17 সে.মি. দীর্ঘ একটি সূতার প্রান্তদ্বয় একই আনুভূমিক রেখায় 13 সে.মি. দূরে অবস্থিত দুটি বিন্দুতে আবদ্ধ আছে। সুতাটির এক প্রান্ত হতে 5 সে.মি. দূরে তার সাথে 3 কেজি ওজনের একটি বস্তু সংযুক্ত করা হলো। [Din.B'19]

(গ) দৃশ্যকল্প-২ অনুযায়ী সুতাটির প্রত্যেক অংশের টান নির্ণয় কর।

[Ans: $\frac{15}{13}$ kg-wt; $\frac{36}{13}$ kg-wt]



Type-09: সদৃশ সমান্তরাল বল এর লব্ধি

Concept

সদৃশ সমাস্তরাল বলের লব্ধি: P ও Q সদৃশ সমান্তরাল বলদ্বয় কোনো বস্তুর উপর যথাক্রমে A ও B বিন্দুতে ক্রিয়ারত থাকলে এদের লব্ধির মান হবে R = P + Q যা এদের মধ্যবতী কোনো বিন্দু C (যা বৃহত্তর বলের নিকটবতী) তে কাজ করবে।

- (1) $P \cdot AC = Q \cdot BC \Longrightarrow \frac{P}{BC} = \frac{Q}{AC} = \frac{P+Q}{AB} = \frac{R}{AB}$
- (2) সূত্র হিসেবে মনে রাখতে পারো: (For MCQ)
- (i) $P \otimes Q$ দুইটি সদৃশ সমান্তরাল বল হলে, P এর ক্রিয়ারেখা সমান্তরাল রেখে তার ক্রিয়াবিন্দুকে x দূরত্বে সরালে লব্ধি $\frac{Px}{P+Q}$ দূরে সরে যাবে।
- (ii) A ও B বিন্দুতে ক্রিয়ারত P ও Q দুইটি সদৃশ সমান্তরাল বল পরস্পর অবস্থান বিনিময় করলে লব্ধি $\frac{P-Q}{P+Q}$ · AB দূরত্ব সরে যাবে।

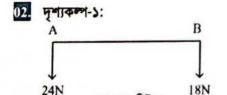
সূজনশীল প্রশ্ন (ক, খ ও গ)

দৃশ্যকল্প-২: P₁ ও P₂ দুইটি সমমুখী সমান্তরাল বল একটি দৃঢ় বস্তুর A ও B বিন্দুতে ক্রিয়া করে এবং বলদ্বয় অবস্থান বিনিময় করলে তাদের লব্ধি AB বরাবর S দূরত্বে সরে যায়।

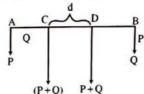
[Ctg.B, CB'22; RB'21]

- (গ) দৃশ্যকম্প-২ হতে দেখাও যে, $S = \frac{P_1 P_2}{P_1 + P_2} AB$ যেখানে $P_1 > P_2$
- (গ) Soln: মনে করি, A ও B বিন্দুতে কার্যরত দুটি সদৃশ সমান্তরাল
 বলের লব্ধি (P₁ + P₂) যা C বিন্দুতে ক্রিয়া করে।

$$\therefore P_1 \cdot AC = P_2 \cdot BC \Rightarrow \frac{P_1}{BC} = \frac{P_2}{AC} = \frac{P_1 + P_2}{AB}$$


আবার ধরি, বল দুটি স্থান বিনিময় করলে লব্ধি D বিন্দুতে ক্রিয়ারত হবে।

$$\therefore P_2 \cdot AD = P_1 \cdot BD \Rightarrow \frac{P_2}{BD} = \frac{P_1}{AD} = \frac{P_1 + P_2}{AB}$$


$$\therefore AD = \frac{P_1}{P_1 + P_2} \cdot AB \dots \dots (ii)$$

(ii) - (i)
$$\Rightarrow$$
 AD - AC = $\frac{P_1}{P_1 + P_2} \cdot AB - \frac{P_2}{P_1 + P_2} \cdot AB$

$$\Rightarrow CD = \frac{P_1 - P_2}{P_1 + P_2} \cdot AB : S = \frac{P_1 - P_2}{P_1 + P_2} AB \text{ (Showed)}$$

- (খ) দৃশ্যকল্প-১ এ নির্দেশিত সদৃশ, সমান্তরাল বলদ্বয় পরস্পর স্থান বিনিময় করলে লব্ধির ক্রিয়াবিন্দু AB বরাবর d দূরত্বে সরে যায়। প্রমাণ কর যে, $d=\frac{10}{7}$ মিটার।
- (খ) Sol":মনে করি, P = 24 N, Q = 18 N, AB = 10 m

মনে করি, P ও Q বলের লব্ধি (P + Q) বলটি C বিন্দুতে ক্রিয়ারত

অর্থাৎ
$$P \cdot AC = Q \cdot BC \Rightarrow \frac{P}{BC} = \frac{Q}{AC}$$

অর্থাৎ,
$$\frac{P}{BC} = \frac{Q}{AC} = \frac{P+Q}{AB}$$
 : $AC = \frac{Q}{P+Q} \cdot AB \dots \dots (i)$

আবার, বল দুটি স্থান বিনিময় করলে লব্ধি (P + Q) বলটি ট বিন্দুতে ক্রিয়া করে। (ধরি)

অর্থাৎ,
$$Q \cdot AD = P \cdot BD \Rightarrow \frac{Q}{BD} = \frac{P}{AD}$$

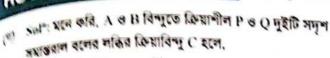
$$\Rightarrow \frac{P}{AD} = \frac{Q}{BD} = \frac{P+Q}{AD+BD} \Rightarrow \frac{AD}{P} = \frac{AB}{P+Q}$$

$$\therefore AD = \frac{P}{P+Q} \cdot AB \dots \dots (ii)$$

এখন, (ii) – (i),
$$\Rightarrow$$
 AD – AC = $\frac{P-Q}{P+Q}$ · AB

$$\therefore d = \frac{P-Q}{P+Q} \cdot AB = \frac{24-18}{24+18} \times 10 \, \therefore d = \frac{10}{7}$$
 মিটার। (প্রমাণিত)

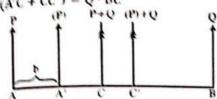
- দৃশ্যকম্প-২: P ও Q মানের দুইটি সমমুখী সমান্তরাল বল একটি কঠিন বস্তুর উপর ক্রিয়া করছে। P বলটির ক্রিয়ারেখা সমান্তরাল রেখে তার ক্রিয়াবিন্দুকে Q এর দিকে b দ্রত্বে সরানো হলে।
 - (গ) দৃশ্যকম্প-২ হতে দেখাও যে, বলম্বয়ের লব্ধি $\frac{Pb}{P+Q}$ দূরে π রে



[SB'22; BB'22; DB'19]

AB=10 মিটার

[Ctg.B'22; MB'22]

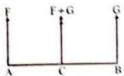

HSC श्रमवारक २०२०

 $p \cdot AC = Q \cdot BC \dots \dots \dots (i)$

জাবার, P বলাটির ফ্রেয়ারেখা সমান্তরালে রেখে ক্রিয়াবিন্দুকে Q এর দিকে b দ্রত্বে সরিয়ে A' এ আনলে যদি লব্ধির ক্রিয়াবিন্দু C' হয় তবে $P \cdot A'C' = Q \cdot BC'$

 $\Rightarrow P(A'C + CC') = Q \cdot BC'$

$$\Rightarrow P(AC - AA') + P \cdot CC' = Q \cdot BC'$$


$$\Rightarrow P \cdot AC - P \cdot AA' + P \cdot CC' = Q(BC - CC')$$

$$\Rightarrow P \cdot AC - P \cdot AA' + P \cdot CC' = Q \cdot BC - Q \cdot CC'$$

$$\Rightarrow$$
 P · AA' = P · CC' + Q · CC' [(i) ₹₹७]

$$\Rightarrow P \cdot b = (P + Q) \cdot CC' :: CC' = \frac{Pb}{P+Q}$$
 (Showed)

[CB'22]

14.

05.

(খ) উদ্দীপকে উল্লিখিত সমান্তরাল বলষয়ের ক্রিয়াবিন্দুর অবস্থান বিনিময় করলেও যদি তাদের লব্ধির ক্রিয়াবিন্দুর অবস্থান অপরিবর্জিত থাকে তবে দেখাও যে, F = G.

(v)
$$Sol^n$$
: $F + G$ G G

SN CNTG. $F \cdot AC = G \cdot BC$

$$\Rightarrow \frac{F}{BC} = \frac{G}{AC} \Rightarrow \frac{AC}{BC} = \frac{G}{F} \dots \dots (i)$$

$$\Rightarrow \frac{AC}{BC} = \frac{F}{G} \Rightarrow \frac{G}{F} = \frac{F}{G} \quad [(i) \text{ ECO}]$$

$$\Rightarrow F^2 = G^2 \therefore F = G \text{ (Showed)}$$

[DB'17]

(খ) P কে (R + 3) পরিমাণে এবং Q কে (S + 2) পরিমাণে বৃদ্ধি করশেও পর্কি C বিন্দুতে ক্রিয়া করে। আবার P, Q এর পরিবর্তে যথাক্রমে Q, (R + 3) ক্রিয়া করলেও পরি C বিন্দুতে ক্রিয়া করে। প্রমাণ কর যে, $R=S+rac{(Q-R-3)^2}{P-Q}-1$

(খ) Sol*: মনে করি, A ও B বিন্দৃতে ক্রিয়ারত যথাক্রমে সদৃশ সমান্তরাল বল P. Q এর লব্ধি C বিন্দুতে ক্রিয়া করে। সুতরাং আমরা পাই. P · AC = Q · BC (1)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

প্রদত্ত বলম্বয়কে যথাক্রমে (R + 3) ও (S + 2) পরিমাণে বৃদ্ধি করলে A ও B বিন্দুতে ক্রিয়ারত সদৃশ সমান্তরাল বলম্বয়ের মান হয় যথাক্রমে (P + R + 3) ও (Q + S + 2) এবং এদের লব্ধিও C বিন্দুগামী হয়।

সুতরাং আমরা পাই, (P + R + 3)AC = (Q + S + 2)BC (ii) আবার, A ও B বিন্দুতে ক্রিয়ারত বলম্বয়কে যথাক্রমে Q ও (R + 3) দারা প্রতিস্থাপন করলেও লব্ধির ক্রিয়াবিন্দু অপরিবর্তিত

সূতরাং আমরা পাই, Q · AC = (R + 3) · BC (iii)

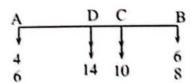
সমীকরণ (i) + (iii) হতে পাই
$$\Rightarrow \frac{P}{Q} = \frac{Q}{R+3}$$

$$\Rightarrow \frac{P}{Q} = \frac{Q}{R+3} = \frac{P-Q}{Q-R-3} \dots \dots (iv)$$

আবার, (iii) + (v)
$$\Rightarrow \frac{Q}{R+3} = \frac{R+3}{S+2}$$

$$\Rightarrow \frac{Q}{R+3} = \frac{R+3}{S+2} = \frac{Q-R-3}{R-S+1} \dots \dots (Vi)$$

(iv) ও (vi) নং সমীকরণ থেকে পাই,


$$\frac{P-Q}{Q-R-3} = \frac{Q-R-3}{R-S+1} \Rightarrow R-S+1 = \frac{(Q-R-3)^2}{P-Q}$$

$$\therefore R = S + \frac{(Q-R-3)^2}{P-Q} - 1$$
 (প্রমাণিত)।

দৃশ্যকম্প-২: P1 এবং P2 দুইটি সদৃশ সমান্তরাল বল বধাক্রমে A ও B বিন্দুতে ক্রিয়াশীল।

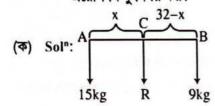
(গ) দৃশাকম্প-২ এ, P₁ = 4, P₂ = 6 হলে এবং বল দুইটির প্রত্যেক্তকে 2 একক পরিমাণে বৃদ্ধি করলে লব্ধির সরণ নির্ণয় কর।

(위) Sol*:

মনে করি, $A \in B$ বিন্দুতে ক্রিয়ারত যথাক্রমে $P_1 = 4$ একক ও P₂ = 6 একক বলম্বয়ের লব্ধি C বিন্দুতে ক্রিয়াশীল।

অভএব,
$$\frac{AC}{6} = \frac{BC}{4} = \frac{AC+BC}{6+4} = \frac{AB}{10} \Rightarrow AC = \frac{6}{10}AB$$

$$\Rightarrow$$
 AC = $\frac{3AB}{5}$ (i)

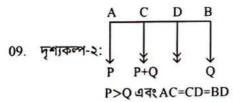

দ্বিতীয় ক্ষেত্রে, প্রত্যোকের সাথে 2 একক পরিমাপে বল বৃদ্ধির ফলে লব্ধি D বিন্দুতে ক্রিয়া করলে, $\frac{AD}{s} = \frac{BD}{6} = \frac{AD+BD}{S+6} =$

$$\Rightarrow$$
 AD = $\frac{8}{14}$ AB \Rightarrow AD = $\frac{4AB}{7}$ (ii)

(i) - (ii)
$$\Rightarrow$$
 AC - AD = $\left(\frac{3}{5} - \frac{4}{7}\right)$ AB \Rightarrow CD = $\frac{AB}{35}$

(ক) 32cm ব্যবধানে দৃটি বিন্দুতে 15kg ও 9kg ওজনের দৃটি সদৃশ সমান্তরাল বল কার্যরত আছে। উহাদের লব্ধি ও প্রয়োগ বিন্দু নির্ণয় কর।

[চুয়াডাঙ্গা সরকারি কলেজ]



দুটি সদৃশ সমান্তরাল বলদ্বয়ের লব্ধি, R = (15 + 9)kg = 24kg. (Ans.) এখন, AC × 15 = BC × 9 \Rightarrow x × 15 = (32 - x) × 9 $\Rightarrow 15x = 32 \times 9 - 9x \Rightarrow 24x = 32 \times 9$ $\Rightarrow x = \frac{32 \times 9}{24} : x = 12$ সূতরাং, প্রয়োগবিন্দু A থেকে 12cm দূরে অবস্থিত। (Ans.)

নিজে করো

- 08. দৃশ্যকল্প-২: ^{10 N} [MB'22] AB = 20 মিটার
 - (গ) দৃশ্যকল্প-২ এ বলদ্বয় স্থান বিনিময় করলে তাদের লব্ধি AB বরাবর কত মিটার দূরে সরে যাবে তা নির্ণয় কর।

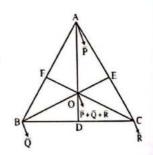
[Ans: $d = \frac{20}{3}$ মিটার।]

[DB'21]

- (গ) দৃশ্যকল্প-২ এর আলোকে বলদ্বয়ের লব্ধি C বিন্দৃতে এবং বলদ্বয় পরস্পর স্থান বিনিময় করলে লব্ধি D বিন্দুত্তে क्रिय़ाशील হलে প্রমাণ কর যে, P: Q = 2:1.
- দৃশ্যকল্প-১: 16N ও 12N দুইটি সমমুখী সমান্তরাল একটি কঠিন বস্তুর উপর যথাক্রমে L ও M বিন্দুতে ক্রিয়ারত আছে।
 - (গ) দৃশ্যকল্প-১ হতে বলদ্বয় অবস্থান বিনিময় করলে LM বরাবর তাদের লব্ধির সরণ নির্ণয় কর।

[JB'21; Ctg.B'19] [Ans: $y - x = \frac{1}{7}a$]

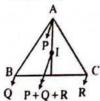
11. (ক) 10N ও 5N দুইটি সমমুখী সমান্তরাল বল A ও B বিন্দুতে ক্রিয়া করে। 10N বলটির ক্রিয়ারেখা সমান্তরাল রেখে তার ক্রিয়া বিন্দুকে B বিন্দুর দিকে 2 সে.মি. দূরত্বে সরালে লব্ধি [হলি ক্রস কলেজ, ঢাকা] কত দূরত্বে সরে যাবে?


[Ans: $\frac{4}{3}$ cm]

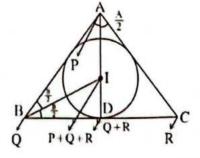
Type-10: সদৃশ সমান্তরাল বলের ক্ষেত্রে ত্রিভুজ

Concept Concept

এসব ক্ষেত্রে সমান্তরাল বলের Concept এবং ত্রিভুজের গুণাবলি ব্যবহার করে হিসাব করতে হবে। ΔABC এর A,B,C তে তিনটি সমমুখী সমান্তরাল বল $\vec{P}, \vec{Q}, \vec{R}$ ক্রিয়া করলে এবং লব্ধি O বিন্দুগামী হলে:


- (i) O বিন্দু ভরকেন্দ্র হলে, P = Q = R
- (ii) O বিন্দু লয়্বিন্দু হলে, P : Q : R = tan A : tan B : tan C
- (iii) O বিন্দু অন্তঃকেন্দ্র হলে, P : Q : R = sinA : sinB : sinC
- (iv) O বিন্দু পরিকেন্দ্র হলে, P : Q : R = sin 2A : sin2B : sin2C

সূজনশীল প্রশ্ন (ক, খ ও গ)


01.

[DB'23, 22; JB, RB'21; CB'17]

(ग) উদ্দীপক-২ এর বলতায় সদৃশ সমান্তরাল এবং । বিন্দৃটি ত্রিভুজের অন্তঃকেন্দ্র হলে, প্রমাণ কর যে, P: Q: R = a: b: c

(গ) Soln:

Q ও R সদৃশ সমান্তরাল বলদ্বয়ের লব্ধি Q + R, BC রেখার কোথাও ক্রিয়াশীল হবে। আবার, P ও Q + R বলদ্বয়ের লব্ধি অবশাই সদৃশ সমান্তরাল) চিত্রমতে । বিন্দুতে P + Q + R হিসেবে ক্রিয়াশীল। অর্থাৎ Q + R, অবশ্যই BC ও AD এর ছেদবিন্দু D তে ক্রিয়াশীল।

এখন,
$$Q \cdot BD = R \cdot CD$$

$$\Rightarrow Q \cdot \frac{BD}{AD} = R \cdot \frac{CD}{AD}$$

$$\Rightarrow Q \cdot \frac{\sin \frac{A}{2}}{\sin B} = R \cdot \frac{\sin \frac{A}{2}}{\sin C}$$

$$\Rightarrow \frac{Q}{\sin B} = \frac{R}{\sin C}$$

$$\Rightarrow \frac{R}{\sin C} = \frac{P}{\sin A}$$

$$\Rightarrow \frac{BD}{\sin \frac{A}{2}} = \frac{AD}{\sin B}$$

$$\Rightarrow \frac{BD}{\sin \frac{A}{2}} = \frac{AD}{\sin B}$$

$$\Rightarrow \frac{BD}{\sin A} = \frac{\sin \frac{A}{2}}{\sin B}$$

$$\Rightarrow \frac{BD}{AD} = \frac{AD}{\sin B}$$

$$\Rightarrow \frac{BD}{\sin A} = \frac{AD}{\sin B}$$

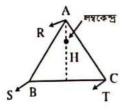
$$\Rightarrow \frac{BD}{AD} = \frac{AD}{\sin B}$$

$$\Rightarrow \frac{AD}{AD} = \frac{AD}{AD}$$

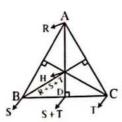
$$\Rightarrow \frac{AD}{AD} = \frac{AD}{AD}$$

$$\Rightarrow \frac{AD}{AD} = \frac{AD}{AD}$$

$$\Rightarrow \frac{AD}{AD} = \frac{AD}{AD}$$


$$\Rightarrow \frac{AD}{A$$

wife, $\frac{P}{\sin A} = \frac{Q}{\sin B} = \frac{R}{\sin C} \Rightarrow \frac{2R' \cdot P}{a} = \frac{2R' \cdot Q}{b} = \frac{2R' \cdot R}{c}$ [sine সূত্র অনুসারে যেখানে R' = পরিব্যাসার্ধ]


P: O: R = a: b: c (প্রমাণিত)

02.

[Ctg.B'23; SB'21]

- (খ) ১নং চিত্রে R, S, T বলত্রয়ের লব্ধি H বিন্দুগামী হলে প্রমাণ কর বে, $\frac{R}{\tan A} = \frac{S}{\tan B} = \frac{T}{\tan C}$
- (작) Soln:

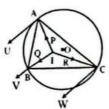
এখানে, H লম্ববিন্দু এবং R, S, T বলত্রয়ের লব্ধি H বিন্দুগামী। \therefore AD \perp BC; S ও T বলের লব্ধি (S + T)। বলটি BC রেখাস্থ কোনো বিন্দুতে ক্রিয়া করে। আবার R বলটি A বিন্দুতে এবং বলত্রয়ের লব্ধি H বিন্দুতে ক্রিয়া করে। কাজেই, (S + T) বলটি AD এবং BC-এর ছেদবিন্দু D -তে অবশ্যই ক্রিয়া করবে।

$$\cdot \cdot S \cdot BD = T \cdot CD \Rightarrow S \cdot \frac{BD}{AD} = T \cdot \frac{CD}{AD}$$

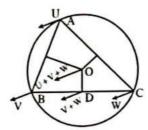
$$\Rightarrow$$
 S · cot B = T cot C

অনুরূপভাবে, R cot A = S cot B

সুতরাং, R cot A = S cot B = T cot C


$$\Rightarrow \frac{R}{\tan A} = \frac{S}{\tan B} = \frac{T}{\tan C}$$
 (প্রমাণিত)

Educationblog24.com


উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

03.

[BB'23]

- (গ) উদ্দীপকের P, Q, R বলগুলো ক্রিয়া না করলে, ভধুমাত্র A, B, C বিন্দুতে ক্রিয়ারত U, V, W মানের সদৃশ, সমান্তরাল বলের লব্ধি পরিকেন্দ্র O গামী হলে প্রমাণ কর বে, $U: V: W = a \cos A : b \cos B : c \cos C$.
- (গ) Soln:

A, B, C বিন্দুতে ক্রিয়ারত যথাক্রমে U, V, W এর লব্ধি U + V + W. $\triangle ABC$ এর পরিকেন্দ্র O বিন্দুগামী হতে হলে, B ও C বিন্দুতে ক্রিয়ারত V এবং W বলের লব্ধি V + W অবশ্যই AD ও BC এর ছেদবিন্দু D বিন্দুগামী হতে হবে।

[OB = OC (একই বৃত্তের ব্যাসার্ধ) ∴ ∠OBD = ∠OCD]

$$\Rightarrow V \sin(\pi - 2C) = W \sin(\pi - 2B)$$

[কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের বিতণ]

$$\Rightarrow V \sin 2C = W \sin 2B \Rightarrow \frac{V}{\sin 2B} = \frac{W}{\sin 2C}$$

অনুরপভাবে প্রমাণ করা যায়, $\frac{U}{\sin 2A} = \frac{V}{\sin 2B}$

$$\frac{U}{\sin 2A} = \frac{V}{\sin 2B} = \frac{W}{\sin 2C}$$

$$\Rightarrow \frac{U}{2 \sin A \cos A} = \frac{V}{2 \sin B \cos B} = \frac{W}{2 \sin C \cos C}$$

$$\Rightarrow \frac{U}{2 \frac{a}{2R} \cos A} = \frac{V}{2 \frac{b}{2R} \cos B} = \frac{W}{2 \frac{C}{2R} \cos C}$$

$$\Rightarrow \frac{U}{2 \cos A} = \frac{V}{2 \cos B} = \frac{W}{2 \cos C}$$

$$\Rightarrow \frac{U}{a\cos A} = \frac{V}{b\cos B} = \frac{W}{\cos B}$$

⇒ U: V: W = a cos A : b cos B : c cos C (প্রমাণিত)

দৃশ্যকম্প-১: 04.

[BB'21]

(খ) দৃশ্যকম্প-১ এর আলোকে প্রমাণ কর যে, C ও A বিন্দৃতে P বলের সমান্তরাল অংশক্ষয়ের অনুপাত sin 2C : sin 2A.

Education blood 24 com

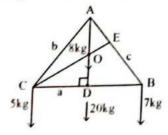
(খ) Soln: এখানে OA = OB = OC = r এবং ∠BOC = 2A, ∠AOB = 2C, ∠AOC = 2B

· কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

O, A ও O, C যোগ করি। ধরি, A ও C বিন্দুতে সমান্তরাল অংশকদম যথাক্রমে PA ও PC

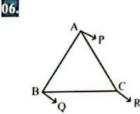
এখানে,
$$\frac{AD}{CD} = \frac{\Delta ABD}{\Delta BCD}$$
 এর ক্ষেত্রফল $= \frac{\Delta AOD}{\Delta COD}$ এর ক্ষেত্রফল $\Rightarrow \frac{AD}{CD} = \frac{\Delta ABD}{\Delta BCD}$ এর ক্ষেত্রফল $-\Delta AOD$ এর ক্ষেত্রফল $= \frac{\Delta AOB}{\Delta BCD}$ এর ক্ষেত্রফল $= \frac{\Delta AOB}{\Delta BOC}$ এর ক্ষেত্রফল $= \frac{\Delta AOD}{\Delta BOC}$

$$\Rightarrow \frac{AD}{CD} = \frac{\frac{1}{2} \times r^2 \sin \angle AOB}{\frac{1}{2} \times r^2 \sin \angle BOC} = \frac{\sin 2C}{\sin 2A}$$

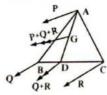

আবার,
$$P_A \times AD = P_C \times CD \Rightarrow \frac{P_A}{PC} = \frac{CD}{AD} = \frac{\sin 2A}{\sin 2C}$$

(Proved)

- দৃশ্যকম্প-১: একটি কাঁঠাল গাছের তিনটি ডালের A, B, C বিন্দুতে যথাক্রমে 8kg, 7kg ও 5kg ওজনের তিনটি কাঁঠাল ঝুলছে।
 [MB'21]
 - (খ) দৃশ্যকম্প-১ এ কাঁঠালগুলোর ওজনের লব্ধি ABC ত্রিভুজের লম্বিন্দুগামী হলে দেখাও যে,


cos A : cos B : cos C = 35: 50: 28 যেখানে a = 4, b = 5, c = 2.

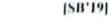
- (খ) Sol*: লব্ধি বল 20 kg এবং A বিন্দু থেকে 8kg ওজনের বল AD বরাবর ক্রিয়ারত।
 - ∴ 7kg ও 5kg বলের লব্ধি D বিন্দুতে ক্রিয়ারত।



- $\therefore 5 \times CD = 7 \times BD$
- \Rightarrow 5 × AC × cos C = 7 × AB × cos B
- \Rightarrow 5b cos C = 7c cos B \Rightarrow cos B : cos C = 5b:7c
- \Rightarrow cos B: cos C = 25: 14 (i)
- একইভাবে, $8 \times AE = 7 \times BE$
- \Rightarrow 8 × AC × cos A = 7 × BC × cos B
- \Rightarrow 8b cos A = 7a cos B \Rightarrow cos A : cos B = 28:40
- \Rightarrow cos A : cos B = 7: 10 (ii)
- (i) \Rightarrow cos B : cos C = 25: 14
- \Rightarrow cos B : cos C = (25 × 2): (14 × 2)
- ⇒ cos B: cos C = 50: 28 (iii)
- (ii) \Rightarrow cos A : cos B = (7×5) : (10×5)
- $\Rightarrow \cos A : \cos B = 35:50 \dots (iv)$
- (iii) & (iv) ⇒ cos A: cos B: cos C = 35: 50: 28 (Showed

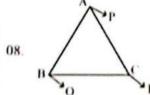
[CB'21; DB, SB, JB, Din.B'18

- P, Q, R বলত্রয় সমমুখী সমাস্তরালভাবে ক্রিয়ারত।
- (গ) বলত্রয়ের লব্ধি △ABC এর ভরকেন্দ্রগামী হলে P, Q এব
 R বলের মধ্যে সম্পর্ক স্থাপন কর।
- (গ) Solⁿ: ধরি, ভরকেন্দ্র G; AG কে বর্ধিত করলে তা BC কে I বিন্দুতে ছেদ করে। এই Q ও R এর লব্ধি Q + R, D বিন্দুত ক্রিয়া করতে বাধ্য।


 $\therefore Q \cdot BD = R \cdot CD \Rightarrow \frac{Q}{R} = \frac{CD}{BD} [\because D, BC$ এর মধাবিন্দু]

$$\Rightarrow \frac{Q}{R} = 1 : Q = R;$$

অনুরূপভাবে, P = Q : P = Q = R (Ans.)


নিজে করো

07. O হলো বৃত্তটির কেন্দ্র।

(গ) যদি X, Y, Z মানের বলত্রয় যথাক্রমে A, B, C বিন্দুতে সদৃশ সমান্তরালভাবে ক্রিয়া করে, তবে এদের লব্ধি O বিন্দুগামী হয়। দেখাও য়ে, X cosec 2A = Y cosec 2B = Z cosec 2C.

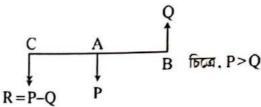
[DB, SB, JB, Din.B'18]

- P, Q, R বলত্রয় সমমুখী সমান্তরালভাবে ক্রিয়ারত।
- (খ) বলত্রয়ের লব্ধি ΔΑΒC এর অন্তঃকেন্দ্রগামী হলে, দেখা⁶
 - QI, P: Q: R = sinA: sinB: sinC

Educationblog24.com

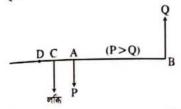
উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

Type-11: অসদৃশ/বিসদৃশ সমান্তরাল বলের লব্ধি নির্ণয়ের সূত্র

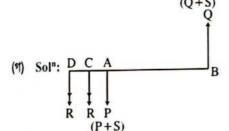

Concept

Р в Q বিসদৃশ সমান্তরাল বলদ্বয় কোনো বস্তুর উপর যথাক্রমে А в В বিন্দৃতে ক্রিয়া করলে এদের লব্ধির মান হবে, $R = P \sim Q$ যা AB রেখাংশের বর্ধিতাংশে C বিন্দুতে ক্রিয়া করবে (C বিন্দু বৃহত্তর বলের নিকটবর্তী হবে)।

$$p \cdot AC = Q \cdot BC \Rightarrow \frac{P}{BC} = \frac{Q}{AC} = \frac{P \cdot Q}{AB} = \frac{R}{AB}$$


 $P \otimes Q$ দুইটি বিসদৃশ সমান্তরাল বল $A \otimes B$ তে ক্রিয়ারত হলে, এদেরকে x একক করে বাড়ালে লব্ধি $\frac{x}{P-Q} \cdot AB$ দূরত্ব সরে যাবে।

[MCQ এর জন্য মনে রাখতে পারো]



সূজনশীল প্রশ্ন (ক, খ ও গ)

[SB, CB'23; Ctg.B'21]

(গ) দৃশ্যকম্প-২ এ P ও Q বল দৃটিকে S পরিমাণে বৃদ্ধি করলে যদি লব্ধি C বিন্দু হতে D বিন্দুতে স্থানাম্ভরিত হয়, তবে দেখাও যে, $CD = \frac{5}{P-0}AB$.

ধরি, P ও Q বিসদৃশ সমান্তরাল বলদ্বয়ের লব্ধি R, C বিন্দুতে ক্রিয়াশীল ছিল। S পরিমাণে বলদ্বয়কে বৃদ্ধি করলে

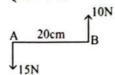
(P + S) ও (Q + S) এর লব্ধি D তে ক্রিয়া করে।

প্রথম ক্ষেত্রে: $P \times AC = Q \times BC$

$$\Rightarrow \frac{P}{BC} = \frac{Q}{AC} = \frac{P - Q}{BC - AC} = \frac{P - Q}{AB} \dots \dots \dots (i)$$

ষিতীয় ক্ষেত্রে: (P + S) × AD = (Q + S) × BD

$$\Rightarrow \frac{P+S}{BD} = \frac{Q+S}{AD} = \frac{(P+S)-(Q+S)}{BD-AD} = \frac{P-Q}{AB} \dots \dots \dots (ii)$$

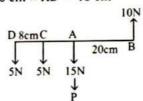

চিত্রমতে, $CD = BD - BC = (P + S) \times \frac{AB}{P-Q} - P \times \frac{AB}{P-Q}$

[(i) ও (ii) হতে]

$$= \frac{AB}{P-Q} (P + S - P)$$

$$\cdot CD = \frac{s}{P-Q} AB$$
 (Showed)

[DB'21]



(গ) দৃশ্যকম্প-২ এর আলোকে বলম্বয়ের প্রত্যেকের সাথে সমপরিমাণ কত বল যোগ করলে নতুন লব্ধি পূর্বের লব্ধি থেকে 8 cm দূরে সরে যাবে?

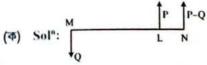
Sol": ১ম ক্ষেত্রে, 10 × (20 + AC) = 15 × AC

$$\Rightarrow$$
 2(20 + AC) = 3AC \Rightarrow 40 + 2AC = 3AC

$$\Rightarrow$$
 AC = 40 cm \therefore AD = 48 cm

এখন, (10 + P) × 68 = (15 + P) × 48

$$\Rightarrow$$
 680 + 68P = 720 + 48P \Rightarrow 20P = 40 :: P = 2


অতিরিক্ত 2N বল যোগ করতে হবে।

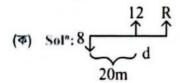
Shortcut: লব্ধির সরণ = প্রযুক্ত বলের মোমেন্ট

$$\Rightarrow 8 = \frac{P \times 20}{5} \Rightarrow P = 2N \text{ (Ans.)}$$

(ক) P ও Q (যখন P > Q) অসদৃশ সমান্তরাল বল দুটি যথাক্রমে L ও M বিন্দুতে কার্যরত হলে, প্রমাণ কর যে, তাদের শব্ধির ক্রিয়াবিন্দু 👱 LM দূরত্বে কার্যরত হবে।

[SB'21]

শর্তমতে, P × LN = Q(LM + LN)

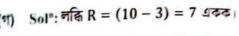

$$\Rightarrow P \times LN = Q \times LM + Q \times LN$$

$$\Rightarrow$$
 LN = $\frac{Q}{P-Q} \times$ LM (Proved)

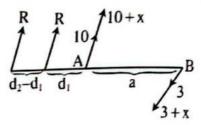
পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা.

Education जिल्ला विकास के स्ट्री के

(क) একটি বস্তুর উপর পরস্পর 20 মিটার দ্রত্ ক্রিয়াশীল বিসদৃশ, সমান্তরাল বল 8N ও 12N এর লব্ধির ক্রিয়াবিন্দ্ নির্ণয় কর। (BB'21)



ধরি লব্ধি 12N বল থেকে d দূরত্বে ক্রিয়া করে।


- $\therefore 8(20+d) = 12d \Rightarrow 4d = 8 \times 20 \Rightarrow d = 40 \text{ m}$
- ∴ 8N বল থেকে দূরত (40 + 20)m = 60 m (Ans.)

05. দৃশ্যকম্প-২: দৃটি অসদৃশ সমান্তরাল বল 10 একক এবং 3 একক যথাক্রমে একটি বস্তুর A ও B বিন্দুতে ক্রিয়া করছে। |CB'21|

(গ) দৃশ্যকম্প-২ এ যদি AB = a একক এবং উভয় বলকে যদি x পরিমাণ বৃদ্ধি করা হয় তাহলে দেখাও যে, তাদের লব্ধি $\frac{ax}{7}$ দূরত্বে সরে যাবে।

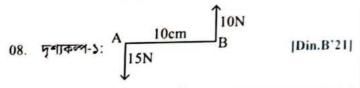
A হতে লব্ধির দূরত্ d_1 হলে $\frac{d_1}{3} = \frac{a}{7} \Rightarrow d_1 = \frac{3a}{7}$

উভয় বলকে x পরিমাণ বাড়ালে লব্ধি

A হতে নতুন লব্ধির দূরত্ d₂ হলে,

$$\frac{d_2}{3+x} = \frac{a}{7} \Rightarrow d_2 = \frac{3a}{7} + \frac{ax}{7}$$

: লব্ধি সরে যাবে $d_2 - d_1 = \left(\frac{3a}{7} + \frac{ax}{7}\right) - \frac{3a}{7} = \frac{ax}{7}$ (Showed)


নিজে করো

06. (ক) 15N এবং 20N ওজনের দুইটি অসদৃশ সমান্তরাল বল দুইটি বিন্দুতে ক্রিয়ারত থাকলে, তাদের লব্ধি কত?

[JB'22] [Ans: 5N]

07. দৃশ্যকল্প-২: P ও Q দৃটি সদৃশ সমান্তরাল বল। (SB'21

(গ) দৃশ্যকল্প-২ এর P বলটির ক্রিয়ারেখা সমান্তরাল রেখে তার ক্রিয়ারেখা d দূরত্বে সরালে, দেখাও যে, এদের লব্ধির ক্রিয়াবিন্দু $\frac{Pd}{P+Q}$ দূরত্বে সরে যাবে।

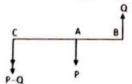
(খ) দৃশ্যকল্প-১ এর বল দুটির সাথে সমমানের কত বল যোগ করলে নতুন লব্ধির ক্রিয়াবিন্দু 5cm দূরে সরে যাবে?

- দৃশ্যকল্প-২: 5N ও 3N মানের বিপরীতমুখী দুইটি সমান্তরাল ক
 যথাক্রমে A ও B বিন্দুতে ক্রিয়াশীল, যেখানে AB = 10 সে.মি.।
 [RB'19
 - (গ) দৃশ্যকল্প-২ এ, প্রত্যেক বলের মান যদি 3N করে বৃদ্ধি কর হয়, তবে লব্ধির ক্রিয়াবিন্দু কত দূরত্বে সরে যায়?

[Ans: 15cm

- - (গ) উদ্দীপকে উল্লিখিত বলদ্বরের সমতলে x দূরত্বের ব্যবধানে R মানের দুইটি অসদৃশ সমান্তরাল বল প্রয়োগ করা হলে। প্রমাণ কর যে, এদের লব্ধি xR দূরত্বে সরে যাবে।
- দৃশ্যকল্প-২: 20 সে.মি. ব্যবধানে একটি সুষম হালকা দণ্ডের দুই প্রান্তে 8N ও 4N মানের বিপরীতমুখী দুইটি সমান্তরাল বল ক্রিয় করে।
 IJB'17
 - (গ) দৃশ্যকল্প-২ প্রত্যেক বলের মান 4N করে বৃদ্ধি করা হলে লরির ক্রিয়াবিন্দু কত দ্রত্বে সরে যাবে? [Ans: 20 সে.মি.]

Type-12: সমান্তরাল বলের লব্ধি নির্ণয় এর সূত্র প্রয়োগ করে চাপ ও প্রতিক্রিয়া বল নির্ণয়

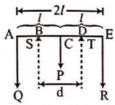

Concept

সদৃশ বা সমমূখ সমান্তরাল বলের লব্ধি:

(i)
$$P \cdot AC = Q \cdot BC \Rightarrow \frac{P}{BC} = \frac{Q}{AC} = \frac{P+Q}{AB}$$

অসমান, বিসদৃশ বা বিপরীতমুখী সমান্তরাল বলের লক্কি:

(i)
$$P \cdot AC = Q \cdot BC \Rightarrow \frac{P}{BC} = \frac{Q}{AC} = \frac{P - Q}{AB}$$



Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

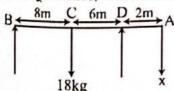
সৃজনশীল প্রশ্ন (ক, খ ও গ)

- দৃশ্যকল্প-২: 21 দীর্ঘ এবং P ওজনবিশিষ্ট একটি সুষম তন্তা d দূরত্বে অবস্থিত দুইটি খুঁটির উপর আনুভূমিক ভাবে **অব**স্থিত। একে না উল্টিয়ে এর দুই প্রান্তে পর্যায়ক্রমে Q এবং R ওজন (গ) দৃশ্যকম্প-২ থেকে প্রমাণ কর যে, $\frac{Q}{P+Q} + \frac{R}{P+R} = \frac{d}{I}$ ।
- Soln: ধরি, A ও C বিন্দুতে ক্রিয়ারত Q ও P বলের লব্ধি B বিন্দুতে ক্রিয়ারত।

$$\therefore Q \cdot AB = P \cdot BC \Rightarrow \frac{Q}{P} = \frac{BC}{AB} \Rightarrow \frac{Q}{P+Q} = \frac{BC}{AB+BC}$$
$$\Rightarrow \frac{Q}{P+Q} = \frac{BC}{l} \Rightarrow BC = \frac{Ql}{P+Q} \dots \dots \dots (i)$$

আবার, C ও E বিন্দুতে ক্রিয়ারত P ও R বলের লব্ধি D বিন্দুতে ক্রিয়ারত।

$$\therefore P \cdot CD = R \cdot DE$$


$$\Rightarrow \frac{R}{P} = \frac{CD}{DE} \Rightarrow \frac{R}{P+R} = \frac{CD}{CD+DE}$$

$$\Rightarrow \frac{R}{P+R} \times l = CD \dots \dots (ii)$$

(i) + (ii) করে পাই, BC + CD = $l\left(\frac{Q}{P+Q} + \frac{R}{P+R}\right)$

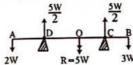
$$\Rightarrow \frac{d}{l} = \frac{Q}{P+Q} + \frac{R}{P+R} \text{ (Proved)}$$

- 🔃 দৃশ্যকম্প-২: 16 মিটার দীর্ঘ 18 কেজি ওজনের একটি সুষম তক্তা দুইটি খুঁটির উপর আনুভূমিকভাবে স্থির আছে। একটি খুঁটি A প্রান্ত [Din.B'23] হতে 2 মিটার ভিতরে অবস্থিত।
 - (গ) দৃশ্যকপ্প-২ হতে একজন বালক তক্তাটিকে না উল্টিয়ে এর উপর দিয়ে b প্রান্তে পৌঁছালে বালকের ওজন কত?
- Sol": দেওয়া আছে, তক্তার দৈর্ঘ্য 16m আর ওজন 18kg। একটি খুঁটি B প্রান্তে, অপরটি A প্রান্ত হতে 2m ভিতরে।

ধরি, বালকের ওজন x kg। তাহলে CA অংশে D বিন্দুতে সাম্যাবস্থা তৈরি হবে।

সূতরাং, CD × 18 = DA × x
$$\Rightarrow$$
 18 × 6 = 2 × x \Rightarrow x = $\frac{18 \times 6}{2}$ \therefore x = 54 kg

অতএব, বালকের সর্বোচ্চ ওজন হবে 54 kg। (Ans.)


- দৃশ্যকম্প-১: একটি সুষম রডের একপ্রান্তে 10 কেজি ওজনের একটি বস্তু ঝুলানো হলে ঐ প্রাস্ত হতে 2 মিটার দূরে একটি খুঁটির উপর আনুভূমিক ভাবে স্থির থাকে।
 - (খ) খুঁটির উপর চাপের পরিমাণ 40 কেজি ওজন হলে রডের দৈর্ঘ্য নির্ণয় কর।
- (*) Sol*: A O x C 2m B

AB রডের মধ্যবিন্দু O তে ওজন W ক্রিয়াশীল থাকবে। C বিন্দুতে খুটির ওপর চাপের পরিমাণ 40 kg-wt. এবং B তে 10 kg-wt ওজন ঝুলানো। প্রশ্নমতে, W + 10 = 40 ∴ W = 30 kg-wt ধরি, OC = x, প্রশ্নমতে, BC = 2m

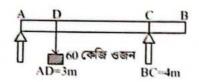
এখন, W × OC =
$$10 \times BC \Rightarrow 30x = 10 \times 2 \therefore x = \frac{2}{3}m$$

 \therefore রডের দৈর্ঘ্য = AB = $20B = 2(0C + BC)$
= $2(x + 2) = 2(\frac{2}{3} + 2)m = \frac{16}{3}m$ (Ans.)

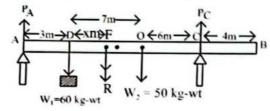
- উদ্দীপক-২: 20 সে.মি দীর্ঘ AB হাল্কা দণ্ডটি 10 সে.মি. ব্যবধানে 04. দুইটি খুঁটির উপর আনুভূমিক ভাবে অবস্থিত। A ও B বিন্দুতে যথাক্রমে 2W এবং 3W ওজন ঝুলানো হলো। (গ) খুঁটি দুইটির অবস্থান নির্ণয় কর।
- Sol": (প্রশ্নটিতে খুঁটিদ্বয়ের উপর চাপের পরিমাণ বা অনুপাত কিছুই দেওয়া হয় নি। এখানে খুঁটিদ্বয়ের উপর চাপের পরিমাণ সমান ধরে সমস্যাটির সমাধান করা হলো:) মনে করি, AB = 20 cm দৈর্ঘ্যের একটি হালকা দণ্ডের A ও B বিন্দুতে যথাক্রমে 2W ও 3W ওজন ঝুলানো আছে যাদের লব্ধি R = 5W, O বিন্দুতে ক্রিয়াশীল।

$$\therefore \frac{R}{AB} = \frac{2W}{OB} = \frac{3W}{OA} \Rightarrow \frac{5W}{2O} = \frac{2W}{OB} = \frac{3W}{OA}$$

দণ্ডটি C ও D বিন্দুতে দুইটি খুঁটির উপর আনুভূমিক ভাবে অবস্থিত। এখানে, CD = 10 cm এবং প্রতিটি খুঁটিতে চাপের পরিমাণ = $\frac{2W+3W}{2} = \frac{5W}{2}$ । দণ্ডটিকে ভারসাম্যে থাকতে হলে খুঁটিদ্বয়ের চাপের লব্ধি O বিন্দুগামী হতে হবে।


$$\therefore \frac{5W}{CD} = \frac{\frac{5W}{2}}{OD} = \frac{\frac{5W}{2}}{OC} \Rightarrow \frac{5}{10} = \frac{5}{2OD} = \frac{5}{2OC}$$

$$AC = AD + CD = 7 + 10 = 17 \text{ cm}$$


সূতরাং, খুটিদ্বয় A প্রান্ত থেকে যথাক্রমে 7 cm ও 17 cm দুরে অবস্থান করছে। (Ans.)

05 দৃশ্যকল্প-২:

- (গ) দৃশ্যকম্প-২ এ 50 কেজি ওজনের AB সমরূপ তক্তাটির দৈর্ঘ্য 20 মিটার হলে খুঁটিছয়ের উপর চাপের পরিমাণ নির্ণয়
- (গ) Sel": ধরি, A ও C বিন্দুতে খুঁটির চাপ যথাক্রমে P_A ও P_C $P_A + P_C = 60 + 50 = 110$ kg-wt

আবার ধরি, বলদ্বয়ের লব্ধি R = 110 kg-wt যা D থেকে DF= x মি. দূরত্বে F বিন্দুতে ক্রিয়াশীল।

 \therefore P_C = 42.5 kg-wt এবং P_A = 67.5 kg-wt (Ans.)

- 🜃 দৃশ্যকম্প-১: একটি হালকা লাঠির এক প্রান্ত হতে 2,8,6 ফুট দূরে অবস্থিত তিনটি বিন্দুতে যথাক্রমে F1, F2, F3 মানের তিনটি সমান্তরাল বল ক্রিয়ারত আছে।
 - (খ) দৃশ্যকম্প-১ অনুসারে লাঠিটি ভারসাম্যে থাকলে দেখাও যে, $F_1: F_2: F_3 = 1: 2: 3.$

[BB'21] (খ) Sol": লাঠিটি ভারসামো থাকলে, $\overline{F_1} + \overline{F_2} = -\overline{F_3}$

 $F_1 \times BC = F_2 \times CD \Rightarrow F_1 \times 4 = F_2 \times 2$

$$\Rightarrow \frac{F_1}{1} = \frac{F_2}{2} = \frac{F_1 + F_2}{3}$$

$$\Rightarrow \frac{F_1}{1} = \frac{F_2}{2} = \frac{F_3}{3} [(i)$$
 থেকে]

$$F_1: F_2: F_3 = 1: 2: 3$$
 (Showed)

- 📆 দৃশ্যকম্প-২: AB = 15 মিটার দৈর্ঘ্যবিশিষ্ট একটি হালকা তত্ত দুইটি খুঁটির উপর আনুভূমিক ভাবে অবস্থিত। A ও B প্রা যথাক্রমে 24kg ও 32kg ওজনের দুইজন বালক ঝুলছে।
 - (গ) দৃশ্যকম্প-২ এ খুঁটি দুইটির মধ্যবর্তী দূরত্ব AB এর এর তৃতীয়াংশ হলে খুঁটি দুইটির অবস্থান নির্ণয় কর। [MB'2]
- (গ) Sol": ধরি, খুঁটি দুটির প্রতিক্রিয়া বল সমান।

$$\therefore CE = \frac{CD}{2} = \frac{5}{2} = 2.5 \text{ m}$$

আবার,
$$AE \times 24 = 32 \times (15 - AE)$$

$$\Rightarrow$$
 3AE = 60 - 4AE

$$\begin{array}{c|c}
A & C & E & D \\
\hline
24kg & 5m & 32kg
\end{array}$$

$$\Rightarrow$$
 7AE = 60 \Rightarrow AE = $\frac{60}{7}$

$$AC = AE - CE = (\frac{60}{7} - 2.5) m = \frac{85}{14} m$$

.: একটি খুটি A বিন্দু থেকে B বিন্দুর দিকে 85 m দূরে। (Ans.

আবার, BD = AB - (AE + ED) = 15 -
$$\left(\frac{60}{7} + \frac{5}{2}\right)$$
 m = $\frac{55}{14}$ m

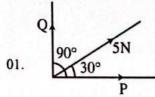
অন্যটি B বিন্দু থেকে A বিন্দুর দিকে $\frac{55}{14}$ m দূরে। (Ans.)

নিজে করো

- 08. দৃশ্যকল্প-২: 2P দীর্ঘ এবং M ওজন বিশিষ্ট একটি সুষম তক্তা া দূরত্বে অবস্থিত দুটি খঁটির উপর আনুভূমিক ভাবে অবস্থিত। একে না উল্টিয়ে এর দুই প্রান্তে পর্যায়ক্রমে সর্বাধিক M1 ও M2 ওজন ঝুলানো যায়। [JB'23]
 - (গ) দৃশ্যকল্প-২ হতে প্রমাণ কর যে, $\frac{M_1}{M+M_1} + \frac{M_2}{M+M_2} = \frac{1}{P}$
- 09. দৃশ্যকল্প-২: ৪ মিটার দীর্ঘ 12kg ওজনের একটি সুষম ত দুইটি খুঁটির উপর আনুভূমিক ভাবে স্থির আছে। একটি খুঁটি A প্রান্ত এবং অন্যটি B প্রান্ত হতে 1 মিটার ভিতরে অবস্থিত।
 - (গ) দৃশ্যকম্প-২ হতে একজন বালক তক্তাটিকে না উল্টিয়ে এর উপর দিয়ে B প্রান্তে পৌঁছালে বালকের ওজন কত? [Ctg.B'17] [Ans: 36 किंबा

Educationblog24.com উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৮

ICO প্রশ্নের জন্য এই অধ্যায়ের বিভিন্ন টাইপের তুলনামূলক গুরুত:


MI		ার জন্য এই অধ্যায়ের বিভিন্ন টাইপের তুল টাইপের নাম	যতবার প্রশ্ন	যে বোর্ডে যে বছর এসেছে
eकृष्	টাইপ		এনেহে	MCQ
000	T-01	দুইটি বলের লব্ধি নির্ণয়ের ক্ষেত্রে সামান্তরিক সূত্রের প্রয়োগ	40	DB'23, 22, 21; Ctg.B'23, 22, 21, 17; BB'23, 22, 21; JB'23, 22, 21, 19, 17; CB'23, 22, 21, 19, 17; Din.B'23, 22, 21, 19; MB'23, 21; RB'22, 21, 19; SB'21, 17
000	T-02	দুটি বলের অন্তর্ভুক্ত কোণ নির্ণয় ও sine সূত্রের প্রয়োগ সংক্রান্ত	21	Ctg.B'23, 19; JB'23; Mad.B'23; JB'22; Din.B'22, 21, 17; MB'22, 21; DB'21, 17; SB'21, 17; BB'21, 19, 17
	T-03	লব্ধির দিক অপরিবর্তিত থাকা		•
00	T-04	দুই বা দুই এর অধিক বলের লব্ধি নির্ণয়ের ক্ষেত্রে লম্বাংশ সূত্রের প্রয়োগ	04	BB'23; JB'21; All.B'18; RB'17
	T 05	বলের সংযোজন ও বিভাজন	05	DB, BB'23; SB, CB'22; RB, JB, CB'21
000	T-05	তিনটি সমবিন্দু বল সাম্যাবস্থা সৃষ্টি করলে তা হতে বলত্রয়ের অন্তর্গত কোণ নির্ণয়	13	RB, Ctg.B, SB, CB, MB'23; SB, BB, CB'22; JB'22, 17; RB'21; All.B'18
000	T-07	বলত্রয়ের অভগত বেশশার ম তিনটি বল সাম্যাবস্থায় থাকার শর্ত (লামির সূত্র)	06	Ctg.B'23, 17; JB, MB'22; DB, SB'21; RB'19; RB, Din.B'17
0	T-08	তিনটি বল সাম্যাবস্থায় থাকলে তা থেকে বিভিন্ন অজানা রাশির মান নির্ণয়	02	Din.B'23; BB'21 DB'23; RB'23, 22, 21; SB'23, 22; CB'23, 21;
000	T-09	সদৃশ সমান্তরাল বল এর লব্ধি নির্ণয় এর সূত্র	21	DB'23; RB 23, 22, 21, 35 25, 41, 17; Din.B'22, 21; BB'21
		ব্যালার শেষকের বিজ্ঞা	02	SB, BB'21
000	T-10	সদৃশ সমান্তরাল বলের ক্ষেত্রে ত্রিভুজ অসদৃশ/বিসদৃশ সমান্তরাল বলের লব্ধি	12	DB'23, 22; SB, JB, Mad.B'23; MB'22; Ctg.B, MB'21; Din.B'21, 17
	T-12	নির্ণয়ের সূত্র সমান্তরাল বলের লব্ধি নির্ণয় এর সূত্র প্রয়োগ করে চাপ ও প্রতিক্রিয়া বল নির্ণয়		

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

বিগত বোর্ড পরীক্ষামূহের MCQ প্রশ্ন

উপরের চিত্রে দৃটি বল P এবং Q ক্রিয়া করছে।

[DB'23]

P এবং Q এর মান কত?

- (a) $\frac{25}{2}$ N, $\frac{5\sqrt{3}}{2}$ N
- (b) $\frac{5}{2}$ N, 5N
- (c) $\frac{5\sqrt{3}}{2}$ N, $\frac{5}{2}$ N
- (d) $\frac{25\sqrt{3}}{2}$ N, $\frac{25}{2}$ N
- 02. দুটি বলের লব্ধি 12N যা ক্ষুদ্রতর 5N বলের উপর লম্ব। বৃহত্তর বলটি হলো-
 - (a) 7N

- (b) 13N
- (c) √119N
- (d) 17N

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

15kg ও 9kg ওজনের দুটি সমান্তরাল বল 32cm ব্যবধানে ক্রিয়া করে। বৃহত্তর বল হতে এদের লব্ধির প্রয়োগ বিন্দু–

03. যখন বল দুটি সদৃশ-

[DB'23]

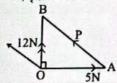
- (a) 12cm
- (b) 16cm
- (c) 20cm
- (d) কোনোটিই নয়

- 04. যখন বল দুটি অসদৃশ-
 - (a) 16cm
- (b) 20cm
- (c) 47cm
- (d) কোনোটিই নয়
- 05. √3, 1, 2 মানের তিনটি বল এক বিন্দুতে ক্রিয়া করে সাম্যাবিছ রয়েছে। প্রথম দুটি বলের মধ্যবর্তী কোণ কত?

[RB'23; SB, BB'22; All B'18; JB'17

- (a) 90°
- (b) 120°
- (c) 150°
- (d) 180°

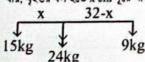
DB,53


- 06. 12 মিটার দীর্ঘ একটি সৃক্ষ্ম হালকা রডের দুই বিপরীত প্রান্তে 3। এবং W ওজন দুটি ক্রিয়া করছে। W ওজন থেকে এদের লিঃ ক্রিয়াবিন্দুর দূরত্ব কত মিটার? [RB'2:
 - (a) 1
- (b) 3
- (c) 6
- (d) 9
- 07. P মানের তিনটি সমান একতলীয় বল সাম্যাবস্থায় থাকলে এদ মধ্যবর্তী কোণ কত? [RB'23; RB'2]
 - (a) 60°
- (b) 90°
- (c) 120°
- (d) 180°
- 08. P ও Q বলের লিক্কি ক্ষুদ্রতম হলে, বলদ্বয়ের অন্তর্ভুক্ত কোণ₋ [Ctg.B'2]
 - (a) 0°
- (b) 30°
- (c) 120°
- (d) 180°
- 09. কোনো বিন্দুতে ক্রিয়াশীল P এবং Q বলের লব্ধি R। P = Q = হলে P, Q বলের অন্তর্গত কোণ কত? [Ctg.B'2
 - (a) 120°
- (b) 90°
- (c) 60°
- (d) 45°

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

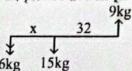
01. c 02. b 03. a 04. d 05. a 06. d 07. c 08. d 09. a

01. বলের লম্বাংশ সূত্রানুযায়ী, $P = 5 \cos 30^\circ = \frac{5\sqrt{3}}{2} N$, $Q = 5 \sin 30^\circ = \frac{5}{2} N$


02. ধরি, বৃহত্তম বলটি P

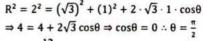
 ΔOAB হতে পাই, $AB^2 = OB^2 + OA^2 \Rightarrow P^2 = 12^2 + 5^2 = 169$

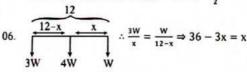
∴ P = 13N


03. ধরি, বৃহত্তর বল হতে x cm দূরে লদ্ধি আছে।

 $\therefore 15 \times x = 9 \times (32 - x) \Rightarrow 15x = 288 - 9x \Rightarrow 24x = 288$

....


04. ধরি, বৃহত্তম বল হতে x cm দুরে লদ্ধি আছে।



 $15 \times x = 9 \times (32 + x) \Rightarrow 15x = 288 + 9x$

 \Rightarrow 6x = 288 \therefore x = 48 cm

 তিনটি বল সাম্যাবস্থায় থাকলে প্রথম দুটি বলের লব্ধি তৃতীয় বলের সমান হবে।

07. P মানের তিনটি বল যেহেতু সাম্যাবস্থায় আছে,

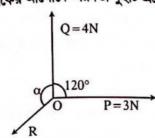
 $\Rightarrow 4x = 36 : x = 9$

 $P^2 = P^2 + P^2 + 2 \cdot P \cdot P \cos \theta$ $P^2 = 2P^2(1 + \cos \theta) \Rightarrow 1 = 2(1 + \cos \theta) \Rightarrow 1 + \cos \theta = \frac{1}{2}$ $\Rightarrow \cos \theta = -\frac{1}{2} \cdot \theta = 120^{\circ}$

বিকম্প: সাম্যবস্থায় থাকায় মধ্যবর্তী কোণ = $\frac{360^{\circ}}{3}$ = 120°

08. লিক্কি ক্ষুদ্রতম হতে হলে, $P ext{ } ext{$Q$}$ বলকে পরস্পর বিপরীতে ক্রিয়া করতে $ext{$\xi^{ ext{Q}}$}$ তখন লিক্কি = $P \sim Q$

09. $P = Q = R \cdot P^2 = 2P^2 + 2P^2 \cos \alpha$ $\Rightarrow \frac{p^2}{2p^2} = 1 + \cos \alpha \Rightarrow \cos \alpha = -\frac{1}{2} \cdot \alpha = 120^{\circ}$

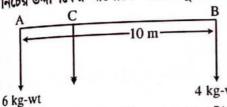


10. 3 N এবং 4 N মানের বল দুইটি পরস্পর লম্বভাবে ক্রিয়াশীল হলে লব্ধির মান কত?

[Ctg.B'23; BB'22; JB'17]

- (a) 3 N
- (b) 4 N
- (c) 5 N
- (d) 6 N

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:


11. 0 বিন্দুতে বলত্রয় সাম্যাবস্থায় থাকলে R এর মান কত হবে?

[Ctg.B'23]

- (a) 37 N
- (b) $\sqrt{37}$ N (c) $\sqrt{13}$ N
- (d) 13 N
- 12. R এর মান 3 N হলে α এর মান হবে—
- [Ctg.B'23]

- (a) 120°
- (b) 90°
- $(c) 60^{\circ}$
- (d) 30°

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

A বিন্দু হতে লব্ধির ক্রিয়াবিন্দুর দূরত্ব কত মিটার?

[SB'23; JB'22]

- (a) 3
- (b) 4
- (c) 5
- (d) 6

14. বলদ্বয় বিসদৃশ হলে লব্ধির মান কত?

[SB'23]

- (a) 1
- (b) 2
- (c) 4
- (d) 10
- 15. কোনো বিন্দুতে √5, 2 ও 1 একক বলত্রয় ক্রিয়া করে সাম্যাবস্থায় আছে। ক্ষুদ্রতম বলদ্বয়ের মধ্যবতী কোণ কত?
 - (a) 30°
- (b) 60°
- (c) 90°
- (d) 120°
- কোনো বিন্দুতে ক্রিয়ারত P ও Q বল দুটি তাদের লব্ধি R বলের উভয় দিকে যথাক্রমে 30° ও 60° কোণে আনত। বলদ্বয়ের [BB'23] অনুপাত কত?
 - (a) $1:\sqrt{3}$

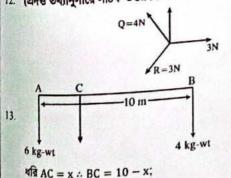
- (b) $\sqrt{3}$: 1 (c) $\frac{\sqrt{3}}{2}$: 1 (d) $\frac{1}{2}$: $\sqrt{3}$
- 17. 2 N ও 2√3 N মানের বলছয় 30° কোণে ক্রিয়ারত। 2 N মানের বল বরাবর বলদ্বয়ের লম্বাংশের সমষ্টি কত? [BB'23]
 - (a) $4\sqrt{3}$ N

(c) 7N

- (d) $\sqrt{3} + 2N$
- P ও Q (P > Q) বলদ্বয়ের মধ্যবর্তী কোণ α এবং এদের লব্ধি
 - (i) P = Q হলে $R = 2 P \cos \frac{\alpha}{2}$
 - (ii) $\alpha = 90^\circ$ হলে $\tan \theta = \frac{Q}{P}$
 - (iii) লব্ধি R, Q বলের সাথে সমকোণ উৎপন্ন করলে

$$\cos \alpha = -\frac{Q}{P}$$

- নিচের কোনটি সঠিক?
- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii


MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

18. d 17. b 16. b 15. c 14. b 13. b 12. -11. c 10. c

10. ब्रिंस $R = \sqrt{3^2 + 4^2} N = 5N$

10. बाह्र
$$R = \sqrt{3^2 + 4^2 N} = 5N$$

11. $R = \sqrt{3^2 + 4^2 + 2 \times 3 \times 4 \times \cos(120^\circ)} = \sqrt{25 + 24\left(-\frac{1}{2}\right)} = \sqrt{13} N$

প্রেদন্ত তথ্যানুসারে সঠিক উত্তর নির্ণয় করা সম্ভব নয়।);

ধরি AC = x : BC = 10 - x;

এখন $AC \times 6 = 4 \times BC \Rightarrow 6x = 4(10 - x) \Rightarrow 10x = 40 \therefore x = 4$

- বলম্বা বিসদৃশ হলে লব্ধির মান = |6 4| = 2
- 15. ধরি, ক্ষুদ্রতম বলম্বয়ের মধ্যে কোণ = 0
 - $\sqrt{5} = \sqrt{1^2 + 2^2 + 2 \cdot 2 \cdot 1} \cos \theta$ $\Rightarrow 5 = 1 + 4 + 4\cos\theta \Rightarrow \cos\theta = 0 : \theta = 90^{\circ}$

17.

∴ 2N মানের বল বরাবর বলছয়ের ল্কাংশের সমষ্টি $=2+2\sqrt{3}\cos30^\circ$

$$= 2 + 2\sqrt{3} \cdot \frac{\sqrt{3}}{2} = 5 \text{ N}$$

- 18. (1) P = Q হলে, $R = \sqrt{P^2 + P^2 + 2 \cdot P \cdot P \cos^2 \alpha}$ $= \sqrt{2P^2 + 2P^2 \cos \alpha} = \sqrt{2P^2(1 + \cos \alpha)} = \sqrt{2P^2 \cdot 2\cos \frac{\alpha}{2}}$
 - $= 2P \cos \frac{\alpha}{2}$
 - (ii) $\alpha = 90^{\circ}$ ever, $\tan \theta = \frac{Q \sin 90^{\circ}}{P + Q \cos 90^{\circ}} = \frac{Q}{P}$;
 - (iii) $\theta = 90^{\circ}$ হলে, $\tan 90^{\circ} = \frac{P \sin \alpha}{Q + P \cos \alpha}$
 - ⇒ $Q + P\cos\alpha = 0$ ⇒ $\cos\alpha = \frac{-Q}{P}$ সুতরাং, (i), (ii) ও (iii) সঠিক।

পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা...

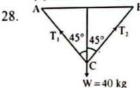
HSC প্রয়ব্যাংক ২০২৫

B=20N

A ও B বলঘয়ের লব্ধি R বিন্দুতে ক্রিয়ারত হলে PQ: QR এর মান কত?

- (a) 4:1
- (b) 1:4
- (c) 5:1
- (d) 1:5
- 20. 7 N ও 11 N বল দুইটির লব্ধি বল নিচের কোনটি হতে পারে না?
 - (c) 11 N (d) 20 N (a) 4 N (b) 7 N নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: $P = 5\sqrt{2}$ N এবং Q = 10 N দুইটি অসমান্তরাল বল।
- লব্ধি বল P বলের উপর লম্ব হলে বলদ্বয়ের অন্তর্গত কোণ কত? [JB'23]
 - (a) 45°
- (b) 60°
- (c) 120°
- (d) 135°
- 22. R বল P ও Q বলের সাথে সাম্যাবস্থা সৃষ্টি করলে এবং P ও Q বলম্বয়ের মধ্যবতী কোণ 45° হলে R এর মান কত?

[JB'23]


[JB'23]

- (a) $5\sqrt{10}$ N
- (b) 250 N
- (c) 5√2 N
- (d) 50 N
- 23. পরস্পর 60° কোণে ক্রিয়াশীল দুইটি বলের বৃহত্তম লব্ধি 10N এবং ক্ষুদ্রতম লব্ধি 4N হলে, তাদের লব্ধির মান কত? [CB'23]
 - (a) √37 N
- (b) $2\sqrt{19}$ N
- (c) √79 N
- (d) 2 √39 N

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উন্তর দাও একটি জড়বস্তুর উপর পরস্পর 40 সে.মি. ব্যবধানে 12 কেজি 😘 কেজি ওজনের দুইটি বল সদৃশ সমান্তরাল ক্রিয়া করে।

- বলদ্বয়ের লব্ধির মান কত কেজি?
- [CB.53] (d) 20

- (a) 4
- (b) 8
- (c) 12
- লব্ধির ক্রিয়া বিন্দু 12 কেজি ওজনের বলের ক্রিয়া বিন্দু হতে ক সে.মি. দুরে অবস্থিত? [CB'23]
 - (a) 16
- (b) 24
- (c) 32
- (d) 80
- 26. কোনো বিন্দতে 1, 2, √3 একক বলত্রয় ক্রিয়া করে সামাাবছঃ সৃষ্টি করলে, শেষ বল দুইটির মধ্যবতী কোণ কত? [CB'23]
 - (a) 60°
- (b) 90°
- (c) 120°
- (d) 150°
- 27. কোনো বিন্দুতে 4N ও √3 N দুইটি বল পরস্পর 30° কোন কার্যরত। এদের লব্ধি-[Din.B'23]
 - (a) 31N
- (b) 7N
- (c) √31 N
- (d) √7 N

যখন T1, T2, W ভারসাম্য অবস্থায় থাকে, উদ্দীপকের আলোরে [Din.B'23] T₁ এর মান কত?

- (a) $40\sqrt{2}$ kg-wt
- (b) 40 kg-wt
- (c) $20\sqrt{2}$ kg-wt
- (d) 20 kg-wt

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

							7 77 77		4.5
19 a	20. d	21. d	22. a	23. c	24. d	25. a	26. d	27. с	28. c

A. PR = B · QR \Rightarrow 4 · PR = 20. QR \Rightarrow $\frac{PR}{QR} = \frac{20}{4} = \frac{5}{1}$ $\Rightarrow \frac{PR}{5} = \frac{QR}{1} = \frac{PR - QR}{5 - 1} = \frac{PQ}{4} \Rightarrow \frac{PQ}{QR} = \frac{4}{1} \therefore PQ: QR = 4:1$

- 20 সর্বোচ্চ मिक = (11 + 7)N = 18N সর্বনিমু লব্ধি = (11 – 8)N = 3N ∴ 20N লব্ধি হতে পারে না।

 $\theta = \sin^{-1} \frac{5\sqrt{2}}{10} = 45^{\circ}$: বলষ্ট্রের অন্তর্গত কোণ = $90^{\circ} + 45^{\circ} = 135^{\circ}$

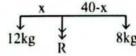
বিকল্প: $10\cos\alpha + 5\sqrt{2} = 0 \Rightarrow \cos\alpha = -\frac{5\sqrt{2}}{10} = \frac{-1}{\sqrt{2}}$

 $\therefore \alpha = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = 135^{\circ}$

22. $R = \sqrt{P^2 + Q^2 + 2PQ \cos 45^\circ}$ $= \sqrt{(5\sqrt{2})^2 + 10^2 + 2 \times 5\sqrt{2} \times 10 \times \frac{1}{\sqrt{2}}} = \sqrt{250} = 5\sqrt{10} \text{ N}$ 23. বল দৃটি P, Q হলে [P > Q]

 $R_{max} = P + Q = 10N$

. निक.


 $R_{\min} = P - Q = 4. N$

 $R = \sqrt{7^2 + 3^2 + 2 \cdot 7 \cdot 3 \cos 60^\circ}$

সমাধান করে পাই,

 $= \sqrt{79} N.$

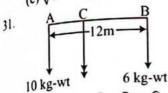
- P = 7N, Q = 3N24. লব্ধি বল = 12 + 8 = 20

 $12x = 8(40 - x) \Rightarrow 20x = 8 \times 40 : x = 16cm$

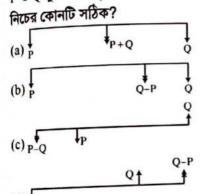
26. ধরি, √3, 2 বলের মধাবতী কোণ θ

যেহেতু তারা সাম্যাবস্থায় আছে, $1^2 = 2^2 + (\sqrt{3})^2 + 2 \cdot 2 \cdot \sqrt{3} \cos \theta$ $\Rightarrow 4\sqrt{3}\cos\theta = -6 \Rightarrow \cos\theta = \frac{-6}{4\sqrt{3}} = \frac{-\sqrt{3}}{2} : \theta = 150^{\circ}$

28. शामित সুত্রানুযায়ী, $\frac{T_1}{\sin 135^\circ} = \frac{T_2}{\sin 135^\circ} = \frac{W}{\sin 90^\circ} \Rightarrow \frac{T_1}{\frac{1}{\sqrt{2}}} = \frac{40}{1}$


∴ $T_1 = 40 \times \frac{1}{\sqrt{2}} = 20\sqrt{2} \text{ kg-wt}$

Educationblog24.com উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮


- ্রকটি বস্তুকণার উপরস্থ কোনো বিন্দুতে $\sqrt{3}$ P, $\sqrt{2}$ P ও P মানের তিনটি বল ক্রিয়া করে সাম্যাবস্থার সৃষ্টি করে। √2P ও P মানের বলদ্বয়ের মধ্যবতী কোণ কত? [MB'23]
 - (a) 150°
- (b) 135°
- (c) 120°
- (d) 90°
- _{30. P,Q(P < Q)} দুইটি বলের ক্ষুদ্রতম লব্ধি কত? [MB'23]
 - (a) P Q
- (b) Q P
- (c) $\sqrt{P^2 Q^2}$
- (d) $\sqrt{Q^2 P^2}$

A বিন্দু হতে লব্ধির ক্রিয়া বিন্দুর দূরত্ব কত?

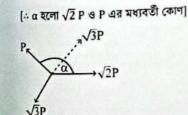
[MB'23; RB'22]

- (b) 4.5 মিটার (c) 5 মিটার (d) 7.5 মিটার (a) 3 মিটার
- $_{32}$ P ও Q দুইটি বিসদৃশ সমান্তরাল বল এবং Q > P হলে, [Mad.B'23]

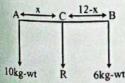
- 33. P মানের সমান দুইটি বলের লব্ধি P হলে উহাদের মধ্যবর্তী কোণ [Mad.B'23; Din.B'22] কত?
 - (a) 30°
- (b) 60°
- (c) 120°
- (d) 180°
- 34. 2N মানের দুইটি বল পরস্পর 60° কোণে ক্রিয়ারত হলে বলদ্বয়ের লব্ধির দিক কোনটি?
 - (a) $\tan^{-1}\left(\frac{1}{2-\sqrt{3}}\right)$
- (b) $\tan^{-1}\left(\frac{1}{2+\sqrt{3}}\right)$
- (c) 60°
- (d) 30°
- 35. যদি 12 এবং ৪ একক মানের বলদ্বয় একটি বিন্দুতে এমন কোণে ক্রিয়াশীল যেন তাদের লব্ধি তাদের অন্তর্গত কোণের সমদ্বিখণ্ডকের সাথে 45° কোণ উৎপন্ন করে, তবে বলদ্বয়ের [DB'22] মধ্যবতী কোণের মান কত?
 - (a) 2 tan-1 10
- (b) 2 tan-1 5
- (c) tan-1 5
- (d) 2 tan-1 2
- 36. AB = 36 cm
- [DB'22; Din.B'21]

বৃহত্তম বল হতে বলদ্বয়ের লব্ধির দূরত্ব হবে-

- (a) 54 cm
- (b) 36 cm
- (c) 27 cm
- 37.~~P ও Q(P>Q) বলদ্বয় O বিন্দুতে পরস্পর lpha কোণে [Ctg.B'22] ক্রিয়াশীল-
 - (i) α = 0 হলে লব্ধি বৃহত্তম হবে
 - (ii) α = 180° হলে লব্ধি ক্ষুদ্রতম হবে
 - (iii) P বলের ক্রিয়ারেখা বরাবর তাদের লম্বাংশের যোগফল $P + Q \cos \alpha$

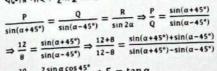

নিচের কোনটি সঠিক?

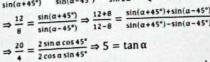
- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

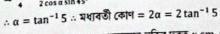

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

		31. b		23 0	34. d	35. b	36. d	37. d
29 d	30. b	31. b	32, d	33. 0	5		93	

29. √3P,√2P ও P সাম্যাবস্থা তৈরি করলে √2P ও P এর লন্ধি √3P এর সমান হবে। তাহলে $(\sqrt{3}P)^2 = (\sqrt{2}P)^2 + P^2 + 2 \cdot \sqrt{2}P \cdot P \cos \alpha$




- $\Rightarrow 3P^2 = 2P^2 + P^2 + 2\sqrt{2}P^2\cos\alpha \Rightarrow \cos\alpha = 0$
- $\alpha = \cos^{-1}(0) = 90^{\circ}$

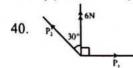


⇒ $10x = 72 - 6x : 16x = 72 \times = \frac{72}{16} = \frac{9}{2} = 4.5$ মিটার

- $33. P = \sqrt{P^2 + P^2 + 2P \cdot P \cdot \cos \theta}$ [ধরি, বলদ্বয়ের মধ্যবতী কোণ θ] $\Rightarrow P^2 = 2P^2 + 2P^2 \cos \theta \Rightarrow 1 = 2 + 2 \cos \theta$ $\Rightarrow 1 = 2(1 + \cos \theta) \Rightarrow 1 = 4\cos^2 \frac{\theta}{2} \Rightarrow \cos \frac{\theta}{2} = \frac{1}{2}$
- $\therefore \frac{\theta}{2} = 60^{\circ} :: \theta = 120^{\circ}$ 34. $\theta = \tan^{-1} \frac{2 \sin 60^{\circ}}{2 + 2 \cos 60^{\circ}} = \tan^{-1} \frac{\sqrt{3}}{3} = \tan^{-1} \frac{1}{\sqrt{3}} = 30^{\circ}$
- 35. মনে করি, মধাবতী কোল 2α, P = 12N, Q = 8N বলের সাইন সূত্রানুসারে,

36. মনে করি, বৃহত্তম বল হতে বলম্বয়ের লব্ধির দূরত্ব x cm।

এখন, $\frac{6}{36+x} = \frac{2}{x} = \frac{6-2}{36} \Rightarrow \frac{6}{36+x} = \frac{2}{x} = \frac{4}{36}$ অধাৎ, $\frac{2}{y} = \frac{1}{9}$: x = 18 cm

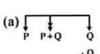

[Ctg.B'22; RB, JB'21]

A ও B বিন্দৃতে ক্রিয়াশীল বলদ্বয়ের লব্ধি C বিন্দৃতে ক্রিয়াশীল হলে AC =?

- $(a) \frac{5}{48} \text{ m}$
- (b) $\frac{48}{5}$ m (c) $\frac{72}{5}$ m
- 39. দৃটি বলের লিজ্জ বৃহত্তম হলে, তাদের মধ্যবর্তী কোণ কত?

[RB'22]

- (a) 180°
- (b) 90°
- (c) -180° (d) 0°



[SB, CB'22, RB'21]

6N বলের অংশকদ্বয় P_1 ও P_2 হলে P_1 এর মান নিচের কোনটি?

- (a) $3\sqrt{3}$
- (b) $6\sqrt{3}$

- P ও Q দৃটি সমান্তরাল বল এবং P > Q হলে নিচের কোনটি সত্য/সঠিক?

- বিদ √5 এককের দুইটি সমান বল 120° কোণে এক বিন্দুতে কাজ করে তাহলে,

[BB, CB, Din.B'22; Din.B, MB'21; SB'17]

- (i) তাদের লব্ধি √5 একক
- (ii) √5 একক বলের সাথে লিজ 60° কোণ উৎপন্ন করে
- (iii) লব্ধি বলদ্বয়ের যোগফল অপেক্ষা ছোট

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, ii

- একটি কণার উপর 3ms⁻¹, 4ms⁻¹ এবং 5ms⁻¹ বেগ চিক্র ক্রিয়া করায় কণাটি সাম্যাবস্থায় আছে। ক্ষুদ্রতর বেগ দুইচ্চ [JB, CB'22] মধ্যবতী কোণ কত?
 - (a) 0°

(b) 60°

(c) 90°

(d) 120°

নিচের তথ্যের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: 2N ও 3N মানের বলদ্বয় 60° কোণে একটি বিন্দৃতে ক্রিয়ারত

- 44. বলদ্বয়ের লব্ধির মান কত?
- [JB, CB'22

- (a) √7 N
- (b) $\sqrt{19}$ N

- (c) 7 N
- (d) 19 N
- 45. লব্ধির বলের ক্রিয়ারেখা ক্ষুদ্রতর বলটির সাথে কত কোণ তৈরি করবে? JB'22
 - (a) $\tan^{-1}\left(\frac{\sqrt{3}}{4}\right)$
- (b) $\tan^{-1}\left(\frac{3\sqrt{3}}{7}\right)$
- (c) $\tan^{-1}\left(\frac{3}{4+3\sqrt{3}}\right)$
- (d) $\tan^{-1}\left(\frac{1}{3+\sqrt{3}}\right)$
- 46. একটি বিন্দুতে একই সময়ে ক্রিয়ারত নিচের কোন বলত্রয়রে তাদের সাম্যাবস্থার জন্য একটি ত্রিভুজের তিনটি বাহু দ্বারা একং ক্রমে মানে ও দিকে প্রকাশ করা সম্ভব নয়? **JB'22**
 - (a) 1N, 2N, @ 3N
- (b) 2N, 3N, 3 4N
- (c) 3N, 4N, 3 5N
- (d) 3N, 5N, 3 7N
- 47. একই বিন্দুতে α কোণে ক্রিয়ারত P ও Q বলের লব্ধি R হলে-
 - (i) R = P + Q, যখন α = 90°
- [CB'22
- (ii) R = P~Q, যখন α = 180°
- (iii) Q = P হলে R = $2P \cos \frac{\alpha}{2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i ii, iii

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

38. b 39. d	40. c	41. a	42. d	43. c	44. b	45. b	46. a	47. c
-------------	-------	-------	-------	-------	-------	-------	-------	-------

$= \frac{20}{24} \therefore x = \frac{48}{6} \text{m}$

39. $R^2 = P^2 + Q^2 + 2pq \cos \alpha$

A = 0 হলে, $R^2 = P^2 + Q^2 + 2PQ \cos 0^\circ$

 $= P^2 + Q^2 + 2PQ \Rightarrow R^2 = (P + Q)^2 : R = P + Q$

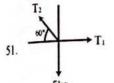
40. $\tan 90^\circ = \frac{P_2 \sin 120^\circ}{P_1 + P_2 \cos 120^\circ}$ $\Rightarrow \cos 120^{\circ} = -\frac{P_1}{P_2} \Rightarrow -\frac{1}{2} = -\frac{P_1}{P_2} :: P_2 = 2P_1$ আবার, $R^2 = P_1^2 + P_2^2 + 2P_1P_2 \cos 120^\circ$

 $\Rightarrow 6^2 = P_1^2 + 4P_1^2 - 2P_1^2 \Rightarrow 36 = 3P_1^2 :: P_1 = \frac{6\sqrt{3}}{3}$

42. $R^2 = (\sqrt{5})^2 + (\sqrt{5})^2 + 2\sqrt{5} \cdot \sqrt{5} \cos 120^\circ$ $= 5 + 5 + 2 \cdot 5\left(-\frac{1}{3}\right) = 10 - 5 = 5 : R = \sqrt{5}$

$$\therefore$$
 (i) নং সঠিক $\theta = \tan^{-1} \frac{5 \sin 120^4}{5 + 5 \cos 120^4} = \frac{5\frac{\sqrt{3}}{2}}{5 + 5\left(-\frac{1}{2}\right)}$

- $=\frac{\frac{3\sqrt{3}}{2}}{\frac{10-5}{5}}=\frac{5\sqrt{3}}{5}=\tan^{-1}\sqrt{3}=60^{\circ}$: (ii) নং সঠিক
- 43. $3^2 + 4^2 + 2 \cdot 3 \cdot 4 \cdot \cos 90^\circ = 25 = 5^2$: কুদ্রতর বেগ দুটির মধাবর্তী কোণ 90°
- 44. $R^2 = 2^2 + 3^2 + 2 \cdot 2 \cdot 3 \cdot \cos 60^\circ$
- $= 4 + 9 + 12 \cdot \frac{1}{3} = 4 + 9 + 6 = 19 : R = \sqrt{19}N$ 45. $\tan \theta = \frac{3 \sin 60^{\circ}}{2+3 \cos 60^{\circ}} = \frac{3\frac{\sqrt{3}}{2}}{2+3\frac{1}{2}} = \frac{3\sqrt{3}}{\frac{4+3}{2}} = \frac{3\sqrt{3}}{7} :: \theta = \tan^{-1}\left(\frac{3\sqrt{3}}{7}\right)$
- 46. (a) 1+2>3; সম্ভব নয়, (b) 2+3>5; সম্ভব, (c) 3+4>5; সম্ভব,
 - (d) 3 + 5 > 8; সম্ভব



- 48. 8 ও 6 একক মানের দুইটি সমমুখী সমান্তরাল বল 21 একক দূরত্বে একটি অনড় বস্তুর উপর ক্রিয়ারত। বলদ্বয় অবস্থান বিনিময় করলে লব্ধির ক্রিয়াবিন্দু কত একক দূরত্বে সরে যাবে?
 - (a) 1 একক
- (b) 2 একক
- [Din.B'22]

- (c) 3 একক
- (d) 4 একক
- 49. 6N ও 8N বল দুটির মধ্যবতী কোণ কত হলে লব্ধি 2√13N হবে? [MB'22, 21; DB'17]
 - (a) 30°
- (b) 60°
- (c) 90°
- (d) 120°
- 50. কোনো বিন্দুতে ক্রিয়ারত তিনটি বল সাম্যাবস্থায় থাকলে যেকোনো দুটি বলের লব্ধি তৃতীয় বলের- [MB'22]
 - (i) সমান
- (ii) সমান্তরাল (iii) বিপরীতমুখী

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

[MB'22]

 T_1, T_2 ও 5N বলত্রয় ভারসাম্যে রাখা হলে T_1 এর মান কত?

- (a) $\frac{5}{\sqrt{3}}$
- (b) $\frac{20}{\sqrt{3}}$
- (c) $5\sqrt{3}$
- (d) $20\sqrt{3}$
- A ও B বিন্দুতে ক্রিয়ারত 45N ও 15N বিসদৃশ সমান্তরাল বলের লব্ধি C বিন্দুতে ক্রিয়া করে।
 - AC = 5m হলে AB = কত?

[MB'22]

- (a) 5m
- (b) 10m
- (c) 15m
- (d) 20m

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

- 53. নিচের কোন বলত্রয় ত্রিভুজের বাহু দ্বারা দিকে মানে ও একই ক্রমে প্রকাশ করলে স্থিতাবস্থায় থাকবে? [DB'2]
 - (a) 1N, 2N, 3N
- (b) 3N, 4N, 5N
- (c) 10N, 20N, 50N
- (d) 5N, 20N, 40N
- 54. এক বিন্দুতে ক্রিয়ারত P ও Q বলদ্বয়ের লব্ধি R এর উভয় দিকে যথাক্রমে 30° ও 60° কোণে আনত হলে P: Q কত?
 - (a) 2: √3
- (b) $\sqrt{3}$: 1
- [DB'21]

- (c) 1:√2
- (d) 1: √3
- 55. 5N ও 7N মানের দুটি বল পরস্পর বিপরীত দিকে ক্রিয়াশীল। এদের লব্ধি কোন দিকে ক্রিয়া করবে? [DB, CB'21; CB'17]
 - (a) 7N বলের ক্রিয়ারেখার সাথে লম্ব বরাবর
 - (b) 7N বলের ক্রিয়ার সাথে সমান্তরাল বরাবর
 - (c) 5N বলের ক্রিয়ারেখার সাথে লম্ব বরাবর
 - (d) 5N বলের ক্রিয়ারেখা বরাবর
- সমমানের দুটি বলদ্বয়ের লব্ধি বলদ্বয়ের গুণফলের সমান হলে
 উহাদের মধ্যবর্তী কোণ কত? [DB, Din.B'21; SB, BB'17]
 - (a) $\frac{\pi}{3}$

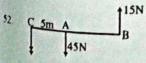
- (b) $\frac{2\pi}{3}$
- (c) $\frac{-2\pi}{3}$
- $(d)\frac{-\pi}{3}$
- 57. কোনো বিন্দুতে 60° কোণে ক্রিয়ারত দুটি সমান বলকে একই বিন্দুতে ক্রিয়ারত 9N বলের সাহায্যে সাম্যাবস্থায় রাখলে সমান বল কত? [DB'21]
 - (a) √3N
- (b) 3√3N
- (c) 3N

(d) 9N

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

48. c	49. d	50. b	51. a	52. b	53. b	54. b	55. b	56. b	57. b
	17.4	50.0		N					_

- $d = \frac{8-6}{8+6} \cdot 21 = \frac{2}{14} \cdot 21 = 3$ একক
- 49. মনে করি, মধ্যবর্তী কোণ α,


वर्षार,
$$(2\sqrt{13})^2 = 6^2 + 8^2 + 2 \cdot 6 \cdot 8 \cdot \cos \alpha$$

$$\Rightarrow$$
 52 = 36 + 64 + 96 cos $\alpha \Rightarrow$ -48 = 96 cos α

$$\Rightarrow \cos \alpha = \frac{-48}{96} \Rightarrow \cos \alpha = -\frac{1}{2} : \alpha = 120^{\circ}$$

 $\frac{70}{10}$ সামির উপপাদ্য অনুসারে, $\frac{T_1}{\sin 150^{\circ}} = \frac{T_2}{\sin 90^{\circ}} = \frac{5}{\sin 120^{\circ}} \Rightarrow \frac{T_1}{\frac{1}{2}} = \frac{T_2}{1} = \frac{5}{\frac{\sqrt{3}}{2}}$

$$\stackrel{\cdot \cdot}{\cdot} T_1 = \frac{5}{\frac{\sqrt{3}}{2}} \times \frac{1}{2} = \frac{5}{\sqrt{3}}$$

प्रवादन, $\frac{45}{AB+5} = \frac{15}{5} = \frac{45-15}{AB}$

ইয় ও ৩য় অনুপাত নিয়ে, $\frac{45-15}{AB} = \frac{15}{5} \Rightarrow \frac{30}{AB} = \frac{3}{1}$.: AB = 10m

3, 4, 5 দ্বারা ত্রিভুজ গঠন করা যায়।

- 55. 2N 7N
- 56. প্রশাসতে, $P^2 = P^2 + P^2 + 2P^2 \cos \alpha$

$$\Rightarrow -P^2 = 2P^2 \cos \alpha \Rightarrow \cos \alpha = -\frac{1}{2} : \alpha = \frac{2\pi}{3}$$

 $R = 2p\cos\frac{\theta}{2} = 2P\cos 30^{\circ} = 9 \Rightarrow 2 \times P \times \frac{\sqrt{3}}{2} = 9 \therefore P = 3\sqrt{3}N$

Education house on

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: P ও Q দুইটি বল।

- 58. ক্ষুদ্রতম লব্ধির ক্ষেত্রে বলদ্বয়ের মধ্যবর্তী কোণ কত? [RB'21]
 (a) 0° (b) 90° (c) 120° (d) 180°
- 59. বলদ্বয়ের বৃহত্তম লব্ধি কত?

(d) 180° [RB'21]

- (a) $P^2 + Q^2$
- (b) $\sqrt{P^2 + Q^2}$
- (c) P Q
- (d) P + Q
- 60. 4 একক দ্রত্বে P ও Q বিন্দুতে ক্রিয়ারত 3 ও 6 একক সমান্তরাল বলদ্বয়- [Ctg.B'21]
 - (i) সদৃশ হলে লব্ধি 9 একক (ii) অসদৃশ হলে লব্ধি 3 একক
 - (iii) অসদৃশ এবং লব্ধি R বিন্দুতে হলে QR = 4 নিচের কোনটি সঠিক?
 - (a) i, ii (b) i, iii (c) ii, iii (d) i, ii, iii
 নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:
 10N ও 5N মানের বলদ্বয় একটি বিন্দুতে পরস্পর 120° কোণে
 ক্রিয়াশীল।
- 61. বলদ্বয়ের লব্ধির মান কত?
- [Ctg.B'21]

- (a) $3\sqrt{5}$ N
- (b) $5\sqrt{3}$ N (c) $5\sqrt{7}$ N
- (d) $7\sqrt{5}$ N
- 62. লব্ধিবলের ক্রিয়ারেখা বৃহত্তর বলটির সাথে কত কোণে অবস্থান করে? [Ctg.B'21]
 - (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°
- 63. কোনো জড় বস্তুর উপর A ও B বিন্দুতে যথাক্রমে 42N এবং 24N মানের দুইটি অসদৃশ সমান্তরাল বল ক্রিয়ারত আছে। যদি তাদের লব্ধির ক্রিয়াবিন্দু BA এর বর্ধিতাংশকে C বিন্দুতে ছেদ করে তবে AB: BC = কত? [Ctg.B'21]
 - (a) 3:7
- (b) 4:7
- (c) 7:3
- (d) 7:4
- 64. কোনো বিন্দুতে ক্রিয়ারত P ও √2P বলদ্বয়ের লব্ধি R, P বলের উপর লম্ব হলে তাদের অন্তর্গত কোণ কত? [SB'21]
 - (a) 45°
- (b) 60°
- (c) 120°
- (d) 135°

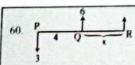
- 65. কোনো ত্রিভুজের শীর্ষবিন্দুতে তিনটি সমান সদৃশ সমান্তরাল হ ক্রিয়া করলে তাদের লব্ধি-
 - (a) লম্বকেন্দ্রগামী
- (b) অন্তঃকেন্দ্রগামী
- (c) পরিকেন্দ্রগামী
- (d) ভরকেন্দ্রগামী
- 66. কোনো বিন্দুতে 120° কোণে ক্রিয়ারত দুইটি সমান বলকে একই বিন্দুতে ক্রিয়ারত 9N বলের সাহায্যে ভারসাম্যে রাখ হয়েছে। সমান বলদ্বয় কত?
 - (a) 9√3N
- (b) 9N
- (c) $3\sqrt{3}N$ (d) 3N
- ৪N ও 6N মানের দুইটি বল কোনো বিন্দুতে α কোণে ক্রিয়ারি থাকলে- |SB'2|
 - (i) লব্ধির বৃহত্তম মান = 14N
 - (ii) লব্ধির ক্ষুদ্রতম মান = 2N
 - (iii) $\alpha = \frac{\pi}{2}$ হলে লব্ধির মান = 10N

নিচের কোনটি সঠিক?

- (a) i, ii (b) i, iii (c) ii, iii (d) i, ii, iii
 নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:
 P মানের দুইটি সমান বল OX ও OY বরাবর ক্রিয়া করে। বল
 দুইটির মধ্যবর্তী কোণ 90°।
- 68. বল দুইটির লব্ধি OX এর সাথে কত কোণ উৎপন্ন করে? [BB'21]
 - (a) 15° (b) 30°

69. বল দুইটির লব্ধির মান কত?

- (c) 45° (d) 90°
- [BB'21]
- (a) $\sqrt{2}P$
- (b) $\sqrt{3}P$
- (c) 2P
- (d) 3P

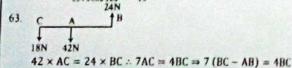

উদ্দীপকের আলোকে R ও W এর মধ্যবতী কোণ কত? [BB'2

 $\theta = \sin^{-1}\left(\frac{P}{\sqrt{2}P}\right) = 45^{\circ}$

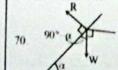
- (a) $90^{\circ} \alpha$
- (b) $90^{\circ} + \alpha$
- (c) $180^{\circ} \alpha$
- (d) $180^{\circ} + \alpha$

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

58. d 59. d 60. d 61. b 62. a 63. a 64. d 65. d 66. b 67. d 68. c 69. a 70. c



 $3(4 + x) = 6 \times x \Rightarrow 12 + 3x = 6x \Rightarrow 3x = 12$

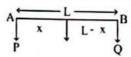

ः x = 4 : QR = 4 একক। সদৃশ হলে, পর্নি = P + Q = 9 একক

अञ्चल दर्ज. निक = P ~Q = 3 একক

- 61. $R = \sqrt{10^2 + 5^2 + 2 \times 10 \times 5 \cos 120^\circ}$ = $\sqrt{100 + 25 - 50} = 5\sqrt{3} N$
- 62. $\tan \theta = \frac{5 \sin 120^{\circ}}{10+5 \cos 120^{\circ}} = \frac{1}{\sqrt{3}} : \theta = 30^{\circ}$

 $\theta = 90^{\circ} + (90^{\circ} - \alpha) = 180^{\circ} - \alpha$

- 11. 5 একক দূরত্বে A ও B বিন্দুতে ক্রিয়ারত 9 এবং 5 একক মানের সমান্তরাল বলঘয়-[CB, BB, MB'21]
 - (i) অসদৃশ হলে লব্ধির মান 4 একক
 - (ii) সদৃশ এবং লব্ধি C বিন্দুতে ক্রিয়ারত হলে BC = 45 একক
 - (iii) সদৃশ হলে লব্ধির মান 14 একক


নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 12. ΔΑΒC এর কৌণিক বিন্দু A, B ও C তে যথাক্রমে P, Q এবং R মানের তিনটি সদৃশ সমান্তরাল বল ক্রিয়াশীল। লব্ধি ক্রিভুজের ভবকেন্দ্রগামী হলে-[BB'21]
 - (a) $P: Q: R = \sin A : \sin B : \sin C$
 - (b) P: Q: R = tan A: tan B: tan C
 - (c) P: Q: $R = \sin 2A : \sin 2B : \sin 2C$
 - (d) P: Q: R = 1: 1: 1
- 73. একটি বলের আনুভূমিক ও উলম্ব অংশের মান 4N ও 3N হলে বলটির মান-
 - (a) 5N
- (b) 10N
- (c) 2√3N
- (d) 7N
- 74. √3kg ওজনের একটি বস্তুকে দুটি বল দ্বারা টেনে রাখা হয়েছে। একটি আনুভূমিক এবং অপরটি আনুভূমিকের সাথে 30° কোণে ক্রিয়ারত হলে বলদ্বয় কত কেজি ওজন? [JB'21]
 - (a) $3\sqrt{5}$, 10
- (b) $2\sqrt{3}$, $\sqrt{3}$
- (c) $5\sqrt{3}$, 10
- (d) $3.2\sqrt{3}$
- 75. একই বিন্দুতে ক্রিয়ারত দুটি বলের ক্ষুদ্রতম লব্ধি 1N এবং বল দূটি লম্বভাবে ক্রিয়াশীল হলে লব্ধির মান 5N। বলদ্বয় দ্বারা বৃহত্তম লব্ধির মান-[JB'21]
 - (a) 5N
- (b) 2N
- (c) 7N
- (d) 3N

Educationblog24

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮

- 76. কোনো বিন্দুতে ক্রিয়ারত Q ও 2Q মানের বলদ্বয়ের লব্ধি Q বলের ক্রিয়ারেখার উপর লম্ব হলে–
 - (i) বলম্বয়ের মধ্যবর্তী কোণ 120°
 - (ii) লব্ধির মান √3Q একক
 - (iii) Q বলের দিক বরাবর 2Q বলের ধনাত্মক লম্বাংশ 3Q নিচের কোনটি সঠিক?
 - (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

77. L = 8, Q = 30, x = 6 হলে P এর মান কত?

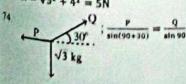
[JB, CB'21; JB'17]

- (a) 100
- (b) 7
- (c) 70
- (d) 10
- 78. একই বিন্দুতে ক্রিয়ারত P ও 30N বলদ্বয়ের লব্ধি 25N, P বলের ক্রিয়ারেখার উপর লম্ব। P এর মান কত?
 - (a) 10√5 N
- (b) $10\sqrt{3}$
- (c) 5√11 N
- (d) $5\sqrt{15}$
- 79. P বলের উপাংশদ্বয় P এর সাথে 15° ও 45° কোণ উৎপন্ন করে। P বলের একটি উপাংশ কোনটি? [CB'21]
- (b) $\frac{2P}{\sqrt{2}}$

- 80. P ও Q মানের দুটি বল পরস্পর 45° কোণে কোনো একটি বিন্দুতে ক্রিয়ারত। এদের লব্ধি 16N, P বলের সাথে 30° কোণ উৎপন্ন করে। Q বলের মান কত? [Din.B'21]
 - (a) 8√2N
- (b) 4√2N
- (c) 32√2 N (d) 8N

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

71. d 76. a 77. d 78. c 72. d 74. d 75. c 79. a 73. a 80. a

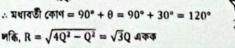


 $P \times AG = (Q + R) \times GD \Rightarrow Q + R = 2P \cdots (1)$

অবুরপ P + Q = 2R ······(II)

(i) 4 (ii) (可存 P = R 事(可 P = Q

 $R = \sqrt{3^2 + 4^2} = 5N$

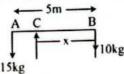


 $\frac{\sqrt{3}}{\sin 150^{-1}} \left[\frac{P}{\cos 30} = \frac{Q}{1} = \frac{\sqrt{3}}{1} \right]; Q = 2\sqrt{3} : P = \frac{\sqrt{3}}{2} \times 2\sqrt{3} = 3$

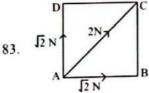
75. $(P+Q)^2 + (P-Q)^2 = 2(P^2+Q^2) \Rightarrow (P+Q)^2 + 1 = 2 \times 25$ $\Rightarrow (P+Q)^2 = 49 \Rightarrow P+Q = 7N$

76. $\theta = \sin^{-1}\left(\frac{Q}{20}\right) = 30^{\circ}$

.. মধাবতী কোণ = 90° + 0 = 90° + 30° = 120°

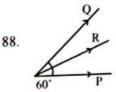

Q এর দিকে 2Q এর শম্বাংশ 2Q cos 120 = -Q

- 77. $Px = QL Qx \Rightarrow 6P = 240 180 \Rightarrow 6P = 60 \Rightarrow P = 10$
- 78. $P = \sqrt{(4\psi 4\pi)^2 (2\pi \sqrt{30^2 25^2} = 5\sqrt{11} \text{ N})}$
- 79. $\frac{P_1}{\sin 45^*} = \frac{P}{\sin (45^* + 15^*)} \, \overline{\P}, P_1 = \frac{\sqrt{2}}{\sqrt{3}} P$
- 80. $Q = \frac{R \sin \theta}{\sin \theta} = \frac{16 \sin 30^{\circ}}{\sin 45^{\circ}} = \frac{16}{\sqrt{2}} = 8\sqrt{2};$ $\frac{9}{10 30^{\circ}}$



₩ CUCA উচ্চতির গতিত ইয়ে পর বিধ্বায় কি

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

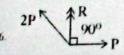

- 81. C বিন্দৃতে দণ্ডটি আনুভূমিকভাবে ভারসাম্যে থাকলে BC এর [Din.B'21] দৈর্ঘ্য কত মিটার?
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 82. P ও Q (P > Q) মানের দুইটি সমান্তরাল বল-[MB'21]
 - (i) সদৃশ হলে বলদ্বয়ের লব্ধি P + Q
 - (ii) বিসদৃশ হলে বলদ্বয়ের লব্ধি P Q
 - (iii) বলদ্বয়ের লব্ধি P এর দিকের সাথে সমান্তরাল নিচের কোনটি সঠিক?
 - (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

চিত্রে ABCD একটি বর্গক্ষেত্র। A বিন্দৃতে ক্রিয়ারত বলত্রয়ের [RB'19] লব্ধি কত?

- (a) $2\sqrt{2}$
- (b) 4
- (c) 8
- (d) 16
- 84. ত্রিভুজের অন্তঃস্থ কোণত্রয়ের সমদ্বিখণ্ডকত্রয়ের ছেদবিন্দুকে কী [RB'19] वना इय?
 - (a) অন্তঃকেন্দ্ৰ
- (b) পরিকেন্দ্র
- (c) ভরকেন্দ্র
- (d) লম্বকেন্দ্ৰ
- 85. দুইটি সমান বলের লব্ধির বর্গ তাদের গুণফলের দ্বিগুণ হলে [Ctg.B'19] বলদ্বয়ের অন্তর্গত কোণ-
 - (a) 0°
- (b) 90°
- (c) 135°
- (d) 180°
- 86. একটি বিন্দুতে ক্রিয়ারত দুটি বল P ও 2P। তাদের লব্ধি R, P বলের উপর লম্ব হলে তাদের অন্তর্গত কোণ কত? [BB'19]
 - (a) 30°
- (b) 60°
- (c) 90°
- (d) 120°

- 87. একই আনুভূমিক রেখায় 10 কেজি ও 5 কেজি ওজনের 🙈 বিসদৃশ সমান্তরাল বল দুটি বিন্দুতে ক্রিয়ারত আছে। বৃহ_{টর ক্র} থেকে এদের লব্ধির প্রয়োগ বিন্দুর দূরত্ব 25 সে.মি. হলে ১ দুটির মধ্যবতী দূরত্ব কত? 1B.16
 - (a) 50 সে.মি.
- (b) 75 সে.মি.
- (c) 25 সে.মি.
- (d) 15 সে.মি.

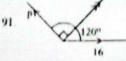
P ও Q এর মধ্যবর্তী কোণ 60° হলে লব্ধি R হলো- [JB']9


- (a) $\sqrt{P^2 + Q^2 + PQ}$
- (b) $\sqrt{P^2 + Q^2 + 2PQ}$
- (c) $P^2 + Q^2 + PQ$
- (d) $P^2 + Q^2 + 2PQ$
- 89. একটি কণার উপর কার্যরত P ও Q মানের বলদ্বয় সমান ও একই ব্রেক্ত বিপরীতমুখী হলে, এদের লব্ধি কোনটি?
 - (a) 0

- (b) P + Q
- (c) $P^2 + Q^2$
- (d) $\sqrt{P^2 + Q^2}$
- 90. P এবং Q বল দুটি পরস্পর বিপরীত দিকে ক্রিয়া করলে লব্ধি হয় 5N এবং একই দিকে ক্রিয়া করলে লব্ধি হয় 7N। [Din.B'19]
 - (i) P বলের মান 6N
 - (ii) Q বলের মান 1N
 - (iii) বল দুটি মধ্যবতী কোণ যথাক্রমে 180° এবং 0° নিচের কোনটি সঠিক?
 - (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 91. কোনো বিন্দুতে 120° কোণে ক্রিয়াশীল দুটি বলের বৃহত্তম বলটি 16N এবং ক্ষুদ্রতম বলটি লব্ধির সাথে সমকোণ উৎপন্ন [Din.B'19] করে। ক্ষুদ্রতম বলটি কত?
 - (a) √3N
- (b) 3N
- (c) 8N
- (d) 8√3N

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

91. c 89. a 90. d 88. a 86. d 87. c 85. b 84. a 83. b 82. d 81. c 81. $10x = 15(5 - x) \Rightarrow 10x = 75 - 15x \Rightarrow 25x = 75 \Rightarrow x = 3$ 110-5-5 110 $3.5 \times 25 = 5 \times x \Rightarrow x = 25 \text{cm}$ 83. AB বরাবর, $F_{*} = \sqrt{2} + 2\cos 45^{\circ} = 2\sqrt{2}$


- - AD बढावब, $F_y = \sqrt{2} + 2\sin 45^\circ = 2\sqrt{2}$ $F = \sqrt{F_1^2 + F_2^2} = 4N$
- 85 $2P^2 = P^2 + P^2 + 2P^2 \cos a = a = 90^\circ$

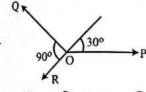
 $R\cos 90^\circ = P + 2P\cos \alpha + \cos \alpha = -\frac{1}{2} + \alpha = 120^\circ$

 $R^2 = P^2 + Q^2 + 2PQ\cos 60^\circ \Rightarrow R = \sqrt{P^2 + Q^2 + PQ}$

P - Q = 5; P + Q = 7: P = 6, Q = 1

p+16 cos 120° = p + 16 cos 120° = 0

⇒ p = 16 cos 60° = 8N


Educationblog24 উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৮

[All.B'18; RB'17]

- (i) OA বরাবর P বলের লম্বাংশ $=\frac{\sqrt{3}P}{2}$
- (ii) OB বরাবর P বলের লম্বাংশ = $\frac{P}{2}$
- (iii) OC বরাবর P বলের লম্বাংশ = P

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

- O বিন্দুতে ক্রিয়ারত সমতলীয় তিনটি বল P, Q & R সাম্যাবস্থায় আছে। P এর মান 12N হলে, Q & R এর মান যথাক্রমে নিচের কোনটি?
- (a) 24√3 N, 24N
- (b) 24N, $24\sqrt{3}$ N
- (c) 6√3 N, 6N
- (d) $6N, 6\sqrt{3} N$
- 94. সমবিন্দু দুইটি বলের লিজ বৃহত্তম হয় য়খন বলদয়য়ের অন্তর্গত কোণ- [Ctg.B'17]
 - (a) 0°
- (b) 45°
- (c) 90°
- (d) 180°
- 95. ত্রিভুজের বাহুত্রয়ের লম্ব সমদ্বিখণ্ডক তিনটির ছেদবিন্দু হলো–
 - [Ctg.B'17]

- (a) অন্তঃকেন্দ্ৰ
- (b) পরিকেন্দ্র
- (c) ভরকেন্দ্র
- (d) লম্বকেন্দ্ৰ

- 96. P ও 25N মানের দুইটি বলের লব্ধি 20N যা P এর সাথে লম্বভাবে স্থাপিত হলে, P এর মান কোনটি? [SB'17]
 - (a) 10 N
- (b) 20 N
- (c) 25 N
- (d) 15 N
- 97. P ও Q দুইটি সমান ও সমান্তরাল বল বিপরীত দিকে ক্রিয়াশীল হলে তাদের লব্ধি কত? [SB'17]
 - (a) P + Q
- (b) P Q (c) Q P
- (d) 0
- 98. 30 মিটার দৈর্ঘ্যবিশিষ্ট AB দণ্ডের A প্রান্তে 20 কেজি ওজন ও B প্রান্তে
 P কেজি ওজন ঝুলানো আছে। এদের লব্ধি C বিন্দুতে ক্রিয়াশীল। AC
 এর দৈর্ঘ্য 20 মিটার হলে বলটির মান কত?

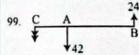
 [JB'17]
 - (a) 10N
- (b) 30N
- (c) 40N
- (d) 50N
- 99. কোনো জড় বস্তুর উপর A ও B বিন্দুতে যথাক্রমে 42N ও 24N মানের দুইটি অসদৃশ সমান্তরাল বল কার্যরত। যদি BA এর বর্ধিতাংশের উপর C বিন্দুতে তাদের লব্ধির ক্রিয়াবিন্দু কার্যরত হয়, তবে AC ও BC এর অনুপাত কোনটি? [Din.B'17]
 - (a) 7:6
- (b) 7: 4
- (c) 6: 7
- (d) 4: 7
- 100. কোনো বিন্দুতে ক্রিয়ারত (2 + 2√2)N মানের দুইটি সমান বলের লব্ধি বল (4 + 4√2)N হলে, তাদের অন্তর্ভুক্ত কোণ কত? [Din.B'17]
 - (a) 0°
- (b) 45°
- (c) 90°
- (d) 180°

- 2√5 N 120° O P
- 101. 120° O P ; চিত্রের প্রদর্শিত বলত্রয় O বিন্দুতে

সাম্যাবস্থায় থাকলে, P বলটির মান কত?

[Din.B'17]

- (a) $4\sqrt{3}$ N
- (b) 2N
- (c) $2\sqrt{3}N$
- (d) √3N


MCO উত্তরমালা ও ব্যাখ্যামূলক সমাধান

92. d	93. d	94. a	95. b	96. d	97. d	98. c	99. d	100. a	101. c

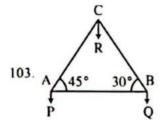
- 92. OA বরাবর P বলের লম্বাংশ= $P \cos 30^\circ = \frac{\sqrt{3}}{2} P$
 - OB বরাবর P বলের লম্বাংশ = $P \sin 30^\circ = \frac{1}{2} P$
 - OC বরাবর P বলের লম্বাংশ = P cos 0° = P
- 93 . সামির সূত্র মতে, $\frac{P}{\sin 90^{\circ}} = \frac{Q}{\sin \angle POR} = \frac{R}{\sin \angle POQ}$
 - ∴ Q = P sin ∠POR = 12 sin 150° = 6N
 - $R = P \sin \angle POQ = 12 \sin 120^\circ = 6\sqrt{3}N$
- $\frac{96. \tan 90}{100} = \frac{25 \sin \alpha}{P + 25 \cos \alpha} \div \frac{1}{0} = \frac{25 \sin \alpha}{P + 25 \cos \alpha} \div P = -25 \cos \alpha$
 - 447, $(20)^2 = 25^2 + P^2 + 2(P)(25)\cos\alpha$
 - $(20)^2 = (25)^2 + P^2 2P^2$
 - $P^2 = 25^2 20^2 = 225 : P = 15 \text{ N}$

98. 20 C 10 B

 $AC \times 20 = BC \times P \therefore 20 \times 20 = 10 \times P \therefore P = 40 N$

$$\frac{24}{AC} = \frac{42}{BC} \Rightarrow \frac{AC}{BC} = \frac{24}{42} = \frac{4}{7}$$

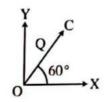
- 100. $(4 + 4\sqrt{2})^2 = 2(2 + 2\sqrt{2})^2 + 2(2 + 2\sqrt{2})^2 \cos \alpha$ $\Rightarrow 4(2 + 2\sqrt{2})^2 = 2(2 + 2\sqrt{2}) + 2(2 + 2\sqrt{2})^2 \cos \alpha$ $\Rightarrow 2 = 1 + \cos \alpha \Rightarrow \cos \alpha = 1 \Rightarrow \alpha = 0^\circ$
- 101. $\frac{P}{\sin 120^{\circ}} = \frac{2\sqrt{2}}{\sin 135^{\circ}} \therefore P = 2\sqrt{3}N$


বিভিন্ন কলেজের টেস্ট পরীক্ষার MCQ প্রশ্ন

102. কোনো বিন্দুতে ক্রিয়ারত দুটি বলের একটির মান অপরটির দিগুণ এবং তাদের লদ্ধি ক্ষুদ্রতরটির উপর লম্ব হলে বলদয়ের অন্তর্গত কোণ কত?

আনন্দ মোহন কলেজ, ময়মনসিংহ

(a) 60°


- (b) 120°
- (c) 135°
- (d) 150°

P, Q, R বলত্রয়ের লদ্ধি ত্রিভুজটির পরিকেন্দ্রগামী হলে P : Q =? ।চট্টগ্রাম সরকারি মহিলা কলেজ।

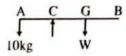
- (a) $1:\sqrt{2}$
- (b) $\sqrt{2}:1$
- (c) $2:\sqrt{3}$
- (d) $\sqrt{3}:2$

নিচের তথ্যের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

বাংলাদেশ নৌবাহিনী কলেজ, চইংহ 104. উদ্দীপক অনুসারে-

- (i) OX বরাবর Q বলের লম্বাংশ = $\frac{Q}{2}$
- (ii) OY বরাবর Q বলের লম্বাংশ = $\frac{\sqrt{3}Q}{2}$
- (iii) OC বরাবর Q বলের লম্বাংশ = 0

নিচের কোনটি সঠিক?


- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 105. কোনো জড় বস্তুর উপর A ও B বিন্দুতে যথাক্রমে 42 N ও 24 ₪ মানের দুইটি অসদৃশ সমান্তরাল বল কার্যরত। যদি BA 🕾 বর্ধিতাংশের উপর C বিন্দুতে তাদের লন্ধির ক্রিয়াবিন্দু কার্যন্ত হয়, তবে AC ও BC এর অনুপাত কোনটি?

চিট্টগ্রাম ক্যান্টনমেন্ট পাবলিক কলেজ

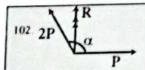
- (a) 7:6

- (b) 7:4 (c) 6:7 (d) 4:7

নিচের তথ্যের আলোকে পরবর্তী দৃটি প্রশ্নের উত্তর দাও:

106. C বিন্দুতে চাপের পরিমাণ 30 kg ওজন হলে W = কত kg? |পুলিশ লাইন্স স্কুল এন্ড কলেজ, রংপুর

- (a) 10


- (b) 20 (c) 35 (d) 40
- 107. AC = 1m এবং AG = BG হলে, AB = কড m?

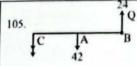
|পুলিশ লাইন্স স্কুল এন্ড কলেজ, রংপুর

- (a) 2
- (b) 3
- (c) 4
- (d) 6

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

107. c 106. b 104.a 105. d 103. c 102. b

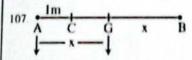
 $P + 2P\cos\alpha = 0$


$$a = \cos^{-1}\left(-\frac{P}{2P}\right) = \cos^{-1}\left(-\frac{1}{2}\right) = 120^{\circ}$$

103. P: Q = $\frac{\sin(2\times45)}{\sin(2\times30)} = \frac{1}{\sqrt{1}} = 2:\sqrt{3}$

104. OX বরাবর Q এর পায়াশে Q × $\cos 60^\circ = \frac{9}{4}$

OY বরাবর Q এর সম্বাংশ Q × $\sin 60^\circ = \frac{\sqrt{3}Q}{2}$


OC नतानत Q धात मन्नारण $Q \times \cos(0^\circ) = Q$

$$\frac{P}{BC} = \frac{Q}{AC} \stackrel{\cdot}{\cdot} \frac{AC}{BC} = \frac{Q}{P} = \frac{24}{42} = \frac{4}{7} \stackrel{\cdot}{\cdot} \cdot AC; BC = 4; 7$$

106. C বিন্দুতে চাপ = A বিন্দুতে চাপ + G বিন্দুতে চাপ

$$\Rightarrow 30 = 10 + w : w = 20 \text{kg}$$

$$\frac{10}{x-1} = \frac{20}{x} \Rightarrow 10x = 20x - 20$$

 $\Rightarrow 10x = 20 : x = 2m$

AB = 2x = 4m

সাজেশনভিত্তিক মডেল টেস্ট: অধ্যায়-০৮

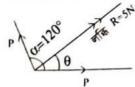
পূৰ্ণমান: ৩০

MCQ

সময়: ৩০ মিনিট

01. লামির উপপাদ্য কোনটি?

- (a) $P \sin \alpha = Q \sin \beta R \sin \gamma$
 - $\frac{P}{(b)\frac{P}{\sin\alpha}} = \frac{Q}{\sin\beta} = \frac{R}{\sin\gamma}$
 - $(c)\frac{P}{\cos\alpha} = \frac{Q}{\cos\beta} = \frac{R}{\cos\gamma}$
 - (d) $P \tan \alpha = Q \tan \beta = R \tan \gamma$
- 02. P ও Q বলদ্বয় যথাক্রমে x অক্ষের সাথে α ও β কোণ উৎপন্ন করে ক্রিয়া করলে তাদের লব্ধি-
 - (a) $R = \sqrt{(P \cos \alpha + Q \cos \beta)^2 + (P \sin \alpha + Q \sin \beta)^2}$
 - (b) R = $\sqrt{(P\cos\alpha + P\sin\alpha)^2 + (Q\cos\alpha + Q\sin\beta)^2}$
 - (c) R = $\sqrt{(P \cos \alpha + Q \sin \alpha)^2 + (P \sin \alpha + Q \cos \beta)^2}$
 - (d) $R = \sqrt{P^2 + Q^2 + 2PQ\cos(\alpha + \beta)}$
- 03. কোন বিন্দুতে 60° কোণে ক্রিয়ারত দুইটি সমান বলকে একই বিন্দতে ক্রিয়ারত 9N বলের সাহায্যে ভারসাম্য রাখে। সমান বলদ্বয়ের প্রতিটির মান-
 - (a) 3N


- (b) 3√3N
- (c) √3N
- (d) 7N

C বিন্দুতে T_1, T_2 এবং W=10 কেজি ওজনের ক্রিয়ার ফলে ভারসাম্য সৃষ্টি হয়। রশির টান T1 = কত?

- (a) 4 কেজি ওজন
- (b) 6 কেজি ওজন
- (c) 8 কেজি ওজন
- (d) 10 কেজি ওজন

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

- 05. নিচের তথ্যগুলো লক্ষ কর:
 - (i) দুইটি সমান বলের লব্ধি এদের অন্তর্গত কোণকে সমদ্বিখণ্ডিত করে
 - (ii) P ও Q সদৃশ সমান্তরাল বলের লব্ধি P+Q
 - (iii) P, P সমবিন্দু দুইটি বলের লব্ধি P হলে, বল দুইটির মধ্যবতী কোণ 60°

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

- 12N ও 8N দুইটি সমমুখী সমান্তরাল বল কোন কঠিন বস্তুর A ও B বিন্দুতে ক্রিয়াশীল। বল দুটির অবস্থান বিনিময় করলে এদের লব্ধির ক্রিয়াবিন্দু AB বরাবর কত দূরে সরে যাবে?
 - $(a) \frac{1}{2}AB$
- (c) $\frac{1}{5}$ AB
- $(d) \frac{1}{2} AB$
- 07. আনুভূমিক দিকে ও অনুভূমিকের সাথে 30° কোণে ক্রিয়াশীল দুইটি বল 5 একক ওজনের বস্তুকে স্থিরভাবে ধরে রাখে, বল দুইটির মান কত?
 - (a) $\frac{5}{\sqrt{3}}$, 10
- (b) $5\sqrt{3}$, 10
- (c) 5, 10
- (d) 5, $10\sqrt{3}$

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: P ও Q(P > Q) দুইটি বলের বৃহত্তম লব্ধি 8N এবং ক্ষুদ্রতম

08. P এর মান কোনটি?

लिक 2N ।

(a) 2N

(b) 6N

(c) 5N

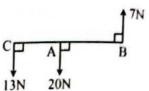
- (d) 8N
- 09. বলদ্বয়ের মধ্যবতী কোণ 60° হলে, লব্ধির মান কোনটি?
 - (a) 7N

- (b) 3N
- (c) √13N
- (d) 5N
- 10. 10N ও 4N মানের দুইটি সমমুখী সমান্তরাল বল AB = 14cm সুষম দণ্ডের যথাক্রমে A ও B বিন্দৃতে ক্রিয়ারত হলে লব্ধির অবস্থান কোনটি?
 - (a) A বিন্দু থেকে 4cm দূরে
 - (b) A বিন্দু থেকে 6cm দূরে
 - (c) B বিন্দু থেকে 4cm দূরে
 - (d) B বিন্দু থেকে 6cm দুরে
- 11. 7N, 8N ও 10N মানের তিনটি বল পরস্পরের সাথে 120° কোণ উৎপন্ন করে। 7N মানের বলটির দিকে আনুভূমিক দিক ধরে লব্ধির উল্লম্ব উপাংশ কোনটি?
 - (a) 2

(b) $-\sqrt{3}$

(c) √3

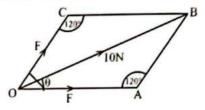
- (d) $3\sqrt{3}$
- 12. 2P এবং P মানের দুইটি বল একটি বস্তুর উপর কার্যরত। যদি প্রথম বলকে বিশুণ ও দ্বিতীয় বলকে ৪ একক বৃদ্ধি করা হয়, তবে তাদের লব্ধির দিক অপরিবর্তিত থাকে। P এর মান কত?
 - (a) 16


(b) 8

(c) 4

(d) 2

নিচের উদ্দীপকের আপোকে পরবর্তী দুইটি প্রশ্নের উদ্ভ



- 19. BC:AC কত?
 - (a) 20:13
- (b) 20:7
- (c) 13:7
- (d) 27:13
- 20. AC = 3 মিটার হলে, AB কত মিটার?
 - (a) $\frac{33}{7}$

(b) $\frac{39}{7}$

(c) $\frac{40}{7}$

- (d) $\frac{81}{7}$
- 21. চিত্রে OABC একটি রম্বস।

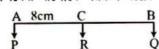
F এর মান কত?

- (a) $\frac{10\sqrt{10}}{\sqrt{3}}$ N
- (b) $\frac{10\sqrt{30}}{\sqrt{10}}$ N
- (c) $\frac{10\sqrt{10}}{\sqrt{30}}$ N
- (d) $\frac{10\sqrt{3}}{\sqrt{10}}$ N
- 22. একটি দণ্ডের A ও B বিন্দৃতে যথাক্রমে 45N এবং 15N দুইটি বিপরীতমুখী সমান্তরাল বল ক্রিয়া করছে। যদি এদের লব্ধি দণ্ডের (বিন্দুতে ক্রিয়া করে এবং AC = 5m হয় তবে, AB = কত?
 - (a) 6m
- (b) 10m
- (c) 12m
- (d) None
- 23. এক বিন্দুতে পরস্পর θ কোণে ক্রিয়াশীল দুইটি p, p সমান বলের লব্ধি R যদি R² = 3p² হয় তবে θ এর মান কত?
 - (a) 60°
- (b) 90°
- (c) 120°
- (d) 30°
- पृष्ठि সমবिन्पू বलের বৃহত্তম लक्षि 17N। यथन वनदर अहन्य সমকোণে ক্রিয়াশীল হয়, তখন তাদের লব্ধি 13N হয়। তালে শুদ্রতম লব্ধি কত?
 - (a) 6N
- (b) 7N
- (c) 5N

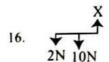
- (d) 8N
- একটি বিন্দুতে পরস্পর α কোণে ক্রিয়ারত বল P ও Q এর দর্ভি R | P = Q = R হলে α এর মান কড?

 - (a) 60°
- (b) 90°
- (c) 120°
- (d) 180°

; চিত্রে P এর মান কত?


- (a) 3√3N
- (b) 5√3N
- (c) 5√2N
- (d) 5N
- O বিন্দুতে 6P, 9P মানের দুইটি বলের লব্ধি 8P । যদি কোন ছেদক বলত্রয়ের ক্রিয়ারেখাকে যথাক্রমে C, D, E বিন্দুতে ছেদ করে তবে-
 - (a) $\frac{6}{\text{OD}} + \frac{9}{\text{OC}} = \frac{8}{\text{OE}}$ (b) $\frac{6}{\text{OE}} + \frac{9}{\text{OD}} = \frac{8}{\text{OC}}$
- - $(c) \frac{6}{OC} + \frac{9}{OD} = \frac{8}{OE}$
- (d) কোনোটিই নয়
- 15. কোন বিন্দুতে দুইটি বল 120° কোণে ক্রিয়ারত। বৃহত্তর বলটির মান 10N এবং তাদের লব্ধি ক্ষুদ্রতর বলের সাথে সমকোণ উৎপন্ন করলে ক্ষুদ্রতর বলের মান কত?
 - (a) 2N

(b) 4N


(c) 5N

(d) 6N

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

চিত্রে, P ও Q সমান্তরাল বলদ্বয়ের লব্ধি R, এখানে P = 7N ও 0 = 8N

চিত্রের দুটি অসদৃশ বলের লব্ধি 2N হলে x এর মান কত নিউটন?

(a) 12

(b) 8

(c) 6

- (d) 4
- ABC ত্রিভুজের তিনটি কৌণিক বিন্দুতে 2, 2, P তিনটি সদৃশ সমান্তরাল বল ক্রিয়া করছে। এদের লব্ধি ত্রিভুজের ভরকেন্দ্রগামী হলে P এর মান কোনটি?
 - (a) 2

(b) 3

(c) 4

- (d) 5
- 18. P = 6 kg, Q = 4 kg এবং AB = 5 মিটার। বলদ্বরের অবস্থান বিনিময় করা হলে এদের পন্ধির ক্রিয়াবিন্দু AB বরাবর কত দূর সরে যাবে? [সদৃশ বল]
 - (a) 2 মিটার
- (b) 0 মিটার
- (c) I মিটার
- (d) 3 মিটার

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

একই বিন্দুতে কার্যরত দুইটি বলের বৃহত্তম লব্ধি 14 একক এবং বল্বয় যখন লম্বভাবে ক্রিয়া করে তখন তাদের লব্ধি 10 একক। P ও Q দুটি বল। বল দুইটি বিপরীতমুখী হলে লব্ধির মান 3N . এবং তা P এর দিকে এবং একই দিকে ক্রিয়া করলে লব্ধির মান হয় 5N। সেক্ষেত্রে-

- (i) P বলের মান 4N
- (ii) Q বলের মান 1N
- (iii) $P = \frac{1}{4}Q$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 27. সমমানের দুইটি বলের লব্ধির বর্গ বলদ্বয়ের গুণফলের তিন গুণ। এদের মধ্যবর্তী কোণ কত ডিগ্রি?
 - (a) 0°

(b) 45°

(c) 60°

(d) 90°

Educationblog₂

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৮ | 🏴

 \vec{P} , \vec{Q} , \vec{R} মানের তিনটি বল সাম্যাবস্থায় থাকলে নিচের কোন সম্পর্কটি সঠিক?

- (a) $\vec{P} + \vec{Q} = \vec{R}$
- (b) $\vec{R} \vec{Q} = \vec{R}$
- (c) $\vec{P} = \vec{Q} + \vec{R}$
- (d) $\vec{P} + \vec{Q} + \vec{R} = 0$

চিত্রানুযায়ী লামির সূত্র কোনটি?

- (a) $\frac{T}{\sin x} = \frac{T}{\cos x} = \frac{T}{\sin 2x}$ (b) $\frac{T}{\sin x} = \frac{T}{\sin 2x} = \frac{W}{\sin 2x}$ (c) $\frac{T}{\sin x} = \frac{T}{\sin x} = \frac{W}{\sin 2x}$ (d) $\frac{T}{\sin 2x} = \frac{T}{\sin 2x} = \frac{W}{\sin x}$

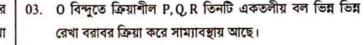
- $\vec{P} + \vec{O} + \vec{R} = 0$ এর জন্য সঠিক হল
 - (i) বল তিনটির লব্ধি শূন্য
 - (ii) বল তিনটি সাম্যাবস্থায় আছে
 - (iii) P ও Q দুইটি বল এবং লব্ধি R

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

পূৰ্বমান: ৫০

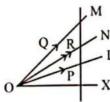
CQ

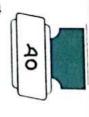

2

সময়: ২: ৩৫ মিनिট

(যেকোনো পাঁচটি প্রশ্নের উত্তর দাও:)

01. তিনটি সদৃশ সমান্তরাল বল P, Q, R যথাক্রমে ΔABC এর কৌণিক বিন্দু A, B, C তে ক্রিয়া করে। এদের লব্ধির ক্রিয়ারেখা ত্রিভজটির লম্ব কেন্দ্রগামী।


- (ক) ত্রিভুজটির অন্তঃকেন্দ্র I হলে, প্রমাণ কর যে, $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A$
- (খ) প্রমাণ কর যে, P: Q: R = tan A: tan B: tan C
- (গ) প্রমাণ কর যে, $P(b^2 + c^2 a^2) = Q(c^2 + a^2 b^2)$ $= R(a^2 + b^2 - c^2)$



- (ক) P=Q=R হলে বলগুলোর মধ্যবর্তী কোণ কত হবে? 2
- (খ) প্রমাণ কর যে, $\frac{P}{\sin Q^2 R} = \frac{Q}{\sin R^2 P} = \frac{R}{\sin P^2 Q}$
- (গ) Ο বিন্দুটি ΔABC এর অন্তঃকেন্দ্র এবং OA, OB, OC বরাবর যথাক্রমে P, Q, R বলগুলো ক্রিয়ারত হলে, প্রমাণ কর যে,
 - P: Q: R = $\cos \frac{A}{2}$: $\cos \frac{B}{2}$: $\cos \frac{C}{2}$

04. O বিন্দুগামী P ও Q দুইটি বলের লব্ধি R।

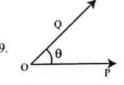
- (ক) বলের ত্রিভুজ সূত্রটি লিখ।
- (খ) চিত্রে P ও Q বলদ্বয় যথাক্রমে cos A ও cos B এর সমানুপাতিক। প্রমাণ কর যে, ইহাদের লব্ধি R, sin C এর সমানুপাতিক।
- (গ) প্রমাণ কর যে, লব্ধির ক্রিয়ারেখা CA এর সাথে $\frac{1}{2}$ (A + C B) কোণ উৎপন্ন করে।
- (क) বলের লয়াংশ ও অংশকের পার্থক্য বর্ণনা কর।
- (খ) কোনো সরলরেখা P,Q,R এর ক্রিয়ারেখাকে L,M,N বিন্দুতে ছেদ করে। প্রমাণ কর যে, $\frac{P}{OL} + \frac{Q}{OM} = \frac{R}{ON}$ ।
- (গ) যদি P > Q এবং লব্ধি R এদের অন্তর্গত কোণকে এক-তৃতীয়াংশে বিভক্ত করে, তবে দেখাও যে বল দুটির অন্তর্গত কোণ $3\cos^{-1}\left(\frac{P}{2Q}\right)$ এবং লব্ধি $R = \frac{P^2 - Q^2}{Q}$

Education blog 24. com

05. (i) P ও Q বল দুইটি একটি হেলানো তলের দৈর্ঘ্য ও ভূমির সমান্তরালে ক্রিয়ারত থেকে প্রত্যেকে এককভাবে তলের উপর W ওজনের বস্তুকে ধরে রাখতে পারে।

A 14cm B (ii) P=2N Q=5N

- (ক) 6N ও 8N বল দুইটি পরস্পর 60° কোণে ক্রিয়াশীল। বলদ্বয়ের লব্ধি ও লব্ধি বলটি 8N বলের সাথে যে কোণ উৎপন্ন করে, তা নির্ণয় কর।
- (খ) (i) নং হতে দেখাও যে, $\frac{1}{p^2} \frac{1}{Q^2} = \frac{1}{W^2}$
- (গ) (ii) নং হতে, P বলটির ক্রিয়ারেখা সমান্তরাল রেখে তার
 ক্রিয়াবিন্দু d দূরে সরালে দেখাও যে, তাদের লব্ধি ^{2d}/₇ দূরে
 সরে যাবে।


গোলকের সাথে সংযুক্ত।

- (ক) কোনো বিন্দুতে ক্রিয়ারত দুইটি বলের একটির মান অপরটির দ্বিত্তণ হলে এবং তাদের লব্ধি ক্ষুদ্রতরটির উপর লম্ব হলে বলদ্বয়ের অন্তর্গত কোণ নির্ণয় কর।
- (খ) দৃশ্যকলপ-১ এ P কে R পরিমাণে এবং Q কে S পরিমাণে বৃদ্ধি করলে লব্ধি O বিন্দৃতে ক্রিয়া করে। আবার, P ও Q এর পরিবর্তে যথাক্রমে Q ও R ক্রিয়া করলেও লব্ধি O বিন্দৃতে ক্রিয়া করে। দেখাও যে, S = R - (Q-R)² P-Q। 4
- (গ) দৃশ্যকল্প-২ এর গোলকটির ওজন w হলে, দেখাও যে, সূতার টান $T = \frac{w(a+l))}{\sqrt{2al+l^2}}$
- 07. দৃশ্যকলপ-১: P + Q @ P Q বলদ্বয় 2α কোণে ক্রিয়ারত এদের লব্ধি বলদ্বয়ের অন্তর্গত কোণের সমদ্বিখণ্ডকের সাথে θ কোণ উৎপন্ন করে।

দৃশ্যকলপ-২: P ও Q দুটি অসদৃশ সমান্তরাল বল A ও B বিন্দুতে ক্রিয়াশীল।

- (ক) 8N ও 5N বলদ্বয়ের লব্ধি 7N হলে বলদ্বয়ের অন্তর্গত কোণের মান কত?
- (খ) দৃশ্যকম্প-১ হতে দেখাও যে, P: Q = tan α: tan θ ι 4
- (গ) P ও Q বলছয়কে x পরিমাণে বৃদ্ধি করা হলে এদের লিয়র সরণ নির্ণয় কর।

- 08. কোনো অনড় বস্তু A ও B বিন্দৃতে যথাক্রমে P ও Q দুই। সমমুখী সমান্তরাল বল ক্রিয়ারত যেখানে P > Q । বল দুই। লিব্ধি AB রেখার O বিন্দৃতে ক্রিয়ারত। আবার কোন বিন্দৃতে। ও S মানের দৃটি বল θ কোণে ক্রিয়াশীল।
 - (ক) সমতলীয় বলের সাম্যাবস্থার জন্য প্রয়োজনীয় শর্ত কি?
 - (খ) দেখাও যে, P ও Q বল দুইটি পরম্পর অবস্থান বিনিয় করলে উহাদের লব্ধির ক্রিয়াবিন্দু AB বরাবর d দূরত্বে সর যাবে যখন $d=\frac{P-Q}{P+Q}$ AB।
 - (গ) R ও S বলদ্বয়ের লব্ধির মান $(2m+1)\sqrt{R^2+S^2}$ এবং যখন তার $\left(\frac{\pi}{2}-\theta\right)$ কোণে ক্রিয়া করে তখন লব্ধির মান $(2m-1)\sqrt{R^2+S^2}$ হলে প্রমাণ কর, $\tan\theta=\frac{m-1}{m+1}$ 4

চিত্রে, Ο বিন্দুতে ক্রিয়ারত P ও Q বলদ্বয়ের অন্তর্গত কোণ θ।

- (ক) θ = 90° হলে লব্ধির মান ও দিক নির্ণয় কর।
- (খ) P এর দিক বরাবর এদের লব্ধির লম্বাংশ Q হলে দেখাও যে

$$\theta = 2 \sin^{-1} \sqrt{\frac{P}{2Q}} = \cos^{-1} \frac{Q - P}{Q}$$

- (গ) দেখাও যে, লব্ধির মান, $\sqrt{Q^2 P^2 + 2PQ}$ ।
- 10. বাংলাদেশ ক্রিকেট দলের ব্যাটসম্যান তামিম ইকবাল তার ব্যাটিং প্র্যাকটিসের জন্য 15 ইঞ্চি একটি সুতার A ও B প্রান্তদয়তে ছাদের 12 ইঞ্চি দূরত্বে অবস্থিত দুইটি ভিন্ন আনুভূমিক বিন্দুতে বেঁধে দিলেন। এরপর একটি মসৃণ ওজনহীন আংটার সাহাযো W ওজনের একটি বলকে ঐ সুতা থেকে ঝুলিয়ে দিলেন।
 - (ক) ছাদ থেকে আংটার সর্বনিম্ন বিন্দুর দূরত্ব নির্ণয় কর।
 - (খ) বলটির ওজন 6N হলে সুতার টান নির্ণয় কর।
 - (গ) বলটিকে যদি AB সুতার যে কোন বিন্দু C-তে গিট দিটে বুলিয়ে দেওয়া হয় তবে দেখাও যে, CA অংশের টার $\frac{W}{AC}$ $AB^2 + BC^2 CA^2$) যেখানে Δ হল AB^C Δ Δ তিছুজের ক্ষেত্রফল।

Educationblog 24. or उक्का अधिक रहा प्रवास विकास कर विकास कर किया है । जिस्सा कर किया है । जिस कर किया है । जिस कर किया है ।

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

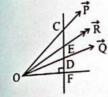
MCQ

01. b 02. a	03. b	04. b	05. a	06. с	07. ь	08. c	09. a	10. a	11. b	12. b	13. d	14. c	15. c
01. b 02. a 16. b 17. a	18. c	19. b	20. b	21. c	22. b	23. a	24. b	25. c	26. a	27. с	28. d	29. с	30. a

$$\frac{1}{03} \frac{p^2 + p^2 + 2p^2 \cos 60^\circ = 9^2 : P = 3\sqrt{3}}{71 - 72 = 10}$$

$$_{03}$$
 বলের লম্ব ত্রিভুজ হতে পাই, $\frac{T_1}{3} = \frac{T_2}{4} = \frac{10}{5} \Rightarrow T_1 = 6$

$$d = \frac{12-8}{12+8} \times AB = \frac{1}{5}AB$$


06.
$$a = 12+8$$

 $p + Q = 8; P - Q = 2 : P = 5N : Q = 3N$
08. $p + Q = 8; P - Q = 2 : P = 5N : Q = 3N$

08.
$$P + Q = 5^{2}$$

09. $R^{2} = 5^{2} + 3^{2} + 2 \times 5 \times 3 \cos 60^{\circ}$: $R = 7N$

$$x = \frac{4}{10+4} \times 14 = 4$$
cm

$$F\sin\theta = 7\sin0^\circ + 8\sin120^\circ + 10\sin240^\circ = -\sqrt{3}$$

$$\frac{11}{13} \quad \tan 90^\circ = \frac{10 \sin 120^\circ}{P + 10 \cos 120^\circ} :: P = 5N$$

Pcos∠FOC + Qcos∠FOD = Rcos∠FOE

$$\Rightarrow P.\frac{OF}{OC} + Q.\frac{OF}{OD} = R.\frac{OF}{OE}$$

$$\Rightarrow \frac{P}{OC} + \frac{Q}{OD} = \frac{R}{OE} \Rightarrow \frac{6}{OC} + \frac{9}{OD} = \frac{8}{OE}$$

16.
$$10 - x = 2 \Rightarrow x = 8$$

18.
$$x = \frac{P-Q}{P+Q} \times AB = \frac{6-4}{6+4} \times 5 = 1m$$

$$19. \quad \frac{20}{BC} = \frac{7}{AC} \ \therefore \frac{BC}{AC} = \frac{20}{7}$$

20.
$$\frac{AB}{13} = \frac{AC}{7}$$
 :: $AB = \frac{3 \times 13}{7} = \frac{39}{7}$

21.
$$10^2 = 2F^2 + 2F^2\cos 60^\circ :: F = \frac{10\sqrt{10}}{\sqrt{30}}$$

22.
$$\underbrace{\begin{array}{c} 30 \\ 45 \\ C \\ \hline \end{array}}_{C \ 5} \underbrace{\begin{array}{c} A \\ A \\ \hline \end{array}}_{I5} ; AC = 5$$

$$AC = \frac{15}{45-15} \times AB$$

$$\Rightarrow 5 = \frac{15}{30} \times AB \Rightarrow AB = 10m$$

23.
$$3p^2 = p^2 + p^2 + 2p^2 \cos\theta : \theta = 60^\circ$$

25. দুইটি সমান বলের লব্ধি ওদের সমান হলে
$$\alpha = 120^\circ$$

26.
$$P-Q=3; P+Q=5 \therefore P=4; Q=1$$

27.
$$4p^2 \cos^2 \frac{\alpha}{2} = 3p^2 \Rightarrow \cos \frac{\alpha}{2} = \frac{\sqrt{3}}{2} \Rightarrow \alpha = 60^\circ$$

29.
$$\frac{T}{\sin x} = \frac{T}{\sin x} = \frac{W}{\sin 2x}$$
 (লামির উপপাদ্য)।

CQ

- 03. (本) 120°
- 05. (季) 25.28°
- 06. (4) $\alpha = 120^{\circ}$
- 07. (4) $\alpha = 120^{\circ}$
 - (1) $\frac{x}{P-Q}AB$

- (ক) লব্ধির মান $R=\sqrt{P^2+Q^2}$ ও লব্ধির দিক $\beta=\tan^{-1}\frac{Q}{p}$
- 10. (ক) 4.5 ইন্তি
 - (약) 5N

প্রার্থনায় সৃষ্টিকর্তার কোন পরিবর্তন হয় না; পরিবর্তিত হয় প্রার্থনাকারি।

- Soren Kierkegaard

Educationblog24.co। উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৯

অধ্যায়

সমতলে বস্তুকণার গতি

সৃজনশীল (ক), (খ) ও (গ) নং প্রশ্নের জন্য এ অধ্যায়ের গুরুত্বপূর্ণ টাইপসমূহ:

তরুত্	টাইপ	টাইপের নাম	य	তবার এনে		যে বোর্ডে যে বছর এসেছে	
			क	4	न	CQ	
00	T-01	বেগের সামান্তরিক সূত্র	02	01	-	Ctg.B'23; MB'22, SB'19	
000	T-02	নদী পারাপার	03	06	01	DB'23, 22; Ctg.B'23; SB'23; MB'23; RB'22; BB'22, 17; Din.B'22; CB'17	
000	T-03	কখনও সমত্রণ, সমমন্দন, সমবেণে চলমান কণার গতি	02	07	06	MB'23; Ctg.B'19; SB'19, 18; DB'18, 17; JB'18; Din.B'18; RB'17; CB'17	
00	T-04	বাঘ-হরিণ, ইঁদুর-বিড়াল ধরা এবং বাস-যাত্রী, বাস- সাইকেল অতিক্রম করা	-	02	-	BB'19; JB'17	
000	T-05	বিশেষ এক সেকেন্ডে অতিক্রান্ত দূরত্ব	08	01	•	JB'23, 19, 17; CB'23; Din.B'22, 19; Ctg.B'19; RB'17	
00	T-06	রেলগাড়ির সংঘর্ষ এড়ানোর শর্ত নির্ণয়		-	02	CB'22; DB'17	
00	T-07	নির্দিষ্ট অংশ ভেদ করে বেগ হারানোর পর অতিক্রান্ত দূরত্ব		-	01	MB'23; DB'22; RB'19	
00	T-08	আপেক্ষিক বেগ ও গড়বেগ		-	-	DB'18; SB'18; JB'18; Din.B'18	
000	T-09	উপর থেকে বিনা বাধায় পতনশীল বস্তুর গতি		04	02	RB'23, 19; Ctg.B'22, 17; CB'22, 19; DB; BB'19	
00	T-10	শব্দ শোনার সময় হিসেব করে গভীরতা নির্ণয়	-	02	02	Din.B'23, 17; BB'22	
0	T-11	ভূমি থেকে উল্লম্বভাবে নিক্ষিপ্ত বস্তুর গতি	•:	-	01	RB'23	
00	T-12	সর্বোচ্চ উচ্চতা ও সর্বোচ্চ উচ্চতায় উত্থানকাল	03	-	-	JB'22; MB'22; BB'17	
00	T-13	সমবেগে উর্ধ্বগামী প্লেন বা বেলুন থেকে বস্তু ছেড়ে দেওয়া এবং বিমানের উচ্চতা	04	-	-	Din.B'23; Ctg.B'22, 17; SB'22	
57714	T-14	নির্দিষ্ট সময় ব্যবধানে দুটি বস্তু একই দিকে নিক্ষিপ্ত		-	-	•	
0	T-15	α কোণে ভূমি থেকে নিক্ষিপ্ত প্রক্ষেপকের গতি	•	01		BB'22	
000	T-16	বস্তুকণার বিচরণকাল, দীর্ঘতম উচ্চতা এবং আনুভূমিক পাল্লা	03	01	07	Ctg.B'23, 22, 17; SB'23, 22; MB'23; JB'22; Din.B'22; CB'19; RB'17	
000	T-17	ভূমি থেকে α কোণে নিক্ষিপ্ত প্রক্ষেপক নির্দিষ্ট দূরত্বে নির্দিষ্ট উচ্চতার দেয়াল কোনো রকমে অতিক্রম করলে, সেই প্রক্ষেপকের গতি সংক্রান্ত		02	05	SB'23, 19, 17; JB'23, 19; Din.B'23; CB'	
00	T-18	ভূমি থেকে h উচ্চতায় α কোণে উপরে নিক্ষিপ্ত প্রাসের গতি	01		04	RB'22, CB'22, 19; Din.B'19; JB'17	
000	T-19	একই আদিবেগে α ও 90° – α কোণে নিক্ষিপ্ত বস্তুর গতি সংক্রান্ত		02	05	BB'23, 19; DB'23; DB'22; MB'22; Ctg.B'19, 17	
00	T-20	প্রাস সম্পর্কিত বিশেষ সমস্যা		01	01	SB'17; BB'17	

CQ প্রশ্ন ও সমাধান (ক, খ ও গ)

Type-01: বেগের সামান্তরিক সূত্র

concept

 $\vec{\mathfrak{g}}$ ও $\vec{\mathfrak{g}}$ বেগদ্বয় পরস্পর α কোণে ক্রিয়ারত এবং এদের লব্ধি $\vec{\mathfrak{w}}$, $\vec{\mathfrak{g}}$ এর সাথে heta কোণ উৎপন্ন করলে, লব্ধি বেগ, $w = \sqrt{u^2 + v^2 + 2uv\cos\alpha}$ এবং $\tan \theta = \frac{v\sin\alpha}{\alpha}$

- (a) বৃহত্তম লব্ধি, w_{max} = u + ν [α = 0°]
- (b) ক্ষুদ্রতম লব্ধি, w_{min} = u~v [α = 180°]
- (c) $\alpha = 90^{\circ}$ হলে লব্ধি, $w_p = \sqrt{u^2 + v^2}$ [p = perpendicular]
- (d) যদি u = v হয়, তবে $w_e = 2u\cos\frac{\alpha}{2}$ এবং $\theta = \frac{\alpha}{2} [e = equal]$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

🔟 (ক) কোন বিন্দুতে ক্ৰিয়ারত দুইটি বেগের বৃহত্তম লব্ধি 14m/sec এবং ক্ষুদ্রতম লব্ধি 2m/sec হলে বেগছয় নির্ণয় কর। [Ctg.B'23]

- (ফ) Sol": ধরি বেগ দুটি x, y (x > y) প্রথমতে, x + y = 14 (i); x - y = 2 (ii)
 - (i) ও (ii) যোগ করে পাই, 2x = 16 ⇒ x = 8
 - (i) নং এ x = 8 বসিয়ে পাই, 8 + y = 14 ∴ y = 6
 - : বেগছয়ের মান 8m/s, 6m/s (Ans.)
- 🔟 উদ্দীপক-১: দুটি বেগের বৃহত্তম লব্ধি এদের ক্ষুদ্রতম লন্ধির ছিত্ব। বেগছয়ের মধ্যবর্তী কোণ α হলে লব্ধি বেগের মান এদের সমষ্টির অর্ধেক হয়। [MB'22]
 - (খ) উদ্দীপক-১ হতে α এর মান নির্ণয় কর।
- (ব) Solⁿ: মনেকরি, বেগ দৃটির মান u ও v (u > v)
 - ∴ বৃহত্তম লিक = u + v, ক্ষুদ্রতম লিक = u − v

আবার, বেগদ্বয়ের মধ্যবর্তী কোণ α হলে, লব্ধি বেগের মান

- $=\sqrt{u^2+v^2+2uv\cos\alpha}$
- প্রসাতে, $u + v = 2(u v) \Rightarrow u + v = 2u 2v$
- \Rightarrow v + 2v = 2u u \Rightarrow 3v = u
- u = 3v (i)
- আবার, $\sqrt{u^2 + v^2 + 2uv \cos \alpha} = \frac{1}{2}(u + v)$
- $\Rightarrow u^2 + v^2 + 2uv\cos\alpha = \frac{1}{4}(u+v)^2 = \frac{1}{4}(u^2 + 2uv + v^2)$
- $\Rightarrow 4u^2 + 4v^2 + 8uv \cos \alpha = u^2 + 2uv + v^2$
- $\Rightarrow 3u^2 + 3v^2 + 8uv \cos \alpha 2uv = 0$
- \Rightarrow 3. $(3v)^2 + 3v^2 + 8.3v$. $v \cos \alpha 2.3v$. v = 0
- $\Rightarrow 27v^2 + 3v^2 + 24v^2 \cos \alpha 6v^2 = 0$
- $\Rightarrow 24v^2 + 24v^2 \cos \alpha = 0$

- $\Rightarrow 24v^2(1 + \cos \alpha) = 0$ $\Rightarrow 1 + \cos \alpha = 0 [\because v \neq 0]$ $\Rightarrow 2\cos^2\frac{\alpha}{2} \Rightarrow \cos^2\frac{\alpha}{2} = 0 \Rightarrow \cos\frac{\alpha}{2} = 0$ $\Rightarrow \cos \frac{\alpha}{2} = \cos 90^{\circ} \Rightarrow \frac{\alpha}{2} = 90^{\circ} : \alpha = 180^{\circ}$ (Ans.)
- 🔃 (ক) দেখাও যে, সমমানের দুইটি একবিন্দুগামী বেগের লব্ধি এদের অন্তর্গত কোণকে সমান দুইভাগে বিভক্ত করে।[SB'19]
- (ক) Sol": আমরা জানি, $tan\theta = \frac{p sin\alpha}{p + p cos\alpha}$ $\Rightarrow \tan\theta = \frac{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2\cos^2\frac{\alpha}{2}} \Rightarrow \tan\theta = \tan\frac{\alpha}{2}$ $\therefore \theta = \frac{\alpha}{2}$ (Showed)
- 🄃 (ক) কোনো বিন্দুতে ক্রিয়ারত a ও b বেগছয়ের লব্ধি c এবং a এর দিক বরাবর c এর লম্বাংশের পরিমাণ b হলে দেখাও $Q = \sqrt{b^2 - a^2 + 2ab}$

[রাজউক উত্তরা মডেল কলেজ, ঢাকা]

- (ক) Sol": মনে করি, a বেগ লব্ধি c এর সাথে θ কোণ উৎপন্ন করে। .: a এর দিক বরাবর c এর লম্বাংশ = c cos θ
 - প্রশ্নতে, c cos θ = b (i)
 - a এর দিক বরাবর a ও b বেগদ্বয় এবং এদের লব্ধি c এর লম্বাংশ নিয়ে পাই,
 - $a cos 0^\circ + b cos α = c cos θ$ [(i) থেকে]
 - \Rightarrow a + b cos α = b \Rightarrow cos α = $\frac{b-a}{b}$

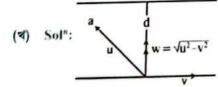
বেগের সামান্তরিক সূত্র থেকে পাই,

- $c^2 = a^2 + b^2 + 2ab\cos\alpha = a^2 + b^2 + 2a(b a)$
- $\Rightarrow c^2 = a^2 + b^2 + 2ab 2a^2$
- $\therefore c = \sqrt{b^2 a^2 + 2ab}$ (Showed)

পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা...

Education hotels and com

Type-02: নদী পারাপার

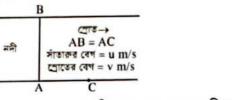

Concept

	কোন শৰ্ত না দেওয়া পাকলে	স্বিনিয়ু সময়	সর্বনিম্প দূরত্ব (সোজা সুজি নদী পার)
চিত্ৰ	W W W	v v v v v v v v v v v v v v v v v v v	V W u
সূত্র	$w = \sqrt{u^2 + v^2 + 2uv\cos\alpha}$ $d = v\sin\alpha t \Rightarrow t = \frac{d}{v\sin\alpha}$ $x = (u + v\cos\alpha)t; \frac{x}{d} = \frac{u + v\cos\alpha}{v\sin\alpha}$	$w = \sqrt{u^2 + v^2}; \alpha = 90^{\circ}$ $d = v t_{min} \Rightarrow t_{min} = \frac{d}{v}$ $x = u t_{min}; \frac{x}{d} = \frac{u}{v}$	$w = \sqrt{v^2 - u^2}$ $\alpha = \cos^{-1}\left(-\frac{u}{v}\right); d = wt_{Straight}$ $\Rightarrow t_{Straight} = \frac{d}{\sqrt{v^2 - u^2}} = \frac{d}{w}; x = 0$

নৌকার/সাঁতারুর বেগ= v, স্রোতের বেগ= u, লব্ধি বেগ= w

সৃজনশীল প্রশ্ন (ক, খ ও গ)

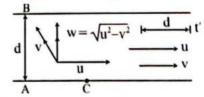
- (ক) স্রোত না থাকলে এক ব্যক্তি 240 মিটার প্রশন্ত একটি নদী সাঁতার দিয়ে 6 মিনিটে সোজাসুজিভাবে পার হয়। কিন্তু স্রোত থাকলে ঐ একই পথ 10 মিনিটে পার হতে পারে। সাঁতারুর গতিবেগ নির্ণয় কর। |DB'23|
- (ক) Sol": ধরি, স্রোতের বেগ u, সাঁতারুর বেগ v.
 প্রশ্নমতে, স্রোত না থাকলে সাঁতারুর বেগ v = ²⁴⁰/₆
 ⇒ v = 40 মিটার/মিনিট (Ans.)
- দৃশ্যকম্প-১: একটি নদী সোজাসুজি পার হতে একজন সাঁতারুর t₁ সেকেন্ড সময় লাগে। প্রোতের অনুকৃলে তীর বরাবর একই দৃরত্ব অতিক্রম করতে তার t₂ সেকেন্ড সময় লাগে। |Ctg.B'23| (খ) দৃশ্যকম্প-১ এ শান্ত নদীতে সাঁতারুর বেগ u এবং প্রোতের বেগ v হলে প্রমাণ কর যে, u: v = (t₁² + t₂²): (t₁² t₂²)



ধরি, নদীর প্রস্থ d; দ্রোতের বেগ v, সাঁতারুর বেগ u

$$\therefore t_1 = \frac{d}{\sqrt{u^2 - v^2}}$$
এবং $t_2 = \frac{d}{u + v}$

[যেহেতু স্লোতের অনুকূলে, তাই লব্ধি বেগ = u + v]


য় দৃশ্যকম্প-১:

(খ) দৃশ্যকম্প-১ এ সাঁতারুর AB দূরত্ব অতিক্রম করতে v সেকেন্ড এবং AC দূরত্ব অতিক্রম করতে v সেকেন্ড সময় লাগলে দেখাও যে, v: v: \sqrt{v} v: \sqrt{v} .

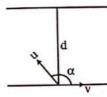
SB'23

(খ) Solⁿ মনে করি, নদীর প্রস্থ AB = d এবং সাঁতারু স্লোতের সাথে α কোণে সাঁতার দিয়ে সোজাসুজি w বেগে নদী পার হয়।

সোজাসুজি পার হতে সময় লাগে t সেকেন্ড ও দ্রোতের অনুকূলে একং দূরত্ব AC=AB=d তীর বরাবর অতিক্রম করতে t' সময় লাগে। স্রোতের দিক বরাবর লম্বাংশ, $v\cos\theta^\circ+u\cos\alpha=w\cos^{90^\circ}$ $\Rightarrow v+u\cos\alpha=0 \Rightarrow u\cos\alpha=-v$ লির্নি $w=\sqrt{u^2+v^2+2uv\cos\alpha}$ $=\sqrt{u^2+v^2+2v(-v)}=\sqrt{u^2-v^2}$ এখন, সোজাসুজি পার করার ক্ষেত্রে, $t=\frac{d}{\sqrt{u^2-v^2}}$ (i) স্রোতের অনুকূলের ক্ষেত্রে, $t'=\frac{d}{u+v}$ (ii)

H2C ষ্ট্রপ্রব্যাহক ২০২৫

 $(i) \Rightarrow (ii) \Rightarrow \frac{t}{t'} = \frac{\frac{d}{\sqrt{u^2 - v^2}}}{\frac{d}{u + v}} = \frac{u + v}{\sqrt{(u + v)(u - v)}} \Rightarrow \frac{t}{t'} = \frac{\sqrt{u + v}}{\sqrt{u - v}}$ $\therefore t' = \sqrt{u + v} : \sqrt{u - v} \text{ (Showed)}$


দুশ্যকম্প-১: একজন সাঁতারুর S মিটার প্রশস্ত নদী স্রোত না দৃ^{শ্য} _{থাকলে} সোজাসুজি পাড়ি দিতে t মিনিট সময় লাগে। কিন্তু প্ৰোত ৰাকলে তা পার হতে t' মিনিট সময় লাগে। [MB'23]

(ধ) প্রমাণ কর যে, স্লোতের বেগ = $S\sqrt{\frac{1}{t^2} - \frac{1}{{t'}^2}} \text{ ms}^{-1}$.

Sol": ধরি, সাঁতারুর বেগ x ও স্রোতের বেগ y প্রশ্নতে, স্রোত না থাকলে, $x = \frac{s}{t} (i)$ হোত থাকলে, $\sqrt{x^2-y^2}=\frac{s}{t'}\Rightarrow x^2-y^2=\frac{s^2}{t'^2}$ $\Rightarrow \frac{S^2}{t^2} - y^2 = \frac{S^2}{t'^2} \left[(i) \ \overline{\text{ECO}} \right] \Rightarrow y^2 = S^2 \left(\frac{1}{t^2} - \frac{1}{t'^2} \right)$ \therefore দ্রোতের বেগ, $y = S\sqrt{\frac{1}{t^2} - \frac{1}{t'^2}} \, ms^{-1}$ (প্রমাণিত)

ট্র দৃশ্যকল্প-১: সোজাসুজি একটি নদীর পার হতে সাঁতারুর t₁ সেকেন্ড সময় লাগে । স্রোতের অনুকূলে তীর বরাবর একই দূরত্ অভিক্রম করতে তার t2 সেকেন্ড সময় লাগে। (খ) দৃশ্যকল্প-১ অনুযায়ী সাঁতারুর গতিবেগ 20 cms⁻¹ এবং দ্রোতের গতিবেগ 10 cms⁻¹ হলে t₁: t₂ নির্ণয় কর।

(খ) Solⁿ: দেওয়া আছে, সাঁতারুর গতিবেগ, u = 20cms⁻¹ এবং দ্রোতের গতিবেগ, v = 10cms⁻¹

ধরি, নদীর প্রস্থ d এবং সাঁতারু স্রোতের সাথে α কোণে সাঁতার দিয়ে সোজাসুজি w বেগে নদী পার হয়।

প্রশ্নতে,
$$d = wt_1 = (20 + 10)t_2$$

$$\Rightarrow t_1: t_2 = 30: w \dots \dots (i)$$

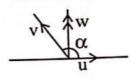
প্রোতের দিক বরাবর লম্বাংশ নিয়ে পাই,

$$10\cos 0^{\circ} + 20\cos \alpha = w\cos 90^{\circ}$$

$$\Rightarrow 10 + 20\cos\alpha = 0 \Rightarrow u\cos\alpha = -v$$
 লব্ধি বেগ,

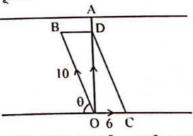
$$w = \sqrt{u^2 + v^2 + 2uv\cos\alpha} = \sqrt{u^2 + v^2 - 2v(-v)}$$

$$=\sqrt{u^2-v^2}=\sqrt{20^2-10^2}=\sqrt{300}=10\sqrt{3}$$


(i) নং হতে পাই,
$$t_1$$
: $t_2 = 30$: $10\sqrt{3}$

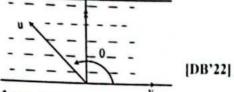
$$t_1: t_2 = \sqrt{3}: 1$$
 (Ans.)

🚾 (ক) একজন সাঁতারু স্রোতের বেগের দ্বিগুণ বেগে সাঁতার দিয়ে একটি নদীর অপর তীরে যাত্রা বিন্দুর বিপরীত বিন্দুতে পৌছাল। দ্রোতের দিকের সাথে সে যে কোণে যাত্রা [BB'22] করেছিল, তা নির্ণয় কর।


Education

- (ক) Sol*: ধরি, স্রোতের বেগ = u এবং নৌকা স্রোতের সাথে α কোণে সাঁতার দিয়ে সোজাসুজি w বেগে নদী পার হয়। ্ নৌকার বেগ = 2u, দ্রোতের দিক বরাবর লম্বাংশ নিয়ে পাই, $u \cos 0^{\circ} + 2u \cos \alpha = w \cos 90^{\circ}$ $\Rightarrow u + 2u \cos \alpha = 0 \Rightarrow \cos \alpha = -\frac{u}{2u}$ $\therefore \alpha = \cos^{-1}\left(-\frac{1}{2}\right) = 120^{\circ} \text{ (Ans.)}$
- 🕠 দৃশ্যকম্প-১: 180 মিটার প্রশস্ত একটি স্লোতহীন নদী সাঁতার কেটে পার হতে একজন লোকের 6 মিনিট সময় লাগে। কিন্তু স্রোত থাকলে তা পার হতে 10 মিনিট সময় লাগে। [Din.B'19] (খ) স্লোতের বেগ নির্ণয় কর।
- (খ) Solⁿ: সাঁতারুর বেগ, $v = \frac{180}{6\times60} = 0.5 \text{ ms}^{-1}$

স্রোত থাকলে, u + vcosα = 0 $\therefore w^2 = u^2 + v^2 + 2uv\cos\alpha = v^2 - u^2$ $\Rightarrow u^2 = v^2 - w^2$ এখন, $w = \frac{180}{10 \times 60} = 0.3 \text{ ms}^{-1}$ $u^2 = 0.5^2 - 0.3^2 \cdot u = 0.4 \text{ ms}^{-1}$ ∴ স্রোতের বেগ 0.4 ms⁻¹ (Ans.)


- (ক) একটি নৌকা 10 কি.মি. বেগে চলে ঘণ্টায় 6 কি. মি. বেগে প্রবাহিত 500 মিটার চওড়া একটি নদী পাড়ি দিতে চায়। নৌকাটির ন্যূনতম পথে নদীটি পাড়ি দিতে কত সময় [CB'17] লাগবে?
- Soln: চিত্রে নদীর প্রস্থ, OA = 500 মি.। মনে করি, নৌকাটি O বিন্দু হতে OB দ্বারা সূচিত বেগে যাত্রা করে এবং স্লোতের বেগ OC দ্বারা সূচিত নৌকাটি ন্যূনতম পথ পাড়ি দিলে তার লব্ধি বেগ OA বরাবর ক্রিয়াশীল এবং OBDC সামান্তরিকের কর্ণ দ্বারা সূচিত।

এখন, $\triangle OBD$ এ $OB^2 = BD^2 + OD^2$ $\Rightarrow OD^2 = OB^2 - BD^2 = OB^2 - OC^2$ \Rightarrow OD = $10^2 - 6^2 = 100 - 36 = 64$.: OD = 8 [বর্গমূল করে] তাহলে, ন্যূনতম পথ পাড়ি দিতে সময় লাগবে, $t = \frac{0.5}{8} = \frac{5}{10 \times 8} = \frac{1}{16} \ \text{TeV} \cdot \text{(Ans.)}$

নিজে করো

09. উদ্দীপক-১:

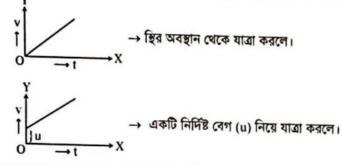
u সাতারুর বেগ এবং v শ্রোতের বেগ

(খ) একজন সাঁতাক সোজাসুজি একটি নদী পার হতে t' সময় লাগে। স্রোতের অনুকৃলে একই দূরত্ব অতিক্রম করতে t" উদ্দীপক-১ এর আলোকে দেখাও যে, সময় লাগে। $t'{:}\,t''\ = \sqrt{u+v}: \sqrt{u-v}.$

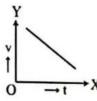
10. দৃশ্যকম্প-২:

[BB'17]

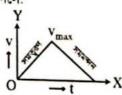
সাঁতারুর বেগ u_1 , স্লোতের বেগ u_2 , AB = d, AC = 2d

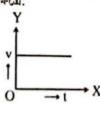

(গ) দৃশ্যকল্প-২ এ AC বরাবর প্রবাহিত নদী একজন সাত্র t₁ সময়ে AB দ্রত্ব অতিক্রম করলে এবং t₂ সময়ে AC দূরত্ব অতিক্রম করলে t1 এবং t2 এর অনুপাত নির্ণয় কর [Ans: $\sqrt{u_1 + u_2}$: $2\sqrt{u_1 - u_2}$]

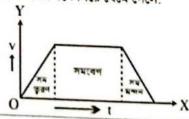
Type-03: কখনও সমত্বণ, সমমন্দন, সমবেগে চলমান কণার গতি


Concept Concept

- গতিসূত্র: (i) v = u + ft
- (ii) $s = ut + 2ft^2$
- (iii) $s = \left(\frac{u+v}{2}\right)t$ (iv) $v^2 = u^2 + 2fs$ [এখানে, ত্রণ = f]


- লেখচিত্রের সাহায্যে গতি বর্ণনা:
- সময়ের সাপেক্ষে সুষমভাবে বেগ বাড়লে অর্থাৎ সমত্বরণ হলে v-t গ্রাফের প্রকৃতি-


সময়ের সাপেক্ষে সুষমভাবে বেগ কমলে অর্থাৎ সমমন্দন र्ल:


ষ্থির অবস্থান হতে চলমান কোনো বস্তু দ্বারা অতিক্রান্ত মোট দূরত্বের প্রথম অংশ সমত্বণে এবং অবশিষ্টাংশে সমমন্দনে গিয়ে থেমে গেলে:

সমবেগ-এর ক্ষেত্রে:

স্থির অবস্থান থেকে যাত্রা শুরু করে যথাক্রমে সমত্রুণ, সমবেগ ও সমমন্দনে গিয়ে থেমে গেলে:

v-t গ্রাফের ঢাল তুরণ এবং ক্ষেত্রফল সরণ নির্দেশ করে।

20

সৃজনশীল প্রশ্ন (ক, খ ও গ)

্রা (ক) ছিরাবস্থা হতে 4ms⁻² সমত্বণে চলমান বস্তুর 30 সেকেন্ডে অতিক্রোন্ত দূরত নির্ণয় কর। অতিক্রান্ত দূরত্ব নির্ণয় কর।

(ক) Solⁿ: প্রশাসতে, u = 0, a = 4ms⁻², t = 30 sec ্র নির্ণেয় দূরত্ব, $s = ut + \frac{1}{2}at^2$ $= 0 \times 30 + \frac{1}{2} \times 4 \times (30)^2 = 1800 \text{ m. (Ans.)}$

 দৃশ্যকল্প-২: সৃষম ত্রুবেণ সরলরেখা বরাবর চলন্ত একটি বিন্দুকণা
 স্থা
 স্থ
 স্থা
 স্থা
 স্থ
 স্থা
 স্থ
 প্রপর p, q, r সময়ে যথাক্রমে সমান তিনটি ক্রমিক দূরত্ব

অতিক্রম করে। (গ) দৃশ্যকল্প-২ হতে প্রমাণ কর যে, $\frac{1}{p} - \frac{1}{q} + \frac{1}{r} = \frac{3}{p+q+r}$.

Solⁿ:মনে করি, সমত্রণে চলন্ত বিন্দুকণাটি A বিন্দু থেকে u বেগে যাত্রা শুরু করে p, q, r সময় শেষে যথাক্রমে B, C, D তে পৌঁছে এবং u1, u2, u3 বেগ প্রাপ্ত হয়।

যেখানে, AB = BC = CD = s (ধরি)।

 $\therefore AB = s = \frac{u+u_1}{2} \times p$; $\left[s = \frac{u+v}{2} \times t$ সূত্র দ্বারা $\right]$

 $\Rightarrow \frac{s}{p} = \frac{1}{2}(u + u_1) \dots \dots (i)$

BC = $s = \frac{u_1 + u_2}{2} \times q \Rightarrow \frac{s}{q} = \frac{1}{2} (u_1 + u_2) \dots \dots (ii)$

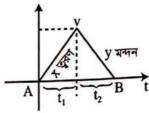
 $CD = s = \frac{u_2 + u_3}{2} \times r \Rightarrow \frac{s}{r} = \frac{1}{2} (u_2 + u_3) \dots \dots (iii)$

 $AD = 3s = \frac{u+u_3}{2} \times (p+q+r)$

 $\Rightarrow \frac{3s}{p+q+r} = \frac{1}{2} (u + u_3) \dots \dots (iv)$

এখন, (i) – (ii) + (iii) $\Rightarrow \left(\frac{1}{p} - \frac{1}{q} + \frac{1}{r}\right)s$

 $= \frac{1}{2}(u + u_1 - u_1 - u_2 + u_2 + u_3)$


 $=\frac{1}{2}(u+u_3)....(v)$

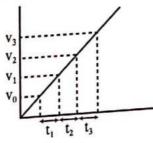
(iv) ও (v) হতে পাই, $\left(\frac{1}{p} - \frac{1}{q} + \frac{1}{r}\right)S = \frac{3s}{p+q+r}$

 $\Rightarrow \frac{1}{p} - \frac{1}{q} + \frac{1}{r} = \frac{3}{p+q+r} \therefore \frac{1}{p} - \frac{1}{q} + \frac{1}{r} = \frac{3}{p+q+r} \text{ (Proved)}$

দৃশ্যকস্প-১: একটি রেলগাড়ী পাশাপাশি দুইটি স্টেশনে থামে। শ্টেশন দুইটির মধ্যবর্তী দূরত্ব 4 কি.মি. এবং এক শ্টেশন থেকে অপর ণ্টেশনে যেতে সময় লাগে ৪ মিনিট। [DB, SB, JB, Din.B'18] দৃশ্যকম্প-২: কোনো বস্তুকণা কোনো সরলরেখা বরাবর সমত্রণে চলে t_1, t_2 এবং t_3 সময়ে ধারাবাহিক গড়বেগ যথাক্রমে v_1, v_2 এবং v_3 . (খ) দৃশ্যকম্প-১ এ রেলগাড়ীটি যদি তার গতিপথের ১ম অংশ x সমত্বনে এবং দ্বিতীয় অংশ y সমমন্দনে চলে তবে দেখাও

 $\mathbf{Q}, \mathbf{x} + \mathbf{y} = \mathbf{8}\mathbf{x}\mathbf{y}.$ (গ) দৃশ্যকম্প-২ হতে প্রমাণ কর যে, $\frac{t_1+t_2}{v_1-v_2}=\frac{t_2+t_3}{v_2-v_3}$ (খ) Sol": দৃশ্যকল্প -১ এর ঘটনাকে v-t graph দ্বারা প্রকাশ করি।

 $\therefore x = \frac{v}{t_1}; t_1 = \frac{v}{x} \dots (i)$


আবার, $y = \frac{v}{t_2}; t_2 = \frac{v}{y}....(ii)$

আবার, $\frac{1}{2} \times v \times 8 = 4$; v = 1

(i) + (ii) $\rightarrow t_1 + t_2 = v\left(\frac{1}{x} + \frac{1}{y}\right) \Rightarrow 8 = \frac{1}{x} + \frac{1}{y}$

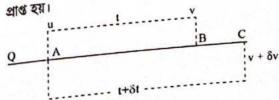
 $\therefore x + y = 8xy$ (Showed)

Sol": দৃশ্যকল্প-২ কে v-t graph দ্বারা প্রকাশ করি।

মনে করি, বস্তু কণাটির ত্বুরণ = a;

তাহলে, $v_1 = v_0 + \frac{1}{2}at_1 ... (i)$

 $v_2 = v_1 + \frac{1}{2}a(t_1 + t_2)...(ii)$


 $v_3 = v_2 + \frac{1}{2}a(t_2 + t_3)...(iii)$

এখন, $\frac{\mathbf{v}_2 - \mathbf{v}_1}{\frac{1}{2}\mathbf{a}(\mathbf{t}_1 + \mathbf{t}_2)} = \frac{\mathbf{v}_3 - \mathbf{v}_2}{\frac{1}{2}\mathbf{a}(\mathbf{t}_2 + \mathbf{t}_3)}$

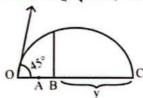
 $\Rightarrow \frac{v_1 - v_2}{t_1 + t_2} = \frac{v_2 - v_3}{t_2 + t_3} :: \frac{t_1 + t_2}{v_1 - v_2} = \frac{t_2 + t_3}{v_2 - v_3} \text{ (Proved)}$

(ক) সচরাচর সংকেতমালায় প্রমাণ কর যে, v = u + ft । 04.

Soln: মনে করি, OX সরলরেখা বরাবর f সমত্রণে চলমান একটি বস্তুকণা A বিন্দু থেকে u আদিবেগে যাত্রা করে t সময়ে B বিন্দুতে v বেগ প্রাপ্ত হয়। আবার, t + δt সময় পরে একই সরলরেখা বরাবর B এর খুব নিকটবতী C বিন্দুতে v + δv বেগ

পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা...

Educationblog ४ म . ००


এখন ৪ বিন্দু থেকে C বিন্দুতে গৌছাতে সময়ের পরিবর্তন $= t + \delta t - t = \delta t = 3$

এ সময়ে বেশেব পরিবর্তন $= v + \delta v - v = \delta v$ হয়। এখন কুরণের সংজ্ঞানুসারে, আমরা পাই, $f = \lim_{\delta t \to 0} \frac{\delta v}{\delta t} \Rightarrow f = \frac{dv}{dt}$

সমাকলন করে পাই, f $\int dt = \int dv \Rightarrow ft + c = v \dots \dots (i)$ হেখানে c একটি সমাকলন ধ্বক।

সময় t = 0 হলে v = u হয়। এ ক্ষেত্রে (i)নং সমীকরণ থেকে শাই. u = f.0 + c ⇒ c = u হয়।

- (i) নং সমীকরণে c এর মান বসিয়ে পাই. v = u + ft (প্রমাণিত)।
- 🔣 করিম O বিন্দু হতে আনুভূমির সাথে 45° কোণে বন্দুকের গুলি করন। রহিম একই সময়ে স্থিরাবস্থা O হতে দৌড়ে 20 সেকেন্ডে 200 মিটার দুরে অবস্থিত একটি খাড়া দেয়ালের পাদদেশে B বিন্দুতে থামে। রহিম যাত্রাপথের OA অংশ a সমত্রণে এবং AB অংশ b সমমন্দনে যায়। অপরদিকে গুলিটি দেয়ালের ঠিক উপর দিয়ে গেল এবং দেয়ালের অপর পার্শ্বে y দূরতে C বিন্দৃতে পড়ল। (এখানে দেয়ালের পুরুত্ব অগ্রাহ্য করা হয়েছে।) |CB'17|

- (খ) উন্দীপকের আলোকে প্রমাণ কর যে, $\frac{1}{4} + \frac{1}{6} = 1$.
- (খ) Sol*: মনে করি, প্রথমাংশে করিম 0 থেকে দৌড়ে d দূরত t সেকেন্ডে অতিক্রম করে A অবস্থানে আসে এবং দ্বিতীয়াংশে (200 - d) মিটার (20 - t) সেকেন্ডে অতিক্রম করে B তে থামে। A অবস্থানে তার বেগ v প্রথমাংশ, তুরণের সূত্র ব্যবহার ক্রবে পাই

$$v^2 = 2ad (i)$$

 $v = at (ii)$
 $O \begin{array}{c} d & 200-d \\ t & A & 20-t \end{array}$

विठीसाध्या, मन्मद्रात मृज वावदात करत भादे,

$$0^2 = v^2 - 2b(200 - d) \dots \dots (iii)$$

$$0 = v - b(20 - t) \dots (iv)$$

(i) TS
$$\frac{v^2}{2a} = d \dots (v)$$

(iii)
$$\sqrt[8]{2b} = 200 - d \dots \dots (vi)$$

$$(v) + (vi)$$
 (vi) (v) $\frac{v^2}{2} \left(\frac{1}{a} + \frac{1}{b} \right) = 200$

$$\Rightarrow v^2 \left(\frac{1}{a} + \frac{1}{b}\right) = 400 \dots \dots (vii)$$

(ii) **হতে**
$$\frac{v}{a} = t \dots \dots (viii)$$

(iv)
$$\sqrt[8]{b} = 20 - t \dots (ix)$$

(viii) ও (ix) যোগ করি,
$$v(\frac{1}{a} + \frac{1}{b}) = 20 \dots (x)$$

এখন, সমীকরণ
$$(x)$$
 হতে $20\left(\frac{1}{a} + \frac{1}{b}\right) = 20$
 $\therefore \frac{1}{a} + \frac{1}{b} = 1$ (প্রমাণিত)।

রোজউক উত্তরা মডেল কলেজ, চক

(খ) দৃশ্যকম্প-১ এ কণাটি যদি
$$t$$
 সময়ে d দূরত্ব অভিক্র a_3 তবে দেখাও যে, $\sqrt{2d\left(\frac{y+z}{v^2}\right)}$

Sol": মনে করি, বস্তুকণাটি A থেকে যাত্রা করে y সমত্রবে সময়ে s, দূরতু অতিক্রম করে B তে v বেগ প্রাপ্ত হয়। অভাগ্র B হতে v আদিবেগে z সমমন্দ্রনে t2 সময়ে s2 দূরত অভিন করে C তে থামে।

প্রশ্নমতে,
$$s_1 + s_2 = d$$
, মোট সময় $t = t_1 + t_2$

AB এর জন্য,
$$v=0+yt_1\Rightarrow t_1=\frac{v}{v}.....(i)$$

এবং
$$s_1 = \frac{0+v}{2} \times t_1 = \frac{vt_1}{2} \dots \dots (ii)$$

BC এর জন্য,
$$0 = v - zt_2 \Rightarrow t_2 = \frac{v}{z} \dots \dots$$
 (iii)

এবং
$$s_2 = \frac{v+0}{2}t_2 = \frac{vt_2}{2}....(iv)$$

(ii) + (iv)
$$\Rightarrow$$
 s₁ + s₂ = $\frac{v}{2}$ (t₁ + t₂)

$$\Rightarrow d = \frac{v}{2} \times t \Rightarrow v = \frac{2d}{t} \left[v \cdot s_1 + s_2 = d, t_1 + t_2 = t \right]$$

(i) + (iii)
$$\Rightarrow$$
 t₁ + t₂ = $v\left(\frac{1}{v} + \frac{1}{z}\right)$

$$\Rightarrow t = \frac{2d}{t} \times \frac{y+z}{yz} \Rightarrow t^2 = 2d \times \frac{y+z}{yz}$$

$$\therefore t = \sqrt{2d\left(\frac{y+z}{yz}\right)} \text{ (Showed)}$$

🔟 দৃশ্যকম্প-২: সমত্রণের চলমান একটি কণা পরপর t_t 🕫 সময়ে যথাক্রমে 2d, 4d, 6d দূরত অতিক্রম করে।

নিটর ডেম কলেজ, চাক

(গ) দৃশ্যকম্প-২ হতে, প্রমাণ কর যে,
$$\frac{1}{t_1} - \frac{2}{t_2} + \frac{3}{t_3} = \frac{6}{t_1 + t_2 + t_3}$$

(গ) Sol": মনে করি, সুষমত্বণে চলন্ত বিন্দুকণাটি A বিন্দু খেতে। বেগে যাত্রা করে $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$ সময় শেষে যথাক্রমে $\mathbf{B}, \mathbf{C}, \mathbf{D}$ ে পৌছে এবং u1, u2, u3 বেগ প্রাপ্ত হয়,

যোগে,
$$AB = 2d$$
, $BC = 4d$, $CD = 6d$
u 2d u₁ 4d u₂ 6d u

A t. B t. C t₁ D

$$AB = 2d = \frac{u + u_1}{2} \times t_1 \Rightarrow \frac{d}{t_1} = \frac{1}{4} (u + u_1) \dots \dots \dots (1)$$

$$AB = 2d - \frac{2}{2}$$

$$BC = 4d = \frac{u_1 + u_2}{2} \times t_2 \Rightarrow \frac{2d}{t_2} = \frac{1}{4} (u_1 + u_2) \dots \dots (II)$$

$$BC = 4d = \frac{2}{2} \times t_3 \Rightarrow \frac{3d}{t_3} = \frac{1}{4}(u_2 + u_3) \dots \dots (III)$$

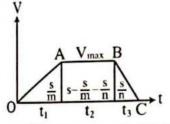
$$U = 6d = \frac{u_2 + u_3}{2} \times t_3 \Rightarrow \frac{3d}{t_3} = \frac{1}{4}(u_2 + u_3) \dots \dots (III)$$

$$cD = 6d = \frac{2}{2}$$
 $AD = 12d = \frac{u+u_3}{2}(t_1 + t_2 + t_3)$

$$AD = 12u - 2$$

$$\Rightarrow \frac{24d}{t_1 + t_2 + t_3} = (u + u_3) \dots \dots \dots (iv)$$

$$\frac{d^{2}\vec{q}_{1}}{d\left(\frac{1}{t_{1}} - \frac{2}{t_{2}} + \frac{3}{t_{3}}\right)} = \frac{1}{4}(u + u_{1} - u_{1} - u_{2} + u_{2} + u_{3})$$


$$\frac{d(t_1 - t_2)}{d(t_1 + t_3)} = \frac{1}{4} \times \frac{24d}{t_1 + t_2 + t_3} [(iv)$$
 হতে]

$$\frac{1}{t_1} - \frac{2}{t_2} + \frac{3}{t_3} = \frac{6}{t_1 + t_2 + t_3}$$
 (Proved)

🔃 দৃশ্যকম্প-১: একটি রেলগাড়ি একটি স্টেশন থেকে সরল রেলপথে যাত্রা করে অপর স্টেশনে গিয়ে থামে। গাড়িখানা মোট দূরত্বের প্রথম $\frac{1}{m}$ অংশ সমত্বরণে, শেষ $\frac{1}{n}$ অংশ সমমন্দনে এবং বাকী অংশ সমবেগে চলে।

[ঢাকা রেসিডেনসিয়াল মডেল কলেজ]

- (খ) দৃশ্যকম্প-১ হতে প্রমাণ কর যে, গাড়ির সর্বোচ্চ বেগ ও গড়বেগের অনুপাত (m + n + mn): mn
- (ব) Sol*: চিত্রে, OA অতিক্রম করতে t₁ সময় লাগে

AB অতিক্রম করতে t2 সময় লাগে

BC অতিক্রম করতে t₃ সময় লাগে

মনে করি,
$$OC = S$$

$$\therefore$$
 গড়বেগ, W = $\frac{s}{t_1+t_2+t_3}$ [T = মোট সময়]

এখন,
$$OA = \frac{0 + V_{max}}{2} t_1 \Rightarrow \frac{s}{m} = \frac{V_{max}t_1}{2} \dots \dots (ii)$$

জাবার, AB =
$$V_{max}t_2 \Rightarrow s - \frac{s}{m} - \frac{s}{n} = V_{max}t_2$$

$$\Rightarrow \frac{s}{2}\left(1-\frac{1}{m}-\frac{1}{n}\right)=\frac{V_{\max}t_2}{2}\ldots\ldots(i)$$

আবার, BC =
$$\frac{V_{\text{max}}t_3}{2}$$
 $\Rightarrow \frac{s}{n} = \frac{V_{\text{max}}t_3}{2} \dots \dots \dots (iii)$

Educationblog2

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৯

(1) + (11) + (111)

$$\Rightarrow \left(\frac{1}{m} + \frac{1}{n} + \frac{1}{2} - \frac{1}{2m} - \frac{1}{2n}\right) s = \frac{V_{max}(t_1 + t_2 + t_3)}{2}$$

$$\therefore V_{max} : W = (m + n + mn) : mn (Proved)$$

- দৃশ্যকম্প-১: একটি সরলরেখায় দুটি কণা a ও b সমত্বণে চলছে। কোনো নির্দিষ্ট বিন্দু হতে এরা যখন 15 একক ও 20 একক দ্রত্বে অবস্থান করে, তখন এদের বেগ যথাক্রমে u ও v [সরকারি বিজ্ঞান কলেজ, ঢাকা]
 - (খ) দৃশ্যকম্প-১ হতে দেখাও যে, কণা দৃটি দৃইবারের অধিক মিণিত হতে পারবে না এবং এদের মিশিত হওয়ার সময়ের পার্থক্য $\frac{2}{a-b}\sqrt{(u-v)^2+10(a-b)}$
- Sol": মনে করি, a ও b সমত্রুরণে চলমান কণা দুইটি B ও C থেকে যথাক্রমে v ও u বেণে যাত্রা করার t সময় পর D তে মিলিত হবে। যেখানে নির্দিষ্ট বিন্দু A, AB = 15 একক এবং AC = 20 একক।

$$A B C + D$$

তাহলে, BD = vt + $\frac{1}{2}$ at²

চিত্র হতে,
$$AD = AB + BD = 15 + vt + \frac{1}{2}at^2 \dots (i)$$
 আবার

চিত্র হতে,
$$AD = AC + CD = 20 + ut + \frac{1}{2}bt^2 \dots$$
 (ii)

(ii) - (i)
$$\Rightarrow$$
 0 = (20 - 15) + (u - v)t + $\frac{1}{2}$ (a - b)t²

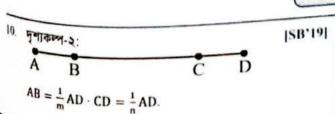
$$= 5 + (u - v)t + \frac{1}{2}(a - b)t^{2}$$

$$\Rightarrow (a - b)t^{2} + 2(u - v)t + 10 = 0 \dots \dots \dots (iii)$$

(iii) হতে আমরা দেখা যায় য়ে, ইহা t এর একটি দ্বিঘাত সমীকরণ যার সমাধান সর্বোচ্চ দুইটি। অর্থাৎ, উক্ত কণাদ্বয় দুইবারের বেশি মিলিত হতে পারবে না।

ধরি, t এর মান t_1 ও t_2 (যেখানে $t_1 > t_2$)

তাহলে কণা দুটি সময়ে t1 ও t2 মিলিত হয়,


$$t_1 + t_2 = -\frac{2(u-v)}{a-b}$$
 এবং $t_1 t_2 = \frac{10}{a-b}$

$$\therefore$$
 সময়ের পার্থক্য = $t_1 - t_2 = \sqrt{(t_1 + t_2)^2 - 4t_1t_2}$

$$= \sqrt{\frac{4(u-v)^2}{(a-b)^2} - 40\frac{1}{a-b}}$$

$$= \frac{2}{a-b} \sqrt{(u-v)^2 + 10(a-b)}$$
 (Showed)

নিজে করো

(গ) একখানা রেলগাড়ি A স্টেশন হতে ছেড়ে D স্টেশনে গিয়ে থামে। গাড়িখানা AB অংশ সমত্রণে, CD অংশ সমমন্দনে এবং BC অংশ সমবেগে চলে। প্রমাণ কর যে, উহার গড়বেগ ও সর্বোচ্চ বেগের অনুপাত $1: (1 + \frac{1}{m} + \frac{1}{n})$.

পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা...

- [DB'17]
 - (খ) স্থিরাবস্থা হতে একটি ট্রেন A স্টেশন হতে 4 মিনিটে B স্টেশনে গিয়ে থামে। যদি উহা পথের প্রথম অংশ x সমত্রণে এবং দ্বিতীয় অংশ y সমমন্দনে চলে তবে প্রমাণ কর যে, $\frac{1}{x} + \frac{1}{y} = 4$ যখন S = 2।
- দৃশ্যকম্প-১: মহানগর এক্সপ্রেস আখাউড়া জংশন থেকে ক্ষ্রে ঢাকা স্টেশনে থামে। তার গতিপথের ১ম ½ অংশ সমত্_{রণে} শেষ $\frac{1}{3}$ অংশ সমমন্দনে ও অবশিষ্ট পথ সমবেগে চলে।
 - (খ) ১নং উদ্দীপকের আলোকে মহানগরের সর্বোচ্চ বেগ _{ও গ্র} বেগের অনুপাত 11:6 সঠিক কী না যাচাই কর।

Type-04: বাঘ-হরিণ, ইঁদুর-বিড়াল ধরা এবং বাস-যাত্রী, বাস-সাইকেল অতিক্রম করা

Concept Concept

এই অঙ্কগুলোতে সাধারণত একজন সমবেগে এবং অপর জন সমত্বরণে চলে, সমবেগের জন্য s=vt এবং সমত্রণের জন্য-

(i) $s = ut + \frac{1}{2}ft^2$

(ii) v = u + ft

ব্যবহার করতে হবে। এক্ষেত্রে বাঘ-হরিণ এর মধ্যবতী দূরত্ব অবশ্যই সঠিকভাবে সমীকরণে বসাতে হবে।

সমত্রণের ক্রে s = সরণ

u = আদিবেগ

v =শেষবেগ

 $t = 7 \lambda \chi$ f = তুরণ

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- 💶 দৃশ্যকম্প-১: একটি বিড়াল 12 মিটার দূরে একটি ইঁদুরকে দেখতে পেয়ে স্থিরাবস্থা থেকে 2 মি/সে. ত্বরণে দৌড়াল এবং ইদুরটি 4 মিটার/সে. সমবেগে দৌড়াল।
 - (খ) বিড়ালটি কত সময় পরে এবং কত দূরে ইদুরটিকে ধরতে পারবে?
- (খ) Solⁿ: ধরি, A তে বিড়াল, B তে ইদুর আছে। t সময় পর C অবস্থানে বিড়াল ইঁদুরকে ধরতে পারবে।

এখন,
$$4t + 12 = 0 + \frac{1}{2} \cdot 2 \times t^2$$

$$\Rightarrow t^2 - 4t - 12 = 0 \Rightarrow t = 6, -2$$

এখন, বিড়ালের সরণ, s = t² = 36 m (Ans.)

- 02 দৃশ্যকম্প-১: একজন মোটরসাইকেন্স আরোহী 15 মিটার দূরে একজন অশ্বারোহীকে দেখতে পেয়ে ছিরাবস্থা হতে 5m/ sec² তুরণে অশ্বারোহীর পশ্চাতে মোটরসাইকেল চালাতে লাগল। व्यवादावी 12.5 m/sec সমবেগে याण्डिंग।
 - (খ) দৃশ্যকষ্প-১ হতে মোটরসাইকেল আরোহী কত দুরে গিয়ে অশ্বারোহীকে ধরতে পারবে?

Sol": A অবস্থানে আরোহী ও B অবস্থানে অশ্বারোহীর মধ্যর্ক দূরত্ব 15 মিটার। মনে কর, t সেকেন্ড পরে অশ্বারোহী র্জা অবস্থান থেকে t দূরে আরোহী অশ্বারোহীকে ধরতে পারে এব আরোহী দ্বারা অতিক্রান্ত দূরত্ব x হলে, x = 15 + y

কাজেই, y = 12.5t (i) [:: এক্ষেত্রে, f = 0]

$$x = 0.t + \frac{1}{2} \cdot 5t^2 \implies x = \frac{5t^2}{2} \dots \dots \dots (ii)$$

(i) এবং (ii) সংযুক্ত করলে আমরা পাই,

$$\frac{5t^2}{2} = 15 + 12.5t \Rightarrow \frac{5t^2}{2} - 12.5t - 15 = 0$$

$$\Rightarrow t = 12.5 \pm \frac{\sqrt{(12.5)^2 - \frac{4.5}{2}(-15)}}{\frac{2.5}{3}} = \frac{12.5 \pm 17.5}{5}$$

ধনাত্মক (+) চিহ্ন নিয়ে, $t = \frac{12.5 + 17.5}{5} = 6$ [সময় স্কণাত্মক श्रद्धांगा नग्न।

অর্থাৎ, 6 সেকেন্ড পর মোটরসাইকেল আরোহী 90 মিটার ^{দুর্ব} গিয়ে অশ্বারোহীকে ধরতে পারবে। (Ans.)

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৯

Type-05: বিশেষ এক সেকেন্ডে অতিকান্ত দূরত্

Concept

 $\frac{1}{8^{1/4}}$ জনি, t তম সেকেন্ডে অতিক্রান্ত দূরত্ব, $s_{t\cdot th}=u+\frac{1}{2}f(2t-1)$ এবং t সেকেন্ডে মোট অতিক্রান্ত দূরত্ব, $s=ut+\frac{1}{2}ft^2$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

্রা একটি বস্তু সমত্বরণে সরলরেখা বরাবর চলে 25 তম সেকেন্ডে 266 সেমি এবং 42 তম সেকেন্ডে 402 সেমি দ্রত্ব অতিক্রম

(च) বস্তুটির আদিবেগ নির্ণয় কর।

[JB'23]

(ধ) Solⁿ: ধরি, আদিবেগ = u এবং ত্বরণ = f

25 তম সেকেন্ড অতিক্রন্তে দূরত্ব

$$= u + \frac{1}{2}f(2 \times 25 - 1) = u + \frac{49}{2}f$$

প্রশ্নতে, u + 49 f = 266 (i) 42 তম সেকেন্ডে অতিক্রান্ত দূরত্ব

$$= u + \frac{1}{2}f(2 \times 42 - 1) = u + \frac{83}{2}f$$

আবারও, u +
$$\frac{83}{2}$$
f = 402 (ii)

(i) ও (ii) সমাধান করে পাই,

.: আদিবেগ, u = 70 cms⁻¹ (Ans.)

- 🔟 (ক) 30 মি/সে. আদিবেগে 4 মি/সে.² তুরণে চলমান একটি বস্তুর ৭ম সেকেন্ডে অতিক্রাস্ত দূরত্ব নির্ণয় কর।
- (ब) Sol^o: আদিবেগ, u = 30 ms⁻¹ তুরণ, f = 4 ms⁻² আমরা জানি, $S_{th} = u + \frac{1}{2}f(2t - 1)$ \Rightarrow S_{7th} = 30 + $\frac{1}{2}$ × 4(2 × 7 - 1) = 56m (Ans.)
- $m{U}$ (ক) একটি ট্রেন $20 {
 m m s}^{-1}$ আদিবেগ এবং $4 {
 m m s}^{-2}$ সমত্বুরণে চলমান হলে ৪র্থ সেকেন্ডে ট্রেনটি কত দূরত্ব অতিক্রম
- (ৰ) Sol^o: দেওয়া আছে, আদিবেগ, u = 20ms⁻¹ ड्रबन, f = 4ms⁻²

8র্থ সেকেন্ডে অতিক্রান্ত দূরত্ $S_4 = u + \frac{1}{2}f(2t - 1)$

$$= 20 + \frac{1}{2} \times 4(2 \times 4 - 1)$$

$$= 20 + 2 \times (8 - 1) = 20 + 2 \times 7$$

= 20 + 14 = 34 m (Ans.)

- (ক) সমত্রণে চলমান একটি বস্তুকণা t-তম সেকেন্ডে x দ্রত্ থবং (t + n) তম সেকেন্ডে y দূরত্ব অতিক্রম করে। প্রমাণ [Din.B'22] কর যে, ত্বল $f = \frac{y-x}{n}$.
- (ক) Solⁿ: মনে করি, আদিবেগ u ও তুরণ f $\sqrt[3]{q}$ ($\sqrt[3]{q}$), $x = u + \frac{1}{2}f(2t - 1) \dots \dots (i)$

- ২য় ক্ষেত্রে, $y = u + \frac{1}{2}f\{2(t+n) 1\}$ $= u + \frac{1}{2}f(2t + 2n - 1) \dots \dots (ii)$ (ii) - (i) \Rightarrow y - x = u + $\frac{1}{2}$ f(2t + 2n - 1) - u - $\frac{1}{2}$ f(2t - 1) $= \frac{1}{2}f(2t + 2n - 1 - 2t + 1) = \frac{1}{2}f. 2n = fn$ \therefore f = $\frac{y-x}{n}$; সূতরাং, ত্বণ, f = $\frac{y-x}{n}$ (Proved)
- (ক) সমতলে একটি বস্তুকণা u আদিবেগে a সমতৃরণে t সময়ে s দূরত্ব অতিক্রম করে তাহলে t তম সময়ে কত দূরত্ব অতিক্রম
- (ক) Sol^a: প্রশ্নানুসারে, ut $+\frac{1}{2}$ at² = s \Rightarrow t $\left(u + \frac{at}{2}\right)$ = s $\dot{} t = \frac{s}{u + \frac{at}{2}} = \frac{2s}{2u + at} \dots \dots (i)$

এখন, t-তম সেকেন্ডে অতিক্রান্ত দূরতু,

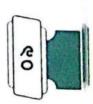
$$S_{t-th} = u + \frac{1}{2}a(2t-1)....(ii)$$

(i) হতে প্রাপ্ত t এর মান (ii) তে বসিয়ে পাই,

$$S_{t-th} = u + \frac{1}{2}a\left(\frac{4s}{2u+at} - 1\right) = u + \frac{1}{2}a\left(\frac{4s-2u-at}{2u+at}\right)$$
(Ans.)

- (ক) কোনো কণা f সৃষম তৃরণে চলছে। গতি শুরুর সপ্তম ও দশম সেকেন্ডে যথাক্রমে 36 মিটার ও 48 মিটার দূরত্ব অতিক্রম করে। f এর মান নির্ণয় কর।
- (ক) Soln: t তম সেকেন্ডে অতিক্রান্ত দূরত্ব $S_t = u + \frac{1}{2}f(2t 1)$ সপ্তম সেকেন্ডে অতিক্রান্ত দূরত্ব $S_7=u+rac{1}{2}f(2 imes 7-1)$

=
$$u + \frac{1}{2}f \times 13 \div 36 = u + \frac{13}{2}f \dots \dots (i)$$


দশম সেকেন্ডে অতিক্রাম্ভ দূরত্ব, $S_{10} = u + \frac{1}{2}f(2 \times 10 - 1)$

$$\Rightarrow 48 = u + \frac{1}{2}(19)f \Rightarrow 48 = u + \frac{19f}{2} \dots (ii)$$

(ii) হতে (i) বিয়োগ করে পাই, $12 = \frac{19}{2}f - \frac{13}{2}f$

$$\Rightarrow 12 = f \times \frac{6}{2} \Rightarrow 12 = f \times 3 : f = 4 \text{ms}^{-2}$$
 (Ans.)

- 📆 (ক) একটি কণা স্থিরাবস্থা হতে 7m/sec² ত্বনে চলতে থাকপে তৃতীয় সেকেন্ডে কত দূরত্ব অতিক্রম করবে? [JB:17]
- (ক) Sol": তৃতীয় সেকেন্ডে অতিক্রান্ত দূরত্ব, $S_3 = \frac{1}{2} \times 7(2 \times 3 - 1) [\because f = 7ms^{-2}, u = 0, t = 3]$ $=\frac{1}{2}\times 7(6-1)=\frac{1}{2}\times 7\times 5=17.5$ m

নিজে করো

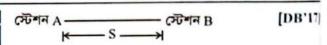
08. (ক) একটি বস্তু 20 মি./সে. আদিবেণে 2 মি./সে ত্রণে চললে, উহার ৫ম সেকেন্ডে অতিক্রান্ত দূরত্ব নির্ণয় কর।

[Ctg.B'19] [Ans: 29m]

০৭. (ক) স্থিরাবস্থা থেকে একটি বস্তু 4ms⁻² সমত্ব্রণে চলতে থাকলে ৭ম সেকেন্ডে এটি কত দূরত্ব অতিক্রম করবে তা নির্ণয় কর |Din.B'19|[Ans: 26m]

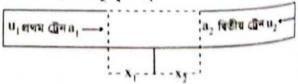
Type-06: রেলগাড়ির সংঘর্ষ এড়ানোর শর্ত নির্ণয়

Concept |


আমরা জানি, সমত্রণে চলমান বস্তুর জন্য, $v^2 = u^2 + 2fs$ এখানে, u =আদিবেগ; v =শেষবেগ; f =তুরণ; s =অতিক্রান্ত দূরত্ব।

- $> u_1 \otimes u_2$ বেগে একই রেলপথে পরস্পর বিপরীত দিকে গতিশীল দুইটি রেলগাড়ি x দূরত্বে থাকা অবস্থান যদি পরস্পরকে দেখতে পায় এই যথাক্রমে $f_1 \otimes f_2$ মানের মন্দন প্রয়োগ করে তাহলে,
 - (i) কোনো রকমে সংঘর্ষ এড়ানো সম্ভব যদি: $u_1^2f_2 + u_2^2f_1 = 2f_1f_2x$ হয়
 - (ii) সংঘর্ষ এড়ানো সম্ভব যদি: u²f₂ + u²f₁ ≤ 2f₁f₂x
- > দৃটি রেলগাড়ি একই সরলপথে $u_1 \otimes u_2 (u_1 > u_2)$ গতিবেগে একই দিকে অগ্রসর হচ্ছে। এদের মধ্যবতী দূরত্ব যখন x তখন এর পরস্পরকে দেখতে পায়। রেলগাড়ি দুইটির সর্বোচ্চ মন্দন ও ত্বরণ যথাক্রমে $f_1 \otimes f_2$ হলে, কোনো রকমে সংঘর্ষ এড়ানো সম্ভব হবে যদি $(u_1 u_2)^2 = 2(f_1 + f_2)x$ হয়।

সৃজনশীল প্রশ্ন (ক, খ ও গ)


- উদ্দীপক-২: দুইটি রেলগাড়ি একই রেল লাইনে যথাক্রমে u ও v সমবেগে একে অপরের দিকে অগ্রসর হচ্ছে। যখন তাদের মধ্যবর্তী দূরত্ব d তখন একে অপরকে দেখতে পায়। ট্রেন দুইটির সর্বোচ্চ মন্দন a ও b প্রয়োগ করে কোনো রকমে সংঘর্ষ এড়ানো সম্ভব।
 - (গ) দৃশ্যকম্প-২ এর ক্ষেত্রে প্রমাণ কর যে, $u^2b + v^2a = 2abd$.
- (গ) Sol*: মনে করি, একই রেল লাইনের উপর দিয়ে A ও B ২টি রেলগাড়ি যথাক্রমে u ও v বেগে একে অপরের দিকে অগ্রসর হচ্ছে। এরা পরস্পরকে d দ্রত্বে অতিক্রম করে থেমে যায়। একই সাথে B গাড়িটি সর্বোচ্চ b মন্দন প্রয়োগ করে d₁ দ্রত্ব অতিক্রম কর থেমে যায়। অর্থাৎ গাড়ি দুটির শেষ বেগ শৃন্য হয়।

A এর ক্ষেত্রে,
$$0=u^2-2ad_1\Rightarrow d_1=\frac{u^2}{2a}$$
,
B এর ক্ষেত্রে, $0=v^2-2bd_2\Rightarrow d_2=\frac{v^2}{2b}$
সংঘর্ষ এড়ানো হবে যদি, $d=d_1+d_2\Rightarrow d=\frac{u^2}{2a}+\frac{v^2}{2b}$
 $\Rightarrow d=\frac{u^2\,b+v^2\,a}{2ab}$ $\therefore u^2b+v^2a=2abd$ (Proved)

- (গ) যদি দুইটি রেলগাড়ী A ও B এর বিপরীত দিক হতে u₁ ধ u₂ গতিবেগে অগ্রসর হওয়ার সময় একে অপরকে দেখতে পায় তখন তাদের মধ্যবর্তী দূরত্ব x । সংঘর্ষ এড়ানোর জন রেলগাড়ী দুইটি সর্বোচ্চ মন্দন যথাক্রমে a₁ ও a₂ প্রয়োগ করে। তাহলে দেখাও যে, কোনো রক্তমে সংঘর্ষ এড়ানো সম্ভব যদি u²a₂ + u²a₁ ≤ 2a₁a₂x হয়।
- (গ) Sol*: মনে করি, AB = x দ্রত্বে থাকাকালীন সময়ে ট্রেন দুটিং a₁ ও a₂ মন্দন প্রযুক্ত হলো। আরও ধরা যাক, প্রথম ট্রেনটিং a₁ মন্দন প্রযুক্ত হলে x₁ দ্রত্ব এবং দ্বিতীয় ট্রেনটিতে a₂ মন্দন প্রযুক্ত হলে, x₂ দ্রত্ব অতিক্রম করে। প্রথম ট্রেনটির ক্ষেক্তে: আদিবেগ = u₁, মন্দন = a₁,

শেষবেগ = 0 এবং দ্রত্ব = x1

লামরা পাই, $0 = u_1^2 - 2a_1x_1$ [$v^2 = u^2 - 2fs$ সূত্রের সাহায্যে]

 $\chi_1 = \frac{u_1^2}{2a_1} \dots \dots (i)$ _{আবার,} দ্বিতীয় ট্রেনটির ক্ষেত্রে,

আদিবেগ = u_2 , মন্দন = a_2 , শেষবেগ = 0,

এবং দূরত = X2

Educationblog24 উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৯

তাহলে, $0 = u_2^2 - 2a_2x_2 \Rightarrow x_2 = \frac{u_2^2}{2a_2} \dots \dots$ (ii)

এখন, যদি x₁ + x₂ ≤ x হয় তাহলে সংঘর্ষ এড়ানো সম্ভব।

সূতরাং, $x_1 + x_2 \le x \Rightarrow \frac{u_1^2}{2a_2} + \frac{u_2^2}{2a_2} \le x$

 $\Rightarrow u_1^2 a_2 + u_2^2 a_1 \le 2a_1 a_2 x$ (Showed)

Type-07: নির্দিষ্ট অংশ ভেদ করে বেগ হারানোর পর অতিক্রান্ত দূরত্ব

Concept

ার সময় সুষম মন্দনে বুলেটের বেগ হ্রাসপ্রাপ্ত হয়। এক্ষেত্রে v² = u² + 2fs সূত্র প্রয়োগ করতে হবে।

আরও অতিক্রম করবে	মোট অতিক্রান্ত দূরত্ব
(i) $x = \frac{s(n-1)^2}{2n-1}$	(i) $x_t = \frac{s(n-1)^2}{2n-1} + s$
	(ii) $N_t = \frac{(n-1)^2}{2n-1} + 1 =$
(i) $x = \frac{s}{n^2 - 1}$	(i) $x_t = \frac{s}{n^2 - 1} + s$
(ii) N = $\frac{1}{n^2 - 1}$ est করা হলে পর্বের n^2 গুণ ত	(ii) $N_t = \frac{1}{n^2 - 1} + 1$
	(i) $x = \frac{s(n-1)^2}{2n-1}$ (ii) $N = \frac{(n-1)^2}{2n-1} \approx \frac{n}{2} - 1$ (i) $x = \frac{s}{n^2 - 1}$ (ii) $N = \frac{1}{n^2 - 1}$

- (i) নির্দিষ্ট পুরুত্বের একটি তক্তা ভেদ করতে পারলে, এর বেগ n গুণ করা হলে পূর্বের n² গুণ ্রির্থাৎ, নির্দিষ্ট পুরুত্বের a সংখ্যক তক্তা ভেদ করতে পারলে, এর বেগ n গুণ করা হলে n²a টি তক্তা ভেদ করতে পারবে।]
- (ii) বিপরীতক্রমে, ঐ পুরুত্বের m সংখ্যক তক্তা ভেদ করতে হলে বেগ √m গুণ করতে হবে। [অর্থাৎ, a সংখ্যক তক্তা ভেদ করতে পারলে, ma সংখ্যক তক্তা ভেদ করাতে হলে বেগ √m গুণ করতে হবে।]

Note: এই ছক শুধুমাত্র MCQ তে ব্যবহার করা যাবে।

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- 🔟 দৃশ্যকম্প-২: একটি বুলেট কোনো দেওয়ালের ভিতর 1 সে.মি. চুকবার পর এর বেগ এক-তৃতীয়াংশ হারায়।
 - (গ) বুলেটটির বেগ শূন্য হওয়ার পূর্বে দেয়ালের ভিতর আরো কতদূর ঢুকবে?
- (গ) Sol®: ধরি, বুলেটের আদিবেগ v,

s = 1 cm প্রবেশের পর বেগ, $v_1 = \left(1 - \frac{1}{3}\right)v = \frac{2v}{3}$.

व्यक्ति, $v_1^2 = v^2 - 2a \cdot s \Rightarrow \left(\frac{2v}{3}\right)^2 = v^2 - 2 \cdot a \cdot 1$

 $\Rightarrow \frac{4v^2}{9} = v^2 - 2a \Rightarrow 2a = \frac{5v^2}{9} \Rightarrow a = \frac{5v^2}{18} \dots \dots \dots (i)$

শেষ বেগ, $v_z=0$ এবং ধরি, বেগ এক তৃতীয়াংশ হ্রাসের পর

থেকে থেমে যাওয়া অবধি s₁ দূরত্ব অতিক্রম করবে।

वर्षार, $v_2^2 = v_1^2 - 2as_1$

 $\Rightarrow 0 = \left(\frac{2v}{3}\right)^2 - 2 \times \frac{5v^2}{10} \times s_1 \left[(i) \text{ evs} \right]$

 $\Rightarrow \frac{4}{9}v^2 = \frac{5v^2}{9} \times s_1 \Rightarrow s_1 = \frac{4}{5} = 0.8 \text{ cm (Ans.)}$

- (ক) একটি বুলেট একটি তব্তা ভেদ করতে এর বেগের 1/10 অংশ হারায়। মন্দন সুষম হলে, বুলেটটি থামার পূর্বে অনুরূপ [DB'22] কতগুলো তক্তা ডেদ করবে?
- (ক) Sol": মনে করি বুলেটটির আদিবেগ v₀ এবং তব্জার পুরুত্ব d d দূরত্ব অতিক্রম করার পর বুলেটের শেষবেগ,

 $v = v_0 - \frac{1}{10}v_0 = \frac{9}{10}v_0$ এবং সুষম মন্দন = a আমরা জানি, $v^2 = u^2 - 2as \Rightarrow u^2 - v^2 = 2as (i)$

উদ্দীপক অনুসারে, $v_0^2 - \left(\frac{9}{10}v_0\right)^2 = 2ad$

 $\Rightarrow v_0^2 - \frac{\theta 1}{100} v_0^2 = 2ad \dots \dots (ii)$

বুলেটটি এক সময় থেমে গেলে, শেষবেগ, $\mathbf{v}'=0$ ধরি, থেমে যাওয়ার পূর্বে বুলেটটির অতিক্রাস্ত দূরত্ব, D

সেক্ষেত্রে, (i) নং সমীকরণটি হবে,

 $v_0^2 - 0^2 = 2aD \Rightarrow v_0^2 = 2aD \dots \dots (iii)$

(iii) + (ii) $\Rightarrow \frac{v_0^2}{v_0^2(1-\frac{81}{100})} = \frac{2aD}{2ad} \Rightarrow \frac{1}{\frac{19}{100}} = \frac{D}{d}$

 $\therefore D = \frac{100}{19} d = 5.26 d \therefore$ বুলেটটি থামার পূর্বে অনুরূপ

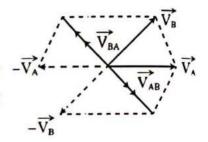
(5.26 – 1) = 4.26 ≈ 4 টি তক্তা ভেদ করবে। (Ans.)

পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা.

ducationblog24.cc উচ্চতর গণিত ২য় পত্র : অধ্যায়-०৯

🕦 (ক) একটি বুলেট একটি তব্জার ভিতর 3 সে.মি. ঢুকবার পর এর অর্ধেক বেগ হারায়। বুলেটটি তব্তার ভিতর আর কত দূর ঢুকবে? [RB'19]

 $\Rightarrow 2a \times 0.03 = -\frac{3v^2}{4} : a = \frac{-3v^2}{4 \times 2 \times 0.03} : a = -\frac{25v^2}{3}$ আবার, $0 = \left(\frac{v}{2}\right)^2 + 2.a \times s$ $\Rightarrow 0 = \frac{1}{4} + 2 \times \left(-\frac{25}{2}\right) \times s \Rightarrow 0 = \frac{1}{4} - 25s$... s = 0.01 m = 1 cm


(ক) Sol": ধরি, আদিবেগ v ms-1 এখন, $\left(\frac{v}{2}\right)^2 = v^2 + 2a \times 0.03 \Rightarrow \frac{v^2}{4} = v^2 + 2a \times 0.03$

∴ বুলেটটি আরও 1 সে.মি. ঢুকবে। (Ans.)

Type-08: আপেক্ষিক বেগ ও গড়বেগ

Concept

- একই দিকে গেলে আপেক্ষিক বেগের মান হবে তাদের বেগের অন্তরফল।
- (ii) বিপরীত দিকে গেলে আপেক্ষিক বেগের মান হবে তাদের বেগের যোগফল।
- (iii) আপেক্ষিক বেগ নির্ণয়ের ক্ষেত্রে, যার সাপেক্ষে আপেক্ষিক বেগ নির্ণয় করতে হবে তার বিপরীত বেগ নিয়ে অপর বেগের সাথে সামান্তরিক গঠন করলে সামান্তরিকের বেগদ্বয়ের ক্রিয়া বিন্দুগামী কর্ণই আপেক্ষিক বেগের মান ও দিক নির্দেশ করে।

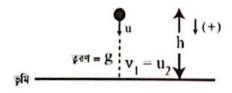
B এর সাপেক্ষে A এর বেগ, $\vec{V}_{AB} = \vec{V}_A - \vec{V}_B$

A এর সাপেক্ষে B এর বেগ, $\vec{V}_{BA} = \vec{V}_B - \vec{V}_A$

আবার, $\vec{V}_A = \vec{V}_B + \vec{V}_{AB}$ এবং $\vec{V}_B = \vec{V}_A + \vec{V}_{BA}$

অর্থাৎ, কোন একটি বস্তুর বেগ এবং বস্তুটির সাপেক্ষে দ্বিতীয় কোন বস্তুর বেগের লব্ধি দ্বিতীয় বস্তুটির বেগের সমান।

সূজনশীল প্রশ্ন (ক, খ ও গ)


্যা (ক) আপেক্ষিক বেগ ব্যাখ্যা কর।

[DB, SB, JB, Din.B'18]

(क) Sol[®]: একই সমতলে গতিশীল P ও Q বস্তু দুইটির Q এর তুলনায় P এর সরণের হারকে Q এর সাপেক্ষে P এর আপেক্ষিক বেগ বলে। যদি P ও Q বস্তু দুটির যথাক্রমে \vec{V}_p ও $\vec{V}_q(\vec{V}_p > \vec{V}_q)$ বেগে চলে, তবে Q এর সাপেক্ষে P এর আপেক্ষিক বেগ $\vec{V}_{pq} = \vec{V}_p - \vec{V}_q$

Type-09: উপর থেকে বিনা বাধায় পতনশীল বস্তুর গতি

Concept

পতনশীল বস্তুর ক্ষেত্রে, v = u + gt; $h = ut + \frac{1}{2}gt^2$ [নিচের দিকে +ve ধরে] u = 0 erg, $v = gt, h = \frac{1}{2}gt^2$

Educationblog24. व উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৯

সূজনশীল প্রশ্ন (ক, খ ও গ)

(ক) 64 মিটার উঁচু দালানের ছাদ থেকে একটি পাথর ছেড়ে দিলে ভূমিতে পড়তে কত সময় লাগবে? [RB'23] ্ব) Sol": দেওয়া আছে, উচ্চতা, h = 64m

আদিবেগ, u = 0; সময়, t =?

আমরা জানি, $h = ut + \frac{1}{2}gt^2 \Rightarrow 64 = 0 + \frac{1}{2} \times 9 \cdot 8 \times t^2$ $\Rightarrow \frac{128}{98} = t^2 : t = 3.61s$ (Ans.)

💆 দৃশ্যকম্প-১: একটি টাওয়ারের শীর্ষবিন্দু হতে পড়স্ত একখণ্ড ্ পাথর 2 মিটার নিচে পৌঁছানোর পর টাওয়ারের শীর্ষবিন্দু থেকে ৪ মিটার নিচে কোনো বিন্দু থেকে অপর একখণ্ড পাথর নিচে ফেলে দেয়া হলো। পাথরদ্বয় স্থিরাবস্থা থেকে একই সময়ে ভূমিতে [Ctg.B'22]

(ব) দৃশ্যকল্প-১ হতে টাওয়ারের উচ্চতা নির্ণয় কর।

- (য) Soln: ১ম পাথরখণ্ডের আদিবেগ,
 - $u_1 = \sqrt{2g \times 2} = 6.26 \text{ms}^{-1}$

১ম পাথরখণ্ডটির মাটিতে পড়তে আরো t সময় লাগলে.

$$h - 2 = u_1 t + \frac{1}{2} g t^2 \dots \dots (i)$$

আবার, ২য় পাথরখণ্ডের ক্ষেত্রে, $h - 8 = u_2 t + \frac{1}{2} g t^2$

⇒
$$h - 8 = \frac{1}{2}gt^2 \dots \dots (ii) [u_2 = 0]$$

(i) – (ii)
$$\Rightarrow$$
 6 = $u_1 t : t = \frac{6}{6.26} s = 0.9583s$

t এর মান (ii) নং-এ বসিয়ে পাই,

$$h - 8 = \frac{1}{2} \times 9.8 \times (0.9583)^2$$

$$\Rightarrow$$
 h − 8 = 4.5 :: h = 12.5m

্র টাওয়ারের উচ্চতা 12.5m (Ans.)

- 🗓 উদীপক-১: একটি টাওয়ারের শীর্ষ হতে অবাধে পড়স্ত একটি পাধর, তার গতির শেষতম সেকেন্ডে টাওয়ারের উচ্চতার $\frac{5}{9}$ অংশ [CB'22] অভিক্রম করে।
 - (খ) দৃশ্যকম্প-১ এ উল্লিখিত টাওয়ারের উচ্চতা নির্ণয় কর।
- (খ) Sel": মনে করি, টাওয়ারের উচ্চতা h মিটার এবং বস্তুটির মোট পতনকাল t,

भ्रम् क्वा,
$$h = 0.t + \frac{1}{2}gt^2 \Rightarrow h = \frac{1}{2}gt^2 \dots \dots (i)$$

শর্তানুসারে, কণাটির শেষতম সেকেন্ডে তথা t তম সেকেন্ডে $\frac{sh}{9}$

দূরত্ব অতিক্রম করে।

অর্থাৎ, $\frac{5h}{9} = 0 + \frac{1}{2}g(2t-1) \Rightarrow \frac{5}{9} \times \frac{1}{2}gt^2 = \frac{1}{2}g(2t-1)$ $\Rightarrow \frac{5}{9}t^2 = 2t - 1 \Rightarrow 5t^2 = 18t - 9$ $\Rightarrow 5t^2 - 18t + 9 = 0 \Rightarrow 5t^2 - 15t - 3t + 9 = 0$ $\Rightarrow 5t(t-3) - 3(t-3) = 0$ ⇒ (t-3)(5t-3) = 0 ∴ t=3 অথবা $t=\frac{3}{5}$ এখানে, t $\neq \frac{3}{\xi}$:: t = 3 [: তম সেকেন্ড কেবল পূর্ণ সংখ্যা হবে] ∴ টাওয়ারের উচ্চতা, h = ½gt² $=\frac{1}{2} \times 9.8 \times 3^2 = 44.1$ m (Ans.)

- দৃশ্যকম্প-২: একটি টাওয়ারের শীর্ষবিন্দু থেকে পড়ন্ত একখণ্ড 04. পাথর 4 মিটার দূরতে় পৌঁছানোর পর টাওয়ারের শীর্ষবিন্দু থেকে 16 মিটার নিচে কোনো বিন্দু থেকে একখণ্ড পাথর নিচে ফেলা হলো। পাথরদ্বয় স্থির অবস্থা থেকে একই সাথে মাটিতে পড়ল। (গ) দৃশ্যকল্প-২ থেকে টাওয়ারের উচ্চতা নির্ণয় কর।[RB'19]
- (গ) Sol": প্রথম পাথরের ক্ষেত্রে, $V = \sqrt{2 \times 9.8 \times 4} = 8.854 \text{ ms}^{-1}$ এখন, $h - 4 = Vt + \frac{1}{2}gt^2$ $h = Vt + \frac{1}{2}gt^2 + 4....(i)$ আবার, $h - 16 = \frac{1}{2}gt^2$: $h = \frac{1}{2}gt^2 + 16$ (ii) এখন, (i) ও (ii) হতে পাই, $\frac{1}{2}gt^2 + 16 = Vt + \frac{1}{2}gt^2 + 4$ ⇒ Vt = 12 : t = 1.3553s : h = 25m (Ans.)
- (ক) মাধ্যাকর্ষণের প্রভাবে 100 মিটার উঁচু স্থান হতে পড়স্ত বস্তুর 05. $2 \sec \omega$ প্রাপ্ত বেগ নির্ণয় কর। (g = 9.8 ms^{-2}).
- (ক) Soln: এখানে, u = 0; g = 9.8 ms⁻¹; t = 2s; আমরা জানি, $v = u + gt = 0 + 2 \times 9.8 = 19.6 \text{ ms}^{-1}$
- 50 ফুট উঁচু টাওয়ারের ছাদ থেকে ইমন একটি টেনিস বল নিচে 06. ফেলে দিল। বলটি ৪ ফুট নিচে নামার পর সুমন অপর একটি টেনিস বল y ফুট নিচে হতে ফেলে দিল। উভয় বল ছিরাবস্থা থেকে একই সাথে ভূমিতে পতিত হলো। কিছুক্ষণ পর ইমন একটি ক্রিকেট বল আনুভূমিকের সাথে 30° কোণে নিক্ষেপ [CB'19] করে।
- (খ) সুমন কত উচ্চতা থেকে টেনিস বলটি ফেলেছিল? (খ)
 - Sol": 8 ফুট নামার পর v = $\sqrt{2g.8}$ = $16\sqrt{2}$ ft/s

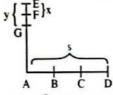
Education Plans and Company of m

সুমন বল ছেড়ে দেয়ার পর, $50 - y = \frac{1}{2}gt^2$ ইমন বল ছেড়ে দেয়ার পর, $50 - 8 = vt + \frac{1}{2}gt^2$

(i) থেকে (ii) বিয়োগ করে, 8-y=-vt $\therefore t=\frac{y-8}{v}$

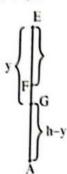
কাজেই (i) হতে, $50 - y = \frac{1}{2}g \cdot \frac{(y-8)^2}{v^2} = \frac{1}{2}g$

$$=\frac{(y-8)^2}{\left(16\sqrt{2}\right)^2}=\frac{(y-8)^2}{512}$$


$$\Rightarrow 50 - y = \frac{(y-8)^2}{32} \Rightarrow 1600 - 32y = (y-8)^2$$

∴ y = 32 ft

∴ উচ্চতা = (50 – 32)ft = 18 ft (Ans.)


সূপ্যকলপ: [সরকারি মাইকেল মধুস্দন কলেজ, যশোর]

(TE1.

- (গ) E বিন্দু থেকে একটি পাথর পড়ার সময় F বিন্দুতে আসলে G বিন্দু থেকে অন্য একটি পাথরখণ্ড ফেলে দেওয়া হলে তারা একই সময় ভূমিতে পতিত হয়। দেখাও যে, A থেকে E বিন্দুর উচ্চতা, $AE = \frac{(x+y)^2}{4x}$ মিটার।
- (গ) Sol": ধরি, টাওয়ারের চূড়া E থেকে s_1 পাথরখণ্ডটি F এ এসে পৌঁছালো, E বিন্দু থেকে y মিটার নিচে অবস্থিত G বিন্দু হতে s_2 পাথরখণ্ডটি ফেলে দেওয়া হলো, $v^2 = 2gx$

আবার. s₂ পাথর খণ্ড ফেলার সময়। সময় পরে উক্ত পাধ্যক্ত একসাথে ভূমিতে পতিত হয়।

 s_1 এর পাথরখণ্ডের ক্ষেত্রে, $h-x=vt+rac{1}{2}gt^2\dots\dots(i)$

আবার, s $_2$ পাথরখণের ক্ষেত্রে, $h-y=rac{1}{2}gt^2\ldots\ldots(ii)$

(i) - (ii)
$$\Rightarrow$$
 h - x - h + y = vt + $\frac{1}{2}$ gt² - $\frac{1}{2}$ gt²

$$\Rightarrow y-x=vt \ \ \therefore \ t=\frac{y-x}{v}$$

(ii) এ t এর মান বসালে,

$$h - y = \frac{1}{2}g\left(\frac{y-x}{v}\right)^2 \Rightarrow h - y = \frac{1}{2}g\frac{(y-x)^2}{2gx}[v^2 = 2gx]$$

$$\Rightarrow h - y = \frac{(y - x)^2}{4x}$$

$$\Rightarrow h = y + \frac{(y-x)^2}{4x} = \frac{4xy + (y-x)^2}{4x} = \frac{(x+y)^2}{4x} m$$

$$\therefore AE = \frac{(x+y)^2}{4x}$$
m (Showed)

নিজে করো

- দৃশ্যকল্প-২: একটি টাওয়ারের চূড়া হতে একখণ্ড পাথর x মিটার
 নিচে নামার পর অপর খণ্ড পাথর চূড়ার y মিটার নিচ হতে ফেলে
 দেয়া হলো। উভয়েই স্থিরাবস্থা হতে পড়ে এবং একই সঙ্গে
 ভূমিতে পতিত হয়।
 - (গ) দেখাও যে, টাওয়ারটির উচ্চতা $\frac{(x+y)^2}{4x}$ মিটার।
- দৃশ্যকল্প-১: একটি টাওয়ারের চূড়া হতে একখণ্ড পাথর 2 মিটার
 নিচে নামার পর অপর একখণ্ড পাথর চূড়ার 6 মিটার নিচ হতে
 ফেলে দেওয়া হলো।

 (খ) দৃশ্যকল্প-১ হতে যদি দুইটি পাথরই ছির অবস্থা হতে পড়ে এবং
 একই সাথে ভূমিতে পতিত হয় তবে টাওয়ারের উচ্চতা নিশ্ম
 কর।

 [Ans: 8 মিটার]

Type-10: শব্দ শোনার সময় হিসেব করে গভীরতা নির্ণয়

Concept

- এক্ষেত্রে গতিবিদ্যার মুক্তভাবে পড়ন্ত বস্তুর সূত্র, h = ut + ½ gt² v = u + gt ইত্যাদি ব্যবহার করতে হবে [পড়ন্ত বস্তুটির জনা] যেখানে, u = আদিবেগ, v = শেষবেগ, g = অভিকর্ষজ ত্রণ

শব্দের জন্য

 $h = v_s t$ বাবহার করতে হবে। [শব্দ সমবেগে চলে] যেখানে, $v_s =$ শব্দের বেগ

Educationblog24.0 উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৯

সৃজনশীল প্রশ্ন (ক, খ ও গ)

দৃশ্যকল্প-১: একটি শূন্য কৃপের মধ্যে একটি ভারী বস্তু ফেলার স্থাকল্ড পরে এর তলদেশে দ্রাক্ত 5.5 সেকেন্ড পরে এর তলদেশে ভারী বস্তুটির পতনের শব্দ শোনা গেল। [Din.B'23]

(খ) উদ্দীপক-১ হতে শব্দের বেগ 327 মিটার/সেকেন্ড হলে, কুপের গভীরতা নির্ণয় কর। (g = 9.81 মিটার/সেকেন্ড^১)

(ব) Sol": দেওয়া আছে, শব্দের বেগ v_s = 327m/s আর ভারী বস্তু ফেলার 5.5 s পর পতনের শব্দ শোনা যায়। ধুরি, ভারী বস্তু কূপের তলদেশে পৌঁছাতে সময় t হলে শব্দ কূপের তলদেশ থেকে আসতে সময় হবে (5.5 – t)s

আর কৃপের গভীরতা হলো H।

এবং,
$$H = \frac{1}{2} \cdot g \cdot t^2 \dots \dots (ii)$$

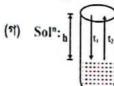
(i) ও (ii) হতে পাই, v_s · (5.5 − t) = $\frac{1}{2}$ · g · t²

$$\Rightarrow 327 \times 5.5 - 327t = 4.9t^2$$

$$\Rightarrow 4.9t^2 + 327t - 327 \times 5.5 = 0$$

$$\Rightarrow 4.9t^2 + 327t - 179.5 = 0$$

তাহলে, কূপের গভীরতা হবে $H = \frac{1}{2} \cdot g \cdot t^2$


$$\Rightarrow H = \frac{1}{2} \cdot g \cdot (5.108)^2 \Rightarrow H = \frac{1}{2} \times 9.8 \times (5.108)^2$$

H = 127.849 m (Ans.)

উদ্দীপক-২: একটি পাধর কুয়ার ভিতর ফেলার t সময় পরে পানিতে এর পতন শোনা গেল। শব্দের বেগ v এবং কুয়ার গভীরতা h। বাতাসের বাধা অগ্রাহ্য করা হলো। [BB'22]

(গ) উদ্দীপক-২ ব্যবহার করে দেখাও যে,

$$vgt^2 - 2h(gt + v) = 0.$$

মনে করি, পাথরটি t1 সময়ে কুয়ার পানিতে পতিত হয় এবং সেখান থেকে পতন শব্দ কুয়ার উপরিভাগে আসতে t2 সময় লাগে তাহলে, t = t₁ + t₂(i) পাথর পতনের ক্ষেত্রে,

$$h=0\times t_1+\tfrac{1}{2}\ gt_1^2\Rightarrow gt_1^2=2h\Rightarrow t_1=\sqrt{\tfrac{2h}{g}}$$

শব্দের ক্ষেত্রে, $h = vt_2 \Rightarrow t_2 = \frac{h}{v}$

(i) হতে পাই,
$$t=t_1+t_2=\sqrt{\frac{2h}{g}}+\frac{h}{v}\Rightarrow t-\frac{h}{v}=\sqrt{\frac{2h}{g}}$$

$$\Rightarrow t^2 - \frac{2ht}{v} + \frac{h^2}{v^2} = \frac{2h}{g} \dots \dots \dots (ii)$$

শব্দের বেগ v > h সূতরাং $\frac{h^2}{v^2}$ কে অতি ক্ষুদ্র বিবেচনা করে অগ্রাহ্য

$$\therefore t^2 - \frac{2ht}{v} = \frac{2h}{g} \Rightarrow vgt^2 - 2hgt - 2hv = 0$$

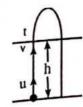
$$: vgt^2 - 2h(gt + v) = 0$$
 (দেখানো হলো)

নিজে করো

03. একটি শূন্য কুপের মধ্যে একটি ঢিল ফেলার t সেকেন্ড পরে কৃপের তলদেশে ঢিল পড়ার শব্দ শোনা গেল। শব্দের বেগ v এবং কৃপের [Din.B'17] গভীরতা h।

(খ) উদ্দীপকে বর্ণিত তথ্যাদি হতে প্রমাণ কর যে, $(2h - gt^2)v^2 + 2hgtv = h^2g$.

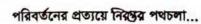
(গ) উদ্দীপকের আলোকে প্রমাণ কর যে, $t=\sqrt{\frac{2h}{g}+\frac{h}{v}}$


Type-11: ভূমি থেকে উল্লম্বভাবে নিক্ষিপ্ত বস্তুর গতি

Concept

উর্ধ্বে নিক্ষিপ্ত বস্তুর ক্ষেত্রে, [উপরের দিকে +ve ধরে]

$$v = u - gt$$


$$h = ut - \frac{1}{2}gt^2$$

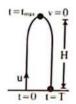
সূজনশীল প্রশ্ন (ক, খ ও গ)

দৃশ্যকম্প-২: একটি স্তম্বের শীর্ষ থেকে 98 মি/সেকেন্ড বেগে A বস্তুকে খাড়া উপরের দিকে নিক্ষেপ কর হলো। 2 সেকেন্ড পরে একই বিন্দু হতে অপর একটি B বস্তুকে ছেড়ে দেয়া হলো।

(গ) দৃশকম্প-২ এ বস্তু দৃটি ভূমি হতে কত উচ্চতায় মিলিত হবেতা নির্ণয় কর।

(গ) Sol": ১ম বস্তুর জন্য,
$$h = -ut + \frac{1}{2}gt^2 \dots \dots$$
 (i)

২য় বস্তুর জন্য,
$$h = 0(t-2) + \frac{1}{2}g(t-2)^2$$
 $\Rightarrow h = \frac{1}{2}g(t-2)^2 \dots \dots (ii)$


(i) = (ii) ধরে, $\frac{1}{2}g(t-2)^2 = -ut + \frac{1}{2}gt^2$
 $\Rightarrow \frac{1}{2}g\{(t-2)^2 - t^2\} = -ut$
 $\Rightarrow 4 \cdot 9\{(t-2)^2 - t^2\} = -98t$
 $\Rightarrow t^2 - 4t + 4 - t^2 = -20t \Rightarrow 16t = -4 \therefore t = -\frac{1}{4}$
 \therefore যেহেতু সময় ঋণাত্মক বস্তুষয় মিলিত হবে না। (Ans.)

Type-12: সর্বোচ্চ উচ্চতা ও সর্বোচ্চ উচ্চতায় উত্থানকাল

[RB'23]

Concept

মোট বিচরণ কাল, $T=\frac{2u}{g}$ [u= আদিবেগ/নিক্ষেপ বেগ] সর্বোচ্চ উচ্চতা, $H=\frac{u^2}{2g}$ সর্বোচ্চ উচ্চতায় উঠতে সময়, $t_{max}=\frac{u}{g}$

সূজনশীল প্রশ্ন (ক, খ ও গ)

ক্রি একটি বস্তুকণাকে খাড়া উপরের দিকে নিক্ষিপ্ত করা হলো। কণাটি সর্বোচ্চ 39.2 মিটার উপরে উঠে ভূমিতে পতিত হলে, বেগ নির্ণয় কর।

(ক) Solⁿ: আমরা জানি, সর্বোচ্চ উচ্চতা, $H = \frac{u^2}{2g}$ ⇒ 39.2 = $\frac{u^2}{2 \times 9.8}$ ∴ $u = 27.72 \text{ ms}^{-1}$ (Ans.)

(ক) u আদি বেগে খাড়া উপরের দিকে নিক্ষিপ্ত বস্তুর বিচরণকাল নির্ণয় কর। |MB'22|

কে) Sol": মনে করি, ভূমি হতে u আদি বেগে একটি বস্তু উল্লম্বভাবে উপরের দিকে নিক্ষেপ করা হল এবং তা T_1 সময়ে সর্বাধিক H উচ্চতায় উঠে। যেহেতু বস্তুটি উল্লম্বভাবে উপরের দিকে উঠে, সূতরাং এর বেগ ক্রমশ: কমতে থাকে এবং সর্বাধিক উচ্চতায় পৌছে তা শূন্য হয়। তাহলে v=u-gt থেকে পাই, 0=u-g $T_1\Rightarrow T_1=\frac{u}{g}=$ উভ্যানকাল এবং $v^2=u^2-2gh$ হতে পাই, $0=u^2-2gH$ $\Rightarrow H=\frac{u^2}{2g}=$ সর্বাধিক উচ্চতা সর্বাধিক $\frac{u^2}{2g}$ উচ্চতায় বস্তুটির বেগ শূন্য হয় এবং অতঃপর তাৎক্ষণিকভাবে বস্তুটি উল্লম্বভাবে নিচের দিকে পড়তে থাকে। যদি বস্তুটি T_2 , সময়ে ভূমিতে আঘাত করে.

(ক) u বেগে ভূমি হতে খাড়া উপরের দিকে নিক্ষিপ্ত কণার উত্থানকাল নির্ণয় কর।
[BB'17]

(ক) Sol": ।। আদিবেগে একটি বস্তুকণাকে ভূমি থেকে খাড়া উপরের দিকে নিক্ষেপ করলে অভিকর্ষ ত্বরণ প্রতিকৃল কাজ করে বলে

মন্দনের সৃষ্টি হয় এবং বেগ ক্রমশ কমতে থাকে। সর্বাধিক উচ্চতায় উঠতে । সময় লাগলে,

 $\mathbf{v} = \mathbf{u} - \mathbf{g}\mathbf{t} \Rightarrow \mathbf{0} = \mathbf{u} - \mathbf{g}\mathbf{t} \left[\therefore \mathbf{y}$ র্বাধিক উচ্চতায় বেগ শূনা $\mathbf{t} = \frac{\mathbf{u}}{\mathbf{g}} \therefore$ উত্থানকাল $= \frac{\mathbf{u}}{\mathbf{g}}$ (Ans.)

Educationblog24 উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৯

Type-13: সমবেগে উর্ধ্বগামী প্লেন বা বেলুন থেকে বস্তু ছেড়ে দেওয়া এবং বিমানের উচ্চতা

Concept

্রিন্তা কর, সমবেগে (u বেগে) ঊর্ধ্বগামী রকেট থেকে যদি কোন বস্তু ছেড়ে দেওয়া হয় তাহলে সেই বস্তুটিও u বেগে গতিশীল হয়। এই u বেগের জন্য বস্তুটি কিছু সময় উর্ধ্ব দিকে গতিশীল হবে এবং কিছুক্ষণ পর তার বেগ শূন্য হবে (অভিকর্ষের জন্য)। অবশেষে বস্তুটি নিচে পড়া শুরু করবে।

যেখান থেকে রকেটটি বস্তুটিকে ছেড়ে দেয়।

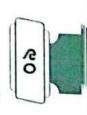
এখানে নিচের দিককে ধনাত্মক চিন্তা করা হচ্ছে।

এখন, যখন বস্তুটি মাটিতে আঘাত করে তখন রকেটের উচ্চতা হলো = h + ut

[h উচ্চতা থেকে বস্তুটি ছাড়া হয় এবং t সময়ে রকেট সমবেগে ut দূরত্ব অতিক্রম করে]

বস্তুটির নীট সরণ, $h = -ut + \frac{1}{2}gt^2$

 $\therefore h + ut = \frac{1}{2}gt^2 \therefore$ বস্তুটি ভূমিতে আঘাত করার মুহূর্তে রকেটের উচ্চতা $= \frac{1}{2}gt^2$


আবার, বস্তুটি যখন রকেট থেকে মুক্ত হয় তখন রকেটের উচ্চতা, $h=-ut+rac{1}{2}gt^2$

সৃজনশীল প্রশ্ন (ক, খ ও গ)

- 👖 (ৰু) 20ms⁻¹ বেগে উর্ধ্বগামী কোনো বেলুন হতে পতিত এক টুকরা পাথর 15 সেকেন্ডে মাটিতে পতিত হয়। যখন পাথরের টুকরা পতিত হয়, তখন বেলুনের উচ্চতা কত? [Din.B'23]
- ক) Sol": দেওয়া আছে, পাথরের আদি বেগ $u = 20 \text{ ms}^{-1}$ আর ভূমি স্পর্শ করে t = 15s এ। পাথরের টুকরা পতিত হওয়ার (বেলুন থেকে) মুহূর্তে বেলুনের উচ্চতা, $h=-ut+\frac{1}{2}gt^2$ $= -20 \times 15 + \frac{1}{2} \times 9.8 \times 15^2 = 802.5 \text{ m}$ (Ans.)
- 🔃 (ক) 5 ফুট/সেকেন্ড বেগে খাড়া উপরে উঠন্ত একটি বেলুন থেকে একখণ্ড পাথর ফেলা হলো, পাথর খণ্ডটি 10 সেকেন্ডে স্থমিতে পড়ে। পাথর ফেলার সময় বেলুনের উচ্চতা কত ছिन? [Ctg.B'22]
- (ক) Sol": নিচের দিক ধনাত্মক বিবেচনা করে, পাথরটির আদিবেগ, u = -5 fts⁻¹; তুরণ, g = 32 fts⁻² সময়, t = 10 s বেলুনের উচ্চতা h হলে, $h = ut + \frac{1}{2}gt^2$ = $(-5) \times 10 + \frac{1}{2} \times 32 \times (10)^2 = 1550$ ft (Ans.)
- (ক) নির্দিষ্ট উচ্চতা h হতে 5 মি./সে. বেগে একটি বস্তুকণা খাড়া উপরের দিকে নিক্ষেপ করায় বস্তুকণাটি 4 সে. সময় পর ভূমিতে পতিত হয়। h এর মান নির্ণয় কর।
- (ক) Sol^n : বস্তুকণাটির উল্লম্ব সরণ = h আদিবেগ, $u = -5ms^{-1}$ সময়, t = 4s \therefore বস্তুকণাটির ভূমিতে পতনের ক্ষেত্রে, $h=ut+\frac{1}{2}gt^2$ $\Rightarrow h = -5 \times 4 + \frac{1}{2} \times 9.8 \times (4)^2 : h = 58.4 \text{ m (Ans.)}$

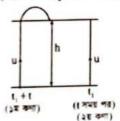
নিজে করো

⁽⁴⁾ (क) 6 মিটার/সে. বেগে উর্ম্বগামী একটি বেলুন হতে একটি পাথর ফেলা হলো। যদি পাথরটি 10 সেকেন্ডে ভূমিতে পড়ে, তবে পাথরটি [Din.B'17] [Ans: 430 মিটার] ফেলার সময় বেলুন কত উচুতে ছিল?

Type-14: নিৰ্দিষ্ট সময় ব্যবধানে দুটি বস্তু একই দিকে নিক্ৰিঙ

(Concept

এখানেও 2 টি বস্তুর ক্ষেত্রে আলাদা আলাদাভাবে নিক্ষিপ্ত বস্তুর জন্য গতির সমীকরণগুলো ব্যবহার করে প্রয়োজনীয় মান নির্ণয় করতে হবে। Shortcut for MCQ: একটি কণা u ms⁻¹ বেগে খাড়া উপরের দিকে নিক্ষেপ করা হলো এবং t sec পরে যদি ঐ একই বিন্দু হতে এক আদিবেশে অপর একটি কণা উপরের দিকে নিক্ষেপ করা হলে তারা $\frac{4u^2-g^2t^2}{8g}$ উচ্চতায় মিলিত হবে।


সূজনশীল প্রশ্ন (क, च ও গ)

[এই টাইপ থেকে বিগত বোর্ড পরীক্ষায় কোনো সৃজনশীল প্রশ্ন আসেনি।]

দৃশ্যকম্প-২: একটি পাধর u বেগে খাড়া উপরের দিকে নিক্ষেপ করার t সময় পের ঐ একই বিন্দু হতে একই আদিবেগে অপর একটি পাথর খাড়া উপরের দিকে নিক্ষেপ করা হ**লো**।

[ব্রাজউক উত্তরা মডেল কলেজ, ঢাকা]

- (গ) প্রমান কর যে, দৃশ্যকম্প-২ এর পাথর দুইটি $\frac{4u^2-g^2t^2}{8\sigma}$ উচ্চতায় মিলিত হবে।
- গ্রি ১০া মনে করি, ২য় কণা t, সময় পর h উচ্চতায় উঠে।

:: ১ম কণা t₁ + t সময় পর h উচ্চতায় থাকে। তাহলে, ১ম কণার জন্য, $h = u(t_1 + t) - \frac{1}{2}g(t_1 + t)^2$ $\Rightarrow h = u(t_1 + t) - \frac{1}{2}g(t_1^2 + 2tt_1 + t^2) \dots \dots (i)$ আবার, ২য় কণার জন্য, $h = ut_1 - \frac{1}{2}gt_1^2$ (ii) (i) - (ii) $\Rightarrow 0 = ut - \frac{1}{2}g(2tt_1 + t^2)$ $\Rightarrow 2ut = 2gtt_1 + gt^2 \Rightarrow 2u = 2gt_1 + gt :: t_1 = \frac{u}{g} - \frac{1}{2}$ t_1 এর মান বসালে পাই, $h = u\left(\frac{u}{x} - \frac{t}{2}\right) - \frac{1}{2}g\left(\frac{u}{x} - \frac{t}{2}\right)^2$ $= \frac{u^2}{g} - \frac{ut}{2} - \frac{1}{2}g\left(\frac{u^2}{g^2} + \frac{t^2}{4} + \frac{-ut}{g}\right)$ $= \frac{u^2}{g} - \frac{ut}{2} - \frac{u^2}{2g} - \frac{gt^2}{8} + \frac{ut}{2} = \frac{u^2}{2g} - \frac{gt^2}{8}$ $\therefore h = \frac{4u^2 - g^2t^2}{8\sigma} \text{ (Proved)}$

Type-15: α কোণে ভূমি থেকে নিক্ষিপ্ত প্রকেপকের গতি

(Concept

α কোলে ভূমি থেকে u বেগে নিকিন্ত প্রাসের কেত্রে,

শতিস্ত:

(i)
$$v_x = u_x = u \cos a$$

(iii)
$$\mathbf{v} = \sqrt{\mathbf{v}_x^2 + \mathbf{v}_y^2}$$
; $\theta_{\mathbf{v}} = \tan^{-1} \frac{\mathbf{v}_y}{\mathbf{v}_x}$

(v)
$$y = u_y t - \frac{1}{2}gt^2 = u \sin \alpha t - \frac{1}{2}gt^2$$

চলরেখের সমীকরণ

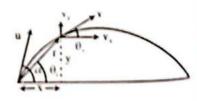
$$y = x \tan \alpha - \frac{gx^2}{2\alpha^2 \cos^2 \alpha} = x \tan \alpha \left(1 - \frac{x}{g}\right)$$

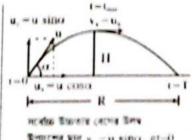
সংবীক উচ্চতা, $H = \frac{\alpha^2 \sin^2 \alpha}{2g}$

সংগাঁত উভাতা,
$$H = \frac{u^2 \sin^2 \alpha}{2\pi}$$

সর্বোচ্চ উচ্চতায় উঠতে সময়,
$$t_{\rm max} = \frac{a \sin a}{a}$$

বিচরণকাল,
$$T = \frac{2n \sin \alpha}{g}$$


আনুভূমিক পাল্লা,
$$R=\frac{\alpha^2\sin 2\alpha}{\alpha}$$


Shortcut for MCQ:
$$\tan \alpha = \frac{411}{8}$$

(ii)
$$\mathbf{v}_{y} = \mathbf{u}_{y} - \mathbf{g}\mathbf{t} = \mathbf{u}\sin\alpha - \mathbf{g}\mathbf{t}$$

(iv)
$$x = u_x t = u \cos \alpha t$$

(vi)
$$r = \sqrt{x^2 + y^2}$$
; $\theta_r = \tan^{-1} \frac{y}{x}$

Educationblog24 উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৯

সৃজনশীল প্রশ্ন (ক, খ ও গ)

ট্রন্নিপক-১: u আদিবেগ এবং আনুভূমির সাথে α কোণে একটি ^{৪শা} নিক্ষেপ করা হলো। t সময় পার (x, y) বিন্দুতে পৌছায়।

(ব) উদ্দীপক-১ ব্যবহার করে দেখাও যে,

$$x^2 \tan \alpha - xR \tan \alpha + Ry = 0$$

[BB'22]

501": u আদিবেগ এবং আনুভূমিক সাথে α কোণে নিক্ষিপ্ত বস্তুটি t সময় পর (x,y) বিন্দুতে পৌছালে,

$$t^{\pi \lambda i + \pi i + \pi i} = \frac{x}{u \cos \alpha} \dots \dots \dots (i)$$

এবং
$$y = u \sin \alpha t - \frac{1}{2}gt^2 \dots \dots (ii)$$

আনুভূমিক পাল্লা,
$$R = \frac{u^2 \sin 2\alpha}{g} \dots \dots (iii)$$

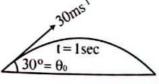
(i) নং হতে (ii) নং সমীকরণ t এর মান বসিয়ে পাই,

$$y = u \sin \alpha \cdot \frac{x}{u \cos \alpha} - \frac{1}{2} g \left(\frac{x}{u \cos \alpha} \right)^2$$

$$\Rightarrow y = x \tan \alpha - \frac{1}{2} g \frac{x^2}{u^2 \cos^2 \alpha}$$

$$\Rightarrow y = x \tan \alpha - g \frac{x^2}{u^2 \cdot 2 \sin \alpha \cos \alpha} \times \frac{\sin \alpha}{\cos \alpha}$$

$$\Rightarrow y = x \tan \alpha - x^2 \tan \alpha \left(\frac{g}{u^2 \sin 2\alpha} \right)$$

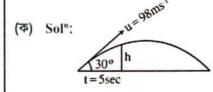

$$\Rightarrow y = x \tan \alpha - x^2 \tan \alpha \cdot \frac{1}{R}$$

$$\Rightarrow Ry = x R \tan \alpha - x^2 \tan \alpha$$

$$\therefore x^2 \tan \alpha - x R \tan \alpha + Ry = 0$$
 (দেখানো হলো)

(a) একটি ফুটবল 30 মি./সে. বেগে আনুভূমিকের সাথে 30° কোণে প্রক্ষেপ করা হলে 1 সেকেন্ড পর এর বেগ নির্ণয় [ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা] কর।

(Φ) Sol^o: $v_x = v_0 \cos \theta_0 = 30 \times \cos 30^\circ = 15\sqrt{3} \text{ms}^{-1}$ $v_y = v_0 \sin \theta_0 - gt = 30 \sin 30^\circ - 9.8 \times 1 = 5.2 \text{ms}^{-1}$



$$\dot{}$$
 বেগ, $v = \sqrt{v_x^2 + v_y^2} = \sqrt{\left(15\sqrt{3}\right)^2 + (5.2)^2}$

$$\theta = \tan^{-1}\left(\frac{v_y}{v_x}\right) = \tan^{-1}\left(\frac{5.2}{15\sqrt{2}}\right) = 11.31^{\circ}$$

03. (ক) একটি বস্তুকণা 30° কোণে 98 মি./সে, বেগে প্রক্রিপ্ত হওয়ায় 5 সে. পর তার গতিপথের P বিন্দুতে পৌঁছা**লো**। P বিন্দু ভূমি থেকে কত উচ্চতায় থাকবে?

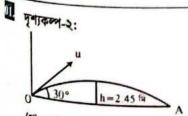
[সরকারি বিজ্ঞান কলেজ, ঢাকা]

আমরা জানি, $h = u \sin \alpha t - \frac{1}{2}gt^2$

 $= 98 \sin 30^{\circ} \times 5 - \frac{1}{2} \times 9.8 \times 5^{2} = 122.5 m$

Type-16: বস্তুকণার বিচরণকাল, দীর্ঘতম উচ্চতা এবং আনুভূমিক পাল্লা

Concept


প্রাসের পাল্লা, $R=\frac{u^2 \sin 2\alpha}{g}$; মোট বিচরণ কাল, $T=\frac{2u \sin \alpha}{g}$

বৃহত্তম উচ্চতা, $H=rac{u^2 \sin^2 lpha}{2g}$ [সর্বোচ্চ উচ্চতায় প্রাসের গতিবেগ আনুভূমিক থাকে]

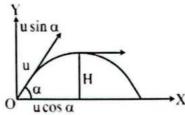
দুইটি বস্তুকে একই আদিবেগে lpha এবং $\left(rac{\pi}{2}-lpha
ight)$ কোণে নিক্ষেপ করলে তারা একই আনুভূমিক দূরত্ব অতিক্রম করে।

[Ctg.B'23]

সূজনশীল প্রশ্ন (ক, খ ও গ)

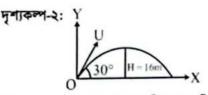
(গ) দৃশ্যকম্প-২ এ কণাটির সর্বোচ্চ উচ্চতা lı হলে OA নির্ণয় কর। [g = 9.8 m/s²]

Sol": চিত্রে প্রক্ষেপণ কোণ, $\alpha = 30^\circ$ সর্বোচ্চ উচ্চতা, h = 2.45m, আদিবেগ u, আন্ভূমিক পাল্লা, OA = R এখন $h = \frac{u^2 \sin^2 \alpha}{2e} \Rightarrow 2.45 = \frac{u^2 \sin^2 30^{\circ}}{2e}$ \Rightarrow 2.45 \times 2g \times 4 = u^2 \therefore u^2 = 19.6g আবার, R = $\frac{u^2 \sin 2\alpha}{g} = \frac{19.6g \times \sin(2 \times 30^\circ)}{g} = \frac{49\sqrt{3}}{5} = 16.97 \text{m}.$


পরিবর্তনের প্রত্যয়ে নির্ম্বর পথচলা..

Fducational agazaticon

α (Φ) α বেগে এবং আনুভূমিকের সাথে α কোণে প্রক্রিপ্ত বস্তুর α ক্রের প্রমাণ কর α, সর্বাধিক উচ্চতা, $H = \frac{u^2 \sin^2 \alpha}{2g}$.

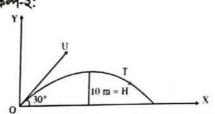

[SB'23]

(주) Sol*:

O বিন্দু হতে u আদিবেগে এবং ভূমির সাথে α কোণে নিক্নিপ্ত একটি বস্তুকণা T সময়ে সর্বাধিক H উচ্চতায় পৌছে। O বিন্দুতে u এর আনুভূমিক ও উল্লম্ব উপাংশ যথাক্রমে $u\cos\alpha$ ও $u\sin\alpha$ এবং সর্বাধিক উচ্চতায় বেগের উল্লম্ব উপাংশ শূন্য। তাহলে, $v^2=u^2-2gh$ সূত্র প্রয়োগ করে পাই, $0=(u\sin\alpha)^2-2gH\Rightarrow 2gH=u^2\sin^2\alpha$ \therefore সর্বাধিক উচ্চতা, $H=\frac{u^2\sin^2\alpha}{2g}$ (Proved)

03.

[MB'23]


[Ctg.B'22]

(গ) দৃশ্যকল্প-২ এর প্রক্ষেপকটির আনুভূমিক পাল্লা নির্ণয় কর।

(গ) Sol**: দেওয়া আছে, প্রক্ষেপকটির নিক্ষেপণ কোণ $\theta=30^\circ$ ধরি, নিক্ষেপণ বেগ, uপ্রশ্নমতে, সর্বোচ্চ উচ্চতা, $H=16\Rightarrow \frac{u^2\sin^2\theta}{2g}=16$ $\Rightarrow \frac{2\,u^2\sin\theta\cos\theta}{g}\times \frac{\sin\theta}{2\times2\times\cos\theta}=16$ $\Rightarrow \frac{u^2\sin2\theta}{g}\times \tan\theta=4\times16$ $\Rightarrow R=\frac{64}{\tan\theta}=\frac{64}{\tan30^\circ}=\frac{64}{\frac{1}{\sqrt{3}}}$

 \therefore আনুভূমিক পাল্লা, R = $64\sqrt{3}$ m (Ans.)

04.

- (গ) দৃশ্যকম্প-২ হতে প্রক্ষেপকটির পাল্লা এবং বিচরণকাল নির্ণয় কর।
- (গ) Solⁿ: দেওয়া আছে, সর্বোচ্চ উচ্চতা, H = 10m এবং নিক্ষেপণ কোণ, α = 30°
 আমরা জানি, অভিকর্ষজ তুরণ, g = 9.8ms⁻²

এবং সর্বোচ্চ উচ্চতা,
$$H=\frac{u^2\sin^2\alpha}{2g}\Rightarrow 10=\frac{u^2\sin^2\alpha_0}{2\times 9\,g}$$
 $\Rightarrow u^2=784$ $\therefore u=28ms^{-1}$ \therefore প্রকেপকটিব পাল্লা, $R=\frac{u^2\sin2\alpha}{g}=\frac{(28)^2\sin(2\times 30^\circ)}{9\,8}=69\,28 m$ এবং বিচরণকাল, $T=\frac{2u\sin\alpha}{g}=\frac{2\times 28\times \sin30^\circ}{9\,8}=2.86\,s\,(Ans.)$

্রা দৃশ্যকল্প-২: একটি বস্তু কণা u_1 আদিবেগে প্রক্রিপ্ত হলে বস্তুকণাটি সর্বাধিক Y উচ্চতায় গমন করে। |SB'22| (গ) দৃশ্যকল্প-২ এ বস্তুকণার আনুভূমিক পাল্লা X হলে প্রমাণ কর যে, $X=4\sqrt{\frac{y(|u_1|^2-2gy)}{2g}}$.

(গ) Sol": মনে করি, বস্তুকণাটির নিক্ষেপণ কোণ α তাহলে, $y = \frac{u_1^2 \sin^2 \alpha}{2g} \Rightarrow \sin^2 \alpha = \frac{2gy}{u_1^2}$ এবং $X = \frac{2u_1^2 \sin \alpha \cos \alpha}{g} \Rightarrow X^2 = \frac{4u_1^4}{g^2} \sin^2 \alpha \cos^2 \alpha$ $\Rightarrow X^2 = \frac{4u_1^4}{g^2} \sin^2 \alpha (1 - \sin^2 \alpha)$ $\Rightarrow X^2 = \frac{4u_1^4}{g^2} \times \frac{2gy}{u_1^2} \left(1 - \frac{2gy}{u_1^2}\right)$ $= \frac{8u_1^4 \times gy}{g^2 \times u_1^2} \cdot \left(\frac{u_1^2 - 2gy}{u_1^2}\right) = 16y\left(\frac{u_1^2 - 2gy}{2g}\right)$ $\therefore X = 4\sqrt{\frac{y(u_1^2 - 2gy)}{2g}} \text{ (প্রমাণিত)}$

- া উদ্দীপক-২: কোনো আনুভূমিক তলের উপরস্থ একটি বিন্দু হতে একটি কণা u বেগে এবং α কোণে প্রক্ষিপ্ত হলো। তার পাল্লা R এবং লব্ধ বৃহত্তম উচ্চতা H. |JB'22|
 (গ) প্রমাণ কর যে, 16gH² 8u²H + gR² = 0
 - Sol®: আমরা জানি, প্রক্ষেপণ বেগ, u প্রক্ষেপণ কোণ, α \therefore পাল্লা, $R = \frac{u^2 \sin 2\alpha}{g}$ \therefore লব্ধ বৃহত্তম উচ্চতা, $H = \frac{u^2 \sin^2 \alpha}{2g}$ $\Rightarrow u^2 \sin^2 \alpha = 2gH \dots \dots (i)$ আবার, $R = \frac{u^2 \sin 2\alpha}{g} \Rightarrow R = \frac{u^2}{g} \times 2 \sin \alpha \cos \alpha$ $\Rightarrow R^2 = \left(\frac{u^2}{g}\right)^2 \times (2 \sin \alpha \cos \alpha)^2$ $\Rightarrow R^2 = \frac{u^2 u^2}{g^2} 4 \sin^2 \alpha \cos^2 \alpha$ $\Rightarrow R^2 = \frac{4}{g^2} (u^2 \sin^2 \alpha) (u^2 \cos^2 \alpha)$ $\Rightarrow R^2 = \frac{4}{g^2} 2gH(u^2 \cos^2 \alpha) [(i)$ নং থেকে] $\Rightarrow R^2 = \frac{8H}{g} (u^2 \cos^2 \alpha) \therefore u^2 \cos^2 \alpha = \frac{gR^2}{gH} \dots (ii)$ $(i) + (ii) \Rightarrow u^2 \sin^2 \alpha + u^2 \cos^2 \alpha = 2gH + \frac{gR^2}{gH}$

 $\Rightarrow u^2(\sin^2\alpha + \cos^2\alpha) = \frac{{}_{16gH^2 + gR^2}}{{}_{8H}}$

 $16gH^2 - 8u^2H + gR^2 = 0$ (Proved)

 $\Rightarrow 8Hu^2 = 16gH^2 + gR^2$

্রিকেটার ভূমির সাথে 35° কোণে 85.5 মিটার/সে. ্রেশ একটি ক্রিকেট বল আঘাত করে। [Din.B'22] (a) বলটির সর্বাধিক উচ্চতা নির্ণয় কর।

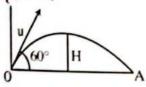
(ব) বলটি বাউন্ডারী লাইনের উপর পড়লে ক্রিকেটার হতে বাউন্ডারী লাইনের দূরত্ব নির্ণয় কর।

ৰাজভাৱা লাহেশৰ পুৰুষ্ট শেষ কর্ম : মনে করি,
$$u = 85.5 \text{ ms}^{-1}$$
 ; $\theta = 35^\circ$; $H = ?$: জামরা জানি, $H = \frac{u^2 \sin^2 \theta}{2g} = \frac{(85.5)^2 (\sin 35^\circ)^2}{2 \times 9.8} = 122.704 \text{ m}$ (প্রায়)

সূত্রাং, বলটির সর্বাধিক উচ্চতা 122.704 মিটার (প্রায়) (Ans.) $_{\text{Sel}}$: মনে করি, $u = 85.5 \text{ ms}^{-1}$, $\theta = 35^{\circ}$

জামরা জানি, R =
$$\frac{u^2 \sin 2\theta}{g}$$

= $\frac{(85.5)^2 \sin(2 \times 35^\circ)}{9.8}$ = 700.96 m (প্রায়)


মৃত্রাং, ক্রিকেটার হতে বাউন্ডারি লাইনের দূরত্ব 700.96 মিটার (의정) (Ans.)

্র (হ) 9.8 m/s বেগ এবং α কোণে প্রক্রিপ্ত বস্তুর ক্ষেত্রে কী শূর্তে পাল্লা সর্বাধিক হবে এবং তা কত নির্ণয় কর। (g = 9.8 m/s²)

্র Sol*: $R = \frac{u^2 \sin 2\alpha}{g}$ সর্বাধিক পাল্লার জন্য শর্ত, $\sin 2\alpha = 1$ $\Rightarrow 2\alpha = 90^{\circ} : \alpha = 45^{\circ}$ মর্বাধিক পাল্লা: $R = \frac{9.8^2 \times \sin 90^\circ}{9.8} = 9.8 \text{m}$ (Ans.)

🧊 দৃশ্যকম্প-২:

[RB'17]

(গ) ২নং দৃশ্যকম্পে কণাটির সর্বাধিক উচ্চতা 4.9 মিটার হলে এর আনুভূমিক পাল্লা নির্ণয় কর। [g = 9.8 মি./ সে².]

ী ১০০°: দৃশ্যকম্প হতে পাই,
$$\alpha=60^\circ$$

সার্বিক উচ্চতা, $H=\frac{u^z \sin^z \alpha}{z_B}$

$$\Rightarrow 4.9 = \frac{u^2 (\sin 60^\circ)^2}{2g} \Rightarrow 4.9 = \frac{u^2 \times \frac{3}{4}}{2g}$$

$$^{3} u^{2} \times \frac{3}{4} = 4.9 \times 2g \implies u^{2} = 128.05$$

্রানুর্ভারত পালা,
$$R = \frac{u^2 \sin 2u}{u}$$

$$\frac{n}{128.05} \times \frac{\sin(z \times 60^{\circ})}{9.8} = 11.32 \text{m} \text{ (Ans.)}$$

Educationblog24

ক্তিতর গণিত ২য় পত্র : অধ্যায়-০৯

(ক) একটি বস্তু 15m/sec বেশে আনুভূমিকের সাথে 30° কোশে নিক্ষিপ্ত হলে বস্তুটির ভ্রমণকাল কত?

(ক) Sol^a: এখানে,
$$u = 15 \text{m/s}$$
; $\alpha = 30^{\circ} \Rightarrow g = 9.8 \text{m/s}^2$

$$\sum_{\alpha=30^{\circ}}^{15\text{m/s}}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{2 \times 15 \sin 30^{\circ}}{g} = \frac{2 \times 15 \sin 30^{\circ}}{9.8}$$

$$\Rightarrow \frac{2 \times 15 \times \frac{1}{2}}{9.8} = \frac{15}{9.8} = 1.53s \text{ (Ans.)}$$

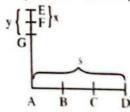
11. [নটর ভেম কলেজ, ঢাকা]

 (ক) u আদিবেগে প্রক্ষিপ্ত একটি কণার বৃহত্তম উচ্চতা H হলে, প্রমাণ কর যে এর আনুভূমিক পাল্লা, $R = 4 \int H\left(\frac{u^2}{2g} - H\right)$

(ক) Seln; ধরি,
$$\alpha$$
 কোণে প্রক্রিস্ত হলে, $H = \frac{u^2 \sin^2 \alpha}{2g}(i)$

আমরা জানি,
$$R = \frac{u^2 \sin 2\alpha}{g} = \frac{2u^2}{g} \sin \alpha \cos \alpha$$

$$\Rightarrow R^2 = \frac{4}{g^2} (u^2 \sin^2 \alpha) (u^2 \cos^2 \alpha)$$


$$\Rightarrow R^2 = 4 \times 4 \frac{u^2 \sin^2 \alpha}{2g} \times \frac{u^2 (1 - \sin^2 \alpha)}{2g}$$

$$= 16H\left(\frac{u^2}{2g} - \frac{u^2\sin^2\alpha}{2g}\right) = 16H\left(\frac{u^2}{2g} - H\right)$$

$$\therefore R = 4\sqrt{H\left(\frac{u^2}{2g} - H\right)} \text{ (Proved)}$$

🔃 দৃশ্যকম্প:

[সরকারি মাইকেল মধুসূদন কলেজ, ঘশোর]

(ক) 39.2 ms⁻¹ বেগে আনুভূমিকের সাথে 30° কোনে একটি বস্তুকে শুন্যে নিক্ষেপ করলে সর্বাধিক পাল্লা কত?

(ক) Sol^a: দেওয়া আছে, বেগ u = 39.2ms⁻¹.

নিক্ষেপ কোণ $\alpha = 30^{\circ}$

$$\therefore$$
 সর্বাধিক পারা, $R=rac{u^2\sin 2u}{s}=rac{(39.2)^2 \times \sin (2 \times 30)}{9.8}$

= 135.79m (STE) (Ans.)

নিজে করো

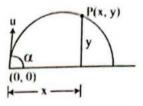
। পুশাকল্প-২: u আদিবেগে প্রক্রিপ্ত কোনো বস্তুকণার বৃহত্তম উচ্চতা এবং অনুকৃষিক পাল্লা যথাক্রমে H ও R হয়।

(গ) দৃশ্যকল্প-১ হতে দেখাও যে, $R=4\sqrt{\left\{H\left(\frac{n^2}{2g}-H\right)\right\}}$

[সরকারি বিজ্ঞান কলেজ, ঢাকা]

19

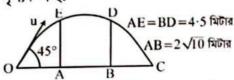
Type-17: ভূমি থেকে α কোণে নিক্ষিপ্ত প্রক্ষেপক নির্দিষ্ট দূরত্বে নির্দিষ্ট উচ্চতার দেয়াল কোনো রকমে অতিক্রম করলে, সেই প্রক্ষেপকের গতি সংক্রান্ত


Concept

প্রাসের চলরেখার সমীকরণ,
$$y = x tan\alpha - \frac{g}{2u^2 \cos^2 \alpha} x^2$$

$$= x tan\alpha \left(1 - \frac{g}{2u^2 \sin\alpha \cos\alpha} x\right) = x tan\alpha \left(1 - \frac{1}{\frac{u^2 \sin2\alpha}{g}} x\right)$$

$$y = x \ tan\alpha \left(1 - \frac{x}{\frac{R}{g}}\right)$$


$$[\because R = \frac{u^2 \sin2\alpha}{g}]$$

সূজনশীল প্রশ্ন (ক, খ ও গ)

🔟 দৃশ্যকম্প-২:

প্রাসের উচ্চতা

x দূরত্বে নিক্ষেপ কোণ । ম দূরত্বে নিক্ষেপ কোণ ।

(গ) দৃশ্যকম্প-২ হতে প্রক্ষিপ্ত বস্তুর আনুভূমিক পাল্লা নির্ণয় কর।

(গ) Sol*:

দেওয়া আছে, AE = BD = 4.5 মিটার ও $AB = 2\sqrt{10}$ মিটার ধরি, আনুভূমিক পাল্লা = R \therefore 4.5 = x tan 45° $\left(1 - \frac{x}{R}\right)$ $\Rightarrow \frac{9}{2} = x \left(1 - \frac{x}{R} \right) \Rightarrow \frac{9}{2} = x - \frac{x^2}{R} \Rightarrow \frac{9}{2} = \frac{Rx - x^2}{R}$

 $\Rightarrow 9R = 2Rx - 2x^2 \Rightarrow 2x^2 - 2Rx + 9R = 0$

যা x এর দ্বিঘাত সমীকরণ।

ধরি, এর মূল দুইটি x₁, x₂ (x₁ > x₂)

∴ OB = x1 এবং OA = x2

 $x_1 + x_2 = \frac{2R}{2} = R \text{ and } x_1 x_2 = \frac{9R}{2}$

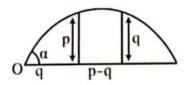
 $AB = x_1 - x_2 = 2\sqrt{10} \Rightarrow (x_1 - x_2)^2 = 40$

 $\Rightarrow (x_1 + x_2)^2 - 4x_1x_2 = 40 \Rightarrow R^2 - 4 \times \frac{9R}{2} = 40$

 $\Rightarrow R^2 - 18R - 40 = 0 \Rightarrow R^2 - 20R + 2R - 40 = 0$

 \Rightarrow (R - 20)(R + 2) = 0 \Rightarrow R = 20, -2

∴ আনুভূমিক পাল্লা 20 মিটার (Ans.)


[যেহেতু আনুভূমিক পাল্লা ঋণাত্মক হবে না]

[SB'23]

(ii) কোনো বিন্দু O হতে প্রক্ষিপ্ত একটি বল দুটি দেয়াল অতিক্রঃ করে। O বিন্দু হতে তাদের একটির আনুভূমিক দূরত্ব Q এবং খাড়া দ্রত্ব P এবং O বিন্দু হতে অপরটির আনুভূমিক দ্রত্ব P এবং খাড়া দূরত্ব Q

(গ) দেখাও যে, O বিন্দৃগামী বলটির আনুভূমিক তলের উপ্র পাল্লা ^{p²+pq+q²}

(গ) Sol": ধরি, প্রাসটির আনুভূমিক পাল্লা R এবং প্রক্ষেপণ কোণ a

প্রশ্নমতে, $p = q \tan \alpha \left(1 - \frac{q}{R}\right) \dots \dots (i)$

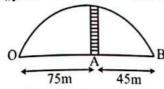
আবার, $q = p \tan \alpha \left(1 - \frac{p}{R}\right) \dots \dots (ii)$

(i) নং কে (ii) নং দারা ভাগ করে পাই, $\frac{p}{q} = \frac{q}{p} \left(\frac{1 - \frac{1}{p}}{1 - \frac{1}{p}} \right)$

 $\Rightarrow \frac{p^2}{q^2} = \frac{R-q}{R-p} \Rightarrow Rp^2 - p^3 = Rq^2 - q^3$

 $\Rightarrow R(p^2 - q^2) = p^3 - q^3 \Rightarrow R = \frac{p^3 - q^3}{p^2 - q^2}$

 $\therefore R = \frac{p^2 + pq + q^2}{p + q}$ (Showed)

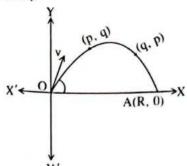

্র দৃশাক্ষ্প-২: একটি খাড়া দেয়ালের পাদদেশ হতে ভূমি বরাবর বিটার দূরত্বের কোনো বিন্দু হতে 45° দৃশ্যক ব্রুপ্রের কোনো বিন্দু হতে 45° কোণে একটি বস্তু 15 । বঙা বিশ্ব বিশ্র বিশ্ব ব নিম্পের অপর পার্শ্বে 45 মিটার দূরত্বে গিয়ে ভূমিতে পতিত [Din.B'23]

্গ) দৃশ্যকম্প-২ হতে দেখাও যে, দেয়ালটির উচ্চতা h = 28.125 মিটার।

্রা ₅₀₁°: দেওয়া আছে, নিক্ষেপণ কোণ α = 45°

_{OA} = 75m আর AB = 45 m

আনুভূমিক পাল্লা R = OA + AB = 120m



ধুরি, দেওয়ালের উচ্চতা হলো y m

এখন,
$$y = x \tan \alpha \left(1 - \frac{x}{R}\right) = 75 \times \tan 45^{\circ} \times \left(1 - \frac{75}{120}\right)$$

.: $y = 28.125$ m

সূতরাং, দেওয়ালের উচ্চতা 28.125m (Showed)

- 👖 ভমি থেকে প্রক্ষিপ্ত একটি ক্রিকেট বল প্রক্ষিপ্ত বিন্দু হতে যথাক্রমে ু এবং $\frac{1}{a}$ দূরে অবস্থিত $\frac{1}{a}$ এবং $\frac{1}{b}$ উচ্চতার দুইটি দেওয়াল কোনোরকমে অতিক্রম করে।
 - (গ) উদ্দীপক হতে দেখাও যে, আনুভূমিক পাল্লা $R=rac{a+b}{ab}$
- গ) Sol^a: প্রশ্নমতে, $y = x \tan \alpha \left(1 \frac{x}{R}\right)$
 - $\Rightarrow \frac{1}{a} = \frac{1}{b} \tan \alpha \left(1 \frac{1}{bR} \right) \dots \dots \dots (i)$
 - এবং $\frac{1}{b} = \frac{1}{a} \tan \alpha \left(1 \frac{1}{aR} \right) \dots \dots (ii)$
 - (i) \div (ii) $\Rightarrow \frac{b}{a} = \frac{a^2}{b^2} \cdot \frac{(bR-1)}{(aR-1)}$
 - $\Rightarrow ab^3R b^3 = a^3bR a^3$
 - \Rightarrow abR(a² b²) = a³ b³ = (a b)(a² + ab + b²)
 - ⇒ $R = \frac{a^2 + ab + b^2}{(a+b)ab}$ [বি.দ্র.: মূল প্রশ্নে ভুল আছে।]
- ি চিত্রে ০ বিন্দু হতে বায়ুশূন্য স্থানে প্রক্ষিপ্ত একটি বস্তুর গতিপথ [SB'17] দেখানো হয়েছে।

(খ) প্রক্ষিপ্ত বস্তুটির আনুভূমিক পাল্লা p, q এর মাধ্যমে প্রকাশ

Educationblog24.com

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৯

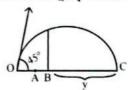
Sol": দেওয়া আছে, প্ৰক্ৰিপ্ত বস্তুটি p ও q দূরত্বে অবস্থিত যথাক্রমে q ও p উচ্চতাকে কোনোরকমে অতক্রিম করে। আমরা জানি, v প্রক্ষেপণ কোণ, প্রক্ষেপণ বগে v এবং আনুভূমিক शाल्ला R रतन.

$$y = x \tan \alpha \left(1 - \frac{x}{R}\right)$$

$$\dot{q} = p \tan \alpha \left(1 - \frac{P}{R}\right) \dots \dots (i)$$

এবং
$$p = q \tan \alpha \left(1 - \frac{q}{R}\right) \dots \dots (ii)$$

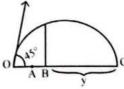
(i) নং কে (ii) নং দ্বারা ভাগ করি,


$$\frac{q}{p} = \frac{p\left(1 - \frac{p}{R}\right)}{q\left(1 - \frac{q}{R}\right)} \Rightarrow \frac{q^2}{p^2} = \frac{R - p}{R - q} \ \Rightarrow q^2R - q^3 \ = \ p^2R - p^3$$

$$\Rightarrow p^3 - q^3 = R(p^2 - q^2)$$

$$\Rightarrow (p-q)(p^2+pq+q^2) = R(p-q)(p+q)$$

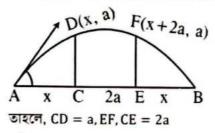
$$\therefore R = \frac{p^2 + pq + q^2}{p + q} \text{ (Ans.)}$$


06. করিম 0 বিন্দু হতে আনুভূমির সাথে 45° কোণে বন্দুকের গুলি করণ। রহিম একই সময়ে স্থিরাবস্থা O হতে দৌড়ে 20 সেকেন্ডে 200 মিটার দূরে অবস্থিত একটি খাড়া দেয়ালের পাদদেশে B বিন্দুতে থামে। রহিম যাত্রাপথের OA অংশ a সমত্রণে এবং AB অংশ b সমমন্দনে যায়। অপরদিকে গুলিটি দেয়ালের ঠিক উপর দিয়ে গেল এবং দেয়ালের অপর পার্শ্বে y দূরত্বে C বিন্দুতে পড়ল। (এখানে দেয়ালের পুরুত্ব অগ্রাহ্য করা হয়েছে। ICB'17।

(গ) উদ্দীপকের আলোকে প্রমাণ কর যে,

দেয়ালের উচ্চতা =
$$\frac{200y}{200+y}$$

Sol": মনে করি, O বিন্দুতে একটি বস্তু ভূমির সাথে 45° কোণে নিক্ষেপ করলে তা B বিন্দুতে অবস্থিত দেয়ালকে অতিক্রম করে C বিন্দুতে পতিত হয়।



এখানে,OB = 200 মিটার ও BC = y মিটার। আনুভূমিক পাল্লা, R = 200 + y; দেয়ালের উচ্চতা h হলে, $h = 200 \tan 45^{\circ} \left(1 - \frac{200}{200 + y} \right) \left[\because y = x \tan \alpha \left(1 - \frac{x}{R} \right) \right]$ \Rightarrow h = 200 $\left(\frac{200+y-200}{200+y}\right) = \frac{200y}{200+y}$ (প্রমাণিত)

Educationblog 24. CC উচ্চতর গণিত २व পত্র : অধ্যায়-०৯

- 📆 দৃশ্যকম্প-২: একটি বস্তু ভূমি থেকে α কোণে নিক্ষেপ করা হলো। বস্তুটি 2a ব্যবধানে অবস্থিত পরিমাণ উচু দুইটি দেওয়ালের ঠিক **ওপর দিয়ে অতিক্রম করে।** [ঢাকা রেসিডেনসিয়াল মডেল কলেজ] (গ) দৃশ্যকম্প-২ হতে প্রমাণ কর যে, বস্তুটির পাল্লা, $R=rac{z_a}{\tan \frac{\pi}{2}}$
- (গ) Sol": ধরি, বস্তুটিকে A বিন্দু হতে আদিবেগে নিক্ষেপ করা হলো যেন বস্তু CD ও EF দেয়ালের উপর দিয়ে B বিন্দৃতে পরে।

ধরি,
$$AC = x = EB$$

$$\therefore x = \frac{R-2a}{2} \dots \dots (i)$$

আমরা জানি, যেকোনো (x, y) বিন্দুর জন্য

$$y = x \tan \alpha \left(1 - \frac{x}{R} \right)$$

$$D(x, a)$$
 এর জন্য, $a = x \tan \alpha \left(1 - \frac{x}{R}\right)$

$$=\frac{R-2a}{2}\tan\alpha\left(1-\frac{R-2a}{2R}\right)$$
 [(i) থেকে]

$$=\frac{R^{-2a}}{2}\tan\alpha\left(\frac{R^{+2a}}{2R}\right)=\frac{R^{2}-4a^{2}}{4R}\tan\alpha$$

$$\therefore \tan\alpha = \frac{4aR}{R^2 - 4a^2} = \frac{2\frac{2a}{R}}{1 - \left(\frac{2a}{R}\right)^2} = \frac{2\tan\theta}{1 - \tan^2\theta}$$

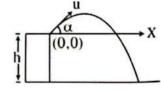
[ধরি,
$$\frac{2a}{R} = \tan \theta \dots \dots (ii)$$
]

$$\Rightarrow \tan \alpha = \tan 2\theta \Rightarrow \alpha = 2\theta$$

$$\Rightarrow \tan \frac{\alpha}{2} = \tan \theta = \frac{2a}{R} [(ii)] খেক]$$

$$\Rightarrow R = \frac{2a}{\tan \frac{\alpha}{2}} (Proved)$$

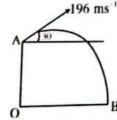
নিজে করো


- 08. দৃশ্যকল্প-১: আনুভূমিকের সাথে α কোণে নিক্ষিপ্ত একটি বস্তু নিক্ষেপণ বিন্দু হতে যথাক্রমে q ও p দূরত্বে অবস্থিত p ও q উচ্চতাবিশিষ্ট দুইটি দেয়াল কোনো রকমে অতিক্রম করে। [SB'19]
 - (খ) দৃশ্যকল্প-১ এ বর্ণিত বস্তুটির আনুভূমিক পাল্লা R হলে দেখাও যে, $R(p+q)=p^2+pq+q^2$.

Type-18: ভূমি থেকে h উচ্চতায় α কোণে উপরে নিক্ষিপ্ত প্রাসের গতি

* Concept

এই ক্ষেত্রে কার্তেসীয় স্থানাস্ক ব্যবস্থার মাধ্যমে সমাধান করলে সহজে হয়। নিক্ষেপ বিন্দুকে (0, 0) এবং x – y অক্ষ ধরে সূত্র apply করবে। এছাড়াও $h = u \sin \alpha t - \frac{1}{2}gt^2$; $x = u \cos \alpha t$


- (i) h উচ্চতা থেকে u বেগে α কোণে নিচের দিকে নিক্ষিপ্ত হলে, $h=u\sin\alpha t+\frac{1}{2}gt^2$
- (ii) h উচ্চতা থেকে u বেগে α কোণে উপরে দিকে নিক্ষিপ্ত হলে, $h=-u\sin\alpha t+\frac{1}{2}gt^2$
- (iii) h উচ্চতা থেকে u বেগে আনুভূমিক নিক্ষিপ্ত হলে, h = ½gt²

সূজনশীল প্রশ্ন (ক, খ ও গ)

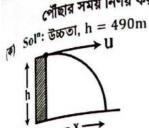
[RB'22]

দৃশ্যকম্প-২:

- (গ) দৃশ্যকম্প-২ এ OA = 49 মিটার হলে OB এর দ্রত্ নির্ণয়
- (গ) Sol*: বস্তুটির নিক্ষেপণ বেগ, u = 196 ms -1 নিক্ষেপণ কোণ, α = 30° এবং উল্লম্ব সরণ, h = 49 m

বস্তুটির ভূমিতে পড়ার সময় t হলে,

$$H = -u \sin \alpha \times t + \frac{1}{2}gt^2$$


$$\Rightarrow 49 = -196 \times \sin 30^{\circ} \times t + \frac{1}{2} \times 9.8 \times t^{2}$$

$$\Rightarrow 4.9t^2 - 98t - 49 = 0 \Rightarrow t^2 - 20t - 10 = 0$$

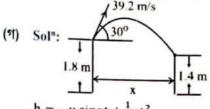
$$\Rightarrow t = \frac{20 \pm \sqrt{400 - 4 \times 1 \times (-10)}}{2 \times 1}$$

$$= \frac{20 \pm \sqrt{440}}{2} = 10 \pm \sqrt{110} \text{ s } [\because t > 0]$$

- ∴ বস্তুটির ভূমিতে পড়ার সময় 20.488s (প্রায়)
- ∴ t = 20.488s-এ বস্তুটির আনুভূমিক সরণ,
- $OB = u \cos \alpha \times t = 196 \times \cos 30^{\circ} \times 20.488$ = 3477.67 m (প্রায়) (Ans.)

ভূম বেগ,
$$u' = 0 \text{ ms}^{-1}$$
; $\therefore h = \frac{1}{2}gt^2$
 $\Rightarrow 490 = \frac{1}{2} \times 9 \cdot 8 \times t^2 \Rightarrow t = 10 \text{ sec. (Ans.)}$

50 ফুট উর্চু টাওয়ারের ছাদ থেকে ইমন একটি টেনিস বল নিচে ফেলে দিল। বলটি ৪ ফুট নিচে নামার পর সুমন অপর একটি টেনিস বল y ফুট নিচে হতে ফেলে দিল। উভয় বল স্থিরাবস্থা থেকে একই সাথে ভূমিতে পতিত হলো। কিছুক্ষণ পর ইমন একটি ক্রিকেট বল আনুভূমিকের সাথে 30° কোণে নিক্ষেপ করে।


(গ) ক্রিকেট বলটি যদি 60 ফুট/সে. বেগে নিক্ষিপ্ত হয় তবে তা টাওয়ারের পাদবিন্দু হতে কত দূরে ভূমিকে আঘাত করবে?

Solo:
$$h = -u\sin\alpha \cdot t + \frac{1}{2}gt^2$$

 $\therefore 50 = -60 \cdot \sin 30 \cdot t + 16t^2 \left[g = \frac{32ft}{s^2}\right]$
 $\therefore t = 2.954$
 $x = u\cos\alpha \cdot t = 152.77m$

দৃশ্যকম্প-২: ক্রিকেটার সাকিব ও রুবেল এর উচ্চতা যথাক্রনে 1.8 মিটার ও 1.7 মিটার। |Din.B'19|

(গ) সাকিব 30° কোণে 39.2 ms⁻¹ বেগে একটি ক্রিকেট বল নিক্ষেপ করেন। রুবেল 1.4 মিটার উচ্চতা থেকে বলটি ধরে ফেলেন। সাকিব ও রুবেল এর মধ্যবর্তী দূরত্ব নির্ণয় কর।

$$h = -u \sin\alpha t + \frac{1}{2}gt^2$$

$$\Rightarrow 1.8 - 1.4 = -39.2 \sin 30^{\circ} t + 4.9t^{2}$$

$$\Rightarrow 4.9t^2 - 19.6t^2 - 0.4 = 0 \Rightarrow t = 4.0203s$$

$$x = u \cos \alpha t = 39.2 \cos 30^{\circ} \times 4.0203$$

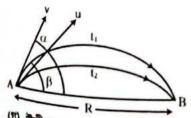
= 136.582 m (Ans.)

নিজে করো

গূ দৃশ্যকম্প-২: 60 মিটার উচ্চ স্তন্তের শীর্ষ হতে আনুভূমিকের সাথে 30° কোণে 100m/sec আদিবেগে একটি বস্তু নিক্ষিপ্ত হলো।[JB'17]
 গ্। দৃশ্যকম্প-২ অনুসারে বস্তুটি স্তম্ভ হতে কত দূরে ভূমিকে আঘাত করবে?
 [Ans: 977.74 মিটার]

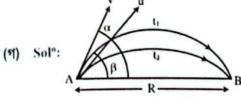
Type-19: একই আদিবেগে lpha ও $(90^\circ-lpha)$ কোণে নিক্ষিপ্ত বস্তুর গতি সংক্রান্ত

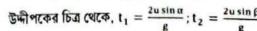
Concept


দিছেপণ কোণ যখন α আনুভূমিক পাল্লা, $R=\frac{u^2\sin2\alpha}{g}$

ম্বার, নিক্ষেপণ কোণ যখন $(90^\circ-\alpha)$ আনুভূমিক পাল্লা, $R=\frac{u^2\sin 2(90^\circ-\alpha)}{g}=\frac{u^2\sin 2\alpha}{g}$

 8648 , নিক্ষেপণ কোণ lpha হোক বা $(90^{\circ}-lpha)$, আনভূমিক পাল্লা একই হচ্ছে ।


সূজনশীল প্রশ্ন (ক, খ ও গ)


[BB'23]

 $^{(9)}$ উদ্দীপকের আলোকে প্রক্ষেপক দুটির ভ্রমণকাল \mathbf{t}_1 ও \mathbf{t}_2

হলে, প্রমাণ কর যে,
$$\frac{t_1^2 - t_2^2}{t_1^2 + t_2^2} = \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}$$
.

$$\frac{t_1^2 - t_2^2}{t_1^2 + t_2^2} = \frac{\frac{4u^2 \sin^2 \alpha}{g^2} - \frac{4u^2 \sin^2 \beta}{g^2}}{\frac{4u^2 \sin^2 \alpha}{g^2} + \frac{4u^2 \sin^2 \beta}{g^2}} = \frac{\sin^2 \alpha - \sin^2 \beta}{\sin^2 \alpha + \sin^2 \beta}$$

Educationblog24.co

HSC প্রস্নব্যাংক ২০২৫

এখানে, α + β = 90° দুইটি প্রক্ষেপের আনুভূমিক পাল্লা একই তাই, $\sin \alpha = \sin(90^{\circ} - \beta) = \cos \beta$ এবং $\sin(\alpha + \beta) =$ $\sin 90^{\circ} = 1$

$$= \frac{\sin(\alpha+\beta)\sin(\alpha-\beta)}{\sin^2\alpha+\cos^2\alpha} = \sin(\alpha-\beta)\cdot 1 = \frac{\sin(\alpha-\beta)}{\sin(\alpha+\beta)}$$

[∴ sin(α + β) = 1] (প্রমাণিত)

[বি.দ্র: চিত্রে দুইটি আদিবেগই সমান হবে]

- দৃশ্যকল্প-১: একটি বস্তু একই বেগে আনুভূমিক তলের সাথে দুইটি ভিন্ন কোণে প্রক্ষিপ্ত হয়ে t1 ও t2 সময়ে একই আনুভূমিক পাল্লা R অতিক্রম করে। [CB'23] (খ) দৃশ্যকম্প-১ হতে প্রমাণ কর যে, $t_1 t_2 = \frac{2R}{R}$.
- (খ) Sol": যেহেতু প্রাসদয়ের আনুভূমিক পাল্লা সমান, একটি কোণ α হলে আরেকটি (90° – α) \therefore আনুভূমিক পাল্লা, $R = \frac{u^2 \sin 2\alpha}{g} \Rightarrow u^2 = \frac{R g}{\sin 2\alpha} \dots \dots (i)$ আবার, $t_1 = \frac{2u \sin \alpha}{g}$; $t_2 = \frac{2u \sin(90^\circ - \alpha)}{g} = \frac{2u \cos \alpha}{g}$; $\therefore t_1 t_2 = \frac{2u \sin \alpha}{g} \frac{2u \cos \alpha}{g} = \frac{2u^2 2 \sin \alpha \cos \alpha}{g^2}$ $=\frac{2u^2\sin 2\alpha}{g^2}=\frac{Rg}{\sin 2\alpha}\times\frac{2\sin 2\alpha}{g^2}$ [(i) হতে] $=\frac{2R}{g}$ [প্রমাণিত]
- উদ্দীপক-২: R পাল্লার জন্য একটি প্রক্ষেপকের দুটি গতিপথের 03. সর্বোচ্চ উচ্চতা h1 ও h2 [DB'22] (গ) উদ্দীপক-২ এর সাহায্যে দেখাও যে, $R=4\sqrt{h_1h_2}$.
- (গ) Solⁿ: R পাল্লা জন্য, প্রক্ষেপটির দুটি নিক্ষেপণ কোণ যথাক্রমে α & 90° - a আমরা জানি, আনুভূমিক পাল্লা, $R = \frac{u^2 \sin 2\alpha}{g} \dots \dots (i)$ এবং সর্বোচ্চ উচ্চতা, $H = \frac{u^2 \sin^2 \alpha}{2\alpha}$ $\therefore h_1 = \frac{u^2 \sin^2 \alpha}{2g} \dots \dots \dots (ii)$ এবং $h_2 = \frac{u^2 \sin^2(90^\circ - a)}{2g} \dots \dots \dots (iii)$ $\therefore h_2 = \frac{u^2 \cos^2 \alpha}{2\alpha}; \left[\sin(90^\circ - \alpha) = \cos \alpha \right]$ ডানপক $4\sqrt{h_1h_2} = 4\sqrt{\frac{u^2\sin^2\alpha}{2g}} \times \frac{u^2\cos^2\alpha}{2g}$

$$= \sqrt{16 \times \frac{u^4 \sin^2 \alpha \cos^2 \alpha}{4\mu^2}} = \sqrt{\frac{4u^4 \sin^2 \alpha \cos^2 \alpha}{\mu^2}}$$

$$= \sqrt{\frac{u^4 (2 \sin \alpha \cos \alpha)^2}{\mu^2}} = \sqrt{\left(\frac{u^4 \sin 2\alpha}{\mu}\right)^2}$$

$$= \frac{u^2 \sin 2\alpha}{\mu} = R = \pi |\mathbf{u}| \mathbf{u} + \mathbf{$$

- 🔃 দৃশ্যকম্প-১: একটি প্রক্ষিপ্ত বস্তুর দৃটি গজিপথের সর্বোচ্চ উচ্চতা यथाजन्य 4m ७ 6m. [Ctg.R'19]
 - (খ) দৃশ্যকম্প-১ হতে নিক্ষিপ্ত বস্তুটির পাল্পা নির্ণয় কর।
- (খ) Sol": দুটি উচ্চতা 4m ও 6m মানে, $H_1 = \frac{u^2 \sin^2 \alpha}{2g} = 4$; $H_2 = \frac{u^2 \cos^2 \alpha}{2g} = 6$ $H_1 \cdot H_2 = \frac{u^4 \sin^2 \alpha \cos^2 \alpha}{4g^2} = 24$ $\Rightarrow \frac{u^4(2\sin\alpha\cos\alpha)^2}{g^2} = 24 \times 4 \times 4$ $\Rightarrow \left(\frac{u^2 \sin 2\alpha}{\alpha}\right)^2 = 384 \Rightarrow R^2 = 384 ; R = 8\sqrt{6}m \text{ (Ans.)}$
- দৃশ্যকম্প-২: কোনো প্রক্রিন্ত বস্তুর দুইটি গতিপথে বৃহত্তম উচ্চতা 05. যথাক্রমে 8m এবং 10m। [Ctg.B'17] (গ) দৃশ্যকম্প-২ হতে দেখাও যে, R = 16√5।
- Sol": একই গতিবেগে নিক্ষিত্ত দুইটি প্রক্ষেপকের আনুভূমিক পাল্লার মান একই হবে যদি একটির নিক্ষেপন কোণ ৫ এবং অপরটির (90° – α) হয়| এক্ষেত্রে, ধরি, নিক্ষেপন বেগ = u α কোণে নিশিশু প্রশেপকের সর্বোচ্চ উচ্চতা,

$$h = \frac{u^2 \sin^2 \alpha}{2g} :: \frac{u^2 \sin^2 \alpha}{2g} = 8 (i)$$

এবং (90° – α) কোণে নিক্ষিপ্ত প্রক্ষেপকের সর্বোচ্চ উচ্চতা.

$$h = \frac{u^2 \sin^2(90^\circ - \alpha)}{2g} \div \frac{u^2 \cos^2 \alpha}{2g} = 10 \dots (ii)$$

আবার, আনুভূমিক পাল্লা, $R = \frac{u^2 \sin 2\alpha}{\kappa}$

এখন,(I) ও (II) গুণ করে পাই, $\frac{u^4 \sin^2 \alpha \cos^2 \alpha}{4a^2} = 80$

$$\Rightarrow \frac{u^4(\sin\alpha\cos\alpha)^2}{4g^2} = 80 \Rightarrow \frac{\frac{1}{4}u^4(\sin2\alpha)^2}{4g^2} = 80$$

$$\Rightarrow \frac{u^4(\sin 2\alpha)^2}{16g^2} \Rightarrow \left(\frac{u^2\sin 2\alpha}{g}\right)^2 = 1280 \Rightarrow R^2 = 1280$$

∴ R = 16√5 (দেখানো হল)

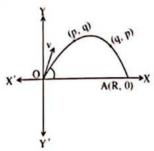
Educationblog 24. con substantial statement of the statem

নিজে করো

দ্ধনীপক-২: ।। বেগে নিক্ষিত্ত বস্তুকণার একই আনুভূমিক পাল্লা

- (R) এর জন্য দুটি বিচরণপথের বিচরণকাল t₁ ৫ t₂. [MB'22]
- (গ) উদ্দীপক-২ হতে দেখাও যে, $R = \frac{1}{2}g t_1 t_2$.
- 07. দৃশ্যকম্প-২: একটি প্রক্ষিপ্ত বস্তুকণার দুটি গতিপথের বৃহত্তম উচ্চতা যথাক্রমে 4 মিটার ও 6 মিটার। [BB'19]
 - (গ) দৃশাকল্প-২ হতে দেখাও যে, R = 8√6।

Type-20: প্রাস সম্পর্কিত বিশেষ সমস্যা


Concept

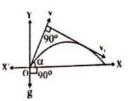
্বানেরে প্রাসের বিভিন্ন সূত্র প্রয়োগ করে প্রশ্নে উল্লিখিত প্রমাণ বের করতে হবে।

সৃজনশীল প্রশ্ন (ক, খ ও গ)

🔟 চিত্রে O বিন্দু হতে বায়ুশুন্য স্থানে প্রক্ষিপ্ত একটি বস্তুর গতিপথ

(मथात्ना रुद्राट्छ।

(গ) দেখাও যে, ^v/_g cosecα সময় পরে প্রক্ষিপ্ত বস্তুটি তার প্রক্ষেপণ দিকের সাথে লম্বভাবে চলবে।


(୩) Soln: ν বরাবর g এর লম্বাংশ = gcos (90 + α)

∴ t সময় পর বেগ = v + gcos (90 + α)t

ধরি, t sec পর বস্তুর বেগ v₁।

v₁ আদিবেগের উপর

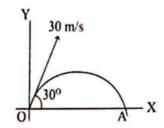
হলে, v বরাবর বেগ = 0

 $\dot{v} + g\cos(90 + \alpha)t = 0$

 $v - gsin\alpha t = 0$; $t = \frac{v}{gsin\alpha} = \frac{v}{g} cosec\alpha$ (Showed)

বিকম্প: ধরি, t সময় পর বস্তুর বেগ v_1 । $\vec{v} \perp \vec{v_1}$ হলে,

$$\vec{v} \cdot \vec{v_1} = 0 \Rightarrow \vec{v} \cdot (\vec{v} + \vec{g}t) = 0 = \frac{v}{g} \csc \alpha$$


 $\Rightarrow \vec{v} \cdot \vec{v} + \vec{v} \cdot \vec{g}t = 0 \Rightarrow v^2 + vg\cos(90^\circ + \alpha)t = 0$

$$\Rightarrow v(v - g \sin \alpha t) = 0$$

 $\dot{t} = \frac{v}{g\sin\alpha} [v \neq 0] = \frac{v}{g} \csc\alpha \text{ (Showed)}$

দুশাকম্প-১:

[BB'17]

সাঁতারুর বেগ u_1 , স্রোতের বেগ u_2 , AB = d, AC = 2d

(খ) দৃশ্যকম্প-১ এ নিক্ষিপ্ত কণাটি ১ মিটার উচ্চতায় পৌঁছার সময়ের পার্থক্য নির্ণয় কর।

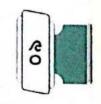
(খ) Sol": এখানে, আদিবেগ u = 30ms⁻¹

নিক্ষেপণ কোণ α = 30°

আমরা জানি, প্রক্ষিপ্ত বস্তুকণার উল্লম্বিক সরণ, $y=ut\sin\alpha-\frac{1}{2}gt^2$

$$\therefore 1 = 30 \cdot t \cdot \sin 30^{\circ} - \frac{1}{2} \times 9.8 \times t^{2}$$

$$\therefore 1 = t \times 30 \times \frac{1}{2} - 4.9t^2 \quad \therefore 4.9t^2 - 15t + 1 = 0$$


$$\therefore t \frac{15 \pm \sqrt{(-15)^2 - 4 \times 1 \times 4.9}}{2 \times 4.9} = \frac{15 \pm \sqrt{225 - 19.6}}{9.8}$$

$$=\frac{15\pm\sqrt{2054}}{98}=\frac{15\pm14.332}{98}$$

(+) চিহ্ন নিয়ে, t =
$$\frac{15+14.332}{9.8}$$
 ⇒ $\frac{29.332}{9.8}$ = 2.993

(-) हिरू निता,
$$t = \frac{15-1+332}{98} = \frac{0.668}{9.8} = 0.068$$

.. 1 মিটার উচ্চতায় অবস্থানের সময় পার্থক্য:

MCQ প্রশ্নের জন্য এই অধ্যায়ের বিভিন্ন টাইপের তুলনামূলক গুরুত্ব:

60 100			যতবার প্রশ্ন	যে ৰোৰ্ডে যে বছর এসেছে
ওরুত্	টাইপ	টাইপের নাম	এসেছে	MCQ
00	T-01	বেগের সামান্তরিক সূত্র	03	SB'22; Ctg.B'19; BB'19
000	T-02	নদী পারাপার	08	DB'23; Ctg.B'23; CB'23; MB'23, 22; Din.B'19, 17
000	T-03	কখনও সমত্বরণ, সমমন্দন, সমবেগে চলমান কণার গতি	09	DB'23, 17; CB'23; Din.B'23; RB'22; SB'19, 17; Din.B'19, 17
	T-04	বাঘ-হরিণ, ইঁদুর-বিড়াল ধরা এবং বাস-যাত্রী, বাস-সাইকেল অতিক্রম করা	•	
000	T-05	বিশেষ এক সেকেন্ডে অতিক্রান্ত দূরত্ব	06	Mad.B'23; Ctg.B'22, CB'22; Din.B'2 DB'19; Ctg.B'17
0	T-06	রেলগাড়ির সংঘর্ষ এড়ানোর শর্ত নির্ণয়	01	JB'17
00	T-07	নির্দিষ্ট অংশ ভেদ করে বেগ হারানোর পর অতিক্রান্ত দূরত্ব	03	Ctg.B'23; Din.B'23; DB'22
00	T-08	আপেক্ষিক বেগ ও গড়বেগ	04	SB, JB'23; SB, CB'19;
000	T-09	উপর থেকে বিনা বাধায় পতনশীল বস্তুর গতি	12	DB, RB, JB, BB, CB, Mad'23; RB, JB, Din.B MB'22; RB'17
0	T-10	শব্দ শোনার সময় হিসেব করে গভীরতা নির্ণয়	01	Din.B'17
00	T-11	ভূমি থেকে উল্লম্বভাবে নিক্ষিপ্ত বস্তুর গতি	05	Ctg.B'23, 22, 17, Din.B'23; All.B'18
0	T-12	সর্বোচ্চ উচ্চতা ও সর্বোচ্চ উচ্চতায় উত্থানকাল	01	CB'22
0	T-13	সমবেগে উর্ধ্বগামী প্লেন বা বেলুন থেকে বস্তু ছেড়ে দেওয়া এবং বিমানের উচ্চতা	01	DB'22
	T-14	নির্দিষ্ট সময় ব্যবধানে দুটি বস্তু একই দিকে নিক্ষিপ্ত	•	•
	T-15	α কোণে ভূমি থেকে নিক্ষিপ্ত প্রক্ষেপকের গতি	-	-
000	T-16	বস্তুকণার বিচরণকাল, দীর্ঘতম উচ্চতা এবং আনুভূমিক পাল্লা	53	DB'23, 22, 19, 17; RB'23, 22, 19, 17; Ctg.B'23, 22, 19; SB'23, 22, 19; JB'23, 22, 19, 17; BB'23, 22, 19, 17; CB'23, 22 17; Din.B'23, 22, 19; MB'23, 22; Mad.B'23; All.B'18;
	T-17	ভূমি থেকে α কোণে নিক্ষিপ্ত প্রক্ষেপক a দূরত্বে h মিটার উঁচু কোনো দুইটি দেয়াল কোনো রকমে অতিক্রম করলে, সেই প্রক্ষেপকের গতি সংক্রান্ত	•	-
E =	T-18	ভূমি থেকে h উচ্চতায় α কোণে উপরে নিক্ষিপ্ত প্রাসের গতি		•
	T-19	একই আদিবেগে α ও $\frac{\pi}{2}-\alpha$ কোণে নিক্ষিপ্ত বস্তুর গতি সংক্রান্ত	ly ten	
0	T-20	প্রাস সম্পর্কিত বিশেষ সমস্যা	01	RB'22

Educationblog24

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৯

বিগত বোর্ড পরীক্ষামূহের MCQ প্রশ্ন

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

- শি^{মা} প্রস্থ একটি নদীর স্রোতের বেগ 2km/h 1 km পর হতে একজন সাঁতারু 6km/h বেগে কোন [DB'23]
- দিকে সাঁতার দিবে?
 - (b) 30° (c) 60°
- (d) 90°
- নদী পার হতে সর্বনিম্ন কত সময় লাগবে?
- [DB'23]
- (b) 15m (c) 30m (d) 45m (a) 10m সরল পথে স্থিতাবস্থা হতে সমত্বরণে চলমান একটি বস্তুকণা 5ম
- সেকেন্ডে 18m পথ অতিক্রম করে। 10 সেকেন্ডে এর অতিক্রান্ত [DB'23]
- (b) 150m (c) 200m (d) 250m (a) 100m ্রকটি স্তন্তের শীর্ষ হতে u ms⁻¹ বেগে খাড়া উপরে নিচ্ছিপ্ত _{পার্থর} 10 সেকেন্ডে মাটিতে 58 ms⁻¹ বেগে পড়ে। u এর মান [DB'23]
 - (a) 156 ms⁻¹
- (b) 48.2 ms⁻¹
- (c) 40 ms⁻¹
- (d) 30 ms⁻¹
- $_{05}$ $_{9.8~\mathrm{ms}^{-1}}$ আদিবেগে আনুভূমিকের সাথে 30° কোণে প্রক্ষিপ্ত একটি প্রক্ষেপকের— [DB'23]
 - (i) সর্বাধিক উচ্চতা 1.22m
- (ii) বিচরণকাল 1s
- (iii) আনুভূমিক পাল্লা 4.9√3 m

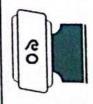
নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

- 06. 50 মিটার উঁচু হতে একটি পাথরকে ছেড়ে দিলে ভূমিতে পড়তে [RB, CB, Mad.B'23] কত সেকেন্ড সময় লাগবে?
 - (a) 2.25
- (b) 3.19
- (c) 5.10
- (d) 10.20

নিচের উদীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উস্তর দাও: একখণ্ড পাথর আনুভূমির সাথে 30° কোনে 19.6 মি /সে. বেশে নিক্ষেপ করা হলো।

- 07. পাথরটির বিচরণকাল কত?
- [Ctg.B, RB, JB'23]
- (a) 1 সেকেন্ড
- (b) 2 সেকেন্ড
- (c) 3 সেকেন্ড
- (d) 4 সেকেন্ড
- 08. পাথরটির সর্বাধিক উচ্চতা কত মিটার?
- [RB'23] (d) 33.94
 - (c) 4.9(a) 1.23 (b) 1.73
- 09. একটি বুলেট কোনো দেয়ালের ভিতর 2 ইঞ্চি ঢুকবার পর বেগ অর্ধেক হারায়। বুলেটটি দেয়ালের ভিতর আরো কত ইঞ্চি ঢুকবে?
 - [Ctg.B'23]


- (a) 2
- (b) $\frac{2}{3}$
- (c) 1
- $(d)^{\frac{1}{2}}$
- 64 ft/sec বেগে ভূমি থেকে খাড়া উপরের দিকে নিক্ষিপ্ত কণার [Ctg.B'23] বিচরণ কাল-
 - (a) 0.065 sec
- (b) 0.13 sec
- (c) 2.00 sec
- (d) 4.00 sec

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

							00	00 L	10 4
N1 4	02 0	03. c	04.c	05. d	06. b	07. b	08. c	09. 0	10. 4
01. d	02. a	03. 0	•						

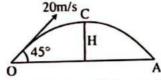
- 01. নদী পারাপারের ক্ষেত্রে প্রয়োজনীয় সময়, t = d
 - যেখানে, d = নদীর প্রস্থ, v = সাঁতারুর বেগ
 - হবে যদি $\sin\alpha$ বৃহত্তম হয়। অর্থাৎ, $\sin\alpha=1=\sin90^\circ$.: $\alpha=90^\circ$
- 02. সর্বনিম্ন সময়ের ক্ষেত্রে, $t = \frac{d}{v} = \frac{1}{6} hr = 10 m$
- 03 আমরা জানি, t-তম সময়ে অতিক্রান্ত দূরত্ব, $s_t = u + \frac{1}{2}a(2t-1)$
 - \div 5-ডম সেকেন্ডে অতিক্রাস্ত দূরত্ব, s₅ = 0 + $\frac{1}{2}$ × a(2 × 5 − 1) = 18
 - $\Rightarrow a \times 9 = 36 : a = 4 \text{ ms}^{-2}$ $^{\circ}$ 10 s এ অতিক্রান্ত দূরত্, = $0 \times 10 + \frac{1}{2} \times 4 \times 10^2 = 200 \text{ m}$
- $^{64}\,\,$ h উচ্চতা থেকে u বেগে উপরে নিক্ষিপ্ত বস্তুর ক্ষেত্রে, v=-u+gt
- \Rightarrow u = -v + gt = -58 + 9.8 × 10 = 40 ms⁻¹ 05. (i) गर्रवाक উक्कण, $H = \frac{u^2 \sin^2}{2g} = \frac{(9.8)^2 \times (\sin 30^\circ)^2}{2 \times 9.8} = \frac{49}{40} = 1.225 m$
 - (ii) বিচরণকাল, $T = \frac{2u \sin \alpha}{g} = \frac{2 \times 9.8 \times \sin 30^{\circ}}{9.0} = 15$
 - (iii) আনুভূমিক পাল্লা, R = $\frac{u^2 \sin 2\alpha}{r} = \frac{(9.8)^2 \times \sin(2 \times 30^4)}{9.8} = 4.9\sqrt{3}$ m

- 06. $h = ut + \frac{1}{2}gt^2 \Rightarrow 50 = 0 \times t + \frac{1}{2} \times 9.8 t^2$ $\Rightarrow 4.9t^2 = 50 : t = \sqrt{\frac{50}{4.9}} = 3.19$
- 07. $T = \frac{2u \sin \theta}{g} = \frac{2 \times 19.6 \times \sin 30^{\circ}}{g} = 4 \times \frac{1}{2} = 2s$
- 08. $H_{\text{max}} = \frac{u^2 \sin^2 \theta}{2g} = \frac{(19.6)^2 \times (\sin 30^4)^2}{2 \times 9.8} = 4.9 \text{ m}$
- 09. আদিবেগ v, s = 2 inch অতিক্রমের পর বেগ -
 - শেষ বেগ v' = 0, মোট দূরত্ব s'হলে, ${v'}^2 = v^2 2as'$
 - $\Rightarrow 0 = v^2 2 \times \frac{3v^2}{16} \times s' \Rightarrow s' = \frac{8}{3} \left[v \frac{v^2}{4} = v^2 2a \times 2 \right]$
 - $\therefore \Delta s = \frac{8}{3} 2 = \frac{2}{3} \text{ inch.}$
 - Shortcut: যেহেডু বেশ $\frac{1}{2}$ হয়। (ধরি $\frac{1}{6} = \frac{1}{2}$)
 - $\Delta S = \frac{s}{n^2-1} = \frac{2}{2^2-1} = \frac{2}{3}$ inch
- 10. $t = \frac{2v}{r} = \frac{2x64R/sec}{32R/sec^2} = 4 sec$

Education मिल श्रम्बः जिथीय कर

একজন সাঁতারু স্রোতের বেগের দ্বিত্তণ বেগে সাঁতার দিয়ে একটি 11. নদীর যাত্রা বিন্দুর বিপরীত বিন্দুতে পৌছল। ম্রোতের সাথে তার [Ctg.B'23] দিক কত ছিল?

- C বিন্দুতে পৌছাতে কত সেকেন্ড সময় লাগবে?
 - [SB'23]

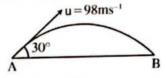

- (a) 120°
- (b) 90°
- (c) 45°
- (d) 30°
- প্রোতের বেগ u এবং নৌকার বেগ v, নৌকাটি স্লোতের বিপরীত দিকে চালালে স্লোতের সাপেক্ষে নৌকাটির আপেঞ্চিক বেগ কত? [SB'23]

- (a) u + v
- (b) u v
- (c) v
- (d) v u
- u আদিবেগে আনুভূমিকের সাথে α কোণে শূন্যে নিক্ষিপ্ত হয়ে t সময় পরে কোনো প্রক্ষেপক P(x,y) বিন্দৃতে পৌঁছালে-
 - (i) আনুভূমিক দূরত্ব, x = ucosα.t
 - (ii) উল্লম্ব দূরত্ব, y = usinα. t + ½ gt²
 - (iii) গতির সমীকরণ $y = x \tan \alpha \left(1 \frac{R}{x}\right)$; যেখানে R = আনুভূমিক পাল্লা

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:


- O বিন্দু হতে একটি বলকে তীর্যকভাবে ছুঁড়ে দেওয়া হলো। বলটির গতিপথের সর্বোচ্চ বিন্দু C এবং বলটি T সময় পরে নিক্ষেপণ বিন্দুর সমতলে A বিন্দুতে ফিরে আসে।
- 14. বলটির সর্বাধিক আনুভূমিক পাল্লা কত মিটার? ISB'231
 - (a) 56.4
- (b) 48.5
- (c) 45.4
- (d) 40.8

- (c) 2.8 (b) 3.6(d) 1.4 (a) 4.5 ভূমির 150 মিটার উঁচু একটি স্থান হতে একটি ভারী বস্তকে হেছে
- দেওয়া হল। ভূমিতে পতনের সময় বেগ কত হবে?
 - (a) 29.4 মি./সে.
- (b) 54.2 和./C对.
- (c) 5.53 মি./সে.
- (d) 14.2 মি./সে.
- একটি প্রক্ষেপকের বৃহত্তম পাল্লা আনুভূমিক পাল্লার দিঙল হলে প্রক্ষেপ কোণ কত? [BB'23]
 - (a) 30° অথবা 150°
- (b) 15° অথবা 75°
- (c) 15° অথবা 60°
- (d) 30° অথবা 75°
- একজন খেলোয়াড় পেনাল্টি শট করার জন্য 14 ms⁻¹ বেগে একটি বল শট করলেন এবং তা 10 মিটার দূরে কোনোরকমে বারের উপর দিয়ে আনুভূমিকভাবে অতিক্রম করল। বল শট করার সময় প্রক্ষেপ কোণ কত ছিল? [BB'23]
 - (a) 30°

(b) 40°

- (c) 45°
- (d) 60°

নিচের উদ্দীপকের আপোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

19. প্রক্ষেপটির বিচরণকাল কত?

[JB'23; RB'22; SB, Din.B'22; DB'19]

- (a) 5 s
- (b) 10 s
- (c) $5\sqrt{3}$ s (d) $10\sqrt{3}$ s

[JB'23]

- 20. AB এর দৈর্ঘ্য কত?
- (a) 122.5 m
- (b) 240 m
- (c) 490 m
- (d) $490\sqrt{3}$ m

MCO উত্তরমালা ও ব্যাখ্যামূলক সমাধান

11. a	12 a	13	14. d	15. d	16. b	17. b	18. c	19. b	20. d
11.4									

- 11. $\theta = \cos^{-1}\left(\frac{-u}{2u}\right) = 120^{\circ}$
- 12. বেহেতু নৌকা প্রোতের বিপরীতে চলছে, স্লোতের সাপেক্ষে নৌকার আপেক্ষিক
- 13 (সঠিক উত্তর নেই): তথু (i)); (ii) সঠিক নয় $y = u \sin \alpha t \frac{1}{2} gt^2$ (iii) সঠিক নর $y = x \tan \alpha \left(1 - \frac{x}{R}\right)$
- 14. সর্বাধিক আনুভূমিক পায়া, $R_{max} = \frac{u^2}{s} = \frac{20^2}{2.8} = 40.8$
- 15. C বিন্দৃতি সর্বোচ্চ উচ্চতা। এখানে উথানকাপ, $\frac{1}{2} = \frac{u \sin \alpha}{2} = \frac{20 \sin 45}{9.8} = 1.4 s$
- 16. $v^2 = u^2 + 2gh \Rightarrow v^2 = 0 + 2 \times 9.8 \times 150 \Rightarrow v = 54.2 \text{ fs./cm}$

17. $R_{\text{max}} = 2R \Rightarrow \frac{u^2}{g} = \frac{2\pi u^2 \sin 2\alpha}{g} \Rightarrow 1 = 2\sin 2\alpha$ $\Rightarrow \sin 2\alpha = \frac{1}{2} \Rightarrow \sin 2\alpha = \sin 30^{\circ} :: \alpha = \frac{30^{\circ}}{2} = 15^{\circ}$

অপৰা, $\sin 2\alpha = \sin 150^{\circ}$: $\alpha = \frac{150^{\circ}}{2} = 75^{\circ}$

- 18. $x = \frac{u^2 \sin 2a}{2g} \Rightarrow 10 = \frac{(14)^2 \sin 2a}{2 \times 9.0}$ $\Rightarrow \sin 2\alpha = \frac{98 \times 2}{196} = 1 \Rightarrow \sin 2\alpha = \sin 90^{\circ} :: \alpha = 45^{\circ}$
- 19. বিচরণকাল = $T = \frac{2v_0 \sin \theta_0}{8} = \frac{2 \times 98 \times \sin 30^4}{98} = 10 \sec \theta$
- 20. AB = R = $\frac{v_0^4 \sin 2\theta_0}{g} = \frac{\cos \times 90 \times \sin 60^*}{9.0} = 980 \times \frac{\sqrt{3}}{2} = 490\sqrt{3} \text{ m}$

HSC व्यस्ताहक २०२०

v=10 ms-1 $u = 15 \text{ ms}^{-1}$ – পশ্চিম

JB'23

[CB'23]

পূর্ব u এর সাপেক্ষে v এর আপেক্ষিক বেগ 🗕

- (3) পশ্চিম দিকে 5 ms⁻¹
- (b) পশ্চিম দিকে 25 ms⁻¹
- (c) পূর্ব দিকে 5 ms⁻¹
- (d) পূৰ্ব দিকে 25 ms -1
- একটি বস্তু সুক্তভাবে 4 সেকেন্ডে পড়ল। এটি শেষ। সেকেন্ডে **কত ফুট পড়েছিল?** [JB'23]
 - (a) 16

(b) 112

(c) 144

- (d) 256
- ্রিরবস্থা হতে একটি বস্তু 3ms⁻² সমত্বরণে যাত্রা করলে 10 s এ কত মিটার দূরত্ব অতিক্রম করবে? [CB'23]
 - (a) 30

14.

(b) 105

(c) 150

- (d) 300
- 0 30°
- 0 বিন্দু হতে প্রক্ষিপ্ত প্রক্ষেপকটির—
- (i) সর্বাধিক উচ্চতা $\frac{1}{8g}$ m
- (ii) আনুভূমিক পাল্লা $\frac{\sqrt{3}}{2g}$ m
- (iii) বিচরণকাল 🔓 s

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

- 25. স্রোভের বেগ $2 m s^{-1}$ এবং নৌকার বেগ $8 m s^{-1}$ । নৌকাটি শ্রোতের বিপরীত দিকে চালালে শ্রোতের সাপেক্ষে নৌকার আপেক্ষিক বেগ কত? [CB'23]
 - (a) 4 ms⁻¹
- (b) 6 ms-1
- (c) 10 ms⁻¹
- 26. সরলরেখায় গতিশীল একটি কণা 2m/sec² সমত্রণে 30 সেকেন্ড যাবৎ চলে গড়বেগ 60m/sec হলে তার আদিবেগ-
 - [Din.B'23]

- (a) 120m/sec
- (b) 90m/sec
- (c) 45m/sec
- (d) 30m/sec
- 27. একটি বুলেট কোনো দেয়ালের ভিতর 3 ইঞ্চি ভেদ করতে এর বেগের $\frac{1}{3}$ অংশ হারায়। পুলেটটি দেয়ালের ভিতর আর কতদূর
 - চুক্বে?

- [Din.B'23; DB'22]
- (a) ³ ইঞ্জি
- (b) ³ ইঞ্ছি
- (c) ⁶ ইঞ্চি
- (d) ¹² ইঞ্ছি
- 28. ভূমি হতে u আদিবেগে একটি বস্তু উল্লয়ভাবে উপরের দিকে নিক্ষেপ করা হলে-[Din.B'23]
 - (i) বৃহত্তম উচ্চতা = $\frac{u^2}{2g}$
 - (ii) বিচরণকাল = 🗓
 - (iii) h উচ্চতায় গমনকাল = $\frac{u \pm \sqrt{u^2 2gh}}{g}$

নিচের কোনটি সঠিক?

(a) i, ii

- (b) ii. iii
- (c) i, iii
- (d) i. ii. iii

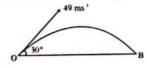
MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান)

4							
u I	22 h	22 0	21 1	25	26 1	22 1	
	22.0	23.0	24. U	25.6	20. d	27.d	1 20.

- 11. 7% (10 + 15)ms⁻¹ = 25ms⁻¹
- Σ শেষ ৷ সেকেন্ডে অভিক্রান্ত দূরত্ব = $S_{t_4} S_{t_3}$
- $=\frac{1}{2}g(4^2-3^2)=\frac{1}{2}\times 32\times 7=112$ ft
- 2). $s = ut + \frac{1}{z}at^2 = 0 \times 10 + \frac{1}{z} \times 3 \times (10)^2 = 150 \text{ m}.$
- $\frac{14}{2g} = \frac{u^2 \sin^2 \alpha}{2g} = \frac{1^2 \sin^2(30^9)}{2 \times g} = \frac{1}{8g} m$
 - (ii) $R = \frac{u^2 \sin 2\alpha}{g} = \frac{1^2 \sin(60^\circ)}{g} = \frac{\sqrt{3}}{2g} \text{ m}$ (iii) $T = \frac{2u \sin \alpha}{g} = \frac{2.1 \sin(30^\circ)}{g} = \frac{1}{g} \text{ s}$
- $= u + v = 8 + 2 = 10 \text{ms}^{-1}$
- ्रे अध्यात मृद्धः, s = vt = 60 × 30 = 1800 m
 - যাবার আদিবেগ u হলে অতিক্রান্ত দূরত্ব, $s=ut+\frac{1}{2}at^2$
 - $\approx 30u + \frac{1}{2} \times 2 \times 30^2 = 30u + 900$
 - वयन, 1800 = 30u + 900 : u = 30m/sec

27. ধবি, আদিবেগ, u; প্রথম ক্ষেত্রে, $\left(u - \frac{u}{2}\right)^2 = u^2 + 2a.3$

$$\Rightarrow \frac{4u^2}{9} = u^2 + 2a \cdot 3 \Rightarrow 6a = -\frac{5}{9}u^2 : a = -\frac{5}{54}u^2$$


- থিতীয় ক্ষেত্রে, $\theta = \left(u \frac{u}{s}\right)^2 + 2 \cdot \left(-\frac{s}{s4}u^2\right)$. s
 - $\Rightarrow \frac{10su^3}{54} = \frac{4u^2}{3} \therefore s = \frac{12}{5} \text{ This}$
 - Shortcut: $S = \frac{s}{n^2-1} = \frac{s}{\binom{2}{s}^2-1} = \frac{12}{s}$ Efec
- 28. (1) बुद्धम फेंडला, $H = \frac{u^2 \sin^2 90^*}{2g} = \frac{u^2}{2g}$
 - (ii) বিচরণকাপ, $T = \frac{2u \sin 90^{\circ}}{g} = \frac{2u}{g}$
 - (iii) h উচ্চতায় গমনকাশের কেরে, $v^2=u^2-2gh$
 - $\Rightarrow v = \pm \sqrt{u^2 2gh} \div t = \frac{v u}{-g} = \frac{\pm \sqrt{u^2 2gh u}}{-g} = \frac{u \pm \sqrt{u^2 2gh}}{g}$

- নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: u আদিবেগে ভূমির সাথে α কোণে একটি বস্তুকণা নিক্ষেপ করা হলো।
- 29. ভূমির সাথে কত কোণে নিক্ষেপ করলে বস্তুটি সর্বাধিক দূরত্বে [Din.B'23; RB, Ctg.B, BB'19; CB'17] (c) 90°
 - (a) 45°
- (b) 60°
- (d) 120°
- 30. α = 60° এবং u = 16 m/sec হলে সর্বোচ্চ উচ্চতা-

[Din.B'23]

- (a) $\frac{48}{8}$
- (b) $\frac{96}{g}$ (c) $\frac{192}{g}$
- 31. একটি নৌকা 12 মি/সে. বেগে সোজাসুজি একটি নদী পাড়ি দিতে পারে। যদি স্লোতের বেগ 5 মি/সে. হয়, তবে নৌকার বেগ কত? [MB'23]
 - (a) 7 ম/সে.
- (b) √119 মি/সে.
- (c) 13 মি/সে.
- (d) 17 মি/সে.
- 32. 16ft/sec আদিবেগে এবং ভূমির সাথে 45° কোণে একটি বস্তু নিক্ষেপ করা হলে আনুভূমিক পাল্লা হবে [MB'23] $(g = 32 \text{ ft/sec}^2)$ —
 - (a) 16 ft
- (b) 8 ft
- (c) $4\sqrt{2}$ ft (d) 1 ft
- 33. u আদিবেগে 3θ কোণে একটি বস্তু নিক্ষেপ করা হলো। θ এর কোন মানের জন্য আনুভূমিক পাল্লা সর্বাধিক হবে? [Mad.B'23]
- (b) 45°
- (c) 90°
- (d) 135°
- একটি বস্তু স্থিরাবস্থা হতে 6 মিটার/সে³, তুরণে চলতে থাকলে তৃতীয় সেকেন্ডে কত দূরত্ব অতিক্রম করবে? [Mad.B'23] (a) 12 মিটার(b) 15 মিটার(c) 21 মিটার(d) 27 মিটার
 - নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উন্তর দাও:

- প্রক্ষেপকটির বিচরণকাল-35.
- [DB, Ctg.B, BB'22; JB'17]
- (a) ⁵ সেকেন্ড
- (b) 5 সেকেন্ড
- (c) 10 সেকেন্ড
- (d) ²⁴⁵ সেকেন্ড
- 36. প্রক্ষেপকটির সর্বাধিক উচ্চতা-

[DB, Ctg.B, JB, BB'22; Ctg.B, JB, BB'191

- (a) $\frac{245}{8}$ মিটার (b) $\frac{245}{4}$ মিটার (c) 5 মিটার (d) 10 মিটার
- $37.~~20~{
 m ms^{-1}}$ বেগে খাড়া উর্ধ্বগামী একটি বেপুন হতে এ $_{\Phi_{70}}$ পাথর ফেলে দেয়া হল। পাথরটি 10 সেকেন্ডে ভূমিতে প_{তিত্র} হয়। পাথরটি যখন ফেলা হয়েছিল, তখন বেলুনের উচ্চতা কঃ [DB'22] মিটার ছিল?
 - (a) 780

- (b) 690
- (c) 580

- (d) 290
- $38. 20 \; ms^{-1}$ বেগো ও $4 \; ms^{-2}$ সমত্বণে চলমান বস্তুকণার 5-তম [Ctg.B, Din.B'22; DB'19] সেকেন্ডে অতিক্রান্ত দূরত্ব-(d) 150 m (b) 38 m (c) 42 m (a) 36 m
 - u বেগে ভূমি হতে খাড়া উপরের দিকে নিক্ষিপ্ত বস্তুকণার-

[Ctg.B'22; Ctg.B'17]

- (i) সর্বাধিক উচ্চতা <u>u</u>
- (ii) সর্বাধিক উচ্চতায় পৌঁছার সময় 🖁
- (iii) বিচরণকাল ^{Zu}

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 40. কী পরিমাণ বল 33 kg ভরের একটি স্থির বস্তুর উপর প্রয়োগ করলে 5 sec এ তার বেগ 15 ms⁻¹ হবে। [RB'22]
 - (a) 11 N
- (b) 33 N
- (c) 66 N
- (d) 99 N

MCO উত্তরমালা ও ব্যাখ্যামূলক সমাধান

40. d 35. b 36. a 37. d 38. b 39. c 32. b 33. a 34. b 31. c 30. b 29. a

29. আনুভূমিক পাল্লা, $R = \frac{u^2 \sin 2a}{a}$

ΔΑΟΒ সমকোণী ভাই

- সর্বাধিক দূরতে পড়বে যদি sin 2α = 1 হয়।
- $\therefore \sin 2\alpha = 1 \Rightarrow \sin 2\alpha = \sin 90^{\circ} \Rightarrow 2\alpha = 90^{\circ}$
- 30. NOTES SWEI, $H = \frac{u^2 \sin^2 a}{a^2} = \frac{16^2 (\sin 60^\circ)^2}{a^2} = \frac{96}{a}$
- 31. ধরি, নৌকার বেগ v আর প্রোতের বেগ u = 5m; 12 m/s বেগে লৌকা সোজাসুজি পার হতে পারে অর্থাৎ, 12 m/s হলো লব্ধি বেগ।

- 32. $R = \frac{u^2 \sin 2\alpha}{g} = \frac{16^2 \times \sin 90^4}{32} = 8 \text{ ft}$
- 33. আমরা জানি, আনুভূমিক পাল্লা সর্বাধিক হলে কোণ 45°
 - ∴ 30 = 45° ∴ 0 = 15°
- 34. $S_{3rd} = u + \frac{1}{2}f(2t-1) = 0 + \frac{1}{2} \times 6(2 \times 3 1) = 15 \text{ m}$

- 37. $h = -ut + \frac{1}{2}gt^2 = -20 \times 10 + \frac{1}{2} \times 9.8 \times (10)^2 = 290 \text{ m}$
- 38. $S_{sth} = u + \frac{1}{4}a(2t-1) = 20 + \frac{1}{4} \times 4 \times (2 \times 5 1) = 38 \text{ m}$
- 40. $V = m \times \frac{AV}{A} = 33 \times \frac{15}{5} = 99 \text{ N}$

 $v^2 = u^2 + 12^2 \Rightarrow v^2 = 5^2 + 12^2 \therefore v = 13 \text{ m/s}$

HSC প্রশ্নব্যাংক ২০২৫ 54 মিটার উঁচু দালানের ছাদ থেকে একটি পাথর খাড়া নিচে

⁵⁴ । তুড়ে দিলে ভূমিতে পড়তে কত সময় লাগবে?

[RB, JB'22]

(a) 3.32 sec

(b) 3.34 sec

(c) 3.36 sec

(d) 3.38 sec

(c) 3.50 একটি কণা স্থিরাবস্থা হতে 3 cms⁻² ত্রণে চলতে শুরু করলে । মিনিট পর তার বেগ কত হবে?

[RB'22]

(a) 3 cm/sec

(b) 60 cm/sec

(c) 120 cm/sec

(d) 180 cm/sec

্রবৃটি গাড়ি ঘন্টায় 8 কি.মি. বেগে চলছে। গাড়ি থেকে 16 ক্রি,মি. বেগে একটি বস্তুকে কোনদিকে নিক্ষেপ করলে বস্তুর

_{গতিপথ} গাড়ির সাথে সমকোণ তৈরি করবে?

(b) 45°

(c) 100°

(d) 120°

μ η η ο বেণে আনু ভূমিকের সাথে α কোণে একটি বস্তুকণা

[SB'22; RB'17]

(i) বায়ুশূন্য স্থানে বস্তুকণাটির গতিপথ একটি পরাবৃত্ত

(ii) আনুভূমিক পাল্লা R বৃহত্তম হলে, $R=rac{u^2}{\sigma}$

(iii) বস্তুকণাটির বিচরণকাল $= \frac{u \sin \alpha}{\sigma}$

নিচের কোনটি সঠিক?

(a) i, ii

(b) i, iii

(c) ii, iii

(d) i, ii, iii

45. 30 মিটার/সেকেন্ডে বেগে নিক্ষিপ্ত প্রক্ষেপকের পাল্লা 60 মিটার হলে নিক্ষেপণ কোণ কত হবে? [BB'22]

(a) 20.39° (b) 25°

(c) 30°

(d) 32.35°

46. আনুভূমিকের সাথে 30° কোণে এবং 9.8 মি/সে. বেগে একটি বস্তু প্রক্ষিপ্ত হল। কত সময় পরে বস্তুটি আনুভূমিকভাবে চলবে?

(a) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $\frac{\sqrt{3}}{2}$ (R) (d) $\frac{\sqrt{3}}{4}$ (R)

Educationblog24. উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৯

আনুভূমিকের সাথে A কোণে এবং B বেগে প্রক্রিপ্ত বস্তুর-

(i) সর্বোচ্চ উচ্চতা = $\frac{B^2 \sin A}{2g}$

[CB'22]

(ii) সর্বোচ্চ উচ্চতায় গমনকাল = ^{2B sin A}

(iii) আনুভূমিক পাল্লা = $\frac{B^2 \sin 2\alpha}{g}$

নিচের কোনটি সঠিক?

(a) i, ii

(b) i, iii

(c) ii, iii

48. স্থিরাবস্থা হতে সমত্বরণে চলমান একটি কণা 4 সেকেন্ডে 16 মিটার দূরত্ব অতিক্রম করে। ৫ম সেকেন্ডে কণাটি কত দূরত্ব অতিক্রম করবে? [CB'22]

(a) 9 মিটার

(b) 11 মিটার

(c) 18 মিটার

(d) 22 মিটার

49. 9.8 মিটার/সে. বেগে খাড়া উপরের দিকে নিক্ষেপিত কোনো বস্তুর সর্বোচ্চ উচ্চতা কত? [CB'22]

(a) 2.0 মি.

(b) 4.9 মি. (c) 9.8 মি. (d) 19.6 মি.

 u বেগে খাড়া উপরের দিকে নিক্ষিপ্ত একটি বস্তু h উচ্চতায় আসার দৃটি সময়ের পার্থক্য কত?

(a) $\sqrt{u^2 - 2gh}$

(b) $\frac{2}{g}\sqrt{u^2-2gh}$

(c) $\frac{g}{2}\sqrt{u^2 - 2gh}$ (d) $g\sqrt{u^2 - 2gh}$

 কোনো প্রক্ষেপকের আনুভূমিক পাল্লা R, বিচরণকাল T, সর্বাধিক [Din.B'22] উচ্চতা Η এবং প্রক্ষেপণ কোণ α হলে-

(i) $R = 4H \cot \alpha$

(ii) $H = \frac{gT^2}{g}$

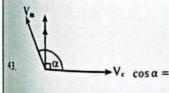
(iii) $\alpha = \tan^{-1}\left(\frac{gT^2}{2R}\right)$

নিচের কোনটি সঠিক?

(a) i, ii

(b) i, iii

(c) ii, iii


(d) i, ii, iii

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

			_		,		10	40 h	50 h	51 d
41. a	42. d	43. d	44. a	45. a	46. a	47	48. a	49. 0	30.0	31. u

41.
$$T = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 54}{9.8}} = 3.32 \text{ sec}$$

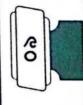
42 $v = u + at = 0 + 3 \times 60 = 180 \text{ cm/sec}$

 $\dot{\alpha} = \cos^{-1}\left(\frac{8}{16}\right) = 120^{\circ}$

45. $R = \frac{u^2 \sin 2\theta}{g} \Rightarrow 60 = \frac{30^2 \sin 2\theta}{9.8} \Rightarrow \theta = 20.39^\circ$

46. $T = \frac{u \sin \alpha}{g} = \frac{9.8 \times \sin 30^{\circ}}{9.8} = \frac{1}{2} \sec C$

47. (প্রশ্নে সঠিক উত্তর নেই); সর্বোচ্চ উচ্চতা হলো= $\frac{B^2 \sin^2 A}{2g}$ আর সর্বোচ্চ উচ্চতায় গমনকাল = $\frac{B \sin A}{g}$; তথুমাত্র সঠিক হলো (iii) নং।


48. $s = \frac{1}{2}at^2 \Rightarrow 16 = \frac{1}{2}a \times u^2 \therefore a = 2ms^{-2}$ $s_5 = u + \frac{1}{2}a(2t - 1) = 0 + \frac{1}{2} \times 2 \times (2 \times 5 - 1) = 9 \text{ m}$

49. $H = \frac{u^2}{2g} = \frac{(9.8)^2}{2 \times 9.8} = 4.9 \text{m}$

50. নিকিপ্ত বস্তুর ক্ষেত্রে, $h = ut - \frac{1}{2}gt^2 \Rightarrow gt^2 - 2ut + 2h = 0 \dots \dots (i)$

(i) নং এ t চলকের মূল সহগ সম্পর্ক হতে পাই, [ধরি.t1 > t2]

 $t_1 + t_2 = \frac{2u}{g}, t_1t_2 = \frac{2h}{g} :: t_1 - t_2 = \sqrt{(t_1 + t_2)^2 - 4t_1t_2}$ $= \sqrt{\left(\frac{2u}{g}\right)^2 - 4 \times \frac{2h}{g}} = \sqrt{\frac{4u^2}{g^2} - \frac{8h}{g}} = \frac{2}{g} \sqrt{u^2 - 2gh}$

- একটি পাথরকে ভূমি থেকে খাড়া উপরের দিকে নিক্ষেপ করা হলে এটি 5 সেকেন্ড পরে নিক্ষেপণ বিন্দুতে ফিরে আসে। পাথরটির [Din.B'22] ভূমিতে পতন বেগ কত?
 - (a) 18.56 ms⁻¹
- (b) 24.5 ms^{-1}
- (c) 25.57 ms⁻¹
- (d) 22.40 ms^{-1}
- 53. এক ব্যক্তি 450 মিটার চওড়া একটি স্লোতহীন নদী সাঁতার দিয়ে ঠিক সোজাসুজিভাবে ।5 মিনিটে পার হলে সাঁতারুর বেগ কত [MB'22] কি.মি/ঘণ্টা?
 - (a) $\frac{1}{2}$
- (b) $\frac{9}{5}$
- (c) 3
- একটি বস্তু উপর থেকে মুক্তভাবে 5 সেকেন্ডে পড়ল। বস্তুটি
- শেষের 3 সেকেন্ডে কত ফুট পড়েছিল?
 - (a) 336
- (b) 256
- (c) 192
- (d) 128
- 55. u আদিবেগে আনুভূমিকের সাথে α কোণে একটি বস্তু প্রহ্নিগু হলে-
 - (i) বিচরণকাল ^{2u sin α}
- (ii) বৃহত্তম পাল্লা ^{u²}
- (iii) সর্বাধিক উচ্চতা ^{u² sin² α}

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) II, III
- (d) i, ii, iii
- 30 m/s বেগে একটি বস্তুকণা 30° কোণে প্রক্ষিপ্ত হলে [RB, JB, BB'19]
 - (i) আনুভূমিক পাল্লা: 79.53m
 - (ii) সর্বাধিক উচ্চতা: 11.48
- (iii) বিচরণকাল: 3.06 sec

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii [RB'19]
- 57. u ও v (u < v) বেগছয়ের-(i) বৃহত্তম লব্ধি = u + v
- (ii) ক্ষুদ্ৰতম লব্ধি = u − v
- (iii) তাদের মধ্যবতী কোণ 90° হলে লব্ধি $= \sqrt{u^2 + v^2}$

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

[Ctg.B'19]

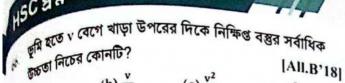
- 58. প্রক্ষেপক কোণ 45° হলে-
 - (ii) $H = \frac{u^2}{4g}$ (iii) $T = \frac{u}{g}$

(i) $R = \frac{u^2}{e}$ নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii

- X এবং Y দুটি বাস সমান্তরাল দুটি রাস্তা বরাবর একই দিত্ত যথাক্রমে 20 km/h এবং 10 km/h বেগে চলছে। Y বানে সাপেক্ষে X বাসের আপেক্ষিক বেগ কত? [SB, CB'19]
 - (a) 0
- (b) 10
- (d) 30[SB'19]

- (a) পরাবৃত্ত
- বায়ুশূন্য স্থানে নিক্ষিপ্ত বস্তুর গতিপথ একটি-(b) উপবৃত্ত
- (c) অধিবৃত্ত
- (d) 93
- একটি কণা সমত্রণে 5 মি./সে. আদিবেণে 50 সে হি অতিক্রম করে 10 মি./সে. গতিবেগ অর্জন করে। কণাটির [SB'19] তুরণ কত?
 - (a) -75 মি./সে².
- (b) 75 মি./সে².
- (c) $\frac{-3}{4}$ মি./সে².
- $(d) \frac{3}{4} মি./সে².$
- 62. u ও v দুটি বেগ পরস্পর বিপরীত দিকে ক্রিয়া করলে এদের [BB'19] লব্ধি বেগ হবে-
 - (a) $\sqrt{u+v}$
- (b) u + v
- (c) u v
- (d) $\sqrt{u-v}$
- দৃটি ট্রেন একই রেলপথে বিপরীত দিক থেকে একই 60 m/sec গতিবেগে পরস্পরের দিকে অগ্রসর হচ্ছে। 1200 m দূরত্বে একে অপরকে দেখতে পেল। মন্দনের সর্বোচ্চ মান নির্ণয় কর যাতে সংর্ঘ [JB'19] এডানো যেতে পারে।
 - (a) 2 m/sec^2
- (b) 3 m/sec^2
- (c) 4 m/sec^2
- (d) 5 m/sec^2
- 64. u গতিবেগে ও আনুভূমিকের সাথে α কোণে প্রক্ষিপ্ত বস্তুর [Din.B'19] আনুভূমিক পাল্লা-
 - (a) (u sin 2α)/g
- (b) $(u^2 \sin 2\alpha)/g$


- (c) (u sin 2α)/2g
- (d) $(u^2 \sin 2\alpha)/2g$
- 65. একখানা গাড়ি সমত্রণে 25 km/hr আদিবেগে 150 km অতিক্রম করে 60 km/hr চ্ড়ান্ত বেগ প্রাপ্ত হয়। গাড়িটির [Din.B'19] তুরণ কত?
 - (a) 9.92 km/h^2
- (b) 14.08 km/h²
- (c) 19.83 km/h²
- (d) 28.16 km/h^2

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

					E-Section 1			1.0	(1.1	(2 -	62 h	61 h	65 3
52. b	62 L	54 0	55 d	56. d	57. b	58. a	59. b	60. a	61. b	62. C	03.0	04. 0	05.
1 52. b	33. D	34. a	33. 4	50.0	The state of the s	22/20/20/20/20	The state of		_				

- 52. $T = \frac{2u}{g} \Rightarrow 5 = \frac{2u}{9.8} \Rightarrow u = 24.5 \text{ ms}^{-1}$
- 53. v = 18 = १ कि.মি. / घणी।
- 54. শেষ 3sec এ অতিক্রান্ত দূরত্ব = 5 sec এ মোট দূরত্ব প্রথম 2sec এ অতিক্রান্ত দূরত্ব = $\frac{1}{2} \times g \times 5^2 - \frac{1}{2} \times g \times 2^2 = \frac{1}{2} \times 32 \times (25 - 4)$
- 56. $R = \frac{v_0^2 \sin 2\theta}{g} = 79.53 \text{ m}; H = \frac{v_0^2 \sin^2 \theta}{2g} = 11.48 \text{ m};$

- 58. $T = \frac{2u \sin 45^{\circ}}{g} \Rightarrow T = \frac{\sqrt{2}u}{g}$
- 59. $V_{XY} = 20 10 = 10 \text{ km/h}$
- 61. $(10)^2 = (5)^2 + 2 \times f \times 0.5 : f = 75 \text{ ms}^{-2}$
- 63. প্রসাতে, $u^2f + u^2f = 2f^2x \Rightarrow 2u^2 = 2fx$
- $\therefore f = \frac{2u^2}{x} = \frac{2x(60)^2}{1200} = 6 \text{ ms}^{-2} \therefore$ মন্দ্ৰ = $\frac{6}{2} \text{ms}^{-2} = 3 \text{ ms}^{-2}$ 64. আনুভূমিক পাল্লা, $R = \frac{u^2 \sin 2a}{g}$
- 65. $a = \frac{v^2 v_0^2}{2s} = \frac{60^2 25^2}{2 \times 150} = 9.92 \text{ km/h}^2$

(c) $\frac{v^2}{g}$

্র বেগে 30° কোণে প্রক্ষিপ্ত কণার সর্বোচ্চ উচ্চতায় বেগ কত

একক/সে.?

(b) $\frac{u}{\sqrt{3}}$ (c) $\frac{u}{2}$

[All.B'18]

(a) $\frac{2u}{\sqrt{3}}$ একটি গাড়ী 15m/s আদিবেগে এবং 4m/s² সমত্রণে চলে 150m দূরে অবস্থিত একটি খুঁটিকে অতিক্রম করে। খুঁটিটি অতিক্রমের মুহূর্তে গাড়িটির বেগ কত ছিল? [DB'17]

(a) 37.75 m/s

(b) 30.75 m/s

(c) 29.75 m/s

(d) 28.75 m/s

ভূমি হতে u আদিবেগে একটি বস্তু উল্লম্বভাবে উপরের দিকে নিক্ষেপ _{করলে} বস্তুটি সর্বাধিক কত উপরে উঠবে? [DB'17]

(b) $\frac{u^2}{2g}$

10. ছিরাবস্থায় 2m উঁচু থেকে অবাধে খাড়া নিমুমুখী পড়ন্ত বস্তুর ভূমিতে পতনকাল কত সেকেন্ড?

(b) $2\sqrt{\frac{1}{g}}$ (c) $\sqrt{\frac{1}{g}}$

11. একটি কণা স্থিরাবস্থা হতে 2ms⁻² সমত্বরণে ১ম সেকেন্ডে 1m দূরত্ব অতিক্রম করে। পরবর্তী । সেকেন্ডে কণাটির অতিক্রান্ত দূরত্ব কত? [Ctg.B'17]

(a) 1

(b) 2

(c) 3

(d) 4

12. সরলরেখায় সমত্বরণ চলমান বস্তুর গতিসূত্র কোনটি?

(a) v = u + ft

(b) $s = ut - \frac{1}{2}ft^2$

(c) $v^2 = u^2 - 2fs$

(d) v = u - ft

উচ্চতর গণিত ২য় পত্র : অধ্যায়-০৯

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

u আদিবেগে ভূমির সাথে 60° কোণে একটি বস্তুকণা নিক্ষেপ করা হলে t সময় পর তা ভূমিতে ফিরে আসে।

73. উল্লম্ব দিকে u এর উপাংশ কোনটি?

[BB'17]

(b) $\frac{\sqrt{3}u}{2}$

(c) $\frac{u}{\sqrt{2}}$ (d) $\frac{u}{2}$

74. আনুভূমিক পাল্লা কত?

[BB'17]

(a) $\frac{u^2}{2g}$

75. 2.45 km প্রস্থের নদীতে পানির স্রোতের $\frac{7}{3}$ গুণ বেগে ও স্রোতের সাথে লম্বভাবে একজন সাঁতারু নদী সোজাসুজি পাড়ি দেওয়ার জন্য যাত্রা শুরু করল। সে অপর তীরে যাত্রা-বিন্দুর ঠিক বিপরীত স্থান হতে কত দূরত্বে ভাটিতে পৌছবে?

(a) 0.32 km

(b) 1.05 km

(c) 1.50 km

(d) 5.72 km

 একটি শূন্য কৃপে একটি পাথর টুকরা ফেলার 4sec পরে উহার তলদেশে পতনের শব্দ শোনা গেল। শব্দের বেগ 330 ms⁻¹ হলে কূপের গভীরতা কত? [Din.B'17]

(a) 75.5 m

(b) 76.5 m

(c) 78.4 m

(d) 79.4 m

77. সরলরেখায় গতিশীল একটি কণা $3 m s^{-2}$ সমত্বরণে 20 সেকেন্ড যাবৎ চলে গড়বেগ 50ms⁻¹ প্রাপ্ত হলে তার আদিবেগ কোনটি? [Din.B'17]

(a) 40 ms⁻¹

(b) 35 ms^{-1}

(c) 20 ms^{-1}

(d) 10 ms^{-1}

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

66. d 71. c 72. a 73. b 74. c 75. b 76. -77. c 67. c 69. b 70. b 68. a

66. সর্বোচ্চ উচ্চতায় শেষ বেগ শূন্য $(0) :: 0^2 = v^2 - 2gh :: h = \frac{v^2}{2g}$

67. $\frac{u}{\sqrt{3}}\cos 30^{\circ} = \frac{u}{2} [সর্বোচ্চতায়, u_y = 0]$

68. $u = 15 \text{ ms}^{-1}$, $f = 4 \text{ms}^{-2}$; s = 150 m, v = ? $v^2 = u^2 + 2fs = 15^2 + (2 \times 4 \times 150)$; $v = 37.75 \text{ ms}^{-1}$

70. $2 = \frac{1}{2}gt^2 : gt^2 = 4 : t^2 = \frac{4}{g} : t = 2\sqrt{\frac{1}{g}}$

71. $S = \frac{1}{2}2 \times 1^2 = 1$; $S = \frac{1}{2} \times 2 \times (2)^2 = 4$

্পরবর্তী। সেকেন্ডে অতিক্রান্ত দূরত্ব = (4 – 1) = 3

 $S_t = u + \frac{1}{2}f(2t - 1) = 0 + \frac{1}{2} \times 2 \times (2 \times 2 - 1) = 3$

বি.মু: অতিক্রান্ত দূরত্বের একক দেয়া নেই, তাই best option হিসেবে (c) नागात्ना रुखार्छ।

73. $v\sin\theta = u\sin 60^\circ = \frac{\sqrt{3}u}{2}$

75.

 $\frac{OA}{7u} = \frac{OB}{u} \Rightarrow OB = \frac{OA.3}{7} \therefore OB = \frac{2.45 \times 3}{7} = 1.05 \text{km}$

76. (সঠিক উত্তর নেই।) সঠিক উত্তর হল: মোট সময় = পাথর কুয়ার তলদেশে পড়ার সময় + শব্দ পরে আসার সময়। $4 = \sqrt{\frac{2h}{g} + \frac{h}{v}} \Rightarrow \frac{2h}{g} = \left(4 - \frac{h}{v}\right)^2$

 $\Rightarrow \frac{2h}{g} = 16 - 8\frac{h}{v} + \frac{h^2}{v^2} \Rightarrow \frac{h^2}{(330)^2} - \left(\frac{8}{330} + \frac{2}{98}\right)h + 16 = 0$

 \Rightarrow h = 70.27m

77. $\frac{u+v}{2} = 50 : u+v = 100 (i)$

আবার, $\frac{v-u}{20} = 3 : v - u = 60 ... (ii)$

(i) ও (ii) সমাধান করে পাই, v = 80ms⁻¹ ; u = 20ms⁻¹

Educationblog24.cc উচ্চতর গণিত ২য় পত্র: অধ্যায়-০৯

বিভিন্ন কলেজের টেস্ট পরীক্ষার MCQ প্রশ্ন

- 20ms⁻¹ বেগে উর্ধ্বগামী একটি বেলুন হতে একখন্ড পাথর ফেলা হলে তা 20 সেকেন্ড পর ভূমিতে পতিত হয়। পাথরটি ফেলার সময় বেলুনের উচ্চতা কত ছিল?[রংপুর ক্যাডেট কলেজ] (a) 390 m (b) 560 m (c) 1250 m (d) 1560 m
- একটি বিড়াল 120 মিটার সামনে স্থির অবস্থান হতে $\frac{1}{30} \, \mathrm{ms}^{-2}$ সুষম ত্ব্বণে সরলপথে একটি ইদুর দৌড়াতে দেখে একে ধরার জন্য সমবেগে দৌঁড় শুরু করল। যদি এক মিনিটে বিড়ালটি কোনো রকমে ইদুর ধরতে সক্ষম হয় তবে বিড়ালটির বেগ কত? [ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা]
 - (a) 3m/sec
- (b) 4m/sec
- (c) 5m/sec
- (d) 6m/sec
- 80. প্রক্ষেপণ কোণ কত হলে, আনুভূমিক পাল্লা বৃহত্তম হবে? [ঢাকা রেসিডেনসিয়াল মডেল কলেজ]
 - $(a)^{\frac{\pi}{6}}$
- (b) $\frac{\pi}{4}$
- $(c)\frac{\pi}{3}$
- 81. 20m/sec বেগে খাড়া উর্ম্বগামী একটি বেলুন হতে একখন্ড পাথর ফেলে দেয়া হলো। পাথরটি 10 সেকেন্ডে ভূমিতে পতিত হয়। পাথরটি যখন ফেলা হয়েছিল, তখন বেলুনের উচ্চতা কত মিটার ছিল? [কাদিরাবাদ ক্যান্টনমেন্ট স্যাপার কলেজ, চট্টগ্রাম] (b) 690 (c) 580 (d) 290 (a) 780

একজন খেলোয়াড় একটি ফুটবল খাড়া উপরের দিকে 90 মি উচুতে নিক্ষেপ করতে পারে। সে বলটি সর্বাধিক কত _{বি} আনুভূমিক দূরত্বে নিক্ষেপ করতে পারবে?

আনন্দ মোহন কলেজ, ময়মনসিংহা

- (a) 120
- (b) 140
- (c) 180
- একটি বুলেট 50 গজ দূরবর্তী এবং 75 ফুট উচ্চ একটি খাড়া দেয়াল কোনো রকমে ভূমির সমান্তরাল অতিক্রম করে। বুলেটটির প্রক্লেপ [ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা বেগ কোনটি?
 - (a) $30\sqrt{6}$ ft/sec
- (b) 40√6ft/sec
- (c) $50\sqrt{6}$ ft/sec
- (d) 60√6 ft/sec
- 84. একটি বুলেট কোনো দেয়ালের ভিতর 2 ইঞ্চি ঢুকবার পর বেগ অর্ধেক হারায়। বুলেটটি দেয়ালের ভিতর আরো কত ইঞ্চি [আইডিয়াল স্কুল অ্যান্ড কলেজ, ঢাকা] ঢুকবে?
 - (a) $\frac{1}{2}$
- (b) $\frac{2}{3}$
- (c) 1
- (d) 2
- 85. कात्ना खरखत्र भीर्य २०० 19.5 m/sec বেগে খाড़ा উপরের দিকে নিক্ষিপ্ত কোনো কণা 5 sec পরে স্তন্তের পাদদেশে পতিত হয়। স্তন্তের উচ্চতা নিচের কোনটি?

[হলি ক্রস কলেজ, ঢাকা]

1 গজ = 3 ফুট

: 50 গল = 150 ফুট

- (a) 10 m
- (b) 15 m
- (c) 20 m
- (d) 25 m

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

85. d 81. d 83. b 84. b 78. d 79. a 80. b 82. c

- 78. $h = -ut + \frac{1}{2}gt^2$ $= -20 \times 20 + \frac{1}{2} g \times (20)^2 [g = 9.8 \text{ms}^{-2}]$ = 1560 m
 - 120 m ধরি, t সময় পর C অবস্থানে বিড়ালটি ইনুরটিকে ধরতে পারবে।

ইদুরের অতিক্রাম্ভ পপ, BC = ut $+\frac{1}{2}$ at²

 $\Rightarrow 0 + \frac{1}{2} \times \frac{1}{30} \times (60)^2 \left[v \text{ u} = 0, t = 60 \text{s}, a = \frac{1}{30} \text{ ms}^{-2} \right] = 60 \text{m}$ বিড়ালের অতিক্রাম্ভ পথ, AC = v × 60

 $AB + BC = 60v \Rightarrow 120 + 60 = 60v \Rightarrow 60v = 180 \Rightarrow v = 3ms^{-1}$ ं विकारणब द्वा 3ms-1

- 80 আনুকৃষিক পালা $R = \frac{v_0^2 \sin 2\theta}{\epsilon}$ । R_{max} হলে, $\sin 2\theta = 1$ হতে হবে। जर्बार, sin 20 = sin 90°; 20 = 90°; 8 = "
- 81. $h = -ut + \frac{1}{2}gt^2 = -20 \times 10 + \frac{1}{2} \times 9.8 \times (10)^2 = 290 \text{ m}$
- 82. $v^2 = u^2 2gh$; $0 = u^2 2gh$ $2gh = u^2$; $h = \frac{u^2}{2g} = 90$; $u^2 = 90 \times 2 \times 9.8 = 180g$ $R_{max} = \frac{v^2}{g} = \frac{180 \text{ g}}{g} = 180 \text{ A} \cdot R_{max} = 180 \text{ m}$

83 75 ft

আমরা জানি, $\tan \alpha = \frac{4H}{R}$; $\tan \alpha = \frac{4 \times 75}{300} = 1$; $\alpha = 45^{\circ}$ add R = $\frac{u^2 \sin 2\alpha}{6}$ \therefore R = $\frac{u^2 \sin(90)}{32}$

 $u^2 = 9600$; $u = 40\sqrt{6}$ fts⁻¹

84. ১४ टकट्ड, $v^2 = u^2 - 2as$

 $\left(\frac{u}{2}\right)^2 = u^2 - 2 \times a \times 2; \frac{u^2}{4} = u^2 - 4a$

 $4a = u^2 - \frac{u^2}{4}$; $4a = \frac{3u^2}{4}$; $a = \frac{3u^2}{16}$ আনার, পরবর্তী ক্ষেত্রে, v² = u² - 2as,

 $o^2 = \left(\frac{u}{2}\right)^2 - 2as_1; \frac{u^2}{4} = 2as_1; s_1 = \frac{u^2}{8a} = \frac{u^2}{8a^{\frac{2}{3}}} = \frac{2}{3} cm$

Shortcut: বেগ অর্ধেক হারালে আরও 🛉 দূরত্ব অতিক্রম করে খেমে যাবে।

85. $h = -ut + \frac{1}{2}gt^2 = -19.5 \times 5 + \frac{1}{2} \times 9.8 \times 5^2 = 25 \text{ m}$

Educationblog 24. co

ডেডতর গণিত ২য় পত্র : অধ্যায়-

সাজেশনভিত্তিক মডেল টেম্ট: অধ্যায়-০৯

পুৰ্মান: ৩৫

MCQ

সময়: ৩৫ মিনিট

্রকটি বস্তুকণা সুষম বেগে চললে এর ত্বরণ কি হবে?

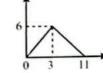
- ।. (a) ধনাত্মক
- (b) ঋণাত্মক
- (a) युगाय (c) সুষম
- (d) কোনো ত্বরণ হবে না
- ্বাদি একটি বস্তু কণা u আদিবেগে যাত্রা করে সমত্বরণে চলে t সময়ে

 ত বেগ প্রাপ্ত হয় তাহলে নিচের কোনটি সঠিক?
 - (a) v = u + ft
- (b) v = u ft
- (c) u = v + ft
- (d) u = v ft
- 45° কোণে নিক্ষিপ্ত কোনো বস্তুর আনুভূমিক পাল্লা ও সর্বোচ্চ উচ্চতা যথাক্রমে R ও H হলে কোন সম্পর্কটি সত্য হবে?
 - (a) 2R = H (b) R = H (c) R = 2H (d) R = 4H
- $g_{4.}$ $s = t^3 + 5t^2 + 7$ হলে, 4 সেকেন্ড পরে ত্রণ কত?
 - (a) 34
- (b) 88
- (c) 118
- (d) 54
- 05. একটি শূন্য কৃপের মধ্যে একটি পাথরের টুকরা ছেড়ে দেয়ার পর তা 18 মি/সে বেগে কৃপের তলদেশে পতিত হয়। কৃপের গভীরতা কত?
 - (a) 9.18 মি:
- (b) 1.836 মি:
- (c) 16.53 মি:
- (d) 33.06 মি:
- একটি কণা স্থিরাবস্থা হতে সমত্বরণে সরলপথে চলে 3 সেকেন্ডে 2 মিটার দূরত্ব অতিক্রম করে এবং পরবর্তী কিছু দূরত্ব সমবেগে যায়। প্রথম 3 সেকেন্ড পরে কণাটির বেগ কত?
 - (a) $\frac{1}{3}$ m/sec
- (b) $\frac{4}{3}$ m/sec
- (c) $\frac{2}{3}$ m/sec
- (d) $\frac{1}{4}$ m/sec
- 07. একটি বস্তুকে উঁচু কোনো স্থানে থেকে ছেড়ে দেওয়া হলে তা এক সেকেন্ডে যে দূরত্বে নিচে নামবে, তা হলো-
 - (a) 4.9 মিটার
- (b) 9.8 মিটার
- (c) -4.9 মিটার
- (d) -9.8 মিটার
- 08 . u ও f ধ্রুবক হলে $v^2=u^2+2$ fs এর লেখচিত্রটি হবে
 - (a) পরাবৃত্ত
- (b) উপবৃত্ত
- (c) অধিবৃত্ত
- (d) বৃত্ত
- ^{09.} অসম ত্বরণে গতিশীল বস্তুকণার t বনাম v বা (t v) লেখ কোনটি?
 - (a) of t
- (b) s
- (c) V
- (d) s

- 10. একটি বিড়াল 21 মিটার দূরে একটি ইদুর দেখে তাকে ধরার জন্য স্থিরাবস্থা থেকে 2 মি./সে.² সমত্বরণে দৌড়াতে লাগল। যদি ইদুরটি 20 মি./সে. সমবেগে দৌড়াতে থাকে, তবে কত সেকেন্ড পরে বিড়ালটি ইদুরটিকে ধরতে পারবে?
 - (a) 20
- (b) 21
- (c) 24
- (d) 30
- 11. একটি প্রক্ষিপ্ত বস্তু 10 মিটার দূরে অবস্থিত 3 মিটার একটি খাড়া দেওয়াল কোনো রকমে ভূমির সমান্তরালে অতিক্রম করতে 5 সে. সময় নেয়। বস্তুটির —
 - (i) আনুভূমিক পাল্লা 20 মিটার
 - (ii) বৃহত্তম উচ্চতা 3 মিটার
 - (iii) বিচরণকাল 5 সে.

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) ii, iii
- (c) i, iii
- (d) i, ii, iii
- নিচের তথ্যের ভিত্তিতে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:
 একটি গাড়ী 50ms^{-1} বেগে চলছিল। গাড়ীর চালক ব্রেক চাপায় 5ms^{-2} মন্দন সৃষ্টি হয়।
- 12. ৪ সেকেন্ড পর গাড়ির বেগ কত?
 - (a) 10ms⁻¹
- (b) 40ms^{-1}
- (c) 60ms^{-1}
- (d) 90ms^{-1}
- 13. থামার পূর্বে গাড়িটি কত দূরত্ব অতিক্রম করবে?
 - (a) 5 m
- (b) 10 m
- (c) 200 m
- (d) 250 m
- 14. 9.8ms⁻¹ বেগে প্রক্ষিপ্ত একটি বস্তু সর্বাধিক কত দূরত্ব অতিক্রম করবে?
 - (a) 1.5 m
- (b) 3 m
- (c) 4.9 m
- (d) 9.8 m
- 15. একটি গাড়ি 5 মিটার/সে. বেগে সৃষম ত্বলে সোজা পথে 100 মিটার দ্রত্ব অতিক্রম করার পর 25 মিটার/সে. বেগ প্রাপ্ত হলে গাড়িটির ত্বরণ কত?
 - (a) 1.5 মি/সে.^২
- (b) 2 মি/সে.^২
- (c) 3 মি/সে.^২
- (d) 2.5 মি/সে.^২
- 16. স্লোতের বেগ u এবং নৌকার বেগ v. যদি নৌকাটি স্লোতের বিপরীত দিকে চলে তবে স্লোতের সাপেক্ষে নৌকাটির আপেক্ষিক বেগ কত?
 - (a) u v
- (b) v u
- (c) u + v
- (d) 2v
- 17. কোন বস্তুকণা সমবেগে 5 সেকেন্ডে 45 মিটার দূরত্ব অতিক্রম করলে বেগ কত মি/সে হবে?
 - (a) 6
- (b) 7
- (c) 8
- (d) 9


- - (i) একটি ভেক্টর রাশি
 - (ii) f বা a ছারা প্রকাশ করা হয়
 - (iii) শুন্য হয় সৃষম বেগের ক্ষেত্রে
 - নিচের কোনটি সঠিক?
 - (a) i, ii
- (b) i. iii
- (c) ii, iii
- (d) i, ii, iii
- 19. স্থির অবস্থা হতে কণার ১ম সেকেন্ডে অতিক্রান্ত দূরত্ব কোনটি?
 - (a) তুরণের সমান
- (b) তুরণের অর্ধেক
- (c) তুরণের দিগুণ
- (d) তুরণের বর্গ
- 20. বায়ুহীন অবস্থায় আনুভূমিকের সাথে lpha কোণে শূন্যে নিক্ষিপ্ত প্রক্ষেপকের আনুভূমিক পাল্লা R হলে উহার গতিপথের সমীকরণ কোনটি?

 - (a) $y = x \tan \alpha \left(1 \frac{x}{R}\right)$ (b) $x = y \tan \alpha \left(1 \frac{y}{R}\right)$

 - (c) $y = x \tan \alpha \left(1 \frac{R}{x}\right)$ (d) $x = y \tan \alpha \left(1 \frac{R}{y}\right)$

V(ms-1)

21.

উপরের বেগ V-s সময় লেখচিত্রের

- একটি বস্তুকণার গতিপথ দেখানো হয়েছে।
- (i) কণাটি প্রথম 3 সেকেন্ড সমত্রণে চলে 6মি./সে. বেগ প্রাপ্ত হয়, অত:পর পরবতী ৪ সেকেন্ড সমমন্দনে চলে থেমে যায়
- (ii) প্রথম 3 সেকেন্ড কণাটি 0.5 মি./সে² সমত্রণে চলে
- (iii) কণাটি কর্তৃক অতিক্রান্ত মোট দ্রত্ব = 33 মি.

নিচের কোনটি সঠিক?

- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 22. প্রক্ষেপকের উত্থানকাল t, সর্বোচ্চ উচ্চতা H হলে $\frac{H}{t^2}$ =?
- (b) 2
- $(c)^{\frac{g}{2}}$
- 30ms⁻¹ বেগে আনুভূমিকে চলন্ত একটি ক্রিকেট বলকে তার বেগের সাথে সমকোণে ব্যাট দ্বারা আঘাত করলে তা 50ms⁻¹ বেগ প্রাপ্ত হলো। ব্যাটের আঘাতের বেগ কত?
 - (a) 40ms-1
- (b) 35ms^{-1}
- (c) 30ms⁻¹
- (d) 25ms^{-1}
- 24. অসমবেগ ও অসমত্রণ-
 - (i) সময়ের সাথে ভিন্ন ভিন্ন হয় (ii) উভয়ই ভেয়ৢর রাশি
 - (iii) সময়ের সাথে পরিবর্তন হয় না

নিচের কোনটি সঠিক?

- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- 25. একটি বুলেট 4 মি./সে. আদি বেগে দেওয়ালের মধ্যে 2 মিটার প্রবেশ করে থেমে যায়। বুলেটটির মন্দন কত মি./সে ² ?
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

- 26. 60° কোণে ক্রিয়াশীল 1 এবং 2 একক মানের দৃটি বেগের প্রথমটির সাপেক্ষে দ্বিতীয়টির আপেক্ষিক বেগ কত?
 - (a) $\sqrt{3}$
- (b) 2
- (c) √7
- 15 মিটার গভীর একটি শূন্য কুপের উপরিতল থেকে 5 মিটার ট্র কোনো স্থান থেকে একটি পাথর ফেলে দেবার কতক্ষণ পরে 🔫 শোনা যাবে? [শব্দের বেগ 342 মি./সে.]
 - (a) 2.08 বে.
- (b) 2.05 (커.
- (c) 1.49 সে.
- (d) 1.05 লে.

নিচের তথ্যের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: একজন বৈমানিক 4900 মিটার উপর দিয়ে 35 মি/সে. বেগে উট্টে যাবার সময় একটি বোমা ফেলে দিল।

- কত সময় পরে বোমাটি ভূমিতে পড়বে?
 - (a) 31.62 여.
- (b) 29.60 여.
- (c) 19.06 সে.
- (d) 9.80 (커.
- 29. বোমাটি যে বস্তুতে আঘাত করবে, তার আনুভূমিক দূরত্ব কত?
 - (a) 798.08 মিটার
- (b) 1002.32 মিটার
- (c) 1106.70 মিটার
- (d) 1906.60 মিটার
- ত্বন শূন্য হলে তখন সময়ের সাপেক্ষে বেগ কত? 30.
- (b) দিগুণ
- (c) তিনগুণ (d) সমান
- ভূমির সাথে $\tan^{-1}\frac{4}{3}$ কোণে একটি বস্তুকে $9.8 \mathrm{ms}^{-1}$ বেগে উপরের দিকে ছৌড়া হলো। $\frac{3}{5}$ sec পরে বস্তুর বেগ ভূমির সাং কত কোণ উৎপন্ন করে?
 - (a) $\tan^{-1}\left(\frac{1}{3}\right)$
- (b) $\tan^{-1}\left(\frac{1}{4}\right)$
- (c) $\tan^{-1}\left(\frac{3}{5}\right)$
- (d) $\tan^{-1}\left(\frac{4}{5}\right)$
- 32. ভূমিতে একটি বোমা পড়লে এর কণাগুলি $\sqrt{g\pi}$ বেগে চারদিকে ছোটে। ভূমিতে যে অংশ জুড়ে এরা ছড়িয়ে পড়ে তার ক্ষেত্রফা কত?
 - (a) $\pi^2 g$
- (b) $\pi^2 g^2$
- (c) π^3
- (d) gn
- 33. এক বিন্দুতে ক্রিয়ারত 10m/s এবং 5m/s বেণের অন্তর্ভুক্ত কোণ 120° হলে লব্ধি ১ম বেগের সাথে যে কোণ উৎপন্ন করে তার পরিমাণ-
 - (a) 85°
- (b) 30°
- (c) 60°
- (d) 40°
- 34. একটি শূন্য কৃপে একটি পাথর খন্ড ফেললে তা 3 sec এ কৃপের তলদেশে পৌছালে কৃপের গভীরতা কত মিটার হবে?
- (b) 45.1
- (c) 46.1
- (d) 47.1
- u আদিবেগে। সমত্রণে চলন্ত কোনো বস্তুর।- তম সেকেড অতিক্রান্ত দূরত্ব কত?

 - (a) $u + \frac{1}{2}f(2t + 1)$ (b) $u + \frac{1}{2}f(2t 1)$

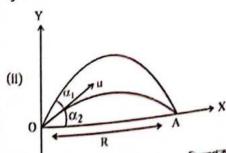
 - (c) $u \frac{1}{2}f(2t + 1)$ (d) $u \frac{1}{2}f(2t 1)$

Educationbl

উচ্চতর গণিত ২য় পত্র : অধ্যায়-ত৯

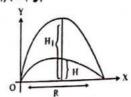
পূৰ্ণমান: ৫০

CQ


সময়: ২:৩৫ মিনিট

(যেকোনো পাঁচটি প্রশ্নের উত্তর দাও:)

- ্বার্শূন্য স্থানে প্রক্ষিপ্ত বস্তুর গতিপথ একটি পরাবৃত্ত। যখন প্রক্ষেপকের আনুভূমিক পাল্লা R এবং নিক্ষেপণ কোণ α। আবার কোনো কণার উপর একই সময়ে নির্দিষ্ট কোণে ক্রিয়াশীল u ও v বেগের লব্ধি W।
 - (ক) প্রমাণ কর যে, v = u + ft। 2
 - (খ) দেখাও যে, প্রক্ষেপকের গতিপথের সমীকরণ


 $y = x \tan \alpha \left(1 - \frac{x}{R} \right)$

- (গ) দেখাও যে, v কে বিপরীতমুখী করে তার স্থলে $\frac{w^2-u^2}{v}$ বেগ প্রয়োগ করলে লব্ধির মান অপরিবর্তিত থাকবে।
- 02. দৃশ্যকল্প-১: সুষম তৃরণে কোনো সরলরেখা বরাবর চলন্ত একটি $\mathbf{t_1},\mathbf{t_2},\mathbf{t_3}$ সময়ের গড়বেগ যথাক্রমে $\mathbf{v_1},\mathbf{v_2},\mathbf{v_3}$ । দৃশ্যকল্প-২: একটি ক্রিকেট বলকে আঘাত করলে তা নিক্ষেপণ বিন্দু হতে যথাক্রমে b ও a দূরত্বে অবস্থিত a ও b উচ্চতার দুটি দেয়ালকে কোনো রকমে অতিক্রম করে।
 - (ক) দেখাও যে দুইটি সমান বেগের লব্ধি তাদের অন্তর্গত কোণকে সমদ্বিখণ্ডিত করে।
 - (খ) দৃশ্যকল্প-১ হতে দেখাও যে, $\frac{v_1-v_2}{v_2-v_3}=\frac{t_1+t_2}{t_2+t_3}$ ।
 - (গ) দৃশ্যকল্প-২ হতে দেখাও যে, এর পাল্লা $R=rac{a^2+ab+b^2}{a+b}$ । 4
- 03. (i) সমত্রণে চলমান একখানি রেলগাড়ী ধারাবাহিক $\mathbf{t_1},\mathbf{t_2}$ ও ${f t_3}$ সময়ে সমান ক্রমিক দ্রত্ব অতিক্রম করে।

এখানে $lpha_1 ও lpha_2$ কোণে নিক্ষিপ্ত বস্তুর বিচরণকাল t_1 ও t_2 ।

- (ক) ত্বল কাকে বলে? বিচরণকাল বলতে কী বুঝ?
- (খ) উদ্দীপক (i) হতে প্রমাণ কর: $\frac{1}{t_1} \frac{1}{t_2} + \frac{1}{t_3} = \frac{3}{t_1 + t_2 + t_3}$ (4)
- (গ) উদ্দীপক (II) হতে প্রমাণ কর যে, $R = \frac{1}{2} g t_1 t_2$

দৃশ্যকম্প-২: শিমুল ও মিজু প্রত্যেকেই আলাদাভাবে নৌকা নিয়ে 3 কি.মি./ঘণ্টা বেগে প্রবাহিত 500 মিটার প্রশস্ত একটি নদী পার হতে চায়।তাদের প্রত্যেকের নৌকার বেগ 5 কি.মি./ঘণ্টা।

- (ক) একটি প্রক্ষেপক 21ms⁻¹ বেগে এবং আনুভূমিকের সাথে 30° কোণে শূন্যে নিক্ষেপ করা হল, এর আনুভূমিক পাল্লা কত?
- (খ) দৃশ্যকল্প-১ হতে দেখাও যে, $R=4\sqrt{HH_1}$ ।
- (গ) দৃশ্যকল্প-২ এ শিমুল স্বল্পতম পথে এবং মিজু স্বল্পতম সময়ে নদী পাড়ি দিলে তাদের প্রয়োজনীয় সময়ের ব্যবধান কত? 4
- 05. দৃশ্যকল্প-১: u আদিবেগে এবং f সমত্রণে সমতলে কোনো কণা সরলরেখা বরাবর চলে t সময়ে s এবং পরবর্তী t' সময়ে s1 দূরুত্ব

দৃশ্যকষ্প-২: একটি বুলেট কোনো দেয়ালের ভিতরে 2 সে.মি. ঢুকবার পর এর অর্ধেক বেগ হারায়।

- (ক) $s = ut + \frac{1}{2}ft^2$ সূত্রের সাহায্যে প্রমাণ কর যে, 2
- $s_t = u + \frac{(2t-1)f}{2}$ (খ) দৃশ্যকল্প-১ হতে প্রমাণ কর যে, $f = \frac{2\left(\frac{s_1}{t'} - \frac{s}{t}\right)}{(t+t')}$ ।
- (গ) দৃশ্যকম্প-২ এ বুলেটটি দেয়ালের ভেতর আর কতদ্র
- - (ক) দেখাও যে, α কোণে ও $\left(\frac{\pi}{2}-\alpha\right)$ কোণে নিক্ষিপ্ত বস্তুর ক্ষেত্রে আনুভূমিক পাল্লা একই।
 - (খ) চিত্রের বস্তুটির ক্ষেত্রে, $s = ut + \frac{1}{2}at^2$ সূত্রটি প্রতিপাদন
 - (গ) দেখাও যে, AC = d দূরত্ব অতিক্রম করতে প্রয়োজনীয় সময় = $\sqrt{\frac{2(a+b)}{ab}} d$
- ব্রাজিল ফুটবল দলের খেলোয়াড় নেইমার 40 মিটার/সেকেন্ড বেগে আনুভূমিকের সাথে 30° কোলে ফুটবলে কিক করলেন। (ক) বলটির বৃহত্তম উচ্চতায় আনুভূমিক দ্রত্ব নির্ণয় কর।
 - (খ) গোলপোস্টের উচ্চতা 2.6 মিটার হলে নেইমারের 5 মিটার দূরত্ব হতে নেওয়া কিকে কী গোল হবে?
 - (গ) নেইমার 9 মিটার/ সেকেন্ড সমবেগে দৌড়ালে কিক নেওয়া বলটি কি পুনরায় ধরতে পারবে? গাণিতিকভাবে বিশ্লেষণ কর।

পরিবর্তনের প্রত্যয়ে নিরম্ভর পথচলা...

Educationb

; যেখানে A এর দৈর্ঘ্য

400 m ও B এর দৈর্ঘ্য 350 m।

(ক) দৃশ্যকল্প-১ এর A বস্তুটি সরলপথে 30 km যাওয়ার পর ঐ পথের সাথে 120° কোণ করে 22 ms⁻¹ বেগে 3 ঘণ্টা চললে সরণ কত?

(খ) দৃশ্যকল্প-১ এ A ও B কণার বেগ ও তুরণ যথাক্রমে u ও v এবং a ও b হলে দেখাও যে তাদের মিলিত হওয়ার সময়ের ব্যবধান,

$$= \frac{2}{a-b} \sqrt{(u-v)^2 - 2(x-y)(a-b)}$$

(গ) A ও B এর বেগ যথাক্রমে 35 ms⁻¹ ও 40 ms⁻¹ হলে তাদের পরস্পরকে অতিক্রম করতে কত সময় লাগবে?

MCQ উত্তরমালা ও ব্যাখ্যামূলক সমাধান

MCQ

01. d	02. a	03. d	04. a	05. c	06. b	07. a	08. a	09. c	10. b	11. a	12. a	13. d	14. d	15. c
16. c	17. d	18. d	19. b	20, a	21. b	22. c	23. a	24. a	25. d	26. a	27. a	28. a	29. с	30. a
		33. b												

03.
$$\tan \theta = \frac{4H}{R} \Rightarrow \tan 45^\circ = \frac{4H}{R} \therefore R = 4H \ [\because \tan 45^\circ = 1]$$

04.
$$a = \frac{d^2s}{dt^2} = 3 \cdot 2 \cdot t + 10 = 6t + 10$$
 : 4s পরে তুরণ = 24 + 10 = 34

05.
$$v = gt : t = \frac{v}{g}; h = \frac{1}{2}g(\frac{v}{g})^2 : h = 16.53m$$

06.
$$s = (\frac{0+v}{2})t : v = \frac{2s}{t} = \frac{4}{3}$$

07.
$$h = \frac{1}{2}gt^2 = 4.9m$$

$$\Rightarrow \frac{1}{2} \times 2 \times t^2 = 20t + 21 \Rightarrow t^2 - 20t - 21 = 0$$

∴ t = 21 Or, t = -1 ∴ 21s- এ বিড়াল ইদুরটিকে ধরতে পারবে।

; ভূমির সমান্তরালে অতিক্রম করে সর্বোচ্চ উচ্চতা। 11.

12.
$$v = 50 - 5 \times 8 = 10 \text{ms}^{-1}$$

13.
$$0^2 = 50^2 - 2 \times 5 \times s : s = 250m$$

14.
$$R_{max} = \frac{u^2}{g} = 9.8m$$

16. R.
$$V = u - (-v) = u + v$$

17.
$$v = \frac{s}{t} = \frac{45}{5} = 9$$

22.
$$H = \frac{1}{2}gt^2 \Rightarrow \frac{H}{t^2} = \frac{1}{2}g$$

23.
$$30^2 + v^2 = 50^2 : v = 40 \text{ms}^{-1}$$

$$25. \quad 0 = u^2 - 2as \Rightarrow \frac{u^2}{2s} = a$$

আপেক্ষিক বেগ = $\sqrt{2^2 + 1^2 - 2 \times 1 \times 2 \times \cos 60^\circ} = \sqrt{3}$

27.
$$h = 20, g = 9.8$$
; $h = \frac{1}{2}gt_1^2$

$$\therefore t_1 = 2.020305 \dots s = vt_2$$

$$\frac{20}{342}$$
 = t_2 ; t_2 = .0584 ; t_1 + t_2 = 2.07878 = 2.08s

28.
$$h = \frac{1}{2}gt^2 : 4900 = 4.9t^2 : t = 31.62sec$$

29.
$$s = 35 \times 31.62 = 1106.7m$$

31.
$$\sin \alpha = \frac{4}{5}$$
; $\cos \alpha = \frac{3}{5}$ | $V_x = u.\cos \alpha$

$$V_y = u. \sin\alpha - g.t \ ; \ \theta = \tan^{-1}\frac{v_y}{v_x} = \tan^{-1}\left(\frac{1}{3}\right)$$

32.
$$R_{max} = \pi$$
 : ক্ষেত্ৰকৰ $= \pi \cdot \pi^2 = \pi^3$

; tan⁻¹ 10×sin 120° = 30° : উৎপন্ন কোণ = 30°

34.
$$h = \frac{1}{2}gt^2 = 44.1m$$

CQ

- (季) 38.97m
 - (গ) 1.5 মিনিট
- (গ) 2 cm
- (খ) $s = ut + \frac{1}{2}at^2$

- (ক) 70.7 মিটার
 - (খ) গোলপোশ্টের উপর দিয়ে চলে যাবে।
- (季) 253.93 km
 - (গ) 150 s

তুমি কতটা জানো, তাতে লোকের কিছু আসে যায় না; যতক্ষণ না তুমি তাদের জন্য কিছু করছো।

Theodore Roosevelt

*ম*ৰ্ট সিলেবাস

মডেল টেস্ট

পূৰ্ণমাণ: ৫০+২৫=৭৫

সময়: ৩ ঘণ্টা

সৃজনশীল প্রশ্ন

পূৰ্ণমান: ৫০

সময়: ২: ৩৫ মিনিট

(প্রত্যেক বিভাগ হতে কমপক্ষে দুইটি করে প্রশ্ন নিয়ে মোট পাঁচটি প্রশ্নের উত্তর দাও:)

ক বিভাগ–বীজগণিত ও ত্রিকোণমিতি

01.
$$g(x) = a + bx + cx^2$$
 এবং $f(x) = \frac{1}{2} (-1 + \sqrt{3}x)$

(ক) $-1 + i\sqrt{3}$ কে পোলার আকারে প্রকাশ কর।

2

(খ) দেখাও যে,
$$\{f(i)\}^n+\{f(-i)\}^n=\left\{egin{array}{ll} 2;$$
 যখন n এর মান 3 দ্বারা বিভাজ্য $-1;$ যখন n অপর কোনো পূর্ণ সংখ্যা

02.
$$mx^2 + nx + Q = 0$$
 একটি দ্বিঘাত সমীকরণ।

(ক) m = n = Q হলে উদ্দীপকের সমীকরণের মূলগুলোর প্রকৃতি ব্যাখ্যা কর।

2

(খ)
$$m=4, n=-6, Q=1$$
 ধরে প্রাপ্ত সমীকরণের মূলগুলো α, β হলে $\alpha+\frac{1}{\beta}$ এবং $\beta+\frac{1}{\alpha}$ মূলবিশিষ্ট সমীকরণ বের কর।

(গ)
$$m=27, n=6, Q=-(p+2)$$
 হলে প্রাপ্ত সমীকরণের একটি মূল অপরটির বর্গের সমান হলে p এর মান বের কর।

(ক) দেখাও যে, m=n না হলে, $2x^2-2(m+n)x+m^2+n^2=0$ সমীকরণের মূলগুলি বাস্তব হতে পারে না।

2

(খ) উদ্দীপকের সমীকরণের একটি মূল যদি p ও r স্থান বিনিময় করলে যে সমীকরণ পাওয়া যায় তার একটি মূলের দ্বিগুণ হয়। তবে প্রমাণ কর যে, 2p = r অথবা $(2p + r)^2 = 2q^2$ ।

(গ) উদ্দীপকে
$$p=1,q=5,r=6$$
 এর জন্য দ্বিঘাত সমীকরণের মূলদ্বয় α, β হলে, α -2 এবং β -3 মূলবিশিষ্ট সমীকরণ গঠন কর।

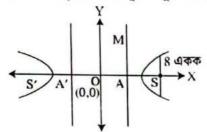
04. $x = \sqrt{\frac{a}{b}} \tan \frac{\theta}{2}$, $f(x) = \cos x$, $g(x) = \sin x$

2

(ক) সমাধান কর:
$$\sin^{-1} y + \sin^{-1} (1 - y) = \cos^{-1} y$$

(খ) প্রমাণ কর যে,
$$2 \tan^{-1} x = \sin^{-1} \left\{ \frac{2\sqrt{ab} \sin \theta}{(b+a) + (b-a) \cos \theta} \right\}$$

4


(গ) সমাধান কর:
$$f(6x) + f(4x) = g(3x) + g(x)$$
, যখন $0 \le x < 2x$

Educationblog24.co

উচ্চতর গণিত ২য় পত্র : মডেল টেস্ট

খ বিভাগ – জ্যামিতি ও বলবিদ্যা

- 05. $5y^2 + 15y 10x 4 = 0$ একটি পরাবৃত্তের সমীকরণ।
 - (ক) y² = 16x পরাবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য কত?
 - (খ) উদ্দীপকের পরাবৃত্তের শীর্ষবিন্দুর স্থানায় নির্ণয় কর।
 - (গ) পরাবৃত্তটি y-অক্ষকে A ও B বিন্দুতে ছেদ করলে AB এর দৈর্ঘ্য নির্ণয় কর।
- একটি অধিবৃত্তের কেন্দ্র মূল বিন্দুতে অবস্থিত।

- (ক) কোন অধিবৃত্তের আড় ও অনুবন্ধী অক্ষের দৈর্ঘ্য যথাক্রমে ৪ এবং 10 একক হলে উৎকেন্দ্রিকতা নির্ণয় কর।
- (খ) উদ্দীপকের আড় অক্ষ x-অক্ষ বরাবর এবং উৎকেন্দ্রিকতা 3 হলে অধিবৃত্তের সমীকরণ নির্ণয় কর।
- (গ) উদ্দীপকের আড় অক্ষ y-অক্ষ বরাবর এবং যা (2,3) ও (1,-2) বিন্দুগামী হলে অধিবৃত্তের সমীকরণ নির্ণয় কর।
- 07. তিনটি সদৃশ সমান্তরাল বল P, Q, R যথাক্রমে ΔΑΒC এর কৌণিক বিন্দু A, B, C তে ক্রিয়া করে। এদের লব্ধির ক্রিয়ারেখা ত্রিভুজটির লম্ব কেন্দ্রগামী।
 - (ক) ত্রিভুজটির অন্তঃকেন্দ্র I হলে, প্রমাণ কর যে, ∠ $BIC = 90^{\circ} + \frac{1}{2}$ ∠A
 - (খ) প্রমাণ কর যে, P: Q: R = tan A: tan B: tan C
 - (গ) প্রমাণ কর যে, $P(b^2 + c^2 a^2) = Q(c^2 + a^2 b^2) = R(a^2 + b^2 c^2)$
- 08. দৃশ্যকল্প-১:

দৃশ্যকল্প-২: শিমুল ও মিজু প্রত্যেকেই আলাদাভাবে নৌকা নিয়ে 3 কি.মি./ঘণ্টা বেগে প্রবাহিত 500 মিটার প্রশস্ত একটি নদী পার হতে চায়। তাদের প্রত্যেকের নৌকার বেগ 5 কি.মি./ঘণ্টা।

- (ক) একটি প্রক্ষেপক $21 \mathrm{ms}^{-1}$ বেগে এবং আনুভূমিকের সাথে 30^o কোণে শূন্যে নিক্ষেপ করা হল, এর আনুভূমিক পাল্লা কত?
- (খ) দৃশ্যকল্প-১ হতে দেখাও যে, $R=4\sqrt{HH_1}$ ।
- (গ) দৃশ্যকল্প-২ এ শিমুল স্বল্পতম পথে এবং মিজু স্বল্পতম সময়ে নদী পাড়ি দিলে তাদের প্রয়োজনীয় সময়ের ব্যবধান কত?

বহুনির্বাচনি প্রশ্ন

পূর্ণমান: ২৫

সময়: ২৫ মিনিট

2

- 01. a + ib = 0 হলে, কোন সম্পর্কটি সঠিক?
 - (a) a = 0, b = 0
- (b) a = 0, b = i
- (c) a > 0, b > 0
- (d) a < 0, b < 0
- 02. यिन Z = x + iy হয় হবে $Z\overline{Z} = 0$ সমীকরণটি হবে-
 - (a) সরলব্রেখা
- (b) পরাবৃত্ত
- (c) অধিবৃত্ত
- (d) বৃত্ত

- নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও: এককের একটি কাম্পনিক ঘনমূল ω , যেখানে $\omega = \frac{-1-\sqrt{-3}}{2}$
- $03. (1 + \omega)(1 + \omega^2)$ এর মান কোনটি?
 - (a) 1
- (b) 0
- (c) 1
- (d) 2

- arg ω কোনটি?
 - (a) $-\frac{2\pi}{3}$
- (b) $\frac{\pi}{6}$
- $(c)-\frac{\pi}{3}$
- (d) $\frac{\pi}{3}$

- $x^2 px + q = 0$ এবং $x^2 qx + p = 0$ এর একটি সাধারণ মূল থাকলে শর্ত_
 - (a) p + q = 0
- (b) p q = 0
- (a) p + q = 0(b) p q = 0(c) p + q = -1(d) p + q = 1
- 06. নিচের কোন লেখচিত্রের মূলদ্বয় বাস্তব ও সমান?

- $07. \ 2x^2 + 2x k$ রাশিটি পূর্ণবর্গ হলে, k এর সঠিক মান নিচের কোনটি?
- (a) $\frac{2}{3}$ (b) $\frac{2}{9}$ (c) $-\frac{2}{3}$ (d) $-\frac{1}{2}$
- 08. $\frac{(x-2)^2}{9} + \frac{(y+1)^2}{16} = 1$ উপবৃত্তের–
 - (i) (本西 (2,-1)
 - (ii) উপকেন্দ্র দুইটি দূরতু 2√7
 - (iii) নিয়ামকের পাদবিন্দু দুইটির দূরত্ব $\frac{32}{\sqrt{7}}$

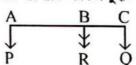
নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii
- $09. 4x^2 + 11y^2 24xy 50x 225 = 0$ সমীকরণটির জ্যামিতিক পরিচয় কোনটি?
 - (a) পরাবৃত্ত
- (b) উপবৃত্ত
- (c) वृख
- (d) অধিবৃত্ত
- $10. \frac{x^2}{16} \frac{y^2}{4} = 1$ অধিবৃত্তের উপরস্থ $(-4\sqrt{2}, 2)$ বিন্দুর পরামিতিক স্থানান্ধ কত?
 - (a) $(4 \sec \theta, 2 \tan \theta)$, যেখানে $\theta = \frac{\pi}{2}$
 - (b) (4 sec θ , 2 tan θ), যেখানে $\theta = \frac{3\pi}{4}$
 - (c) (4 sec θ , 2 tan θ), যেখানে $\theta = \frac{\pi}{4}$
 - (d) (2 sec θ , 4 tan θ), যেখানে $\theta = \frac{3\pi}{4}$
- 11. y² = 32x পরাবৃত্তের উপরিস্থিত যে বিন্দুর উপকেন্দ্রিক দূরত্ব 12 ঐ বিন্দুর ভুজ কত?
- (b) -8
- (c) 4
- (d) 8
- 12. कम्बविद्येन कनिक निरुद्ध कानिए?
 - (a) 90

- (b) উপবৃত্ত
- (c) অধিবৃত্ত
- (d) পরাবৃত্ত

- 13. sec²(cot⁻¹ 5) = কত?

- (a) $\frac{26}{25}$ (b) $\frac{6}{5}$ (c) $\frac{4}{5}$ (d) $\frac{24}{25}$
- 14. $\sin \theta \cos \theta = 0$ সমীকরণের সমাধান কোনটি?
 - [যেখানে $0 \le \theta \le \frac{\pi}{2}$]
 - (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$
- 15. cot(cos⁻¹ x) এর মান কোনটি?
 - $(a) \frac{\sqrt{1-x^2}}{x}$
- $(c) \frac{\sqrt{1+x^2}}{x}$
- (d) $\frac{x}{\sqrt{1+x^2}}$
- 16. $\cos^{-1}\frac{1}{3} + \cos^{-1}\frac{1}{2} = \overline{\Phi \circ}$?


 - (a) $\cos^{-1}\left(\frac{1}{6} + \sqrt{\frac{2}{3}}\right)$ (b) $\cos^{-1}\left(\frac{1}{6} \sqrt{\frac{2}{3}}\right)$

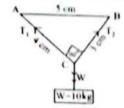
 - (c) $\cos^{-1}\left(\frac{\sqrt{3}}{6} + \frac{\sqrt{2}}{3}\right)$ (d) $\cos^{-1}\left(\frac{\sqrt{3}}{6} \frac{\sqrt{2}}{3}\right)$
- 17. পরস্পর α কোণে ক্রিয়ারত 4N ও 3N মানের দুইটি বলের ক্ষেত্রে-
 - (i) বৃহত্তম লব্ধি 7N
- (ii) ক্ষুদ্রতম লব্ধি 1N
- (iii) α = 90° হলে, লব্ধি 5N

নিচের কোনটি সঠিক?

- (a) i, ii
- (b) i, iii
- (c) ii, iii
- (d) i, ii, iii

নিচের উদ্দীপকের আলোকে পরবর্তী দুইটি প্রশ্নের উত্তর দাও:

চিত্রে P ও Q সমান্তরাল বলদ্বয়ের লব্ধি R. এখানে P = 12N, Q = 9 N এবং AB = 9 সে.মি.


- 18. R বলের মান কোনটি?
 - (a) 21 N (b) 3 N (c) 9 N
- (d) 12 N

- 19. BC এর দৈর্ঘ্য কত?
 - (a) 9 সে.মি
- (b) 21 সে.মি
- (c) ²⁷ সে.মি
- (d) 12 সে.মি
- 20. কোন বিন্দুতে 2P এবং P মানের দুইটি বল ক্রিয়ারত। প্রথমটিকে তিনগুণ এবং দিতীয়টিকে 12 একক বৃদ্ধি করলে লব্ধির দিক অপরিবর্তিত থাকে। P এর মান কত?
 - (a) 5 একক
- (b) 6 একক
- (c) 7 একক
- (d) 10 একক

HSC প্রমুব্যাংক ২০২৫

Educatior

21.

C বিন্দুতে T_1, T_2 এবং W=10 কেজি ওজনের ক্রিয়ার ফলে ভারসাম্য সৃষ্টি হয়। রশির টান $T_1=$ কত?

- (a) 4 কেজি ওজন
- (b) 6 কেজি ওজন
- (c) 8 কেজি ওজন
- (d) 10 কেজি ওজন
- 22. চারটি বল একই বেগে ভূমি থেকে একই সাথে 20°, 30°, 40°, 60° विভिन्न निरम्भभग काए। निरम्भ कता श्ला। কোন বলটি সবার আগে ভূমিতে ফিরে আসবে?
 - (a) 20° কোণে নিক্ষিপ্ত বল (b) 30° কোণে নিক্ষিপ্ত বল
- - (c) 40° কোণে নিক্ষিপ্ত বল (d) 60° কোণে নিক্ষিপ্ত বল

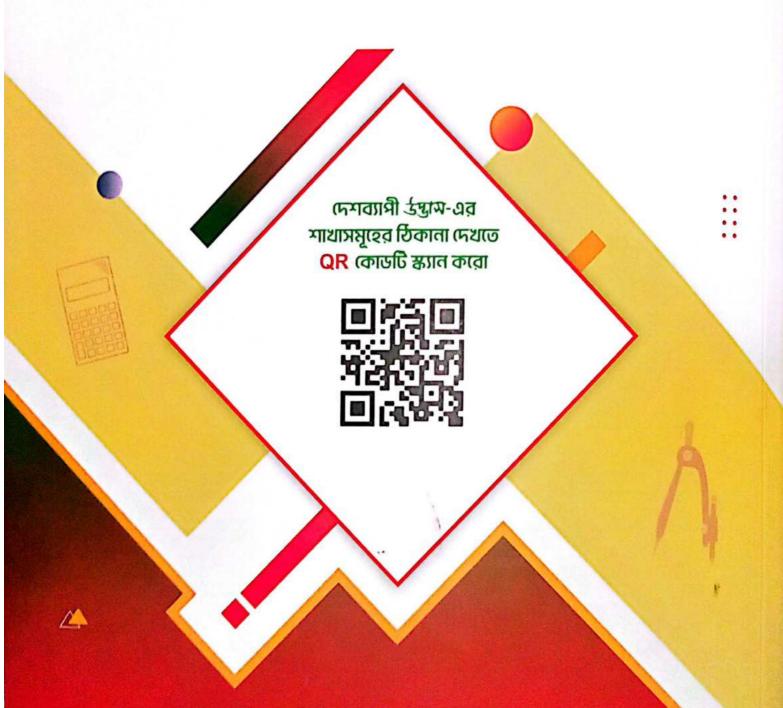
- 23. স্লোতের বেগের দ্বিগুণ বেগ সম্পন্ন কোনো সোজাসুজিভাবে নদী পার হতে চায়। স্লোতের সাথে _{কর} কোণে তাকে সাঁতার দিতে হবে?
 - (a) 60°
- (b) 90°
- (c) 110°
- (d) 120°
- 24. $s = t^3 + 5t^2 + 7$ হলে, 4 সেকেন্ড পরে তুরণ কত?
 - (a) 34

- (b) 88
- (c) 118
- (d) 54
- 25. একটি মিনারের শীর্ষ হতে 19.5 মিটার/সেকেন্ড বেগে খাডা উপরের দিকে নিক্ষিপ্ত একটি বস্তু 5 sce পরে মিনারের পাদদেশে পতিত হয়। মিনারের উচ্চতা কত?
 - (a) 15 মি.
- (b) 25 A.
- (c) 50 A.
- (d) 220 和.

D2 EE 69

উত্তরপত্র

The second second	02. a	101,000,000	and the second second							12. d	13. a	14. c	15. b
16. b	17. d	18. a	19. d	20. b	21. b	22. a	23. d	24. a	25. b				


এইচএসসি বোর্ড পরীক্ষা ২০২১, ২২ ও ২৩ সালের সকল বোর্ডের CQ ও MCQ প্রশ্ন একত্রে দেখতে QR काउंि ऋगत कर्त्वा

S 55 10

Educationblog24.c

র্দ্রামিশ আলোর মাঝে দেখো তোমার মুখ; জীবন মানে সংগ্রাম আর বিজয় মানে সুখ।

