

শতভাগ গোছানো প্রস্তুতি

সুপার কম্প্যাক্ট ফরম্যাট

সর্বোচ্চ কোয়ালিটির নিশ্চয়তা

সাকিব | সঞ্জয় | হিমেল

এক নজরে আমাদের বই

- পুরো সিলেবাসকে নিখুঁতভাবে বিশ্লেষণ করে আমরা বেছে নিয়েছি গুরুত্বপূর্ণ সৃজনশীল ও বহুনির্বাচনি প্রশ্লমালা যা একজন HSC পরীক্ষার্থীকে স্বল্প সময়ে সম্পূর্ণ সিলেবাস আয়ত্ত করতে সাহায্য করবে।
- প্রতিটি সৃজনশীল প্রম্নের উত্তর আমাদের কন্টেন্ট টিম কর্তৃক এমনভাবে প্রস্তুত করা হয়েছে যেন একজন শিক্ষার্থী পরীক্ষায় সর্বোচ্চ নম্বর অর্জন করতে পারে।
- MCQ প্রম্নের জন্য প্রয়োজনীয় ব্যাখ্যা প্রদান করা হয়েছে। পর্যাপ্ত Shortcut Technique দেখানো
 হয়েছে যেন পরীক্ষায় দ্রুত উত্তর করতে পারো।

ADMISSION

कीভाবে वरेंि जक्षग्रव कव्राव?

বোর্ড পরীক্ষার জন্য কোনো অধ্যায়ের চূড়ান্ত প্রস্তুতির অংশ হিসেবে ওই অধ্যায়ের সকল সৃজনশীল এবং বহুনির্বাচনী প্রশ্ন পড়ে ফেল। প্রশ্নগুলো এমন ভাবে বাছাই করা হয়েছে যে এতে তোমার খুব দ্রুত একটি কার্যকর এবং পূর্ণাঙ্গ প্রস্তুতি হয়ে যাবে।

মোঃ লাজমুস সাকিব

Charmany 15, 50

সঞ্জয় চক্রবর্তী

METO, BUET

रिप्तल वर्षुया

FEF17, BUET

মোঃ মুজাউল ইসলাম

NAME THE HUET

মোঃ মাসুদ মিয়া

MME10, BUET

जराताल जाविदीत

MME16, BUET

মোঃ বিফাত আহমেদ

Che'll, BUET

राविव উল्लार धात

HE'IN, DUET

মোঃ তাশফিকুর রহমান

AE'22, BUTEX

মোঃ মুবিন আল নাহিয়ান

ME'22, BUET

মোঃ ফয়সাল রহমান

गाउँद्र गारद्वक आहे.

শিশির কুমার সরকার

EEE'23, HUET

ঘ্রিয় HSC পরীক্ষার্থীবৃন্দ,

ক্যােকমাস পরেই তােমরা জীবনের একটি খুবই গুরুত্বপূর্ণ পরীক্ষায় অংশগ্রহণ করতে যাচ্ছো। তােমাদের মনে প্রশ্ন আসতে পারে বাজারের এত বইয়ের সমাহারের মাঝে আমাদের বইটি আলাদা কী গুরুত্ব বহন করছে? আমাদের বইয়ের বিশেষত্বই বা কী?

··STUFFS··

একজন HSC পরীক্ষার্থীর জন্য পরীক্ষার আগের কয়েকটি মাস খুবই গুরুত্বপূর্ণ। এ সময় বিশাল সিলেবাসকে একদম গুছিয়ে পড়তে হয় অন্যথায় হাবুডুবু খেতে হয়। এ ব্যাপারটি মাথায় রেখে আমরা তোমাদের জন্য নিয়ে এসেছি কম্প্যান্ট সাজেশন বুক। আমাদের কন্টেন্ট টিম রীতিমতো গবেষণা করে একেকটি অধ্যায়ের জন্য সীমিত পরিমাণে এমনভাবে সৃজনশীল এবং বহুনির্বাচনি প্রশ্ন বাছাই করেছে যা তোমাদের প্রত্যেকটি অধ্যায়ের সকল উপিক দ্রুত কভার করতে সাহায্য করবে। আমরা আশাবাদী যে আমাদের এই বইগুলো তোমাদের প্রস্তুতিকে অন্য মাত্রায় নিয়ে যাবে।

তোমাদেব ভবিষ্যৎ জীবনের প্রতি আনেক শুভকামনা।

অনুপ্রেরণা ও সহযোগিতায়

অভি দত্ত তুষার মঙ্গিবুল হাসান

প্রকাশনা

রম্বস পাবলিকেশন্স মিরপুর ডিওএইচএস, ঢাকা - ১২১৬

প্রথম প্রকাশ

ডিসেম্বর, ২০২৪

प्रस्थापताय

: মোঃ সুজাউল ইসলাম

প্রচ্ছদ

তারিকুজ্জামান

গ্রাফিক্স

रेकवात আহম্মেদ रेউশा

শরিয়ত উল্লাহ

অঙ্গসজ্জা

মো: জাকির হোসেন

বর্ণবিন্যাস

বিজয় কুমার

স্থপন বালা

আব্দুর রাজ্জাক

আব্দুর রহমান

মূদ্রন ও বাধাই : রম্বস পাবলিকেশন্স

মূল্য

৪৫০.০০(চার্মত পঞ্চাম) টাকা

ADMISSIOI

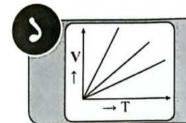
UFFS..

উৎসগ

পরম করুণাময় সৃষ্টিকর্তা যিনি আমাদের সৃষ্টি করেছেন এবং মা–বাবা কে যাদের কন্যাণে আমরা পৃথিবীর আলো দেখতে পেরেছি।

जधाम् आल	\$0\$0	श्रव्रावम व्रशायन २०२२	२०२७	\$0\$	१०३७	\$055	Ø\$0\$	\$65 pilitu	- DE
जर्का त्वार्ड	~	~	9	9	~	~	A	۸	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
स्रम्भतिभध्य (वार्ष	~	~	9	9	~	~	٥	8	अविवय्य क्षेत्राध्य
वाजऱाही तार् <u>ड</u>	~	^	9	9	~	~	٩	٥	
কুমিল্লা বোর্ড	~	~	9	A	D D		S.	ON S	ඉ न्यासक् कर्ळा
यत्पात्र त्यार्ड	~	~	~	9	1			8	
ठ डेशाप्त त्वार्	~	~	9	9	N	\ <u>\</u>	\R_2	٥	ลู กมหะ อเขาหล่าน
वित्रमाल (वार्ड	~	~	อ	~	~	~	a	~	
प्रित्नारे तर्वार	8	~	อ	9	~	۵	٥	~	💲 চদাধহ গ্ৰীত
मिताष्ट्र <u>पृ</u> त (वार्ड	~	~	อ	9	~	~	۵	٥	
प्रर्व	Ąę	ત્ર	\$₽	\$0	Ą	δ	Q	33	
प्रवंस्त्राह	ş	3	8		Š	3	6	}	

t.me/admission_stuffs


সূচিপত্ৰ

বিষয়	र्वेक्
পরিবেশ রসায়ন	09
জৈব রসায়ন	
प्रतिप्तापश्च तप्रायत विभिन्न	
তড়িৎ রসায়ন ·····STUFFS···	>50

ADMISSION STUFFS

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

পরিবেশ রসায়ন Environmental Chemistry

Board Questions Analysis

সজনশীল প্রশ্ন

বোর্ড সাল	ঢাকা	मग्नमनिश् र	রাজশাহী	কুমিল্লা	যশোর	চট্টগ্রাম	বরিশাল	সিলেট	দিনাজপুর
২০২৩	2	2	2	۹.	۹	٩	2	۹.	٩
२०२२	2	2	٩	٩	2	2	٩	2	٦

বহুনিবাঁচনি প্রশ্ন

तार्ष मान	ঢাকা	मग्रमन िर्द	রাজশাহী	কুমিল্লা	যশোর	চউগ্রাম	বরিশাল	সিলেট	मिना जभूत
२०२७	¢	6	ъ	8	•	ь	৬	œ	৬
२०२२	¢	9	æ	8	9	8	৬	æ	6

এই অধ্যায়ের গুরুত্বপূর্ণ ধারণা ও সূত্রাবলি

গ্যাসের সূত্র (বয়েল, চার্লস, গে-লুসাক ও অ্যাভোগাড্রো)

- আয়তনের একক সমৃহের রূপান্তর:
 - $1 \text{ dm}^3 = 1 \text{ L} = 1000 \text{ mL} = 1000 \text{ cm}^3$ $1 \text{ m}^3 = 10^3 \text{ L} = 10^3 \text{ dm}^3$
- চাপের একক সমৃহের রূপান্তর:

☐ STP ও SATP পদ্ধতি:

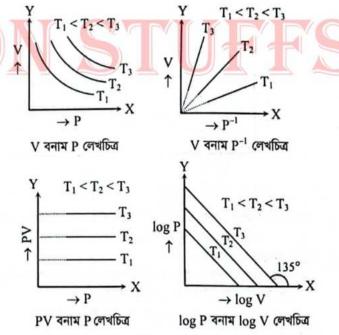
STP (Standard Temperature and Pressure)	SATP (Standard Ambient Temperature and Pressure)
1 atm वा, 101.325 k	0.987 atm বা, 100 kPa
0°C বা, 273 K	25°C বা, 298 K
22.4 L	24.789 L
	Temperature and Pressure) 1 atm বা, 101.325 k 0°C বা, 273 K

বয়েলের সূত্র:

স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন ঐ গ্যাসের উপর প্রযুক্ত চাপের ব্যস্তানুপাতিক।

$$V \propto \frac{1}{P} (T, n)$$
 श्रिव)

$$P_1V_1 = P_2V_2$$


অনুসিদ্ধান্ত: স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের ঘনত্ব ঐ গ্যাসের উপর প্রযুক্ত চাপের সমানুপাতিক।

P ∝ d (স্থির তাপমাত্রায়)

a | **a**AdmissionStuffs

বয়েলের স্ত্রের লেখচিত্রঃ

বয়েলের সূত্রানুসারে, নির্দিষ্ট তাপমাত্রায় অন্ধিত লেখচিত্রসমূহ
সমতাপীয় রেখা বা সমোঝ (Isotherm) রেখা নামে পরিচিত।

Rhombus Publications

.... ACS, > Chemistry 2nd Paper Chapter

চার্লসের সূত্র:

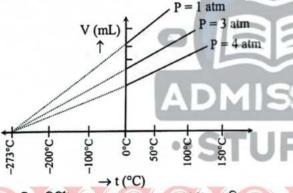
স্থির চাপে নির্দিষ্ট ভরের যেকোনো গ্যাসের আয়তন প্রতি ডিমি সেলসিয়াস তাপমাত্রা বৃদ্ধি বা হ্রাসের ফলে 0°C তাপমাত্রায় গ্যাসের আয়তনের 1 সংশ বৃদ্ধি বা<u>হা</u>স ঘটবে।

$$V_t = V_0 \left(1 + \frac{t}{273} \right)$$

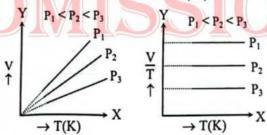
V₀ = 0°C এ গ্যাসের আয়তন V_t = t°C এ গ্যাসের আয়তন

- ^{V₀}
 ₂₇₃ কে গ্যাসের আয়তন প্রসারাম্ক বা আয়তন হাস গুণাক্ষ বলা হয়।
- স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন এর পরম তাপমাত্রা বা কেলভিন তাপমাত্রার সমানুপাতিক।

V ∝ T (P, n श्रिक)


$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

অনুসিদ্ধান্ত: স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের ঘনত ঐ গ্যাসের কেলভিন তাপমাত্রার ব্যস্তানুপাতিক।


 $d \propto \frac{1}{T}$ (স্থির চাপে)

$$d_1T_1 = d_2T_2$$

চার্লসের স্ত্রের লেখচিত্র:

চিত্র: নির্দিষ্ট চাপে গ্যাসের V বনাম t (°C) লেখচিত্র

চিত্র: V বনাম T লেখচিত্র

চিত্র: $\frac{\mathbf{V}}{\mathbf{T}}$ বনাম \mathbf{T} লেখচিত্র

- চার্লসের সূত্রানুসারে, নির্দিষ্ট চাপে অঙ্কিত লেখচিত্রসমূহ সমচাপীয় (Isobar) রেখা নামে পরিচিত।
- পরমশৃন্য তাপমাত্রাः

কল্পনাযোগ্য সর্বনিম্ন যে তাপমাত্রায় সকল গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয়, তাকে পরমশূন্য তাপমাত্রা বলে।

পরমশূন্য তাপমাত্রা = – 273°C বা, 0 K বা, – 459.4°F

 আভোগাডো সূত্র: স্থির তাপমাত্রা ও চাপে সমআয়তনের মৌলিক ও যৌগিক সকল গ্যাসে সমসংখ্যক অণু বিদ্যমান থাকে।

Rhombus Publications

V ∝ n (P, T 寶র)

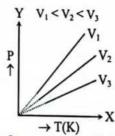
গে-লুসাকের চাপের সূত্র:

স্থির আয়তনে নির্দিষ্ট পরিমাণ যেকোনো গ্যাসের উপর প্রযুক্ত চাল গ্যাসের কেলভিন তাপমাত্রার সমানুপাতিক।

সেলসিয়াস ক্ষেলেঃ

$$P_t = P_0 \left(1 + \frac{t}{273} \right)$$

 $P_0 = 0$ °C এ গ্যানের চাপ


Pt = t°C এ গ্যানের চাপ

কেলভিন ক্ষেলে:

P ∝ T (V, n স্থির)

$$\frac{\underline{P_1}}{T_1} = \frac{\underline{P_2}}{T_2}$$

গে-লুসাকের সূত্রের লেখচিত্র:

চিত্র: P বনাম T লেখচিত্র

গে-লুসাকের সূত্রানুসারে, নির্দিষ্ট আয়তনে অঙ্কিত লেখচিত্রসমূহ সম্আয়তনীয় (Isochore) রেখা নামে পরিচিত।

☐ MCQ Shortcut:

গ্যাস ভর্তি বেলুনের সংখ্যা, $n = \frac{(P_c - P_b)V_c}{P_b \times V_b}$

Pc = গ্যাস সিলিভারের মধ্যে গ্যাসের চাপ

P_b = বেলুনের মধ্যে গ্যাসের চাপ

V_c = গ্যাস সিলিভারের মধ্যে গ্যাসের আয়তন

V_b = বেলুনের মধ্যে গ্যাসের আয়তন

Note: যখন গ্যাস সিলিভারে কিছু গ্যাস অবশিষ্ট থাকে ধরা হয়, তখনই $n = \frac{(P_c - P_b) V_c}{P_b \times V_b}$ সূত্রটি প্রযোজ্য ।

তবে, সম্পূর্ণ গ্যাসই যদি বেলুন ফুলাতে ব্যবহার করা হয়, তখন $P_1V_1 = nP_2V_2$ সূত্র প্রযোজ্য ।

গ্যাসের সমন্বয় সূত্র, আদর্শ গ্যাস সমীকরণ

গ্যাসের সমন্বয় সূত্রঃ

বয়েল ও চার্লসের সূত্র হতে ঘনত্বের সাথে চাপ ও তাপমাত্রার

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book

যদি কোনো গ্যাস মিশ্রণের মধ্যে রাখা কঠিন বস্তুর আয়তন = x হয়, তবে সেক্ষেত্রে গ্যাসের সমন্বয় সৃত্রের পরিবর্তিত রূপঃ

$$\frac{P_1(V_1 - x)}{T_1} = \frac{P_2(V_2 - x)}{T_2}$$

কোনো গ্যাসকে যদি পানির নিমুমুখী অপসারণ প্রক্রিয়ায় পানির উপরিতলে সংগ্রহ করা হয় তবে সেন্দেত্রে মোট চাপের মধ্যে ঐ তাপমাত্রায় জলীয়বাম্পের চাপ বিদ্যমান থাকে। মোট চাপ থেকে জলীয়বাম্পের চাপকে বিয়োগ করলে ওয় গ্যাসের চাপ পাওয়া য়য়। যদি কোনো নির্দিষ্ট তাপমাত্রায় জলীয়বাম্পের চাপ Pf হয়, তবে সেক্ষেত্রে গ্যাসের সমস্বয় স্ত্রের পরিবর্তিত রূপঃ

$$\frac{P_1V_1}{T_1} = \frac{(P_2 - P_f)V_2}{T_2}$$

আদর্শ গ্যাস সমীকরণ:

$$PV = nRT = \frac{W}{M}RT = \frac{N}{N_A}RT$$

গ্যামের ঘনতৃ,
$$d = \frac{PM}{RT}$$

মোলার গ্যাস ধ্রুবক (R) এর মানসমূহ:

এককের নাম	R এর মান
L atm mol ⁻¹ K ⁻¹ একক	0.0821 L atm mol ⁻¹ K ⁻¹
SI	8.314 J mol ⁻¹ K ⁻¹
CGS	$8.32 \times 10^7 \text{ erg mol}^{-1} \text{ K}^{-1}$
Cal mol ⁻¹ K ⁻¹ একক	1.987 cal mol ⁻¹ K ⁻¹
FPS বা, ইঞ্জিনিয়ারিং একক	2783.63 ft /b mol ⁻¹ K ⁻¹

□ বোল্টজম্যান ধ্রুবক (Boltzmann Constant): গ্যাসের অণু প্রতি গ্যাস ধ্রুবকের মানকে বোল্টজম্যান ধ্রুবক বলে। বোল্টজম্যান ধ্রুবককে k দ্বারা প্রকাশ করা হয়।

$$k = \frac{R}{N_A}$$

□ বিভিন্ন এককে বোল্টজম্যান ধ্রুবকের (k) মান:

একক	বোল্টজম্যান ধ্রুবক
L atm K ⁻¹ molecule ⁻¹ এককে	$1.36 \times 10^{-25} L atm K^{-1} molecule^{-1}$
SI এককে	$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
CGS এককে	1.38 × 10 ⁻¹⁶ erg K ⁻¹ molecule ⁻¹

ডাল্টনের আংশিক চাপ সূত্র

- মোল ভগ্নাংশ ও আংশিক চাপ:
 - মোল ভগ্নাংশ = কোনো নির্দিষ্ট গ্যাসের মোলসংখ্যা
 মিশ্রণে গ্যাসের মোট মোল সংখ্যা
 - আংশিক চাপ = গ্যাসের মোল ভগ্নাংশ × পাত্রের মোট চাপ
- ডাল্টনের আংশিক চাপ সংক্রান্ত সূত্রাবলিঃ
 - > স্থির তাপমাত্রায় বিক্রিয়াহীন গ্যাস মিশ্রণের পাত্রে A, B, C ইত্যাদি গ্যাসসমূহের আংশিক চাপ যথাক্রমে P_A , P_B ও P_C হলে, গ্যাস মিশ্রণের মোট চাপ, $P = P_A + P_B + P_C$

ightarrow একই তাপমাত্রায় পরস্পর বিক্রিয়াহীন P_A , P_B ও P_C চাপবিশিষ্ট গ্যাসসমূহের আয়তন যথাক্রমে V_A , V_B ও V_C হলে যদি গ্যাস মিশ্রণের চাপ P হয় তবে,

$$P(V_A + V_B + V_C) = P_A V_A + P_B V_B + P_C V_C$$

- \Rightarrow $PV = P_A V_A + P_B V_B + P_C V_C$ [পাত্রের আয়তন = V]
- গ্যাস মিশ্রণে বিক্রিয়াহীন গ্যাসসমূহ যদি স্থির তাপমাত্রায় ও আয়তনে ভিন্ন মোল সংখ্যায় থাকে তবে গ্যাস মিশ্রণের মোট চাপ.

$$P = \frac{n_1 RT}{V} + \frac{n_2 RT}{V} + \dots = (n_1 + n_2 + \dots) \frac{RT}{V}$$

গ্রাহামের ব্যাপন সূত্র

গ্রাহামের ব্যাপন সূত্র:

নির্দিষ্ট তাপমাত্রা ও চাপে কোনো গ্যাসের ব্যাপন হার ঐ গ্যাসের ঘনত্বের বর্গমূলের ব্যস্তানুপাতিক।

ব্যাপন হার,
$$r \propto \frac{1}{\sqrt{d}} (T \, \, {}^{\mbox{\tiny d}} \, P \, \, {}^{\mbox{\tiny g}} \! {}_{\mbox{\tiny f}} \! {}_{\mbox{\tiny f}})$$

- ব্যাপিত গ্যাসের আয়তন <u>V</u> ব্যাপন সময়
- > আয়তন ভিন্ন হলে, $\frac{r_1}{r_2} = \frac{V_1 t_2}{V_2 t_1}$
 - আণবিক জন (M) = বাষ্প ঘনত্ব × 2

$$ightharpoonup \left[\frac{r_1}{r_2} = \frac{t_2}{t_1} = \sqrt{\frac{d_2}{d_1}} = \sqrt{\frac{M_2}{M_1}} \right]$$

- ightharpoonup চাপ ভিন্ন হলে, $r \propto P$: $\frac{r_1}{r_2} = \frac{P_1}{P_2}$
- ightarrow স্থির তাপমাত্রায় ভিন্ন চাপে, $rac{r_1}{r_2} = rac{P_1}{P_2} imes \sqrt{rac{M_2}{M_1}} = rac{P_1}{P_2} imes \sqrt{rac{d_2}{d_1}}$
- \succ তাপমাত্রা ভিন্ন হলে, $r \propto \sqrt{T}$:: $\dfrac{r_1}{r_2} = \sqrt{\dfrac{T_1}{T_2}}$
- \succ স্থির চাপে ভিন্ন তাপমাত্রায়, $\cfrac{r_1}{r_2} = \sqrt{\cfrac{M_2T_1}{M_1T_2}}$

গ্যাসের গতিভক্ত, বর্গমূল গড় বর্গবেগ, গ্যাসের গতিশক্তি

আর্দশ গ্যাসের গতীয় সমীকরণ:

গ্যাসের অণুর বিভিন্ন গতিবেগঃ

বর্গমূল গড় বর্গবেগ:

$$c_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3PV}{M}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3P}{d}}$$

> গড় বেগঃ

$$\bar{c} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8PV}{\pi M}} = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8P}{\pi d}}$$

সম্ভাব্যতম বেগ:

$$c_{mp} = \sqrt{\frac{2RT}{M}} \sqrt{\frac{2PV}{M}} \sqrt{\frac{2kT}{m}} \sqrt{\frac{2P}{d}}$$

 $ightharpoonup c_{rms} > \bar{c} > c_{mp}$

$$ightharpoonup$$
 $c_{mp}: \bar{c}: c_{rms} = \sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3} = 1: 1.12: 1.22$

ho c_{rms} $\propto \sqrt{T}$

দৃটি ভিন্ন তাপমাত্রায় কোনো গ্যাসের RMS গতিবেগ

 $f_1, \left[\frac{c_1}{c_2} = \sqrt{\frac{T_1}{T_2}} \right]$

ightarrow দুটি ভিন্ন গ্যাসের RMS গতিবেগ একই হলে, $\dfrac{T_1}{M_1} = \dfrac{T_2}{M_2}$

ightarrow দুটি ভিন্ন গ্যাসের একই তাপমাত্রায় RMS গতিবেগ, $rac{c_1}{c_2}$

ightarrow দুটি ভিন্ন গ্যাসের ভিন্ন তাপমাত্রায় গতিবেগ, $\dfrac{c_1}{c_2} = \sqrt{\dfrac{T_1}{T_2}} imes \dfrac{M_2}{M_2}$

গ্যাসের গতিশক্তি:

ightarrow গ্যাস অণুর গড় গতিশক্তি, $E_K = \frac{3}{2} \, \mathrm{nRT} = \frac{3}{2} \, \mathrm{PV} = \frac{1}{2} \, \mathrm{mNc}^2$

ightharpoonup প্রতিটি অণুর গতিশক্তি, $E_{\rm K}=rac{3}{2}\,{
m kT}$

> গ্যাসের গতিশক্তি কেলভিন তাপমাত্রার সমানুপাতিক। $E_K ∞ T$

Note: বেগ ও গতিশক্তি বের করার সময় R = 8.314 J mol⁻¹ K⁻¹ ও ভর kg তে বসানো সুবিধাজনক।

আদর্শ গ্যাস ও বাস্তব গ্যাস

আদর্শ গ্যাসের বৈশিষ্ট্য:

(i) আদর্শ গ্যাস সকল তাপমাত্রা ও চাপে PV = nRT সমীকরণ মেনে চলে।

(ii) স্থির তাপমাত্রায় আদর্শ গ্যাসের অভ্যন্তরীণ শক্তি তাপমাত্রার উপর নির্ভরশীল কিন্তু এর আয়তনের উপর নির্ভরশীল নয়।

অর্থাৎ,
$$\left(\frac{\delta U}{\delta V}\right)_T = 0$$

বান্তব গ্যাসের বৈশিষ্ট্য:

(i) বাস্তব গ্যাসগুলো PV = nRT সমীকরণ মেনে চলে না। এরা ভ্যানভার ওয়ালস সমীকরণ মেনে চলে।

(ii) নিম্ন চাপ এবং উচ্চ তাপমাত্রায় বাস্তব গ্যাসসমূহ আদর্শ গ্যাসের ন্যায় আচরণ করে।

Rhombus Publications

.......... ACS, > Chemistry 2nd Paper Chapter.

্ৰ স্থ্যামাগার বক্তঃ

50

(তি বুলি বিশ্ব বিশ্ব

সংকোচনশীলতা গুণাঙ্ক বা পেষণ গুণাঙ্ক:

200

ightharpoonup সংকোচনশীলতা গুণাঙ্ক, $Z = \frac{PV}{nRT}$

 $ightarrow Z = rac{V_{teal}}{V_{ideal}} = rac{ ext{বাস্তব গ্যাসের মোলার আয়তন}}{ ext{আদর্শ গ্যাসের মোলার আয়তন}}$

400

 $P (atm) \rightarrow$

Z = 1 হলে, বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় আচরণ করবে।

Z > 1 হলে, বাস্তব গ্যাস আদর্শ গ্যাসের তুলনায় কম পেষণযোগ্য ও ধনাত্মক বিচ্যুতি প্রদর্শন করে। যেমন: H₂, He ইত্যাদি।

800

1000

Z < 1 হলে, বাস্তব গ্যাস আদর্শ গ্যাসের তুলনায় বেশি
পেষণযোগ্য ও ঋণাত্মক বিচ্চাতি প্রদর্শন করে। যেমন: CO₂,
 CH₄, O₂, N₂ ইত্যাদি।
</p>

বাস্তব গ্যাসের ক্ষেত্রে ভ্যান্ডার ওয়ালস সমীকরণ:

$$\left(P + \frac{n^2 a}{V^2}\right) (V - nb) = nRT$$

এখানে, P = বাস্তব গ্যাসটির পরীক্ষালব্ধ চাপ

a = চাপ সংশোধন ফ্যান্টর

 $rac{n^2a}{V^2}=$ আন্তঃআণবিক আকর্ষণের কারণে হ্রাসকৃত চাপ

V = পাত্রের আয়তন

b = আয়তন সংশোধন ফ্যাক্টর

nb = অণুগুলোর নিজস্ব আয়তন

৸ নিয় চাপ এবং উচ্চ তাপমাত্রায় বাস্তব গ্যাসসমূহের আচরণ আদু গ্যাসের ন্যায় হয়। কিয় উচ্চ চাপ এবং নিয় তাপমাত্রায় আদু আচরণ থেকে বাস্তব গ্যাসের যথেষ্ট বিচ্চাতি ঘটে।

ধ্রুবক a ও b এর একক ও তাৎপর্য:

➣ ধ্রুবক a এর একক: atm L² mol⁻²

➣ ধ্রুবক b এর একক: L mol⁻¹

গ্যাসের আণবিক ভর বেশি হলে a এর মান বেশি হয়। a এ মান বেশি হলে অণুগুলোর আন্তঃআণবিক আকর্ষণ বল বেশি হয় গ্যাসের অণুগুলোর মধ্যে পারস্পরিক আকর্ষণ বল যত বেশি হা গ্যাসটিকে তত সহজে তরলে পরিণত করা যায়।

≽ ধ্রুবক b হলো আকার পরিমাপক রাশি। b এর মান বেশি হ

অণুগুলোর আকার ব

ড় হয়।

 $b = 4 \times N_A \times \frac{4}{3} \pi r^3$

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

এসিড-ক্ষারক মতবাদ

ত্র-ক্ষারক মতবাদঃ

মতবাদ	Acid	Base
আরহে নিয়াস	জলীয় দ্রবণে H ⁺ দান করে	ভালীয় প্রবণে OH" দান করে
ব্রনস্টেড ও লাউরি	H ⁺ मान करत	H ⁺ গ্রহণ করে
লুইস	ইলেকট্রন জোড় গ্রহণ করে	ইলেকট্রন জোড় ত্যাগ করে

অনুবদ্দী এিসড-ক্ষারক:

- ➣ ফারক + H⁺ ⇒ অনুবদ্ধী এসিড
- এসিড যত শক্তিশালী হয় তার অনুবদ্ধী ক্ষারক তত দুর্বল হয়। একইভাবে ক্ষারক যত শক্তিশালী হয় তার অনুবদ্ধী এসিড তত দুর্বল হয়।

🛘 পুইস এসিডঃ

- > অষ্টক সংকৃচিত যৌগ। যেমন: BF3, BeCl2, AlCl3
- d উপশক্তিন্তর ফাঁকা বিশিষ্ট কেন্দ্রীয় মৌলয়ুক্ত যৌগ।
 यেমন: FeCl₃
- > কেন্দ্রীয় মৌল অধিকতর তড়িৎ ঋণাত্মক মৌলের সাথে য়ুক্ত পাকে। যেমন: CO₂
- > এককভাবে কোনো ধাতব পরমাণু থাকলে। যেমন: Fe, Ni
- সাধারণ ক্যাটায়নসমূহ। যেমন: Co³+, Ag⁺, Zn²+ ইত্যাদি।

লুইস ক্ষারক:

- যাদের নিঃসঙ্গ জোড় ইলেকট্রন থাকে। যেমন: NH3, PH3, H2O
- > সাধারণ অ্যানায়নসমূহ। यেমनः CI, CN, F
- C = C द्वि-वक्तनिविष्ठ (योगमपृद ।

এসিড বৃষ্টি, পানির বিতদ্ধতার মানদণ্ড

পানির বিভদ্ধতার মানদতঃ

- (i) পানির খরতা
- (ii) pH
- (iii) DO (Dissolved Oxygen)
- (iv) BOD (Biochemical Oxygen Demand)
- (v) COD (Chemical Oxygen Demand)
- (vi) TDS (Total Dissolved Solids)

পানির খরতা:

- > পানির খরতা দুই প্রকার। যেমন:
- (i) স্থায়ী খরতা (ii) অস্থায়ী খরতা

ছায়ী খরতা: পানিতে Ca^{2^+} , Mg^{2^+} , Fe^{2^+} এর ক্লোরাইড ও সালফেট লবণ অধিক পরিমাণে দ্রবীভূত থাকে।

অহায়ী খরতা: পানিতে Ca^{2+} , Mg^{2+} , Fe^{2+} এর বাইকার্বনেট লবণ অধিক পরিমাণে দ্রবীভূত থাকে। অস্থায়ী খর পানিকে উচ্চ তাপমাত্রায় উত্তপ্ত করনে এই খরতা দূর হয়।

ু পানির pH:

- >> সারফেস ওয়াটারের pH মান → 6-6.5
- > WHO অনুমোদিত পানির pH সীমা → 6.5-8.5
- > জলজ প্রাণীর অনুকৃষ পানির pH মান → 7.0-7.5

) भानित DO निर्भग्नः

समूना शानित,
$$DO = \frac{8 \times 10^3 \times V \times S}{y} ppm$$

এখানে.

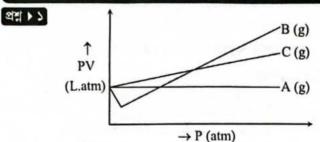
- y = পানির নমুনার আয়তন
- V = বিজারক দ্রবণের আয়তন
- S = বিজারক দ্রবণের মোলার ঘনমাত্রা

शानित्र BOD ও COD निर्पग्नः

$$BOD = COD = DO_i - DO_f = \frac{(V_2 - V_1) \times 8 \times 1000 \times S}{y}$$

এখানে,

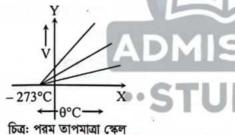
- y = পানির নমুনার আয়তন
- S = বিজারক দ্রবণের মোলার ঘনমাত্রা
- V₁ = রিফ্রাক্সকৃত পানির নমুনাকে টাইট্রেশনের জন্য প্রয়োজনীয় বিজারক দ্রবণের আয়তন
- V₂ = পানির নমুনা ছাড়া বাকি মিশ্রণকে টাইট্রেশনের জন্য প্রয়োজনীয় বিজারক দ্রবণের আয়তন


□ BOD এর মান অনুযায়ী পনির অবস্থাঃ

BOD এর মান	পানির অবস্থা
1-2 ppm	খুবই ভালো
3 ppm	মোটামুটি ভালো
6 ppm	WHO এর অনুমোদিত দ্যণমাত্রা
10 ppm	দ্যণমাত্রা খারাপ
20 ppm	দ্যণমাত্রা খুবই খারাপ

WHO অনুমোদিত পানির গ্রহণযোগ্য মানদতঃ

pH		Committee of the Party of the party of the last of the second state of the last of the las	
P		6.5-8.5	
DO		5.0-6.0 ppm	
BOD		6.0 ppm	
		10.0 ppm	
TDS	S	500 ppm	
wherest	Ca ²⁺	100 ppm	
খরতা	Ca ²⁺ Mg ²⁺	150 ppm	
NaC	1	500 ppm	


HSC পরীক্ষার্থীদের জন্য বাছাইকৃত সৃজনশীল প্রশ্নোত্তর

(ক) আইসোথার্ম কী?

[ঢা. বো. ২২; ব. বো. ২২]

- (খ) চার্লসের সূত্র থেকে তাপমাত্রা প্রকাশের নতুন ক্ষেল প্রতিষ্ঠা কর। [ঢা. বো. ২৩; চ. বো. ২২]
- (গ) A গ্যাসের অবস্থার সমীকরণ প্রতিষ্ঠা কর। in. বো. ২৩; অনুরপ প্রশ্ন: ম. বো. ২২।
- (ঘ) উদ্দীপকের B ও C গ্যাসের আদর্শ আচরণ না করার কারণ সমীকরণসহ বিশ্লেষণ কর। [ঢা. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২৩, ২২, ২১; य. (वा. २७; मि. (वा. २२; मि. (वा. २১, ১৯; ম. (वा. २२, २১; ह. (वा. ১৭; व. (वा. ১৭) সমাধানঃ
- স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের ক্ষেত্রে X অক্ষ বরাবর চাপ ও Y অক্ষ বরাবর আয়তন স্থাপন করে স্থির তাপমাত্রায় যে অধিবৃত্তীয় রেখা পাওয়া যায়, তাকে সমতাপ রেখা বা আইসোথার্ম বলে।
- হার্লসের সূত্র: স্থির চাপে, নির্দিষ্ট ভরের যেকোনো গ্যাসের আয়তন গ্যাসটির প্রতি ডিগ্রি সেলসিয়াস তাপমাত্রা বৃদ্ধি বা<u>হা</u>সের ফলে 0°C তাপমাত্রায় ঐ গ্যাসের আয়তনের $\frac{1}{273}$ অংশ হারে যথাক্রমে বৃদ্ধি বাহাস পায়

স্থির চাপে, নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন 0°C ও t°C তাপমাত্রায় Vo ও V, হলে, চার্লসের সূত্রানুসারে,

$$V_t = V_0 \left(1 + \frac{t}{273} \right)$$

$$t = -273$$
°C হলে, $V_t = V_0 \left(1 + \frac{-273}{273} \right) = 0$

যেহেতু, −273°C তাপমাত্রায় গ্যাসের আয়তন শূন্য তাই −273°C তাপমাত্রাকে পরমশূন্য তাপমাত্রা বলে। পরমশূন্য তাপমাত্রার ধারণা হতে পাই,

$$-273$$
°C = 0 K

$$\therefore t^{\circ}C = (273 + t) K = T \text{ kelvin}$$

উপর্যুক্ত, সমীকরণই হলো চার্লসের সূত্র হতে তাপমাত্রা প্রকাশের নতুন স্কেল।

্যা উদ্দীপকের অ্যামাগার বক্র লেখচিত্রে PV বনাম P গ্রাফের ক্ষেত্রে A গ্যাসের জন্য 🗙 অক্ষের সমান্তরাল একটি সরলরেখা পাওয়া গেছে যার সংকোচনশীলতা গুণাঙ্ক (Z) এর মান 1। সুতরাং, A গ্যাসটি আদর্শ গ্যাস। বয়েল ও চার্লসের সূত্রের সাথে অ্যাভোগাড্রোর সূত্র সমন্বয় করলে আদর্শ গ্যাসের সমীকরণ পাওয়া যায়। নির্দিষ্ট ভরের গ্যাসের আয়তন V, চাপ P, তাপমাত্রা T এবং মোল সংখ্যা n হলে–

Rhombus Publications

... ACS, > Chemistry 2nd Paper Chapter-1

বয়েলের স্ত্রানুসারে, $V \propto \frac{1}{P}$ (i) [যখন n এবং T স্থির] চার্লসের সূত্রানুসারে, V ∝ T (ii) [যখন n এবং P স্থির] অ্যাভোগাড্রোর সূত্রানুসারে, V ∝ n ...(iii) [যখন P এবং T স্থির] সূতরাং, $V \propto \frac{\Pi T}{P}$

সুতরাং, $V = K \frac{n \, l}{P}$; যেখানে K হলো একটি সমানুপাতিক ধ্রুবক। এক মোল পরিমাণ গ্যাসের জন্য K এর মানকে R ঘারা প্রকাশ করা रग्न । R क् वना रग्न সাर्वजनीन মোनात गाप्त धुन्वक । সকল गाउनित জন্য যার মান 8.314 J mol-1 K-1

$$\therefore V = \frac{nRT}{P}$$

⇒ PV = nRT; এই সমীকরণটিকে n মোল আদর্শ গ্যাসের অবস্থার সমীকরণ বলা হয়, যা A গ্যাসের অবস্থার সমীকরণ।

- B ও C গ্যাসের ক্ষেত্রে গ্রাফ X অক্ষের সমান্তরাল হয়নি। সুতরাং, B ও C গ্যাসঘয় বাস্তব গ্যাস। যে সকল স্বীকার্যের উপর ভিত্তি করে আদর্শ গ্যাসের সমীকরণ প্রতিষ্ঠিত হয়েছে তাতে দুটি ক্রটি রয়েছে। এ**ই ক্রটি**র কারণে বাস্তব গ্যাস B ও C, আদর্শ গ্যাস A এর ন্যায় আচরণ করে না। আদর্শ গ্যাসের স্বীকার্য দৃটি হলো:
 - (i) পাত্রের আয়তনের তুলনায় প্রতিটি গ্যাসাণুর আয়তন নগণ্য ।
 - (ii) গ্যাসাণুসমূহের মধ্যে কোনো আন্তঃআণবিক আকর্ষণ বল নেই। আদর্শ গ্যাসের গতিতত্ত্ব মতে, গ্যাসের অণুসমূহের নিজস্ব আয়তন গ্যাসাধারের আয়তনের তুলনায় নগণ্য। কিন্তু, বাস্তব ক্ষেত্রে তা ঠিক নয়। যেকোনো গ্যাসকে নিম্ন তাপমাত্রা ও উচ্চ চাপে তরল এবং কঠিন পদার্থে পরিণত করা যায়। গ্যাসের অণুসমূহের একটি নিজস্ব আয়তন আছে যা একেবারে নগণ্য নয়। এক মোল বাস্তব গ্যাসের অণুসমূহের কার্যকর নিজ্য আয়তন b হলে, n মোল বাস্তব গ্যাসের **অণুসমূহে**র বিচরণের জন্য আয়তন = nb

আদর্শ গ্যাসের অণুসমূহের বিচরণের জন্য আয়তন = V

় রাস্তব গ্যাসের অণুসমূহের বিচরণের সংশোধিত আয়তন = গ্যাসাধারের অভ্যন্তরীণ আয়তন – গ্যাসাণুখলোর নিজম্ব আয়তন = V – nb।

তাই PV = nRT সমীকরণে আদর্শ গ্যাসের অণুসমূহের ছোটাছুটির जना य गाम्त्रत जाग्रजन V ध्रता रख़रू वाखव गाम्त्रत जना स्मरे মুক্তাবস্থান বা আয়তন কিছুটা কম হবে।

(ii) আদর্শ অবস্থায় আকর্ষণমুক্ত গ্যাসের অণুগুলো পাত্রের দেয়ালে যে পরিমাণ চাপ দেয়, বাস্তব গ্যাসের অণুসমূহের মধ্যে আকর্ষণ বল কার্যকরী থাকায় সে পরিমাণ চাপ প্রয়োগ করতে পারে না। তাই বাস্তব গ্যাসের জন্য আপাত দৃষ্টিতে যে চাপ ধরা হয় তা প্রকৃত চাপ অপেক্ষা কম।

আদর্শ গ্যাসের জন্য চাপ = P

অতএব, বাস্তব গ্যাসের জন্য চাপ = P + আন্তঃআণবিক আকর্ষণের কারণে হ্রাসকৃত চাপ = $P + \frac{n^2a}{V^2}$

তাই বাস্তব গ্যাসের জন্য গ্যাস সমীকরণ হয়,

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

সুতরাং, আন্তঃআণবিক আকর্ষণ এবং গ্যাসের নিজম্ব আয়তন বিবেচনা না করে আদর্শ গ্যাসের যে সমীকরণ প্রতিষ্ঠা করা হয়েছে, বাস্তব গ্যাস সে সমীকরণ (PV = nRT) মেনে চলে না।

অর্থাৎ, আদর্শ গ্যাসের স্বীকার্যে ক্রটি থাকায় বাস্তব গ্যাস B ও C আদর্শ আচরণ করে না।

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book

(ii) $\text{CH}_3\text{OH} + \text{PC}l_5 \rightarrow \text{CH}_3\text{C}l + \text{POC}l_3 + \text{B (gas)}$

- (क) R.M.S दर्श की? [ण. त्वा. २७: ह. त्वा. २२: मिथिनेड त्वा. ১৮: व. त्वा. ১৭]
- (খ) H2O উভধর্মী যৌগ-ব্যাখ্যা কর।

[ण. वा. २७; व. वा. २२; म. वा. २२; त्र. वा. २১]

(গ) উদ্দীপকের গ্যাসন্বয় পরস্পর কত দূরত্বে মিলিত হবে?

[ঢা. ৰো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২৩, ২২; ব. ৰো. ২২; দি. ৰো. ২১]

(ঘ) উদ্দীপকের গ্যাসদ্বয়কে কোন মতবাদ অনুসারে অদ্র-ক্ষারক হিসেবে ব্যাখ্যা করা যায়? বিশ্লেষণ কর।

[ঢা. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২৩; ব. বো. ২২; রা. বো. ২২; দি. বো. ২১] সমাধান:

- কানো গ্যাসের অণুসমূহের প্রতিটি অণুর গতিবেগের বর্গের গড় মানের বর্গমূলকে গ্যাসটির অণুসমূহের RMS বেগ বলে।
- ব্রনস্টেড-লাউরি অস্ত্র-ক্ষারক মতবাদ অনুসারে, যেসকল পদার্থ প্রোটন দাতা ও প্রোটন গ্রহীতা উভয়রূপে কাজ করে অর্থাৎ, অবস্থাভেদে অস্ত্র ও ক্ষারক উভয়রূপে কাজ করে, তাদেরকে উভধর্মী পদার্থ বলা হয়। অর্থাৎ, H₂O অস্ত্ররূপে ক্রিয়া করে।

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$

we want was a way was a

আবার, H_2O একটি প্রোটন গ্রহণ করে অনুবন্ধী অস্ত্র H_3O^+ এ পরিণত হয়। অর্থাৎ, H_2O ক্ষারকরূপেও ক্রিয়া করে।

তাই H₂O একটি উভধর্মী যৌগ।

া উদ্দীপক অনুসারে A ও B গ্যাসদ্বয় যথাক্রমে NH, ও HCl।

মনে করি, A গ্যাস হতে x দ্রত্বে A ও B গ্যাস মিলিত হবে। A

গ্যাসের ব্যাপন হার r_A এবং B গ্যাসের ব্যাপন হার r_B হলে,
গ্রাহামের ব্যাপন হার সূত্রানুসারে,

$$rac{r_{\Delta}}{r_{B}} = \sqrt{rac{M_{B}}{M_{A}}}$$

$$\Rightarrow rac{rac{x}{t}}{rac{70-x}{t}} = \sqrt{rac{36.5}{17}}$$

$$\Rightarrow rac{x}{70-x} = 1.47$$

$$\Rightarrow 2.47x = 102.9$$

$$\therefore x = 41.66 \text{ cm}$$
NH₃ এর আণবিক ভর,
$$M_{A} = 17$$
HCI এর আণবিক ভর,
$$M_{B} = 36.5$$

সূতরাং, গ্যাসদ্বয় পরস্পর A প্রান্ত হতে 41.6 cm দূরে এবং B প্রান্ত হতে (70 – 41.6) cm = 28.4 cm দূরে মিলিত হবে। (Ans.)

- ত্ব উদ্দীপকের A গ্যাসটি NH3 ও B গ্যাসটি HCl।
 কোনো যৌগকে অমু বা ক্ষারক হিসেবে চিহ্নিত করার জন্য কয়েকটি
 অমু-ক্ষারক মতবাদ প্রচলিত আছে।
 - ১. আরহেনিয়াস এসিড-ক্ষারক তত্ত্ব অনুসারে, এসিড বা অল্ল হচ্ছে হাইড্রোজেনয়ুক্ত যৌগ যারা জলীয় দ্রবণে হাইড্রোজেন (H[†]) বা হাইড্রোনিয়াম দান করে এবং ক্ষারক হচ্ছে সেসব যৌগ যারা জলীয় দ্রবণে হাইড্রোক্সিল OH[™] আয়ন দান করে। HCl গ্যাস জলীয় দ্রবণে H[†] দান করে।

 $HCl(g) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$ সূতরাং, আরহেনিয়াস তত্ত্ব মতে HCl একটি অস্ত্র ৷ কিন্তু NH_3 তে কোনো OH^- মূলক না থাকায় ক্ষারক হিসাবে ব্যাখ্যা করা যায় না । তাই আরহেনিয়াস তত্ত্ব অনুসারে HCl অস্ত্র হলেও NH_3 ক্ষারক নয় ।

 লুইস তত্ত্ব মতে, অদ্র হলো এমন যৌগ বা আয়ন যা ইলেকট্রন-জোড় গ্রহণ করে এবং ক্ষারক হলো এমন যৌগ বা আয়ন যা ইলেকট্রন-জোড় দান করে। ÑH3 গ্যাসটির N পরমাণুতে একটি মুক্তজোড় ইলেকট্রন থাকায় ইলেকট্রন-জোড় দান করতে পারে।

তাই NH3 একটি লুইস ক্ষারক।

a | **a**AdmissionStuffs

 $NH_3 + BF_3 \longrightarrow H_3N \rightarrow BF_3$

সুতরাং, NH3 একটি লুইস কারক কিন্তু HCl এর অষ্টক পূর্ণ থাকায় ইলেকট্রন-জোড় গ্রহণ করতে পারে না। তাই NH3 লুইস কারক হলেও HCl লুইস এসিড নয়।

৩. ব্রনস্টেড লাউরি তত্ত্ব মতে, যেসকল যৌগ বা আয়ন, যা অন্য পদার্থকে প্রোটন দান করতে পারে তারা অম্র এবং ক্ষারক হলো এমন একটি যৌগ বা আয়ন, যা অম্র হতে প্রোটন (H[†]) গ্রহণ করতে পারে। NH₃ পানিতে দ্রবীভৃত হওয়ার সময় পানি থেকে আসা একটি প্রোটন (H[†]) কে মুক্তজোড় ইলেকট্রন দান করে (NH[‡]) গঠন করে। অর্থাৎ, এক্ষেত্রে NH₃ হলো ক্ষারকরপে প্রোটন গ্রহীতা। সুতরাং, NH₃ একটি ব্রনস্টেড-লাউরি ক্ষারক।

$$\ddot{N}H_3(g) + H_2O(I) = NH_4^+(aq) + H\ddot{O}^-(aq)$$

HCI গ্যাস পানিতে দ্রবীভূত হয়ে একটি প্রোটন (H^{+}) বা হাইড্রোজেন আয়ন পানি $(H_{2}O)$ অণুর দ্বারা বন্ধনে আবদ্ধ হয়ে হাইড্রোনিয়াম আয়ন $(H_{3}O^{+})$ গঠন করে। অর্থাৎ, এক্ষেত্রে HCI গ্যাস এসিডরূপে প্রোটন দাতা। সূতরাং, HCI একটি ব্রনস্টেড-লাউরি এসিড।

সুতরাং, ব্রনস্টেড লাউরি তত্ত্ব মতে, উদ্দীপকের গ্যাসদ্বয়কে অম্ল-ক্ষারক হিসাবে ব্যাখ্যা করা যায়।

Rhombus Publications

とき > の

0.745 g 576 mm(Hg) 600 mL 20°C

STP (T ঘনত 1.75 gL-1

A- গ্যাস (I) পাত্ৰ

B- গ্যাস (II) পাত্র

(ক) পানির DO কাকে বলে?

কু. বো. ২৩]

(খ) HCO ্ব আয়ন উভধর্মী ব্যাখ্যা কর।

আমরা জানি, $P_AV_A = nRT_A$

$$\Rightarrow P_A V_A = \frac{W}{M_A} RT_A$$

মিশ্রণের মোট চাপ

= (0.235 + 12.43) atm

= 12.665 atm (Ans.)

A গ্যাসের আংশিক চাপ + B গ্যাসের আংশিক চাপ

[রা. বো. ২৩; কু. বো. ২৩; ঢা. বো. ২১; ম. বো. ২১; অনুরূপ প্রশ্ন: দি. বো. ২৩] (গ) 30°C তাপমাত্রায় 2L আয়তনের পাত্রে A ও B গ্যাসদ্বয় মিশ্রিত

$$\Rightarrow P_A V_A = \frac{W}{M_A} RT_A$$

করলে, মিশ্রণের মোট চাপ নির্ণয় কর।

$$\Rightarrow M_A = \frac{WRT_A}{P_A V_A}$$

ঘ A গ্যাসের ক্বেত্রে-

[কু. বো. ২৩; অনুরূপ প্রশ্ন: ঢা. বো. ২২; কু. বো. ২২; সি. বো. ১৯] মিটার দৈর্ঘ্যের কাঁচ নলের দুই প্রান্ত দিয়ে A ও B গ্যাস প্রবেশ করালে নলের ঠিক কোন জায়গায় গ্যাস দুটি মিলিত হবে?

 $\Rightarrow M_A = \frac{0.745 \times 0.082 \times 293}{0.76 \times 0.6}$

[কু. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২২; ব. বো. ২১]

:. $M_A = 39.25 \text{ g mol}^{-1}$

সমাধান:

B গ্যাসের ক্ষেত্রে-

কু প্রতি লিটার নমুনা পানির অক্সিজেন সম্পৃক্তকরণে পানিতে দ্রবীভূত অক্সিজেনের পরিমাণকে ঐ পানির DO বলা হয়।

আমরা জানি, $d_B = \frac{P_B M_B}{RT_-}$

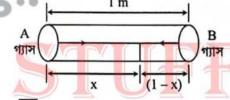
ব্রনস্টেড-লাউরি অস্ত্র-ক্ষারক মতবাদ অনুসারে, যেসকল পদার্থ প্রোটন দাতা ও প্রোটন গ্রহীতা উভয়রূপে কাজ করে অর্থাৎ, অবস্থাভেদে অস্ল ও ক্ষারক উভয়ন্ধপে কাজ করে, তাদেরকে উভধর্মী পদার্থ বলা হয়। HCO, আয়ন একটি প্রোটন ত্যাগ করে অনুবন্ধী ক্ষারক CO3 এ পরিণত হয়। অর্থাৎ, HCO ্ব অম্লরূপে ক্রিয়া করে।

$$\Rightarrow M_B = \frac{d_B R T_B}{P_B}$$

 $H_2O + HCO_3 = H_3O^+ + CO_3^2$

 $\Rightarrow M_{\rm B} = \frac{1.75 \times 0.082 \times 273}{1}$

অনুবন্ধী ক্ষারক আবার, HCO, আয়ন একটি প্রোটন গ্রহণ করে অনুবন্ধী অমু H2CO3 $M_B = 39.175 \text{ g mol}^{-1}$


 $HCI + HCO_3 = CI + H_2CO_3$ অনুবন্ধী ক্ষারক

এ পরিণত হয়। অর্থাৎ, HCO; ক্ষারকরূপে ক্রিয়া করে।

মনে করি, A গ্যাস হতে x দূরত্বে এবং B হতে (1-x) দূরত্বে গ্যাসদ্বয় মিলিত হবে। A গ্যাসের ব্যাপনহার rA এবং B গ্যাসের ব্যাপনহার r_B হলে গ্রাহামের ব্যাপন সূত্রানুসারে,

.... ACS, > Chemistry 2nd Paper Chapter-1

তাই HCO; আয়ন একটি উভধর্মী পদার্থ।

্যা ধরি, A গ্যাসের আংশিক চাপ, P' ও B গ্যাসের আংশিক চাপ, P' A গ্যাসের জন্য,

এখানে.

V = 2L

আমরা জানি,

$$\Rightarrow \frac{\frac{x}{t}}{\frac{1-x}{t}} = \sqrt{\frac{39.175}{39.25}}$$

$$\frac{P_A V_A}{T_A} = \frac{P'_A V}{T}$$

$$P'_A = \frac{P_A V_A}{T_A} \times \frac{T}{V}$$

$$= \frac{0.76 \times 0.6 \times 303}{293 \times 2}$$

$$= 0.235 \text{ atm}$$

আবার, B গ্যামের জন্য,

$$P_A = \frac{576}{760}$$
 atm = 0.76 atm
 $T_A = (273 + 20) = 293$ K
 $P_B = 1$ atm
 $T_B = 273$ K
 $V_B = 22.4$ L

T = (273 + 30) = 303 K

$$\Rightarrow \frac{x}{1-x} = 0.999$$

$$\Rightarrow x = 0.999 (1 - x)$$

$$\Rightarrow 1.999 \text{ x} = 0.999$$

$$\Rightarrow x = \frac{0.999}{1.999}$$

$$\therefore x = 0.5 \text{ m}$$

 $\frac{P_B V_B}{T_B} = \frac{P_B' V}{T}$ $\Rightarrow P_B' = \frac{P_B V_B}{T_D} \times \frac{T}{V} = \frac{1 \times 22.4 \times 303}{273 \times 2} = 12.43 \text{ atm}$

গ্যাসদম পরস্পর A প্রান্ত হতে 0.5 m দূরে এবং B প্রান্ত হতে (1 − 0.5) m = 0.5 m দূরে মিলিত হবে। (Ans.)

Rhombus Publications

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

외대 > 8

12.32 atm
2.0 L
927°C
0.25 mol
A system

17.3 atm 1500 mL 0°C 1 mol

50 atm	
0.35 L	
27°C	
1 mol	
C- গ্যাস	

েক) আমাগার বক্র কী?

[সি. বো. ২৩]

- (४) H3O+ क H2O अत्र अनुवकी अप्र वना एस किन? गांचा करा। व. वा. २०।
- (গ) উদ্দীপকের A গ্যাসের একটি অণুর গতিশক্তি নির্ণয় কর।

কু. বো. ২৩: অনুরূপ গ্রন্ন: দি. বো. ২২: সি. বো. ১৯)

(ঘ) উদীপকের B ও C গ্যাস কোন কোন শর্তে A গ্যাসের ন্যায় আচরপ করবে? বিশ্লেষণ কর। [ক্. বো. ২৩: অনুরূপ গ্রশ্ল: ঢা বো. ২২: দি. বো. ২২: য়া. বো. ২২, ২১: ব. বো. ২১: কু. বো. ১৯]

সমাধানঃ

- স্থির তাপমাত্রায় বাস্তব গ্যাসের PV বনাম P রেখাকে অ্যামাগার বক্র (Amagat's curve) বলা হয়।
- ব্রনস্টেড-লাউরি অম্র-ক্ষারক মতবাদ অনুসারে, কোনো ক্ষারক অম্র প্রদন্ত একটি প্রোটন গ্রহণ করার পর যে অপু বা আয়নে পরিণত হয়, তাকে ঐ ক্ষারকের অনুবন্ধী অম্র বলা হয়। H₂O ক্ষারকরূপে ক্রিয়া করে একটি প্রোটন গ্রহণ করে অনুবন্ধী অম্র H₃O⁺ এ পরিণত হয়।

গু আমরা জানি,

গ্যাসের একটি অণুর গতিশক্তি, $E_k = \frac{3RT}{2N_A}$

$$= \frac{3 \times 8.314 \times 1200}{2 \times 6.022 \times 10^{23}}$$
$$= 2.48 \times 10^{-20} \text{ J}$$

সুতরাং, A গ্যাসের একটি অণুর গতিশক্তি $2.48 \times 10^{-20} \, \mathrm{J}$ (Ans.)

ত্র একটি নির্দিষ্ট উষ্ণতায় ও চাপে কোনো গ্যাসের সংকোচনশীলতা গুণাঙ্কের (Z) মান 1 এর চেয়ে বেশি বা কম হলে গ্যাসটি বাস্তব গ্যাসের মত এবং Z = 1 হলে গ্যাসটির আদর্শ গ্যাসের মতো আচরণ করে।

B গ্যাসের জন্য,

$$Z_{B} = \frac{P_{B}V_{B}}{n_{B}RT_{B}}$$

$$= \frac{17.3 \times 1.5}{1 \times 0.0821 \times 273}$$

 $Z_B = 1.158 > 1$

C গ্যাসের জন্য,

$$Z_{C} = \frac{P_{C}V_{C}}{n_{C}RT_{C}}$$

$$= \frac{50 \times 0.35}{1 \times 0.0821 \times 300}$$

$$\therefore Z_{C} = 0.71 < 1$$

মাবার.

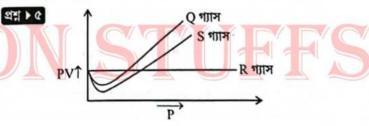
A গ্যাসের জন্য,

$$Z_A = \frac{P_A V_A}{n_A R T_A}$$

$$=\frac{12.32\times2.0}{0.25\times0.0821\times1200}$$

 $\therefore Z_A = 1$

সূতরাং, A গ্যাসটি হলো আদর্শ গ্যাস এবং B ও C গ্যাসন্বয় হলো বাজব গ্যাস।


নিম্নচাপ ও উচ্চ তাপমাত্রায় বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় আচরণ করে। নিচে তা বিশ্রেষণ করা হলো:

খুব নিম্নাপ ও উচ্চ তাপমাত্রায় বাস্তব গ্যাসের অণুসমূহের আয়তন (V)
এর মান খুব বড় হয়। ফলে গ্যাস অণুসমূহের মধ্যকার আন্তঃআণবিক
দূরত্ব বেড়ে যায় এবং অণুসমূহের গতি খুব বেড়ে যায়। এ অবস্থায়
গ্যাসের আয়তন খুব বেশি মাত্রায় বেড়ে যায় বলে গ্যাস অণুসমূহের
আয়তন সংশোধন ধ্রুবক b এর মান কে নগণ্য ধরা হয়। এক্ষেত্রে
(V – b) = V ধরা যায়।

একই অবস্থায় গ্যাস অণুসমূহের মধ্যকার গতিশক্তি ও আন্তঃআণবিক দূরত বেড়ে যাওয়ার সাথে সাথে আন্তঃআণবিক আকর্ষণ বলের প্রভাব খুবই দূর্বল হয়ে পড়ে এবং নগণ্য হয়ে যায়। এই অবস্থায় চাপ সংশোধন ধ্রুবক $\left(\frac{a}{V^2}\right)$ কে নগণ্য ধরে $\left(P+\frac{a}{V^2}\right)=P$ ধরা হয়। এই শর্তে বান্তব গ্যাসের সমীকরণের পরিবর্তিত রূপ PV=nRT হয় যা আদর্শ গ্যাসের সমীকরণ নামে পরিচিত।

এভাবেই নিমুচাপ ও উচ্চ তাপমাত্রায় বাস্তব গ্যাস B ও C আদর্শ গ্যাস

A এর মত আচরণ করবে।

- (क) BOD की? [ण. त्वा. २७; व. त्वा. २२; मि. त्वा. २১; कू. त्वा. २১; त्रा. त्वा. ১৭]
- (খ) এসিড বৃষ্টির কারণ ব্যাখ্যা কর। সি. বো. ২৩; য. বো. ২১)
- (গ) উদ্দীপকের Q গ্যাসের গতিশক্তি 30°C তাপমাত্রায় নির্ণয় কর।
 [য়. বো. ২৩; অনুরূপ গ্রয়: য়. বো. ২৩, ২২; য়. বো. ২৩; য়ৄ. বো. ২২;
 য়. বো. ২২; য়. বো. ২১]
- (ঘ) উদ্দীপকের Q, R ও S গ্যাসের মধ্যে কোনটিকে তরল করা সহজ্ঞ?বিশ্লেষণ কর।

সমাধানঃ

BOD (Biochemical Oxygen Demand) দ্বরা নমুনা পানিতে থাকা দৃষক জৈব বস্তুকে ব্যাকটেরিয়া দ্বারা সম্পূর্ণ ডিগ্রেডেশন বা পচনশীল জৈব বস্তুকে বিয়োজিত করতে প্রয়োজনীয় অক্সিজেনের পরিমাণকে বোঝানো হয়।

বায়ুমণ্ডলে অধঃক্ষেপণ বৃষ্টিতে pH এর মান 5.6 এর কম হলে ঐ অধঃক্ষেপণকে এসিড বৃষ্টি বলা হয়। এসিড বৃষ্টির প্রাকৃতিক ও মানবসৃষ্ট উভয় কারণ রয়েছে।

প্রাইমারি বায়ুদ্যক SO₂ গ্যাস, নাইট্রোজেন অক্সাইডসমূহ (NO_n) ইত্যাদি অশ্লীয় অক্সাইড বৃষ্টির পানির সাথে যুক্ত হয়ে এসিড (H₂SO₃, H₂SO₄, HNO₃) উৎপন্ন করে ।

$$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$$

$$SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq)$$

$$N_2O_5(g) + H_2O(I) \rightarrow 2HNO_3(aq)$$

আবার, মোটর-গাড়ি, ইটের ভাটা, তাপ বিদ্যুৎ কেন্দ্র, কল-কারখানা, ধাতু নিষ্কাশন কেন্দ্র থেকে জ্বালানি তেল বা কয়লার দহনে উৎপন্ন বিভিন্ন অমুধর্মী গ্যাস বায়ুমন্ডলের মাধ্যমে বৃষ্টির পানিতে মিশে এসিড বৃষ্টি সৃষ্টি হয়।

গ 30°C তাপমাত্রায় Q গ্যাসের গতিশক্তি নির্ণয়:

আমরা জানি, n মোল গ্যাসের গতিশক্তি $E_k = \frac{3}{2} nRT$

$$\Rightarrow E_k = \frac{3}{2} \times n \times 8.314 \times 303$$

$$E_k = 3778.7 \text{n J}$$

সুতরাং, 30°C তাপমাত্রায় n মোল Q গ্যাদের 3778.7n J (Ans.)

সাধারণত গ্যাসের অণুগুলোর মধ্যে আকর্ষণ বল যত বেশি হয় গ্যাসটির সন্ধি তাপমাত্রা তত কম হয়, গ্যাসকে তত সহজে তরলে পরিণত করা 🚮 আমরা জানি, PV = nRT याग्र।

উদ্দীপক হতে লক্ষণীয় যে, R গ্যাসের ক্ষেত্রে PV বনাম P এর লেখচিত্র P এর সমান্তরাল। সুতরাং, R একটি আদর্শ গ্যাস। অপর পক্ষে Q ও S গ্যাসের ক্ষেত্রে চাপ (P) বৃদ্ধির সাথে PV এর মান কমতে থাকে এবং চাপের একটি নির্দিষ্ট মানে PV এর মান সর্বনিম্ন হয়। এরপর চাপ বাড়াতে থাকলে PV এর মান ক্রমশ বাড়তে থাকে এবং একটি পর্যায়ে আদর্শ গ্যাসের সমান্তরাল রেখাকে অতিক্রম করে। তাই, Q ও S বাস্তব গ্যাস। যেহেতু আদর্শ গ্যাসের অণুগুলোর মধ্যে কোন আকর্ষণ বল ক্রিয়া করে না, ফলে R গ্যাসটিকে তরলে পরিণত করা সম্ভব নয়। কিন্তু বাস্তব গ্যাসের অণুগুলোর মধ্যে আকর্ষণ বল বিদ্যমান, তাই Q ও S গ্যাসকে তরলে পরিণত করা সম্ভব।

এখন, Q ও S এর PV বনাম P লেখচিত্রে অবতল অংশ থাকায়, এটি প্রতীয়মান যে উভয় গ্যাসের মোলার আয়তন আদর্শ গ্যাসের মোলার 🔃 A গ্যাসের জন্য: আয়তন অপেক্ষা কম। সুতরাং, উভয় গ্যাসের ক্ষেত্রে সংকোচনশীলতা গুণাঙ্ক (Z) এর মান 1 অপেক্ষা কম এবং গ্যাসদ্বয় আদর্শ গ্যাস থেকে ঋণাত্মকভাবে বিচ্যুত। এক্ষেত্রে বাস্তব গ্যাসের অণুগুলোর মধ্যে পারস্পরিক আকর্ষণ বলের মান বেশি হয়। S গ্যাসের অবতল অংশের সর্বনিম্ন বিন্দু Q গ্যাসের থেকে কম হওয়ায়, S গ্যাসের সংকোচনশীলতা গুণাঙ্ক (Z) Q অপেক্ষা কম। অতএব, S গ্যাসের অণুগুলোর মধ্যে পারস্পরিক আকর্ষণ বল Q অপেক্ষা বেশি। তাই S গ্যাসকে তরল করা অপেক্ষাকৃত সহজ হবে।

...... ACS, > Chemistry 2nd Paper Chapter.

প্রমা 🕨 ৬

ग्राम	তাপমাত্রা (°C)	চাপ (atm)	ভর (g)	আয়তন (mi.)
Α	30	0.974	1.26	500
В	30	0.938	0.30	300

- (क) नमूना পानित TDS की? [5. ता. २७; नि. ता. २२; ह. ता. ১৭; नि. त्वा. ১५
- (খ) বাস্তব গ্যাসের চাপ আদর্শ চাপ অপেক্ষা কম কেন? ব্যাখ্যা কর। b. বে. ২০
- (গ) উদ্দীপকে 'A' গ্যাসে অণুর সংখ্যা হিসাব কর।

চি. বো. ২৩; অনুরূপ প্রশ্ন: ব. বো. ২৩; য. বো. ২২; চ. বো. ২২

উদ্দীপকের কোন গ্যাসটি এসিড বৃষ্টির জন্য দায়ী? গাণিতিক যুক্তি দাও

সমাধান:

- ক কোনো নমুনা সারফেস ওয়াটারে থাকা জৈব ও অজৈব কলয়েডের বল এর চেয়ে ছোট আণবিক ও আয়নিক সব পদার্থের সামগ্রিক পরিমাণকে ঐ নমুনা পানির TDS (Total Dissolved Solids) বলা হয়।
- খ আদর্শ গ্যাসের স্বীকার্য অনুযায়ী, আদর্শ অবস্থায় গ্যাসের অণুগুলোর মধ্যে কোনো আকর্ষণ বা বিকর্ষণ নেই। কিন্তু বাস্তব গ্যাসের অণুসমূহের মধ্যে আকর্ষণ আছে, তাই এদের তরলে পরিণত করা যায়। আদর্শ অবস্থায় আকর্ষণমুক্ত গ্যাসের অণুগুলো পাত্রের দেয়ালে যে পরিমাণ চাপ দেয়, বাস্তব গ্যাসের অণুসমূহের মধ্যে আকর্ষণ বল থাকায় সে পরিমাণ চাপ প্রয়োগ করতে পারে না। তাই বাস্তব গ্যাসের জন্য আপাতদৃষ্টিতে যে চাপ ধরা হয় তা প্রকৃত চাপ অপেক্ষা কম।

$$\therefore n = \frac{PV}{RT}$$

$$0.082 \times 303$$

= 0.0196 mol

আবার,

$$n = \frac{N}{N}$$

$$\therefore N = N_A \times n$$

$$=6.022\times10^{23}\times0.0196$$

$$= 1.18 \times 10^{22} \, \text{fb}$$

সূতরাং, A গ্যাসের অণুর সংখ্যা 1.18 × 10²² টি। (Ans.)

আমরা জানি, PV = nRT

$$PV = \frac{W}{M}RT$$

$$M = \frac{WRT}{PV}$$

$$= \frac{1.26 \times 0.082 \times 303}{0.974 \times 0.5}$$

$$= 64.28 \text{ g mol}^{-1}$$

যা SO_2 এর আণবিক ভর $(32 + 16 \times 2) = 64$ এর সমান।

Rhombus Publications

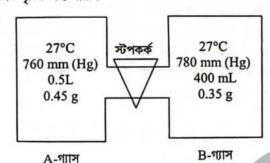
পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....১১

B গ্যাসের জন্য:

আমরা জানি,

$$M = \frac{WRT}{PV}$$

$$=\frac{0.30\times0.082\times303}{0.938\times0.3}$$


 $= 26.4882 \text{ g mol}^{-1}$

যা C_2H_2 এর আণবিক ভর $(12 \times 2 + 2) = 26$ এর সমান।

SO₂ গ্যাসটি এসিড বৃষ্টির জন্য দায়ী।

কেননা, $SO_2 + H_2O \rightarrow H_2SO_3$ যা এসিড বৃষ্টির জন্য দায়ী।

প্রশ্ন ▶ ৭

(ক) পরম শূন্য তাপমাত্রা কী?

हि. त्वा. २७, २५; य. त्वा २२, २५, ১९;

দি. বো. ২২, ২১, ১৯; ঢা. বো. ২১; কু. বো. ২১, ১৯, ১৭; দি. বো. ২১, ১৯]
(খ) নমুনা পানির COD এর মান BOD অপেক্ষা বেশি কেন? ব্যাখ্যা কর।

(ব) নমুনা পানির COD এর মান BOD অপেক্ষা বোশ কেন? ব্যাখ্যা কর। [চ. বো. ২৩, ২২, ২১; ম. বো. ২৩, ২২; চা. বো. ২২; ব. বো. ২১; সি. বো. ২১]

(গ) স্টপকর্ক খোলা অবস্থায় গ্যাস মিশ্রণের মোট চাপ নির্ণয় কর।

মি. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২২; ঢা. বো. ২২; চ. বো. ২২, ২১;

त्रा. (वा. २): य. (वा. २)

(ঘ) A ও B গ্যাসঘয়ের মধ্যে কোনটির ব্যাপন হার বেশি হবে গাণিতিকভাবে বিশ্লেষণ কর। মি. বো. ২৩, ২১; ঢা. বো. ২২; অনুরূপ প্রশ্ল: य. বো. ২৬; চ. বো. ২৬, ২১; দি. বো. ২২; कू. বো. ২১; রা. বো. ২১]

সমাধানঃ

ক কল্পনাযোগ্য সর্বনিম্ন যে তাপমাত্রায় কোনো গ্যাসের আয়তন তাদ্ভিকভাবে শূন্য হয়ে যায় তাকে পরমশূন্য তাপমাত্রা বলে।

- বিয়োজন বিয়োজনায় প্রতিষ্ঠেত তথু বিয়োজনযোগ্য জৈব পদার্থকে জারিত করতে বা ভাঙতে প্রয়োজনীয় অক্সিজেনই হলো COD। অন্যদিকে BOD হলো পানিতে উপস্থিত তথু বিয়োজনযোগ্য জৈব পদার্থকে পদার্থকে ভাঙতে প্রয়োজনীয় অক্সিজেনই হলো COD। অন্যদিকে BOD হলো পানিতে উপস্থিত তথু বিয়োজনযোগ্য জৈব পদার্থকে ভাঙতে প্রয়োজনীয় অক্সিজেনের পরিমাণ। তাই স্বাভাবিকভাবেই, COD এর মান BOD অপেক্ষা বেশি হয়।
- ্য আমরা জানি,

$$PV = P_1V_1 + P_2V_2$$

$$\therefore P = \frac{P_1V_1 + P_2V_2}{V}$$

$$= \frac{760 \times 0.5 + 780 \times 0.4}{0.9}$$

$$= 768.9 \text{ mm (Hg)}$$

$$= 768.9 \text{ mm (Hg)}$$

$$\frac{1}{100} \text{ Material mixon}$$

$$V_1 = 0.5 \text{ L}$$

$$\text{Find, } P_1 = 760 \text{ mm (Hg)}$$

$$P_1 = 760 \text{ mm (Hg)}$$

$$P_2 = 400 \text{ mL}$$

$$P_2 = 780 \text{ mm (Hg)}$$

$$P_3 = 780 \text{ mm (Hg)}$$

$$P_4 = 780 \text{ mm (Hg)}$$

$$P_5 = 780 \text{ mm (Hg)}$$

$$P_6 = 780 \text{ mm (Hg)}$$

$$P_7 = 780 \text{ mm (Hg)}$$

$$P_7 = 780 \text{ mm (Hg)}$$

সূতরাং, স্টপকর্ক খোলা অবস্থায় মিশ্রণের মোট চাপ 768.9 mm(Hg)
(Ans.)

য A গ্যাসের ক্ষেত্রে,

আমরা জানি. PV = nRT

⇒
$$P_AV_A = \frac{W_A}{M_A}RT$$
⇒ $M_A = \frac{W_ART}{P_AV_A}$
⇒ $M_A = \frac{0.45 \times 0.082 \times 300}{1 \times 0.5}$
| $P_A = 760 \text{ mm(Hg)} = 1 \text{ atm}$
| $V_A = 0.5 \text{ L}$
| $W_A = 0.45 \text{ g}$
| $V_A = 0.45 \text{ g}$
|

:. $M_A = 22.14 \text{ g mol}^{-1}$

সূতরাং, A গ্যাসের আণবিক ভর 22.14 g mol-1।

B গ্যাসের ক্ষেত্রে,

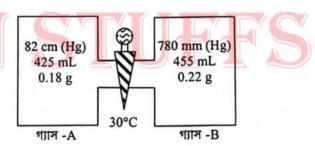
আমরা জানি, PV = nRT

⇒
$$P_BV_B = \frac{W_B}{M_B}RT$$

∴ $M_B = \frac{W_BRT}{P_BV_B}$
 $= \frac{0.35 \times 0.082 \times 300}{1.026 \times 0.4}$
 $= 20.98 \text{ g mol}^{-1}$
| avitcal,
 $P_B = \frac{780}{760} \text{ atm} = 1.026 \text{ atm}$
 $V_B = 400 \text{ mL} = 0.4 \text{ L}$
 $W_B = 0.35 \text{ g}$
 $T = 300 \text{ K}$

সুতরাং, B গ্যাসের আণবিক ভর $20.98~{
m g~mol^{-1}}$ । $r_{
m A}$ $\overline{M_{
m B}}$

থাহামের ব্যাপন হার সূত্রানুসারে,
$$\frac{r_A}{r_B} = \sqrt{\frac{M_B}{M_A}}$$


 $r_{\rm B} \qquad \sqrt{22.1}$ $\Rightarrow \frac{r_{\Delta}}{2} = 0.97$

 $\Rightarrow r_A = 0.97 \times r_B$

 $\Rightarrow r_A = 0.97 \times r_E$ $\therefore r_B = 1.03 \times r_A$

সূতরাং, B গ্যাসের হার A গ্যাসের ব্যাপন হারের 1.03 গুণ। অর্থাৎ, B গ্যাসের ব্যাপন হার A গ্যাস থেকে বেশি। (Ans.)

四門 ト ケ

(ক) দূষক কাকে বলে?

[ব. বো. ২৩; দি. বো. ১৭]

(খ) পানির COD 1.5 mg L⁻¹ বলতে কী বুঝ?

বি. বো. ২২)

(গ) উদ্দীপকের A-গ্যাসটির আণবিক ভর হিসেব কর।

বি. বো. ২৩; অনুরূপ প্রশ্ন ব. বো. ২২; চ. বো. ১৭]

- (ঘ) উদ্দীপকের গ্যাস মিশ্রণের চাপ 110 kPa হলে গ্যাস দৃটি আদর্শ আচরণ করবে কিনা? বিশ্লেষণ কর। বি. বো. ২৩; অনুরূপ প্রশ্ল: চ. বো. ১৭। সমাধান:
- বেসব উপাদান পরিবেশের ভারসাম্য নষ্ট করে দেয় এবং প্রত্যক্ষ ও পরোক্ষভাবে প্রাণী ও উদ্ভিদের জন্য ক্ষতির কারণ সেসব পদার্থকে দৃষক বলে। যেমন: SO_x, NO_x, H₂S, CFC ভারী ধাতু ইত্যাদি।

১২ পানির COD 1.5 mg L⁻¹ বলতে বোঝায়, প্রতি লিটার নমুনা পানিতে সমাধানঃ

পানির COD 1.5 mg L⁻¹ বলতে বোঝায়, প্রতি লিটার নমুনা পানিতে থাকা বিয়োজনযোগ্য ও বিয়োজন অযোগ্য জৈব বস্তুকে সম্পূর্ণভাবে জারিত করে CO₂, NH₃, H₂S ও পানিতে পরিণত করতে 1.5 mg অক্সিজেন প্রয়োজন হয়।

গ আমরা জানি, PV = nRT

⇒
$$PV = \frac{W}{M}RT$$

∴ $M = \frac{WRT}{PV}$
 $= \frac{0.18 \times 0.082 \times 303}{1.08 \times 0.425}$
 $= 9.74 \text{ g mol}^{-1}$
 $= 0.425 \text{ L}$
 $= 0.425 \text{ L}$
 $= 0.425 \text{ L}$

সূতরাং, A গ্যাসটির আণবিক ভর 9.74 g mol⁻¹ (Ans.)

মনে করি A ও B গ্যাস দৃটি আদর্শ গ্যাস। আমরা জানি, আদর্শ গ্যাস ডাল্টনের আংশিক চাপ সূত্র মেনে চলে। আদর্শ গ্যাসের ক্ষেত্রে মিশ্রণের মোট চাপ,

$$P = \frac{P_A V_A + P_B V_B}{(V_A + V_B)}$$

$$= \frac{1.08 \times 0.425 + 1.026 \times 0.455}{0.880}$$
 $= 1.052 \text{ atm}$
 $= 106.6 \text{ kPa}$
 $V_B = 425 \text{ mL} = 0.425 \text{ L}$
 $V_B = 455 \text{ mL} = 0.455 \text{ L}$

আদর্শ গ্যাস হলে A ও B মিশ্রণের মোট চাপ হতো 106.6 kPa, কিন্তু গ্যাস মিশ্রণের চাপ 110 kPa । তাই বলা যায়, গ্যাস দুটি আদর্শ আচরণ করে না। (Ans.)

প্রশ্ন ১৯

সিশিভার-১ 27°C তাপমাত্রায় 200 atm চাপ সহ্য করতে পারে এবং সিশিভার-২ 37°C তাপমাত্রায় 50 atm চাপ সহ্য করতে পারে।

- (ক) সন্ধি তাপমাত্রা কাকে বলে?
- [ব. বো. ২৩]
- (খ) HCI(g) অপেক্ষা NH3(g) এর ব্যাপন হার বেশি কেন? াকু. বো. ২২
- (গ) গ্যাস সিলিভার-১ এ কত kg CH4 সংরক্ষণ করা যাবে।

সম্মিলিত বো. ১৮

(घ) গ্যাস পরিবহনের জন্য উদ্দীপকের কোন সিলিভারটি অধিক উপযোগী?
 গাণিতিকভাবে বিশ্লেষণ কর।
 বি. বো. ২৩; অনুরূপ প্রশ্ল: সম্মিলিত বো. ১৮]

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter.

- ক প্রতিটি বাস্তব গ্যাসের ক্ষেত্রে একটি নির্দিষ্ট তাপমাত্রা আছে ।
 তাপমাত্রার উপরে গ্যাসটিকে রেখে যতই চাপ প্রয়োগ করা হোক ।
 কেন গ্যাসটি তরলে পরিণত হয় না, এই তাপমাত্রাকে ঐ গ্যাসের সদ্ধি
 তাপমাত্রা বা সংকট তাপমাত্রা বা ক্রান্তি তাপমাত্রা বা উৎক্রেম তাপমাত্রা
 বলা হয়।
- NH3 এবং HCl এর মধ্যে NH3 এর ব্যাপন হার বেশি। প্রাহাম্যে ব্যাপন হারের সূত্র মতে, যে কোনো গ্যাসের ব্যাপন হার তার আপবিক ভরের বর্গমূলের ব্যস্তানুপাতিক। অর্থাৎ, যে গ্যাসের আণবিক ভর বেশি, তার ব্যাপন হার কম এবং যে গ্যাসের আণবিক ভর কম, তার ব্যাপন হার বেশি। HCl এর আণবিক ভর 36.5 এবং NH3 এর আণবিক ভর 17। সূতরাং, NH3 এর আণবিক ভর কম হওয়ায় এটির ব্যাপন হার HCl অপেক্ষা বেশি হবে।
- গ্যাস সিলিভার-১ এ CH4 অণুর সংখ্যা, আমরা জানি, PV = nRT

$$\therefore \mathbf{n} = \frac{PV}{RT}$$

$$= \frac{200 \times 100}{0.082 \times 300}$$

$$= 813 \text{ mol}$$

আবার,

CH₄ এর আণবিক ভর, M = 16 g mol⁻¹

∴ CH4 এর পরিমাণ, W = nM

 $= 813 \times 16 = 13.008 \text{ kg}$

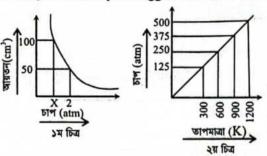
সূতরাং, গ্যাস সিলিভার-১ এর CH4 এর 13.008 kg সংরক্ষণ করা

याद्य । (Ans.)

সিলিভার-১ এর ক্ষেত্রে

$$P_1V_1 = n_1RT_1$$
 $\Rightarrow n_1 = \frac{P_1V_1}{RT_1}$
 $= \frac{200 \times 100}{0.082 \times 300}$
 $= 813.0081 \text{ mol}$
সিলিভার 2 এর ক্ষেত্রে,
 $P_2V_2 = n_2RT_2$
 P_2V_2

$$\Rightarrow n_2 = \frac{P_2 V_2}{RT_2}$$


$$= \frac{50 \times 200}{0.082 \times 310}$$

$$= 393.391 \text{ mol}$$

সর্বোচ্চ সহ্য ক্ষমতার মধ্যে সিলিন্ডার-২ এর তুলনায় সিলিন্ডার-১ এ বেশি পরিমাণ গ্যাস পরিবহন করা সম্ভব। সূতরাং, গ্যাস পরিবহনের জন্য সিলিন্ডার-১ বেশি উপযোগী। (Ans.)

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

정치 > 20

(ক) মোল ভগ্নাংশ কাকে বলে?

(রা. বো. ২৩; কু. বো. ২৩)

(খ) দূর্বল এসিডের অনুবন্ধী ক্ষারক সবল হয় কেন? ব্যাখ্যা কর।

মি. বো. ২৩; ঢা. বো. ২২)

(গ) উদ্দীপক থেকে X-এর মান নির্ণয় কর।

[স. বো. ২৩] P₂ 250

ভদ্দীপকের লেখচিত্রগুলো বিশ্লেষণ করে প্রাপ্ত সূত্রদ্বয়ের তুলনা কর।
 কি. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২২; রা. বো. ১৭)

तास्त्र

সমাধান:

ক কোনো মিশ্রণে একটি উপাদানের মোল সংখ্যা এবং ঐ মিশ্রণে

উপাদানসমূহের মোট মোল সংখ্যার অনুপাতকে ঐ উপাদানের মোল

ভগ্নাংশ বলে।

ব্রনস্টেড-লাউরি অম্ল-ক্ষারক মতবাদ অনুসারে, তীব্র অম্ল বা এসিডের অনুবন্ধী ক্ষারক দুর্বল এবং দুর্বল অম্ল বা এসিডের অনুবন্ধী ক্ষারক তীব্র হয়। দুর্বল এসিডের প্রোটন ত্যাগের প্রবণতা কম। কিন্তু এর অনুবন্ধী ক্ষারক ঋণাত্মক চার্জবিশিষ্ট হওয়ায় এরা প্রোটন গ্রহণের উচ্চ প্রবণতা দেখায় এবং শক্তিশালী অনুবন্ধী ক্ষারকর্মপে আচরণ করে, যেমন:

CH₃COOH = CH₃COO⁻ + H⁺ দূর্বল অফ্ল তীব্র অনুবন্ধী ক্ষারক

গ্র উদ্দীপকের ১ম চিত্রটি বয়েলের সূত্রের লেখচিত্র। বয়েলের সূত্রানুসারে আমরা জানি,

 $P_1V_1 = P_2V_2$ $\Rightarrow P_2 = \frac{P_1V_1}{V_2}$

 $\Rightarrow X = \frac{2 \times 50}{100}$

∴ X = 1 atm

সুতরাং, X এর মান 1 atm (Ans.)

য উদ্দীপকের ১ম চিত্রে আয়তন বনাম চাপ লেখ রয়েছে যা বয়েলের সূত্রকে নির্দেশ করে।

লেখ থেকে পাই,

 $P_1 = 2$ atm

 $P_2 = 1$ atm

 $V_1 = 50 \text{ cm}^3$

 $V_2 = 100 \text{ cm}^3$

এখন, $P_1V_1 = 2 \times 50 = 100$

 $P_2V_2 = 1 \times 100 = 100$

অৰ্থাৎ , P₁V₁ = P₂V₂ = 100 = ধ্ৰুবক

∴ PV = K (ধ্ৰুবক)

 $\therefore V = \frac{K}{P}$

 $\therefore V \propto \frac{1}{P}$

সুতরাং, নির্দিষ্ট ভরের কোনো গ্যাসের তাপমাত্রা স্থির থাকলে আয়তন প্রযুক্ত চাপের ব্যস্তানুপাতিক। যা বয়েলের সূত্র নামে পরিচিত। আবার,উদ্দীপকের ২য় চিত্রে চাপ বনাম তাপমাত্রা লেখ অঙ্কিত হয়েছে। লেখ থেকে পাই,

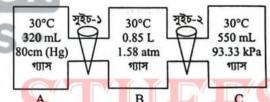
 $\frac{P_1}{T_1} = \frac{125}{300} = 0.417$

 $\frac{P_2}{T_2} = \frac{250}{600} = 0.417$

 $\frac{P_3}{T_3} = \frac{375}{900} = 0.417$

 $\frac{P_4}{T_4} = \frac{500}{1200} = 0.417$

অর্থাৎ, $\frac{P_1}{T_1} = \frac{P_2}{T_2} = \frac{P_3}{T_3} = \frac{P_4}{T_4} = 0.417$ (ধ্রুবক)


 $\therefore \frac{P}{T} = K (4^{\circ} 4^{\circ})$

 $\Rightarrow P = KT$

∴P∝T

সুতরাং, নির্দিষ্ট ভরের নির্দিষ্ট আয়তনের কোনো গ্যাসের চাপ তাপমাত্রার সমানুপাতিক যা গে-লুসাকের চাপের সূত্র।

정치 ▶ 22

A ও C পাত্রঘয় 105 cm (Hg) পর্যন্ত চাপ সহ্য করতে পারে।

(ক) পানির খরতা কাকে বলে?

41

[দি. বো. ২৩]

(খ) 64 g O₂ গ্যাসের জন্য ভ্যানডার ওয়ালস সমীকরণ লেখ।

বি. বো. ২৩; ঢা. বো. ২১]

- (গ) উদ্দীপকের A পাত্রের গ্যাসের গতিশক্তি নির্ণয় কর।
- (घ) উদ্দীপকের সুইচ দুইটির কোনটি প্রথমে খুলে দিলে দুর্ঘটনা ঘটতে পারে? গাণিতিকভাবে বিশ্লেষণ কর।
 ।দি. বো. ২৩।

সমাধান:

- ক পানিতে অধিক পরিমাণে ছিধনাত্মক ক্যাটায়ন যেমন- Ca^{2+} , Mg^{2+} ও Fe^{2+} আয়নের উপস্থিতির কারণে পানিতে সাবান মিশ্রিত করলে ফেনা হতে না চাওয়ার বিশেষ ধর্মকে পানির খরতা বলে।
- আমরা জানি, অক্সিজেনের আণবিক ভর = 32 g mol⁻¹ অর্থাৎ, 32 g অক্সিজেনের মোল সংখ্যা = 1 মোল

∴ 64 g অক্সিজেনের মোল সংখ্যা = $\frac{64}{32}$ মোল = 2 মোল

n মোল গ্যাসের জন্য ভ্যানডার ওয়ালস সমীকরণ,

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

তাহলে, 2 মোল গ্যাসের জন্য ভ্যানডার ওয়ালসের সমীকরণটি হবে-

$$\left(P + \frac{4a}{V^2}\right)(V - 2b) = 2RT$$

গ এখানে,

চাপ,
$$P = 80 \text{ cm}$$

= $\frac{80}{76} \text{ cm}$
= $\frac{80}{76} \times 101325 \text{ Pa}$
= 106657.89 Pa

আয়তন,
$$V = 320 \text{ mL}$$

= $0.32 \times 10^{-3} \text{ m}^3$

আমরা জানি,

গতিশক্তি,
$$E_k = \frac{3}{2} PV$$

$$\Rightarrow E_k = \frac{3}{2} \times 106657.89 \times 0.32 \times 10^{-3}$$

= 51.196 J

সুতরাং, A গ্যাসের গতিশক্তি 51.196 J (Ans.)

সৃইচ-২ প্রথমে খুললে মিশ্রণের চাপ: এখানে.

$$P_B = 1.58 \text{ atm}$$

= (1.58 × 76) cm (Hg)
= 120 cm (Hg)

$$P_C = \frac{93.33}{101.325} \times 76 \text{ cm (Hg)}$$

=70 cm (Hg)

 $P_A = 80 \text{ cm (Hg)}$

আমরা জানি,

$$PV = P_BV_B + P_CV_C$$

$$\Rightarrow P = \frac{120 \times 850 + 70 \times 550}{1400}$$

= 100.36 cm (Hg)

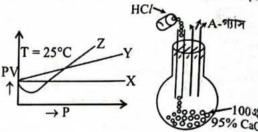
সুইচ-২ খুলে দিলে মিশ্রণের চাপ পাত্রের সহনীয় চাপ থেকে কম হয়। সূতরাং, সুইচ-২ খুলে দিলে কোন দুর্ঘটনা ঘটবে না।

সুইচ-১ প্রথমে খুললে মিশ্রণের চাপ:

আমরা জানি,

$$PV = P_A V_A + P_B V_B$$

$$\therefore P = \frac{P_A V_A + P_B + V_B}{V}$$


$$= \frac{80 \times 320 + 120 \times 850}{1170}$$

= 109.06 cm (Hg)

সুইচ-১ খুলে দিলে মিশ্রণের চাপ পাত্রের সহনীয় চাপ থেকে বেশি হয়। সুতরাং, সুইচ-১ খুলে দিলে দুর্ঘটনা ঘটতে পারে। (Ans.)

Rhombus Publications

প্রশ্ন ▶ ১২

.... ACS, > Chemistry 2nd Paper Chapter

(ক) পানির স্থায়ী খরতা কাকে বলে? দি. বো. ২৩; ম. বো. ২৩; সি. বো.

(খ) FeCl₃ পূইস এসিড কেন? ব্যাখ্যা কর। সি. বো. ২২: ম. বো. দি. বো. ১৯: সি. বো. ১৯: অনুরূপ প্রশ্ন: ম. বো. ২৩: কু. বো

(গ) 30°C তাপমাত্রায় 850 mm (Hg) চাপে কত আয়তন A গ পাওয়া যাবে?

উদ্দীপকের A-গ্যাস লেখচিত্রের কোন রেখার মত আচরণ করে যুক্তি
ব্যাখ্যা কর।
 দি. বা.;

সমাধানঃ

ক পানিতে Ca^{2+} , Mg^{2+} ও Fe^{2+} আয়নের ক্লোরাইড ও সালফেট অধি পরিমাণে দ্রবীভূত থাকলে পানির যে খরতার সৃষ্টি হয়, তাকে পার্চি স্থায়ী খরতা বলে।

শ্ব পুইস মতবাদ অনুসারে, যেসব প্রশম অণু বা আয়ন মুক্তজোড় ইলের গ্রহণ করতে সক্ষম, তাদেরকে পুইস এসিড বলে। FeCl₃ একটি অষ্টক সংকুচিত যৌগ। এই যৌগে Fe এর অষ্টক অং থাকায় তা উপযুক্ত পুইস ক্ষারক হতে একটি মুক্তজোড় ইলেকট্রন গ্রহ করে সন্নিবেশ সমযোজী বন্ধন গঠন করতে পারে। তাই FeCl₃ এব পুইস এসিড।

গ উদ্দীপক অনুসারে HCl এর সাথে CaCO₃ এর বিক্রিয়ায় A গ্যার্সা হলো CO₂। সূতরাং বিক্রিয়াটি নিম্নরূপ:

$$CaCO_3 + 2HCI \rightarrow CaCI_2 + H_2O + CO_2$$
 (A)
100 g 22.4 L

উদ্দীপক অনুসারে CaCO₃ 95% বিভদ্ধ অর্থাৎ, 100 g পদার্থে CaCO₃ আছে 95 g

বিক্রিয়া অনুসারে STP তে,

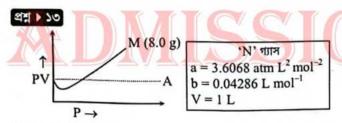
100 g CaCO3 হতে CO2 গ্যাস উৎপন্ন হয় = 22.4 L

$$\therefore$$
 95 g CaCO₃ হতে CO₂ গ্যাস উৎপন্ন হয় = $\frac{22.4 \times 95}{100}$ L = 21.28 L

আমরা জানি,

$$\begin{aligned} & \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \\ & \Rightarrow V_2 = \frac{P_1 V_1 T_2}{T_1 \times P_2} \\ & \Rightarrow V_2 = \frac{760 \times 21.28 \times 303}{273 \times 850} \end{aligned}$$

 $V_2 = 21.12 L$


সূতরাং, 30°C তাপমাত্রা ও 850 mm (Hg) চাপে A গ্যাসের আয়^{ত্র} 21.12 L (Ans.)

পরিবেশ রসায়ন > ACS; FRB Compact Suggestion Book............১৫

ভূদীপকের A গ্যাসটি CO2। CO2 এর লেখচিত্রটি উদ্দীপকের PV । আ আমরা জানি, PV = nRT বনাম P লেখচিত্রের Z রেখার মত আচরণ করে। ফরাসি বিজ্ঞানী অ্যামাগা স্থির তাপমাত্রায় বিভিন্ন চাপে গ্যাসের আয়তন মেপে বয়েলের সূত্র মতে PV এর বিপরীতে P এর মান বসিয়ে প্রাপ্ত লেখচিত্র লক্ষ্য করেন যে, বাস্তব গ্যাসসমূহ আদর্শ আচরণ হতে বিচ্যুত হয় অর্থাৎ বয়েলের সূত্রানুযায়ী বিভিন্ন চাপে PV = ধ্রুবক হয় না। সাধারণভাবে, অ্যামাগার বক্রে আদর্শ গ্যাসসমূহ X রেখার মতো আচরণ করে। অন্যদিকে বাস্তব গ্যাসসমূহ অ্যামাগা বক্রে প্রধানত দুই ধরনের রেখা দেয়:

- ১। প্রথম ধরনের লেখ সাধারণত H2, He প্রভৃতি গ্যাসের ক্ষেত্রে পাওয়া যায়। এসব ক্ষেত্রে চাপ বৃদ্ধির সাথে PV এর মান বয়েলের সূত্র মতে PV = K (ধ্রুব) না থেকে ক্রমাগত বাড়ে। অর্থাৎ PV এর মান আদর্শ গ্যাস-এর প্রত্যাশিত মান অপেক্ষা বেশি হয়। এদের বেলায় আয়তনের পেষণ-মাত্রা কম থাকে এবং উদ্দীপকের Y এর মত রেখা তৈরী হয়। এদের লেখগুলো সরলরেখা হয়ে থাকে।
- ২। আবার O2, N2, CO2 প্রভৃতি গ্যাসের ক্ষেত্রে দ্বিতীয় ধরনের লেখ পাওয়া যায় এক্ষেত্রে চাপ বৃদ্ধির সাথে প্রথমে PV এর মান আদর্শ মান হতে ক্রমাগত কমতে থাকে এবং এক সময় তা একটি ন্যুন্তম মানে পৌছে, তারপর চাপ বৃদ্ধির সাথে বাড়তে থাকে এবং আদর্শ মান অপেকা বেশি হয়। এদের বেলায় চাপ বৃদ্ধির সাথে প্রথম দিকে আয়তনের পেষণ-মাত্রা বেশি থাকে। PV এর মান ন্যূনতম হওয়ার পর পেষণ-মাত্রা ধীরে ধীরে হ্রাস পায়। এদের লেখণ্ডলো বক্র হয়ে উদ্দীপকের Z এর মত রেখা তৈরী করে। এসব লেখের অবতল অংশ থাকে।

যেহেতু A গ্যাসটি CO2, তাই A গ্যাসের লেখচিত্র Z রেখার আচরণ করে।

(ক) SATP কাকে বলে?

বি. বো. ২৩]

- (খ) সি.জি. এস এককে মোলার গ্যাস ধ্রুবকের মান নির্ণয় কর। বি. বো. ২২।
- (গ) উদ্দীপকের 'M'-গ্যাসের ঘনত 25°C ও 1 atm চাপে 1.775 g L⁻¹ হলে গ্যাসটির গতিশক্তি নির্ণয় কর।
- (ঘ) উদ্দীপকের 1 মোল 'N' গ্যাসটির চাপ আদর্শ না বাস্তব, কোন অবস্থায় বেশি হবে? গাণিতিক বিশ্লেষণ দাও। [ম. বো. ২৩]

সমাধান:

SATP (Standard Ambient Temperature and Pressure) বলতে এমন একটি অবস্থা নির্দেশ করে যেখানে গ্যাসের কক্ষ তাপমাত্রা 25°C বা 298 K, বায়ুমণ্ডলীয় চাপ 100 kPa এবং গ্যাসের মোলার আয়তন 24.789 L ধরা হয়।

$$\therefore R = \frac{PV}{nT}$$

এখানে, P = CGS পদ্ধতিতে প্রমাণ চাপ = 76 cm পারদ স্তম্ভের ওজন = 76 × 13.6 × 981 dyne cm⁻²

V = CGS পদ্ধতিতে প্রমাণ চাপ ও তাপমাত্রায় 1 mol গ্যাসের আয়তন = 22400 cm3।

T = প্রমাণ তাপমাত্রা = 273 K, n = 1 mol

$$\therefore R = \frac{76 \times 13.6 \times 981 \times 22400}{1 \times 273}$$

 $= 8.314 \times 10^7 \text{ dyne cm mol}^{-1} \text{ k}^{-1}$

 $= 8.314 \times 10^7 \text{ erg mol}^{-1} \text{ k}^{-1}$

গ আমরা জানি, PV = nRT

$$\Rightarrow PV = \frac{W}{M}RT$$

$$\Rightarrow M = \frac{W}{V} \times \frac{RT}{P}$$

$$\Rightarrow M = \frac{dRT}{P}$$

$$\Rightarrow M = \frac{1.775 \times 0.082 \times 298}{1}$$

 $M = 43.37 \text{ g mol}^{-1}$

আমরা জানি,

গ্যাসের গতিশক্তি, $E_k = \frac{3}{2} nRT$

$$\Rightarrow E_k = \frac{3}{2} \frac{W}{M} RT$$

$$\Rightarrow E_k = \frac{3}{2} \times \frac{8.0}{43.37} \times 8.314 \times 298$$

সুতরাং, M গ্যাসের গতিশক্তি 685.5 J (Ans.)

আমরা জানি, আদর্শ গ্যাসের জন্য, PV = nRT

$$\Rightarrow P = \frac{nRT}{V}$$

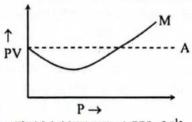
$$\Rightarrow P = \frac{1 \times 0.082 \times 298}{1}$$

P = 24.436 atm

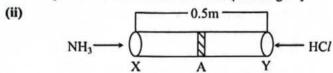
সূতরাং, 1 মোল N গ্যাসের আদর্শ অবস্থায় চাপ 24.436 atm আবার, বাস্তব গ্যাসের জন্য ভ্যানডার ওয়ালস সমীকরণ,

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

$$\Rightarrow \left(P + \frac{1^2 \times 3.6068}{1^2}\right) (1 - 1 \times 0.04286) = 1 \times 0.082 \times 298$$


 \Rightarrow (P + 3.6068) (0.95714) = 24.436

∴ P = 21.923 atm


সুতরাং, 1 মোল N গ্যাসের বাস্তব অবস্থায় চাপ 21.923 atm। অতএব, আদর্শ অবস্থায় 1 mol N গ্যাসের চাপের পরিমাণ বাস্তব অবস্থার চেয়ে বেশি। (Ans.)

역위 **> 28**

(i)

[25°C 영 1 atm 时대 M গ্যামের ঘনত 1.775 gL-1]

(ক) অনুবন্ধী অমু কী?

চি. বো. ২২

- (খ) NH3 একটি লুইস ক্ষারক-ব্যাখ্যা কর।

দি. বো. ২২)

- (গ) 0°C তাপমাত্রায় 8.0 g 'M' গ্যাসের গতিশক্তি নির্ণয় কর। [ঢা. বো. ২২; অনুরূপ প্রশ্ন: রা. বো. ২৩, ২২; ব. বো. ১৭]
- (ঘ) উদ্দীপকের যৌগ দুইটির মধ্যে একটি লুইস ক্ষারক হিসেবে কাজ করলেও অপরটি লুইস এসিড হিসেবে কাজ করে না কেন? ব্যাখ্যা কর। [রা. বো. ২৩]

সমাধানঃ

- কু ব্রনস্টেড-লাউরি অমু ক্ষারক মতবাদ অনুসারে কোনো ক্ষারক একটি প্রোটন গ্রহণ করে যে অণু বা আয়নে পরিণত হয়, তাকে ঐ ক্ষারকের অনুবন্ধী অদ্ল বলা হয়।
- বু লুইস তত্ত্বানুসারে, এক জোড়া ইলেকট্রন দানে সক্ষম পদার্থকে লুইস ক্ষার বলে। NH3 ও HCl এর সংযোগে NH4Cl গঠিত হয়। বিক্রিয়াটি-

 $\ddot{N}H_3 + H^+CI^- \longrightarrow NH_4CI$

NH3 এর একজোড়া মুক্ত ইলেকট্রন বিদ্যমান থাকায় এটি HCl এর H⁺ কে ইলেকট্রন শেয়ার করে NH₄Cl গঠিত করে। যেহেতু NH₃ ইলেকট্রন শেয়ার করে, সুতরাং NH3 একটি লুইস ক্ষার।

গ আমরা জানি, $\rho_2 T_2 = \rho_1 T_1$

$$\Rightarrow \rho_2 = \frac{\rho_1 \times T_1}{T_2}$$

$$\Rightarrow \rho_2 = \frac{1.775 \times 298}{273}$$

 $\rho_2 = 1.94 \text{ g/L}$

STP তে অৰ্থাৎ,

1 L M গ্যাসের ভর = 1.94 g

∴ 22.4 L M গ্যাসের ভর = (1.94 × 22.4) g

 $= 43.456 g \approx 44 g$

সূতরাং, M গ্যাসের আণবিক ভর, M = 44 g mol-1

আমরা জানি,
$$E_k = \frac{3}{2} nRT$$

$$= \frac{3}{2} \frac{W}{M} RT$$

$$= \frac{3}{2} \times \frac{8}{44} \times 8.314 \times 273$$

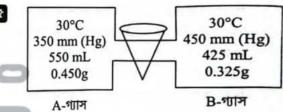
$$= 619.01 \text{ J (Ans.)}$$

Rhombus Publications

..... ACS, > Chemistry 2nd Paper Chapter

ত্ব উদ্দীপকের যৌগ দুটি যথাক্রমে NH3 ও HCl। যৌগ দুটির : NH3 লুইস ক্ষারক হিসেবে কাজ করলেও HCl লুইস এসিড হি কাজ করে না।

লুইস তত্তানুসারে, ক্ষারক হলো এমন একটি যৌগ বা আয়ন যা এ ইলেক্ট্রন জোড় দান করতে পারে এবং এসিড হলো এমন যৌ আয়ন যা একটি ইলেকট্রন জোড় গ্রহণ করতে পারে। পুইস হওয়ার জন্য যৌগের অণুতে একটি মুক্তজোড় ইলেকট্রন থাকতে আবার, লুইস এসিড হওয়ার জন্য যৌগটি অষ্টক অপূর্ণ অথবা ফাঁব অরবিটাল থাকতে হয়।


NH, অণুর গঠনে N পরমাণুতে একটি মুক্তজোড় ইলেকট্রন ধ

এটি কোনো লুইস এসিডকে সহজেই দান করতে পারে। তাই 🛚 একটি লুইস ক্ষারক।

 $NH_3 + BF_3 \longrightarrow H_3N: \rightarrow BF_3$

অপরদিকে, HCl একটি অষ্টক পূর্ণ যৌগ। তাই HCl কোনো 🧃 ক্ষারক হতে ইলেকট্রন- জোড় গ্রহণ করতে পারে না। ফ**লে** HCl न এসিড হিসেবে কাজ করে না।

의리 > 20

(ক) ব্যাপনের সংজ্ঞা দাও।

य. वा.

- (খ) ব্রনস্টেড-লাউরির মতবাদ অনুসারে উদাহরণসহ অহ্র ও ক্ষারের সং
- (গ) উদীপকে উল্লিখিত স্টপকর্ক খোলা অবস্থায় 40°C তাপমাত্রায় গ মিশ্রণের মোট চাপ নির্ণয় কর।।কু. বো. ২২; অনুরূপ প্রশ্ন: য. বো. ২৩; সি. বো. :
- (ঘ) উদ্দীপকে উল্লিখিত 'A' ও 'B' গ্যাসের মধ্যে কোনটি আদর্শ গ্য আচরণ হতে বিচ্যুতি বেশি দেখাবে? বিশ্লেষণ কর।

াকু. বো. ২২; অনুরূপ প্রশ্ন: চ. বো. ২২; সি. বো. ১

সমাধানঃ

- ক উচ্চ ঘনতের স্থান থেকে নিম্ন ঘনতের স্থানে কোনো কঠিন, তরল গ্যাসীয় বস্তুর অণুসমূহের স্বতঃক্তৃ ও সমভাবে পরিব্যাপ্ত হওয়া প্রক্রিয়াকে ব্যাপন বলে।
- ব্রনস্টেড-লাউরি তত্তানুসারে, যেসকল যৌগ বা আয়ন অন্য পদার্থ প্রোটন দান করতে পারে তাদেরকে অস্ত্র বলে।

 $H_2SO_4 - H^{\dagger} \longrightarrow HSO_4$

অনুবন্ধী ক্ষারক

এখানে, H2SO4 একটি প্রোটন (H1) দান করে অনুবন্ধী ক্ষারক HSO এ পরিণত হয়েছে। তাই H_2SO_4 একটি অম্ল। অপরদিকে, যে সর্ব্ যৌগ বা আয়ন অন্য পদার্থকে প্রোটন দান করতে পারে তাদের ক্ষারক বলে।

 $NH_3 + H^+ \rightarrow NH_4^+$

এখানে, NH3 একটি প্রোটন (H⁺) গ্রহণ করে অনুবন্ধী অস্ত্র NH পরিণত হয়েছে। তাই NH3 একটি ক্ষারক।

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

গ এখানে,

 $P_1 = 350 \text{ mm (Hg)}$

 $V_1 = 550 \text{ mL}$

 $P_2 = 450 \text{ mm (Hg)}$

 $V_2 = 425 \text{ mL}$

মিশ্রণের আয়তন, $V = V_1 + V_2 = 975 \text{ mL}$

30°C তাপমাত্রায় মিশ্রণের মোট চাপ,

$$P = \frac{P_1 V_1 + P_2 V_2}{V}$$
$$= \frac{350 \times 550 + 450 \times 425}{975}$$

= 393.59 mm (Hg)

মিশ্রণের তাপমাত্রা 30°C হতে 40°C তাপমাত্রায় উন্নীত করা হলে,

$$\frac{P'}{T'} = \frac{P}{T}$$

$$\Rightarrow P' = \frac{393.59}{303} \times 313$$

$$= 406.579 \text{ mm (Hg)}$$

য A গ্যাসের ক্ষেত্রে,

আমরা জানি, $P_1V_1 = n_1RT_1$

$$\Rightarrow P_1V_1 = \frac{W_1}{M_1} RT_1$$

$$\Rightarrow M_1 = \frac{W_1RT_1}{P_1V_1}$$

$$\Rightarrow M_1 = \frac{0.450 \times 0.0821 \times 303}{\frac{350}{760} \times 550 \times 10^{-3}}$$

 $M_1 = 44.19$

অনুরূপভাবে, B গ্যাসের ক্ষেত্রে, $M_2 = \frac{W_2 R T_2}{P_2 V_2}$

$$\Rightarrow M_2 = \frac{0.325 \times 0.0821 \times 303}{\frac{450}{760} \times 425 \times 10^{-3}}$$

 $M_2 = 32.12$

গ্যাসের আণবিক ভর বেশি হলে আদর্শ গ্যাস থেকে বিচ্যুতি বেশি হয়। যেহেতৃ A গ্যাসের আণবিক ভর B গ্যাসের তুলনায় বেশি, সুতরাং A গ্যাস আদর্শ আচরণ থেকে বেশি বিচ্যুতি দেখাবে।

প্রা > ১৬ সমআয়তনের দৃটি সিলিভার A ও B। A-সিলিভারে 300 K তাপমাত্রায় H₂ গ্যাস আছে এবং একই তাপমাত্রায় সমভরের CH₄ গ্যাস B-সিলিভারে রয়েছে।

(ক) সমচাপ রেখা কাকে বলে?

াদি. বো. ২২)

(খ) খর পানি সাবানের সাথে ফেনা তৈরি করে না কেন?

[সি. বো. ২৩; রা. বো. ২১] ⇒ N

(গ) দেখাও যে, H2 এর চাপ CH4 এর চাপের আটগুণ। রা. বো. ২১।

(प) কোন সিলিভারে গ্যাসীয় অণুর সংখ্যা বেশি? বিশ্লেষণ কর।

[রা. বো. ২১; অনুরূপ গ্রন্ন: দি. বো. ২২]

সমাধান:

- ক স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন বনাম পরম তাপমাত্রার লেখচিত্র অঙ্কন করলে মূলবিন্দুগামী যে সরলরেখা পাওয়া যায় তাকে সমচাপ রেখা বলা হয়।
- পানিতে Ca^{2+} , Mg^{2+} , Fe^{2+} , Sr^{2+} প্রভৃতি আয়নের কার্বনেট/
 বাইকার্বনেট, ক্লোরাইড ও সালফেট লবণ দ্রবীভূত থাকলে, পানিতে
 খরতা সৃষ্টি হয়। খর পানি সাবানের সাথে বিক্রিয়া করে অদ্রবণীয় গাদ
 সৃষ্টি করে। ফলে খর পানিতে সহজে ফেনা উৎপন্ন হয় না। যথেষ্ট
 পরিমাণ সাবান খরচের পর পানিতে উপস্থিত Ca^{2+} , Mg^{2+} এবং Fe^{2+} পানি হতে অধঃক্ষিপ্ত হয়ে সম্পূর্ণ অপসারিত হবার পর ফেনা উৎপন্ন
 হয়। এতে সাবানের অপচয় ঘটে।

 $C_{17}H_{35}COONa + M^{2+} \rightarrow (C_{17}H_{35}COO)_2M$ ্অধঃকিপ্ত) সাবান গাদ এখানে, $M^{2+} = Ca^{2+}, Mg^{2+}, Fe^{2+}$ প্রভৃতি।

প H₂ ও CH₄ গ্যাসের ক্ষেত্রে আদর্শ গ্যাসের সমীকরণ প্রয়োগ করে পাই,

$$P_A V_A = n_A R T_A$$
(i)

$$P_BV_B = n_BRT_B$$
....(ii)

(i) ÷ (ii) করে পাই,

$$P_AV_A = n_ART_A$$

$$\frac{1}{P_B V_B} = \frac{1}{n_B R T_B}$$

$$\Rightarrow \frac{P_A, V}{P_B, V} = \frac{n_A}{n_B} \frac{T}{T} [V_A = V_B = V$$
 এবং $T_A = T_B = T]$

$$\Rightarrow \frac{P_A}{P_A} = \frac{n_A}{n_A}$$

$$\Rightarrow P_A - n_B \wedge I$$

FF WA

$$= \frac{M_A}{M_B} \times P_B \ [W_A = W_B]$$

 $= \frac{M_{\rm B}}{M_{\rm A}} \times P_{\rm B}$

$$=\frac{16}{2}\times P_{\rm B}$$

 $\therefore P_A = 8P_B$

অর্থাৎ, H_2 এর চাপ (P_A) , CH_4 এর চাপের (P_B) আটগুণ।

ঘ 'গ' হতে পাই P_A = 8P_B

$$\Rightarrow \frac{P_A}{P_B} = 8$$

$$\Rightarrow \frac{n_A}{n_B} = 8$$

$$\Rightarrow \frac{N_{H_2}}{N_A} = 8 \times \frac{N_{CH_4}}{N_A}$$

 $\Rightarrow N_{H_2} = 8 \times N_{CH_4}$

অর্থাৎ, H_2 এর অণুর সংখ্যা CH_4 এর তুলনায় 8 গুণ। সূতরাং, সিলিন্ডার A-তে গ্যাস অণুর সংখ্যা বেশি। (Ans.)

Chemistry 2nd Paper Chapter.

의취 ▶ 39

LPG সিলিভার সর্বোচ্চ চাপ সহ্য ক্ষমতা 116 atm। শূন্য অবস্থায় W = 16 kg V = 120 L

[LPG (C₄H₁₀) গ্যাস ফিলিং স্টেশন থেকে 100 atm চাপে 25°C তাপমাত্রায় সিলিভারে গ্যাস ভর্তি করা হয়।]

(ক) বয়েল তাপমাত্রা কাকে বলে?

মি. বো. ২২]

- (খ) O3 স্তর UV রশ্মি থেকে আমাদেরকে কিভাবে রক্ষা করে? ব্যাখ্যা কর।
- (গ) উদ্দীপক মতে, গ্যাস ভর্তি অবস্থায় সিলিভারের ভর নির্ণয় কর। [চ. বো. ১৯; অনুরূপ প্রশ্ন: সম্মিলিত বো. ১৮]
- (ঘ) গ্যাসভর্তি সিলিভার রক্ষিত কক্ষের তাপমাত্রা 85°C হয়ে গেলে সিলিভারটি বিক্ষোরিত হবে কিনা-গাণিতিকভাবে বিশ্রেষণ কর। । । চ. বো. ১৯। সমাধান:
- যে তাপমাত্রায় বাস্তব গ্যাসসমূহ বয়েলের সূত্র অনুসরণ করে অর্থাৎ,
 আদর্শ আচরণ করে তাকে বয়েল তাপমাত্রা বলা হয়।
- র্থ ভ্-পৃষ্ঠ হতে 25 km উপরে বায়ুমণ্ডলের স্ট্র্যাটোক্ষিয়ারে ওজোন (O₃) অঞ্চল বিদ্যমান থাকে। বিভিন্ন কারণে ওজোন স্তর প্রতিনিয়ত ক্ষয় হচ্ছে আবার নতুন ওজোন স্তরের সৃষ্টিও হচ্ছে। এই ওজোনন্তর ভাঙ্গা এবং গড়ার সময় এটি প্রয়োজনীয় শক্তি সূর্যালোকের অতিবেগুনী রশ্মি (UV) হতে গ্রহণ করে থাকে।

$$3O_2 \xrightarrow{h\upsilon} 2O_3$$

এই দুই বিপরীত প্রক্রিয়ায় ওজোন (O₃) UV রশ্মি শোষণ করে আমাদের রক্ষা করে থাকে।

্যা আমরা জানি, $PV = \frac{W}{M}RT$

$$\Rightarrow W = \frac{PVM}{RT}$$

$$= \frac{100 \times 120 \times 58}{0.0821 \times 298}$$

$$= 28447.87 \text{ g}$$

$$= 28.45 \text{ kg}$$

$$= 28.45 \text{ kg}$$

$$= 298 \text{ K}$$

$$= 28 \times 4 \times 10 \text{ m}$$

$$= 58 \text{ g mol}^{-1}$$

$$= 58 \text{ g mol}^{-1}$$

∴ গ্যাস ভর্তি অবস্থায় সিলিভারের ভর = (28.45 + 16) kg = 44.45 kg (Ans.)

য আমরা জানি, $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

$$\Rightarrow P_2 = \frac{P_1 T_2}{T_1}$$

$$\Rightarrow P_2 = \frac{100 \times 358}{298}$$

 $P_2 = 120.13$ atm

সুতরাং, চূড়ান্ত চাপ 120.13 atm। কিন্তু সিলিভারের সর্বোচ্চ চাপ সহ্য ক্ষমতা 116 atm। তাই, গ্যাস ভর্তি সিলিভার রক্ষিত কক্ষের তাপমাত্রা 85°C হলে সিলিভারটি বিক্ষোরিত হবে। (Ans.)

প্রমা > ১৮ নিম্মের বিক্রিয়া দুটি লক্ষ্য কর:

$$(i) \begin{array}{c} C + \ddot{O} - H \rightarrow \\ C + \ddot{O} - \ddot{O} - H \rightarrow \\ C + \ddot{O} - \ddot{O} - \ddot{O} \rightarrow \\ C + \ddot{O} - \ddot{O} - \ddot{O} \rightarrow \\ C + \ddot{O} \rightarrow \\ C + \ddot{O} \rightarrow$$

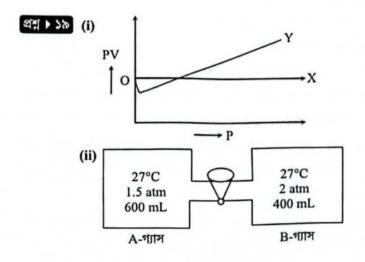
(ক) গ্যাসের নিঃসরণ বা অনুব্যাপন কী?

বি. বো. ১১

- (খ) কোন শর্তে বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় আচরণ করবে? 🛛 🚁 বো. ১১
- (গ) কোন মতবাদ অনুসারে উদ্দীপকের বিক্রিয়া দুটিকে অল্ল-ক্লারব বিক্রিয়ার্রপে চিহ্নিত করা যায়? ব্যাখ্যা কর।
 [ব. বো. ১৯]
- (ঘ) পরিবেশের উপর উদ্দীপকের গ্যাস দুটির বিরূপ প্রভাব সম্পরে তুলনামূলক বিশ্লেষণ কর। বি. বো. ১১

সমাধানঃ

- ক বাহ্যিক উচ্চ চাপের প্রভাবে পাত্রের সরু ছিদ্র পথে কোনো গ্যাসের অণুসমূহের সজোরে একমুখী বের হওয়ার প্রক্রিয়াকে গ্যাসের নিঃসরু বা অনুব্যাপন বলে।
- যেসকল গ্যাস কক্ষ তাপমাত্রা ও চাপে গ্যাসের সূত্রাবলি মেনে চলে ন তারা বাস্তব গ্যাস। বাস্তব গ্যাসমূহের মধ্যে আকর্ষণ-বিকর্ষণ বল বিদ্যমান এবং গ্যাস অণুসমূহের আয়তন গ্যাসপাত্রের তুলনায় নগণ নয়। ২টি শর্তে বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় আচরণ করে:
 - (i) উচ্চ তাপমাত্রা ও (ii) নিমুচাপ
 - উচ্চ তাপমাত্রায় ও নিম্নচাপে গ্যাসের অণুগুলোর মধ্যে দূরত্ব অধিব হওয়ায় কোনো আন্তঃআণবিক আকর্ষণ বা বিকর্ষণ বল কাজ করে ন এবং অণুসমূহের মোট আয়তন ও গ্যাস দ্বারা দখলকৃত আয়তনের তুলনায় নগণ্য হয় যা আদর্শ গ্যাসের বৈশিষ্ট্য। অর্থাৎ, উচ্চ তাপমাত্রা ও চাপে বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় কাজ করে।
- লুইস মতবাদ অনুসারে, উদ্দীপকের বিক্রিয়া দুটিকে অয়ৣ-ক্ষারক বিক্রিয়ারপে চিহ্নিত করা যায়।
 - (i) নং বিক্রিয়ায় H₂Ö এক জোড়া ইলেকট্রন আংশিক ধনাত্মক C পরমাণুকে দান করে আবদ্ধ হয়। H₂O ইলেকট্রন দাতা হওয়ায় H₂O ফারক। আবার CO₂ ইলেকট্রন গ্রহীতা হওয়ায় CO₂ অয় । সুতরাং, এটি একটি অয়ৢ-ফারক বিক্রিয়া।


(ii) নং বিক্রিয়ায় H_2O একজোড়া ইলেকট্রন আংশিক ধনাত্মক S পরমাণুকে দান করে আবদ্ধ হয়। পরে একটি প্রোটন H_2O অংশ থেকে

Rhombus Publications

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book SO, অংশে স্থানান্ডরিত হয়। H2O ইলেবট্রন দাতা হওয়ায় H2O (ক) অনুবন্ধী ক্ষারক কাকে বলে?

ক্ষারক। আবার SO2 ইলেকট্রন গ্রহীতা হওয়ায় SO2 অল্ল। তাই (ii) নং বিক্রিয়াটিও লুইস মতবাদ অনুসারে একটি অম্ল-ক্ষারক বিক্রিয়া।

- জ উদ্দীপকের গ্যাস দৃটি হলো CO2 ও SO2। শিল্পায়ন ও মনুষ্যসৃষ্ট নানা কর্মকান্ডে বায়ুমন্ডলে ক্রমাগত উক্ত গ্যাস দুটির ঘনমাত্রা বৃদ্ধি পাচ্ছে। নিচে পরিবেশের উপর এদের বিরূপ প্রভাব সম্পর্কে আলোচনা করা হলো: CO, এর প্রভাব:
 - (i) CO₂ একটি অন্যতম মিনহাউস গ্যাস যা বায়য়য়য়লর তাপমাত্রা বিদ্ধির জন্য দায়ী। বৈশ্বিক উষ্ণায়নের ফলে জলবায়ু পরিবর্তন দেখা দিচ্ছে যা মানুষসহ উদ্ভিদ ও পশুপাখির উপর নেতিবাচক প্রভাব রাখছে।
 - (ii) CO2 বাতাসের জলীয়বাম্পের সাথে মিশে কার্বনিক এসিড (H₂CO₃) তৈরি করছে যা এসিড বৃষ্টির জন্য দায়ী। এসিড বৃষ্টির ফলে সবুজ গাছপালা ও ফসল ক্ষতিশ্বস্থ হয়, জলাশয়ের মাছ মারা যায়, মাটির pH কমে উর্বরতা নষ্ট হয়, দালানকোঠার ক্ষতি সাধিত হয়। SO2 এর প্রভাব:
 - (i) কলকারখানা, যানবাহন হতে নির্গত SO₂ এর প্রভাবে নাকে ও র আমরা জানি, চোখে জ্বালা, শ্বাসনালিতে প্রদাহ এবং ব্রংকাইটিস ও হাঁপানি রোগ
 - (ii) SO₂ বাতাসের জলীয়বাম্পের সাথে মিশে ক্ষতিকর সালফিউরিক এসিড (H2SO4) তৈরি করে যা এসিড বৃষ্টির জন্য দায়ী। SO2 ঘটিত এসিড বৃষ্টির pH অত্যধিক কম হওযায় এটি বেশি ক্ষয়কারক ভূমিকা পালন করে এবং মানুষসহ উদ্ভিদক্ল ও প্রাণীজগতের জীবন বিপন্ন করে। (iii) SO2 উদ্ভিদের জন্য বিষ বা ফাইটোটব্রিন যা অধিক ঘনতে উদ্ভিদে বিষক্রিয়া সৃষ্টি করে। SO2 এর প্রভাবে ক্লোরোসিস হয় এবং উদ্ভিদের সবুজ পাতা হলুদ হয়ে যায়।
 - (iv) SO2 গ্যাস উদ্ভিদের শ্বসন ও সালোকসংশ্লেষণে বিদ্ন ঘটায়। ফলে উদ্ভিদের বৃদ্ধি ও উৎপাদনশীলতা কমে যায়।

हि. त्वा. २७: म. त्वा. २३: ह. त्वा. २३: वि. त्वा. २३: व. त्वा. ३९।

- (খ) AICI3 একটি পুইস অ্যাসিড-ব্যাখ্যা কর। াসি. নো. ২৩, ২১; ঢা. নো. ১৭।
- (ग) OY गांत्रणित घनक STP-एक 1.25 g/L वर्रम अंत RMS देग केन्द्र? [मि. ला. २); जनुक्रण बन्नः म. ला. २)]
- (घ) A ও B গ্যাসের মিশ্রণ ডাল্টলের আংশিক চাপ সূত্রকে সমর্থন করে কি? গাণিতিকভাবে বিশ্লেষণ কর। । य. বো. ২২; অনুরপ বার: ব. বো. ২২। দি. বো. ২২। সমাধান:
- 📆 ব্রনস্টেড-লাউরি অণ্ণ-ক্ষারক মতবাদ অনুসারে, কোনো অণ্ণ কোনো ক্ষারক পদার্থকে একটি প্রোটন দান করে যে আয়ন বা অণুতে পরিণত হয়, তাকে ঐ অম্রের অনুবন্ধী ক্ষারক বলা হয়।
- অ এসিড-ক্ষারের পুইস তত্ত্বানুসারে, এসিড হলো কোনো প্রশম অণু বা আয়ন যা অন্য ইলেকট্রনদাতা যৌগ হতে ইলেকট্রন গ্রহণ করতে পারে। A/C/3 যৌগের কেন্দ্রীয় পরমাণু A/ এর যোজ্যতান্তরে 6টি ইলেকট্রন থাকায় এটি অষ্টক পূর্ণ করতে আরও 2টি ইলেকট্রন গ্রহণ করতে পারে। তাই A/Cl3 একটি লুইস এসিড।

NH₃ + Al – Cl
$$\longrightarrow$$
 H₃N: \rightarrow AlCl₃

Cl

NH₃ 등 $\stackrel{\square}{=}$ 대체 জানি,

PV = nRT

$$\Rightarrow PV = \frac{W}{M} RT$$

$$\Rightarrow PM = \frac{W}{V} RT$$

$$\Rightarrow PM = \frac{W}{V} RT$$

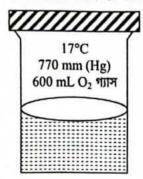
$$\Rightarrow PM = dRT$$

$$\Rightarrow PM = dRT$$

$$\Rightarrow M = \frac{dRT}{P} = \frac{1.25 \times 0.0821 \times 273}{1}$$

$$= 28 \text{ g/mol}$$

 $= 493.137 \text{ ms}^{-1}$

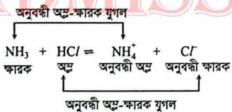

ঘ ডাল্টনের আংশিক চাপ সূত্র হতে: গ্যাস মিশ্রণের মোট চাপ,

গ্যাস মিশ্রণের মোট চাপ,

$$PV = P_1V_1 + P_2V_2$$

 $\Rightarrow P = \frac{P_1V_1 + P_2V_2}{V}$
 $= \frac{1.5 \times 600 + 2 \times 400}{1000}$
 $= 1.7 \text{ atm}$
Qখানে,
 $P_1 = 1.5 \text{ atm}$
 $V_1 = 600 \text{ mL}$
 $P_2 = 2 \text{ atm}$
 $V_2 = 400 \text{ mL}$
 $V_3 = 600 + 400 \text{ mL}$

∴ ডাল্টনের আংশিক চাপ সূত্র হতে প্রাপ্ত মিশ্রদের মোট চাপ 1.7 atm, या উদ্দীপকে উল্লেখিত পরীক্ষালব্ধ মোট চাপ 2.5 অপেক্ষা কম। সূতরাং, A ও B গ্যাসের মিশ্রণ ডাল্টনের আংশিক চাপ সূত্রকে সমর্থন করে না।


প্রদা ১২০ (i) 17°C তাপমাত্রায় জলীয় বাস্পের চাপ: 14.5 mm (Hg)

- (ii) নির্দিষ্ট আয়তনের বিশ্বদ্ধ অক্সিজেন গ্যাস একটি ছোট ছিদ্র দিয়ে নিঃসরিত হতে 80 Seconds সময় লাগে। একই অবস্থায় সমান আয়তনের 20% অজানা গ্যাস মিশ্রিত অক্সিজেন নিঃসরণের জন্য 85 Seconds সময় नार्श ।
- (ক) SI এককে R এর মান কত?

[দি. বো. ২৩, ২১; ঢা. বো. ১৭]

- (খ) $NH_3 + HCI \Rightarrow NH_4^{\dagger} + CI^{\dagger}$ সমীকরণে অনুবন্ধী এসিড-ক্ষারক युगन वृक्षिया निर्थ। य. (वा. २১)
- (গ) উদ্দীপক (i) এর অক্সিজেন গ্যাসের আয়তন STP তে কত লিটার নির্ণয় কর। मि. (वा. २১)
- (ঘ) উদ্দীপক (ii) হতে অজানা গ্যাসটির আণবিক ভর নির্ণয় কর। সমাধান:
- SI এককে R এর মান 8.314 J mol⁻¹ K⁻¹।
- 🛂 ব্রনস্টেড-লাউরি অস্ত্র-কারক মতবাদ অনুসারে, কোনো অস্ত্র কারক পদার্থকে একটি প্রোটন দান করে যে আয়ন বা অণুতে পরিণত হয়, ाद थे जप्पत्र जनुवसी कात्रक वना रत्र। जावात, कारना कात्रक थे প্রোটন গ্রহণ করে যে আয়ন বা অণুতে পরিণত হয়, তাকে ঐ ক্ষারকের অনুবন্ধী অমু বলে।

এখানে, HCl অস্ত একটি প্রোটন ত্যাগ করে অনুবন্ধী ক্ষারক Cl এ পরিণত হয়। ক্ষারক NH3 ঐ প্রোটন গ্রহণ করে অনুবন্ধী অচ্ন NH₄ এ পরিণত হয়।

@AdmissionStuffs

व वायद्रा क्रानि,

$$P_{dry} + P_{H_2O} = P_{Total}$$
∴ $P_{dry} = P_{Total} - P_{H_2O}$
= (770 – 14.5)
= 755.5 mm (Hg)

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter-

আমরা জানি,

$$rac{P_1 V_1}{T_1} = rac{P_2 V_2}{T_2}$$
 $\Rightarrow V_2 = rac{P_1 V_1}{T_1} imes rac{T_2}{P_2}$
 $= rac{755.5 imes 600}{290} imes rac{273}{760}$
 $= 561.4 \, \mathrm{mL}$
 $= 561.4 \, \mathrm{mL}$

∴ উদ্দীপকের অক্সিজেন গ্যাসের আয়তন = 561.4 mL

মান্ত্র
$$M_{\text{feat}} = \Sigma$$
 (মোলসংখ্যা \times আণবিক ভর) এখানে, আণবিক ভর, $X_{\text{O}_2} \times M_{\text{O}_2} + X_{\text{Apper}} \times M_{\text{Apper}}$ আণবিক ভর, $X_{\text{O}_2} = 32 \text{ g}$ সময়, $X_{\text{O}_2} = 80 \text{ sec}$ সময়, $X_{\text{C}_2} = 80 \text{ sec}$

প্রা ১ ২১ (i) PV = nRT

W = 52.625 g

- (ii) CO: $+ A/F_3 \rightarrow [A/(CO)F_3]$
- (ক) ETP কাকে বলে?

ঢা. বো. ১৭]

আণবিক ভর = M

- (খ) S.I এককে R-এর মান বের কর? (রা. বো. ২৩; ঢা. বো. ২২; সি. বো. ২১)
- (গ) উদ্দীপকের (i) নং সমীকরণ ব্যবহার করে গ্যাস মিশ্রণের আর্থশিক চাপ এবং মোট চাপের মধ্যে সম্পর্কিত সূত্রটি প্রতিষ্ঠিত কর।
- (ঘ) কোন মতবাদ অনুসারে উদ্দীপকের বিক্রিয়াটিকে অম্র-ক্ষারক বিক্রিয়ারূপে চিহ্নিত করা যায় তা ব্যাখ্যা কর। [সি. বো. ২৩]

সমাধান:

ক শিল্প কারখানায় বর্জ্য থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ETP বলা হয়।

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book

- STP Co. গ্যানের চাপ, P = 1 atm = 101.325 × 103 N m-2 গ্যাসের আয়তন, V = 22.4 L = 22.4 × 10⁻³ m³ এবং গ্যাসের প্রমাণ তাপমাত্রা, T = 273.15 K এক মোল গ্যাসের জন্য, n = 1 mol আমরা জানি, PV = nRT $\Rightarrow R = \frac{PV}{pT}$ $\Rightarrow R = \frac{101.325 \times 10^{3} \times 22.4 \times 10^{-3}}{1 \times 273.15} = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ সুতরাং, SI এককে R এর মান 8.314 J mol⁻¹ K⁻¹
- বা মনে করি, নির্দিষ্ট তাপমাত্রা T তে V আয়তনবিশিষ্ট পাত্রের পরস্পর विकियारीन विভिন्न गारित्रत यथाकरम n1, n2 ଓ n3 स्मान আছে। ধরি, গ্যাস মিশ্রণে প্রতিটি গ্যাসের আংশিক চাপ যথাক্রমে, P1, P2 ও P1 হয় এবং মিশ্রণের মোট চাপ P,। আদর্শ গ্যাসের সমীকরণ মতে আমরা পাই,

$$P_1V = n_1RT : P_1 = \frac{n_1RT}{V}$$
....(i)

একইভাবে, $P_2V = n_2RT$:. $P_2 = \frac{n_2RT}{V}$ (ii)

$$P_3V = n_3RT$$
 : $P_3 = \frac{n_3RT}{V}$ (iii)

(i) + (ii) + (iii) করে পাই,

$$P_1 + P_2 + P_3 = \frac{RT}{V} (n_1 + n_2 + n_3)$$

$$\Rightarrow P_1 + P_2 + P_3 = \frac{RT}{V} \times n \dots (iv)$$

যেখানে, $n = n_1 + n_2 + n_3 =$ গ্যাসসমূহের মোট মোলসংখ্যা । আবার, গ্যাস মিশ্রণের মোট চাপ P, হলে আদর্শ গ্যাস সমীকরণ মতে, $P_tV = nRT$

$$\Rightarrow P_t = \frac{nRT}{V} \dots (v)$$

(iv) ও (v) সমীকরণ হতে পাওয়া যায়,

$$P_1 + P_2 + P_3 = P_1$$

সুতরাং, গ্যাস মিশ্রণের মোট চাপ গ্যাসসমূহের আংশিক চাপের সমষ্টির সমান।

ঘ উদ্দীপকের বিত্রিন্য়াটি নিম্নরূপ,

CO: $+ A/F_3 \rightarrow [A/(CO)F_3]$

লুইস এসিড-ক্ষার মতবাদ অনুসারে বিক্রিয়াটিকে অম্ল-ক্ষারক বিক্রিয়ারূপে চিহ্নিত করা যায়। লুইস মতবাদ অনুসারে, ক্ষারক হলো এমন একটি যৌগ বা আয়ন যা একটি ইলেকট্রন জোড় দান করতে পারে এবং এসিড হলো এমন যৌগ বা আয়ন যা ইলেকট্রন জোড় গ্রহণ করতে পারে।

উদ্দীপকের বিক্রিয়াটিতে CO একটি মুক্তজোড় ইলেকট্রন দান করতে পারে এবং A/F3 এর যোজ্যতাস্তরে 6টি ইলেকট্রন থাকায় এটি একজোড়া মুক্তজোড় ইলেকট্রন গ্রহণ করে অষ্টকপূর্ণ করতে পারে। যেহেতু, CO: একজোড়া ইলেকট্রন দান করতে পারে। তাই এটি একটি লুইস ক্ষারক। অন্যদিকে, AIF3 একজোড়া ইলেকট্রন গ্রহণ করতে পারে তাই এটি একটি লুইস এসিড।

প্রন ১২২ 20°C তাপমাত্রায়, LPG গ্যাসের সিপিভারে 12 Kg বিউটেন গ্যাস আছে। সিপিন্ডারের আয়তন 20 L।

- (ক) এসিড বৃষ্টি কী? णि. त्वा. २०, ১५: व. त्वा. २२: म. त्वा. २२)
- (च) शानित BOD 5 mg/L वनार्क की वृत्राग्न? (व. ला. २०, २२) नि. ला. २३; मि. त्वा. ১१: व्यनुक्रम बाहाः कृ. त्वा. २०, २১; मि. त्वा. २२: म. त्वा. २১: ह. त्वा. ১१]
- (গ) উদ্দীপকের গ্যাস সিলিভারের চাপ নির্ণয় কর।
- (ঘ) উদীপকে উল্লিখিত সিলিভারে গ্যাস ভর্তির সময় গ্যাসের কোন সুত্রের প্রয়োগ ঘটবে? বিশ্লেষণ কর। [সি. বো. ২২; অনুরূপ গ্রন্ন: ঢা, বো. ২১] সমাধান:
- ক বিভিন্ন অশ্লীয় অক্সাইড NO₂, SO₂, HCl, CO₂ প্রভৃতি গ্যাসীয় উপাদান তুষার, শিশির ও বৃষ্টির পানির সাথে মিশে H₂SO₄, HNO₃, HC! এসিড হিসাবে ভূ-পূষ্ঠে নেমে আসার ঘটনাকে এসিড বৃষ্টি বলে।
- খ BOD (Biochemical Oxygen Demand) দ্বারা নমুনা পানিতে থাকা দূষক জৈব বস্তুকে ব্যাকটেরিয়া দ্বারা সম্পূর্ণ ডিগ্রেডেশন বা পচনশীল জৈব বস্তুকে বিয়োজিত করতে প্রয়োজনীয় অক্সিজেনের পরিমাণকে বোঝায়। পানির BOD 5 mg/L বলতে বোঝায় 1 L নমুনা পানিতে উপস্থিত সকল বিয়োজনযোগ্য জৈব পদার্থকে জারিত করতে 5 mg অক্সিজেনের প্রয়োজন হয়।
- গ এখানে,

প্রদত্ত ভর, W = 12 kg = 12 × 10³ g

আণবিক ভর, M = 12 × 4 + 1 × 10 = 58 g mol⁻¹

আয়তন, V = 20 L

তাপমাত্রা, T = 20°C = 293 K

আমরা জানি,

PV = nRT

$$\Rightarrow P = \frac{WRT}{MV}$$

$$\Rightarrow P = \frac{12 \times 10^3 \times 0.0821 \times 293}{58 \times 20}$$

 \Rightarrow P = 248.85 atm

📆 উদ্দীপকের সিলিভারে গ্যাস ভর্তির সময় মূলত বয়েলের সূত্রের প্রয়োগ ঘটবে। গ্যাসকে সিলিভারজাত করার জন্য প্রয়োজন গ্যাসকে তরল করা, যা অতিরিক্ত চাপে ও নিম্ন তাপমাত্রায় সম্ভব হয়। আমরা জানি, সংকট তাপমাত্রার নীচে যেকোনো গ্যাসকে প্রয়োজনীয় চাপ প্রয়োগ করে তরলে রূপান্তরিত করা যায়।

वरातालत मृजानुयाग्री, श्वित जानमाजाग्र निर्मिष्ठ ज्यतत कारना गाएमत আয়তন এর উপর প্রযুক্ত চাপের ব্যস্তানুপাতিক।

$$V \propto \frac{1}{P}$$

অর্থাৎ, চাপ বৃদ্ধি করলে গ্যাসের আয়তন কমে যাবে। ফলে গ্যাস অণুসমূহ পরস্পরের কাছাকাছি আসে এবং অণুসমূহের মধ্যকার আন্তঃআণবিক আকর্ষণ বল বৃদ্ধি পায়। এই অবস্থায়, প্রয়োজনীয় চাপ বৃদ্ধি করা হলে গ্যাসটি তরল হয়ে যায়। এভাবে বয়েলের সূত্রের প্রয়োগ দ্বারা গ্যাসকে সিলিন্ডারজাত করা হয়।

প্রশা > ২৩ (i) CuSO₄ + NH₄OH (অভিরিক্ত) → 'X' + H₂O

(ii) $NH_3 + BH_3 \rightarrow 'Y'$

[ह. त्वा. २১]

(ক) বোল্টজম্যান ধ্রুবক কী?

- [দি. বো. ১৭]
- (খ) গ্যাসের গতিশক্তি নির্ণয়ে rms বেগ অধিক উপযোগী কেন? (য. বো. ২১)
- (গ) সেলসিয়াস ক্ষেলের কত তাপমাত্রায় Cl₂ গ্যাসের বর্গমূল গড় বর্গবেগ STP তে SO₂ গ্যাসের বর্গমূল গড় বর্গবেগের সমান হবে?
- (घ) উদ্দীপকের 'X' ও 'Y' যৌগ গঠনে অয়্ল-ক্ষারের কোন তয়্তটি অনুসরণ
 করা হয়েছে? যথাযথ কারণসহ বিশ্লেষণ কর।
 (চ. বো. ২১)
 সমাধান:
- ক্র গ্যাসের অণু প্রতি গ্যাস ধ্রুবকের মানকে বোল্টজম্যান ধ্রুবক (k) বলা হয়।

$$k = \frac{R}{N_A}$$

থ RMS (Root Mean Square Velocity) বা বর্গমূল গড় বর্গবেগ হলো এমন একটি বেগ, যা নির্দিষ্ট তাপমাত্রায় গ্যাসের প্রতিটি অণুর বেগের বর্গের গড় মানকে বর্গমূল করে নির্ণয় করা হয়।

Crms =
$$\sqrt{\frac{C_1^2 + C_2^2 + C_3^2 + \dots + C_N^2}{N}}$$

গ্যাস অণুগুলোর মধ্যে সবসময় সংঘর্ষ বিদ্যমান থাকার এদের গতিবেগের প্রতিনিয়ত পরিবর্তন হয়। কোনো একটি বিশেষ মুহুর্তে গ্যাস অণুর গতিবেগ যেমন সর্বনিম্ন হতে পারে তেমনি অস্বাভাবিকভাবে কয়েকগুণ বেশিও হতে পারে। তাদের বেগসমূহের সাধারণ গড়মান ব্যবহার করলে প্রচুর ক্রটি হওয়ার সম্ভাবনা থাকে। অণুগুলোর গড় গতিবেগ ট ব্যবহার করে প্রাপ্ত গতিশক্তির মান প্রকৃত গতিশক্তির মান হতেও কম হয়। এজন্য গ্যাসের গতিশক্তি নির্ণয়ে গড় গতিবেগ ব্যবহার না করে বর্গমূল গড় বর্গবেগ ব্যবহার করা উচিত।

গ

এখানে,

$$C_{SO_2} = \sqrt{\frac{3RT_1}{M_{SO_2}}}$$

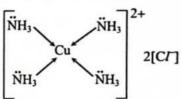
$$C_{Cl_2} = \sqrt{\frac{3RT_2}{M_{Cl_2}}}$$

প্রাথমিক তাপমাত্রা, $T_1 = 273 \text{ K}$ SO_2 এর আণবিক ভর, $M_{SO_2} = 64$ CI_2 এর আণবিক ভর, $M_{CI_2} = 71$ পরিবর্তিত তাপমাত্রা, $T_2 = ?$

$$: C_{SO_2} = C_{Cl_2}$$

বা, $\sqrt{\frac{3RT_1}{M_{SO_2}}} = \sqrt{\frac{3RT_2}{M_{Cl_2}}}$
বা, $\sqrt{\frac{T_1}{M_{SO_2}}} = \sqrt{\frac{T_2}{M_{Cl_2}}}$
বা, $T_2 = \frac{T_1 M_{Cl_2}}{M_{SO_2}}$

$$= \frac{T_1 M_{Cl_2}}{M_{SO_2}}$$
$$= \frac{273 \times 71}{64}$$

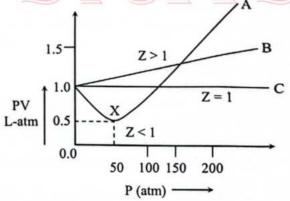

= 302.86 K

= 29.86°C

ADMISSION
--STUFFS--

...... ACS, > Chemistry 2nd Paper Chapte

- ভূমীপকের X যৌগটি হলো টেট্রা অ্যামমিন কপার (II) সাক্ষরে [Cu(NH₃)₄]SO₄ এবং Y যৌগটি হলো NH₃ → BH₃। ছু ক্ষারককে সংজ্ঞায়িত করতে প্রচলিত তত্তুগুলোর মধ্যে পুইন অন্ধি ক্ষার তত্ত্বটি ঘারা X ও Y এর যৌগ গঠন ব্যাখ্যা করা আর । কুই তত্ত্বানুসারে, অল্ল হলো এমন একটি প্রশম অপু বা আরন বা আর কোনো ইলেকট্রন জোড় প্রদানে সক্ষম যৌগ হতে ইলেকট্রন হল করতে পারে এবং ক্ষারক হলো এমন একটি প্রশম অপু বা আরন ব অন্য ইলেকট্রন ঘাটিতি বিশিষ্ট যৌগে ইলেকট্রন দান করতে পারে ।
 - (i) নং যৌগে ÑH₃ অণুতে একজোড়া মুক্তজোড় ইলেক্ট্রন থাকা এবং Cu²+ আয়নে শৃন্য d অরবিটাল থাকায় ÑH₃ অণু Cu²- র একজোড়া মুক্তজোড় ইলেক্ট্রন দান করে। ফলে ÑH₃ এখানে কুই ফার এবং Cu²+ এখানে লুইস এসিড হিসাবে আচরণ করে।



(ii) নং বিক্রিয়ায় NH3 একজোড়া ইলেকট্রন BH3 কে দান করে BH3 অপুতে কেন্দ্রীয় পরমাণুর যোজ্যতা স্তরে ছয়টি ইলেকট্রন থাকা এর অষ্ট্রক অসম্পূর্ণ থাকে এবং একজোড়া ইলেকট্রনকে জায়গা দিয়ে

পারে। তাই $\overset{\circ}{\mathrm{NH}}_3$ এখানে লুইস ক্ষার এবং BH_3 লুইস এসিড।

 $\ddot{N}\dot{H}_3 + \dot{B}\dot{H}_3 \longrightarrow H_3N: \to BH_3$ সূতরাং, $X \otimes Y$ যৌগ গঠনে অমু কারের লুইস তত্ত্বটি অনুসরণ কর হয়েছে।

প্রনা > ২৪ 25°C তাপমাত্রায় নিম্নের লেখচিত্র পাওয়া গেল:

- (ক) বাস্তব গ্যাস কাকে বলে?
- কু. বো. ২৩; সি. বো. ২২; রা. বো. ১৯
- (খ) HSO ু উভধর্মী পদার্থ কেন?

কারণ বিশ্লেষণ কর।

- [রা. বো. ১৯; য. বো. ১৯]
- (গ) STP-তে X বিন্দুতে গ্যাসের আয়তন নির্ণয় কর।
- রা, বো, ১৯
- (ঘ) A, B ও C গ্যাসের সংকোচনশীলতা গুণাঙ্ক (Z) এর মানের ভিন্নতার
 - [রা. বো. ১৯]

পরিবেশ রসায়ন ➤ ১৫১ FRB Compact Suggestion Book...... সমাধান:

- ক যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েলের সূত্র, চার্লসের সূত্র, অ্যাভোগাড্রো সূত্র মেনে চলে না এবং যাদের আয়তনের উপর অভ্যন্তরীণ শক্তি নির্ভরশীল তাদেরকে বাস্তব গ্যাস বলে।
- ব্রনস্টেড লাউরির এসিড ক্ষার তত্ত্বানুসারে যেসব যৌগ বা মূলক অন্য যৌগকে প্রোটন (H^+) দান করতে পারে তারা এসিড। $HSO_4^- + NH_3 \Longrightarrow SO_4^{2^-} + NH_4^+$ এখানে HSO_4^- একটি এসিড কেননা এটি NH_3 কে একটি প্রোটন (H^+) দান করেছে।

আবার, যেসব পদার্থ অন্য পদার্থ হতে প্রোটন গ্রহণ করে তাদেরকে ক্ষারক বলে।

 $HSO_4^- + HCl \Longrightarrow H_2SO_4 + Cl^-$ ফারক

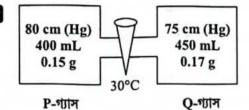
এখানে ${
m HSO}_4^-$ একটি ক্ষারক কেননা এটি ${
m HC}I$ থেকে একটি প্রোটন গ্রহণ করেছে। সূতরাং, ${
m HSO}_4^-$ আয়নটি উভধর্মী।

গু আমরা জানি,

$$rac{P_2 V_2}{T_2} = rac{P_1 V_1}{T_1}$$
 এখানে,
$$\Rightarrow V_2 = rac{P_1 V_1 T_2}{P_2 T_1}$$

$$= rac{0.5 \times 273}{1 \times 298}$$

$$\therefore V_2 = 0.458 \ L$$
এখানে,
$$P_1 \ V_1 = 0.5 \ Latm$$
তাপমাত্রা, $T_1 = (25 + 273) \ K = 298 \ K$


$$S.T.P \ ext{To}, P_2 = 1 \ atm$$

$$T_2 = 273 \ K$$

ম A, B ও C গ্যাসের সংকোচনশীলতা গুণান্ধ (Z) এর মান যথাক্রমে Z < 1, Z > 1 এবং Z = 1।

जामजा जानि, गारमज সংকোচনশীলতা ধ্রুবক $\left(Z = \frac{PV}{RT}\right)$ এর মান गাস চাপ (P), আয়তন (V) ও তাপমাত্রা (T) উপর নির্ভরশীল। আদর্শ গ্যাসের ক্ষেত্রে Z = 1 হয়। অর্থাৎ, PV = RT হয়। অ্যামাগা বক্রে তাই আদর্শ গ্যাসের লেখ X অক্ষের সমান্তরাল হয়। উদ্দীপকের C গ্যাসটি আদর্শ গ্যাস হওয়ায় এর $PV = RT = \frac{1}{2}$ ভবক। তাই চাপ বাড়ার সাথে এটির PV এর মান অপরিবর্তনশীল। অন্যদিকে, বান্তব গ্যাসের জন্য, সংকোচনশীলতা ধ্রুবক $Z \neq 1$ হয়। যার ফলে PV বনাম P লেখচিত্রটিতে আদর্শ মান হতে বিচ্যুতি দেখা দেয়। PV > RT হলে, Z > 1 হয় এবং B গ্যাসের মতো রেখা লেখচিত্রে দেখা যায়। আবার, PV < RT হলে, Z < 1 হয় যেখানে PV এর মান ভরুতে কমে যায় এবং পরবর্তীতে চাপ বাড়ার সাথে সাথে বাড়তে থাকে। উদ্দীপকের A গ্যাসের রেখা অনুরূপ হয় এবং ফলশ্রুতিতে Z < 1 হয়।

প্রশ্ন ▶ ২৫

(ক) গ্রাহামের ব্যাপন সূত্রটি লিখ।

[কু. বো. ১৯]

(খ) HCOOH অপেক্ষা CH3COOH দুর্বল এসিড কেন? াহু. বো. ১৭

(গ) উদ্দীপকের P-গ্যাসটির আণবিক ভর হিসেব কর।

চি. বো. ১৭; অনুরূপ প্রশ্ন: ব. বো. ২৩)

(ঘ) উদ্দীপকের গ্যাস মিশ্রণের চাপ 102 kPa হলে গ্যাস দৃটি আদর্শ কিনা− বিশ্লেষণ কর। [চ. বো. ১৭; অনুরূপ প্রশ্ল: ব. বো. ২৩]

সমাধান:

- ক গ্রাহামের ব্যাপন সূত্র: স্থির চাপে ও স্থির তাপমাত্রায় কোনো গ্যাসের ব্যাপন হার (r) ঐ গ্যাসের মোলার ভরের (M) বর্গমূলের ব্যস্তানুপাতিক হয়ে থাকে।
- ফরমিক এসিড (HCOOH) এবং অ্যাসিটিক এসিড (CH₃COOH)
 এর মধ্যে CH₃COOH দুর্বল এসিড। CH₃COOH এর গঠনে
 মিথাইল (- CH₃) গ্রুপ বিদ্যমান। এই মিথাইল (- CH₃) গ্রুপ
 ইলেকট্রন দাতা হিসেবে কাজ করে। তাই CH₃COOH যৌগে
 উপস্থিত মিথাইল (- CH₃) গ্রুপ ইলেকট্রন দান করে O H বন্ধনের
 O এর ইলেকট্রন ঘনতু বাড়িয়ে দেয়। এতে CH₃COOH এর প্রোটন
 (H¹) ত্যাগ করার প্রবণতা কমে যায়। একটি এসিড যত সহজে প্রোটন
 (H¹) ত্যাগ করতে পারে ঐ এসিডটি তত শক্তিশালী হয়। তাই
 HCOOH অপেক্ষা CH₃COOH একটি দুর্বল এসিড।

এখানে,

আদর্শ গ্যাস সমীকরণ হতে পাই,

$$PV = nRT$$

$$= \frac{W}{M}RT$$

$$\Rightarrow M = \frac{WRT}{PV}$$

$$= \frac{0.15 \times 0.082 \times 303}{1.0526 \times 0.4}$$

 $= 8.85 \text{ g mol}^{-1}$

চাপ, $P = \frac{80}{76}$ atm = 1.0526 atm = 1.0526 atm আয়তন, $V = \frac{400}{1000} L = 0.4 L$ তাপমাত্রা, $T = 30^{\circ}C = 303 \text{ K}$ মোলার গ্যাস ধ্রুবক,

R = 0.082 L atm mol⁻¹ K⁻¹ গ্যাসের ভর, W = 0.15 g

∴ P গ্যাসটির আণবিক ভর = 8.85 g mol⁻¹ (Ans.)

মনে করি, P ও Q গ্যাসদ্বয় আদর্শ গ্যাস। ডাল্টনের আংশিক চাপ সূত্রানুসারে, আদর্শ গ্যাসের মিশ্রণে মোট চাপ,

$$P = \frac{P_{P}V_{P} + P_{Q}V_{Q}}{V_{P} + V_{Q}}$$

$$= \frac{80 \times 400 + 75 \times 450}{400 + 450}$$

$$= 77.3529 \text{ cm(Hg)}$$

$$= \frac{77.3529}{76} \text{ atm}$$

= 1.0178 atm

= 103.1282 kPa

এখানে, P গ্যাসের চাপ, $P_P = 80 \text{ cm (Hg)}$ P গ্যাসের আয়তন, $V_P = 400 \text{ mL}$ Q গ্যাসের চাপ, $P_Q = 75 \text{ cm (Hg)}$ Q গ্যাসের আয়তন, $V_Q = 450 \text{ mL}$ গ্যাস মিশ্রণের মোট চাপ, P = ?

ডাল্টনের আংশিক চাপ সূত্র হতে পাই, গ্যাসদ্বয় আদর্শ হলে মিশ্রণের মোট চাপ 103.1282 kPa হতো। কিন্তু উদ্দীপক অনুসারে গ্যাস মিশ্রণের চাপ 102 kPa। তাই P ও Q গ্যাস দুইটি আদর্শ গ্যাস নয়।

Rhombus Publications

প্রমা > ২৬ (i) একটি গ্যাসের 0°C তাপমাত্রায় বিভিন্ন অবস্থায় চাপ ও আয়তন নিমুরূপ:

চাপ (atm) 0.35 0.50 0.85 0.65 2.66 2.05 1.56 আয়তন (L) 3.80

- \rightarrow H₂O + Z(g) (ii) CH₄ + O₂ -
- (ক) আংশিক চাপ কাকে বলে? [য. বো. ২৩, ২১, ১৯; ঢা. বো. ২১; ম. বো. ২১]
- (খ) তাপমাত্রা বৃদ্ধি করলে গ্যাসের চাপ বৃদ্ধি পায় কেন?
- (গ) উদ্দীপক (ii) এর 30°C তাপমাত্রায় Z গ্যাসের বর্গমূল গড় বর্গবেগ (RMS) নির্ণয় কর। [কু. বো. ১৯; অনুরূপ প্রশ্ন: দি. বো. ১৯; চ. বো. ১৭]
- (ঘ) উদ্দীপক (i) এ উল্লিখিত গ্যাসটি গ্যাসের কোন সূত্রকে সমর্থন করবে? গাণিতিক যুক্তিসহ বিশ্লেষণ কর।

সমাধান:

- 🛜 একটি গ্যাস মিশ্রণ কোনো নির্দিষ্ট তাপমাত্রায় যে আয়তন দখল করে, মিশ্রণের অন্তর্গত একটি গ্যাস যদি ঐ একই তাপমাত্রায় এককভাবে সমান আয়তন দখল করে যে চাপের সৃষ্টি করে, সেই চাপকে ঐ মিশ্রণে ঐ উপাদান গ্যাসের আংশিক চাপ বলা হয়।
- বা সাধারণত গ্যাস অসংখ্য কুদ্র কুদ্র অণুর সমন্বয়ে গঠিত। এই অণুগুলো গ্যাসপাত্রের অভ্যন্তরে বিক্ষিপ্তভাবে ছোটাছুটি করতে থাকে। এর ফলে অণুগুলোর নিজেদের মধ্যে ও গ্যাসপাত্রের দেয়ালের সাথে অবিরাম বির ১৭ দৃশ্যকল্প-১: A + H2O ⇒ H2CO3 + OH সংঘর্ষ ঘটে। গ্যাসপাত্রের দেয়ালের উপর অণুসমূহের এই সংঘর্ষের ফলেই গ্যাসের চাপ সৃষ্টি হয়। তাপমাত্রা বৃদ্ধি করলে গ্যাসের অণুসমৃহের শক্তি বৃদ্ধি পায় এবং এরা আরও দ্রুত ছোটাছুটি করতে থাকে। ফলম্বরূপ সংঘর্ষের পরিমাণও বৃদ্ধি পায়। তাই তাপমাত্রা বৃদ্ধি করলে গ্যাসের চাপ বৃদ্ধি পায়।
- গু উদ্দীপকের (ii) এর বিক্রিয়াটি সম্পূর্ণ করে পাই $CH_4 + 2O_2 \longrightarrow 2H_2O + CO_2(g)$

অর্থাৎ, Z গ্যাসটি হলো CO,

CO2 এর বর্গমূল গড় বর্গবেগ,

$$C_{rms} = \sqrt{\frac{3RT}{M}}$$

$$= \sqrt{\frac{3 \times 8.314 \times 303}{44 \times 10^{-3}}}$$

$$= 414.44 \text{ ms}^{-1}$$

এখানে, CO2 এর আণবিক ভর, $M = 44 \text{ g mol}^{-1}$ $= 44 \times 10^{-3} \text{ kg mol}^{-1}$ তাপমাত্রা, T = 303 K মোলার গ্যাস ধ্রুবক, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

🛐 উদ্দীপক (i) এ একটি গ্যাসের 0°C তাপমাত্রায় বিভিন্ন অবস্থায় চাপ ও আয়তন দেখানো হয়েছে। ছক হতে প্রাপ্ত উপাত্তসমূহ:

 $P_1 = 0.35 atm$

 $P_2 = 0.50 \text{ atm}$

 $P_3 = 0.65 \text{ atm}$

 $P_4 = 0.85 \text{ atm}$

 $V_1 = 3.80 L$

Rhombus Publications

..... ACS, > Chemistry 2nd Paper Chan

 $V_2 = 2.66 L$

 $V_3 = 2.05 L$

 $V_4 = 1.56 L$

এখন,

 $P_1V_1 = (0.35 \times 3.80) = 1.33$

 $P_2V_2 = (0.50 \times 2.66) = 1.33$

 $P_3V_3 = (0.65 \times 2.05) = 1.33$

 $P_4V_4 = (0.85 \times 1.56) = 1.33$

এখানে, প্রতিক্ষেত্রে চাপ (P) ও আয়তন (V) এর গুণারুর 🕾 ঞ্রবসংখ্যা (1.33)। বয়েলের সূত্রানুসারে, স্থির তাপমাত্রার নির্দিষ্ট 🥫 কোনো গ্যাসের আয়তন ঐ গ্যাসের ওপর প্রযুক্ত চাপের ব্যস্তানুপাতি

অর্থাৎ, $V \propto \frac{1}{D}$

वा, PV = K

উদ্দীপকের উপাত্তগুলোর ক্ষেত্রে চাপ ও আয়তনের গুণফল প্রতিক্ষে একটি ধ্রুবসংখ্যা। অর্থাৎ, PV = K = 1.33 যা বয়েলের সূত্র সমর্থন করে।

তাই, পরিশেষে বলা যায় যে, উদ্দীপকে (i) এ উল্লেখিত গ্যাস বয়েলের সূত্রকে সমর্থন করে।

দৃশ্যকল্প-২:

25°C 99.99 kPa 500 cm³ N_2

25°C 2.45 atm 450 cm3

35°C 1L

ক) চার্লসের সূত্রটি বিবৃত কর।

C রা. বো. ২১; ব. বো. ২

- (খ) বাইসালফেট আয়ন একটি উভধর্মী আয়ন কেন? ারা. বো. ২১, ১৯; যু. বো. ১
- (গ) দৃশ্যকল্প-১ হতে অনুবন্ধী অদ্র-ক্ষারক যুগলগুলো যুক্তিসহ চিহ্নিত কর

 (ঘ) দৃশ্যকল্প-২ এ যদি N₂ এর ক্ষেত্রে a = 1.35 atm L² mol⁻² এব $b = 0.0387 \text{ L mol}^{-1}$ হয়ে তাহলে ভ্যানডার ওয়ালস সমীকর অনুসারে C পাত্রের গ্যাসের চাপ atm এককে হিসাব কর।

সমাধান:

- 👨 স্থির চাপে নির্দিষ্ট ভরের যেকোনো গ্যাসের আয়তন গ্যাসটির প্রতি র্জি সেলসিয়াস তাপমাত্রা বৃদ্ধি বাহ্রাসের ফলে 0°C তাপমাত্রায় ঐ গ্যাসে আয়তনের $\frac{1}{273}$ অংশ হারে যথাক্রমে বৃদ্ধি বাহ্রাস পায়।
- ব্র ব্রনস্টেড লাউরির অমু ক্ষারক মতবাদ অনুসারে, যেসকল পদার্থ প্রোট দাতা ও প্রোটন গ্রহীতা উভয়ন্ধপে আচরণ করে অর্থাৎ, অবস্থাভেদে আ ক্ষারক উভয়রপে ক্রিয়া করে তাদেরকে উভধর্মী পদার্থ বলে। বাইসালর্ফে আয়ন (HSO4) অম ও ক্ষারক উভয় ধরনের ধর্ম প্রদর্শন করে।

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

অম্ল হিসেবে ক্রিয়া: $HSO_4^- + H_2O \longrightarrow H_3O^+ + SO_4^{2-}$

অনুবন্ধী অমু

তাই, HSO₄ একটি উভধর্মী পদার্থ।

ক্র উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$HCO_3^- + H_2O \Longrightarrow H_2CO_3 + OH^-$$

ব্রনস্টেড লাউরির অম্ল-ক্ষারক তত্ত্বানুসারে, কোনো অম্ল বা এসিড কোনো ক্ষারক পদার্থকে একটি প্রোটন দান করে যে আয়ন বা অণুতে পরিণত হয়, তাকে ঐ অম্রের অনুবন্ধী ক্ষারক বলা হয়। এখানে, H2O (অম্ল) একটি প্রোটন দান করে OH অনুবন্ধী ক্ষারকে পরিণত হয়।

$$H_2O - H^+ \longrightarrow OH^-$$

অনুবন্ধী ক্ষারক

আবার, ব্রনস্টেড লাউরি অম্ল-ক্ষারক মতবাদ অনুসারে, কোনো ক্ষারক অমু প্রদত্ত একটি প্রোটন গ্রহণ করে যে অণু বা আয়নে পরিণত হয়, তাকে ঐ ক্ষারকের অনুবন্ধী অমু বলে। এখানে, HCO (ক্ষারক) একটি প্রোটন গ্রহণ করে H_2CO_3 অনুবন্ধী অম্লে পরিণত হয়েছে।

$$HCO_3^- + H^+ \longrightarrow H_2CO_3$$
which was where H_2CO_3

কারক

সমগ্ৰ বিক্ৰিয়াটি:

 $HCO_3^- + H_2O \Longrightarrow H_2CO_3$

অনুবন্ধী অমু-ক্ষারক যুগল

च वर्चात्न,

A পাত্রের ক্ষেত্রে, চাপ, PA = 99.99 kPa

আয়তন, $V_A = 500 \text{ cm}^3 = 0.5 \text{ L}$ তাপমাত্রা, $T_A = 25$ °C = 298 K

B পাত্রের ক্ষেত্রে, চাপ, P_B = 2.45 atm

আয়তন,
$$V_B = 450 \text{ cm}^3 = 0.45 \text{ L}$$

তাপমাত্রা, T_B = 25°C = 298 K

মোলার গ্যাস ধ্রুবক, R = 0.082 L atm mol-1 K-1 C পাত্রের মোট মোলসংখ্যা,

$$n = n_A + n_B$$

$$= \frac{P_A V_A}{R T_A} + \frac{P_B V_B}{R T_B}$$

$$= \frac{\frac{99.99}{101.325} \times 0.5}{0.082 \times 298} + \frac{2.45 \times 0.45}{0.082 \times 298}$$

$$= 0.02 + 0.045$$

= 0.065 mol

এখানে, ভ্যানভার ওয়ালস ধ্রুবক, a = 1.35 atm L^2 mol⁻² $b = 0.0387 L mol^{-1}$

তাপমাত্রা, T = 35°C = 308 K

আয়তন, V = 1 L

এখন, বাস্তব গ্যাসের ভ্যানডার ওয়ালস সমীকরণ,

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

$$\Rightarrow P + \frac{n^2 a}{V^2} = \frac{nRT}{(V - nb)}$$

$$\Rightarrow P = \frac{nRT}{(V - nb)} - \frac{n^2a}{V^2}$$

$$= \frac{0.065 \times 0.082 \times 308}{(1 - 0.065 \times 0.0387)} - \frac{(0.065)^2 \times 1.35}{(1)^2}$$

$$= 1.64 \text{ atm}$$

∴ C পাত্রে গ্যাসের চাপ = 1.64 atm (Ans.)

প্রশ্ন > ২৮ দৃশ্যকল্প-১: STP-তে দৃটি মৌলিক গ্যাস A ও B এর মোলার আয়তন নিমুরূপ:

গ্যাস	আণবিক ভর	মোলার আয়তন
A	40	22.4 नि.
В	71	22.2 नि.

C (গ্যাস) ঘনত 1.25 g L⁻¹ 25°C

- (ক) আদর্শ গ্যাসের জন্য গতীয় সমীকরণটি লেখ।
- वि. (वा. ३३, ३९)
- (খ) পানির অস্থায়ী খরতা কীভাবে দূর করা যায়?
- [मि. (वा. ১৭]
- (গ) দৃশ্যকল্প-২ এর 'C' গ্যাসটির RMS বেগ নির্ণয় কর।
- (ঘ) দৃশ্যকল্প-১ এর A ও B গ্যাসের মোলার আয়তন ভিন্ন হওয়ার কারণ বিশ্রেষণ কর। [ব. বো. ১৯]

সমাধান:

- ক আদর্শ গ্যাসের গতীয় সমীকরণটি হলো, $PV = \frac{1}{3} \text{ mNC}^2$ ।
- পানিতে Ca^{2+} , Mg^{2+} ও Fe^{2+} আয়নের বাইকার্বনেট লবণ অধিক দ্রবীভূত থাকায় পানির যে খরতা সৃষ্টি হয় তাকে পানির অস্থায়ী খরতা বলা হয়। অস্থায়ী খর পানিকে উচ্চ তাপমাত্রায় উত্তপ্ত করলে वारेकार्वत्नि नवन जारभ विद्यािक्षि रहा अप्तवनीय कार्वत्निकरभ অধঃক্ষিপ্ত হয় এবং অস্থায়ী খর পানি মৃদু পানিতে পরিণত হয়।

 $Ca(HCO_3)_2(aq) \xrightarrow{\Delta} CaCO_3(s) + CO_2(g) + H_2O(l)$ এভাবে পানির অস্থায়ী খরতা দূর করা যায়।

গ দেওয়া আছে, গ্যাসটির তাপমাত্রা, T = 25°C

25°C তাপমাত্রায় বা SATP তে গ্যাসের মোলার আয়তন,

 $V_{SATP} = 24.789 L I$

গ্যাসটির ঘনত $\rho = 1.25 \text{ g L}^{-1}$

∴ গ্যাসটির গ্রাম-আণবিক ভর, M = V_{SATP} × ρ $= (24.789 \times 1.25) \text{ g mol}^{-1}$ $= 30.986 \text{ g mol}^{-1}$

এখন,
$$C_{rms} = \sqrt{\frac{3RT}{M}}$$

$$= \sqrt{\frac{3 \times 8.314 \times 298}{30.986 \times 10^{-3}}}$$

$$= 489.769 \text{ ms}^{-1}$$

∴ উদ্দীপকের C গ্যাসটির RMS বেগ = 489.769 ms⁻¹ (Ans.)

ঘ A গ্যাসের ক্ষেত্রে, সংকোচনশীলতা গুণাঙ্ক,

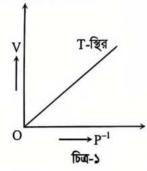
$$Z_{A} = \frac{PV_{A}}{nRT}$$
 এখানে, $properior N$ তাপ, $P = 1$ atm $properior N$ আয়তন, $V_{A} = 22.4$ L মোলসংখ্যা, $properior N$ আনার গ্যাস ধ্রুবক, $roward N$ তাপমাত্রা, $roward N$ তাপমাত্রা, $roward N$ তাপমাত্রা, $roward N$

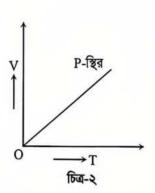
আবার, B গ্যাসের সংকোচনশীলতা গুণাস্ক,

$$Z_{B} = \frac{PV_{B}}{nRT}$$

$$= \frac{1 \times 22.2}{1 \times 0.082 \times 273}$$

$$= 0.992 < 1$$

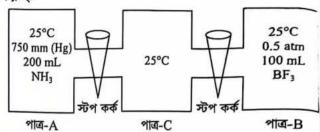

এখানে, আয়তন, V_B = 22.2 L


আমরা জানি, আদর্শ গ্যাসের বেলায় সংকোচনশীলতা গুণাঙ্ক (Z) এর মান 1 হয়। এখানে, A গ্যাসের ক্ষেত্রে $Z_A = 1$ হওয়ায়; A গ্যাসটি একটি আদর্শ গ্যাস।

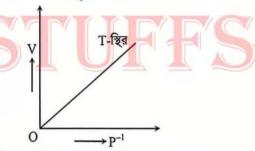
আবার, Z≠1 হলে বাস্তব গ্যাস নির্দেশ করে। Z এর মান 1 হতে যত কম বা বেশি হবে, বাস্তব গ্যাসটি আদর্শ আচরণ থেকে ততই বিচ্যুত হয়। এখানে, B গ্যাসের ক্ষেত্রে $Z_B = 0.992$ । অর্থাৎ, এটি একটি বাস্তব গ্যাস। B গ্যাসটি আদর্শ গ্যাস অপেক্ষা বেশি পেষণযোগ্য। আন্তঃআণবিক আকর্ষণ বলের প্রাধান্য থাকে বলে গ্যাসটি অধিক পেষণযোগ্য হয়।

একারণেই A ও B গ্যাসের মোলার আয়তন ভিন্ন হয়।

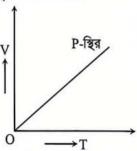
প্রশ্ন ১ ২৯ দৃশ্যকল্প-১:



Rhombus Publications


...... ACS, > Chemistry 2nd Paper Chapter

দৃশ্যকল্প-২:



স্টুপ কর্ক দুটি খোলা অবস্থায় গ্যাস মিশ্রণের মোট চাপ 500 mm (Hg) হয়।

- (क) COD वनरू की ताय? (त्रा. त्वा. २७; व. त्वा. ১৯; मि. त्वा. ১৯; क्. त्वा. ১५
- (খ) 'R' কে সার্বজনীন ধ্রুবক বলা হয় কেন?
- (গ) দৃশ্যকল্প-১ এর চিত্র-১ ও চিত্র-২ এর আলোকে PV = nRT সূর্ত্তা প্রতিপাদন কর। য়. বো. ২১
- (ঘ) দৃশ্যকল্প-২ এর পাত্র C এর আয়তন নির্ণয় কর। বি. বো. ২১ সমাধান:
- ক প্রতি লিটার সারফেস ওয়াটারের নমুনায় থাকা দূষক পচনশীল জৈব ব্য ও অপচনশীল জৈব যৌগকে সম্পূর্ণ জারিত করে CO2, NH3, H2S পানিতে পরিণত করতে যে পরিমাণ ভরের অক্সিজেন ঐ পানির Dd থেকে দরকার হয়, তাকে ঐ পানির COD বলা হয়।
- R = 0.082 L atm mol-1 K-! আদর্শ গ্যাস সমীকরণ PV = nRT। এই সমীকরণে এক মো গ্যাসের জন্য $rac{ ext{PV}}{ ext{T}}$ এর অনুপাতকে $ext{R}$ বা মোলার গ্যাস ধ্রুবক বলা হয় একে সার্বজনীন গ্যাস ধ্রুবকও বলা হয়। R এর মান গ্যাসের প্রকৃতি ব ধর্মের উপর নির্ভর করে না। একই তাপমাত্রা ও চাপে এক মোৰ যেকোনো গ্যাসের মোলার আয়তন সমান হওয়ায় সকল গ্যাসের বেলা গ্যাস ধ্রুবক R এর মান সমান হয়। তাই R কে সার্বজনীন গ্যাস ধ্রুবর বলা হয়।
 - উদ্দীপকের চিত্র-১ বয়েলের সূত্রকে সমর্থন করে।

চিত্র-২ চার্লসের সূত্রকে সমর্থন করে।

বয়েল, চার্লস ও অ্যাভোগাড়োর সূত্র হতে আদর্শ গ্যাস সমীকরণ PV = nRT প্রতিপাদন করা যায়। নির্দিষ্ট ভরের গ্যাসের চাপ P তাপমাত্রা T, আয়তন V ও মোলসংখ্যা n নির্দেশ করলে-

পরিবেশ রসায়ন > ACS/ FRB Compact Suggestion Book.....

বয়েলের সূত্রানুসারে, V $\propto \frac{1}{p}$ (n ও T স্থির) (i)

চার্লসের সূত্রানুসারে, V ∝ T (n ও P স্থির) (ii)

অ্যাভোগাড্রোর সূত্রানুসারে, V \propto n (P ও T স্থির) (iii)

(i), (ii) ও (iii) হতে পাই,

 $V \propto \frac{nT}{P}$ (T, P পরিবর্তনশীল)

 $\therefore V = \frac{nKT}{P} [K = আপেক্ষিক গ্যাস ধ্রুবক]$

1 মোল যেকোনো গ্যাসের জন্য $\frac{PV}{T}$ এর মান বা K এর মান একই হয়। 1 মোল পরিমাণ যেকোনো গ্যাসের জন্য K এর মানকে R (মোলার গ্যাস ধ্রুবক) দ্বারা প্রকাশ করা হয়।

$$\therefore V = \frac{nRT}{P}$$

 \Rightarrow PV = nRT

ত্ব ডাল্টনের আংশিক চাপ সূত্র হতে পাই, এখানে, A গ্যাসের ক্ষেত্রে,

চাপ, PA = 750 mm (Hg)

আয়তন, $V_A = 200 \text{ mL}$

B গ্যাসের ক্ষেত্রে,

চাপ, PB = 0.5 atm = 380 mm (Hg)

আয়তন, $V_B = 100 \text{ mL}$

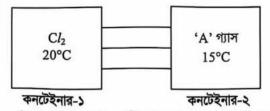
মিশ্রণের মোট চাপ, P = 500 mm (Hg)

মিশ্রণের মোট আয়তন, $V_T = ?$

গ্যাস মিশ্রণের মোট চাপ.

 $P = \frac{P_A V_A + P_B V_B}{V_T}$

 $\Rightarrow V_T = \frac{P_A V_A + P_B V_B}{P}$


 $=\frac{750\times200+380\times100}{500}$

= 376 mL

∴ A, B ও C পাত্রের মোট আয়তন, V_T = 376 mL।

Arr ে পাত্রের আয়তন, $V_C = V_T - (V_A + V_B)$ = 376 - (200 + 100)= 76 mL (Ans.)

প্রশ ▶ ৩০

[A গ্যাসটি চুনাপাথরের বিয়োজনের মাধ্যমে পাওয়া যায়]

(ক) লুইস অমু/এসিড কী?

[রা. বো. ২১; য. বো. ২১]

(খ) গ্রাহামের ব্যাপন সূত্রটি ব্যাখ্যা কর।

[রা. বো. ২১]

(গ) কনটেইনার-১ এর গ্যাসটির গড়বেগ, RMS বেগ এবং সম্ভাব্য বেগ এর তুলনা কর?

(ঘ) কনটেইনার-২ এর গ্যাসের ভাপমাত্রা কত পরিবর্তন করলে উদ্দীপক গ্যাসদ্বয়ের RMS বেগ সমান হবে? গাণিতিক যুক্তিসহ বিশ্লেষণ কর। ।সি. বো. ১৯

সমাধান:

ক যে সকল প্রশম অণু বা আয়ন বিক্রিয়ায় অংশগ্রহণকালে একজোড়া ইলেকট্রন গ্রহণ করে তাদেরকে লুইস অস্ক্র/এসিড বলে।

বা গ্রাহামের ব্যাপন সূত্রটি হলো, স্থির চাপে ও স্থির তাপমাত্রায় কোনো গ্যাসের ব্যাপন হার (r) ঐ গ্যাসের মোলার ভর (M) এর বর্গমূলের ব্যস্তানুপাতিক।

∴ ব্যাপন হার, $r \propto \frac{1}{\sqrt{M}}$

অর্থাৎ, স্থির চাপ ও তাপমাত্রায় যে গ্যাসের মোলার ভর কম ঐ গ্যাসের ব্যাপন হার সবচেয়ে বেশি হবে। আবার, গ্যাসের ঘনত্বভিত্তিক গ্রাহামের সূত্রটি হলো, স্থির চাপ ও তাপমাত্রায় কোনো গ্যাসের ব্যাপন হার (r) গ্যাসটির ঘনত্বের (d) বর্গমূলের ব্যস্তানুপাতিক।

$$\therefore r \propto \frac{1}{\sqrt{d}}$$

অর্থাৎ, গ্যাসের ঘনত্ব কম হলে তার ব্যাপন হার অধিক হয়।

দুইটি গ্যাসের বেলায়, $rac{r_1}{r_2} \!=\! \sqrt{rac{d_2}{d_1}} \!=\! \sqrt{rac{M_2}{M_1}}$

গ আমরা জানি,

গ্যাসের গড়বেগ,
$$\overline{C} = \sqrt{\frac{8RT}{\pi M}}$$

$$= \sqrt{\frac{8 \times 8.314 \times 293}{\pi \times 71 \times 10^{-3}}}$$

 $= 295.58 \text{ ms}^{-1}$

গ্যানের rms বেগ,
$$C_{rms} = \sqrt{\frac{3RT}{M}}$$

 $= \sqrt{\frac{3 \times 8.314 \times 293}{71 \times 10^{-3}}}$ = 320.83 ms⁻¹

গ্যাসের সম্ভাব্যতম বেগ, $C_{mp} = \sqrt{\frac{2RT}{M}}$

 $= \sqrt{\frac{2RT}{M}}$ $= \sqrt{\frac{2 \times 8.314 \times 293}{71 \times 10^{-3}}}$ $= 261.95 \text{ ms}^{-1}$

কনটেইনার-১ এর Cl_2 গ্যাসের ক্ষেত্রে rms বেগ > গড়বেগ > সম্ভাব্যতম বেগ

 $(C_{rms}) > (\overline{C}) > (C_{mp})$

ঘ চুনাপাথরের (CaCO₃) বিয়োজন বিক্রিয়ায় চুন (CaO) ও CO₂ গ্যাস উৎপন্ন হয়।

 $CaCO_3 \longrightarrow CaO + CO_2(g)$

A*ভিমতে, $C_{Cl_2} = C_{CO_2}$ $\Rightarrow \sqrt{\frac{3RT_{Cl_2}}{M_{Cl_2}}} = \sqrt{\frac{3RT_{CO_2}}{M_{CO_2}}}$ $\Rightarrow \sqrt{\frac{T_{Cl_2}}{M_{Cl_2}}} = \sqrt{\frac{T_{CO_2}}{M_{CO_2}}}$

এখানে, T_{Cl2} = 20°C = 293 K

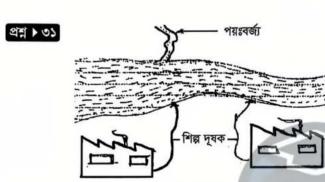
 $M_{Cl_2} = 71 \text{ g mol}^{-1}$

 $M_{CO_2} = 44 \text{ g mol}^{-1}$ $T_{CO_2} = ?$

· co₂ - :

 $\Rightarrow T_{CO_2} = \frac{T_{Cl_2}}{M_{Cl_2}} \times M_{CO_2}$

$$= \frac{293}{M_{Cl_2}} \times 44$$


$$=\frac{293}{71}\times44$$

= 181.58 K= -91.42°C

.: কনটেইনার-২ এর তাপমাত্রাহ্রাস করতে হবে

$$= \{15 - (-91.42)\}$$
°C = 106.42°C

∴ কনটেইনার-২ এর তাপমাত্রা 106.42°C হ্রাস করলে গ্যাসদ্বয়ের RMS বেগ সমান হবে।

Pb-এসিড ব্যাটারী কারখানা

Cd-ঝালাই কারখানা

- (ক) গ্যাসের সংকোচনশীলতা গুণক কী?
- (খ) গ্যাসের গতিশক্তি নির্ণয়ে rms বেগ, গড়বেগ অপেক্ষা অধিক উপযোগী কেন? ঢ়া. বো. ১৭]
- (গ) উদ্দীপকের নমুনা পানির 100 ml নিয়ে এতে প্রয়োজনীয় KI যোগে বিমুক্ত I₂ কে টাইট্রেড করতে 0.0155 M 5.5 mL Na₂S₂O₃ লাগলে, পানির DO নির্ণয় কর।
- (ঘ) উদ্দীপকের নমুনা পানির BOD এর মান কিরূপে নির্ণয় করা যায় লিখ। [ঢা. বো. ১৭]
- ক একই তাপমাত্রা ও চাপে বাস্তব গ্যাসের প্রকৃত আয়তন ও আদর্শ গ্যাসের আয়তনের অনুপাতকে সংকোচনশীলতা গুণক বলে।
- বা গ্যাসের গতিশক্তি নির্ণয়ে গড়বেগ অপেক্ষা rms বেগ অধিক উপযোগী। কারণ বর্গমূল গড় বর্গবেগ বা rms বেগ ব্যবহার করে প্রাপ্ত গতিশক্তির মান প্রতিটি অণুর পৃথকভাবে প্রাপ্ত গতিশক্তির সমষ্টির সমান। কিন্ত গ্যাস অণুসমূহের গতিবেগ পরস্পর থেকে এমন অস্বাভাবিকভাবে ভিন্ন य এদের বেগসমূহের গড় মান ব্যবহার করলে ত্রুটি থেকে যায়। সাধারণত অণুগুলোর গড়বেগ ব্যবহার করে প্রাপ্ত গতিশক্তির মান প্রকৃত গতিশক্তির মান অপেক্ষা কম হয়। তাই গ্যাস অণুর গতিবেগের একটি বিশেষ গড়মান rms (root mean square) বেগকে গ্যাসের গতিশক্তি নির্ণয়ে ব্যবহার করা হয়।

Rhombus Publications

- ACS > Chemistry 2nd Paper Chapter
- গ নমুনা পানির আয়তন, y = 100 mL

বিজারক ($Na_2S_2O_3$) দ্রবণের আয়তন, V = 5.5 mLবিজারক ($Na_2S_2O_3$) দ্রবর্ণের মোলার ঘনমাত্রা, S=0.0155M হয় আমরা জানি,

নমুনা পানির, DO =
$$\frac{8 \times 10^3 \times V \times S}{y}$$
 ppm
$$= \frac{8 \times 10^3 \times 5.5 \times 0.0155}{100}$$
 ppm

= 6.82 ppm

সুতরাং, নমুনা পানির DO এর মান 6.82 ppm

- ব্য উদ্দীপকের নমুনা পানির BOD নির্ণয়ের জন্য নমুনাকে প্রথমে 2। তাপমাত্রায় O2 গ্যাস দ্বারা সম্পৃক্ত করে ঐ পানিতে উপ ব্যাকটেরিয়া দ্বারা জৈব যৌগের বিয়োজন (জারণ) প্রক্রিয়া 5 দিন ঘটানো হয়।
 - ১। একটি কনিক্যাল ফ্লান্ধের মধ্যে 50 mL পানি নিয়ে এর মধ্যে
 - (i) 1 mL ফসফেট বাফার (pH = 7.2)
 - (ii) 1 mL MgSO₄ দ্ৰবণ (22.5 g.L⁻¹)
 - (iii) 1 mL CaCl2 দ্ৰবণ (27.5 g.L-1), এবং
 - (iv) 1 mL FeCl3 দ্রবণ (25 g.L-1) যোগ করি।
 - ২। নমুনা পানিকে লঘু করি।
 - ৩। নমুনা পানির মধ্যে নলের সাহায্যে 5-10 মিনিট বায়ুপ্রবাহ যাতে DO এর মাত্রা 7 ppm হয়। একে incubation ব BOD এর মান যদি DO এর মানের চেয়ে বেশি হয় া dilution পানি দিয়ে পানিকে লঘু করি। এ দ্রবণের আ পরিমাণ নিয়ে DO পরিমাপ করি। মনে করি, এ DO এর DIL
 - ৪। বাকী অর্ধেক নমুনাকে একটি ছিপিযুক্ত কনিক্যাল ফ্লাক্ষে 1 ফ্লান্কের মুখ ভালোভাবে বন্ধ করে 20°C তাপমাত্রায় পাঁচ রেখে দিই। পাঁচ দিন পর নমুনার DO পরিমাপ করি। মনে ५ এ DO এর মান D2।
 - ৫। লঘু পানি নিয়ে দুই অংশে ভাগ করি। এক অংশের DO পরিমাণ B1 নির্ণয় করি। অপর অংশকে ইনকিউবেশন করার DO পরিমাপ করি। মনে করি, এ DO এর মান B2।
 - ৬। নিচের সমীকরণের সাহায্যে BOD মান নির্ণয় করি।

BOD =
$$\frac{(D_1 - D_2) - (B_1 - B_2) \times f}{P} \text{mgL}^{-1}$$

এখানে, P = ব্যবহৃত নমুনার দশমিক ভগ্নাংশ, f = নমুনা পা সাথে নিয়ন্ত্রিত পানির অনুপাত।

পরিবেশ রসায়ন > ACS/ FRB Compact Suggestion Book.....

গুরুত্বপূর্ণ জ্ঞানমূলক প্রশ্নোত্তর

১। SATP কাকে বলে?

বি. বো. ২

উন্তর: SATP (Standard Ambient Temperature and Pressure) বলতে এমন একটি অবস্থা নির্দেশ করে যেখানে গ্যাসের কক্ষ তাপমাত্রা 25°C বা 298 K, বায়ুমণ্ডলীয় চাপ 100 kpa এবং গ্যাসের মোলার আয়তন 24.789 L ধরা হয়।

২। SI এককে R এর মান কত?

[সি. বো. ২৩, ২১; ঢা. বো. ১৭]

উত্তর: SI এককে R এর মান 8.314 J mol-1 K-1।

। বোল্টজম্যান ধ্রুবক কী?

[मि. वा. ১१]

উত্তরঃ গ্যাসের অণু প্রতি গ্যাস ধ্রুবকের মানকে বোল্টজম্যান ধ্রুবক (k) বলা হয়।

$$k = \frac{R}{N_A}$$

৪। আইসোথার্ম কী?

ঢো. বো. ২২; ব. বো. ২২)

উত্তর: স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের ক্ষেত্রে X অক্ষ বরাবর চাপ ও Y অক্ষ বরাবর আয়তন স্থাপন করে স্থির তাপমাত্রায় যে অধিবৃত্তীয় রেখা পাওয়া যায়, তাকে সমতাপ রেখা বা আইসোথার্ম বলে।

৫। বয়েল তাপমাত্রা কাকে বলে?

মি. বো. ২২

উন্তর: যে তাপমাত্রায় বাস্তব গ্যাসসমূহ বয়েলের সূত্র অনুসরণ করে অর্থাৎ, আদর্শ আচরণ করে তাকে বয়েল তাপমাত্রা বলা হয়।

৬। চার্লসের সূত্রটি বিবৃত কর।

[রা. বো. ২১; ব. বো. ২১]

উত্তর: স্থির চাপে নির্দিষ্ট ভরের যেকোনো গ্যাসের আরতন গ্যাসটির প্রতি

ভিশ্বি সেলসিয়াস তাপমাত্রা বৃদ্ধি বা হ্রাসের ফলে 0°C তাপমাত্রায় ঐ

গ্যাসের আয়তনের $\frac{1}{273}$ অংশ হারে যথাক্রমে বৃদ্ধি বা হ্রাস পায়।

৭। সমচাপ রেখা কাকে বলে?

फि. वा. २२

উত্তর: স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন বনাম পরম তাপমাত্রার লেখচিত্র অঙ্কন করলে মূলবিন্দুগামী যে সরলরেখা পাওয়া যায় তাকে সমচাপ রেখা বলা হয়।

৮। পরম শূন্য তাপমাত্রা কী?

[চ. বো. ২৩, ২১; य. বো ২২, ২১, ১৭; দি. বো. ২২, ২১, ১৯; চা. বো. ২১; কু. বো. ২১, ১৯, ১৭; দি. বো. ২১, ১৯

উত্তর: কল্পনাযোগ্য সর্বনিম্ন যে তাপমাত্রায় কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয়ে যায় তাকে পরমশূন্য তাপমাত্রা বলে।

৯। আদর্শ গ্যাসের জন্য গতীয় সমীকরণটি লেখ। বি. বো. ১৯, ১৭

উত্তর: আদর্শ গ্যাসের গতীয় সমীকরণটি হলো, $PV = \frac{1}{3} \; mNC^2$ ।

১০। বাস্তব গ্যাস কাকে বলে? [কু. বো. ২৩; সি. বো. ২২; রা. বো. ১৯] উত্তর: যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েলের সূত্র, চার্লসের সূত্র, অ্যাভোগাড্রো সূত্র মেনে চলে না এবং যাদের আয়তনের উপর অভ্যন্তরীণ শক্তি নির্ভরশীল তাদেরকে বাস্তব গ্যাস বলে।

১১। গ্যাসের সংকোচনশীলতা গুণক কী?

উত্তর: একই তাপমাত্রা ও চাপে বাস্তব গ্যাসের প্রকৃত আয়তন ও আদর্শ গ্যাসের আয়তনের অণুপাতকে সংকোচনশীলতা গুণক বলে।

১২। অ্যামাগার বক্র কী?

[সি. বো. ২৩]

উত্তর: স্থির তাপমাত্রায় বাস্তব গ্যাসের PV বনাম P রেখাকে অ্যামাগার বক্র (Amagat's curve) বলা হয়।

১৩। সন্ধি তাপমাত্রা কাকে বলে?

বি. বো. ২৩]

উত্তর: প্রতিটি বাস্তব গ্যাসের ক্লেত্রে একটি নির্দিষ্ট তাপমাত্রা আছে যে তাপমাত্রার উপরে গ্যাসটিকে রেখে যতই চাপ প্রয়োগ করা হোক না কেন গ্যাসটি তরলে পরিণত হয় না, এই তাপমাত্রাকে ঐ গ্যাসের সন্ধি তাপমাত্রা বা সংকট তাপমাত্রা বা ক্রান্তি তাপমাত্রা বা উৎক্রম তাপমাত্রা বলা হয়।

১৪। ব্যাপনের সংজ্ঞা দাও।

যি, বো, ১৯)

উত্তর: উচ্চ ঘনত্বের স্থান থেকে নিম্ন ঘনত্বের স্থানে কোনো কঠিন, তরল বা গ্যাসীয় বস্তুর অণুসমূহের স্বতঃস্কৃত ও সমভাবে পরিব্যাপ্ত হওয়ার প্রক্রিয়াকে ব্যাপন বলে।

১৫। গ্রাহামের ব্যাপন সূত্রটি লিখ।

কু. বো. ১৯

উত্তর: প্রাহামের ব্যাপন সূত্র: স্থির চাপে ও স্থির তাপমাত্রায় কোনো গ্যাসের ব্যাপন হার (r) ঐ গ্যাসের মোলার ভরের (M) বর্গমূলের ব্যস্তানুপাতিক হরে থাকে।

১৬। গ্যাসের নিঃসরণ বা অনুব্যাপন কী?

यि. त्वा. ५৯।

উন্তরঃ বাহ্যিক উচ্চ চাপের প্রভাবে পাত্রের সরু ছিদ্র পথে কোনো গ্যাসের অণুসমূহের সজোরে একমুখী বের হওয়ার প্রক্রিয়াকে গ্যাসের নিঃসরণ বা অনুব্যাপন বলে।

১৭। মোল ভগ্নাংশ কাকে বলে?

(রা. বো. ২৩; কু. বো. ২৩)

উত্তর: কোনো মিশ্রণে একটি উপাদানের মোল সংখ্যা এবং ঐ মিশ্রণে উপাদানসমূহের মোট মোল সংখ্যার অনুপাতকে ঐ উপাদানের মোল

ভগ্নাংশ বলে।

১৮। আংশিক চাপ কাকে বলে? [য়. বো. ২৩, ২১, ১৯; ঢ়. বো. ২১; ম. বো. ২১]
উত্তর: একটি গ্যাস মিশ্রণ কোনো নির্দিষ্ট তাপমাত্রায় যে আয়তন দখল করে,
মিশ্রণের অন্তর্গত একটি গ্যাস যদি ঐ একই তাপমাত্রায় এককভাবে
সমান আয়তন দখল করে যে চাপের সৃষ্টি করে, সেই চাপকে ঐ মিশ্রণে

ঐ উপাদান গ্যাসের আংশিক চাপ বলা হয়।

১৯। R.M.S বেগ কী? [ঢা. বো. ২৩; চ. বো. ২২; সম্মিলিত বো. ১৮; ব. বো. ১৭] উত্তর: কোনো গ্যাসের অণুসমূহের প্রতিটি অণুর গতিবেগের বর্গের গড় মানের বর্গমূলকে গ্যাসটির অণুসমূহের RMS বেগ বলে।

২০। লুইস অস্ল/এসিড কী?

রো. বো. ২১; য. বো. ২১]

উত্তরঃ যে সকল প্রশম অণু বা আয়ন বিক্রিয়ায় অংশগ্রহণকালে একজোড়া ইলেকট্রন গ্রহণ করে তাদেরকে লুইস অস্ল/এসিড বলে।

২১। অনুবন্ধী অস্লু কী?

চি বো ১১

উত্তর: ব্রনস্টেড-লাউরি অস্ত্র ক্ষারক মতবাদ অনুসারে কোনো ক্ষারক একটি প্রোটন গ্রহণ করে যে অণু বা আয়নে পরিণত হয়, তাকে ঐ ক্ষারকের অনুবন্ধী অস্ত্র বলা হয়।

২২। অনুবন্ধী ক্ষারক কাকে বলে?

[ह. त्वा. २७; य. त्वा. २১; ह. त्वा. २১; त्रि. त्वा. २১; व. त्वा. ১৭]

উন্তর: ব্রনস্টেড-লাউরি অস্ত্র-ক্ষারক মতবাদ অনুসারে, কোনো অস্ত্র কোনো ক্ষারক পদার্থকে একটি প্রোটন দান করে যে আয়ন বা অণুতে পরিণত হয়, তাকে ঐ অম্ত্রের অনুবন্ধী ক্ষারক বলা হয়।

২৩। এসিড বৃষ্টি কী? [চা. বো. ২৩, ১৭; ব. বো. ২২; ম. বো. ২২]

উন্তর: বিভিন্ন অশ্লীয় অক্সাইড NO_2 , SO_2 , HCl, CO_2 প্রভৃতি গ্যাসীয় উপাদান তুষার, শিশির ও বৃষ্টির পানির সাথে মিশে H_2SO_4 , HNO_3 , HCl এসিড হিসাবে ভূ-পৃঠে নেমে আসার ঘটনাকে এসিড বৃষ্টি বলে।

২৪। দৃষক কাকে বলে?

[ব. বো. ২৩; দি. বো. ১৭]

উত্তর: যেসব উপাদান পরিবেশের ভারসাম্য নষ্ট করে দেয় এবং প্রত্যক্ষ ও পরোক্ষভাবে প্রাণী ও উদ্ভিদের জন্য ক্ষতির কারণ সেসব পদার্থকে দৃষক বলে। যেমন: SO_x, NO_x, H₂S, CFC ভারী ধাতু ইত্যাদি।

২৫। BOD কী? [ঢা. বো. ২৩; ব. বো. ২২; দি. বো. ২১; কু. বো. ২১; রা. বো. ১৭] উত্তর: BOD (Biochemical Oxygen Demand) দ্বারা নমুনা পানিতে থাকা দৃষক জৈব বস্তুকে ব্যাকটেরিয়া দ্বারা সম্পূর্ণ ডিগ্রোডেশন বা পচনশীল জৈব বস্তুকে বিয়োজিত করতে প্রয়োজনীয় অক্সিজেনের পরিমাণকে বোঝানো হয়।

২৬। COD বলতে কী বোঝ? রো. বো. ২৩; ব. বো. ১৯; দি. বো. ১৯; কু. বো. ১৭। উত্তর: প্রতি লিটার সারফেস ওয়াটারের নমুনায় থাকা দৃষক পচনশীল জৈব বস্তু ও অপচনশীল জৈব যৌগকে সম্পূর্ণ জারিত করে CO_2 , NH_3 , H_2S ও পানিতে পরিণত করতে যে পরিমাণ ভরের অক্সিজেন ঐ পানির DO থেকে দরকার হয়, তাকে ঐ পানির COD বলা হয়।

২৭। পানির DO কাকে বলে?

কু. বো. ২৩

উত্তর: প্রতি লিটার নমুনা পানির অক্সিজেন সম্পৃক্তকরণে পানিতে দ্রবীভূত অক্সিজেনের পরিমাণকে ঐ পানির DO বলা হয়।

২৮। নমুনা পানির TDS কী? [চ. বো. ২৩; সি. বো. ২২; চ. বো. ১৭; দি. বো. ১৭] উত্তর: কোনো নমুনা সারফেস ওয়াটারে থাকা জৈব ও অজৈব কলয়েডের কণা এর চেয়ে ছোট আণবিক ও আয়নিক সব পদার্থের সামগ্রিক পরিমাণকে ঐ নমুনা পানির TDS (Total Dissolved Solids) বলা হয়।

২৯। পানির খরতা কাকে বলে?

[চ. বো. ২৩]

উত্তর: পানিতে অধিক পরিমাণে দ্বিধনাত্মক ক্যাটায়ন যেমন- Ca^{2+} , Mg^{2+} ও Fe^{2+} আয়নের উপস্থিতির কারণে পানিতে সাবান মিশ্রিত করলে ফেনা হতে না চাওয়ার বিশেষ ধর্মকে পানির খরতা বলে।

৩০। পানির স্থায়ী খরতা কাকে বলে? দি. বো. ২৩; ম. বো. ২৩; দি. বো. ১৯। উত্তর: পানিতে Ca^{2+} , Mg^{2+} ও Fe^{2+} আয়নের ক্লোরাইড ও সালফেট অধিক পরিমাণে দ্রবীভূত থাকলে পানির যে খরতার সৃষ্টি হয়, তাকে পানির স্থায়ী খরতা বলে।

৩১। ETP কী? [রা. বো. ২৩; ঢা. বো. ২২; দি. বো. ২১] উত্তর: শিল্প কারখানায় বর্জ্য থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ETP বলা হয়।

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter

গুরুত্বপূর্ণ অনুধাবনমূলক প্রশ্নোত্তর

সি.জি. এস এককে মোলার গ্যাস ধ্রুবকের মান নির্ণয় কর। বি. বে.,
উত্তর: আমরা জানি, PV = nRT

$$\therefore R = \frac{PV}{nT}$$

এখানে, P = CGS পদ্ধতিতে প্রমাণ চাপ = 76 cm পারদ স্থা ওজন = $76 \times 13.6 \times 981$ dyne cm⁻²

V = CGS পদ্ধতিতে প্রমাণ চাপ ও তাপমাত্রায় 1 mol গ্যা আয়তন = 22400 cm³।

T = প্রমাণ তাপমাত্রা = 273 K, n = 1 mol

$$\therefore R = \frac{76 \times 13.6 \times 981 \times 22400}{1 \times 273}$$


 $= 8.314 \times 10^7 \text{ dyne cm mol}^{-1} \text{ k}^{-1}$

 $= 8.314 \times 10^7 \text{ erg mol}^{-1} \text{ k}^{-1}$

২। চার্লসের সূত্র থেকে তাপমাত্রা প্রকাশের নতুন স্কেল প্রতিষ্ঠা কর।

াঢা. বো. ২৩; চ. বো. উত্তর: চার্লসের সূত্র: স্থির চাপে, নির্দিষ্ট ভরের যেকোনো গ্যাসের আর গ্যাসটির প্রতি ডিম্মি সেলসিয়াস তাপমাত্রা বৃদ্ধি বা হ্রাসের ফলে ।

তাপমাত্রায় ঐ গ্যাসের আয়তনের $\frac{1}{273}$ অংশ হারে যথাক্রমে বৃদ্ধি বা<u></u>হাস প

চিত্র: পরম তাপমাত্রা স্কেল

স্থির চাপে, নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন 0° C ও t তাপমাত্রায় V_0 ও V_t হলে, চার্লসের সূত্রানুসারে,

$$V_t = V_0 \left(1 + \frac{t}{273} \right)$$

t = -273°C হলে, $V_t = V_0 = 0$

বেহেতু, –273°C তাপমাত্রায় গ্যাসের আয়তন শূন্য তাই –273 তাপমাত্রাকে পরমশূন্য তাপমাত্রা বলে। পরমশূন্য তাপমাত্রার ধার হতে পাই,

$$-273$$
°C = 0 K

$$\therefore$$
 t°C = (273 + t) K = T kelvin

উপযুক্ত সমীকরণই হলো চার্লসের সূত্র হতে তাপমাত্রা প্রকাশের নতুন স্কেন

৩। 'R' কে সার্বজনীন ধ্রুবক বলা হয় কেন?

উত্তর: আদর্শ গ্যাস সমীকরণ PV = nRT। এই সমীকরণে এক শে গ্যাসের জন্য $\frac{PV}{T}$ এর অনুপাতকে R বা মোলার গ্যাস ধ্রুবক বলা হা একে সার্বজনীন গ্যাস ধ্রুবকও বলা হয়। R এর মান গ্যাসের প্রকৃতি

থকে সাবজনান গ্যাস দ্রুপকত বলা হয়। R এর মান গ্যাসের প্রকৃতি ধর্মের উপর নির্ভর করে না। একই তাপমাত্রা ও চাপে এক শে যেকোনো গ্যাসের মোলার আয়তন সমান হওয়ায় সকল গ্যাসের ^{বেল} গ্যাস ধ্রুবক R এর মান সমান হয়। তাই R কে সার্বজনীন গ্যাস ধ্রু^বন

বলা হয়।

পরিবেশ রসায়ন ➤ ১০৫৮ PRB Compact Suggestion Book......৩১

8। তাপমাত্রা বৃদ্ধি করণে গ্যাসের চাপ বৃদ্ধি পায় ক্রেন) (ব. প্রা. ১৯)
উত্তর: সাধারণত গ্যাস অসংখ্য দুদ্র দুদ্র অণুর সমন্বরে গঠিস্ত। এই অণুগ্রন্থো
গ্যাসপাত্রের অভ্যন্তরে বিশিক্ষভাবে ছোটাছুটি করতে থাকে। এর ফলে
অণুগুলোর নিজেদের মধ্যে ও গ্যাসপাত্রের দেয়ালের সাথে অবিরাম
সংঘর্য ঘটে। গ্যাসপাত্রের দেয়ালের উপর অণুসমূহের এই সংঘর্মের
ফলেই গ্যাসের চাপ সৃষ্টি হয়। তাপমাত্রা বৃদ্ধি করলে গ্যাসের
অণুসমূহের শক্তি বৃদ্ধি পায় এবং এরা আরও দ্রুত ছোটাছুটি করতে
থাকে। ফলস্বরূপ সংঘর্ষের পরিমাণও বৃদ্ধি পায়। তাই তাপমাত্রা বৃদ্ধি
করলে গ্যাসের চাপ বৃদ্ধি পায়।

৫। কোন শর্তে বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় আচরণ করবে? [কু. য়ে. ঽ১] উত্তর: যেসকল গ্যাস কক্ষ তাপমাত্রা ও চাপে গ্যাসের সূত্রাবলি মেনে চলে না তারা বাস্তব গ্যাস। বাস্তব গ্যাসমূহের মধ্যে আকর্ষণ-বিকর্ষণ বল বিদ্যমান এবং গ্যাস অণুসমূহের আয়তন গ্যাসপাত্রের তুলনায় নগণ্য নয়। ২টি শর্তে বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় আচরণ করে।

(i) উচ্চ তাপমাত্রা ও (ii) নিমুচাপ
উচ্চ তাপমাত্রায় ও নিমুচাপে গ্যাসের অণুগুলোর মধ্যে দূরত্ব অধিক
হওয়ায় কোনো আন্তঃআণবিক আকর্যণ বা বিকর্যণ বল কাল্ল করে না
এবং অণুসমূহের মোট আয়তন ও গ্যাস দ্বারা দখলকৃত আয়তনের
তুলনায় নগণ্য হয় যা আদর্শ গ্যাসের বৈশিষ্ট্য। অর্থাৎ, উচ্চ তাপমাত্রা ও
চাপে বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় কাল্ল করে।

৬। বাস্তব গ্যাসের চাপ আদর্শ চাপ অপেক্ষা কম কেন? ব্যাখ্যা কর।

উত্তর: আদর্শ গ্যাসের স্বীকার্য জনুযায়ী, আদর্শ অবস্থায় গ্যাসের জণুগুলোর মধ্যে কোনো আকর্ষণ বা বিকর্ষণ নেই। কিন্তু বাস্তব গ্যাসের জণুসমূহের মধ্যে আকর্ষণ আছে, তাই এদের তরলে পরিণত করা যায়। আদর্শ অবস্থায় আকর্ষণমুক্ত গ্যাসের জণুগুলো পাত্রের দেয়ালে যে পরিমাণ চাপ দেয়, বাস্তব গ্যাসের জণুসমূহের মধ্যে আকর্ষণ বল থাকার সে পরিমাণ চাপ প্রয়োগ করতে পারে না। তাই বাস্তব গ্যাসের জন্য আপাতদৃষ্টিতে যে চাপ ধরা হয় তা প্রকৃত চাপ অপেক্ষা কম।

৭। 64 g O2 গ্যাসের জন্য ভ্যান্ডার ওয়ালস সমীকরণ লেখ।

[ব. বো. ২৩; ঢা. বো. ২১]

উত্তর: আমরা জানি, অক্সিজেনের আণবিক ভর = 32 g অর্থাৎ, 32 g অক্সিজেনের মোল সংখ্যা = 1 মোল

 \therefore 64 g অক্সিজেনের মোল সংখ্যা = $\frac{64}{32}$ মোল = 2 মোল

n মোল গ্যাসের জন্য ভ্যানডার ওয়ালস সমীকরণ,

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

তাহলে, 2 মোল গ্যাসের জন্য (n=2) ভ্যানভার ওয়ালসের সমীকরণটি হবে-

$$\left(P + \frac{4a}{V^2}\right)(V - 2b) = 2RT$$

৮। ধারিমের ব্যাপন সূত্রটি যাখা কর। রা, তা, ১৬) উত্তর: থাতানের ব্যাপন সূত্রটি হলো, স্থির চাপে ও স্থির তাপমান্ত্রার কোনো

গ্যাতোর ব্যাপন হার (r) ঐ গ্যাতোর মোপার হুর (M) এর বর্ণমূলের ব্যস্তানুপাহ্রিক।

অর্থাৎ, স্থির চাপ ও তাপমাত্রায় যে গ্যাসের মোলার স্থর কম ঐ গ্যাসের ব্যাপন হার সবচেয়ে রেশি হবে। আবার, গ্যাসের হৃদস্থিতিক প্রাহামের সূত্রটি হলো, স্থির চাপ ও তাপমাত্রায় কোনো গ্যাসের ব্যাপন হার (r) গ্যাসটির ঘনত্বের (d) বর্গমূলের ব্যস্তানুপাতিক।

$$\therefore r \propto \frac{1}{\sqrt{d}}$$

অর্থাৎ, গ্যাসের খনত্ব কম হলে তার ব্যাপন হার অধিক হয়।

দুইটি গ্যানের বেলার,
$$\frac{r_1}{r_2} = \sqrt{\frac{d_2}{d_1}} = \sqrt{\frac{M_2}{M_1}}$$

৯। HCI(g) অপেক্ষা NH3(g) এর ব্যাপন হার বেশি কেন? । হু. কো. ২২। ওঁন্ডর: NH3 এবং HCI এর মধ্যে NH3 এর ব্যাপন হার বেশি। প্রাহ্মের ব্যাপন হারের সূত্র মতে, যে কোনো গ্যানের ব্যাপন হার তার আপরিক ভরের বর্গম্লের ব্যাপন হার কম এবং যে গ্যানের আপরিক ভর কম, তার ব্যাপন হার কম এবং যে গ্যানের আপরিক ভর কম, তার ব্যাপন হার বেশি। HCI এর আপরিক ভর 36.5 এবং NH3 এর আপরিক ভর 17। সূতরাং, NH3 এর আপরিক ভর কম হওরার এটির ব্যাপন হার HCI অপেক্ষা বেশি হবে।

চি. বো. ২৩। ডাল্টনের আংশিক চাপ সূত্রটি বিবৃত কর। দি. বো. ২১।

াবের অণুগুলোর

উত্তর: ডাল্টনের আংশিক চাপ সূত্র: কোনো নির্দিষ্ট তাপমাত্রায় বিক্রিয়াহীন

কোনো গ্যাস মিশ্রণের কোনো একটি উপাদান গ্যাস ঐ তাপমাত্রায়

না যায়। আদর্শ

বে পরিমাণ চাপ

কায় বে পরিমাণ

চাপসমূহের যোগফলের সমান।

১১। গ্যাসের গতিশক্তি নির্ণয়ে rms বেগ অধিক উপযোগী কেন? যে. বে. ২১। উত্তর: RMS (Root Mean Square Velocity) বা বর্গমূল গড় বর্গবেগ হলো এমন একটি বেগ, যা নির্দিষ্ট তাপমাত্রার গ্যানের প্রতিটি অণুর বেগের বর্গের গড় মানকে বর্গমূল করে নির্ণয় করা হয়।

$$C_{rms} = \sqrt{\frac{C_1^2 + C_2^2 + C_1^2 + \dots + C_N^2}{N}}$$

গ্যাস অণুগুলোর মধ্যে সবসময় সংঘর্ষ বিদ্যামান থাকায় এদের গতিবেগের প্রতিনিয়ত পরিবর্তন হয়। কোনো একটি বিশেষ মৃহুর্তে গ্যাস অণুর গতিবেগ যেমন সর্বনিম্ন হতে পারে তেমনি অস্বাভাবিকভাবে কয়েকগুণ বেশিও হতে পারে। তাদের বেগসমূহের সাধারণ গড়মান ব্যবহার করলে প্রচুর ক্রটি হওয়ার সম্ভাবনা থাকে। অণুগুলোর গড় গতিবেগ ট ব্যবহার করে প্রাপ্ত গতিশক্তির মান প্রকৃত গতিশক্তির মান হতেও কম হয়। এজন্য গ্যাসের গতিশক্তি নির্ণয়ে গড় গতিবেগ ব্যবহার না করে বর্গমূল গড় বর্গবেগ বেগ ব্যবহার করা উচিত।

Rhombus Publications

১২। গ্যাসের গতিশক্তি নির্ণয়ে rms বেগ, গড়বেগ অপেক্ষা অধিক উপযোগী কেন? [ঢা. বো. ১৭]

উত্তর: গ্যাসের গতিশক্তি নির্ণয়ে গড়বেগ অপেক্ষা rms বেগ অধিক উপযোগী। কারণ বর্গমূল গড় বর্গবেগ বা rms বেগ ব্যবহার করে প্রাপ্ত গতিশক্তির মান প্রতিটি অণুর পৃথকভাবে প্রাপ্ত গতিশক্তির সমষ্টির সমান। কিন্তু গ্যাস অণুসমূহের গতিবেগ পরস্পর থেকে এমন অস্বাভাবিকভাবে ভিন্ন যে এদের বেগসমূহের গড় মান ব্যবহার করেল ক্রটি থেকে যায়। সাধারণত অণুগুলোর গড়বেগ ব্যবহার করে প্রাপ্ত গতিশক্তির মান প্রকৃত গতিশক্তির মান অপেক্ষা কম হয়। তাই গ্যাস অণুর গতিবেগের একটি বিশেষ গড়মান rms (root mean square) বেগকে গ্যাসের গতিশক্তি নির্ণয়ে ব্যবহার করা হয়।

১৩। ব্রনস্টেড-লাউরির মতবাদ অনুসারে উদাহরণসহ অস্ত্র ও ক্ষারের সংজ্ঞা দাও। মি. বো. ২২

উন্তর: ব্রনস্টেড-লাউরি তত্তানুসারে, যেসকল যৌগ বা আয়ন অন্য পদার্থকে প্রোটন দান করতে পারে তাদেরকে অস্ত্র বলে।

এখানে, H_2SO_4 একটি প্রোটন (H^\dagger) দান করে অনুবন্ধী ক্ষারক HSO_4 এ পরিণত হয়েছে। তাই H_2SO_4 একটি অস্ত্র। অপরদিকে, যে সকল যৌগ বা আয়ন অন্য পদার্থকে প্রোটন দান করতে পারে তাদেরকে ক্ষারক বলে।

 $\ddot{N}H_3 + H^{\dagger} \rightarrow NH_4^{\dagger}$ এখানে, NH_3 একটি প্রোটন (H^{\dagger}) গ্রহণ করে অনুবন্ধী অস্ত্র NH_4^{\dagger} পরিণত হয়েছে। তাই NH_3 একটি ক্ষারক।

১৪। ${
m H_3O}^+$ কে ${
m H_2O}$ এর অনুবন্ধী অস্ত্র বলা হয় কেন? ব্যাখ্যা কর।

উত্তর: ব্রনস্টেড-লাউরি অস্ত্র-ক্ষারক মতবাদ অনুসারে, কোনো ক্ষারক অস্ত্র প্রদন্ত একটি প্রোটন গ্রহণ করার পর যে অণু বা আয়নে পরিণত হয়, তাকে ঐ ক্ষারকের অনুবন্ধী অস্ত্র বলা হয়। H_2O ক্ষারকরূপে ক্রিয়া করে একটি প্রোটন গ্রহণ করে অনুবন্ধী অস্ত্র H_3O^+ এ পরিণত হয়।

$$H_2O + H^+ \longrightarrow H_3O^+$$

ফারক অনুবন্ধী ফারক

১৫। FeCl3 লুইস এসিড কেন? ব্যাখ্যা কর। সি. বো. ২২; ম. বো. ২১; দি. বো. ১৯; সি. বো. ১৯; জনুরূপ প্রশ্ন: ম. বো. ২৩; কু. বো. ২২)

উত্তর: লুইস মতবাদ অনুসারে, যেসব প্রশম অণু বা আয়ন মুক্তজোড় ইলেকট্রন গ্রহণ করতে সক্ষম, তাদেরকে লুইস এসিড বলে।

FeCl₃ একটি যৌগ। এই যৌগে Fe এর অষ্টক অপূর্ণ থাকায় তা উপযুক্ত লুইস ক্ষারক হতে একটি মুক্তজোড় ইলেকট্রন গ্রহণ করে সন্নিবেশ সমযোজী বন্ধন গঠন করতে পারে। তাই FeCl₃ একটি লুইস এসিড।

(লুইস এসিড হিসেবে FeCl₃) (লুইস ক্ষারক)

Rhombus Publications

১৬। AICI3 একটি লুইস অ্যাসিড-ব্যাখ্যা কর। াসি. বো. ২৩, ২১; ঢা. বো. ১৭
উত্তর: এসিড-ক্ষারের লুইস অ্যাসিড-ব্যাখ্যা কর। াসি. বো. ২৩, ২১; ঢা. বো. ১৭
উত্তর: এসিড-ক্ষারের লুইস তত্তানুসারে, এসিড হলো কোনো প্রশম অণু ক
আয়ন যা অন্য ইলেকট্রনদাতা যৌগ হতে ইলেকট্রন গ্রহণ করতে পারে
AICI3 যৌগের কেন্দ্রীয় পরমাণু AI এর যোজ্যভান্তরে 6টি ইলেকট্রন
থাকায় এটি অষ্টক পূর্ণ করতে আরও 2টি ইলেকট্রন গ্রহণ করন্থে
পারে। তাই AICI3 একটি লুইস এসিড।

$$\begin{array}{c|c}
Cl \\
| \\
NH_3 + Al - Cl \longrightarrow H_3N: \rightarrow AlCl_3\\
| \\
Cl
\end{array}$$

১৭। HCOOH অপেক্ষা CH₃COOH দুর্বল এসিড কেন? কি. বো. ১৭
উত্তরঃ ফরমিক এসিড (HCOOH) এবং অ্যাসিটিক এসিড (CH₃COOH
এর মধ্যে CH₃COOH দুর্বল এসিড। CH₃COOH এর গঠরে
মিথাইল (- CH₃) গ্রুপ বিদ্যমান। এই মিথাইল (- CH₃) গ্রুপ
ইলেকট্রেন দাতা হিসেবে কাজ করে। তাই CH₃COOH যৌর্
উপস্থিত মিথাইল (- CH₃) গ্রুপ ইলেকট্রন দান করে O – H বন্ধনের
Ο এর ইলেকট্রন ঘনত্ব বাড়িয়ে দেয়। এতে CH₃COOH এর প্র্রোটণ
(H¹) ত্যাগ করার প্রবণতা কমে যায়। একটি এসিড যত সহজে প্রোটণ
(H¹) ত্যাগ করতে পারে ঐ এসিডটি তত শক্তিশালী হয়। তাই
HCOOH অপেক্ষা CH₃COOH একটি দুর্বল এসিড।

১৮। দুর্বল এসিডের অনুবন্ধী ক্ষারক সবল হয় কেন? ব্যাখ্যা কর।

াম. বো. ২৩; চা. বো. ২২
উত্তর: ব্রনস্টেড-লাউরি অস্ত্র-ক্ষারক মতবাদ অনুসারে, তীব্র অস্ত্র বা এসিডের
অনুবন্ধী ক্ষারক দুর্বল এবং দুর্বল অস্ত্র বা এসিডে অনুবন্ধী ক্ষারক তীর্
হয়। দুর্বল এসিডের প্রোটন ত্যাগের প্রবণতা কম। কিন্তু এর অনুবন্ধী
ক্ষারক ঝণাতাক চার্জবিশিষ্ট হওয়ায় এরা প্রোটন গ্রহণের উচ্চ প্রবণত

দেখায় এবং শক্তিশালী অনুবন্ধী ক্ষারকরূপে আচরণ করে, যেমন:

১৯। NH₃ একটি লুইস ক্ষারক-ব্যাখ্যা কর। দি. বো. ২২ উত্তর: লুইস তত্ত্বানুসারে, এক জোড়া ইলেকট্রন দানে সক্ষম পদার্থকে লুইর

ক্ষার বলে। NH_3 ও HCl এর সংযোগে NH_4Cl গঠিত হয় বিক্রিয়াটি–

$$\overrightarrow{NH_3} + \overrightarrow{H^+CI^-} \longrightarrow NH_4CI$$

NH₃ এর একজোড়া মুক্ত ইলেকট্রন বিদ্যমান থাকায় এটি HCl ^{এই} H⁺ কে ইলেকট্রন শেয়ার করে NH₄Cl গঠিত করে। যেহেতু NH় ইলেকট্রন শেয়ার করে, সূতরাং NH₃ একটি লুইস ক্ষার।

পরিবেশ রসায়ন ➤ ১৫১ FRB Compact Suggestion Book....

২০। Н₂О উভধর্মী বৌগ-ব্যাখ্যা কর।

ঢ়ো. বো. ২৬; ব. বো. ২২; ম. বো. ২২; দি. বো. ২১। উত্তর: ব্রনস্টেড-লাউরি অম্ল-ক্ষারক মতবাদ অনুসারে, যেসকল পদার্থ প্রোটন দাতা ও প্রোটন গ্রহীতা উভয়রূপে কাজ করে অর্থাৎ, অবস্থাভেদে অম্ল ও ক্ষারক উভয়রূপে কাজ করে, তাদেরকে উভধর্মী পদার্থ বলা হয়। অর্থাৎ, H₂O অম্লরূপে ক্রিয়া করে।

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$
অন্ন অনুবন্ধী ক্ষারক

আবার, H_2O একটি প্রোটন গ্রহণ করে অনুবন্ধী অস্ত্র H_3O^+ এ পরিণত হয়। অর্থাৎ, H_2O ক্ষারকরূপেও ক্রিয়া করে।

তাই H₂O একটি উভধর্মী যৌগ।

২১। HCO আয়ন উভধর্মী ব্যাখ্যা কর।

রা. বো. ২৩; কৃ. বো. ২৩; ঢা. বো. ২১; ম. বো. ২১; অনুরূপ প্রশ্ন: দি. বো. ২৩। উন্তর: ব্রনস্টেড-লাউরি অস্ত্র-ক্ষারক মতবাদ অনুসারে, যেসকল পদার্থ প্রোটন দাতা ও প্রোটন গ্রহীতা উভয়রূপে কাজ করে অর্থাৎ, অবস্থাভেদে অস্ত্র ও ক্ষারক উভয়রূপে কাজ করে, তাদেরকে উভধর্মী পদার্থ বলা হয়। HCO_3^- আয়ন একটি প্রোটন ত্যাগ করে অনুবন্ধী ক্ষারক CO_3^{2-} এ পরিণত হয়। অর্থাৎ, HCO_3^- অস্তরূপে ক্রিয়া করে।

আবার, HCO_3^- আয়ন একটি প্রোটন গ্রহণ করে অনুবন্ধী অম্ল H_2CO_3 এ পরিণত হয়। অর্থাৎ, HCO_3^- ক্ষারকরূপে ক্রিয়া করে।

তাই HCO আয়ন একটি উভধর্মী পদার্থ।

২২। HSO উভধর্মী পদার্থ কেন?

(त्रा. त्वा. ১৯; य. त्वा. ১৯)

উন্তর: ব্রনস্টেড লাউরির এসিড ক্ষার তত্ত্বানুসারে যেসব যৌগ বা মূলক অন্য যৌগকে প্রোটন (H^{\dagger}) দান করতে পারে তারা এসিড।

 $HSO_4^- + NH_3 \Longrightarrow SO_4^{2-} + NH_4^+$

এখানে HSO_4 একটি এসিড কেননা এটি NH_3 কে একটি প্রোটন

(H¹) দান করেছে।

আবার, যেসব পদার্থ অন্য পদার্থ হতে প্রোটন গ্রহণ করে তাদেরকে ক্ষারক বলে।

 $HSO_4^- + HCI \Longrightarrow H_2SO_4 + CI^-$

ক্ষার

এখানে HSO_4^- একটি ক্ষারক কেননা এটি HCl থেকে একটি প্রোটন গ্রহণ করেছে। সূতরাং, HSO_4^- আয়নটি উভধর্মী।

২৩। H₂PO₄ উভধর্মী পদার্থ-ব্যাখ্যা কর।

[দি. বো. ২৩]

উন্তর: একই যৌগ বা আয়ন অবস্থাভেদে অপর বিক্রিয়কের উপর নির্ভর করে একাধিক বিক্রিয়ায় অম্ল বা ক্ষারক উভয়রূপে আচরণ করতে পারে, এদেরকে উভধর্মী যৌগ বা আয়ন বলে। $H_2PO_4^-$ আয়ন ক্ষারক ও অম্ল উভয়রূপে ক্রিয়া করে।

অম্লন্নপে: $H_2PO_4^- + NH_3 \Rightarrow HPO_4^{2-} + NH_4^+$ ক্ষারকরূপে: $H_2PO_4^- + HCI \Rightarrow H_3PO_4 + CI^-$ সূতরাং, $H_2PO_4^-$ একটি উভধর্মী পদার্থ। ২৪। NH₃ + HCl ⇒ NH⁺₄ + Cl সমীকরণে অনুবন্ধী এসিড-ক্ষারক যুগল বুঝিয়ে লিখ। [য. বো. ২১]

উন্তর: ব্রনস্টেড-লাউরি অম্র-ক্ষারক মতবাদ অনুসারে, কোনো অম্র ক্ষারক পদার্থকে একটি প্রোটন দান করে যে আয়ন বা অণুতে পরিণত হয়, তাকে ঐ অম্রের অনুবন্ধী ক্ষারক বলা হয়। আবার, কোনো ক্ষারক ঐ প্রোটন গ্রহণ করে যে আয়ন বা অণুতে পরিণত হয়, তাকে ঐ ক্ষারকের অনুবন্ধী অম্র বলে।

জনুবন্ধী অস্ত্ৰ-ক্ষারক যুগল

↓

NH₃ + HC*I* = NH[↑]₄ + C*I*⁻

ক্ষারক অস্ত্র জনুবন্ধী অস্ত্র অনুবন্ধী ক্ষারক

↑

অনুবন্ধী অস্ত্ৰ-ক্ষারক যুগল

এখানে, HCI অস্ত্র একটি প্রোটন ত্যাগ করে অনুবন্ধী ক্ষারক CI এ পরিণত হয়। ক্ষারক NH_3 ঐ প্রোটন গ্রহণ করে অনুবন্ধী অস্ত্র NH_4^+ এ পরিণত হয়।

২৫। এসিড বৃষ্টির কারণ ব্যাখ্যা কর।

[পি. বো. ২৩; ব. বো. ২১]

উত্তর: বায়ুমণ্ডলে অধঃক্ষেপণ বৃষ্টিতে pH এর মান 5.6 এর কম হলে ঐ অধঃক্ষেপণকে এসিড বৃষ্টি বলা হয়। এসিড বৃষ্টির প্রাকৃতিক ও মানবসৃষ্ট উভয় কারণ রয়েছে।

প্রাইমারি বায়ুদূষক SO_2 গ্যাস, নাইট্রোজেন অক্সাইডসমূহ (NO_D) ইত্যাদি অস্লীয় অক্সাইড বৃষ্টির পানির সাথে যুক্ত হয়ে এসিড $(H_2SO_3, H_2SO_4, HNO_3)$ উৎপন্ন করে।

$$SO_2(g) + H_2O(I) \rightarrow H_2SO_3(aq)$$

$$SO_3(g) + H_2O(l) \rightarrow H_2SO_4(aq)$$

$$N_2O_5(g) + H_2O(l) \rightarrow 2HNO_3(aq)$$

আবার, মোটর-গাড়ি, ইটের ভাটা, তাপ বিদ্যুৎ কেন্দ্র, কল-কারখানা, ধাতু নিদ্ধাশন কেন্দ্র থেকে জ্বালানি তেল বা কয়লার দহনে উৎপন্ন বিভিন্ন অম্লধর্মী গ্যাস বায়ুমন্ডলের মাধ্যমে বৃষ্টির পানিতে মিশে এসিড বৃষ্টি সৃষ্টি হয়।

২৬। পানির BOD 5 mg/L বলতে কী বুঝার? বি. বো. ২০, ২২: সি. বো. ২২:

দি. বো. ১৭; অনুরূপ প্রশ্ন: কু. বো. ২৩, ২১: দি. বো. ২২: ব. বো. ২১; চ. বো. ১৭
উত্তর: BOD (Biochemical Oxygen Demand) দ্বারা নমুনা পানিতে
থাকা দৃষক জৈব বস্তুকে ব্যাকটেরিয়া দ্বারা সম্পূর্ণ ডিগ্রেডেশন বা
পচনশীল জৈব বস্তুকে বিয়োজিত করতে প্রয়োজনীয় অক্সিজেনের
পরিমাণকে বোঝায়। পানির BOD 5 mg/L বলতে বোঝায় 1 L
নমুনা পানিতে উপস্থিত সকল বিয়োজনযোগ্য জৈব পদার্থকে জারিত
করতে 5 mg অক্সিজেনের প্রয়োজন হয়।

Rhombus Publications

২৭। নমুনা পানির COD এর মান BOD অপেক্ষা বেশি কেন? ব্যাখ্যা কর। [ह. त्वा. २७, २२, २১; म. त्वा. २७, २२; हा. त्वा. २२; व. त्वा. २১; त्रि. त्वा. २১] উন্তর: COD এর পূর্ণরূপ হলো Chemical Oxygen Demand এবং BOD এর পূর্ণরূপ Biochemical Oxygen Demand। পানিতে উপস্থিত সকল বিয়োজনযোগ্য ও বিয়োজন অযোগ্য জৈব পদার্থকে জারিত করতে বা ভাঙতে প্রয়োজনীয় অক্সিজেনই হলো COD। অন্যদিকে BOD হলো পানিতে উপস্থিত গুধু বিয়োজনযোগ্য জৈব পর্দার্থকে ভাঙতে প্রয়োজনীয় অক্সিজেনের পরিমাণ। স্বাভাবিকভাবেই, COD এর মান BOD অপেক্ষা বেশি হয়।

২৮। পানির COD 1.5 mg L⁻¹ বলতে কী বুঝ? উত্তর: পানির COD 1.5 mg L⁻¹ বলতে বোঝায়, প্রতি লিটার নমুনা পানিতে থাকা বিয়োজনযোগ্য ও বিয়োজন অযোগ্য জৈব বস্তুকে সম্পূর্ণভাবে জারিত করে CO2, NH3, H2S ও পানিতে পরিণত করতে 1.5 mg অক্সিজেন প্রয়োজন হয়।

১৯। अंत्र शांनि সাবালের সার্যে ফেনা তৈরি করে না কেন? [त्र. १०: त्रा. १०: त्रा. व्रा. १३] উন্তর: পানিতে Ca^{2+} , Mg^{2+} , Fe^{2+} , Sr^{2+} প্রভৃতি আয়নের কার্বনেট/ বাইকার্বনেট, ক্লোরাইড ও সালফেট লবণ দ্রবীভূত থাকলে, পানিতে খরতা সৃষ্টি হয়। খর পানি সাবানের সাথে বিক্রিয়া করে তদ্রবণীয় গাদ সৃষ্টি করে। ফলে খর পানিতে সহজে ফেনা উৎপন্ন হয় না। যথেষ্ট পরিমাণ সাবান খরচের পর পানিতে উপস্থিত $\mathrm{Ca^{2+}}$, $\mathrm{Mg^{2+}}$ এবং $\mathrm{Fe^{2+}}$ ৩ া পানি হতে অধঃক্ষিপ্ত হয়ে সম্পূর্ণ অপসারিত হবার পর ফেনা উৎপন্ন হয়। এতে সাবানের অপচয় ঘটে।

 $C_{17}H_{35}COONa + M^{2+} \rightarrow (C_{17}H_{35}COO)_2M \downarrow (অধ্যক্ষিত্ত)$

এখানে, M²⁺ = Ca²⁺, Mg²⁺, Fe²⁺ প্রভৃতি।

৩০। পানির অস্থায়ী খরতা কীভাবে দূর করা যায়? উন্তর: পানিতে Ca^{2+} , Mg^{2+} ও Fe^{2+} আয়নের বাইকার্বনেট লবণ অধিক দ্রবীভূত থাকায় পানির যে খরতা সৃষ্টি হয় তাকে পানির অস্থায়ী খরতা বলা হয়। অস্থায়ী খর পানিকে উচ্চ তাপমাত্রায় উত্তপ্ত করলে वार्डकार्वरनि नवन जार्ल विद्यािक्षिक रुद्य ज्यावनीय कार्वरनिकारी অধঃক্ষিপ্ত হয় এবং অস্থায়ী খর পানি মৃদু পানিতে পরিণত হয়।

 $Ca(HCO_3)_2(aq) \xrightarrow{\Delta} CaCO_3(s) + CO_2(g) + H_2O(l)$ এভাবেই পানির অস্থায়ী খরতা দূর করা যায়।

৩১। O3 স্তর UV রশ্মি থেকে আমাদেরকে কিভাবে রক্ষা করে? ব্যাখ্যা কর। উত্তর: ভূ-পৃষ্ঠ হতে 25 km উপরে বায়ুমণ্ডলের স্ট্র্যাটোক্ষিয়ারে ওজোন (O₃) অঞ্চল বিদ্যমান থাকে। বিভিন্ন কারণে ওজোন স্তর প্রতিনিয়ত ক্ষয় হচ্ছে আবার নতুন ওজোন স্তরের সৃষ্টিও হচ্ছে। এই ওজোনস্তর ভাঙ্গা এবং গড়ার সময় এটি প্রয়োজনীয় শক্তি সূর্যালোকের অতিবেগুনী রশ্মি (UV) হতে গ্রহণ করে থাকে।

$$3O_2 \stackrel{hU}{\longleftarrow} 2O_3$$

আমাদের রক্ষা করে থাকে।

.... ACS > Chemistry 2nd Paper Chapter

HSC পরীক্ষার্থীদের জন্য বাছাইকৃত বহুনির্বাচনি প্রশ্নোতর

षाप्रमा गालिब उज्यास

1 atm = কত প্যাসকেল?

(1.01325 × 10⁻² Pa

 $31.01325 \times 10^2 \text{ Pa}$ ① $1.01325 \times 10^5 \text{ Pa}$

® 1.01325 × 10⁻⁵ Pa

উন্তর: 🕦 1.01325 × 10⁵ Pa

ব্যাখ্যা: 1 atm = 76.0 cm (Hg)

= 760 mm (Hg)

= 101.325 kPa

 $= 1.01325 \times 10^5 \, \text{Pa}$

SATP তে কোনো গ্যানের আয়তন 24.789 শিটার। তাপমাত্রা ক TH. (41.)

③ 27°C

1 0 K

® - 273 K

উব্বঃ 🕸 25°C

ব্যাখা: SATP তে, তাপমাত্রা = 25°C বা, 298 K

চাপ = 100 kPa ও

1 মোল গ্যাসের আয়তন = 24.789 L

SATP ও STP তে তাপমাত্রার পার্থক্য কত °C?

বি. বো. ২

M. OT. 3

273

3 25

1 0

(T) - 273

উত্তর: 🕲 25

ব্যাখ্যা: STP তে, তাপমাত্রা = 0°C বা, 273 K

চাপ = 1 atm বা, 101.325 kPa

মোলার আয়তন = 22.414 L mol⁻¹

SATP তে, তাপমাত্রা = 25°C বা, 298 K

চাপ = 100 kPa

মোলার আয়তন = 24.789 L mol-1

∴ তাপমাত্রার পার্থক্য = (25 – 0)°C = 25°C

SATP তে 2 মোল O2 গ্যাসের আয়তন কত?

রা. বো. খ

③ 22.789 L

@ 24.789 L

1 45.578 L

® 49.578 L

উত্তর: 🕲 49.578 L

ব্যাখা: SATP তে,

@AdmissionStuffs

$$n = \frac{V}{24.789}$$

 \Rightarrow V = (n × 24.789) L $= (2 \times 24.789) L$

=49.578 L

৫। বয়েলের সত্রের সমীকরণের লেখচিত্র কোন ধরনের?

মি. বো. খ

অাইসোথার্ম

থে আইসোবার

গ্র আইসোকোর

ত্ব আইসোমোল

ব্যাখ্যা: $P_1V_1=P_2V_2=......$ P_nV_n সকল ক্ষেত্ৰে তাপমাত্ৰা ধ্ৰুব।

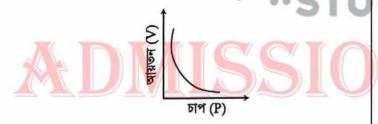
পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book..... কোন দেখচিত্রটি আইসোধার্ম সমর্থন করে?

। আদর্শ গ্যাসের বৈশিষ্ট্যসূচক মানদন্ত হলো-

ाज. व्या. २२) के।

ক্রি, বো. ২৩

- (i) PV = nRT
- (iii) STP তে মোলার আয়তন 22.414 L নিচের কোনটি সঠিক?
- ii vi
- (1) ii v iii
- fii e iii
- (1) i, ii v iii

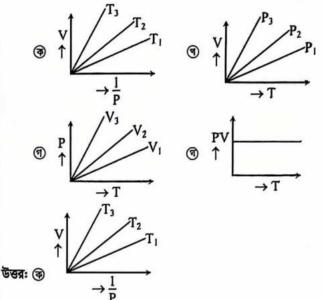

উন্তর: 📵 i, ii ও iii

ব্যাখ্যা: আদর্শ গ্যাসের বৈশিষ্ট্যসমূহ নিম্নরপ:

- (i) আদর্শ গ্যাস সকল তাপমাত্রা ও চাপে PV = nRT সমীকরণ মেনে
- (ii) স্থির তাপমাত্রায় আদর্শ গ্যাসের অভ্যন্তরীণ শক্তি আয়তনের উপর নির্ভরশীল নয়। অর্থাৎ, $\left(\frac{\partial U}{\partial V}\right)_T = 0$ ।
- (iii) আদর্শ তাপমাত্রা ও চাপে (STP-তে) আদর্শ গ্যাসের মোলার ব্যাখ্যা: বয়েলের সূত্র হতে প্রাপ্ত লেখচিত্র হলো সমোঞ লেখ বা আয়তন 22.414 L।
- ৭। স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন ও চাপের সম্পর্কযুক্ত রেখা কোন প্রকৃতির?
 - পরাবৃত্ত
- মৃলবিন্দুগামী সরলরেখা
- গ্ৰ অধিবৃত্ত
- ম-অক্ষ ছেদকারী সরলরেখা

উন্তর: গ্র অধিবৃত্ত

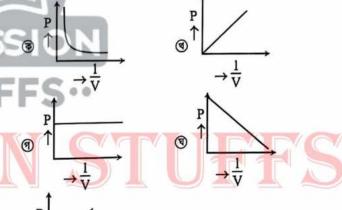
ব্যাখ্যা: স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোন গ্যাসের আরতন ঐ গ্যাসের উপর প্রযুক্ত চাপের ব্যস্তানুপাতিক; $V \propto \frac{1}{p}$ ।

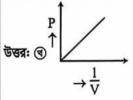


- ৮। STP তে কোনো গ্যাসের আয়তন 500 mL হলে 740 mm (Hg) চাপে ও 25°C তাপমাত্রায় উক্ত গ্যাসের আয়তন কত হবে? ানি. বো. ২১)
 - @ 0.76 L
- (4) 0.66 L
- @ 0.56 L
- ® 0.46 L

উন্তর: ① 0.56 L

ব্যাখ্যাঃ আমরা জানি, $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ $\therefore V_2 = \frac{P_1 V_1 T_2}{T_1 P_2}$ $=\frac{760 \times 500 \times 298}{273 \times 740}$ = 560.54 mL= 0.56 L


STP
$$\[\] \nabla \]$$
,
 $P_1 = 1 \text{ atm}$
 $= 760 \text{ mm (Hg)}$
 $T_2 = 25^{\circ}\text{C}$
 $= 298 \text{ K}$
 $T_1 = 273 \text{ K}$
 $P_2 = 740 \text{ mm (Hg)}$



আইসোথার্ম। বয়েলের সূত্র স্থির তাপমাত্রার ক্ষেত্রে প্রযোজ্য। 'ক' অপশনের লেখচিত্রে প্রতিটি রেখার জন্য তাপমাত্রা নির্দিষ্ট। 'খ', 'গ', ও 'ঘ' অপশনের লেখচিত্রে X-অক্ষে তাপমাত্রা (T) থাকায় রেখান্তলো আইসোথার্ম রেখা নয়।

5০। স্থির ভাপমাত্রায় P বনাম $rac{1}{V}$ লেখচিত্র হলো-

ব্রা. বো. ২২)

ব্যাখ্যাঃ বয়েলের সূত্রানুসারে, $V \propto \frac{1}{D}$ ।

y = m x; या भृनिवन्तृगाभी সরলরেখার সমীকরণ

লেখচিত্রটি মূলবিন্দুগামী সরলরেখা।

১১। 1.5 atm চাপে 25°C তাপমাত্রায় একটি গ্যাসের আয়তন 0.5 L ১৫। তাপমাত্রার সাথে আয়তন পরিবর্তনশীল হর কোনটিতে? হলে উক্ত ভাপমাত্রার খিল্প চাপে গ্যাসটির আরতন কত হবে?

বি. বো. ২২]

- **③** 0.45 L
- @ 0.35 L
- 1 0.25 L
- (9) 0.15 L

উন্তর: প 0.25 L

याचाः P₁V₁ = P₂V₂

$$\therefore V_2 = \frac{P_1 V_1}{P_2} = \frac{1.5 \times 0.5}{2 \times 1.5} L = 0.25 L$$

- ১২। 38°C তাপমাত্রায় একটি কাঁচের মার্বেলসহ কোনো নির্দিষ্ট ভরের গ্যানের আয়তন 250 cm³। তাপমাত্রা স্থির রেখে চাপ দিওণ করা হলে মার্বেলসহ গ্যাসের আয়তন দাঁড়ায় 130 cm³। মার্বেলের আয়তন কত?
 - ② 20 cm³
- 10 cm³
- (f) 100 cm³
- (9) 0.1 cm³

উভর: **(क)** 10 cm³

ব্যাখ্যা: মার্বেল কঠিন পদার্থ হওয়ায় চাপের পরিবর্তনে আয়তনের কোনো পরিবর্তন হয় না। ধরি, মার্বেলের আয়তন $= x \text{ cm}^3$ ।

$$P_1 (V_1 - x) = P_2 (V_2 - x)$$

$$\Rightarrow P_1 (250 - x) = 2P_1 (130 - x)$$

$$\Rightarrow$$
 250 - x = 260 - 2x

$$\Rightarrow$$
 x = 10 cm³

- ১৩। একটি ফ্লাব্লে 10 atm চাপে 50 L হাইডোজেন ভর্তি করা আছে। 2 L আয়তন বিশিষ্ট কডটি বেলুনকে ঐ গ্যাস ঘারা ভর্তি করা যাবে; যখন প্রতিটি বেশুন এর ভিতর হাইড্রোজেন গ্যালের চাপ 2 atm হবে। প্রিতি ক্ষেত্রে গ্যাসের তাপমাত্রা স্থির আছোঁ
 - ③ 105 ©
- ৰ 90টি 🌑
- (A) 120 to
- (ম) 125^{টি}

উন্তর: 🕲 125টি

ব্যাখ্যা: ধরি, বেলুন সংখ্যা = x

∴ বেলুনের আয়তন = 2x L

$$P_1V_1 = P_2V_2$$

$$\Rightarrow 10 \times 50 = 2 \times 2x$$

$$\Rightarrow x = \frac{500}{2 \times 2} = 125 \hat{b}$$

- **১8। STP তে একটি গ্যাসের ঘনত 2.5 g L**-1। একই তাপমাত্রার ও 780 mm (Hg) চাপে গ্যাসটির ঘনত কত?
 - **3** 2.50
- (4) 2.51
- (f) 2.54
- (T) 2.45

উন্তর: প্র 2.54

ব্যাখ্যা: বয়েলের সূত্রের অনুসিদ্ধান্ত মতে, P ∝ d (স্থির তাপমাত্রায়)

$$\therefore \frac{P_1}{P_2} = \frac{d_1}{d_2}$$

$$\Rightarrow d_2 = \frac{780 \times 2.5}{760}$$

$$= 2.56 \text{ g L}^{-1} \approx 2.54 \text{ g L}^{-1}$$

Rhombus Publications

- - সন্মিলিভ বো. ১৮

- 📵 বয়েলের সূত্র
- কার্লসের সূত্র
- গু ডাল্টনের আংশিক চাপ সূত্র গু গ্রাহামের ব্যাপন সূত্র

উন্তর: 📵 চার্লসের সূত্র

ব্যাখ্যা: চার্শসের সৃত্রটি হলো, স্থির চাপে নির্দিষ্ট ভরের কোন গ্যাসের আরজ এর পরম তাপমাত্রার সমানুপাতিক।

১৬। কোনটি পরমশুন্য তাপমাত্রা?

M. OH. 24

- ③ 0°C
- **③** 25°C
- 1 273 K
- (₹) 273°C

উজ্জ: 📵 – 273°C

ব্যাখ্যা: – 273.15°C বা, – 273°C বা, 0 K তাপমাত্রাকে পরমশূন তাপমাত্রা বলে।

- ১৭। পরমশূন্য তাপমাত্রায় গ্যাসের আয়তন কত?
 - (Infinite
- (T) 0
- ① 22.4 L
- (T) 24,789

উত্তর: 🕲 0

ব্যাখ্যা: চার্লসের সূত্র হতে পাই,

$$V_t = V_0 + \frac{V_0}{273} t$$

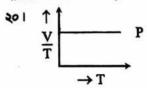
$$=V_0+\frac{V_0}{273}(-273)$$

$$= V_0 - V_0$$

- অর্থাৎ, পর্মশূন্য তাপমাত্রায় গ্যাসের আয়তন শূন্য হয় ।
- ১৮। -273°C এ N_2 এর মোলার আয়তন কত dm³?
- [দি. বো. ১৫]

- ₹ 6.023
- **17.00**
- ® 8.50

উত্তর: 🕸 0


- ব্যাখ্যা: পরম শূন্য তাপমাত্রায় সকল গ্যাসের আয়তন শূন্য হয়। তাই – 273°C তাপমাত্রায় N₂ এর মোলার আয়তন শূন্য হবে।
- ১৯। স্থির চাপে 0°C তাপমাত্রায় O2 গ্যাসের আয়তন 3.5 L হলে 20°C তাপমাত্রায় গ্যাসটির আয়তন হবে-যি. ৰো. ২০
 - (4) 3.25 L
- 3.76 L
- @ 7.0 L
- ® 8.0 L

উন্তর: 🕲 3.76 L

ব্যাখ্যা: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

$$\Rightarrow V_2 = \frac{V_1 \times T_2}{T_1}$$
$$= \frac{3.5 \times 293}{273} L$$

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

লেখচিত্রটি কোন সূত্রকে সমর্থন করে-

[রা. বো. ২১]

- 🕸 বয়েলের সূত্র
- 🕲 চার্লসের সূত্র
- প্রাভোগেডোর সৃত্র
- খি গে-শুসাকের সূত্র

উন্তর: 📵 চার্শসের সূত্র

ব্যাখ্যা: চার্লসের সূত্রানুসারে, স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন এর পরম তাপমাত্রার সমানুপাতিক।

V ∝ T [n % P 養乳]

$$\Rightarrow$$
 V = KT

$$\Rightarrow \frac{V}{T} = K$$

অর্থাৎ, Y অক্ষ বরাবর $\frac{V}{T}$ ও X অক্ষ বরাবর T স্থাপন করলে X অক্ষের সমান্তরাল সরলরেখা বা আনুভূমিক সরলরেখা পাওয়া যাবে।

২১। $V_t = V_0 + \frac{V_0 t}{273}$ । এই সমীকরণে $\frac{V_0}{273}$ কে বলে-

[চা. বো. ১৯]

- তাপ প্রসারাঙ্ক
- প্রায়তন প্রসারাঙ্ক
- গ্র পরম আয়তন
- পরম তাপমাত্রা

উন্তর: 📵 আয়তন প্রসারাঙ্ক

ব্যাখ্যা: হির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের তাপমাত্রা 1°C করে বৃদ্ধি বা

হ্রাস করলে গ্যাসটির আয়তন 0°C তাপমাত্রায় নির্ণীত আয়তনের $\frac{1}{27^2}$

অংশ করে যথাক্রমে বৃদ্ধি বাহ্রাস পায়।

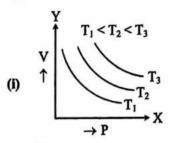
$$V_t = V_0 + \frac{V_0}{273} t$$

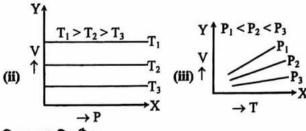
এ সমীকরণের $\frac{V_0}{273}$ এই মানকে গ্যাসের আয়তন প্রসারাম্ক বা গ্যাসের আয়তন হাস গুণাব্ধ বলে।

২২। ছির চাপে $V \text{ cm}^3$ আরতনের নির্দিষ্ট ভরের কোনো গ্যাসের তাপমাত্রা 20°C হলে গ্যাসের আরতন কত cm^3 ?

- **③** 0.2 V
- @ 1.055 V
- ① 1.073 V
- (9) 20 V

উखाः ल 1.073 V

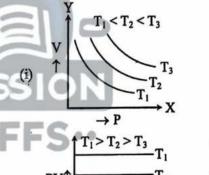

गांचाः हार्नत्मत मृवानुभातत,

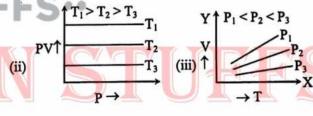

$$V_t = V_0 \left(1 + \frac{t}{273} \right)$$

$$\therefore V_1 = V \left(1 + \frac{20}{273} \right)$$
$$= 1.073 \text{ V}$$

২৩। আদর্শ গ্যাসের জন্য কোনটি সঠিক?

ामि. त्वा. **১৯**1




নিচের কোনটি সঠিক?

- ⊕ i ⊌ ii
- a ii e iii
- eiii v i 🕞
- (T) i, ii v iii

উভর: 🗇 i ও iii

ব্যাখ্যা: সঠিক গ্রাফণ্ডলো নিমুরূপ:

২৪। 17°C ভাপমাত্রার 290 mL কোনো গ্যাসকে স্থির চাপে 13°C
ভাপমাত্রার শীতুলীকরণ করলে গ্যাসটির পরিবর্তিত আয়তন হবে?

- @ 260 mL
- 3 270 mL
- (f) 286 mL
- (1) 290 mL

উভর: ① 286 mL

वाधाः P constant,

$$\therefore \frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\Rightarrow V_2 = \frac{V_1}{T_1} \times T_2$$

$$=\frac{290}{290} \times 286$$

 $= 286 \, mL$

...... ACS/ > Chemistry 2nd Paper Chapter-1

চাপ স্থির রেখে 11°C তাপমাত্রায় ঐ গ্যাসের ঘনতু কত হবে?

- (4) 25.52 kg m⁻³
- (1) 25.52 g m⁻³
- 1.15 kg m⁻³
- (9) 21.15 g m⁻³

উত্তর: 📵 21.15 kg m⁻³

ব্যাখ্যা: চার্লসের সূত্রের অনুসিদ্ধান্ত হতে পাই, স্থির চাপে নির্দিষ্ট ভরের

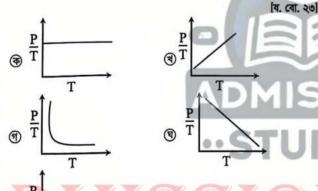
গ্যাসের ঘনতৃ পরম তাপমাত্রার ব্যস্তানুপাতিক। অর্থাৎ, $\mathbf{d} \propto \frac{1}{T}$

∴
$$d_1T_1 = d_2T_2$$

⇒ $d_2 = \frac{T_1d_1}{T_2} = \frac{273 \times 22}{284} = 21.15 \text{ kg m}^{-3}$

২৬। গে-লুসাকের চাপের সূত্র নিচের কোনটি?

বি. বো. ২৩]


- ⊕ P ∝ T (V, n ছির)
- পি V ∝ T (P, n স্থির)
- \P V $\propto \frac{1}{p}$ (n, T श्रित)

উন্তর: ③ P ∝ T (V, n স্থির)

ব্যাখ্যা: স্থির আয়তনের নির্দিষ্ট পরিমাণ যেকোনো গ্যাসের উপর প্রযুক্ত চাপ গ্যাসের কেলভিন তাপমাত্রার সমানুপাতিক।

অর্থাৎ, P ∝ T (যখন V, n স্থির)।

২৭। স্থির আয়তনে নির্দিষ্ট ভরের আদর্শ গ্যাসের $rac{P}{T}$ বনাম T লেখচিত্র হবে-

ব্যাখ্যাঃ গে-লুসাকের সূত্র হতে, $P \propto T$ বা $\frac{P}{T}$ = ধ্রুবক।

লেখচিত্রে $\frac{P}{T}$ এর বিপরীতে T স্থাপন করলে আনুভূমিক সরলরেখা বা X অক্ষের সমান্তরাল সরলরেখা পাওয়া যায়।

২৮। নির্দিষ্ট আয়তনে He গ্যাসকে 0°C তাপমাত্রায় ততক্ষণ পর্যন্ত শীতল कत्रा राला यष्टक्रम ना এর চাপ অর্ধেক হয়। গ্যাসটির পরিবর্তিত তাপমাত্রা হবে–

- → 63.5°C
- ③ − 136.5°C
- → 163.5°C
- (₹) 273.0°C

উত্তর: <a>ම – 136.5°C

ব্যাখ্যা: যেহেতু, V constant

$$\begin{aligned} &\frac{P_1}{T_1} = \frac{P_2}{T_2} \\ &\Rightarrow T_2 = \frac{P_2}{P_1} \times T_1 = \frac{1}{2} \times 273 = 136.5 \text{ K} = -136.5 ^{\circ}\text{C} \end{aligned}$$

২৫। প্রমাণ তাপমাত্রা ও চাপে CO2 গ্যাসের ঘনত হলো 22 kg m⁻³। ২১। 27°C তাপমাত্রায় 120 atm চাপে 1টি পাত্রে O2 প্যাস আছে। ঐ গ্যাসের চাপ 20% বাড়াতে পাত্রটিকে কভ ভাপমাত্রার রাখতে হবে?

- 87°C
- ® 87 K
- (9) 350 K

উন্তর: 🕲 87°C

ব্যাখ্যা: চাপ 20% বাড়ানো হলে, $P_2 = \left\{ 120 + \left(120 \times \frac{20}{100} \right) \right\}$

এখন,
$$\frac{P_1}{P_2} = \frac{T_1}{T_2}$$

$$\Rightarrow \frac{120}{144} = \frac{300}{T_2}$$
∴ $T_2 = 360 \text{ K}$

৩০। গ্যাসের অণুর সংখ্যা ও মোলার আয়তনের মধ্যে সম্পর্ক **প্রকাশ করে**–

- ক বয়েলের সূত্র
- ভার্লসের সূত্র
- প্র ডাল্টনের সূত্র
- ন্ব আভোগাডো সূত্র

উত্তর: 📵 অ্যাভোগাডো সূত্র

ব্যাখ্যা: অ্যাভোগাড্রোর প্রস্তাব অনুসারে, স্থির তাপমাত্রা সমআয়তনের সকল গ্যাসে সমান সংখ্যক অণু থাকে।

৩১। নিচের কোনটি অ্যাভোগাডোর সূত্র?

- ③ V ∝ T
- (®) PV ∝ nRT

৩২। একই তাপমাত্রা ও চাপে কত গ্রাম H2S এর আয়তন 56 g N2 গ্যাস

(4) 56

- **(4)** 68
- (9) 28
- (T) 34

উত্তর: (খ) 68

ব্যাখ্যা: একই তাপমাত্রা ও চাপে সমআয়তন বিশিষ্ট দুটি গ্যাসের ক্ষেত্রে.

$$V \propto n$$

$$\therefore \frac{V_1}{n_1} = \frac{V_2}{n_2}$$

$$\Rightarrow n_1 = n_2 \quad [\because V_1 = V_2]$$

$$\Rightarrow \frac{W}{34} = \frac{56}{28}$$

$$\therefore W = 68 \text{ g}$$

৩৩। S.I. এককে R এর মান কোনটি?

াসি বো. ২৩

- (a) 0.082 L atm K⁻¹ mol⁻¹
- (4) 8.314 J K⁻¹ mol⁻¹
- \Re 8.314 × 10⁷ erg K⁻¹ mol⁻¹
- (1.987 cal. K-1 mol-1

উম্ভর: ﴿ 8.314 J K⁻¹ mol⁻¹

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

বাখো:

এককের নাম	R-अत्र मान	একক
লিটার বায়ুচাপ একক	0.0821	L atm K ⁻¹ mol ⁻¹
SI একক	8.314	J K ⁻¹ mol ⁻¹
CGS একক	8.3×10^{7}	erg K ⁻¹ mol ⁻¹
ক্যালরি একক	1.987	cal mol ⁻¹ K ⁻¹
ইঞ্জিনিয়ারিং একক	2783.63	ft lb mol-1 K-1

৩৪। বোল্টজম্যান ধ্রুবকের একক হলো-

- J/molecule
- J.s

(9) J/K

(9) g/cc

উন্তর: 🕦 J/K

ব্যাখা: বিভিন্ন এককে বোল্টজম্যান ধ্রুবক:

এক্কের নাম	K-এর মান	একক		
লিটার বায়ুমন্ডলীয় চাপ	1.36 × 10 ⁻²⁵	L atm K-1 molecule-1		
জুল বা SI	1.38×10^{-23}	J K ⁻¹ molecule ⁻¹		
CGS	1.37×10^{-16}	erg K ⁻¹ molecule ⁻¹		
Calorie	3.3×10^{-24}	cal K ⁻¹ molecule ⁻¹		

৩৫। কোনো গ্যাসের তাপমাত্রা ও চাপ বিশুণ করা হলে আয়তনের কী পরিবর্তন হবে? ঢ়া, বো. ২২

- ক) দিগুণ হবে
- কোন পরিবর্তন হবে না
- প্র চারগুণ
- থে অর্ধেক হবে

উল্ভর: 📵 কোন পরিবর্তন হবে না ব্যাখ্যা: গ্যাসের সমন্বয় সূত্র হতে,

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\Rightarrow \frac{P_1V_1}{T_1} = \frac{2P_1 \times V_2}{2T_1}$$

$$\Rightarrow \frac{P_1V_1}{T_1} = \frac{P_1V_2}{T_1}$$

$$\Rightarrow V_1 = V_2$$

অর্থাৎ, আয়তনের কোনো পরিবর্তন হবে না।

৩৬। 273 K তাপমাত্রায় কোনো গ্যাসের চাপ $1~\mathrm{atm}$ হলে, $rac{1}{V}$ এর মান

 $0.04~{
m L}^{-1}$ হয়। ${1\over V}$ এর মান $0.035~{
m L}^{-1}$ হলে, চাপ এর মান কড?

কু. বো. ১৯; অনুরূপ প্রশ্ন: ঢা. বো. ১৬]

- (4) 1.142 atm
- 1 0.875 atm
- ® 0.352 atm

উভর: গ 0.875 atm

ব্যাখ্যা: এখানে, P₁ = 1 atm

$$\frac{1}{V_1} = 0.04 L^{-1}$$
⇒ $V_1 = 25 L$
अवर, $\frac{1}{V_2} = 0.035 L^{-1}$
∴ $V_2 = 28.57 L$

এখন,
$$P_1V_1 = P_2V_2$$

$$\Rightarrow P_2 = \frac{P_1 V_1}{V_2} = \frac{1 \times 25}{28.57} = 0.875 \text{ atm}$$

৩৭। 8 g He গ্যাসের জন্য আদর্শ গ্যাস সমীকরণ কোনটি?

কু. বো. ২৩; অনুদ্রপ গ্রন্থ: সি. বো. ২১)

- PV = nRT
- \P PV = $\frac{RT}{2}$
- \P PV = 2RT
- (9) PV = R7

উন্তর: গ) PV = 2RT

ব্যাখ্যা: $n = \frac{W}{M} = \frac{8}{4} = 2 \text{ mol}$

আদর্শ গ্যাস সমীকরণ, PV = nRT

 $\therefore PV = 2RT$

৩৮। 22 g CO2 এর জন্য আদর্শ গ্যাস সমীকরণ কোনটি?

বি. বো. ২১; অনুত্রপ প্রশ্ন: চা. বো. ১৬]

- (4) 2PV = RT
- (4) PV = 2RT
- 1 PV = 22RT
- (1) PV = RT

উন্তর: 🚳 2PV = RT

ব্যাখ্যা: CO2 এর আণবিক ভর, M = 12 + 16 × 2 = 44

মোল সংখ্যা,
$$n = \frac{W}{M} = \frac{22}{44} = \frac{1}{2} \text{ mol}$$

$$PV = nRT$$

$$\Rightarrow PV = \frac{1}{2}RT$$

$$\therefore 2PV = RT$$

৩১। STP তে 1 L গ্যাসের ভর 1.43 g হলে গ্যাসটি–

চা. বো. ১১

@ H₂ 1 No

@ O2 (1) Cl2

উত্তর: (ব) 🔾 🤈

ব্যাখ্যাঃ STP তে তাপমাত্রা ও চাপ যথাক্রমে 0°C ও 1 atm।

আমরা জানি, PV = nRT

$$\Rightarrow PV = \frac{W}{M}RT$$

$$\Rightarrow M = \frac{WRT}{PV}$$

$$\Rightarrow M = \frac{1.43 \times 0.082 \times 273}{1 \times 1}$$

$$\Rightarrow M = \frac{1.43 \times 0.082 \times 273}{1 \times 1}$$

আমরা জানি, অক্সিজেনের আণবিক ভর 32।

সূতরাং, গ্যাসটি হলো O2।

৪০। একই তাপমাত্রা ও চাপে সমপরিমাণ (ভর) A, B ও C গ্যাস পৃথকভাবে সমআয়তনে রক্ষিত আছে। এখানে $m M_A > M_C > M_B$ হলে কোনটি সঠিক?

- $\bigcirc P_A = P_B = P_C$
- \P $P_B > P_A > P_C$
- \P $P_B > P_C > P_A$

উন্তর: 🕲 P_B > P_C > P_A

ব্যাখ্যা: আমরা জানি,

$$PV = nRT$$

বা,
$$PV = \frac{W}{M}RT$$
 [∵ $n = \frac{W}{M}$]

$$∴$$
 $P ∝ \frac{1}{M}$ [ব্যস্তানুপাতিক সম্পর্ক]

যেহেড, MA>MC> MB

সুতরাং, P_B > P_C > P_A

৪১। স্থির উষ্ণতায়, গ্যাসের চাপ বাড়ালে ঘনত্বের মান– ক বাড়ে (ৰ) কমে 🏽 गृना रय খি অপরিবর্তিত থাকে উন্তর: 🕸 বাড়ে ব্যাখ্যা: আদর্শ গ্যাস সমীকরণ থেকে আমরা পাই, $PV = \frac{W}{M}RT$ \Rightarrow WRT = PVM $\Rightarrow \frac{W}{V} = \frac{PM}{RT}$ $\Rightarrow d = \frac{PM}{RT} [d = গ্যামের ঘনত্ \frac{W}{V}]$ ∴ d ∝ P [স্থির উষ্ণতায়] অর্থাৎ, স্থির উষ্ণতায় গ্যাসের চাপ বৃদ্ধি পেলে ঘনত্বের মানও বৃদ্ধি পায়। 8২। SATP তে নাইট্রাস অক্সাইড গ্যাসের ঘনত $g \ L^{-1}$ এককে কত? [চ. বো. ২৩] **(4)** 1.96 3 1.77 ® 1.21 **1.85** উন্তর: 🕸 1.77 SATP (5 ব্যাখ্যা: গ্যাসের ঘনতু, গ্যসের চাপ, P = 0.987 atm $d = \frac{PM}{RT}$ তাপমাত্রা, T = 25°C = 298 K 0.987×44 $M_{N_2O} = 44$ $=\frac{0.0}{0.082 \times 298}$ $= 1.77 \text{ g L}^{-1}$ ৪৩। 100°C তাপমাত্রায় 2.05 atm চাপে CO2 গ্যানের ঘনত কত? মি. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২১] ③ 1.76 g L⁻¹ ③ 1.50 g L⁻¹ 1 2.34 g L-1 (1) 2.95 g L-1 উন্তর: 🕲 2.95 g L⁻¹ ব্যাখ্যা: আমরা জানি, এখানে, $d = \frac{PM}{T}$ $M_{CO_2} = 44 g$ $R = 0.082 L atm K^{-1} mol^{-1}$ T = (273 + 100) K = 373 K 2.05×44 0.082×373 P = 2.05 atm $= 2.95 \text{ g L}^{-1}$ সূতরাং গ্যাসের ঘনত, $d = 2.95 \text{ g L}^{-1}$ 88। 18°C তাপমাত্রায় 0.8 atm চাপে গ্যাসের ঘনত 2.25 g/L , এর আণবিক ভর কত? কু. বো. ২২) 36.24 g/mol 67.11 g/mol 例 24.36 g/mol 3 23.63 g/mol

উন্তর: 🕸 67.11 g/mol

ব্যাখ্যাঃ আমরা জানি, $d = \frac{PM}{RT}$

$$\Rightarrow M = \frac{dRT}{P}$$

$$= \frac{2.25 \times 0.0821 \times 291}{0.8}$$

 \Rightarrow M = 67.1 g/mol

∴ গ্যাসটির আণবিক ভর = 67.1 g/mol

...... ACS, > Chemistry 2nd Paper Chapter-1 রা. বো. ১৬। ৪৫। সন্ধি তাপমাত্রার নিচে পদার্থের অবস্থা কোনটি?

वि. त्वा. २३।

- **ক্ট বা**ষ্প
- অরল
- গে) তরল স্ফটিক
- খি প্লাজমা

উত্তর: (খ) তরল

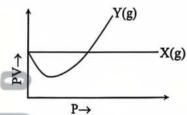
ব্যাখ্যা: সন্ধি তাপমাত্রার ওপরে কোনো গ্যাসের ওপর যতো চাপ প্রয়োগ **ক্**রা হোক না কেন, একে তরলে রূপান্তর করা যায় না। তাই প্যাস তরলীকরণে এর তাপমাত্রা সন্ধি তাপমাত্রার নিচে আনতে হয়। বেমন:

CO₂ এর সন্ধি তাপমাত্রা = 31.1°C।

৪৬। He এর উৎক্রম তাপমাত্রা কত?

চা. বো. ১১

- [®] 240°C
- (₹) 80°C
- - 80°C
- [®] − 240°C


উন্তর: 📵 – 240°C

ব্যাখ্যা: H₂ এর উৎক্রম তাপমাত্রা = – 80°C এবং

He এর উৎক্রম তাপমাত্রা = - 240°C।

আদর্শ গ্যাস ও বাস্তব গ্যাস

নিচের উদ্দীপকটি পড় এবং ৪৭ ও ৪৮ নং প্রশ্নের উত্তর দাও:

 \mathbf{Y} -গ্যাসের পরমাণুটির সর্বশেষ শক্তিস্তরের ইলেকট্রন বিন্যাস $\mathbf{ns^2np^4}$

৪৭। STP তে 0.25 mol Y গ্যাসের অণুর ভর কত?

রা. বো. ২৩

- → 3.5 g
- (4) 7 g
- (1) 8 g
- @ 16 g

উত্তর: (গ) 8 g

ব্যাখ্যা: উদ্দীপক অনুযায়ী Y গ্যাসের পরমাণুর ইলেকট্রন বিন্যাস হবে 1s² 2s² 2p⁴ যা অক্সিজেন (O) এর ইলেকট্রন বিন্যাস। STP তে 1 মোল অণুর (O2) ভর = 32 g

:. STP তে 0.25 মোল অণুর ভর = (32 × 0.25) = 8 g

৪৮। উদ্দীপকের X গ্যাস-

রো. বো. ২৩

- (i) এর পেষণ গুণাংক, Z = 1
 - (ii) PV = nRT সূত্র মেনে চলে
 - (iii) এর অণুসমূহের মধ্যে আকর্ষণ বল বিদ্যমান

নিচের কোনটি সঠিক?

- ⊕ i v ii
- (1) ii v iii
- Mi & iii
- (i, ii & iii

উত্তর: 奪 i ও ii

ব্যাখ্যা: উদ্দীপকের X গ্যাসের ক্ষেত্রে PV = K (ধ্রুবক) হওয়ায় X গ্যাসটি আদর্শ গ্যাস।

আদর্শ গ্যাসের বৈশিষ্ট্য:

- (i) PV = nRT সমীকরণ মেনে চলে।
- (ii) গ্যাস অণুসমূহের মাঝে কোনো আকর্ষণ বা বিকর্ষণ বল থাকে না।
- (iii) গ্যাসের আয়তন পাত্রের আয়তনের তুলনায় নগণ্য।
- (iv) পেষণ গুণাংক, Z = 1

পরিবেশ রসায়ন > ACS/ FRB Compact Suggestion Book.

৪৯। আদর্শ গ্যাসের ক্ষেত্রে $\left(\frac{dE}{dV}\right)_T = ?$

③ 0

1

1.5

উন্তর: 🕸 0

ব্যাখ্যা: স্থির তাপমাত্রায় আদর্শ গ্যাসের অভ্যন্তরীণ শক্তি এর আয়তনের উপর নির্ভরশীল নয়। অর্থাৎ, স্থির তাপমাত্রায় আদর্শ গ্যাসের আয়তনের পরিবর্তন হলেও এদের অভ্যন্তরীণ শক্তির কোনো পরিবর্তন ঘটে না। এক্ষেত্রে $\left(\frac{\partial \mathbf{E}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = 0$.

- ৫০। 0.25 মোল একটি গ্যাস 24.63 atm চাপে 0.5 লিটার আয়তনের পাত্রে আছে। কত তাপমাত্রায় গ্যাসটি আদর্শ আচরণ করবে? সি. বো. ১৯)
 - ⊕ 0°C
- ⁽³⁾ 25°C
- @ 300 K
- (9) 600 K

উন্তর: 🖲 600 K

ব্যাখ্যা: আদর্শ গ্যাসের আচরণ করতে হলে সংকোচনশীলতা গুণাঙ্ক, Z =1

হতে হবে।

আমরা জানি,

$$Z = \frac{PV}{nRT}$$

$$\Rightarrow T = \frac{PV}{nRZ}$$

$$= \frac{24.63 \times 0.5}{0.25 \times 0.0821 \times 1}$$
$$= 600 \text{ K}$$

e>। বাস্তব গ্যাসের ক্ষেত্রে প্রযোজ্য-

(iii)
$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

নিচের কোনটি সঠিক?

♠ i

- i v ii
- Mii viii
- (1) i, ii v iii

উভর: প ii ও iii

- ব্যাখ্যা: (i) স্থির তাপমাত্রায় বাস্তব গ্যাসের অভ্যন্তরীণ শক্তি গ্যাসের আয়তনের উপর নির্ভরশীল। অর্থাৎ, $\left(\frac{\delta E}{\delta V}\right)_T \neq 0$
 - (ii) বাস্তব গ্যাসের ক্ষেত্রে সংকোচনশীলতা গুণাঙ্ক (Z) এর মান H2 ও He এর ক্ষেত্রে 1 অপেক্ষা বেশি; CO2, N2, O2, CH4 ইত্যাদির ক্ষেত্রে 1 থেকে কম হয়। অর্থাৎ, $Z \neq 1$
 - (iii) বাস্তব গ্যাসের ভ্যান্ডার ওয়ালস সমীকরণ:

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

- রা. বো. ১৯]

- $\mathfrak{F} \ \mathsf{V} \propto \frac{1}{\mathsf{P}}$
- ® V ∝ T
- $\mathfrak{T} \propto \frac{1}{\sqrt{P}}$
- ® P ∝ T

উखतः ® V ∝ $\frac{1}{D}$

ব্যাখ্যা: অ্যামাগা লেখচিত্রে PV এর বিপরীতে P এর মান বসালে বাস্তব গ্যাসসমূহ আদর্শ আচরণ থেকে বিচ্যুত হয়। কোনো গ্যাস আদর্শ আচরণ করলে স্থির তাপমাত্রায় PV এর মান ধ্রুব থাকতো। অর্থাৎ, P অক্ষের (X অক্ষ) সমান্তরাল সরলরেখা পাওয়া যেত।

- eo। আমাগা লেখচিত্রে কোনটি অধিক ঋণাজ্বক বিচ্যুতি দেখায়? in. বো. ২৩]
 - T H₂

® NH₃

1 He

® CO₂

উন্তর: ③ NH₃

ব্যাখ্যা: বিচ্যুতি নির্ণয়ে তিনটি বিষয় গুরুত্বপূর্ণ (অগ্রাধিকার ভিত্তিতে):

- মেরুতা: পোলার অণুতে আকর্ষণ বেশি, তাই বিচ্যুতি বেশি।
- 2. আভঃআণবিক বল: H-বন্ধন বা শক্তিশালী ভ্যানডার ওয়ালস বল থাকলে বিচ্যুতি বেশি। অধিকাংশ ক্ষেত্রে পোলার অণু H-বন্ধন গঠনে
- আকার: আকার বড় হলে বিচ্যতি বেশি।

উদাহরণ: H₂, He, N₂, O₂, CO₂, NH₃ এদের মধ্যে NH₃ একমাত্র পোলার অণু, যাতে H-বন্ধনের জন্য আন্তঃআণবিক শক্তি বেশি, তাই NH3 এর বিচ্যুতি সবচেয়ে বেশি। অপরদিকে, অপোলার He, H2, N_2 , O_2 , CO_2 as a very He are really simple are আতঃআণবিক আকর্ষণ প্রায় শূন্য। এছাড়াও এদের আকার বৃদ্ধির ক্রম He < H₂ < N₂ < O₂ < CO₂। তাই বিচ্যুতি বৃদ্ধির ক্রমণ্ড একই। সুতরাং, সবগুলো অণুর বিচ্যুতি বৃদ্ধির প্রকৃত ক্রম:

> $\text{He} < \text{H}_2 < \text{N}_2 < \text{O}_2 < \text{CO}_2 < \text{NH}_3$ বিচ্যুতি

- e8। কোন গ্যাসটি বয়েশের সূত্র হতে সবচেয়ে কম বিচ্যুত হবে? [চ. ৰো. ২৩]
 - @ H₂
- @ CO₂

1 N2

(9) O2

উন্তর: 🕸 H₂

- ৫৫। বাস্তব গ্যাসের সমীকরণ কোনটি?
- [রা. বো. ২৩]

- 9 PV = nRT
- PV = RT
- $(9) \left(P + \frac{n^2 a}{V^2} \right) (V nb) = nRT$
- \bigcirc PV = $\frac{1}{2}$ mNC²

উত্তর: গ্রা $\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$

ব্যাখ্যা: বাস্তব গ্যাসের ভ্যানডার ওয়ালস সমীকরণটি হলো:

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

৪২ ৫৬। 4 g H₂ গ্যাসের অবস্থার সমীকরণ কোনটি?

বি. বো. ২২

থাহামের ব্যাপন সূত্র, ডাল্টনের আর্থনিক চাল সু

উন্তর: $\mathfrak{F}\left(P + \frac{4a}{V^2}\right)(V - 2b) = 2RT$

ব্যাখ্যা: 4 g H₂ = $\frac{4}{2}$ mol = 2 mol

∴ 2 mol H₂ গ্যাসের জন্য বাস্তব গ্যাসের সমীকরণ:

$$\left(P + \frac{2^2 a}{V^2}\right)(V - 2b) = 2RT$$

$$\Rightarrow \left(P + \frac{4a}{V^2}\right)(V - 2b) = 2RT$$

- ৫৭। কিরূপ চাপে ও তাপমাত্রায় কোন বাস্তব গ্যাস PV = nRT সমীকরণটি মোটামুটি মেনে চলবে?
 - উচ্চ চাপ; উচ্চ তাপমাত্রা
- উচ্চ চাপ; নিম্ন তাপমাত্রা
- নিমু চাপ; উচ্চ তাপমাত্রা
- 🕲 নিমু চাপ; উচ্চ তাগমাত্রা
- উত্তর: গ্র নিম্ন চাপ; উচ্চ তাপমাত্রা

ব্যাখ্যা: নিম্নচাপ ও উচ্চ তাপমাত্রায় বাস্তব গ্যাসসমূহ আদর্শ গ্যাসের ন্যায় আচরণ করে ও গ্যাস সূত্রসমূহ মেনে চলে।

৫৮। কোনটি সঠিক?

মি. বো. ২১

- নিম্ন তাপমাত্রা ও উচ্চ চাপে বাস্তব গ্যাসসমূহ আদর্শ গ্যাসের ন্যায়
 আচরণ করে।
- পানীয় জলে WHO অনুমোদিত As এর সর্বোচ্চ গ্রহণযোগ্য মাত্রা
 হলো 0.004 0.005 ppt
- গ) কোনো পানির নমুনায় BOD অপেক্ষা COD এর মান বেশি
- সারফেস ওয়াটারের বিশুদ্ধতার মানদণ্ড স্বচ্ছতা

উন্তর: গ্র কোনো পানির নমুনায় BOD অপেক্ষা COD এর মান বেশি

- ব্যাখ্যা: (i) উচ্চ তাপমাত্রা ও নিম্ন চাপে বাস্তব গ্যাসসমূহ আদর্শ গ্যাসের ন্যায় আচরণ করে।
 - (ii) As এর আন্তর্জাতিক সর্বোচ্চ সহনশীল মাত্রা 0.04 0.05 ppm
 - (iii) কোনো পানির নমুনার BOD অপেক্ষা COD এর মান বেশি। কারণ BOD শুধু জৈব অপদ্রব্য জারণের জন্য ব্যবহৃত অক্সিজেনের পরিমাণ এবং COD নমুনায় উপস্থিত জৈব ও অজৈব উভয় ধরনের দৃষক জারণের জন্য প্রয়োজনীয় O₂ এর পরিমাণ প্রকাশ করে।
 - (iv) সারফেস ওয়াটারের বিশুদ্ধভার মানদন্ড pH, খরভা, DO, BOD, COD, TDS ইত্যাদি।

৫৯। গ্যাসের ব্যাপন হার নির্ভর করে–

[4. OIL

- (i) মোলার ভর
 - (ii) তাপমাত্রা
 - (iii) ঘনত
 - নিচের কোনটি সঠিক?
 - ii & i
- iii & ii 🕞
- eii vii
- ூ i, ii ⊌ iii

.... ACS > Chemistry 2nd Paper Chapter

উম্বর: 🕲 i, ii ও iii

ব্যাখ্যা: আমরা জানি,

ব্যাপন হার,

$$\therefore \ r \propto \frac{1}{\sqrt{M}} \dots (i)$$

আবার,

ঘনতৃ, $\mathbf{d} = \frac{\mathbf{m}}{\mathbf{V}}$ অর্থাৎ, ঘনতৃ ভরের উপর নির্ভরশীল।

সূতরাং,
$$r \propto \frac{1}{\sqrt{d}}$$

আবার,

তাপমাত্রা বাড়লে কোনো পদার্থের ঘনতৃ হ্রাস পায়, $\mathrm{d} \propto rac{1}{\mathrm{T}}$

সুতরাং, কোনো গ্যাসের ব্যাপন হার মোলার ভর, ঘনত্ব ও তাপমা ওপর নির্ভর করে।

৬০। গ্রাহামের ব্যাপন সূত্রের গাণিতিক রূপ কোনটি?

বি বো

- ⓐ $r \propto \sqrt{\frac{1}{P}}$
- ® r∝T
- இ r ∝ n
- $\mathfrak{P} r \propto \sqrt{\frac{1}{d}}$

উखत्रः ® r ∞ $\sqrt{\frac{1}{d}}$

ব্যাখ্যা: স্থির তাপমাত্রা ও চাপে কোনো গ্যাসের ব্যাপন হার (r), ঐ গ্যাহ ঘনত্বের (d) বর্গমূলের ব্যস্তানুপাতিক,

$$r \propto \sqrt{\frac{1}{d}}$$

৬১। নিচের কোনটি গ্রাহামের ব্যাপন সূত্র?

বি. বো. ২২: ম. বো. ব

- $\mathfrak{T} \propto \frac{1}{M}$
- $\ \, \mathfrak{T}_{1} \propto \frac{\sqrt{M_{1}}}{\sqrt{M_{2}}}$
- $\P \ r \propto \sqrt{M}$

উন্তর: ক্তি $r_1 \sqrt{M_1} = r_2 \sqrt{M_2}$

ব্যাখ্যাঃ গ্রাহামের ব্যাপন সূত্র হতে, $r \propto \frac{1}{\sqrt{M}}$

$$\Rightarrow \frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{\sqrt{\mathbf{M}_2}}{\sqrt{\mathbf{M}_1}}$$

@AdmissionStuffs

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

৬২। কোনটির ব্যাপন হার সবচেয়ে বেশি?

- ক) বিউটেন
- প্রাপেন
- ণ্) ইথেন
- (ছ) মিথেন

উন্তর: 🕲 মিথেন

ব্যাখ্যাঃ $r \propto \frac{1}{\sqrt{M}}$

যেহেতু, মিথেনের আণবিক ভর ইথেন, প্রোপেন ও বিউটেন অপেক্ষা কম। তাই, মিথেন এর ব্যাপন হার বেশি।

৬৩। নিচের কোন গ্যাসের ব্যাপন হার সর্বোচ্চ?

কু. বো. ২৩]

⊕ CO

- @ N2
- 1 NH3
- (9) CH₄

উন্তর: 🖲 CH4

ব্যাখাঃ r ∝ −

যেহেডু, CH4 গ্যাসের ভর CO, N2 ও NH3 অপেক্ষা কম তাই CH4 এর ব্যাপন হার সর্বেচ্চ।

৬৪। কোন গ্যাসম্বয়ের ব্যাপন হার সমান?

বি. বো. ২৩]

- N₂, C₂H₄
- @ Cl2, O2
- ⊕ CO, O₂
- (1) H2, O2

উন্তর: 🚳 N₂, C₂H₄

ব্যাখ্যা: $\frac{\mathbf{r}_1}{\mathbf{r}_2} = \sqrt{\frac{\mathbf{M}_2}{\mathbf{M}_1}}$

 N_2 এর আণবিক ভর = $(14 \times 2) = 28$

 C_2H_4 এর আণবিক ভর = $(12 \times 2 + 1 \times 4) = 28$

যেহেতু, আণবিক ভর সমান তাই N_2 ও C_2H_4 এর ব্যাপন হার मयान ।

- ७८ । একটি সরু ছিদুযুক্ত ছিপি দিয়ে যে সময়ে 2.0 m³ বাতাস প্রবেশ হয়, উক্ত সরু ছিদ্রযুক্ত ছিপি দিয়ে একই সময়ে কত m³ হাইড্রোজেন প্রবাহিত হবে? [বাতাসের আপেক্ষিক ঘনতু 14.4]।
 - € 3.79
- (a) 17/40
- **17.20**
- (T) 7.59

উত্তর: খি 7.59

ব্যাখ্যা:
$$V_2 = \sqrt{\frac{d_2}{d_1}} \times V_1$$

$$= \sqrt{\frac{14.4}{1}} \times 2$$

$$= 7.59 \text{ m}^3$$

- ৬৬। ডাল্টনের আংশিক চাপ সূত্র প্রযোজ্য কোন ক্ষেত্রে?
- মি. বো. ২১]

- ⊕ F₂, H₂
- @ CH₄, Cl₂
- (1) N2,O2

উত্তর: (খ N2,O2

ব্যাখ্যা: ডাল্টনের আংশিক চাপ সূত্র পরস্পর বিক্রিয়াহীন গ্যাস মিশ্রণের জন্য প্রযোজ্য।

স্বাভাবিক তাপমাত্রায় N2 ও O2 পরস্পর বিক্রিয়া না করে সমস্ত মিশ্রণ তৈরি করে। তাই ডাল্টনের আংশিক চাপ সূত্র N_2 ও O_2 মিশ্রণের জন্য প্রযোজ্য।

- রো. বো. ২৩। ৬৭। কোন মিশ্রণটি ডাল্টনের আর্থনিক চাপ সূত্র মেনে চলে?
 - ® NH₁, HCI
- @ C2H6, N2
- ® SO₂, H₂S
- (8) SO2, O2

উম্বর: (ৰ) C₂H₆, N₂

ব্যাখ্যা: ডাল্টনের আংশিক চাপ সূত্র পরস্পর বিক্রিয়াহীন গ্যাস মিশ্রণের জন্য थ्रयाञ्जा ।

 C_2H_6 একটি কম সক্রিয় গ্যাস ও N_2 নিষ্ক্রিয় গ্যাসসমূহের পরে সবচেয়ে निष्क्रिय गाम । এরা স্বাভাবিক তাপমাত্রায় পরস্পর বিক্রিয়া না করে সমসত্ত মিশ্রণ তৈরি করে। তাই ডাল্টনের আংশিক চাপ সূত্র C2H6 ଓ N2 मिट्यापत्र जना व्यायाजा।

অন্যদিকে, NH3 ও HCI বিক্রিয়া করে NH4CI গ্যাস; SO2 ও H2S বিক্রিয়া করে S ও H2O; SO2 ও O2 বিক্রিয়া করে SO3 উৎপন্ন করায় এরা ডাল্টনের আংশিক চাপ সূত্র মানে না।

৬৮। বায়ুমন্তলে N2 এর আংশিক চাপ কত?

কু. বো. ২৩

- (4) 1.00 atm
- (4) 0.78 atm
- 例 0.21 atm
- (9) 0.14 atm

উত্তর: ③ 0.78 atm

ব্যাখ্যা: P_{N2} = X_{N2} × P $= 0.7808 \times 1$

N2 এর মোল ভগ্নাংশ, $X_{N_2} = 0.7808$

= 0.7808 atm

মোট চাপ, P = 1 atm

- ৬৯। 1.032 g অক্সিজেন ও 0.573 g কার্বন ডাই অক্সাইড গ্যাস মিশ্রদে কার্বন ডাই অক্সাইডের মোল ভগ্নাংশ কত? वि. व्हा. ५४)
 - € 0.832
- ₹ 0.713
- (9) 0.357
- (T) 0.287

উত্তর: 🕲 0.287

ব্যাখ্যা: X_{CO2} = $\frac{1}{n_{CO_2} + n_{O_2}}$

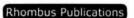
= 0.287

90। 20 ও 30 মোল সংখ্যাবিশিষ্ট যথাক্রমে A ও B গ্যাসদয়ের মিশ্রণের মোট চাপ 12 atm হলে A গ্যাসের আংশিক চাপ কত হবে?

রা. বো. ২৩]

- 3 2.7 atm
- (4) 4.8 atm
- 1.2 atm
- (9) 8.4 atm

উন্তর: (ৰ) 4.8 atm


ব্যাখ্যা: A গ্যাসের মোল ভগ্নাংশ,

$$X_A = \frac{n_A}{n_{Total}} = \frac{20}{20 + 30} = 0.4$$

আংশিক চাপ, $P_A = মোল ভগ্নাংশ <math>\times$ মোট চাপ

 $= (0.4 \times 12)$ atm

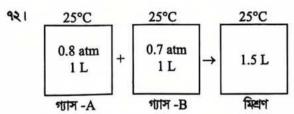
=4.8 atm

88

৭১। 10 মোল A এবং 30 মোল B গ্যাসের মিশ্রনের মোট চাপ 12 atm হলে, A গ্যাসের আংশিক চাপ কতঃ কি. বো. ২৩।

(4) 3.0 atm

(1) 9.0 atm


16.0 atm

(1) 48.0 atm

উভর: @ 3.0 atm

ব্যাখ্যা: $P_A = X_A \times P$

$$\Rightarrow \frac{n_A}{n_T} \times P = \frac{10}{10 + 30} \times 12 = 3 \text{ atm}$$

মিশ্রণের মোট চাপ কত?

রা, বো, ১৯)

- (3) 0.93 atm
- (1.0 atm
- 1.10 atm
- (1.25 atm

উন্তর: 🕲 1.0 atm

ব্যাখ্যা:
$$P = \frac{P_1V_1 + P_2V_2}{V} = \frac{0.8 \times 1 + 0.7 \times 1}{1.5} = 1 \text{ atm}$$

৭৩। সমান ভরের CH_4 এবং O_2 গ্যাস একটি নির্দিষ্ট তাপমাত্রায় একটি পাত্রে রাখা হলো। মোট প্রদন্ত চাপের কি পরিমাণ ভংশ O_2 ঘারা প্রদন্ত হবে?

 $\odot \frac{1}{2}$

@ ADMISS

 $\mathfrak{G}\frac{1}{3}$

 $\mathfrak{g}\frac{2}{3}$

উন্তর: গু $\frac{1}{3}$

ব্যাখ্যা: গ্যাসদয়ের ভর = m হলে

$$n_{\text{CH}_4} = \frac{\text{m}}{16} n_{\text{O}_2} = \frac{\text{m}}{32}$$

$$O_2$$
 এর মোল ভগ্নাংশ = $\dfrac{\dfrac{m}{32}}{\dfrac{m}{16} + \dfrac{m}{32}} = \dfrac{1}{3}$

৭৪। গ্যাস-A গ্যাস-B

পাত্রটির চাবি খোলা অবস্থায় মোট চাপ P = 200 mm (Hg)।

 $n_A = 6 \text{ mol}, n_B = 14 \text{ mol}$ উদ্দীপকের ক্ষেত্রে A গ্যাসের আংশিক চাপ হলো–

- ⊕ 60 mm (Hg)
- (4) 80 mm (Hg)
- 120 mm (Hg)
- (1) 140 mm (Hg)

উত্তর: 📵 60 mm (Hg)

Rhombus Publications

MCS/ ➤ Chemistry 2nd Paper Chap

$$P_{A} = P \times \left(\frac{n_{A}}{n_{A} + n_{B}}\right)$$
$$= 200 \times \left(\frac{6}{6 + 14}\right)$$
$$= 60 \text{ mm (Hg)}$$

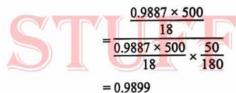
৭৫। 50 gm গ্রুকোজ 500 ml পানিতে দ্রবীভূত করা হরেছে। পানির মোল ভগ্নাংশ কত? (পানির ঘনত = 0.9887 gm/mi, ই

- $= C_6 H_{12} O_6$
- 0.9901
- € 0.9801
- **1** 0.9899
- (T) 0.9902

গ্রুকোজের আণবিক ভর =180 g

উন্তর: 🕦 0.9899

ব্যাখ্যাঃ আমরা জানি,


ঘনড়,
$$\rho = \frac{m}{V}$$
 বা, $m = \rho V$ এখানে, $\rho = 0.9887 \ gm/mL$ আয়তন, $\rho = 0.9887 \ gm/mL$ পানির আণবিক ভর $\rho = 18 \ gm$

আমরা জানি, $n = \frac{m}{M} = \frac{\rho V}{M}$

$$n_{\rm H_2O} = \frac{0.9887 \times 300}{18}$$

$$n_{\rm C_6H_{12}O_6} = \frac{50}{180}$$

ি. পানির মোল ভগ্নাংশ = $rac{n_{
m H_2O}}{n_{
m H_2O} + n_{
m C_6H_{12}O_6}}$

গ্যাসের আণবিক গতিতন্ত্র

৭৬। গ্যাসের গতিশক্তি নির্ভর করে-

₹. a

- ক) চাপ ও আয়তনের উপর
- ভাপমাত্রা ও গ্যাসের প্রকৃতির উপর
- গ্রি চাপ ও তাপমাত্রার উপর
- ত্য গ্যাসের প্রকৃতি ও ঘনত্বের উপর

উন্তর: 📵 তাপমাত্রা ও গ্যাসের প্রকৃতির উপর

ব্যাখ্যা: n মোল গ্যাসের অণুসমূহের গতিশক্তি $(K.E) = \frac{3nRT}{2}$ J

অর্থাৎ, গ্যাসের মোট গতিশক্তি নির্ভর করে মোলসংখ্যা ও **ভাগর্য** উপর।

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book.....

৭৭। স্থির চাপে গ্যাসের গতিবেগ ঘনতের-

[ল. বো. ২১]

- ক সমানুপাতিক
- (৭) ব্যস্তানুপাতিক
- বর্গের সমানুপাতিক
- বর্গমূলের ব্যস্তানুপাতিক

উন্তর: ত্তি বর্গমূলের ব্যস্তানুপাতিক

ব্যাখ্যা: প্রাথমের ব্যাপন সূত্র: "ন্থির তাপমাত্রা ও চাপে গ্যাসের ব্যাপন হার গ্যাসটির আণবিক ভর বা ঘনতের বর্গমূলের ব্যস্তানুপাতিক **।**"

অর্থাৎ,
$$r \propto \frac{1}{\sqrt{d}}$$
 বা, $\frac{r_1}{r_2} = \sqrt{\frac{d_2}{d_1}} = \sqrt{\frac{M_2}{M_1}}$

৭৮। এক মোল গ্যাসের গতিশক্তির সমীকরণ কোনটি?

- $\odot \frac{3}{2} \frac{RT}{N_A}$
- $\mathfrak{F} \frac{3}{2} \mathbf{nRT}$
- $\mathfrak{T} = \frac{3}{2}RT$
- $\mathfrak{g} \frac{2}{3} RT$

উভর: • 3 RT

ব্যাখ্যা: n মোল আদর্শ গ্যাসের গতিশক্তি, $E_k = \frac{3}{2} nRT$

∴ 1 মোল গ্যাসের গতিশক্তি, $E_k = \frac{3}{2} RT$

৭৯। 27°C তাপমাত্রায় 8 g CH4 গ্যাসের গতিশক্তি কত জুল?

চি. বো, ২৩; দি. বো. ২৩)

- 935.32
- 3 1870.65
- **(17)** 3741.30
- **(9)** 4870.30

উব্দর: 📵 1870.65

ব্যাখ্যা: গতিশক্তি, $E_k = \frac{3}{2} nRT$

$$E_k = \frac{3}{2} \frac{W}{M} RT$$

$$\Rightarrow E_k = \frac{3}{2} \times \frac{8}{16} \times 8.314 \times 300$$

 $E_k = 1870.65 J$

৮০। কোন ভাপমাত্রায় একটি অণুর গতিশক্তি শূন্য হবে? [রা. বো. ২১]

- ⊕ 0°C
- 10 0 K
- ® 298 K

উন্তর: 🗿 0 K

ব্যাখ্যাঃ অণুর গতিশক্তি, $E_k = \frac{3}{2} nRT$

$$\Rightarrow E_k = \frac{3}{2} PV [থেছে, PV = nRT]$$

এখানে, V = 0 হলে, $E_k = \frac{3}{2} P \times 0 = 0$ হবে। -273°C বা 0 K

তাপমাত্রায় অণুর আয়তন শূন্য হয়। ফলে, – 273°C বা 0 K তাপমাত্রায় অণুর গতিশক্তি শূন্য হবে।

৮১। 25°C তাপমাত্রার 2 মোল হাইড্রোচ্ছেনের গড় গতিশক্তি হবে-।কু. বো. ২১।

- 3 3.303 × 10³ J
- 3 6.809 \times 10³ J
- \P 7.43 × 10³ J
- (9) 6.23×10^2 J

উडन्नः 🗐 7.43 × 10³ J

ব্যাখ্যা: গতিশক্তি, K.E = $\frac{3}{2}$ nRT

$$= \left(\frac{3}{2} \times 2 \times 8.314 \times 298\right) J = 7.43 \times 10^3 J$$

৮২। 27°C ভাগমাত্রার 4.4 g CO2 গ্যাসের গড় গঙিশক্তি কত? iচ. বে. ২১।

- 3.69 J
- @ 374.13 J
- ① 369 kJ
- ® 374.13 kJ

উন্তর: 🕙 374.13 J

ব্যাখ্যা: গতিশক্তি, K.E = $\frac{3}{2}$ nRT

$$= \left(\frac{3}{2} \times \frac{4.4}{44} \times 8.314 \times 300\right) J = 374.13 J$$

৮৩। 25°C তাপমাত্রায় 14 g № গ্যাসের গতিশক্তি কত হবে? বি. বো. ২১

- **③** 1.8588 J
- **●** 18.588 J
- 185.88 J
- ® 1858.8 J

উন্তর: 📵 1858.8 J

ব্যাখা: M_{N2} = 28 g mol⁻¹

$$n = \frac{14}{28} = 0.5 \text{ mol}$$

$$E_k = \frac{3}{2} nRT$$

$$=$$
 $\left(\frac{3}{2} \times 0.5 \times 8.314 \times 298\right)$ J = 1858.179 J

৮৪। কোন সমীকরণটি সঠিক নয়?

[ঢা. বো. ১৬]

- (a) $E_k = \frac{3}{2} PV$ (b) $E_k = \frac{2}{3} RT$ (c) $E_k = \frac{1}{2} MC^2$ (d) $E_k = \frac{3}{2} \frac{RT}{M}$
 - $\odot E_k = \frac{2}{3}RT$

উন্তর: ব্য
$$E_k = \frac{3}{2} \frac{RT}{M}$$
; ব্য $E_k = \frac{2}{3} RT$

ব্যাখ্যা: $E_k = \frac{2}{3} \frac{RT}{M}$ ও $E_k = \frac{2}{3} RT$ সমীকরণছয় সঠিক নয়।

সঠিক সমীকরণ হবে, $E_k = \frac{3}{2} nRT$

$$=\frac{3}{2}PV$$

$$=\frac{3}{2}\frac{WRT}{M}=\frac{1}{2}mc^{2}$$

৮৫। কক্ষ তাপমাত্রায় N2 এর 1টি অণুর গতিশক্তি কত আর্গ? াসি. বো. ১৬)

- 3 6.582 \times 10⁻¹⁸
- 3 6.17 × 10⁻¹⁴

উন্তর: 🕲 6.17 × 10⁻¹⁴

ব্যাখ্যা: এখানে,

 $E_k = \frac{3}{2} kT$

$$E_k = \frac{3}{2} kT$$

$$= \frac{3}{2} \times 1.38 \times 10^{-23} \times 298$$

$$= 6.169 \times 10^{-21} \text{ J}$$

$$= 6.169 \times 10^{-14} \text{ erg}$$

৮৬। স্থির তাপমাত্রায় R.M.S. বেগের সঠিক ক্রম কোনটি?

\odot $O_2 > CO_2 > SO_2$

$$O_2 > O_2 > SO_2$$

$$\P$$
 SO₂ > CO₂ > O₂

$$O_2 > SO_2 > CO_2$$

উন্তর: 📵 O₂ > CO₂ > SO₂

ব্যাখ্যা:
$$C_{rms} = \sqrt{\frac{3RT}{M}}$$

$$\therefore \ C_{
m rms} \propto rac{1}{\sqrt{M}} \, [\ rac{1}{
m ga} \ {
m on } \ {
m on }$$

$$M_{CO_2} = 44$$

$$M_{O_2} = 32$$

$$M_{SO_2} = 64$$

∴ স্থির তাপমাত্রায় rms বেগের সঠিক ক্রম: $O_2 > CO_2 > SO_2$

৮৭। স্থির তাপমাত্রায় RMS বেগের সঠিক ক্রম কোনটি?

[চ. বো. ২২; ঢা. বো. ১৬]

①
$$N_2 > CO_2 > He$$

ব্যাখ্যা: আমরা জানি,

$$C_{rms} = \sqrt{\frac{3RT}{M}}$$

$$\therefore \ C_{rms} \propto \frac{1}{\sqrt{M}} \, [$$
 স্থির তাপমাত্রায়]

:.
$$H_2(2) > N_2(14) > CO_2(44)$$

৮৮। 27°C তাপমাত্রায় O₂ এর RMS বেগ এর মান ক্ত?

[রা. বো. ২২ঃ ব. বো. ২১]

উন্তর: (ছ) 483.56 m s⁻¹ ব্যাখ্যা: আমরা জানি,

RMS বেগ,
$$C = \sqrt{\frac{3RT}{M}}$$

$$= \sqrt{\frac{3 \times 8.314 \times 300}{32 \times 10^{-3}}} = 483.56 \text{ m s}^{-1}$$

৮৯। 0° সে তাপমাত্রায় একটি গ্যাসের বর্গমূল গড় বর্গবেগ প্রতি সেকেন্ডে 49330 cm/s গ্যাসটির আণবিক ভর কত? যি. বো. ২২)

(4) 52

- **32**
- **1** 28

(9) 16

উত্তর: গ্র 28

ব্যাখ্যা: আমরা জানি,

$$C = \sqrt{\frac{3RT}{M}}$$
$$\Rightarrow M = \frac{3RT}{C^2}$$

$$C_{rms} = 49330 \times 10^{-2} \text{ m/s}$$

= 493.3 m/s

$$= 273 \text{ K}$$

$$\Rightarrow M = \frac{3 \times 8.314 \times 273}{(493.30)^2}$$

$$\Rightarrow$$
 M = 28 × 10⁻³ kg mol⁻¹

$$\Rightarrow$$
 M = 28 g mol⁻¹

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter

মি. বো. ২৩। ১০। 300 K তাপমাত্রায় He ও O2 গ্যাসের RMS বেগের অবুশাত 🚓

- @ 15:1
- @ 4:1
- ® 1:4

উন্তর: ﴿ √8 : 1

ব্যাখ্যাঃ
$$C_{rms} = \sqrt{\frac{3RT}{M}}$$

$$\therefore \frac{(C_{rms})_{He}}{(C_{rms})_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{He}}} = \sqrt{\frac{32}{4}} = \sqrt{\frac{8}{1}} = \frac{\sqrt{8}}{1}$$

এসিড বৃষ্টি ও তার প্রতিকার

৯১। এসিড বৃষ্টির বেলায় অধ্যক্ষেপণ বৃষ্টিতে pH এর মান কত হয়ে পারে? রা. বো. ২২: ব. বো. ২

- **3** 6.9
- **(4)** 6.5

- **(1)** 5.8
- (F) 5.3

উত্তর: 🕲 5.3

ব্যাখ্যা: বৃষ্টির পানির ক্ষেত্রে pH < 5.6 হলে তাকে এসিড বৃষ্টি বলা হয়।

- ৯২। নিচের কোন এসিডটি এসিড বৃষ্টির জন্য দায়ী-
 - H₂CO₃
- (1) HCI
- 1 H2SO3
- ® HNO2
- উত্তর: গু H₂SO₃

ব্যাখ্যা: সালফার ও নাইট্রোজেনের অক্সাইডসমূহ বৃষ্টির পানির সাথে মিশ্রি হয়ে ${
m H_2SO_3}, {
m H_2SO_4}, {
m HNO_3}$ তৈরি করে। এসিড মিশ্রিত এ বৃষ্টিরে এসিড বৃষ্টি বলা হয়।

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

$$NO_2 + H_2O \longrightarrow HNO_3$$

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

৯৩। এসিড বৃষ্টিতে সবচেয়ে বেশি ভূমিকা রাখে-

- ⊕ H₂SO₄
- (1) HNO₃
- 例 HCI
- (1) H2CO3

উত্তর: 📵 H2SO4

ব্যাখ্যা: এসিড বৃষ্টিতে H₂SO₄ (60 – 65%), HNO₃ (30 – 35%) ধ HCl খুব সামান্য ভূমিকা রাখে।

৯৪। এসিড বৃষ্টির প্রভাব নয় নিচের কোনটি?

- ক্স মাছের ডিম হ্যাচিং এ বাধা
 প্ত বীজের অন্ধরোদগম দ্রুতকরণ
- পাতু নির্মিত যানবাহনের ক্ষয় (१) জলজ বাম্বতন্ত্র ধ্বংস
- উন্তর: 📵 বীজের অঙ্কুরোদগম দ্রুতকরণ

ব্যাখ্যা: এসিড বৃষ্টির প্রভাব:

- ১. এসিড বৃষ্টির ফলে জলজ প্রাণী ও উদ্ভিদ আক্রান্ত হয়।
- ২. কম pH এর পানিতে মাছের ডিম হ্যাচিং (Hatching) বাধাপ্রাপ্ত হয়।
- ৩. অধিক অমুত্বের কারণে জলাশয়ে সমগ্র বাস্তুতন্ত্র ধ্বংস **হয়ে যেতে পা**রে।
- বীজের অঙ্কুরোদগম এসিড বৃষ্টিতে বাধাপ্রাপ্ত হয়।
- ৫. এসিড বৃষ্টিতে বিভিন্ন ধাতুর তৈরি ব্রিজ ও অ্ট্রালিকার ক্ষতি হয়।

অসিড-ক্ষারক মতবাদ, পানির বিতদ্ধতার মানদভ

৯৫। ব্রনস্টেড-লাউরি মতবাদ অনুসারে-

কু. বো. ২৩]

[সি. বো. ২২]

- (i) PH 4 अकि प्रम
- (ii) এসিড প্রোটন দাতা
- (iii) এসিড ইলেকট্রন গ্রহীতা

নিচের কোনটি সঠিক?

- ® i vii
- (1) ii v iii
- (f) i v iii
- (i, ii v iii

উভব: 📵 i ও ii

ব্যাখা: ব্রনস্টেড-লাউরি তত্ত্ব মতে, অসু হলো এমন একটি যৌগ বা আয়ন যা অন্য পদার্থকে প্রোটন দান করতে পারে। ক্ষারক হলো এমন একটি যৌগ বা আয়ন যা অস্ত্র হতে প্রোটন গ্রহণ করতে পারে।

 $PH_4^+ = PH_3 + H^+$

 \mathbf{PH}_{4}^{+} প্রোটন দান করতে পারে তাই \mathbf{PH}_{4}^{+} একটি অস্ল।

৯৬। ব্রনস্টেড-শাউরি তত্ত্বমতে এসিড হিসেবে কাজ করে-

- (i) PH
- (ii) HC₂O₄
- (iii) Na₂HPO₄
- নিচের কোনটি সঠিক?
- (a) i vs ii
- iii & i (P)
- (f) i v iii
- (1) i, ii v iii

উন্তর: 🕲 i, ii ও iii

ব্যাখ্যা: ব্রনস্টেড-লাউরি মতবাদ অনুসারে.

PH4 দ্রবণে প্রোটন দান করে PH3 এ পরিণত হয়, তাই PH4 এসিড। $HC_2O_4^2$ দ্রবণে প্রোটন দান করে $C_2O_4^2$ এ পরিণত হয়, ডাই $HC_2O_4^2$ এসিড।

আবার, Na2HPO4 দ্রবণে প্রোটন দান করে।

সুতরাং, Na2HPO4 একটি এসিড।

৯৭। সুইস এসিড কোনটি?

বি. বো. ২৩

- AICla
- ③ H₂O
- 1 R -NH2
- ® PH₃

উন্তর: 🚳 AICla

ব্যাখ্যা: লুইস মতবাদ অনুসারে, এক জোড়া ইলেকট্রন গ্রহণে সক্ষম পদার্থ হলো এসিড। SO3, BCl3, BF3, AlCl3, ZnCl2 এবং H⁺ ইত্যাদি পুইস এসিড।

$$Cl \quad H \\ | \quad | \quad | \\ Cl - Al \leftarrow : N - H \\ | \quad | \quad | \\ Cl \quad H$$

৯৮। নিচের কোনটি লুইস এসিড?

চি. বো. ২২

- (1) NH3
- 1 H2O
- (9) CN
- উন্তর: 🚳 SO3

ব্যাখ্যা: এক জোড়া ইলেকট্রন গ্রহণে সক্ষম পদার্থ মাত্রই লুইস এসিড। SO1 BCl₃, AlCl₃, ZnCl₂ এবং H⁺ লুইস এসিড।

$$O = \underbrace{S + iO}_{O} - H \rightarrow HSO_{4}$$

এখানে, SO3 একটি ইলেকট্রন জোড় গ্রহণ করতে পারায় এটি লুইস এসিড।

১৯। দুইস এসিড কোনটি?

চি. বো. ২১]

- ® NH₃
- 3 R-NH2
- @ PH3
- (9) BF3

উম্বর: 🖲 BF3

ব্যাখ্যা: BF3 এর কেন্দ্রীয় মৌল B এর অষ্টক অপূর্ণ থাকায় এটি এক জোড়া ইলেকট্রন গ্রহণ করতে পারে। তাই এটি লুইস এসিড।

$$H_3N_0^{G+}BF_3 \longrightarrow H_H N \rightarrow B \stackrel{F}{\underset{F}{\longleftarrow}} F$$

১০০। লুইস এসিডগুলো হলো-

াতা. বো. ২১

- (i) SO₂
- (ii) CO₂
- (iii) Ag
- নিচের কোনটি সঠিক?
- ⊕ i S ii
- (1) ii e iii
- n i siii
- (T) i, ii 8 iii

উজ্জঃ 📵 i, ii ও iii

ব্যাখা: লুইস অস্ল ইলেকট্রন দাতা গ্রুপ হতে দানকৃত ইলেকট্রন যুগলকে গ্রহণ করতে পারে।

অসম্পূর্ণ অকটেট বিশিষ্ট যৌগ এবং অসম্পূর্ণ d অরবিটাল বিশিষ্ট যৌগসমূহ সাধারণত লুইস এসিড হয়। যেমনः

CO2, SO2, SO3, BF3, AICl3, FeCl3, Cu2+, Ag+

১০১। NH₃ + H₂O ⇒ NH⁺ + OH এই বিক্রিয়ায় অনুবন্ধী অম্র

কোনটি?

[®] H₂O

1 OH

® NH₃

উন্তর: 🕸 NH🕹

ব্যাখ্যা: প্রোটন গ্রহণ করার ফলে কোনো ক্ষারক যে যৌগে পরিণত হয় তাকে ঐ ক্ষারকের অনুবন্ধী অমু বলে।

অনুবন্ধী অম্ল-ক্ষারক

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$

অনুবন্ধী অম্ল-ক্ষারক

১০২।NH3 + HCl ⇒ NH4 + CI; व विकियाय जनवन्नी जम्म রো. বো. ২২]

- কোনটি? (4) HCl
- (1) NH
- @ NH₃
- (T) CI
- উত্তর: 🕲 NH 🕯

ব্যাখাঃ NH₁ + $HCI \Rightarrow NH_4^+$ অনুবন্ধী অমু অনুবন্ধী ক্ষারক

এখানে ক্ষারক NH3 একটি প্রোটন (H⁺) গ্রহণ করে NH4 এ পরিণত হয়। তাই NH4 হলো NH3 এর অনুবন্ধী অম।

১০৩। SO3 এর অনুবন্ধী এসিড কোনটি?

দি. বো. ২২)

- Type H₂SO₃
- ⁽³⁾ H₂SO₄
- 1 HSO4
- ® HSO

উব্বঃ 🕲 HSO ়

ব্যাখ্যা: SO₃²⁻ + H⁺ → HSO₃⁻

তাই HSO, হলো SO3 এর অনুবন্ধী এসিড।

১০৪। NO আয়নের অনুবন্ধী অস্ত্র হচ্ছে-

মি. বো. ২২

- THNO3
- (1) HNO₂
- 1 HNO
- (1) NO.

উন্তর: **(ৰ) HNO**2

ব্যাখ্যা: ক্ষারকের চেয়ে অনুবন্ধী অম্লে একটি H পরমাণু বেশি থাকে ও একটি ঋণাত্মক চার্জ কম থাকে।

 $NO_2^- + H^+ = HNO_2$

ক্ষারক NO 2 একটি প্রোটন (H¹) গ্রহণ করে HNO2 এ পরিণত হয়, তাই HNO2 হলো NO2 এর অনুবন্ধী অম।

১০৫। OH এর অনুবন্ধী ক্ষার কোনটি?

- ⊕ O²-
- @ H2O
- ⊕ H₃O⁺
- (9) O2

উন্তর: 🕸 O²-

ব্যাখ্যা: একটি মাত্র প্রোটন ত্যাগ করার ফলে কোনো অস্ত্র যে যৌগে পরিণত হয় তাকে ঐ অম্রের অনুবন্ধী ক্ষারক বলে

 $OH^- - H^+ \rightarrow O^{2-}$

অনুবন্ধী ক্ষারক

১০৬। কোনটি HCO3 এর অনুবন্ধী ক্ষারক? [রা. বো. ২৩]

- ⊕ H₂CO₃
- [®] CO₂
- ® H₂O
- (1) CO2-

উত্তর: 🕲 CO2-

ব্যাখ্যা: একটি মাত্র প্রোটন ত্যাগ করার ফলে কোনো অস্ত্র যে যৌগে পরিণত হয় তাকে ঐ অম্রের অনুবন্ধী ক্ষারক বলে।

 $HCO_3^- - H^+ = CO_3^{2-}$ এসিড অনুবন্ধী ক্ষারক

১০৭। [Fe(H2O)6]3+ এসিডের অনুবন্ধী ক্ষারক হলো-

- [Fe(H₂O)₄(OH)₂]⁺
- ③ [Fe(H₂O)₅(OH)]²+ (Fe(H₂O)₆(OH)₂]²⁺

 [Fe(H₂O)₅(OH)₂]³⁺ উব্ব: 🕲 [Fe(H₂O)₅(OH)]²⁺

याचाः [Fe(H₂O)₆]³⁺ —H⁺ [Fe(H₂O)₅(OH)]²⁺ অনুবন্ধী ক্ষারক

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter ১০৮। HSO ্ব এর অনুবন্ধী ক্ষারক কোনটি?

⊕ H₂SO₄

[®] H₂O

(9) SO₃²

উত্তর: (ৰ) SO₄-

ব্যাখ্যা: ব্রনস্টেড-লাউরির তত্ত্ব অনুসারে-

HSO4 + ক্ষার অনুবন্ধী অমু অনুবন্ধী ক্ষার অস্ল

এখানে, অমু HSO4 একটি প্রোটন ত্যাগ করে SO4 এ পরিপত মু তাই SO4 হলো HSO4 এর অনুবন্ধী ক্ষারক।

ক্ষারক SO₃²⁻ একটি প্রোটন (H⁺) গ্রহণ করে HSO₃ এ পরিণত হয়, ১০৯। H₂CO₃ + H₂O ⇒ HCO₃ + H₃O⁺; এ বিক্রিয়ার ক্রেক্তে কো সঠিক? বি. বো. i

- ⊕ H₂O এর অনুবন্ধী ক্ষারক H₃O⁺
- খি এখানে H2O এসিডরূপে কাজ করে

উত্তর: ③ H2CO3 এর অনুবন্ধী ক্ষারক HCO3

ব্যাখ্যা: এখানে অস্ল H₂CO₃ একটি প্রোটন ত্যাগ করে HCO₃ এ পরি

হয়। তাই HCO, হলো H2CO, এর অনুবন্ধী ক্ষারক।

 $H_2O \rightarrow HCO_3^- + H_3O^+$ H₂CO₃ + ক্ষার অনুবন্ধী ক্ষারক অনুবন্ধী অস্ত্র

১১০। কোনটি লুইস ক্ষারক?

Pি. ৰো. **১**

- ® NH₃
- @ BF₃
- AlCl3
- [®] C₂H₄

উত্তর: 📵 NH3

ব্যাখ্যা: একজোড়া ইলেক্ট্রন দানে সক্ষম পদার্থকে লুইস ক্ষারক বলে। NI এর কেন্দ্রীয় পরমাণু N এর একটি মুক্তজোড় ইলেকট্রন থাকায় এ একজোড়া ইলেকট্রন দান করতে সক্ষম। তাই NH3 একটি লুই ক্ষারক।

নিচের উদ্দীপকটি পড় এবং ১১১ ও ১১২ নং প্রশ্নের উত্তর দাও:

 $2H_2O + HCl (aq) \rightleftharpoons H_3O^+ + B$ ১১১। B এর সংকেত কোনটি?

বো. বো. খ

- ⊕ CI
- (4) Cl
- 1 CI
- (1) Cl2

উত্তর: 🕸 CI

ব্যাখ্যা: উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে পাই,

 $2H_2O + HCl \Longrightarrow H_3O^+ + Cl^-$

পানির দুই জোড়া নিংসঙ্গ ইলেকট্রন থাকায় এটি HCl এর প্রো গ্রহণ করে H_3O^+ আয়নে এবং HCl প্রোটন দান করে Cl আর্ম্ম পরিণত হয়। সুতরাং, B যৌগটি CI হবে।

পরিবেশ রসায়ন > ১০১০ FRB Compact Suggestion Book..... ১১২। উদ্দীপকের H₃O⁺ হলো-রা. বো. ২১ ব্যাখ্যাঃ পানিতে বাইকার্বনে লবণ দ্রবীভৃত থাকলে পানির অস্থায়ী (i) অনুবন্ধী অমু ও সালফেট (SO4) লবণ থাকলে স্থায়ী খরতা এবং ক্রোরাই (ii) H₂O এর অনুবন্ধী ক্ষারক খরতা সৃষ্টি হয়। (iii) এটি প্রোটন প্রদানে সক্ষম ১১৭। পানিতে অস্থায়ী খরতার জন্য কোন যৌগটি দায়ী? কু, বো, ২৩ নিচের কোনটি সঠিক? 3 CaCl (a) i v ii iii vii 1 FeSO NaCl Mii viii iii vii i উত্তর: **(ৰ)** Mg(HCO₃)₂ উত্তর: ৰ i ও iii ব্যাখ্যাঃ বাইকার্বনেট (HCO)) লবণ দ্রবীভূত থাকলে পানির অস্থায়ী খরতা ব্যাখ্যা: 2H₂O+ HCl \imp H₃O⁺ + এবং ক্লোরাইড (CI) ও সালফেট (SO_4^2) লবণ থাকলে স্থায়ী বরতা ক্ষার এসিড অনুবন্ধী এসিড অনুবন্ধী ক্ষারক मृष्टि হয়। H_2O একটি প্রোটন গ্রহণ করে, ফলে এটি ক্ষারক। অপরদিকে, HCl প্রোটন দান করে। সূতরাং, এটি এসিড। ১১৮। নিচের কোন পদ্ধতি সহজে পানির স্থায়ী খরতা দূর করার জন্য ব্যবহার ${
m H_3O}^+$ পশ্চাৎমুখী বিক্রিয়ায় ${
m CI}^-$ কে একটি প্রোটন দান করে ${
m H_2O}$ তে করা যায় না? পরিণত হয়। যেহেতু H_3O^+ প্রোটন দানে সক্ষম, সুতরাং এটি H_2O ক্স ক্ষুটন কিটক সোভা সংযোজন এর অনুবন্ধী অমু। CI, HCI এর অনুবন্ধী ক্ষারক। গ্র সোডিয়াম কার্বনেট সংযোজন গ্র পাতন উত্তর: ক্র স্ফুটন ১১৩। HCl + HCO₃ → H₂CO₃ + Cl⁻; এই বিক্রিয়ায় HCO₃ কিরূপ ব্যাখ্যাঃ স্থায়ী খরতা দূর করার পদ্ধতিগুলো নিম্নরূপঃ [কু. বো. ১৯] আচরণ করে? (i) কস্টিক সোডা সংযোজন ক) ক্ষারক অনুবন্ধী এসিড (ii) সোডিয়াম কার্বনেট সংযোজন ন্স উভধর্মী পদার্থ থি অনুবন্ধী ক্ষারক (iii) পাতন। উত্তর: ত্র অনুবন্ধী ক্ষারক ব্যাখাঃ নিচের উদ্দীপকটি পড় এবং ১১৯ ও ১২০ নং প্রশ্নের উত্তর দাও: অনুবন্ধী অম্লু-ক্ষারক (i) $NH_3 + HCO_3 \rightleftharpoons NH_4^+ + CO_3^2$ (ii) $HCO_3 + H_2O \Longrightarrow H_2CO_3 + OH$ $HCl + HCO_3^- \rightarrow H_2CO_3 + Cl^-$ ১১৯। উলীপকের কোনটিকে উভধর্মী পদার্থ বলা যায়? কু. বো. ২৩ অনুবন্ধী অম্ল-ক্ষারক @ NH3 ③ H₂O $HCO_3^- + H^+ \rightarrow H_2CO_3$ 1 CO3-® HCO3 উত্তর: 📵 HCO3 ১১৪। OH এর অনুবন্ধী ক্ষারক কোনটি? ব্যাখ্যা: (i) নং বিক্রিয়াটিতে HCO3 একটি H⁺ দান করে CO3 এ পরিণত ③ O²− ♠ H₂O হয়েছে। সূতরাং, HCO; একটি এসিড। আবার, (ii) নং বিক্রিয়াটিতে 1 O2 (1) H3O+ H₂O থেকে একটি H⁺ গ্রহণ করে H₂CO₃ এ পরিণত হওয়ায় উত্তর: ﴿ 0 02-HCO3 একটি ক্ষার। HCO3 অবস্থানভেদে এসিড ও ক্ষার হিসেবে ব্যাখ্যা: OH একটি প্রোটন ত্যাগ করে O2 আয়নে পরিণত হয়। আচরণ করায় এটি উভধর্মী পদার্থ। সুতরাং, OH এর অনুবন্ধী ক্ষারক O2-। ১২০। (i) ও (ii) নং বিক্রিয়ার মূল পার্থক্য হল- $OH^- - H^+ \rightarrow O^{2-}$ কু. বো. ২২ (i) জলীয় দ্ৰবণ ১১৫। SnO2 এর ক্ষারকত্ব কত? [ঢা. বো. ২৩] (ii) pH 2 3 4 (iii) H⁺ নিচের কোনটি সঠিক? **9** 6 ® 8 উত্তর: 🕸 2 ii vi (4) (T) ii ব্যাখ্যা: $SnO_2(s) + 2NaOH(aq) \rightarrow Na_2SnO_3(aq) + H_2O(l)$ 1ii (F) i, ii 🕏 উত্তর: 📵 iii যেহেতু, SnO₂ 2 মোল এক অম্লীয় ক্ষার এর সাথে বিক্রিয়া করে, তাই SnO2 এর ক্ষারকত্ব 2। ১২১। বৃষ্টির পানির pH কত? কু. বো. ২৩) **®** 8.50 **3** 7.50 ১১৬। পানির অস্থায়ী খরতার জন্য দায়ী কোনটি? মি. বো. ২৩] **1.00 (9)** 6.50 3 CO3 উত্তর: থ 6.50 (9) CI (9) HCO3 ব্যাখ্যা: বিশুদ্ধ পানির pH 7 হলেও সারফেস ওয়াটারে H_2CO_3 এসিড

t.me/admission stuffs

উত্তর: 📵 HCO3

দ্রবীভূত থাকে। তাই বৃষ্টির পানির pH 7 থেকে কম হয়।

...... ACS, > Chemistry 2nd Paper Chapter-1

১২২। WHO কর্তৃক অনুমোদিত পানযোগ্য পানির pH সীমা কত? সি. বো. ২৩। ১২৬। কোনটি পানিতে DO এর পরিমাণ হ্রাস করে?

4.0-8.0

(A) 5.5-7.5

(9) 6.5-8.5

(T) 7.0-10.0

উব্জঃ প্র 6.5-8.5

ব্যাখ্যা: WHO অনুমোদিত পানির গ্রহণযোগ্য মানদণ্ড:

মানদত		WHO অনুমোদিত সর্বোচ্চ মাত্রা	
pI	H	6.5-8.5	
DO		5.0-6.0 ppm	
BOD		6.0 ppm	
COD		10.0 ppm	
TD		500 ppm	
-	Ca ²⁺	100 ppm	
খরতা Mg ²⁺		150 ppm	
NaCl		500 ppm	

১২৩। বৃষ্টির পানিতে কোন পদার্থের উপস্থিতি এসিড বৃষ্টির মূল কারণ?

দি. বো. ২৩)

THO3

(1) HCl

[®] CH₃COOH

(1) H2CO3

উন্তর: **®** HNO₃

ব্যাখ্যা: এসিড বৃষ্টির মূলে তিনটি এসিডের (H2SO3, H2SO4, HNO3)

ভূমিকা রয়েছে।

বিদ্যুৎ উৎপাদন প্রকল্পে ও মোটর কারের ইঞ্জিনে N2 গ্যাস ও O2 গ্যাসের বিক্রিয়ায় NO উৎপন্ন হয়। যা অক্সিজেনসহ বিক্রিয়া করে

NO2 উৎপন্ন করে।

 $N_2 + O_2 \longrightarrow 2NO$

 $2NO + O_2 \longrightarrow 2NO_2$

 $2NO_2 + O_3 \longrightarrow N_2O_5 + O_2$ $N_2O_5 + H_2O \longrightarrow 2HNO_3$

১২৪। পানিতে দ্রবীভূত অক্সিজেন কী নামে পরিচিত?

যি. বো. ২২

⊕ COD

(1) TDS

1 BOD

(1) DO

উন্তর: 🕲 DO

ব্যাখ্যা: কোন নির্দিষ্ট তাপমাত্রায় যেকোনো উৎসের পানিতে দ্রবীভূত অক্সিজেনই DO নামে পরিচিত।

১২৫। পানিতে আদর্শ DO এর মান পিপিএম এককে কত?

[ঢা. বো. ২৩]

(a) 2

(4) 6

10

(T) 14

উত্তর: 🕲 6

ব্যাখ্যা: DO বা পানিতে দ্রবীভূত অক্সিজেনের পরিমাণ এর পরিসীমা 4-8 পিপিএম।

Rhombus Publications

[সি. বো. ২৩]

ক) জৈব দৃষক

📵 পজৈব দৃষক

1 TDS

® pH

উন্তর: 🚳 জৈব দৃষক

ব্যাখ্যা: পানিতে দ্রবীভূত বিভিন্ন বিয়োজনযোগ্য জৈব যৌগ পানিতে দ্রবীভূত অক্সিজেনের উপস্থিতিতে বিভিন্ন ব্যাকটেরিয়া বা অণুজীব খারা বিয়োজিত হয়। ফলে O2 এর পরিমাণের হ্রাস ঘটে। অর্থাৎ, DO এর হ্রাস ঘটে।

১২৭। আদর্শ পানির DO পরিসীমা কত?

[রা. বো. ২১]

3 2-4 mg/L

3 4-8 mg/L

® 8-10 mg/L

(10-12 mg/L)

উত্তর: 🕲 4-8 mg/L

১২৮। কোন তথ্য সঠিক নয়?

চি. বো. ২৩

ক নমুনা পানির COD, এর BOD অপেক্ষা বেশি হয়

🕲 খর পানিতে Ca²⁺ ও Mg²⁺ এর লবণ দ্রবীভূত থাকে

WHO মতে পানীয় জলের pH সীমা 6.5-8.5

® ভূ-পৃষ্ঠের পানিতে HNO3 দ্রবীভূত থাকে

উত্তর: 📵 ভূ-পৃষ্ঠের পানিতে HNO3 দ্রবীভূত থাকে

ব্যাখ্যাঃ ভূ-পষ্ঠের পানিতে H₂CO3 দ্রবীভূত থাকে।

অর্থাৎ, 'ঘ' নং সঠিক নয়।

নিচের উদ্দীপকটি পড় এবং ১২৯ ও ১৩০ নং প্রশ্নের উন্তর দাও:

জৈব দৃষক + O₂ <u>TiO</u>₂ X + H₂O

১২৯। উৎপাদিত X যৌগটি কী?

চি. বো. ১৭]

CO (

@ CO2

1 HCO3

TH2CO3

উত্তর: ﴿ CO2

ব্যাখ্যা: জৈব দৃষক দহন বিক্রিয়ার মাধ্যমে CO2 এবং পানি উৎপন্ন করে।

জৈব দূষক $+ O_2 \xrightarrow{TiO_2} CO_2 + H_2O$

∴ X যৌগটি CO2

১৩০। X যৌগটি পানিতে যুক্ত হয়ে কোনটি তৈরি করে?

[চ. বো. ১৭]

⊕ H₂SO₄

^③ H₂CO₃

Na₂CO₃

(9) HCI

উত্তর: (ব) H2CO3

ব্যাখ্যা: CO2 বৃষ্টির পানির সাথে যুক্ত হয়ে H2CO3 বা কার্বনিক এসিড উৎপন্ন করে।

 $CO_2 + H_2O \rightarrow H_2CO_3$

পরিবেশ রসায়ন > ACS, FRB Compact Suggestion Book..... চি. বো. ১৭। ১৩৬। WHO অনুমোদিত TDS এর সর্বোচ্চ মাত্রা হলো-১৩১। উদ্দীপকের X যৌগটি-(i) অমুধর্মী **③** 6 ppm ③ 10 ppm (9) 500 ppm 100 ppm (ii) হাইড্রোকার্বনের দহনে উৎপন্ন হয় উত্তর: 🕲 500 ppm (iii) দহনে সাহায্য করে নিচের কোনটি সঠিক? ১৩৭। TDS কমানোর উপায় কোনটি? ii vi (1) ii v iii (i) বিপরীত অভি<u>স্র</u>বণ (1) i v iii (i, ii v iii (ii) পাতন উন্তর: ক i ও ii (iii) আয়ন বিমুক্তকরণ ব্যাখা: ■ X যৌগ অর্থাৎ CO2 পানির সাথে বিক্রিয়া করে H2CO3 এসিড নিচের কোনটি সঠিক? উৎপন্ন করে। সূতরাং CO2 একটি অমুধর্মী অক্সাইড। (a) i v ii (1) i v iii ■ সম্পৃক্ত হাইড্রোকার্বন যেমন: CH4 এর দহনে CO2 উৎপন্ন হয়। (1) ii v iii (i) i i i (F) $CH_4 + 2O_2 \rightarrow CO_2 + H_2O$ উন্তর: 🕲 i, ii ও iii ■ CO2 দহনে সহায়তা করে না, O2 দহনে সহায়তা করে। ব্যাখ্যা: নিম্রোক্ত উপায়ে পানিতে TDS কমানো যায়: ১. ফিল্টার, ২. পাতন, ৩. আয়ন বিমুক্তকরণ, ৪. কার্বন ফিল্টার। ১৩২। জৈব ও অজৈব উভয় ধরনের দৃষক জারদের জন্য O2 এর পরিমাণ নির্দেশ করে-কু. বো. ২২ ১৩৮। 'WHO' এর পরিসংখ্যান অনুযায়ী পিপিএম এককে আর্সেনিকের ⊕ pH (1) DO সর্বোচ্চ মাত্রা হলো-1 COD ® BOD ₹ 0.01 **@** 0.04 উন্তর: গ COD @ 0.05 ® 0.06 ব্যাখ্যা: জৈব ও অজৈব উভয় দৃষককে জারণের জন্য প্রয়োজনীয় অক্সিজেনের উত্তর: 🗇 0.05 পরিমাণ হল COD। ব্যাখ্যা: বিশ্ব স্বাস্থ্য সংস্থা WHO এর দিক নির্দেশনা অনুযায়ী, পানিতে আর্সেনিকের নিরাপদ মাত্রা $0.01~{
m mg~L^{-1}}$ (ppm)। মানবদেহের ১৩৩। পানীয় জলে WHO অনুমোদিত COD এর সর্বোচ্চ মান কত? আর্সেনিকের সর্বোচ্চ সহনসীমা 0.05 mg L⁻¹ (ppm)। [দি. বো. ২২] 6 ppm ③ 10 ppm উল্লেখ্য, বাংলাদেশের প্রেক্ষাপটে পানিতে আর্সেনিকের মাত্রা 0.05 100 ppm [®] 500 ppm $mg L^{-1}$ এর নিচে থাকলে সে পানি ব্যবহারের উপযোগী বলে ধরা উন্তর: 📵 10 ppm ১৩৪। পানির বিশুদ্ধতার মানদণ্ড সম্পর্কে কোনটি সঠিক? াঢা. বো. ২১) ১৩৯। মিন হাউস গ্যাসের মধ্যে নিম্নের কোনটি বায়ুমন্তলে সবচেয়ে বেশি তাপমাত্রা বৃদ্ধিতে DO বৃদ্ধি পায় থাকে? COD এর মান BOD অপেক্ষা বেশি হয় ⊕ CO₂ (4) CH 1 O3 (9) CFC ি DOত্রাস পেলে BOD ত্রাস পায় উত্তর: 📵 CO2 (ছ) COD বৃদ্ধি পেলে দৃষণ হ্রাস পায় উত্তর: (ব) COD এর মান BOD অপেক্ষা বেশি হয় ব্যাখাঃ মিন হাউস গ্যাস বায়ুর তাপমাত্রা বৃদ্ধিতে ভূমিকা CO₂ গ্যাস 50% ১৩৫। কৃষিকাজে সারফেস ওয়াটারের বিগুদ্ধতার মানদণ্ড কোনটি? CH₄ গ্যাস 19% বি. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ১৭] (4) TDS (4) COD N₂O 5% 1 pH ® BOD CFC গ্যাস 16% উত্তর: 🕸 TDS ওজোন, O₃ 8% **गाभ्राः** TDS এর উৎস শিল্পকারখানার বর্জ্য, পানিশোধন কারখানার বর্জ্য, জলীয় বাষ্প 2%

Rhombus Publications

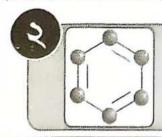
মি. বো. ২৩]

কু. বো. ২১

(রা. বো. ১৭)

যি. বো. ২২]

কৃষিক্ষেত্রে ব্যবহৃত কীটনাশকের বর্জ্য ইত্যাদি।


..... ACS, ➤ Chemistry 2nd Paper Chapter-1 নিজেকে যাচাই করো ১। WHO কর্তৃক অনুমোদিত পানযোগ্য পানির pH সীমা কড? ১৩। 38°C তাপমাত্রায় একটি কাঁচের মার্বেলসহ কোনো নির্দিষ্ট ভরে 4.0-8.0 ₹ 5.5-7.5 (f) 6.5-8.5 (T) 7.0-10.0 গ্যাসের আয়তন 250 cm³। তাপমাত্রা স্থির রেখে চাপ দিশুণ কর ২। জৈব ও অজৈব উভয় ধরনের দৃষক জারণের জন্য O2 এর পরিমাণ হলে মার্বেলসহ গ্যাসের আয়তন দাড়ায় 130 cm³। মার্বেলের নির্দেশ করে-আয়তন কত? 100 cm³ (100 cm³) ⊕ pH (1) DO 何 COD (1) BOD TDS কমানোর উপায় কোনিট? ১৪। $V_t = V_0 + \frac{V_0 t}{273}$ । এই সমীকরণে $\frac{V_0}{273}$ কে বলে-(i) বিপরীত অভিশ্রবণ (ii) পাতন (iii) আয়ন বিমুক্তকরণ নিচের কোনটি সঠিক? ক) তাপ প্রসারাঙ্ক অায়তন প্রসারাস্ক ® i ⊌ ii iii v i পরম আয়তন গ্র পরম তাপমাত্রা 1 ii v iii (1) i, ii v iii 8। 27°C তাপমাত্রায় 120 atm চাপে 1টি পাত্রে O2 গ্যাস ১৫। কোনটি সঠিক? আছে। ঐ গ্যাসের চাপ 20% বাড়াতে পাত্রটিকে কত তাপমাত্রায় নিম্ন তাপমাত্রা ও উচ্চ চাপে বাস্তব গ্যাসসমূহ আদর্শ গ্যাসের ন্যাং রাখতে হবে? আচরণ করে। পানীয় জলে WHO অনুমোদিত As এর সর্বোচ্চ গ্রহণযোগ্য মাল্ল → 360°C ³ 87°C 1 87 K (9) 350 K S.I. এককে R এর মান কোনটি? হলো 0.004 - 0.005 ppt 8.314 J K⁻¹ mol⁻¹ কোনো পানির নমুনায় BOD অপেক্ষা COD এর মান বেশি 3 0.082 L atm K⁻¹ mol⁻¹ 9 8.314 × 10⁷ erg K⁻¹ mol⁻¹ 9 1.987 cal. K⁻¹ mol⁻¹ সারফেস ওয়াটারের বিশুদ্ধতার মানদণ্ড স্বচ্ছতা ১৬। গ্যাসের ব্যাপন হার নির্ভর করে-273 K তাপমাত্রায় কোনো গ্যাসের চাপ 1 atm হলে, $\frac{1}{V}$ এর মান (i) মোলার ভর (ii) তাপমাত্রা (iii) ঘনত্ব 0.04 L⁻¹ হয়।

√ এর মান 0.035 L⁻¹ হলে, চাপ এর মান কত? নিচের কোনটি সঠিক? (1) i, ii s iii (a) i (c) i ரு i e iii (1) ii v iii (季) 1.875 atm (1.142 atm ১৭। নিচের কোনটি গ্রাহামের ব্যাপন সূত্র? (9) 0.352 atm 何 0.875 atm 9। 22 g CO2 এর জন্য আদর্শ গ্যাস সমীকরণ কোনটি? $T_1 \sqrt{M_1} = r_2 \sqrt{M_2}$ PV = 2RT② 2PV = RT (1) PV = RT (9) PV = 22RT (T) r ∝ √M ৮। একই তাপমাত্রা ও চাপে সমপরিমাণ (ভর) A, B ও C গ্যাস 20 ও 30 মোল সংখ্যাবিশিষ্ট যথাক্রমে A ও B গ্যাসদ্বয়ের মিশ্রণের পৃথকভাবে সমআয়তনে রক্ষিত আছে। এখানে $m M_A > M_C > M_B$ ১৮। মোট চাপ 12 atm হলে A গ্যাসের আংশিক চাপ কত হবে? হলে কোনটি সঠিক? $P_{\Lambda} > P_{B} > P_{C}$ 3 2.7 atm 3 4.8 atm 例 7.2 atm (1) 8.4 atm \bigcirc $P_A = P_B = P_C$ ১৯। গ্যাসের গতিশক্তি নির্ভর করে- \P $P_B > P_C > P_A$ $P_B > P_A > P_C$ ১। 18°C তাপমাত্রায় 0.8 atm চাপে গ্যাসের ঘনত 2.25 g/L, এর 📵 চাপ ও আয়তনের উপর তাপমাত্রা ও গ্যাসের প্রকৃতির উপর আণবিক ভর কত? 36.24 g/mol গ) চাপ ও তাপমাত্রার উপর ত্বি গ্যাসের প্রকৃতি ও ঘনত্বের উপর 例 24.36 g/mol (1) 23.63 g/mol ১০ | অ্যামাগা লেখচিত্রে কোনটি অধিক ঋণাত্মক বিচ্যুতি দেখায়? ২০। 25°C তাপমাত্রায় 2 মোল হাইড্রোজেনের গড় গতিশক্তি হবে ③ NH₃ ④ He $\textcircled{3}.303 \times 10^3 \text{ J}$ $\textcircled{9} 6.809 \times 10^3 \text{ J}$ ১১। STP তে কোনো গ্যাসের আয়তন 500 mL হলে 740 mm (Hg) (1) $7.43 \times 10^3 \text{ J}$ $(9) 6.23 \times 10^2 \text{ J}$ চাপে ও 25°C তাপমাত্রায় উক্ত গ্যাসের আয়তন কত হবে? ২১। কক্ষ তাপমাত্রায় N2 এর 1টি অণুর গতিশক্তি কত আর্গ? ● 0.76 L ③ 0.66 L @ 0.56 L (9) 0.46 L 6 6.209 × 10^{-20} $\textcircled{9} 6.582 \times 10^{-18}$ 96.098×10^{-16} ১২। স্থির তাপমাত্রায় P বনাম 🕹 লেখচিত্র হলো− $(9) 6.17 \times 10^{-14}$ ২২। স্থির তাপমাত্রায় RMS বেগের সঠিক ক্রম কোনটি? \oplus H₂ > N₂ > CO₂ $\textcircled{9} CO_2 > O_2 > H_2$ $\mathfrak{N}_2 > \mathrm{CO}_2 > \mathrm{He}$ ২৩। এসিড বৃষ্টির বেলায় অধঃক্ষেপণ বৃষ্টিতে pH এর মান কত হতে পারে? (a) 6.9 (9) 5.8 (a) 6.5 (T) 5.3 ২৪। লুইস এসিড কোনটি? AICI

3 ③ H₂O 1 R -NH2 PH₃ ২৫। ${\rm [Fe(H_2O)_6]}^{3+}$ এসিডের অনুবন্ধী ক্ষারক হলো-③ [Fe(H₂O)₅(OH)]²⁺ Fe(H₂O)₄(OH)₂ \P [Fe(H₂O)₆(OH)₂]²⁺ 1 [Fe(H2O)5(OH)2]3+ উত্তরপত্র 8 3 (1) (4) (P) 20 (3) 27 9 3 9 0 25 18 20 36 74 79 20 २२ ২৩ 28

কৈব বসায়ন > ACS, FRB Compact Suggestion Book

জৈব রসায়ন **Organic Chemistry**

Board Questions Analysis

সূজনশীল প্রশ্ন

বোর্ড সাল	ঢাকা	गग्रमन जिएट	রাজশাহী	कृभिष्ठा	यरगात	চ'উথাস	বরিশাস	শিক্ষেত্র	निमाञ्जनुद
২০২৩	•	0	o	9	٩	v	v	v	9
२०२२	0	0	0	ą	٥	٥	২	ø	10

বহুনির্বাচনি প্রশ্ন

বোর্ড সাল	ঢাকা	ময়মনসিংহ	রাজশাহী	কুমিস্থা	যশোর	টে থাম	বরিশাল	নিলেট	जिमा <u>ख्य</u> नुव
২০২৩	ъ	ъ	ъ	8	70	9	9	ь	ь
२०२२	ъ	9	ъ	ь	4	9	9	8	9

এই অধ্যায়ের গুরুতুপূর্ণ ধারণাসমূহ

সমগোত্রীয় শ্রেণি ও কার্যকরী মূলক

- প্রত্যেক সমগোত্রীয় শ্রেণির বৌগসমূহের মধ্যে নিম্নোক্ত বৈশিষ্ট্য থাকে:
 - এদেরকে একটি সাধারণ সংকেত দ্বারা প্রকাশ করা যায়। যেমন, $C_nH_{2n+1}OH$ হলো অ্যালকোহলের সাধারণ সংকেত। এখানে n=1 হলে মিথানল CH_3OH , n=2 হলে ইথানল C_2H_5OH হয়।
 - পাশাপাশি দুই সমগোত্রকের মধ্যে মিথিলিন মূলক (- CH2-) এর পার্থক্য থাকে। বেমন, মিথানল (CH3OH) ও ইথানল (CH3CH2OH)। এদের মধ্যে পার্থক্য হলো – CH2 – মূলক।
 - প্রত্যেক সমগোত্রক শ্রেণির একটি নির্দিষ্ট কার্যকর্মী মূলক থাকে। যেমন, –OH হলো অ্যালকোহলের কার্যকর্মী মূলক।

Rhombus Publications

- প্রত্যেক সমগোত্রের কয়েকটি সাধারণ প্রস্তুতি পদ্ধতি থাকে। যেমন,
 - উদাহরণ: CH3I (/) + NaOH (aq) -> CH3OH (/) + NaI (aq)

 C_2H_5I (I) + NaOH (aq) \rightarrow C_2H_5OH (I) + NaI (aq)

- □ কার্যকরী মৃলক (Functional Groups): জৈব যৌগের কার্যকরী মূলক হলো ঐ যৌগের অণুস্থিত বিশেষ পরমাণু বা মূলক, যা ঐ জৈব যৌগের রাসায়নিক বিক্রিয়া নিয়ন্ত্রণ করে এবং সমগোত্রীয় শ্রেণির পরিচায়ক; সব সমগোত্রকের বেলায় অনুরূপ বিক্রিয়া প্রদর্শন করে । যেমন–
 (১) অ্যালকোহলসমূহের কার্যকরী মূলক হলো অ্যালকোহলিক হাইজ্রব্রিল (– OH) মূলক। (২) অ্যালভিহাইডসমূহের কার্যকরী মূলক হলো অ্যালভিহাইড মূলক (– CHO) ।
- বিভিন্ন সমগোত্রীয় শ্রেণীর সাধারণ সংকেত ও কার্যকরীমূলক উদাহরণসহ দেওয়া হলঃ

		গাত্রীয় যৌগ শ্রেণি কার্যকরী মূলক ও কার্যকরী মূলকের নাম			উ मार्श्त्रप
	नमर्गावाद्य त्याग त्याप	গাঠনিক সংকেত	কারকরা মূলকের নাম	গাঠনিক সংকেত	IUPAC নাম (সাধারণ নাম)
۱ د	অ্যালকিন (C _n H _{2n})	\c=c\	কার্বন-কার্বন দ্বিবন্ধন	H C=C H	ইথিন (ইথিলিন)
२।	অ্যালকাইন (C _n H _{2n-2})	-C ≡ C-	কার্বন-কার্বন ত্রিবন্ধন	H-C ≡ C-H	ইথাইন (অ্যাসিটিলিন)
৩।	অ্যালকোহল (R–OH)	- C - O -H	অ্যালকোহল মূলক	н н-с-он н	মিখানল (মিখাইল অ্যালকোহল)
8	হ্যালোখ্যালকেন (R–X)	-c- x :	হ্যালাইড মূলক	H-C-Ci:	ক্লোরোমিথেন (মিখাইল ক্লোরাইড)
21	জ্যামিন (R−NH ₂)	-c-n-	অ্যামিনো মূলক	H H H-C-C-N-H H H H	ইথান্যামিন (ইথাইল অ্যামিন)
৬।	অ্যালডিহাইড (R–CHO)	:0: - C -H	অ্যালডিহাইড মূলক	H :O: 	ইথান্যাল (অ্যাসিট্যালডিহাইড)
۹ ۱	किट्টोन (R-CO-R)	;o: 	কাৰ্বনিল বা কিটো-মূলক	H :0: H	2– প্রোপানোন (অ্যাসিটোন)
۲۱	কার্বক্সিলিক এসিড (R–COOH)	:0: - С - Ö-Н	কার্বস্থিল মূলক	H :0: 	ইথানোয়িক এসিড (অ্যাসিটিক এসি

Rhombus Publications

সমগোত্ৰীয় যৌগ শ্ৰেণি	কার্যকরী মূলক ও		উদাহরণ			
नवद्रशाबाद्य स्वाग स्वान	গাঠনিক সংকেত	কার্যকরী মৃলকের নাম	গাঠনিক সংকেত	IUPAC नाम (जाधांत्रण नाम)		
৯ । এস্টার (R–COOR)	:o: - c - o - c -	এস্টার মৃলক	H :0: H .: H-C-C-C-C-H H	মিথাইল ইথানোয়েট (স্যাসিটেট)		
১০। স্থ্যামাইড (R–CONH ₂)	:o: - C - N - -	অ্যামাইড মৃলক	H :0: 	ইথান্যামাইড (অ্যাসিট্যামাইড)		
১১। নাইট্রাইল (R–CN)	- C ≡ N	নাইট্রাইল বা সায়ানাইড মূলক	H H-C-C≡N H	ইথেন নাইট্রাইল (মিথাইল সায়ানাইড)		

জৈব যৌগের নামকরণ

🗖 জৈব যৌগের নামকরণ (Nomenclature of Organic Compounds)

রসায়নবিদগণ এ যাবং নিম্নোক্ত তিনটি পদ্ধতিতে জৈব যৌগের নামকরণ করেছেন। যেমনঃ (১) সাধারণ বা প্রচলিত (Trivial) পদ্ধতি, (২) উচ্চত বা জাতক (Derived) পদ্ধতি, (৩) জেনেভা বা IUPAC (ইউপ্যাক) পদ্ধতি।

পূর্বে নামকরণে সাধারণ পদ্ধতি ও উদ্ভূত পদ্ধতি ব্যবহার করা হলেও, বর্তমানে বেশিরভাগ ক্ষেত্রেই IUPAC পদ্ধতি ব্যবহৃত হয়। IUPAC পদ্ধতিতে জৈব যৌগের নামকরণ নিচে উল্লেখ করা হলো–

- আালকেনের নামকরণের IUPAC নিয়মঃ
- প্রতিটি যৌগের নামের শেষে 'এন' লেখা হয়।
- সর্ববৃহৎ শিকলটিকে প্রধান শিকল হিসেবে নির্বাচন করা হয়।
- প্রধান শিকলটিকে এমনভাবে নির্বাচন করা হয় যেন সবগুলো শাখা শিকল সরাসরি প্রধান শিকলের সাথে য়ুক্ত থাকে। অর্থাৎ, শাখা শিকলের কোনো উপশাখা শিকল থাকবে না।
- প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়। এক্ষেত্রে যেদিক হতে শাখা শিকল কাছাকাছি ও অপেক্ষাকৃত বেশি সেদিক থেকে প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়।
- প্রধান শিকলের কার্বনের সংখ্যা অনুযায়ী মূল যৌগের নামকরণ করা হয়ে থাকে।
- ৢপ্রধান শিকলের একই কার্বনের সাথে অথবা ভিন্ন ভিন্ন কার্বনের সাথে একই জাতীয় একাধিক গ্রুপ যুক্ত থাকলে প্রধান শিকলের সংযুক্ত কার্বনের
 সংখ্যা উল্লেখপূর্বক একই জাতীয় গ্রুপগুলোকে একত্রিত করে গ্রুপের সংখ্যানুযায়ী উচ্চারণ করা হয়।
- প্রধান শিকলের সাথে শাখা শিকল হিসেবে ভিন্ন ভিন্ন গ্রুপ থাকলে গ্রুপগুলোকে ইংরেজি বর্ণমালার ক্রমানুসারে পর্যায়ক্রমে লেখা হয়। এক্ষেত্রে

 একই জাতীয় গ্রুপের শেষে ও দুটি ভিন্ন গ্রুপের মাঝে হাইফেন (─) চিহ্ন ব্যবহার করা হয়।
- ৢ একাধিক অ্যালকাইল মূলক শাখা শিকল হিসেবে প্রধান শিকলের সাথে বিভিন্নভাবে বিভিন্ন অবস্থানে যুক্ত থাকলে প্রধান শিকলেরর যে প্রান্ত থেকে গণনা

 তব্ধ করলে অ্যালকাইলের মূলকের অবস্থান সূচক সংখ্যার যোগফল সবচেয়ে ছোট বা কম হয়, সেদিক থেকে প্রধান শিকলের কার্বন পরমাণুকে

 পর্যায়ক্রমে সংখ্যায়িত হয়।
- $i)-C_2H_5$ বা, CH_3-CH_2- অথবা $-CH_2-CH_3$ ($-CH_3$ মূলক সবসময় প্রান্তে অবস্থান করবে)।

iii) -(CH2)3 - 1, - CH2 - CH2 - CH2 -

€ Chemistry 2nd Paper Chapter-2

৵ সাইক্রো অ্যালকেনের নামকরণ: সাইক্রো অ্যালকেন বা চাক্রিক অ্যালকেনের সাধারণ সংকেত C_nH_{2n} এখন n = 3, 4, 5, 6 ইত্যাদি।
এক্ষেত্রে অণুতে সাধারণ অ্যালকেন অপেক্ষা দৃটি H-পরমাণু কম থাকে। এক্ষেত্রে অ্যালকেনের মূল নামের সাথে সাইক্রো শব্দ যোগ করা হয়।
যেমন: প্রতিস্থাপিত সাইক্রো অ্যালকেনের ক্ষেত্রে, একাধিক প্রতিস্থাপক গ্রুপ যুক্ত থাকলে ইংরেজি বর্ণমালার প্রথম বর্ণের ক্রমানুসারে প্রথমটির
অবস্থান 1 ধরে ডান অথবা বামে ক্ষুদ্রতম সংখ্যা নির্দেশক অবস্থান ধরে অন্যান্য প্রতিস্থাপকের অবস্থান নির্দেশ করা হয়।
উদাহরণস্বরপ

(1)
$$5 \underbrace{\begin{array}{c} \text{CH}_3 \\ 6 \\ 4 \end{array}}_{3}$$
 (2) $\underbrace{\begin{array}{c} \text{CH}_2\text{-CH}_3 \\ 6 \\ 2 \\ 3 \end{array}}_{\text{CH}_3}$

🗖 অসম্পুক্ত হাইড্রোকার্বনের নামকরণ (Naming of Unsaturated Hydrocarbons)

যেসব হাইড্রোকার্বনের কার্বন শিকলে এক বা একাধিক দ্বিবন্ধন বা ত্রিবন্ধন থাকে, এদেরকে অসম্পৃক্ত হাইড্রোকার্বন বলে। কার্বন শিকলে একটি দ্বিবন্ধন থাকলে ঐ হাইড্রোকার্বনকে অ্যালকিন এবং একটি ত্রিবন্ধন থাকলে অ্যালকাইন বলে। এদের নামকরণ নিমুন্ধপঃ

- অ্যালকিন (Alkene) কার্বন শিকলে কার্বন-কার্বন দ্বিবন্ধন () C = C () এবং অ্যালকাইনে (Alkyne) ত্রিবন্ধনের (C ≡ C) অবস্থান বাম
 বা ডান দিন থেকে ক্ষুদ্রতর সংখ্যায় স্থির করা হয়। ঐ সংখ্যাকে অ্যালকিনের বেলায় নামের মাঝখানে '-ইন' এবং অ্যালকাইনের বেলায় নামের
 মাঝখানে '-আইন' এর পূর্বে হাইফেন () সহ লেখা হয়। এরপর পার্শ্বশিকল বা মূলকগুলোর অবস্থান নির্ণয় করে নামকরণ করা হয়।
- কার্বন শিকলে দু'টি বা তিনটি দ্বিন্ধন থাকলে এদেরকে অ্যালকা-ডাইইন (Alka-diene) ও অ্যালকা-ট্রাইইন (Alka-triene) বলে। আবার
 কার্বন শিকলে দুটি বা তিনটি ত্রিবন্ধন থাকলে অ্যালকা-ডাইআইন (Alka-diyne) ও অ্যালকা-ট্রাইআইন বলে।
- ♦ কার্বন শিকলে –NH₂, OCH₃, F, Cl, Br, I, NO₂ ইত্যাদি পরমাণু বা মূলকসমূহকে যথাক্রমে অ্যামিনো, মিথোক্সি, ফ্লোরো, ক্লোরো, ব্রোমো, আয়োডো, নাইট্রো নামে প্রতিস্থাপিত মূলকরূপে সংখ্যা ঘারা চিহ্নিত করা হয়।
- আালকোহল, অ্যালিডিহাইড-কিটোন ও কার্বক্সিলিক এসিডের নামকরণ

(Naming of Alcohol, Aldehyde-Ketone & Carboxylic Acids)

- উজবযৌগের কার্বন শিকলে –OH মূলক থাকলে অ্যালকানল (Alkanol) বলে। দীর্ঘতম শিকলের অ্যালকেন (Alkane) এর নামের শেষে 'e' এর স্থলে 'ol' পরপদ যোগ করা হয়। তখন অ্যালকোহল নামের পরপদ (suffix) 'অল' এর পূর্বে অবস্থান নির্দেশক সংখ্যাকে হাইফেন (-) সহ
 লিখতে হয়।
- অ্যালিডিহাইড (—CHO), কিটোন (—CO—) ও কার্বন্তিলিক এসিড (—COOH) যৌগের বেলায় —CHO এবং —COOH কার্যকরী মূলক
 শিকলের একপ্রান্তে থাকে বলে এদের অবস্থান নির্দেশক সংখ্যা (1) কে নামকরণে উল্লেখ করতে হয় না । কিন্তু কিটোন (—CO—) মূলকের অবস্থান
 সংখ্যা উল্লেখ করতে হয় । তখন কিটোনের নামের 'পরপদ' suffix 'ওন' এর পূর্বে অবস্থান নির্দেশক সংখ্যাকে হাইকেন (-) সহ লিখতে হয় ।
 অ্যালিডিহাইড, কিটোন ও কার্বন্তিলিক এসিডের নামকরণের জন্য অ্যালিডিহাইড (—CHO) মূলকসহ সম্পৃক্ত দীর্ঘতম শিকলকে অ্যালকান্যাল,
 কিটোন (—CO—) মূলকসহ দীর্ঘতম শিকলকে অ্যালকানোয়ির এসিড বলা হয় ।

(i) অ্যালডিহাইড (-CHO) মূলক থাকলে:

[Alkane - e + al] = Alkanal

(ii) কিটোন (-CO-) মূলক থাকলে:

[Alkane - e + one = Alkanone]

(iii) কার্বক্সিল (—COOH) মূলক থাকলে:

[Alkane - e + oic acid = Alkanoic acid]

- আলিডিহাইড, কিটোন ও এসিডের বেলায় Cl, −OH, −NH₂, −O−R, −NO₂ ইত্যাদি মূলক কার্বন শিকলে থাকলে, এদেরকে প্রতিস্থাপিত মূলকরপে সংখ্যা দ্বারা চিহ্নিত করা হয়।
- শিকলে একাধিক কার্যকরী মূলক থাকলে বিভিন্ন মূলকের অগ্রগণ্য সারণিতে ক্রমিক সংখ্যা মতে কার্যকরী মূলকের মূল যৌগ নিরূপণ করে অপর মূলককে প্রতিস্থাপিত মূলক ধরা হয়।

Rhombus Publications

Transi	FORTEST > ACS, FRB Compact Suggestion Book	
	ম্পোক্রের নামকরণ (Nomenclature of Ether) ম্পোর হলো আালক্ষার গ্রুপ (R-O-) দানা প্রতিস্থাপিত আালকেন। এ কানণে IUPAC পদ্ধতিকে ইগানসমূদ্যক আালকান্ধিস্যালকেন	
	Alkoxyalkane) वला इस । धरनत नामकसम निम्नलभ	
	শামকরণের ক্ষেত্রে প্রথান শিদলের অপ্নিলেনের লাখে মুক্ত বড় অ্যালকাইল শ্রুপটি থেকে অ্যালকেনের লাম দেওয়া হয়। সার পরিজেনের লাগে বুক্ত ক্ষুত্র আদকাইল প্রুপটি অ্যালকব্রি প্রুপ হিসেবে প্রতিস্থাপকের ভূমিকা রাখে।	
	তে প্রান্ত থেকে জ্যালকঝ্রি প্রুপ (R-O-) জ্যালকাইল প্রুপের কাছাকাছি হয় সে প্রান্ত থেকে ত্ম্যালকাইল প্রুপের কার্যক্রিক সংখ্যারিত করা হয়।	
0	গ্রান্থক-এর দামকরণ (Nomenclature of Thiols) –SH গ্রুপযুক্ত যৌগওলোকে থায়ল বলে। এক্ষেত্রে প্রধান শিকলের মূল হাইড্রোকার্যনের নামের শেষে থায়ল শন্যটি মোল করে নাসকরদ করা হয়। মেরন্য (i) CH3 – CH2 – SH (ইথেনথায়ল) CH3 4 3 2 1 (ii) CH3 – CH2 – CH – SH (2-মিথাইলবিউটেনথায়ল)	
0	এস্টারের নামকরণ (Nomenclature of Esters) এস্টারের নাম দুটি অংশে বিভক্ত। প্রথম অংশ অ্যালকোহল থেকে নেওয়া হয় এবং বিতীয় অংশ জৈব এসিড থেকে নেওয়া হয়। স্যালকোহল স্বপ্লের নাম ঐ অংশের কার্বন সংখ্যা অনুযায়ী অ্যালকাইল মূলক হিসেবে লেখা হয়। যে মূল হাইড্রোকার্বন থেকে এসিড উৎপন্ন হয় সে হাইড্রোকার্বসের দান্দের শেষে 'এন' শব্দের পরিবর্তে 'আনোয়েট' শব্দ যোগ করে এস্টার নামকরণ সম্পূর্ণ করা হয়।	
0	এসিড অ্যানহাইড্রাইডের নামকরণ (Nomenclature of Acid Anhydrides) অ্যানহাইড্রাইডটি যে এসিডের সে এসিডের IUPAC নামের শেষের এসিডের পরিবর্তে অ্যানহাইড্রাইড (anhydride) দেখা হয়। মির অ্যানহাইড্রাইডের ক্ষেত্রে উভয় এসিডের IUPAC নাম ইংরেজি বর্ণমালার ক্রম অনুযায়ী দেখা হয়।	
	স্ত্যামিনের নামকরণ (Nomenclature of Amines)	
	অ্যামিন অণুতে প্রতিস্থাপিত হাইজ্রোজেন পরমাণুর সংখ্যা অনুসারে অ্যালিফ্যাটিক আমিনকে তিন ভাগে ভাগ করা হয়।	
	R-N म ना, R-NH ₂ R-N ना, R ₂ -NH R-N ना, R ₃ -N	
	আমিন হলো অ্যালকাইল বা অ্যারাইল প্রতিস্থাপিত অ্যামোনিয়া। অ্যালিফেটিক CH₂ অ্যামিনের ক্ষেত্রে অ্যালকাইল মূলকের সাথে অ্যামিন অথবা অ্যামিনো অ্যালকেন □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	অ্যামিনের ক্ষেত্রে অ্যালকাইল মূলকের সাথে অ্যামিন অথবা অ্যামিনো অ্যালকেন । ½ ኃ হিসেবে লেখা হয়। যেমন–	
	ট্রাইমিথাইপঅ্যামিন	
	 অ্যামেনিয়ার হাইড্রোজেন পরমাণু অ্যারাইল মূলক (C₀H₅→) দ্বারা প্রতিস্থাপিত হলে অ্যারাইল অ্যামিন হয়। এ জাতীয় অ্যামিনের ক্ষেত্রে অ্যারাইল বা ফিনাইল মূলকের সাথে অ্যামিন উচ্চারিত হয়। যেমন─ 	
	ট্রাইফিনাইপঅ্যামিন	
	❖ অ্যামেনিয়ার হাইজ্রোজেন পরমাণু অ্যালকাইল ও অ্যারাইল উভয় মৃলক দারা প্রতিস্থাপিত হলে, N-অ্যালকাইল মৃলক বা মৃলকের সংখ্যার সাথে ফিনাইল	
	অ্যামিন যোগ করে উচ্চারণ করা হয়ে থাকে। যেমন– N, N-ডাইইথাইল ফিনাইলস্যামিন	
•	and write a management of the contract of the	
_	স্যামাইডের নামকরণ (Nomenclature of Amides) সর্ববৃহৎ শিকলের কার্বনের সংখ্যানুযায়ী অ্যালকেনের নামের 'এন' এর পরিবর্তে 'অ্যানামাইড' শব্দ বসিয়ে অথবা কার্বন সংখ্যা অনুযায়ী সংখ্রিষ্ট	
	প্রবিধ্বর Precia ক্ষেত্র প্রতির্বাধী অসাধিকটার শামের এন এর পারবতে অসানামান্ত শব্দ বাসারে অববা কাবন সংখ্যা অনুবারা গওলত এসিডের IUPAC নামের শেষে 'ওয়িক এসিড' এর পরিবর্তে অ্যামাইড লেখা হয়।	
	O CH ₂	
	CH₃ – C – NH₂ ইথান্যামাইড	

Rhombus Publications

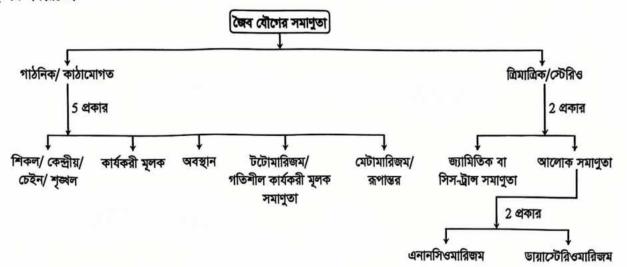
N-মিথাইল-N-ফিনাইলইথান্যামাইড

N-ফিনাইলইথান্যামাইড

¢b	τ	ACS/>	Chemistry	2 nd Pa	aper (Chap	ter
	NO THE PROPERTY OF THE PROPERT		170		77	95.0	

সায়ানাইডের নামকরণ (Nomenclature of Cyanides)

এক্ষেত্রে – CN গ্রুপের কার্বনকে 1 নং কার্বন ধরে বৃহত্তর শিকলটিকে নির্ধারণ করা হয়। কার্বনের সংখ্যানুযায়ী মূল হাইড্রোকার্বনিটির নাম ঠিক ৮০ হয়।। এবার মূল হাইড্রোকার্বনের সম্পূর্ণ নামের শেষে 'নাইট্রাইল' শব্দ যোগ করে নামকরণ করা শেষ হয়।

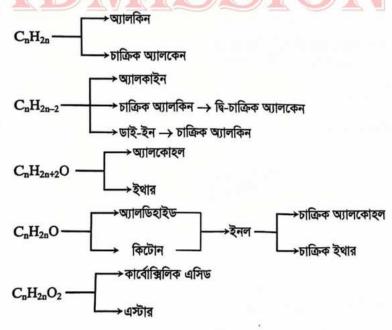

🗖 কার্যকরী মূলকের অ্যাধিকার ক্রম (Order of priority of functional groups):

অহাগণ্য নিৰ্দেশক	সমগোত্ৰীয় শ্ৰেণি কাৰ্যক		कार्यकत्री मृशक	মূল নামের পূর্বে বসলে অপ্রধান মূলকের নাম হবে	মূল নামের পরে বসলে প্রধান মূলকের নাম হবে
	7*	কার্বক্সিলিক এসিড	– СООН	কার্বক্সি	ওয়িক এসিড
	ર	সালফোনিক এসিড	− SO ₃ H	-	সালফোনিক এসিড
	•	অ্যানহাইড্রাইড	- COOCO -	-	অয়িক অ্যানহাইড্রাইড
	8	এস্টার	- COOR	অ্যালকব্সিকার্বনিল	অ্যালকাইল প্ৰয়েট
	æ	এসিড হ্যালাইড	+cox	হ্যালোফর্মাইল	ওয়িল হ্যালাইড
	৬	এসিড অ্যামাইড	- CONH ₂	কার্বামোয়িল	অ্যামাইড
	٩	নাইট্রাইল বা, সায়ানাইড	DIONS	সায়ানো	নাইট্রাইল
T	b*	অ্যালডিহাইড	-СНО	ফর্মাইল	অ্যাল বা ন্যাল
	*	কিটোন	co	অক্সো বা কিটো	अ न
	3o*	অ্যালকোহল	-ОН	হাইদ্রক্তি	we -
	22	थाय्रन	– SH	মারক্যাপ্টো	থায়ল
	75*	অ্যামিন	- NH ₂	অ্যামিনো	অ্যামিন
	20	ইথার	- OR	অ্যালকক্সি	অক্সা
	78*	অ্যালকিন	\c=c(ইন	ইন
	۶¢*	অ্যালকাইন	-C ≡ C-	আইন	আইন
	১৬	হ্যালাইড	-X	হালো	হ্যালাইড
	39	নাইট্রো	- NO ₂	নাইট্রো -	নাইট্রো
	74	অ্যালকেন	- R	এন	এন

Rhombus Publications

জেব রসায়ন > ACS) FRB Compact Suggestion Book............... 🚓

সমাণুতার প্রকারভেদ:



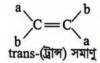
গাঠনিক সমাণুতা ও বিভিন্ন কার্যকরী মৃলক:

সমগোত্রীয় শ্রেণি	চেইন সমাপুতা	অবস্থান সমাণুতা	মেটামারিজম	টটোমারিজম	কার্যকরী মূলক সমাপুতা
কিটোন	1	1		✓	1
অ্যামিন	1	1	201	✓	×
অ্যালকেন	1	N/S	×	×	×
অ্যালকাইন	1		×	×	1
অ্যালকাইল হ্যালাইড	1	1	×	×	×
ইথার	V /A	DMS	SION	×	1
অ্যালকোহল	/	/	×	×	/
অ্যালকিন	×	· 57U	FFS.	×	×
অ্যালডিহাইড	1	×	×	/	/

কার্যকরী মূলক সমাপুর ক্ষেত্রে কয়েকটি লক্ষণীয় বিষয়য়:

 $C_nH_{2n+3}N \longrightarrow$ সম্পৃক্ত অ্যালিফেটিক অ্যামিন

Rhombus Publications

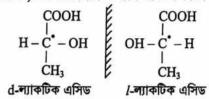

জ্যামিতিক সমাণুতা

যেসব জৈব যৌগের কার্বন-কার্বন দ্বিবন্ধনের অক্ষ বরাবর মুক্ত আবর্তন সম্ভব না হওয়ায় ভিন্ন কনফিগারেশন যুক্ত দু'ধরনের যৌগ অণু সৃষ্টি হয়ঃ তাদ্দে জ্যামিতিক সমাণু বা সিস-ট্রান্স সমাণু বলে।

- জ্যামিতিক সমাণুতার শর্ত:
 - প্রতিস্থাপিত অ্যালকিনসমূহ জ্যামিতিক সমাণুতা প্রদর্শন করে:
 - i. (ab) C = C (ab) এখানে a ≠ b উদাহরণ: CH₃ HC = CH CH₃
 - ii. (ab) C = C (bd) এখানে $a \neq b$ এবং $b \neq d$ উদাহরণ: $CH_3 HC = CH CI$
 - iii. (ab) C = C (de) এখানে a ≠ b এবং d ≠ e উদাহরণ: CH3 HC = C(CI)Br
 - প্রস্থান সমাণুতাঃ

সিস্ সমাণুতা: অভিন্ন পরমাণু বা মূলকগুলো একই পার্শ্বে অবস্থান করে। ট্রান্স সমাণুতা: অভিন্ন পরমাণু বা মূলকগুলো বিপরীত পার্শ্বে অবস্থান করে।

জ্যামিতিক সমাণুদ্বয়ের সাধারণ ধর্ম:


বৈশিষ্ট্য		সিস সমাধু	ট্রান্স সমাপু
গলনাঙ্ক সুস্থিতি		क्य	বেশি
অভ্যন্তরীণ শক্তি ক্ষুটনাঙ্ক ও ঘনতৃ দহন তাপ পানিতে দ্রাব্যতা বা দ্রবণীয়তা প্রতিসরণাঙ্ক দ্বিপোল মোমেন্ট ও আয়নিকরণ ধ্রুবক		SSION	क्य
এসিড হাইড্রাইড গঠন	CT	করে 📉 📉	সাধারণত করে না তবে উচ্চ তাপমাত্রায় করে

আলোক সমাণুতা

যেসব জৈব যৌগের দুই বা ততোধিক ভিন্ন কনিফগারেশনযুক্ত ভিন্ন সমাণু 'এক-সমতলীয়' আলোর প্রতি ভিন্নরূপ আচরণ করে ঐসব যৌগকে আলোক সক্রিয় সমাণু বা আলোক সক্রিয় যৌগ বলে।

- আলোক সমাণুতার শর্তঃ
 - অপ্রতিসম কার্বন পরমাণু বা কাইরাল কেন্দ্র থাকতে হবে।
 - দর্পণ প্রতিবিম্ব পরস্পরের উপর সমপাতিত হবে না।
 - 🍫 একসমতলীয় আলোর তলকে ডানে বা বামে ঘুরিয়ে থাকে। অর্থাৎ আলোক সক্রিয় হয়।
- \circ n সংখ্যক অসদৃশ অপ্রতিসম/কাইরাল কার্বনবিশিষ্ট জৈব যৌগের আলোক সমাণু সংখ্যা $= 2^n$ ।
- lacktriangle n সংখ্যক (n জোড় সংখ্যা) সদৃশ অপ্রতিসম/কাইরাল কার্বন বিশিষ্ট জৈব যৌগের আলোক সমাণু সংখ্যা $=2^{n-1}$ এবং মেসো সমাণুর সংখ্যা $=2^{rac{n-2}{2}}=2^{rac{n}{2}-1}$ ।
- \mathbf{n} সংখ্যক (\mathbf{n} বিজোড় সংখ্যা) সদৃশ অপ্রতিসম/কাইরাল কার্বন বিশিষ্ট জৈব যৌগের আলোক সমাণু সংখ্যা $=2^{\mathbf{n}-1}-2^{\frac{\mathbf{n}-2}{2}}$ এবং মেসো $=2^{\frac{\mathbf{n}-2}{2}}$ ।
- এনানসিওমার:

যে আলোক সমাণুদ্ব সমাবর্তিত আলোর তলকে একই মাত্রায় অর্থাৎ.একই আবর্তন কোণে পরস্পর বিপরীত দিকে আবর্তন করে তাদেরকে পরস্পরের এনানসিওমার বা এনানসিওমর্ফ বলে। এদেরকে অ্যান্টিমার বা অ্যান্টিপছও বলা হয়। যেমন d-ল্যাকটিক অ্যাসিড ও l-ল্যাকটিক এসিড তল সমাবর্তিত আলোর তলকে একই কোণে (2.24°) যথাক্রমে ডানে ও বামে আবর্তন করে।

জেব রসায়ন > ACS, FRB Compact Suggestion Book.....৬১

ব্রেসিমিক মিশ্রণ:

দুটি এনানসিওমার যেমন: d-ল্যাকটিক এসিড ও *l-ল্যাকটিক* এসিড উভয় এক সমতলীয় আলোর তলকে সমান কৌণিক পরিমাণে বিপরীত দিকে ঘুরায় তাই d-সমাণু ও *l-*সমাণুর সমপরিমাণে মিশ্রণ পরস্পরের বিপরীত ঘূর্ণন ক্রিয়াকে বিনষ্ট করে থাকে। ফলে d ও *l-*সমাণুর এই সমতুল মিশ্রণ আলোক নিদ্রিয় হয় এরূপ সমতুল মিশ্রণকে রেসিমিক মিশ্রণ এবং প্রক্রিয়াটিকে রেসিমিকরণ বলে। সম মোলার এনানসিওমার যৌগের মিশ্রণই রেসিমিক মিশ্রণ। এটি একটি আলোকে নিদ্রিয় মিশ্রণ।

মেসোযৌগ:

কোন যৌগের দুটি অংশ যদি অনুরূপ হয় তবে একাংশ অন্য অংশের আবর্তন মাত্রাকে প্রশমিত করে দেয়। ফলে ঐ যৌগ আলোকে নিষ্ক্রিয় হয়। একে মেসো যৌগ বলে। যেমনঃ টারটারিক এসিড।

তায়াস্টেরিওমার:

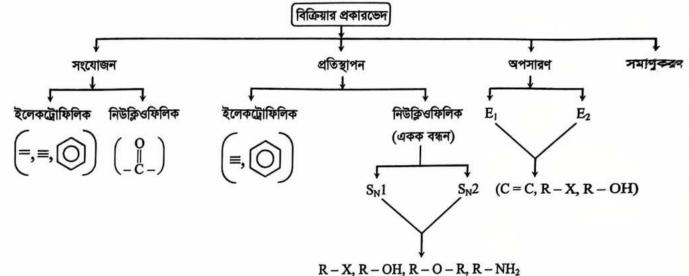
দৃটি অসদৃশ অপ্রতিসম কার্বনযুক্ত দৃটি আলোকে সক্রিয় যৌগ যদি পরস্পরের দর্পণ প্রতিবিদের মতো আচরণ না করে তবে তাদেরকে পরস্পরের ডায়াস্টেরিওমার বলে।

বন্ধন বিভাজন, বিকারক, বৈশিষ্ট্যপূর্ণ বিক্রিয়া

ইলেকট্রোফাইল ও নিউক্লিওফাইলের উদাহরণ:

(i) ধনাত্মক ইলেকট্রোফাইল	$NH_{4}^{+}, H_{3}O^{+}, PH_{4}^{+}, CH_{3}^{+}, SO_{3}H^{+}, X^{+}, R_{3}C^{+}, RN^{+} \equiv N, NO_{2}^{+}, H^{+}$	
(ii) প্রশম ইলেকট্রোফাইল	AlCl ₃ , FeCl ₃ , BF ₃ , SO ₃ , BCl ₃ , ZnCl ₂ , SbCl ₅ , CO ₂	
(iii) ঋণাত্মক নিউক্লিওফাইল	X-, OH-, CH ₃ , RCO ₂ , OR-, CN-, NO ₂ , Br-, H-, BH ₄ , HSO ₃	
(iv) প্রশম নিউক্লিওফাইল	- NH ₂ , R - OH, R - NO ₂ , NH ₃ , PH ₃ , H ₂ O, R - NH ₂	

- সকল ধনাত্মক মূলক/আয়ন এবং লুইস এসিড হলো ইলেকট্রোফাইল।
- 💠 সকল ঝণাত্মক মূলক/আয়ন এবং লুইস ক্ষার হলো নিউক্লিওফাইল।
- একত্রে সকল বিকারকের স্থায়িত্ব ও সক্রিয়তার ক্রম:


ফ্রি-রেডিক্যাল এর স্থায়িত্বের ক্রম	3° > 2° > 1° > CH ₃	
ফ্রি-রেডিক্যাল এর সক্রিয়তার ক্রম	ĊH ₃ > 1° > 2° > 3°	
ইলেকট্রোফাইল এর স্থায়িত্বের ক্রম	3° > 2° > 1° > CH ₃	
ইলেকট্রোফাইল এর সক্রিয়তার ক্রম	⁺ CH ₃ > 1° > 2° > 3°	
নিউক্লিওফাইল এর স্থায়িত্বের ক্রম	CH ₃ > 1° > 2° > 3°	
নিউক্লিওফাইল এর সক্রিয়তার ক্রম	3° > 2° > 1° > CH ₃	

উল্লেখ্য, স্থায়িত্বের ক্রম ও সক্রিয়তার ক্রম পরস্পর বিপরীত।

ফ্র-রেডিক্যাল: সাধারণত প্রতিস্থাপন বিক্রিয়া, যুত বিক্রিয়া ও পুনর্বিন্যাস বিক্রিয়া দেয়।

ইলেকট্রোফাইল: প্রতিস্থাপন ও যুত বিক্রিয়া দেয়।

নিউক্লিওফাইল: প্রতিস্থাপন, যুত বিক্রিয়া ও অপসারণ বিক্রিয়া দেয়।

সংযোজন বিক্রিয়া

আলিফ্যাটিক যৌগের সংযোজন বিক্রিয়া:

সংযোজন বিক্রিয়া: যে বিক্রিয়ায় একাধিক পদার্থের সরাসরি সংযোগে একটি মাত্র যৌগ উৎপন্ন হয় তাকে সংযোজন বিক্রিয়া বলে। যে বিকারকের প্রভাবে সংযোজন বিক্রিয়া ঘটে তার প্রকৃতি অনুসারে সংযোজন বিক্রিয়া দু'প্রকার। যথা: ১। ইলেকট্রনাকর্ষী সংযোজন বিক্রিয়া ২। কেন্দ্রাকর্ষী সংযোজন বিক্রিয়া ।

$$H_2C = CH_2 + H_2 \xrightarrow{Ni} H_3C - CH_3$$

ইলেকট্রনাকর্ষী বা ইলেকট্রোফিলিক সংযোজন বিক্রিয়া:

যে বিকারকের ইলেকট্রনের প্রতি আসন্তি বা আকর্ষণ থাকে অর্থাৎ ধনাতাকধর্মী বিকারক তাদেরকে ইলেকট্রন আকর্ষী বিকারক বা ইলেকট্রোফাইল (E[†])

বলে। হ্যালোজেনিয়াম (X^+, CI^+, Br^+) , নাইট্রোনিয়াম (NO_2^+) , হাইজ্রোজেন আয়ন (H^+) , কার্বোনিয়াম $(R \longrightarrow C^+)$, সালফোনিক এসিড (SO_3H^+) গ্রুপ প্রভৃতি ইলেকট্রন আকর্ষী বিকারক।

- অসম্পৃক্ত যৌগের দ্বিবন্ধন বা ত্রিবন্ধনে হালকাভাবে সংযুক্ত পাই (π) ইলেকট্রন কর্তৃক এসব বিকারক আকৃষ্ট হয় বলে অসম্পৃক্ত যৌগে ইলেকট্রন আকর্ষী
 সংযোজন ঘটে।
- অ্যালকাইনের তুলনায় অ্যালকিনে বিক্রিয়া সহজে ঘটে অর্থাৎ অ্যালকিন অধিক সক্রিয়।

চিত্রঃ অ্যালকিনের কার্বন-কার্বন দ্বিবন্ধনে ইলেকট্রনাকর্ষী যুত বিক্রিয়ার কৌশল।

কেন্দ্রাকর্ষী বা নিউক্লিওফিলিক সংযোজন:

যে বিকারক ধনাত্মক কেন্দ্র বা নিউক্লিয়াস কর্তৃক আকর্ষিত হয় তাকে কেন্দ্রাকর্ষী বা নিউক্লিওফিলিক বিকারক বলে। এসব বিকারক ঋণাত্মক**ধর্মী হয়ে** থাকে।

 $^{-}$ CN, $^{-}$ OH, NO $_{_{2}}$, RMgX, X $^{-}$ (C I^{-} , Br $^{-}$), $^{-}$ OR, :NH $_{3}$, H $_{2}$ $\overset{\circ}{\mathrm{N}}$ $\overset{\circ}{\mathrm{H}}_{2}$, H $_{2}$ $\overset{\circ}{\mathrm{O}}$: ইত্যাদি কেন্দ্রাকর্ষী বা নিউক্লিওফিলিক বিকারক । অ্যালডিহাইড-কিটোন তথা কার্বনিল যৌগে এ ধরনের বিকারকের সংযোজন ঘটে ।

Rhombus Publications

্বরসায়ন ➤ ১৫৯ FRB Compact Suggestion Book......৬৩
কার্বনিল যৌগসমূহ কেন্দ্রাকর্ষী যুত বিক্রিয়া প্রদর্শন করে।

$$Y^+ - Z + \overset{\delta^+}{C} = \overset{\delta^-}{O} \overset{\delta^-}{\longleftrightarrow} C \overset{O^-}{\longleftrightarrow} \overset{Y^+}{\smile} C \overset{OY}{\smile} Z$$
কেন্দ্রাকর্ষী কার্বনিল অবস্থান্তর উৎপাদ
বিকারক যৌগ অবস্থা

(I) (II) (III)

চিত্র: অ্যালকিনের কার্বন-কার্বন দ্বিবন্ধনে কেন্দ্রাকর্ষী যুক্ত বিক্রিয়ার কৌশল।

প্রতিস্থাপন বিক্রিয়া

এক-আণবিক কেন্দ্রাকর্ষী প্রতিয়াপন কৌশল বা S_N1 কৌশল:

এ কৌশল অনুসারে অ্যালকাইল হ্যালাইডের কেন্দ্রাকর্ষী প্রতিস্থাপন ২ ধাপে ঘটে। প্রথম ধাপে পোলারিত অ্যালকাইল হ্যালাইড আয়নিত হয়ে একটি কার্বোক্যাটায়ন (R⁺) এবং হ্যালাইড আয়ন উৎপন্ন করে। দ্বিতীয় ধাপে কার্বোক্যাটায়ন অডিদ্রুত কেন্দ্রাকর্ষী বিকারকের সঙ্গে যুক্ত হয়ে প্রতিস্থাপিত যৌগ গঠন করে।

ধাপ-১:
$$CH_3$$
 CH_3 $|_{\oplus}$ CH_3 $|_{\oplus}$ CH_3 CH_3 $|_{\oplus}$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 $|_{\oplus}$ CH_3 CH_3

ছি-আণবিক কেন্দ্রাকর্ষী প্রতিস্থাপন কৌশল বা S_N2 কৌশল:

 $S_{N}2$ কৌশল অনুসারে অ্যালকাইল হ্যালাইড প্রতিস্থাপন এক ধাপে ঘটে। এক্ষেত্রে অ্যালকাইল হ্যালাইড এর C-X বন্ধনের যে পাশে হ্যালোজেন পরমাণুটি থাকে তার বিপরীত দিক থেকে কেন্দ্রাকর্ষী বিকারক (\overline{Z}) কার্বন পরমাণুকে আক্রমণ করে তার সঙ্গে যুক্ত হয় এবং একটি অবস্থান্তর জটিল অবস্থার সৃষ্টি করে।

$$H: \ddot{O}: + \ddot{H} \xrightarrow{\delta^{t}} C \xrightarrow{\delta^{t}} H \xrightarrow{\delta^{t}} H \xrightarrow{\delta^{t}} C \xrightarrow{\delta^{t}} H \xrightarrow{\delta^{t}} C \xrightarrow{\delta^{t}} H \xrightarrow{\delta^{t}} C \xrightarrow{\delta^{t}} H \xrightarrow{\delta^{t}} C \xrightarrow{K} H \xrightarrow{K} H$$

☐ S_N1 ও S_N2 বিক্রিয়ার তুলনা:

विषग्र	S _N 1	S _N 2
বিক্রিয়ার ধাপ	S_{N} 1 এর বেলায় দুই ধাপে বিক্রিয়া ঘটে।	$S_N 2$ এর বেলায় এক ধাপে বিক্রিয়া ঘটে।
RX এর প্রকৃতি	$S_N 1$ এর বেলায় RX এর সক্রিয়তার ক্রম হল: $3^\circ > 2^\circ > 1^\circ > CH_3 X$ ।	$S_N 2$ এর বেলায় সক্রিয়তার ক্রম হল এর বিপরীত: $CH_3 X > 1^\circ > 2^\circ > 3^\circ \; I$
বিক্রিয়ার ক্রম	S _N 1 বিক্রিয়া প্রথম ক্রম বিক্রিয়া।	S _N 2 বিক্রিয়া দিতীয় ক্রম বিক্রিয়া।
বিক্রিয়ার ফ্যাষ্ট্রর	S _N 1 এর গতির মূলে রয়েছে ইলেকট্রনিক ফ্যাক্টর বা অধিক শাখাযুক্ত কার্বন শিকল।	S _N 2 এর গতির মূলে রয়েছে steric factor বা ত্রিমাত্রিক স্থানিক বাধা।
নিউক্লিওফাইলের ঘনমাত্রা	ঘনমাত্রা কম হলে S _N 1 মেকানিজম হয়।	ঘনমাত্রা বেশি হলে S _N 2 মেকানিজম হয়।
দ্রাবকের প্রকৃতি	পোলার দ্রাবকে S _N 1 মেকানিজম হয়।	নন্পোলার দ্রাবকে S _N 2 মেকানিজম হয়।
নিউক্লিওফাইলের প্রকৃতি	দুর্বল নিউক্লিওফাইল S _N 1 মেকানিজমের গতি নিয়ন্ত্রণ করে।	সবল নিউক্লিওফাইল S _N 2 মেকানিজমের গতি নিয়ন্ত্রণ করে।

Rhombus Publications

...... ACS > Chemistry 2nd Paper Chapters

অপসারণ বিক্রিয়া

অপসারণ বিক্রিয়া:

অ্যালকাইল হ্যালাইডের চেইন শাখায়িত হলে অ্যালকিন এবং চেইন সরল হলে ইথার গঠনের প্রবণতা দেখা যায়। ইথানলীয় KOH দ্রবণের সভ উত্তপ্ত করলে-

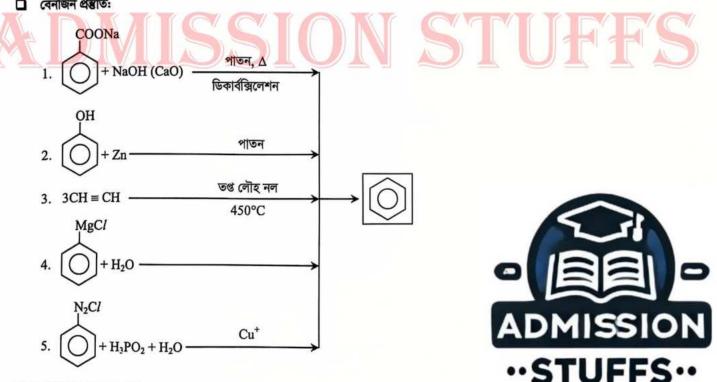
(i) ব্রোমো ইথেন থেকে 90% ডাই ইথাইল ইথার উৎপন্ন হয়।

$$CH_3 - CH_2 - Br + KOH(alc) \xrightarrow{\Delta} CH_3 - CH_2 - O - CH_2 - CH_3 + KBr + H_2O + CH_2 = CH_2$$
(90%) (10%)

(ii) 2-ব্রোমো প্রোপেন (iso-প্রোপাইল ব্রোমাইড) থেকে 80% প্রোপিন উৎপন্ন হয়।

$$CH_3 - CH - CH_3 + KOH(alc) \xrightarrow{\Delta} CH_3 - CH = CH_2 + KBr + H_2O$$
Br

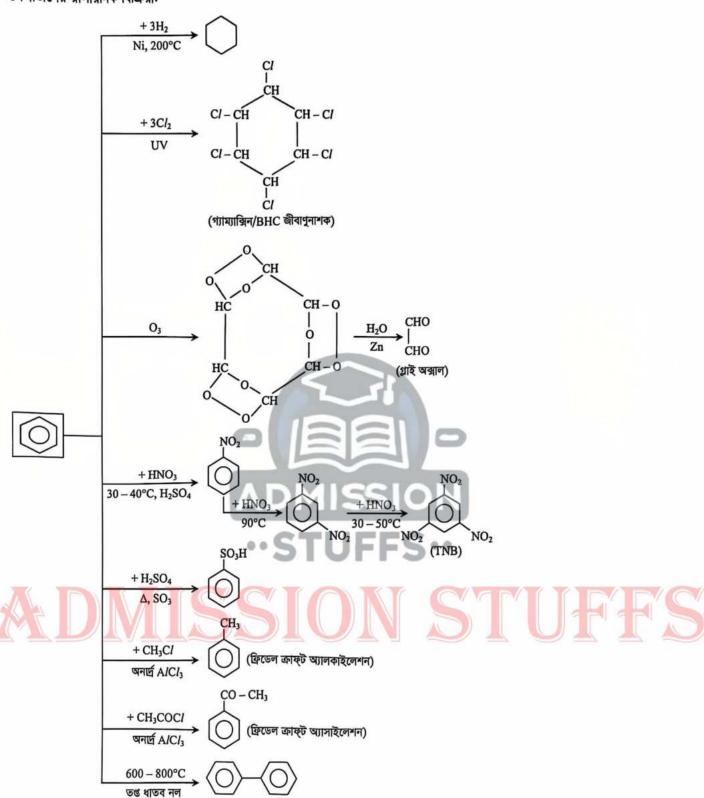
সাইজেফ নীতি


হ্যালোজেনো অ্যালকেন এর হ্যালোজেনযুক্ত কার্বনের সন্নিহিত যে β-কার্বন পরমাণুতে কমসংখ্যক হাইজ্রোজেন থাকে প্রধানত তা থেকে হাইজ্রোজেন এবং পাশের কার্বনের হ্যালোজেন মিলে HX অপসারিত হয়ে অ্যালকিন গঠন করে। যেমন-

2-ব্রোমো বিউটেনকে KOH এর ইথানলীয় দ্রবণসহ উত্তপ্ত করলে ৪০% বিউটিন-2 গঠিত হয়। এর সঙ্গে মাত্র 20% বিউটিন-1 উৎপন্ন হয়।

$$\stackrel{\beta}{\text{CH}_3}$$
 — $\stackrel{\alpha}{\text{CH}_2}$ — $\stackrel{\beta}{\text{CH}_3}$ — $\stackrel{\gamma}{\text{CH}_3}$ — $\stackrel{\Delta}{\text{CH}_3}$ — $\stackrel{C}{\text{H}_3}$ —

বেনজিন যৌগে বিক্রিয়াসমূহ



Rhombus Publications

জৈব রসায়ন > ACS, FRB Compact Suggestion Book.....

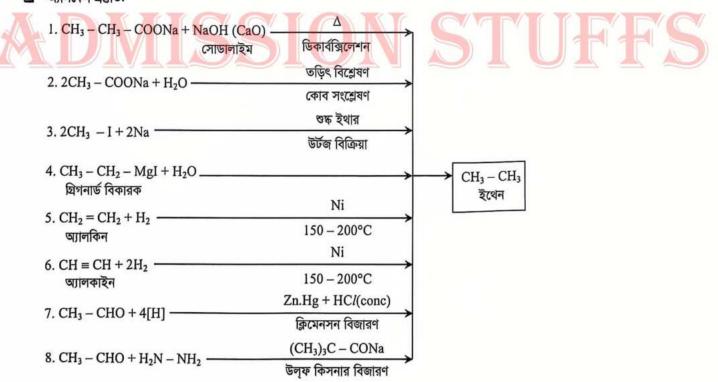
বেনজিনের রাসায়নিক বিক্রিয়া:

উর্তজ-ফিটিগ বিক্রিয়া:

শুষ্ক ইথারীয় দ্রবণে ধাতব সোডিয়ামসহ অ্যারাইল হ্যালাইড ও অ্যালকাইল হ্যালাইডের মিশ্রণকে রিফ্লাক্স করলে অ্যালকাইল বেনজিন উৎপন্ন হয়। অ্যালকাইল বেনজিন উৎপাদনের এ বিক্রিয়া উদ্ভাবকের নামানুসারে উর্টজ-ফিটিগ বিক্রিয়া নামে পরিচিত।

$$\longrightarrow$$
 — Br + 2Na + Br – CH $_3$ — \longrightarrow — CH $_3$ + 2NaBr ব্রোমো বেনজিন টলুইন

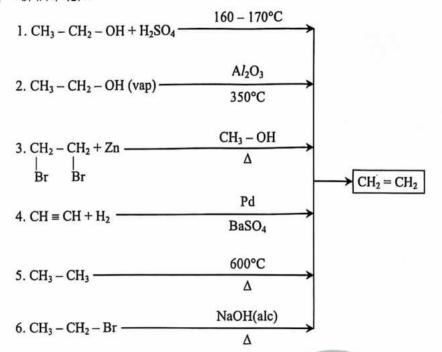
Rhombus Publications

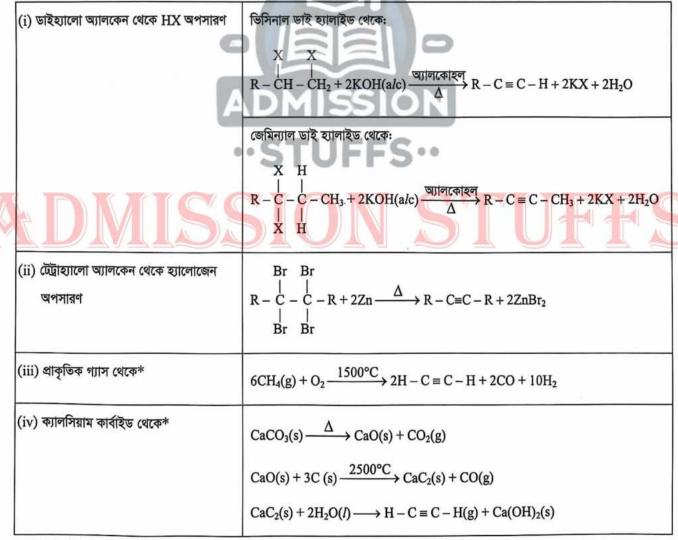

অর্থো-প্যারা এবং মেটা নির্দেশক গ্রুপ:

অর্থো-প্যারা নির্দেশক গ্রুপ			মেটা নির্দেশক গ্রুপ	
সংজা	যে সকল পরমাণু বা পরমাণু গ্রুপ বেনজিন চক্রে উপস্থিত থাকলে আক্রমণকারী বিকারক অর্থো ও প্যারা অবস্থানে প্রতিস্থাপিত হয় তাদেরকে অর্থো-প্যারা নির্দেশক গ্রুপ বলে।	সংজ্ঞা	যে সকল গোষ্ঠীর উপস্থিতিতে বেনজিন চক্রে আক্রেমণকাই প্রতিস্থাপক মেটা অবস্থানে প্রতিস্থাপিত হয় তাদেরকে মেটা নির্দেশক গ্রুপ বলে।	
টেকনিক	যেসব মূলকে একক বন্ধন থাকে তারাই অর্থো-প্যারা নির্দেশক।	টেকনিক	যেসব মূলকে দ্বিবন্ধন বা ত্রিবন্ধন বিদ্যমান থাকে ভারাই মেটা নির্দেশক হয়।	
ক্ৰ. নং	উদাহরণ:	ক্র. নং	উদাহরণ:	
۵	তীব্র সক্রিয়তা বৃদ্ধিকারী: – NR2, – NHR, – NH2, – OH		তীব্র সক্রিয়তা হ্রাসকারী: MR3, – NO2, – CF3, – CC	
2	মধ্যম সক্রিয়তা বৃদ্ধিকারী: – OR, – OAr, – NHCOR	,	102, 102, 013, 010	
9	মৃদু সক্রিয়তা বৃদ্ধিকারী: – C2H5, – CH3, –C6H5		মধ্যম সক্রিয়তা হ্রাসকারী: – CN, – SO₃H, – CHO, COR, – COOR, – COOH	
8	মৃদু সক্রিয়তা হ্রাসকারী: – F, – Cl, – Br, – I	١٩		

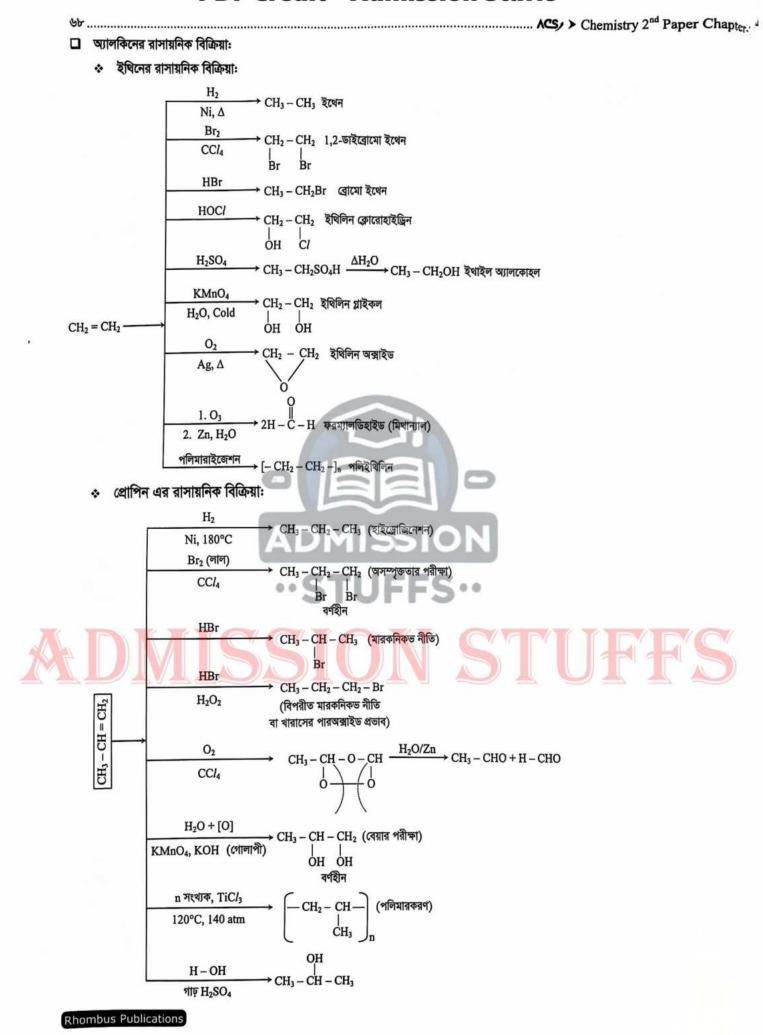
- বেনজিন বলয় সক্রিয়কারী মূলক: ধনাতাক আবেশীয় ফল (+ I) বিশিষ্ট মূলক বেনজিন বলয়কে ইলেকট্রন প্রদান করে বেনজিন বলয়ে
 ইলেকট্রনের ঘনত বৃদ্ধি করে একে বেনজিন বলয় সক্রিয়করণ বলে। যেমনः CH₃, OH, NH₂ মূলক।
- শেসোমারিক ফল: কার্বন পরমাণু ও অধিক তড়িৎখাণাত্মক পরমাণুর মধ্যবর্তী পাই (π) বন্ধন পোলারিত হয়ে পড়ে। অধিক তড়িৎঋণাত্মক পরমাণুর দিকে পাই (π) বন্ধনের ইলেকট্রন স্থানান্তরণকে মেসোমারিক (M) ফল বলে।
 - ু ঋণাত্মক মেসোমারিক ফল: ঋণাত্মক পরমাণু বা মূলকের দিকে π ইলেকট্রনের স্থায়ী স্থানান্তরকে ঋণাত্মক মেসোমারিক ফল (— M) বলে। যেমন: > C = O, − C ≡ N, − NO₂, − SO₃H ইত্যাদির − M ফল আছে।
 - ঽধনাত্মক মেসোমারিক ফল: ঋণাত্মক পরমাণুর নিঃসঙ্গ ইলেকট্রন যুগল দ্বি-বন্ধনযুক্ত কার্বন শিকল বা বলয়ের দিকে স্থানান্তরিত হলে, তাকে ধনাত্মক মেসোমারিক ফল (+ M) বলে। যেমন: ÖH, ÑH₂, ÑHCOCH₃, Öl; ।

ত অ্যালকেন, অ্যালকিন ও অ্যালকাইন


আলকেন প্রস্তুতি:


Rhombus Publications

জৈব রসায়ন > ACS) FRB Compact Suggestion Book......৬৭


🔲 অ্যালকিন প্রস্তুতি:



অ্যালকাইনের প্রস্তুতি:

এই প্রক্রিয়ায় তথুমাত্র অ্যাসিটিলিন প্রস্তুত করা যায়।

Rhombus Publications

90 ACS, ➤ Chemistry 2nd Paper Chapter-2

🗖 অ্যালকিনের শনাক্তকারী বিক্রিয়া: অসম্পৃক্ততা পরীক্ষা (Unsaturation Test)

১. জৈব যৌগের অসম্পৃক্ততা পরীক্ষা: ব্রামিন (Br₂) দ্রবণসহ: গাঢ় লাল বর্ণের তরল ব্রোমিনকে কার্বন ট্রেটাক্লোরাইড (CCl₄)-এ দ্রবীভূত করে ১% দ্রবণ তৈরি করা হয়। কোনো জৈব যৌগের সঙ্গে ব্রোমিনের লাল দ্রবণ মিশানোর পর যদি ব্রোমিনের লাল বর্ণ সঙ্গে দ্রীভূত হয়, তবে জৈন যৌগে কার্বন-কার্বন π বন্ধন উপস্থিত প্রমাণ করে।

$$CH_2 = CH_2 + Br_2 \xrightarrow{CCI_4} CH_2Br - CH_2Br$$

ইথিন 1, 2-ডাইব্রোমো ইথেন

অ্যালকাইন অণুতে দুটি π বন্ধন থাকে, তাই ব্রোমিন পরীক্ষা অ্যালকাইনের জন্যও প্রযোজ্য।

২. বেয়ার পরীক্ষা: ক্ষারীয় KMnO₄ এর গোলাপী বর্ণের দ্রবণ অসম্পৃক্ত হাইড্রোকার্বনকে জারিত করে গ্লাইকল ও কার্বক্সিলিক এসিডে প_{রিণঠ} করে। ফলে পারম্যাঙ্গানেটের গোলাপী বর্ণ দূর হয়।

$$CH_2 = CH_2 + [O] + H_2O \xrightarrow{KMnO_4} HOCH_2 - CH_2OH$$
ইথিন ইথিলিন গ্লাইকল
$$CH \equiv CH + 4[O] \xrightarrow{KMnO_4} HOOC - COOH$$
অ্যাসিটিলিন অক্সালিক এসিড

- □ অ্যালকাইনের শনাজ্ঞকারী বিক্রিয়া: অ্যালকাইনের অণুতে দুটি পাই (π) বন্ধন থাকায় অ্যালকাইন সদস্য অসম্পৃক্ততা পরীক্ষা যেমন ব্রোমিন দ্রঝ্য পরীক্ষা ও বেয়ার পরীক্ষা দেয়। এছাড়া অ্যালকাইন-1 এর Η পরমাণু (- C ≡ C − H) মৃদু অস্ত্রধর্মী হওয়ায় Na ধাতুসহ বিক্রিয়ায় বুদবুদসহ H₂ গ্যাদ উৎপন্ন করে। অ্যামোনিয়াযুক্ত সিলভার নাইট্রেট দ্রবণসহ সিলভার দপর্ণ ও অ্যামোনিয়াযুক্ত কিউপ্রাস ক্লোরাইড দ্রবণসহ বিক্রিয়ায় কপার অ্যাসিটিলাইডের লাল অধঃক্ষেপ সৃষ্টি করে। যেমন-
 - ১. সোডিয়াম (Na)-এর সঙ্গে অ্যালকাইন-1 এর বিক্রিয়া: তরল অ্যামোনিয়ায় দ্রবীভূত সোডিয়াম ধাতু অ্যালকাইন-1 বা অ্যাসিটিলিনের সঙ্গে প্রতিস্থাপন বিক্রিয়ায় সোডিয়াম অ্যালকাইনাইড (Alkynide) বা সোডিয়াম অ্যাসিটিলাইড ও $m H_2$ গ্যাস উৎপন্ন করে।

$$2R-C\equiv C-H(g)+2Na(s)$$
 তরল NH_3 $2R-C\equiv C.Na(s)+H_2(g)$ অ্যালকাইন-1 সোডিয়াম অ্যালকাইনাইড

২. অ্যালকাইন-1 অ্যামোনিয়াযুক্ত সিলভার নাইট্রেট অর্থাৎ ডাইঅ্যাম্মিন সিলভার (I) নাইট্রেট দ্রবণের সঙ্গে বিক্রিয়া করে সিলভার অ্যালকাইনাইডের সাদা অধঃক্ষেপ দেয়।

$$R.C \equiv C - H(g) + A_g^{\dagger}(NH_3)_2N\bar{O}_3(aq) \longrightarrow R.C \equiv C.Ag(s) + NH_4NO_3(aq) + NH_3(g)$$
 ত্যালকাইন-1 ডাইআ্যাম্মিন সিলভার (I) নাইট্রেট সিলভার অ্যাসিটিলাইড

৩. অ্যালকাইন-1 অ্যামোনিয়া মিশ্রিত কিউপ্রাস ক্লোরাইড অর্থাৎ ডাইঅ্যাম্মিন কপার (I) ক্লোরাইড দ্রবণের সঙ্গে বিক্রিয়ায় কপার অ্যালকাইনাইডের লাল অধঃক্ষেপ দেয়।

$$R.C \equiv C - H(g) + Cu(NH_3)_2 C I'(aq) \longrightarrow Cu.C \equiv C.Cu(s) + 2NH_4 C I(aq) + 2NH_3(g)$$
 ডাই-অ্যাম্মিন কপার (I) ক্লোরাইড কপার অ্যাসিটিলাইড

যেহেতু অ্যালকাইন-1 ছাড়া অ্যালকাইন-2 বা অন্যান্য অ্যালকাইন উপরের বিক্রিয়া দেয় না। তাই এসব বিক্রিয়া দ্বারা অ্যালকাইন-1 কে অ্যালকাইন-2 থেকে পার্থক্য করা হয়।

অ্যালকোহল ও ইথার

অ্যালকোহল

- ☐ ফ্রিগনার্ড বিকারক থেকে 1°, 2° এবং 3° অ্যালকোহল প্রস্তুতি:
 - ೨ 1° আলকোহল:

$$\begin{array}{c} H \\ H - C = O + H_3C - MgI \longrightarrow H - C - OMgI \xrightarrow{H_2O/H^+} H - C - OH + Mg(OH)I \\ CH_3 & CH_3 \end{array}$$

1°-অ্যালকোহল

2° অ্যালকোহল:

$$\begin{array}{c} H \\ H_{3}C - C = O + H_{3}C - MgI \longrightarrow H_{3}C - C - OMgI \xrightarrow{H_{2}O/H^{+}} CH_{3} - C - OH + Mg(OH)I \\ CH_{3} & CH_{3} \end{array}$$

2°-আলকোহল

⇒ 3° प्रानिकाश्नः

$$\begin{array}{c} CH_3 & CH_3 \\ | \\ H_3C-C=O+H_3C-MgI \longrightarrow H_3C-C-OMgI \xrightarrow{H_2O/H^+} CH_3-C-OH+Mg(OH)I \\ | \\ CH_3 & CH_3 \\ \end{array}$$

আলকোহলের রাসায়নিক বিক্রিয়া:

Rhombus Publications

92..... Chemistry 2nd Paper Chapter.₂

□ 1°, 2° ও 3° অ্যালকোহলের পার্থক্যকরণ: কক্ষ তাপমাত্রায় লুকাস বিকারকের সঙ্গে 3° অ্যালকোহল যোগ করা মাত্রই সাদা অধঃক্ষেপ দেয়। 2° অ্যালকোহল কক্ষ তাপমাত্রায় বিক্রিয়া করে না কিন্তু উত্তপ্ত করলে দীর্ঘ সময় পরে তৈলাক্ত স্তর সৃষ্টি করে।

$$(CH_3)_3C - OH(I) + HCI(I) \xrightarrow{ZnCI_2} (CH_3)_3C - CI(s) + H_2O(I)$$

$$(CH_3)_2CH - OH(I) + HCI(I) \xrightarrow{ZnCI_2} (CH_3)_2CH - CI(s) + H_2O(I)$$

$$CH_3CH_2 - OH(I) + HCI(I) \xrightarrow{\text{ZnCI}_2} CH_3CH_2 - CI(I) + H_2O(I)$$

ইথার

- ইথারের প্রস্তুতি:
 - উইলিয়ামসন ইথার সংশ্লেষণ বিক্রিয়া:

অ্যালকোহলে দ্রবীভূত সোডিয়াম বা পটাশিয়াম অ্যালকোক্সাইডের (বা ফিনক্সাইডের) সাথে অ্যালকাইল হ্যালাইডকে উত্তপ্ত করলে ইথার উৎপন্ন হয়। ইথার প্রস্তুতির এ বিক্রিয়াকে উইলিয়ামসন ইথার সংশ্লেষণ বিক্রিয়া বলে।

$$R - ONa (alc) + X - R \longrightarrow R - O - R + NaX(I)$$

কি ত্রিগনার্ড বিকারক ও হ্যালোজেনেটেড ইথার থেকে: এ পদ্ধতিতে উচ্চতর ইথার সংশ্লেষণ করা সম্ভব। সাধারণত ক্লোরো ইথারের সঙ্গে ত্রিগনার্ড বিকারকের বিক্রিয়া দ্বারা উচ্চতর ইথার প্রস্তুত করা হয়।

$$R-MgX+Cl.CH_2-O-R \longrightarrow R-O-CH_2-R+MgXCl$$

অ্যালডিহাইড ও কিটোন

আলিডিহাইড এবং কিটোনের মধ্যে পার্থক্যকরণ:

মৃদু জারক দারা অ্যালডিহাইডের জারণ: অ্যালডিহাইডসমূহ কতিপয় মৃদু জারক যেমন: টলেন বিকারক ও ফেহলিং দ্রবণ দারা জারিত হয়ে উৎপন্ন এসিডের লবণে পরিণত হয়। কিন্তু কিটোনসমূহ এসব মৃদু জারক দারা জারিত হয় না।

উলেন বিকারকসহ পরীক্ষাঃ

$$CH_3 - CHO(I) + 2[Ag(NH_3)_2]^+ OH^-(aq) \xrightarrow{\Delta} CH_3COO^- NH_4^+(aq) + 2Ag(s) + 3NH_3(g) + H_2O(I)$$

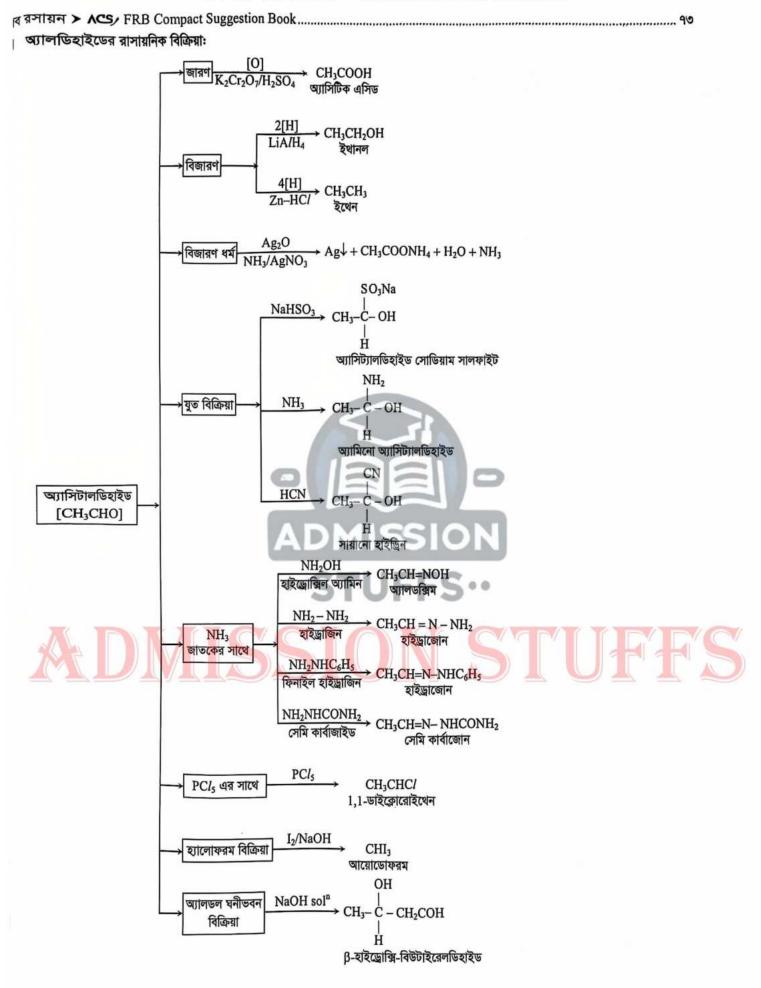
ইথান্যাল ডাইঅ্যামমিন সিলভার (I)

সিলভার দর্পণ

হাইড্রোক্সাইড

কেহলিং দ্রবণসহ পরীক্ষাः

ফেহলিং দ্রবণ হলো কপার সালফেট এবং সোডিয়াম হাইড্রোক্সাইড মিশ্রিত সোডিয়াম পটাসিয়াম টারটারেট বা রোচিলি লবণ এর সমআয়ন দ্রবণের মিশ্রণ। ফেহলিং দ্রবণ নামক এ মিশ্র দ্রবণটি গাঢ় নীল বর্ণের হয়।


$$CH_3 - CHO(I) + 2Cu(OH)_2(aq) + NaOH(aq) \xrightarrow{\Delta} CH_3COO^-Na^+(aq) + Cu_2O(s) + 3H_2O(I)$$

ইথান্যাল

ফেহলিং দ্ৰবণ

লালচে অধঃক্ষেপ

Rhombus Publications

Rhombus Publications

PDF Credit - Admission Stuffs ACS > Chemistry 2nd Paper Chap কিটোনের রাসায়নিক বিক্রিয়া: ভারণ [O]

K₂Cr₂O₇/H₂SO₄

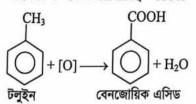
CH₃COOH CH₃CH - CH₃ বিজারণ অ্যাইসোপ্রোপাইল অ্যালকোহল CH3-CH2-CH3 Zn-HC/ SO₃Na NaHSO₃ CH₃-C-OH সোডিয়াম সালফেট যৌগ যুত বিক্রিয়া CN সায়ানো হাইদ্রিন CH₃C(CH₃)=NOH অ্যাসিটোন হাইড্রোক্সিল অ্যামিন [CH₃COCH₃] NH2-NH2 NH₃ → CH₃C(CH₃)=N - NH₂ হাইদ্রাজিন জাতকের সাথে হাইড্রাজোন NH2NHC6H5 CH₃C(CH₃)=N-NHC₆H₅ ফিনাইল হাইড্রাজিন

2,2-ভাইক্লোরো প্রোপেন

| I₂/NaOH | CHI₃ | আরোডোফরম

| আরোডোফরম | WaOH solⁿ | CH₃ - C(CH₃)(OH) - CH₂COCH₃ | 4-হাইড্রোক্স-4-মিথাইলপেন্টান-2-ওন

কার্বক্সিলিক এসিড


CH3CCl2CH3

কার্বক্সিলিক এসিড প্রস্তুতি:

জারণ পদ্ধতি: প্রাইমারি অ্যালকোহল বা অ্যালিডিহাইড থেকে: K₂Cr₂O₁ + H₂SO₄ → K₂SO₄ + Cr₂(SO₄)₃ + H₂O + [O]
 R − CH₂ − OH + [O] → R − CHO — [O] → R − COOH
 থেমন: ইথানল থেকে ইথান্যাল ও পরে ইথানোয়িক এসিড: CH₃ − CH₂ − OH + [O] → CH₃ − CHO — [O] → CH₃ − COOH

• পার্শ্ব শিকল জারণে: $KMnO_4 + KOH \rightarrow K_2MnO_4 + [O] + H_2O$

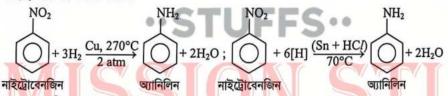
PCI5 এর সাথে

Rhombus Publications

জেব রসায়ন > ACS, FRB Compact Suggestion Book..... নাইট্রাইল বা সায়ানাইড হতে: $R - X + KCN \rightarrow RCN \xrightarrow{H_2O/H^+} R - COOH$ $CH_3Cl \xrightarrow{KCN} CH_3CN \xrightarrow{H_2SO_4, H_2O} CH_3 - COOH + (NH_4)_2SO_4$ **থ্রিগনার্ড বিকারক হতে:** $CH_{3}MgI + CO_{2} \rightarrow CH_{3} - C - OMgI \xrightarrow{H^{+}/H_{2}O} CH_{3} - COOH + Mg(OH)I$ এস্টারের অর্দ্রবিশ্লেষণে: $CH_3COOCH_3 + H_2O \xrightarrow{H^+} CH_3 - COOH + CH_3OH$ শিল্পোৎপাদন: (কৃইক ভিনেগার পদ্ধতি) CH₃ − CH₂ − OH + O₂ (বায়ু) মাইকোডারমা অ্যাসিটি ইথানোয়িক অ্যাসিড (6-10%) কার্বোক্সিলিক এসিডের রাসায়নিক বিক্রিয়া: NaOH CH₃COONa + H₂O সোডিয়াম অ্যাসিটেট Na₂CO₃ অমু ধর্ম CH₃COONa + CO₂ ↑ + H₂O বা NaHCO3 শনাক্তকারী বিক্রিয়া + CH₃COONa + H₂ C₂H₅OH → CH₃COOC₂H₅ + H₂O এস্টার গঠন গাঢ় H₂SO₄ ইথাইল অ্যাসিটেট অ্যাসিটাইল PCl₅ বা PCl₃ CH3COCI + (HCI + POCI3)/H3PO3 বা SOCI2 ক্রোরাইড গঠন অ্যাসিটাইল NH_3 অ্যাসিটামাইড CH3CONH2 + H2O গঠন অ্যাসিটামাইড 4 [H] CH₃CH₂OH + H₂O অ্যাসিটিক এসিড বিজারণ CH₃COOH → CH₃ - CH₃ + H₂O ডিকার্বক্সিলেশ**ন** → CH₄ + Na₂CO₃ + CaO অ্যাসিড → CH₃COOCOCH₃ + H₂O অ্যানহাইড্রাইড গঠন অ্যাসিটিক অ্যানহাইড্রাইড $CH_3COONH_4 \xrightarrow{P_2O_5} CH_3CN + H_2O$ অ্যালকাইল সায়ানাইড গঠন অ্যামোনিয়াম আসিটেট সায়ানাইড মিথাইল CH2C/COOH -→ CHCl₂COOH + HCl গ্রুপের বিক্রিয়া মনোক্লোরো ডাইক্লোরো অ্যাসিটিক অ্যাসিড অ্যাসিটিক অ্যাসিড $Ca(OH)_2 \rightarrow (CH_3COO)_2Ca$ CH₃COCH₃ + CaCO₃ ক্যালসিয়াম অ্যাসিটেট আসিটোন

Rhombus Publications

٩٤ ACS > Chemistry 2nd Paper Chapter


অ্যামিন ও ডায়াজোনিয়াম লবণ

আমিনের ক্ষারধর্মীতা:

ক্ষারধর্মীতার কারণ: এরা ইলেকট্রন দাতা (লুইস ক্ষার) ও প্রোটন গ্রহীতা: R − $\stackrel{\bullet}{N}H_2 + HCI \rightarrow RNH_3^+CI^-$ R R R নাইট্রোজেন পরমাণুতে ইলেকট্রনের প্রাপ্যতা যত বাড়ে ক্ষারধর্ম তত বৃদ্ধি পায়: $\stackrel{\bullet}{N}H_3 < R - \stackrel{\bullet}{N}H_2 < R - \stackrel{\bullet}{N}H_3$ কারণ, − R মূলক ইলেকট্রন ত্যাগী। তাই − R গ্রুপ বেশি থাকলে তার ক্ষারত্ব বেশি হয়।

∴ ক্ষার ধর্মের সাধারণ ক্রম: \bigcirc $\stackrel{\bullet}{\bigcirc}$ $\stackrel{\bullet}{N}$ $\stackrel{\bullet}{H}_2 < \stackrel{\bullet}{N}$ $\stackrel{\bullet}{H}_3 < \stackrel{\bullet}{R_3}$ $\stackrel{\bullet}{N} < \stackrel{\bullet}{R_3}$ $\stackrel{\bullet}{N} < \stackrel{\bullet}{R_3}$ $\stackrel{\bullet}{N} + \stackrel{\bullet}{R_3}$ $\stackrel{\bullet}{N} + \stackrel{\bullet}{R_3}$ $\stackrel{\bullet}{N} + \stackrel{\bullet}{R_3}$ $\stackrel{\bullet}{N} + \stackrel{\bullet}{N} + \stackrel{\bullet}$

- আলিফেটিক ও অ্যারোমেটিক অ্যামিনের প্রস্তুতি:
 - আলিফেটিক আমিন প্রস্তুতি:
 - Alpha অ্যালকাইল হ্যালাইড ও অ্যামেনিয়ার বিক্রিয়া: এই প্রক্রিয়ায় 1° , 2° , 3° ও 4° অ্যামোনিয়াম লবণ পাওয়া যায়। $RX(alc) + NH_3(alc) \xrightarrow{\Delta} [RNH_3]^+ X^- \xrightarrow{\Delta} R NH_2 + HX$ $CH_3I + NH_3 \to CH_3 NH_2 + HI$
 - ্ব অ্যালকেন নাইট্রাইল ও আইসো নাইট্রাইলের বিজারণে: $R-C\equiv N+4$ [H] $\frac{\text{LiA}/H_4}{\text{গুদ্ধ ইথার}} R-CH_2-NH_2$ R-N=C+4 [H] $\frac{\text{LiA}/H_4}{\text{গুদ্ধ ইথার}} R-NH-CH_2$
 - O || আমাইড হতে: R − C − NH₂ + 4 [H] <u>LiA/H₄</u> R− CH₂ − NH₂ + H₂O
 - 💠 অ্যারোমেটিক অ্যামিন (অ্যানিলিন) প্রস্তুতি: 📗
 - নাইট্রোবেনজিন এর বিজারণেঃ

ক্লোরো বেনজিন হতে:

$$Cl$$
 $+ 2NH_3 \xrightarrow{Cu_2O, 200^{\circ}C} + NH_4Cl$
ক্রোরোবেনজিন অ্যানিলিন

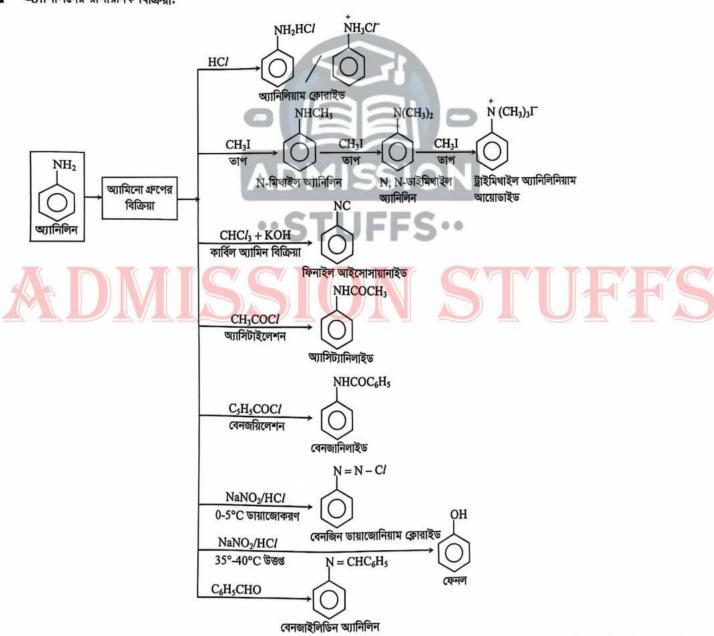
কনল হতে:

$$OH$$
 NH_2
 NH_3
 $ZnCl_2$
 $300^{\circ}C$
 $+ NH_4Cl$
ফেনল অ্যানিলিন

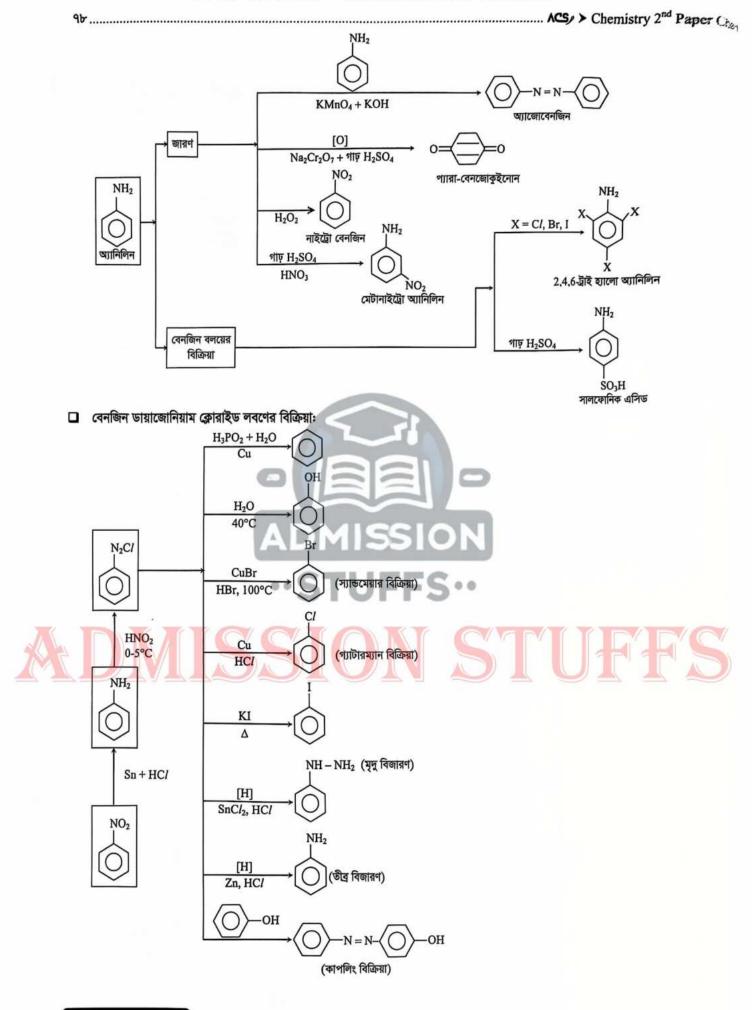
বেনজিন ডায়াজোনিয়াম ক্রোরাইড হতে:

$$N_2CI$$
 NH_2
 $+ 6[H]$
 NH_2
 $+ NH_4CI$
বেনজিন
ভায়াজোনিয়াম
ক্লোরাইড

- আমিনের শনাক্তকারী বিক্রিয়াঃ
 - i. কার্বিল অ্যামিন পরীক্ষা: ক্লোরোফরম ও অ্যালকোহলীয় KOH দ্রবণের সাথে প্রাইমারি (অ্যালিফেটিক ও অ্যারোমেটিক) অ্যামিনকে 60°-70°[€] তাপমাত্রায় উত্তপ্ত করলে উর্গ্র গন্ধযুক্ত আইসো-সায়ানাইড বা কার্বিল অ্যামিন উৎপন্ন হয়। এ বিক্রিয়া দ্বারা শুধুমাত্র প্রাইমারি অ্যামিন শনাক্ত ^{করা} যায়। এ পরীক্ষা দ্বারা ক্লোরোফরমও শনাক্ত করা হয়।


Rhombus Publications

ii. প্রাইমারি (1°), সেকেন্ডারি (2°), টারসিয়ারি (3°) অ্যামিনের শনাক্তকারী পরীক্ষা:


নাইট্রাস এসিডসহ পরীক্ষা: সোডিয়াম নাইট্রাইট (NaNO₂) ও HCI এসিডের বিক্রিয়ায় উৎপন্ন নাইট্রাস এসিড (HNO₂) এর সাথে 1° অ্যামিন যেমন মিথাইল অ্যামিনের বিক্রিয়ায় বুদবুদসহ N₂ গ্যাস ও অ্যালকোহল উৎপন্ন হয়। 2° অ্যামিন যেমন, ডাই মিথাইল অ্যামিনের সাথে HNO₂ এর বিক্রিয়ায় হলুদ বর্ণের তৈলাক্ত নাইট্রোসো অ্যামিন উৎপন্ন হয়। 3° অ্যামিন যেমন ট্রাইমিথাইল অ্যামিনের সাথে HNO₂ এর বিক্রিয়ায় দ্রবণীয় ট্রাইমিথাইল অ্যামেনিয়াম নাইট্রাইট লবণের দ্রবণ উৎপন্ন হয়।

$$\begin{array}{c} \text{CH}_{3} \text{ NH}_{2}(\text{aq}) + \text{HNO}_{2}(\text{aq}) & \xrightarrow{\text{NaNO}_{2}, \text{ HC} \textit{l}} \text{ CH}_{3}\text{OH}(\textit{l}) + \text{N}_{2}(\text{g}) + \text{H}_{2}\text{O}(\textit{l}) \rightarrow \text{ 됓여 प्र } \\ \text{(CH}_{3})_{2} \text{ NH}(\text{aq}) + \text{HNO}_{2}(\text{aq}) & \xrightarrow{\text{NaNO}_{2}, \text{ HC} \textit{l}} \text{ (CH}_{3})_{2}\text{N} - \text{NO}(\textit{l}) + \text{H}_{2}\text{O}(\textit{l}) \rightarrow \text{ ₹ 5 q r } \text{ 4 d r } \\ \text{(CH}_{3})_{3} \text{ N(aq)} + \text{HNO}_{2}(\text{aq}) & \xrightarrow{\text{NaNO}_{2}, \text{ HC} \textit{l}} \text{ [(CH}_{3})_{3} \text{NH}] \text{NO}_{2}^{-} \text{ (aq)} \rightarrow \text{ ₹ 6 q r } \text{ 4 d r$$

অ্যানিলিনের রাসায়নিক বিক্রিয়া:

Rhombus Publications

Rhombus Publications

জৈব রসায়ন > ACS, FRB Compact Suggestion Book

HSC পরীক্ষার্থীদের জন্য বাছাইকত সুজনশীল প্রশ্নোত্তর

四月 > 3

(क) ऎंद्रीमातिष्य की?

রা, নো, ২৩৷ সম্মিপিত নো, ১৮

- (च) रेखव त्योरग COOH मृनत्कत উপস্থিতি भनाकुकतत्वत भरीका
- (গ) উদ্দীপকের C যৌগের নাইট্রেশনে প্রতিস্থাপক অর্থো-প্যারা অবস্থানে যুক্ত হয় না কেন? ব্যাখ্যা কর।

णि. বো. ২০; অনুরূপ প্রশ্ন: বা. বো. ২০; দি. বো. ২১; च. বো. ১১)

ण. त्वा. २১, ১५; नि. त्वा. २১, ১४, ১५; त्रा. त्वा. ১৭]

(ঘ) উদ্দীপকের A, B ও C যৌগের ক্ষেত্রে ইলেকট্রনাকর্যী প্রডিস্থাপন বিক্রিয়ার সক্রিয়তার ক্রম বিশ্লেষণ কর। াি বা. ২০: चनुक्तन क्षमः कृ. त्वा. २०, २); य. त्वा. २०, ১१; व. त्वा. २०, २२, २১, ১१; मि. त्वा. २०, २२, २১, ১৯; ह. त्वा. २२, २১, ১৯; म. त्वा. २२, २১;

সমাধান:

- र य প্रक्रिया नमापुष्ठला नाधात्र जवश्चात वक श्रकात कार्यकती मृनक সংবলিত কাঠামো থেকে স্বতঃস্কৃতভাবে ভিন্ন প্রকার কার্যকরীমূলক সৃষ্টির মাধ্যমে অন্য কাঠামোতে রূপান্তরিত হয় এবং উভয় কাঠামো সাম্যাবস্থায় বিরাজ করে তাকে টটোমারিজম বলে।
- ব কার্বস্থিলিক এসিডসমূহ সকল কার্বনেট ও বাইকার্বনেটের সাথে বিক্রিয়া করে CO2 বিমুক্ত করে। কলে NaHCO3 এর জলীয় দ্রবণের সাথে कार्विद्विनिक अगिष्ठ (R - COOH) विकिशा करत माणिशाम कार्त्वाख्वलि, H2O ७ CO2 উৎপन्न करत । উৎপन्न CO2 तुम तुम जाकारत द्वत दत्र या চুনের পানিকে ঘোলা করে। निद्ध - COOH মূলক শনাক্তকরণের বিক্রিয়াসমূহ দেয়া হলোঃ

 $R - COOH + NaHCO_3 \rightarrow R - COONa + CO_2 \uparrow + H_2O$ $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ (চুনের পানি) (घाना शानि)

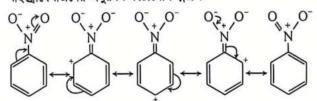
গ NO₂ NH_2 Conc.HNO₃ Sn-HC/ Conc.H2SO4 বেনজিন (नारेख्वादनिक्षन) (ज्यागिनिन) (A) (B) (C)

উদ্দীপকের C যৌগটি হলো অ্যানিলিন যার প্রতিস্থাপক গ্রুপ (– NH2) অর্থো-প্যারা নির্দেশক হওয়া সম্ভেও অ্যানিলিনের নাইট্রেশন অর্থো-शाजा अवञ्चात्न ना হয়ে মেটা अवञ्चात्न घটে।

অ্যানিলিন অণুতে থাকা অ্যামিন গ্রুপ (NH2) এর মুক্তজোড় ইলেকট্রন বেनिक्षन वनरा बाता अधिक आकर्षिত হয় এবং जनुतर्गतन माधारम বেনজিন বলরের অর্থো-প্যারা (2, 4 এবং 6) অবস্থানে ইলেকট্রন ঘনত্ব वृष्कि शारा। कल वाश्यमकाती देलकिखाकारेन वे त्रकन त्रक्रित साम সহজেই প্রতিস্থাপন ঘটাতে পারে।

ज्ञानिर्णितनत एक्टव - NH, व्हेल व्यर्जा-शाता निस्नर्सक दछाउ ज्यानिनिज्ञत नाष्टेख्नेनन ट्राप्टी अनञ्चाज पर्छै। कातन नाष्ट्रिक्षाज्ञत क्लाव्य अभिरुद्धत H' जारान ज्यानिगिद्धात भार्ष विक्रिया करत ज्यानिगिनियाम ननप (○ NH₃°) छे९भूत करत । छे९भूत ख्यानिभिनियाम चारान ट्रांधा निरमर्थक विधारा शतवाठीटा यथन गाईस्ट्रांथन घर्छ डा ट्रांधा ष्यवद्वारन घर्ট धवश राणि गाँदेखी षाानिनिन हिएनत हरा।

উদी शकत А, В в С यो शवा र एन। यथा क्रम दनिष्न , উক্ত তিনটি যৌগের মধ্যে অ্যানিলিন অধিক সক্রিয় হবে। কেননা আানিলিন অণুতে থাকা আমিনো (-NH2) মূলকে মুক্তজোড় ইলেকট্রন बाकारा এটি বেनिक्रन वनता 2, 4 এবং 6 नং कार्वटन ইलाक्ट्रिन चन्छ् वाङ्किता (मरा। कल आशमनकाती ইलकित्याकारेन ये नकन द्वाज সহজেই প্রতিস্থাপিত হতে পারে।


NH2 NH2 NH₂ NH,

जाबात, द्यां जिन ७ गाँ दे खे दिन जिल्ला प्राप्त वन जिन जिल्ला जिल्ला जिल्ला जाबात जावात जाबात जावात जा ইলেকট্রনাকর্বী প্রতিস্থাপন বিক্রিয়া দিবে। কেননা, নাইট্রোবেনজিনের नारें हो। मृनक अकि वनत निक्षित्रकाती धन्य या वनिवन ठटकत 2, 4 নাইট্রোবেনজিনের ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া দানের প্রবণতা

কম লক্ষ করা যার।

नाइस्ट्रादनिखरनत जनुत्रपन काठारमा निम्नुत्रभः

ज्यानिनित्नत जनुत्रभन काठारमा निम्नुत्रश-

সুতরাং, A, B ও C যৌগ তিনটির ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ার সক্রিয়তার ক্রম হবে.

Rhombus Publications

의지 > 2

 $CaC_2 + H_2O \rightarrow A \xrightarrow{H_2} BaSO_d B$

(ক) সংজ্ঞা লিখ: নিউক্লিওফাইল।

यि. त्वा. २७: भि. त्वा. ১৯)

- (খ) কার্যকরী মূলকই জৈব বিক্রিয়ার নিয়য়ক-ব্যাখ্যা কর।
- (গ) উদ্দীপকের A যৌগের পলিমারকরণে উৎপন্ন যৌগটির অসম্পুক্ততা B যৌগের মত নয় কেন? ব্যাখ্যা কর।

ঢ়া. বো. ২৩। জনুরূপ প্রশ্ন। ম. বো. ২৩, ২১। ঢা. বো. ২২।

(ঘ) উদ্দীপকের A ও B যৌগের মধ্যে কোনটি অমুধর্মী সমীকরণসহ বিশ্লেষণ কর। ািচা, বাে, ২৩ঃ অনুরূপ প্রশ্নঃ কু. বাে. ২৩ঃ য. বাে. ২২ঃ সি. বো. ২২: দি. বো. ২২: ঢা. বো. ১৯: ঢ. বো. ১৯]

সমাধান:

- ক যে সকল বিকারক নিউক্লিয়াসের প্রতি আকর্ষণ অনুভব করে এবং বিক্রিয়াকালে ইলেকট্রন দান করে তাদেরকে নিউক্লিওফাইল বলা হয়।
- বা কোন জৈব যৌগের অণুতে উপস্থিত বিভিন্ন উপাদান মৌলের যে পরমাণু বা মূলক উক্ত যৌগের সব রাসায়নিক ধর্ম কার্যকরভাবে নিয়ন্ত্রণ করে, তাকে ঐ যৌগের তথা ঐ যৌগ শ্রেণির কার্যকরী মূলক বলে। কার্যকরী মূলক জৈব যৌগে সমগোত্রীয় শ্রেণির পরিচায়ক, ফলে কোন সমগোত্রীয় শ্রেণির সব সদস্য রাসায়নিক ধর্মে সাদৃশ্য প্রদর্শন করে। সাধারণত (ঘ) A ও B যৌগের মধ্যে কোনটি হ্যালোফরম বিক্রিয়া প্রদর্শন করে-বিশ্রেষণ যৌগের কার্যকরী মূলকের ইলেকট্রন ঘনত্বের উপর যৌগের সক্রিয়তা নির্ভর করে এবং কার্যকরী মূলক এর উপর ভিত্তি করে যৌগে ডাইপোল সমাধান: সৃষ্টি হয় যা বন্ধন গঠন ও ভাগনে ভূমিকা রাখে। স্তরাং কার্যকরী 🛜 মেসো টারটারিক এসিডের গাঠনিক সংকেত হলো: মূলকই জৈব বিক্রিয়ার নিয়ন্ত্রক।
- গ উদ্দীপকের বিক্রিয়াটি সম্পন্ন করে পাই

 $CaC_2 + H_2O \rightarrow HC \equiv CH \xrightarrow{H_2} H_2 \rightarrow CH_2 = CH_2$ (A) Pd, BaSO₄ $CH_2 = CH_2$

সুতরাং উদ্দীপকের A যৌগটি ইথাইন এবং B যৌগটি ইথিন। ইথাইনের পলিমারকরণে বেনজিন উৎপন্ন হয়, যা একটি অসম্পৃক্ত জৈব যৌগ। ইথিন ও বেনজিন অসম্পৃক্ত হলেও এদের অসম্পৃক্ততা ভিন্ন ধরনের। কারণ বেনজিনের 6টি কার্বনের 2pz এর 6টি π ইলেকট্রন 3টি π বন্ধনে সঞ্চারণশীল অবস্থায় যুক্ত থাকে। ফলে নির্দিষ্ট π বেনজিনে অস্থিতিশীলতা ও বিক্রিয়ার ধরন অন্য অসম্পৃক্ত যৌগের তুলনায় আলাদা হয়। অপরপক্ষে ইথিনে দুইটি কার্বনের $2p_z^1$ এর দুইটি π ইলেকট্রন থাকলেও এই ধরনের সঞ্চারণশীলতার অস্তিত্ব নেই। তাই বেনজিনের অসম্পৃক্ততা ইথিনের তুলনায় আলাদা।

সে কারণে বেনজিন ইথিনের মতো KMnO4 এর ক্ষারীয় দ্রবণ কর্তৃক জারিত হয় না কিংবা অসম্পৃক্ততার শনাক্তকরণে ব্যবহৃত ব্রোমিন দ্রবণ পরীক্ষা প্রদর্শন করে না।

ত্ব 'গ' নং হতে পাই,

A যৌগটি হচ্ছে ইথাইন (C_2H_2) এবং B যৌগটি ইথিন (C_2H_4)। A ও B তথা ইথাইন ও ইথিনের মধ্যে ইথাইন অধিক অস্ত্রধর্মী। এর কারণ হলো ইথাইন অণুর কার্বন পরমাণু sp সংকরিত। sp সংকর অরবিটালে 50% s जत्रविरोलित धर्म विमामान या देशितन मःकत जतविरोलित (33.33%) চেয়ে বেশি। সুতরাং, ক্ষ্দ্রাকৃতির s অরবিটালের অনুপাত বেশি হওয়ায় ইথাইনের C – H কার্বনের শেয়ারকৃত ইলেকট্রন যুগল C

... ACS, > Chemistry 2nd Paper Chapter? পরমাণুর নিউক্লিয়াসের অধিকতর কাছে দৃঢ়ভাবে যুক্ত থাকে। *ফলে* দূ_র जवश्चि H भत्रभागृिषत्र সাথে कार्यत्मत वन्नन भिषिन रहा याग्र अन्ः 🗐 ভেঙে H' আয়ন হিসেবে সহজেই বিচ্যুত হয়ে যায়। এজন্যই ইণাঞ্জ তথা A যৌগটি অধিক অমুধর্মী।

ইথাইন অমুধর্মী হওয়ায় তা ধাতব ইথানাইড গঠন করে; যা ইপিন ণঠ্ঠ করতে সক্ষম নয়।

CH = CH(g) + 2Cu(s) $\xrightarrow{\nabla s \not = NH_3}$ Cu.C = C.Cu(s) + H_≥(g) সোডিয়াম অ্যাসিটিলাইড

অতএব, A ও B যৌগদ্বয়ের মধ্যে A তথা ইথাইন অধিক অম্লুধর্মী।

 $C_nH_{2n} \xrightarrow{O_3}$ অন্তর্বর্তী যৌগ $\xrightarrow{H_2O}$ A+B A- এক কার্বনবিশিষ্ট প্রশা 🕨 ৩

(ক) মেসো টারটারিক এসিডের গাঠনিক সংকেত লেখ।

[পি. বো. ২৩]

(খ) মুক্তমূলক অধিক সক্রিয় কেন? ব্যাখ্যা কর।

त्रा. त्वा. २३।

(গ) A যৌগের শনাক্তকরণ পরীক্ষা সমীকরণসহ লেখ।

ঢো. বো. ২৯

জনুরূপ প্রশ্ন: ব. বো. ২৩, ২২; ম. বো. ২২; ঢা. বো. ২১; কু. বো. ১৭

ঢ়া. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২৩; রা. বো. ২১, ১৯; क्. বো. ১৭

COOH

H – C – OH H – C – OH

COOH

মেসো টারটারিক এসিড

হা কোন বিকারক যৌগের অণুর সমযোজী বন্ধনে উপস্থিত ইলেবট্রন জোড়ের সুষম বিভাজনে উৎপন্ন অযুগা ইলেকট্রন যুক্ত ও আধান প্রশমিত পরমাণু বা গ্রুপকে মুক্তমূলক বলে। যেমন অ্যালকেন অণুর কার্বন-কার্বন সিগমা বন্ধনের সমভাগনের ফলে অ্যালকাইল ফ্রি-রেডিকেল বা মুক্তমূলক উৎপন্ন হয়। মুক্তমূলকে অযুগা ইলেকট্রন থাকায় এটি অস্থিতিশীল অবস্থায় থাকে এবং দ্রুত অন্য কোন পরমাণু বা মূলকের সাথে বন্ধনে আবদ্ধ হয়ে ইলেকট্রন সংগ্রহ করার প্রবণতা দেখায়। এ কারণে মুক্তমূলক অধিক সক্রিয় হয়।

 $CH_3 - CH = CH_2 \xrightarrow{O_3} CH_3 - CH \xrightarrow{CH} CH_2 \xrightarrow{H_2O} HCHO + CH_3CHO$ (B)

উদ্দীপকের A যৌগটি হচ্ছে মিথান্যাল (HCHO)। মিথান্যানের শনাক্তকরণ পরীক্ষা নিচে বর্ণনা করা হলো-

টলেন বিকারক পরীক্ষাঃ

পরীক্ষানলে মিথান্যালের তরল জৈব নমুনা নিয়ে তাতে 2 – 3 mL টলেন বিকারক যোগ করে অল্প তাপে সামান্য উত্তপ্ত $(50-60)^{\circ}$ C করে স্থির অবস্থায় রেখে দেওয়া হলে, পরীক্ষানলের ভিতরে সিলভাগ অধঃক্ষেপ আকারে জমা হয়।

Rhombus Publications

জৈব রসায়ন > ACS, FRB Compact Suggestion Book

HCHO + 2 [Ag(NH₃)₂] OH $\xrightarrow{50^{\circ}\text{C}}$ মিথান্যাল টলেন বিকারক

2 Ag(s)↓ + 3NH₃ + HCOONH₄ + H₂O সিলভারের অ্যামোনিয়া অ্যামোনিয়াম পানি সাদা অধঃক্ষেপ মিথানোয়েট

ফেহলিং দ্রবণ পরীক্ষাঃ

একটি পরীক্ষানলে সামান্য পরিমাণে মিথান্যালের তরল জৈব নমুনাকে নিয়ে এর মধ্যে $2-3~\mathrm{mL}$ ফেহলিং দ্রবণ যোগ করে মিশ্রণকে $2-3~\mathrm{km}$ মিনিট উত্তপ্ত করা হলে কপার (I) অক্সাইড (Cu_2O) এর লালচে বাদামি বর্ণের অধ্যক্ষেপের সৃষ্টি হয়।

 $HCHO + 2Cu(OH)_2 + NaOH \xrightarrow{\Delta} HCOONa + Cu_2O(s) \downarrow + H_2O$ মিথান্যাল ফেহলিং দ্রবণ সোডিয়াম কপার(I) পানি
মিথান্যােট অক্সাইড
স্করাং, উপরাক্ত পরীক্ষা দুটি দ্বারা A যৌগটি তথা মিথান্যাল শনাক্ত

ত্ব 'গ' হতে পাই, A যৌগটি হলো মিখান্যাল (H – CHO) ও B যৌগটি হলো ইখান্যাল (CH₃ – CHO)। এদের মধ্যে ইখান্যাল (CH₃ – CHO) হ্যালোফরম বিক্রিয়া প্রদর্শন করলেও মিখান্যাল (H – CHO) করে না।

আমরা জানি, যেসকল জৈব যৌগের কাঠামো তে কিটোমিথাইল $(CH_3 - CO -)$ মূলক উপস্থিত থাকে অথবা বিক্রিয়াকালীন সময়ে কিটোমিথাইল মূলক উৎপন্ন হয় তারা ক্ষার এবং হ্যালোজেন (ক্লোরিন, ব্রোমিন, আয়োজিন) মিশ্রণের সাথে বিক্রিয়া করে হ্যালোকর্ম যেমন-ক্লোরোকর্ম, ব্রোমোকর্ম ও আয়োজোকর্ম এবং ফ্যাটি এসিডের লবণ উৎপন্ন করে। একে হ্যালোকর্ম বিক্রিয়া বলে। উদ্দীপকের B যৌগটি তথা ইথান্যালে কিটো-মিথাইল মূলক থাকায় এটি হ্যালোকর্ম বিক্রিয়া নিমুন্ধপে প্রদর্শন করবে:

যেখানে, $X = Cl_2$, Br_2 , I_2

অপরদিকে, A যৌগ তথা মিথান্যালে কোনো কিটোমিথাইল মূলক নেই। তাই এটি হ্যালোকর্ম বিক্রিয়া দেয় না।

 Π $H-C-H+X_2+NaOH \rightarrow No \ reaction$ সূতরাং, $A \ G$ B যৌগদ্বয়ের মধ্যে B যৌগটি তথা ইথান্যাল হ্যালোফর্ম বিক্রিয়া দেয়।

প্রশ্ন ▶ 8

COONa

- (ক) লুকাস বিকারক কী? [রা. বো. ২৩; চ. বো. ২১, ১৯, ১৭; সি. বো. ২১; দি. বো. ১৯]
- (খ) বেনজিন একটি অ্যারোমেটিক যৌগ– ব্যাখ্যা কর।রা. বো. ২৩
- (গ) B যৌগের সাথে ফুটন্ত অবস্থায় ক্লোরিনের বিক্রিয়া সমীকরণসহ বর্ণনা কর। রা. বো. ২৩।
- (ঘ) A ও B যৌগের পারস্পরিক রূপান্তর লিখ। রি. বো. ২৩।

সমাধান:

- ক গাঢ় HCl এ দ্রবীভূত অনর্দ্রে (নিরুদিত) ZnCl₂ এর দ্রবণকে লুকাস বিকারক বলা হয়।
- স্বারোমেটিক যৌগ হতে হলে হাকেল নীতি অনুসারে (4n + 2) সংখ্যক সঞ্চারণশীল π ইলেকট্রন থাকতে হয়, যেখানে n হলো যড়ভুজাকার বলয়ের সংখ্যা।

বেনজিন একটি চাক্রিক যৌগ এবং এতে সঞ্চারণশীল 6টি π ইলেকট্রন বিদ্যমান যা হাকেল নীতি অনুসরণ করে। কারণ, বেনজিনের ক্ষেত্রে n=1 এবং হাকেল নীতি অনুসারেও সঞ্চারণশীল π ইলেকট্রন সংখ্যা 4.1+2=6টি থাকার কথা। তাই বেনজিন একটি অ্যারোমেটিক যৌগ।

া উদ্দীপকের বিক্রিয়াটি সম্পন্ন করে পাই,

COONa

$$CH_3$$
 $COOH$
 CH_3
 $COOH$
 CH_3
 $COOH$
 CH_3
 $COOH$
 CH_3
 $COOH$
 CH_3
 OOH
 OOH

সূতরাং, B যৌগটি হবে টলুইন (ি) । সূর্যালোকের উপস্থিতিতে অথবা ফুটন্ত টলুইনের সাথে 111°C তাপমাত্রায় ক্লোরিন (Cl_2) এর ব্রু-রেডিকেল মেকানিজমের মাধ্যমে টলুইনের পার্শ্ব শিকল মিথাইল মূলকে (– CH_3), Cl প্রতিস্থাপন বিক্রিয়ার মাধ্যমে যথাক্রমে বেনজাইল ক্লোরাইড, বেনজাল ক্লোরাইড এবং অবশেষে বেনজাক্লোরাইড ও HCl গ্যাস উৎপন্ন হয় ।

বেনজাল ক্লোরাইড
 বেনজো ক্লোরাইড
এভাবেই B যৌগটি (টলুইন) ফুটন্ত অবস্থায় ক্লোরিনের সাথে বিক্রিয়া
করে।

ঘ উদ্দীপকের A যৌগটি হলো বেনজিন 🌘) এবং C যৌগটি হলো

COOH বেনজোয়িক এসিড ।

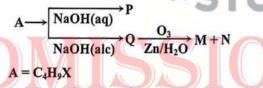
বেনজিন হতে বেনজোয়িক এসিডে রূপান্তর:

বেনজিনকে অনর্দ্র AICI3 এর উপস্থিতিতে মিথাইল ক্রোরাইড দ্বারা অ্যালকাইলেশন করলে টলুইন উৎপন্ন হয়। প্রাপ্ত টলুইনকে শক্তিশালী জারক লঘু HNO3 দ্বারা জারিত করলে বেনজোয়িক এসিড উৎপন্ন হয়।

$$CH_3CI$$
তালুইন

 CH_3CI
তালুইন

তা


বেনজোয়িক এসিড হতে বেনজিন:

বেনজোয়িক এসিডের সাথে কস্টিক সোডার বিক্রিয়ায় উৎপন্ন সোডিয়াম বেনজোয়েটকে সোডালাইমের উপস্থিতিতে ডি-কার্বস্থিলেশন করলে বেনজিন উৎপন্ন হয়।

COOH COONa
$$\rightarrow$$
 NaOH \rightarrow CaO, \triangle

বেনজোয়িক এসিড সোডিয়াম বেনজোয়েট বেনজিন এভাবে, A ও C অর্থাৎ, বেনজিন ও বেনজোয়িক এসিডের মধ্যে পারস্পরিক রূপান্তর সম্ভব।

역취 ▶ ৫

M = 3 কার্বনবিশিষ্ট কার্বনিল যৌগ যা টলেন বিকারককে বিজারিত করে না।

- (ক) ইলেকট্রোফাইল কী?
- [ঢা. বো. ২২; রা. বো. ১৯, ১৭]
- (খ) ক্লোরোফর্মকে রঙিন কাঁচের বোতলে রাখা হয় কেন? ।সি. বো. ২২
- (গ) গ্রিগনার্ড বিকারক থেকে উদ্দীপকের P যৌগটি কীভাবে প্রস্তুত করবে?
 বিক্রিয়াসহ বর্ণনা কর।
 রা. বো. ২৩; জনুরূপ প্রশ্ন: দি. বো. ১৭
- (घ) কেন্দ্রাকর্ষী সংযোজন বিক্রিয়ায় M ও N এর মধ্যে কোনটি অধিক সক্রিয়? কারণসহ ব্যাখ্যা কর। রা. বো. ২৩, সি. বো. ২৬, ১৭; অনুরূপ প্রশ্ন: ব. বো. ২৬, ২২, ২১, ১৭; य. বো. ২২, ১৯; চ. বো. ২২; দি. বো. ২২; ম. বো. ২২, ২১; ঢা. বো. ১৯; কু. বো. ১৯; य. বো. ১৯; সম্মিলিত বো. ১৮]

সমাধান:

ক যে সকল বিকারক ইলেকট্রনের প্রতি আসজি প্রকাশ করে এবং বিক্রিয়াকালে ইলেকট্রন গ্রহণ করে, তাদেরকে ইলেকট্রনাকর্মী বিকারক বা ইলেকট্রোফাইল বলে। ACS, > Chemistry 2nd Paper Chapter-2

ব্ব ক্রোরোফর্মকে রঙিন কাঁচের বোতলে রাখা হয় কারণ ক্রোরোকর্ম (CHCl₃) আলোর উপস্থিতিতে O₂ এর সাথে বিক্রিয়া করে বিষক্ত ফসজিন গ্যাস ও HCl উৎপন্ন করে।

$$CHCl_3 + O_2 \xrightarrow{\text{SIGPI}} COCl_2 + HCl$$
ফসজিন গ্যাস

কিন্তু রঙিন বা বাদামী বর্ণের বোতলে আলো প্রবেশে বাধা পায়। তাই আলোর অনুপস্থিতিতে উপরোক্ত বিক্রিয়া ঘটে না।

গ উদ্দীপকের A যৌগটি হলো 4 কার্বন বিশিষ্ট অ্যালকাইল হ্যালাইড (C₄H₉X)। উদ্দীপক অনুসারে M যৌগটি হলো 3 কার্বনবিশিষ্ট কার্বনিল যৌগ যা টলেন বিকারকে বিজারিত হয় না। সুতরাং, M যৌগটি হবে একটি কিটোন এবং এটি হবে প্রোপানোন (CH₃ - CO - CH₃) বা অ্যাসিটোন। ফলে, Q যৌগটি হবে CH₃ - C = CH₂ (2-মিথাইল প্রোপিন) সুতরাং, A যৌগটি হবে 3° CH₃

অ্যালকাইল হ্যালাইড। 3° অ্যালকাইল হ্যালাইড NaOH এর জ্বলীর দ্রবণে প্রতিস্থাপন বিক্রিয়া দেয় এবং 3° অ্যালকোহল প্রস্তুত করে। সূতরাং P যৌগটি হলো 3° অ্যালকোহল।

$$CH_3$$
 CH_3 CH_3 $CH_3 - C - X + NaOH(aq) \longrightarrow CH_3 - C - OH + NaX$ CH_3 CH_3

প্রিগনার্ড বিকারকের সাথে অ্যাসিটোন বা প্রোপানোনের বিক্রিয়ায় 3°-অ্যালকোহল উৎপন্ন হবে।

$$CH_{3}MgX + CH_{3} - C - CH_{3} \longrightarrow CH_{3} - C - CH_{3} \xrightarrow{\qquad \qquad } CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

CH₃

3°-অ্যালকোহল

C-OH+Mg(OH)X

যা 'গ' হতে পাই, উদ্দীপকের M হলো প্রোপানোন (CH₃ – CO – CH₃)
এবং N হলে মিথান্যাল (H – CHO)।
কেন্দ্রাকষী সংযোজন বিক্রিয়ায় CH₃COCH₃ ও H – CHO এর
মধ্যে H – CHO অধিক সক্রিয়। নিচে এর কারণ ব্যাখ্যা করা হলো–
ইলেকট্রনীয় প্রভাব: কেন্দ্রাকর্ষী যুত বিক্রিয়ায় C এর আংশিক ধনাত্মকতা

যত বেশি হয়, সক্রিয়তা তত বেশি হয়। অ্যালকাইল মূলক যেমন— (– CH₃) মূলক ইলেকট্রন ঘনতৃ যোগানদানকারী হওয়ায় এটি কার্বনের ধনাত্মকতা কমিয়ে দেয়।

Rhombus Publications

্রেব রসায়ন ➤ ACS/ FRB Compact Suggestion Book

প্রোপানোনে 2টি (— CH₃) মূলক থাকায় এটি কার্বনিল মূলকের কার্বনের ধনাত্মক চার্জ ঘনত্ব কমিয়ে দেয়। অন্যদিকে, মিখান্যাল (H — CHO) এ কোনো মিখাইল মূলক না থাকায় কার্বনিল কার্বনের চার্জ ঘনত্ব প্রোপানোন অপেক্ষা বেশি। তাই মিখান্যাল (H — CHO) (N) কেন্দ্রাকর্বী যুত বিক্রিয়ায় অধিক সক্রিয়।

স্টেরিক বাধা: কার্বনিল মূলকে যুক্ত মূলকের আকার যত বড় হয়
নিউক্লিওফাইলের আক্রমণের পথ তত সংকৃচিত হয়ে যায়। এরপ
বাধাসৃষ্টিকে স্টেরিক বাধা বলে। প্রোপানোন অণুতে দুটি মিথাইল
(— CH₃) মূলক থাকায় এর স্টেরিক বাধা বেশি হয়।

$$CH_3$$
 $C=0$ H $C=0$ H $C=0$ মিথান্যাল

সুতরাং, প্রোপানোন অপেক্ষা মিথান্যাল নিউক্লিওফিলিক যুত বিক্রিয়ায় অধিক সক্রিয়।

প্রশ্ন 🕨 ৬

(1) 2-মিথাইল বিউটিন-1 — HBr → A(90%) + B(10%) (মুখ্য উৎপাদ) (গৌণ উৎপাদ)

- (2) A যৌগ NaOH(aq) C যৌগ
- (ক) হেটারোসাইক্লিক যৌগ কাকে বলে?

(খ) ইথান্যাল অ্যালডল ঘনীভবন বিক্রিয়া দেয়- ব্যাখ্যা কর। াব. বো. ২৩)

- (গ) উদ্দীপকের A যৌগ থেকে C-যৌগটি উৎপাদনের কৌশল দেখাও।
 কু. বো. ২৩; জনুরূপ প্রশ্ন: রা. বো. ২২, ২১; কু. বো. ২১; দি. বো. ২২, ১৭)
- (ঘ) উদ্দীপকের বিক্রিয়া সম্পন্ন করে A ও B উৎপাদ গঠনের শতকরা পরিমাণের ভিন্নতা বিশ্লেষণ কর। [কু. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২২; য. বো. ২২, ২১, ১৭; চ. বো. ২২; দি. বো. ২২; ব. বো. ১৯]

সমাধান:

- বেসব বৃত্তাকার যৌগের বলয় গঠনে কার্বন পরমাণুসহ অপর হেটারো পরমাণু যেমন অক্সিজেন (O), সালফার (S), নাইট্রোজেন (N) প্রভৃতির এক বা একাধিক পরমাণু অংশ গ্রহণ করে সেসব যৌগকে হেটারোসাইক্লিক যৌগ বলে।
- যে সকল কার্বনিল যৌগে α-হাইড্রোজেন থাকে, তারা অ্যালডল ঘনীভবন বিক্রিয়া প্রদর্শন করে। ইথান্যালে তথা CH₃CHO যৌগে একটি অস্লধর্মী α-Η বিদ্যমান থাকে, তাই এটি অ্যালডল ঘনীভবন বিক্রিয়া দিবে।

$$\begin{array}{c} O \\ \parallel \\ CH_3-C+H-CH_2-CHO \xrightarrow{\overline{\textbf{eqg}}} CH_3-HC-CH_2CHO \\ \parallel \\ H \end{array}$$

3-হাইড্রব্সি বিউটান্যাল (অ্যালডল)

দি. বো. ২৩]

প্রোপানোনে 2টি $(-CH_3)$ মূলক থাকায় এটি কার্বনিল মূলকের | উদ্দীপকের | যৌগটি হলো একটি | ব্যালকাইল হ্যালাইড। কার্বনের ধনাত্মক চার্জ ঘনতু কমিয়ে দেয়। অন্যদিকে, মিথান্যাল | | বিক্রিয়াটি সম্পন্ন করে পাই,

$$CH_3$$
 CH_3 CH_3 CH_3 $CH_3 - CH_2 - CH - CH_2Br$

2-ব্রোমো-2-মিথাইল বিউটেন 1-ব্রোমো-2-মিথাইল বিউটেন (A)90% (B)10%

3° অ্যালকাইল হ্যালাইড NaOH এর জলীয় দ্রবণে এক আণবিক কেন্দ্রাকর্ষী প্রতিস্থাপন (S_N1) বিক্রিয়ার মাধ্যমে 3° অ্যালকোহল (C) উৎপন্ন করে। নিম্নে এর কৌশল ব্যাখ্যা করা হলো:

CH₃ \rightarrow
VA ধাপ: CH₃ – CH₂ – C – Br যৌগটি ধীরে ধীরে বিয়োজিত হয়ে
|
CH₃

3°-কার্বোনিয়াম আয়ন গঠন করে।

$$CH_3 - CH_2 - CH_3 - CH_3 - CH_3 - CH_2 - C^{\oplus}$$

$$CH_3 - CH_2 - C^{\oplus}$$

$$CH_3 - CH_3 - CH_2 - C^{\oplus}$$

$$CH_3 - CH_3 - CH_$$

২য় ধাপ: উৎপন্ন কার্বোনিয়াম আয়ন দ্রুত নিউক্লিওফাইল OH এর সাথে যুক্ত হয়ে 2-মিথাইল বিউটানল-2(C) গঠন করে।

$$CH_3-CH_2-C-CH_3+OH$$
 $CH_3-CH_2-C-CH_3$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

্ব 'গ' হতে পাই, উদ্দীপকের 1 নং বিক্রিয়া অনুযায়ী, A যৌগটি হলো

2-ব্রোমো-2-মিথাইল বিউটেন এবং B যৌগটি হলো 1-ব্রোমো-2মিথাইল বিউটেন।

মারকনিকভের নীতি অনুসারে অপ্রতিসম অ্যালকিনের সাথে অপ্রতিসম বিকারকের বিক্রিয়ায় বিকারকের ঋণাত্মক প্রান্তটি দ্বি-বন্ধনযুক্ত যে কার্বনে H পরমাণু কম থাকে যেখানে যুক্ত হয় এবং ধনাত্মক প্রান্তটি যে কার্বনে H পরমাণু বেশি থাকে সেখানে যুক্ত হয়।

বিক্রিয়ার প্রথম ধাপে HBr হতে ইলেকট্রোফাইল রূপে H^+ আয়ন ও নিউক্লিওফাইলরূপে ব্রোমাইড (Br^-) সৃষ্টি হয়। দ্বি-বন্ধনের π ইলেকট্রন দ্বারা ইলেকট্রোফাইল (H^+) আকৃষ্ট হলে অধিক স্থায়ী 3° কার্বোক্যাটায়ন অধিক সংখ্যায় সৃষ্টি হয়, যার সাথে ব্রোমাইড আয়ন আকৃষ্ট হয়ে 90% উৎপাদ হিসাবে 2-ব্রোমো-2- মিথাইল বিউটেন উৎপন্ন করে।

সুতরাং, 1°-কার্বোক্যাটায়নের চেয়ে 3°-কার্বোক্যাটায়নের স্থায়িত্ব বেশি হওয়ায় উদ্দীপকের A যৌগটি 90% পাওয়া যায়।

Rhombus Publications

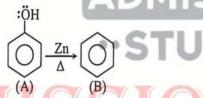
প্রশ ▶ ৭ :ÖH

(ক) আরোমেটিসিটি কাকে বলে?

মি. বো. ২৩]

(খ) জ্যামিতিক সমাণুতার শর্ত ব্যাখ্যা কর?

কু. বো. ২১


(গ) উদ্দীপকের B থেকে A উৎপাদনের বিক্রিয়াসমূহ সমীকরণসহ বর্ণনা কর। যি. বো. ২৩]

(ঘ) উদ্দীপকের A ও C যৌগটির ক্ষেত্রে ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ায় প্রতিস্থাপকের অবস্থানের ভিন্নতার কারণ ক্রিয়াকৌশলসহ বিশ্লেষণ কর। যি. বো. ২৩]

সমাধানঃ

- ক সঞ্চারণশীল π ইলেকট্রনের উপস্থিতির কারণে অ্যারোমেটিক যৌগের মধ্যে যে বৈশিষ্ট্যপূর্ণ ধর্ম ((i) বিশেষ প্রকৃতির অসম্পৃক্ততা, (ii) অনুরণন, (iii) সঞ্চারণশীল π ইলেকট্রন, (iv) প্রতিস্থাপন বিক্রিয়া ও (v) বিশেষ স্থায়িত প্রভৃতি) প্রকাশ পায় তাকে অ্যারোমেটিসিটি বলে।
- হা জৈব যৌগে জ্যামিতিক সমাণুতার জন্য কার্বন-কার্বন দ্বি-বন্ধনের মুক্ত আবর্তন রহিত হতে হয়। সেক্ষেত্রে জ্যামিতিক সমাণুতার শর্তগুলো হলো– (i) সাধারণত abC = Cab বা abC = Cbd বা abC = Cde সংকেতযুক্ত প্রতিস্থাপিত অ্যালকিন জ্যামিতিক সমাণুতা প্রদর্শন করে। (ii) চাক্রিক জৈব যৌগসমূহের ক্ষেত্রে যে বন্ধনের মুক্ত আবর্তন রহিত হয় তার দু-প্রান্তের প্রতিটি কার্বন পরমাণুর সঙ্গে সংযুক্ত পরমাণু বা গ্রুপদ্বয় পরস্পর থেকে ভিন্ন হলে জ্যামিতিক সমাণুতা প্রদর্শন করে।

গ

উদ্দীপকের B যৌগটি বেনজিন ([O])। বেনজিন হতে ফেনল প্রস্তুতি নিচে বর্ণনা করা হলো-

বেনজিন হতে ফেনলঃ

ডাউ পদ্ধতিতে প্রথমে বেনজিনকে শুষ্ক FeCl3 প্রভাবকের উপস্থিতিতে ক্লোরিনের সাথে বিক্রিয়া ঘটিয়ে ক্লোরোবেনজিনে পরিণত করা হয়।

$$Cl$$
 $+ Cl_2$

ভঙ্ক $FeCl_3$

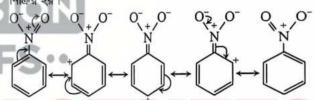
কোরোবেনজিন

কোরোবেনজিন

উক্ত ক্লোরোবেনজিনকে 10% NaOH 150 atm চাপে এবং 400°C তাপমাত্রায় উত্তপ্ত করে সোডিয়াম ফিনেট লবণে পরিণত করা হয়।

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter-) সোডিয়াম ফিনেট লবণকে গাঢ় হাইড্রোক্রোরিক এসিড সহযোগে 182°c তাপমাত্রায় পাতন করলে পাতিত তরল রূপে ফেনল পাওয়া যায়।


উদ্দীপক হতে দেখা যায়, A যৌগটি হলো ফেনল

এবং C যৌগটি হলো নাইট্রোবেনজিন

ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ায় ফেনল অর্থো ও প্যারা অবস্থাদ প্রতিস্থাপককে যুক্ত করলেও নাইট্রোবেনজিন মেটা অবস্থানে যুক্ত করে

ফেনলে অবস্থিত (–ÖH) মূলকের মুক্তজোড় ইলেকট্রনের মেঘ বেনজিন वनास्त्रत मित्क करन या ध्याय अणि वनस्त्रत 2, 4 व्यवः 6 नः कार्वज ইলেকট্রন ঘনতু বাড়ায়ে দেয়। ফলে আগমনকারী ইলেকট্রোফাইল উক্ত অবস্থানে সহজেই জায়গা দখল করে ফেলে।

অপরদিকে, নাইট্রো মূলক বেনজিন বলয়ের π ইলেকট্রন মেঘ নিজের দিকে টেনে নেয়। ফলে অনুরণন কাঠামো মতে অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত হ্রাস পায়; অর্থাৎ বেনজিন বলয়টি কিছুটা নিক্রিয় হয়।

সূতরাং বলা যায় যে, A ও C যৌগ তথা টলুইন ও নাইট্রোবেনজিনের ইলেকট্রোফিলিক প্রতিস্থাপন ভিন্ন ভিন্ন।

$$C_6H_5 - OH + Zn \xrightarrow{\Delta} A' + ZnO$$

$$60^{\circ}C \downarrow H_2SO_4(গাঢ়) + HNO_3 (গাঢ়)$$

(ক) অ্যামাইড কি?

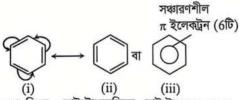
- (খ) কার্বনিল মূলককে কীভাবে মিথিলিন মূলকে পরিণত করা যায়? ব্যাখ্যা চি. বো. ২৩; ঢা. বো. ২৩
- (গ) উদ্দীপকের A যৌগে তিনটি π বন্ধন আছে
 – প্রয়োজনীয় বিক্রিয়ার মাধ্যমে ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের A ও B যৌগের কোনটি ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ায় অধিক সক্রিয়? বিশ্লেষণ কর। চি. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২২, ২১, ১৯; চা. বো. ২৩, ১৭; কু. বো. ২৩, ২১; য. বো. ২৩, ১৭; व. वा. २७, २२, २১, ১৭; मि. वा. २७, २२, २১, ১৯; ম. वा. २२, २३; সি. বো. ২১, ১৯, ১৭; রা. বো. ১৭

সমাধানঃ

ক এস্টার এবং NH3 বা অ্যামিনের মধ্যে প্রতিস্থাপন বিক্রিয়ায় যে যৌগ উৎপন্ন হয় তাকে অ্যামাইড বলে।

জৈব রসায়ন > ACS, FRB Compact Suggestion Book.....

ক্রমেনসন বিজারণ বিক্রিয়ার মাধ্যমে কার্বনিল মূলককে (>C = O)
মিথিলিন মূলকে (>CH₂) পরিণত করা যায়। সেক্লেক্সে কার্বনিল
যৌগকে Zn − Hg ও গাঢ় HC/ দ্বারা বিজ্ঞারিত করলে হাইড্রোকার্বন
পাওয়া যায়।


$$>C = O + 4[H] \frac{Zn - Hg}{HCl (1)} > CH_2 + H_2O$$

জ্দীপকের Α যৌগটি হচ্ছে বেনজিন ()। বেনজিনে তিনটি π বন্ধনে 6টি সঞ্চারণশীল π ইলেকট্রন রয়েছে। বেনজিনকে ওজোনীকরণ করলে প্রথমে বেনজিন ট্রাইওজোনাইড নামক একটি অস্থায়ী যৌগ উৎপন্ন হয়। পরে এটি Z_n এর উপস্থিতিতে আর্দ্রবিশ্রেষিত হয়ে গ্রাইঅক্সাল উৎপন্ন করে।

অর্থাৎ, বেনজিনের তিনটি π বন্ধনের ওজোনীকরণ বিক্রিয়ায় তিন অণু ওজোন প্রয়োজন। সুতরাং, A যৌগে তথা বেনজিনে তিনটি π বন্ধন আছে।

ঘ উদ্দীপকের A যৌগটি হলো বেনজিন 🌘 এবং B যৌগটি হলো

নাইট্রোবেনজিন ি NO2। বেনজিন বলয়ে ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ার সক্রিয়তা নির্ভর করে অ্যারোমেটিক বলয়ে ইলেকট্রনের ঘনত্বের উপর। বেনজিন বলয়ে ছয়টি π ইলেকট্রন সর্বদা সঞ্চারণশীল অবস্থার থাকে। ফলে বেনজিন বলয়ের যেকোনো অবস্থানে ইলেকট্রোফাইল প্রতিস্থাপিত হতে পারে।

অপরদিকে, নাইট্রোবেনজিনে নাইট্রোমূলক বলর নিদ্ধিরকারী বা বেনজিন বলয়ের ইলেকট্রন ঘনত্ব কমিয়ে দেয়। এর রেজোন্যাপ কাঠামো হতে দেখা যায় অর্থা ও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব তুলনামূলক কম। ফলে আগমনকারী ইলেকট্রোফাইল মেটা অবস্থানে সহজেই প্রতিস্থাপন ঘটাতে পারে।

$$0^{-} \nearrow 0 \qquad 0^{-} \nearrow 0^{-} \qquad$$

প্রাম্ন স্ক্রম A (2-মিথাইল বিউট-2-ইন) $\dfrac{O_3}{CCI_4}$ ওজোনাইড যৌগ $\dfrac{Zn,\,\Delta}{H_2O}$ B+C+ZnO

(B যৌগটি টলেন বিকারকের সাথে বিক্রিয়া করে না)

- (ক) মেটা নির্দেশক কী? [রা. রো. ২২]
- (গ) উদ্দীপকের C যৌগটি হতে 2°-আলকোহল প্রস্তুতির বিক্রিয়া সমীকরণসহ ব্যাখ্যা কর। [চ. বো. ২৩; জনুরূপ প্রশ্ন: চ. বো. ১৭]
- (घ) 'A' এবং 'B' যৌগের বিক্রিয়ার ধরন একই হবে কি? বিশ্লেষণ কর।
 (চ. বো. ২৩; অনুরূপ প্রয়: চ. বো. ১৭)

সমাধান:

- ক যেসব পরমাণু বা পরমাণু গ্রুপ বেনজিন চক্রে উপস্থিত থাকলে নবাগত প্রতিস্থাপক মেটা অবস্থানে (3, 5) নির্দেশিত হয়, তাদেরকে মেটা নির্দেশক বলে।
- ইথিন ও প্রোপিন পরস্পার সমগোত্রক কারণ এদের উভয় যৌগের কার্যকরী মূলক একই ($\sum C = C \subset 1$)। উভয় যৌগকে C_nH_{2n} এর মাধ্যমে প্রকাশ করা যায়। এদের অণুর মধ্যে শুধু " $-CH_{2}$ " মূলক এর পার্থক্য বিদ্যমান। সুতরাং ইথিন ও প্রোপিন পরস্পার সমগোত্রক।

$$H_2C = CH_2$$
 $H_2C = CH - CH_3$
ইথিন প্রোপিন

ন্ত্র উদ্দীপকের বিক্রিয়াটি নিমুরপ-

$$CH_3 - CH = C - CH_3 \xrightarrow{O_3} CCI_4 H_3C - CH C$$

$$CH_3 - CH = C - CH_3 \xrightarrow{CCI_4} H_3C - CH C$$

$$CH_3 - CH_3 \xrightarrow{CCI_4} CH_3 \xrightarrow{CCI_4} CH_3$$

3- ওজোনাইড যৌগ $_{
m H_2O}$ $Z_{
m II}, \Delta$

CH₃ – CO – CH₃ + CH₃ – CHO আসিটোন (B) ইথান্যাল (C)

সূতরাং, উদ্দীপকের C যৌগটি হলো ইথান্যাল (CH₃ – CHO) যা থ্রিগনার্ড বিকারকের সাথে কেন্দ্রাকর্ষী যুত বিক্রিয়ায় 2°-অ্যালকোহল উৎপন্ন করে।

$$O$$
 OMgX \mid CH $_3$ C $_2$ H $_3$ CH $_3$ C $_3$ C $_4$ Bাগনার্ড বিকারক O CH $_3$ O CH $_4$ O OH O CH $_3$ CH $_4$ CH $_5$ C

ঘ উদ্দীপকের A যৌগটি হলো 2-মিথাইল বিউট-2-ইন যা একটি অ্যালকিন। অন্যদিকে, B হলো প্রোপানোন যা একটি কার্বনিল যৌগ। অ্যালকিন ইলেকট্রোফিলিক সংযোজন বিক্রিয়া দিলেও প্রোপানোন কার্বনিল যৌগ হওয়ায় নিউক্লিওফিলিক সংযোজন বিক্রিয়া দেয়।

অ্যালকিনের যুত বিক্রিয়াঃ

আলিকিনে কার্বন-কার্বন দ্বি-বন্ধন থাকায় এখানে একটি সিগমা বন্ধন এবং একটি π বন্ধন বিদ্যমান। ইলেকট্রোফিলিক সংযোজন বিক্রিয়াটি দুটি ধাপে সম্পন্ন হয়:

প্রথম ধাপ: অসম্পুক্ত জৈব যৌগের বিক্রিয়ক অণু নিজে रेलिक द्धोिक्षिनिक विकातकरक थूव थीरत π-रेलिक द्धेन मान करत। অসম্পুক্ত কার্বন পরমাণুর সাথে ইলেকট্রোফাইল সমযোজী বন্ধনে আবদ্ধ হয়। ফলে অতি সহজেই কার্বোক্যাটায়ন গঠিত হয়। বিক্রিয়ার এই ধাপ হলো হার নির্ধারণকারী ধাপ।

দ্বিতীয় ধাপ: প্রথম ধাপে উৎপন্ন কার্বোক্যাটায়ন খুব দ্রুত ইলেকট্রোফাইল এর ঋণাত্মক অংশের সাথে যুক্ত হয়ে যৌগ গঠন করে।

প্রোপানোনের যুত বিক্রিয়া: প্রোপানোনে কার্বনিল মূলক (- CO -) থাকে যেখানে, কার্বন ও অক্সিজেনের ত'ড়িৎ ঋণাত্মকভার পার্থক্য অধিক থাকায় কার্বনে আংশিক ধনাত্মক এবং অব্রিজেনে আংশিক ঋণাত্মক চার্জ লাভ করে। তাই কার্বনিল যৌগ যখন কোনো বিক্রিয়ায় অংশগ্রহণ করে তখন বিকারকের ঋণাতাক অংশ (নিউক্লিওফাইল) সাধারণত ধনাত্মক কার্বন পরমাণুতে যুক্ত হয় এবং ধনাত্মক অংশ (ইলেকট্রোফাইল) অক্সিজেনের সাথে যুক্ত হয়ে চূড়ান্ত উৎপাদ গঠন

$$C = O + Nu^{-}$$
 খুব ধীরে
$$C - O^{-} \xrightarrow{E^{-}} - C - O$$

$$Nu$$

$$Nu$$

$$E$$

সুতরাং, উপর্যুক্ত আলোচনা হতে প্রতীয়মান হয় যে A ও B এর যুত বিক্রিয়ার ধরন একই নয়।

 $C_3H_7 - CI \longrightarrow \overbrace{ বিক্রিয়া (i) \atop KOH(alc) }^{KOH(alc)} A + KCI \atop KOH(alc) \rightarrow B + KCI + H_2O$

(क) कार्यकरी मृलक की? यि. व्हा. २२; ह. व्हा. २२, २३; हि. व्हा. २२; ঢা. বো. ২১; রা. বো. ২১, ১৯, ১৭; সি. বো. ২১; ম. বো. ২১; কু. বো. ১৯)

(খ) রেসিমিক মিশ্রণ আলোক নিষ্ক্রিয় -ব্যাখ্যা কর।

(গ) উদ্দীপকের A যৌগের কার্যকরী মূলকের শনাক্তকরণ বিক্রিয়া সমীকরণসহ [চ. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২৩; দি. বো. ২৩; কু. বো. ২১]

(घ) উদ্দীপকের বিক্রিয়া দৃটির ক্রিয়া কৌশল একই হবে কি? বিশ্লেষণ কর। চি. বো. ২৩; অনুরূপ প্রশ্ন: य. বো. ২৩; চ. বো. ২২; ম. বো. ২২; চা. বো. ২১; দি. বো. ২১; ব. বো. ১৯; সম্মিলিত বো. ১৮] ACS, > Chemistry 2nd Paper Chapter 1

সমাধানঃ

- ক যে পরমাণু বা মূলক কোনো জৈব যৌগের অণুতে বর্জমান পেতে 😹 কার্যত ধর্ম ও বিক্রিয়ার প্রকৃতি নির্ধারণ করে থাকে, ডাকে 🗿 সৌতুহ কার্যকরী মূলক বলে।
- 😝 জৈব যৌগে দুটি এনানসিওমারের সমমোলার বা সমস্তুল মিঞ্চ 🔀 রেসিমিক মিশ্রণ বলে। দুটি এনানসিওমারের একটি dexto এবং অন্প levo, উভয়েই এক সমতলীয় আলোর তলকে সমান কৌণিক পরিমাঢ়ে বিপরীত দিকে ঘুরায়; তাই d-সমাণু ও l-সমাণুর এই সমতুল মিল্র আলোক নিষ্ক্রিয় হয়। যেমন: d-ল্যাকটিক ও /-ল্যাকটিক এসি উভয়েই আলোক সক্রিয় এবং এদের আপেক্ষিক আবর্তন যথাক্র্য +2.24° ও -2.24°; কিন্তু d/-ল্যাকটিক এসিড আলোক নিষ্ক্রিয় হয়
- ক উদ্দীপকের (i) নং বিক্রিয়াটি সম্পূর্ণ করে পাই,

 $C_3H_7 - CI \xrightarrow{KOH(aq)} C_3H_7OH + KCI$ সুতরাং, A যৌগটি প্রোপানল। যৌগটির কার্যকরী মূলক (- OH) এর শনাক্তকরণ নিম্নোক্ত পরীক্ষা দ্বারা করা যায়:

(i) ধাতব Na সহ পরীক্ষা: বিশুদ্ধ ইথারে দ্রবীভূত কোনো জৈব যৌগ m Na ধাতুসহ বিক্রিয়ায় $m H_2$ এর বুদবুদ উৎপন্ন করলে ঐ যৌগে m - OHএর উপস্থিতি প্রমাণিত হয়। প্রোপানলের ক্ষেত্রে বিক্রিয়াটি নিম্নরূপ:

 $2CH_3 - CH_2 - CH_2OH + 2Na \xrightarrow{\Delta} 2CH_3 - CH_2 - CH_2ONa + H_2^{\uparrow}$ (ii) PCl_5 সহ পরীক্ষা: অনার্দ্র বা নিষ্ক্রিয় দ্রাবকে (ইথার বা বেনজিন) দ্রবীভূত কোন জৈব যৌগকে PCIs এর সঙ্গে উত্তপ্ত করলে যদি HCI উৎপন্ন করে এবং নির্গত গ্যাস NH3 দ্রবণে সিক্ত কাচ রডের সংস্পর্দে NH_4C $^{\prime}$ এর সাদা ধোঁয়া সৃষ্টি করে, তবে ঐ যৌগে - OH এর উপস্থিতি নিশ্চিত হওয়া যায়। প্রোপানলের ক্ষেত্রে বিক্রিয়াটি নিম্লরূপ:

 $CH_3 - CH_2 - CH_2OH + PCl_5 \rightarrow CH_3 - CH_2 - CH_2Cl + POCl_3 + HCl$ $HCI + NH_3 \longrightarrow NH_4CI$

(সাদা ধোঁয়া) এছাড়া, লুকাস বিকারক (ZnCl2 + HCl) দ্বারা 1°, 2° ও 3°

উদ্দীপকের বিক্রিয়াণ্ডলো সম্পূর্ণ করে পাই,

অ্যালকোহল শনাক্ত করা যায়।

সুতরাং, A যৌগটি প্রোপানল এবং B যৌগটি প্রোপিন। উদ্দীপকের বিক্রিয়া দুটির ক্রিয়া কৌশল ভিন্ন। (i) ও (ii) নং বিক্রিয়া যথাক্রমে S_{N} 2 ও E_{2} বিক্রিয়াকৌশল অনুসরণ করে সংঘটিত হয়।

(i) নং বিক্রিয়ার কৌশল: CH₃CH₂ CH₂ CI এর CI পরমাণুটি যেদিকে আছে, তার বিপরীত দিক থেকে আংশিক ধনাত্মক কার্বন পরমাণুকে নিউক্লিওফাইল (OH) আক্রমণ করে। তখন নতুন সমযোজী বন্ধন সৃষ্টি ও পুরাতন C – Cl বন্ধন ভেঙ্গে গিয়ে Cl আয়ন মুক্ত হয় এবং নিউক্লিওফাইলটি OH C-এর সাথে পূর্ণ সমযোজী

Rhombus Publications

জৈব রসায়ন > ACS: FRB Compact Suggestion Book.....

বন্ধনে আবদ্ধ হয়ে পড়ে। তখন উৎপন্ন অণুর কনফিগারেশনটি C-এর 🚮 উদ্দীপকের বিক্রিয়াটি সম্পন্ন করে Y ও Z নির্ণয় করি: সাথে যুক্ত অন্য পরমাণু বা মূলক গুলো উল্টে গিয়ে নতুন ত্রিমাত্রিক গঠন লাভ করে।

$$C_2H_5$$
 $HO : + H \longrightarrow C - CI \longrightarrow H$
 $HO \longrightarrow C \longrightarrow H$
প্রোপাইল
প্রারাইভ

চিত্র: প্রোপাইল ক্লোরাইড এর S_N2 বিক্রিয়ার ক্রিয়া কৌশল (ii) নং বিক্রিয়ার কৌশল: এ বিক্রিয়ায় ক্ষারের OH মূলকের আক্রমণে C₁H₂Cl এর β-কার্বন থেকে একটি H⁺ অপসারিত হয় এবং একই সাথে α-কার্বনের ইলেকট্রন যুগল α ও β কার্বনের মধ্যে বিন্যস্ত इर् कार्दन-कार्दन हि-वन्तन गर्रेन करत ।

চিত্র: প্রোপাইল ক্লোরাইডের E2 বিক্রিয়ার ক্রিয়া কৌশল

- (ক) আলোক সমাণুতা কাকে বলে?
- (খ) অ্যানিলিন ও মিধাইল অ্যামিনের মধ্যে কোনটি বেশি ক্ষারকীয়? ব্যাখ্যা রা. বো. ২৩; অনুরূপ প্রশ্ন: ব. বো. ২৩, ২১; চ. বো. ১৯: দি. বো. ১৯)
- (গ) Y এর সাপে H₂O₂ এর উপস্থিতিতে HBr এর বিক্রিয়ার কৌশল বি. বো. ২৩; অনুরূপ প্রশ্ন: য. বো. ২১
- (ঘ) X এবং Z এর মধ্যে কোনটি জ্যামিতিক সমাণুতা প্রদর্শনে সক্ষম? কারণ বিশ্রেষণ কর। বি. বো. ২৩; অনুরূপ গ্রন্ন: ঢা. বো. ২২; কু. বো. ২২; সি. বো. ২২: রা. বো. ১৭: সম্মিলিত বো. ১৮]

সমাধান:

- 🔯 আলোক সক্রিয় যৌগের একই আণবিক ও গাঠনিক সংকেত বিশিষ্ট একাধিক কনফিগারেশন যদি পরস্পর অউপরিস্থাপনীয় প্রতিবিম্বের মত আচরণ করে এবং সমবর্তিত আলোর তলকে ঘড়ির কাঁটার দিকে বা বিপরীত দিকে আবর্তন করে, তাহলে তাদের এ ধর্মকে আলোক সমাণুতা বলে।
- ব্যানিলিন ও মিথাইল অ্যামিনের মধ্যে মিথাইল অ্যামিন বেশি ক্ষারকীয়। কারণ অ্যানিলিনে নাইট্রোজেন পরমাণুর নিঃসঙ্গ ইলেকট্রন যুগল আংশিকভাবে বেনজিন বলয়ের সঞ্চারণশীল π ইলেরটনের সাথে মিলিত হয়। ফলে উক্ত নিঃসঙ্গ ইলেকট্রনের সন্নিবেশ বন্ধন গঠনের मुर्याग करम याग्र। अপत्रिमिक मिथाइन ज्यामित मिथाइन मुनक नारेखाब्बन পরমাণুতে ইলেব্রুন ঘনত বৃদ্ধি করে। ফলে এর প্রোটন গ্রহণ ক্ষমতা বৃদ্ধি পায়।

$$C_4H_6 \xrightarrow{H_2} C_4H_8 \xrightarrow{CH_3 - CH = CH - CH_3} (Z)$$
(X)
 $C_4H_6 \xrightarrow{P_b + BaSO_4} C_4H_8 \xrightarrow{CH_3 - CH_2 - CH = CH_2} (Y)$

অতএব, Y যৌগটি অপ্রতিসম অ্যালকিন বিউটিন-1 (CH1 - CH2 -

এখন, উক্ত অপ্রতিসম অ্যালকিন, বিউটিন-1, H2O2 এর উপস্থিতিতে HBr এর সাথে বিপরীত মারকনিকভের নিয়মানুসারে নিম্রোক্ত বিক্রিয়া সম্পন্ন করবে:

নিম্লে বিক্রিয়াটির ক্রিয়াকৌশল আলোচনা করা হল:

প্রথম ধাপ: H₂O₂ এর বিভাজনে দুটি হাইড্রোক্সি (H – O•) ফ্রি রেডিকেল উৎপন্ন করে।

$$H - O - O - H \xrightarrow{H_2O_2} 2H - O$$
-
দ্বিতীয় ধাপ: উৎপন্ন মুক্তমূলক HB_r এর সঙ্গে বিক্রিয়া করে ব্রোমিন মুক্তমূলক উৎপন্ন করে।

 $H - O + H:Br \rightarrow H_2O + Br$

তৃতীয় ধাপ: Br মুক্তমূলক বিউটিন-1 এর দ্বি-বন্ধনযুক্ত কার্বন পরমাণু দুটির মধ্যে সেই কার্বন পরমাণুতে বেশি যুক্ত হবে যাতে বেশি সুস্থিত মূলক উৎপন্ন হয়।

$$C_2H_5 - \dot{C}H - \dot{C}H_2Br$$
 $C_2H_5 - \dot{C}H - \dot{C}H_2Br$
 $C_2H_5 - \dot{C}H - \dot{C}H_2Br$
 $C_2H_5 - \dot{C}H - \dot{C}H_2$
 $C_2H_5 - \dot{C}HBr - \dot{C}H_2$

চতুর্থ ধাপ: বেশি সৃস্থিত 2° ফ্রি রেডিকেলের সাথে HBr এর বিক্রিয়ায় বেশি পরিমাণে 1-ব্রোমো বিউটেন উৎপন্ন হয়।

$$C_2H_5$$
 – $\dot{C}H$ – CH_2Br + H $\stackrel{\sim}{-}$ Br \rightarrow CH_3 – CH_2 – CH_2 Br (বেশি পরিমাশে)

$$C_2H_3$$
 – $CHBr$ – $\dot{C}H_2$ + H - $\dot{B}r$ \rightarrow CH_3 – CH_2 – $CHBr$ – CH_3 (কম পরিমাণে)

- ্বা 'গ' নং হতে পাই X যৌগটি বিউটাইন-1 (CH₃ CH₂ C ≡ CH) এবং Z যৌগটি বিউটিন-2 (CH3 - CH = CH - CH3)। যৌগদ্বয়ের মধ্যে যেটি নিম্রের উল্লিখিত জ্যামিতিক সমাণুতার শর্তসমূহ পুরণ করবে, সেই যৌগটি জ্যামিতিক সমাণুতা প্রদর্শন করবে। জ্যামিতিক সমাণুতার শর্তঃ
 - (i) যৌগটি কার্বন-কার্বন দ্বি-বন্ধনের অক্ষ বরাবর ঘূর্ণনে অক্ষম হতে र्द ।

Rhombus Publications

(ii) যৌগটি চাক্রিক বা প্রভিস্থাপিড দ্বি-বন্ধনযুক্ত হতে হবে।

(iii) যৌগটির গঠন abC = Cab বা abC = Cad বা abC = Cde কাঠামোর অনুরূপ হতে হবে।

যেহেতু বিউটিন-2 উল্লিখিত শর্ডসমূহ পুরণ করে, ডাই বিউটিন-2 জ্যামিতিক সমাণ্তা প্রদর্শন করবে। ফলে বিউটিন-2 এর দুটি জ্যামিতিক সমাণুতা সম্ভব।

সাধারণত দ্বি-বন্ধন যুক্ত কার্বনে সংযুক্ত একই ধরনের পরমাণু বা ঘূলক একই পাশে অবস্থান করলে সিস সমাণু বলে। সিস বিউটিন-2 এ দ্বি-বন্ধনযুক্ত কার্বন পরমাণুর একপাশে একই মিথাইল ঘলক এবং অপরপাশে H পরমাণু থাকবে।

$$C = C$$

সিস বিউটিন-2

আবার, দ্বি-বন্ধনযুক্ত কার্বন পরমাণুতে সংযুক্ত একই ধরনের পরমাণু বা মূলক বিপরীত পাশে অবস্থান করলে ট্রান্স সমাণু বলে। ট্রান্স বিউটিন-2 এ দ্বি-বন্ধনযুক্ত কার্বন পরমাণুর বিপরীত পাশে মিথাইল মূলক ও H পরমাণু যুক্ত থাকবে।

역計 > > >

$$Y \xrightarrow{KOH(aq)} Z \xrightarrow{[O]} X_2Cr_2O_7, H_2SO_4 M \xrightarrow{[O]} M \xrightarrow{K_2Cr_2O_7, H_2SO_4} T$$
 $T =$ তিন কার্বনবিশিষ্ট মনোকার্বস্থিলিক এসিড

(क) 1, 3- বিউটাডাইইনের সংকেত লিখ।

(খ) মারকনিকভ এর নীতি ব্যাখ্যা ব্যর।

(ग) Z-योरागत कार्यकती मृलक कीन्तर्प भनाक कत्रत्व? সমीकत्रगंभर वर्गना

বি. বো. ২৩; অনুদ্রপ প্রশ্ন: ব. বো. ২৩; দি. বো. ২৩; কু. বো. ২১।

(घ) M ও T योग पृष्टित या वकि किन्ता महाविष्या पिला प्राप्त विक्रिया पिला प्राप्त किन्ता प्राप्त किन्ता प्राप्त किन्ता प्राप्त किन्ता किन्ता प्राप्त किन्ता

সমাধানঃ

হা অপোলার দ্রাবকের উপিস্থিতিতে অপ্রতিসম অ্যালকিনের সাথে অপ্রতিসম বিকারকের বিক্রিয়ায় বিকারকের H বা ধনাতাক প্রান্তটি আালকিনের দ্বিবন্ধনযুক্ত যে কার্বনে বেশি H পরমাণু থাকে প্রধানত সে कार्तन পরমাণুতে যুক্ত হয়। या মারকনিকড নীতি নামে পরিচিত। যেমন: অপোলার দ্রাবক CCl₄ এর উপস্থিতিতে অপ্রতিসম অ্যালকিনের সাথে প্রোটিক এসিড HX (X = Cl, Br, I) এর বিক্রিরার, অমীর হাইড্রোজেন কম প্রতিস্থাপিত কার্বন পরমাণুর সাথে যুক্ত হয় এবং হ্যালাইড অধিক প্রতিস্থাপিত কার্বনের সাথে যুক্ত হয়।

$$2CH_{3} - CH = CH_{2} + 2H^{+}Br^{-} \xrightarrow{CCI_{4}} CH_{3} - CHBr - CH_{3}$$

$$(90\%)$$

$$CH_{3} - CH_{2} - CH_{2}Br$$

$$(10\%)$$

...... ACS, > Chemistry 2nd Paper Chapter

छिभीशक्त विक्रिगाि नम्भ्रत करत गाँदै.

$$\begin{array}{c} CH_{1}-CH_{2}-CH_{2}-CI \xrightarrow{KOH(aq)} CH_{1}-CH_{2}-CH_{2} & CH_{1} \\ (Y) & (Z) \end{array}$$

[O]

$$K_2Cr_2O_7, H_2SO_4$$
 $CH_1 - CH_2 - CHO \underbrace{K_2Cr_2O_7, H_2SO_2}$
 $CH_3 - CH_2 - COOH$

न्जाए, Z त्योगि (थाभागन। धत कार्यकती मृनक (- OH) वत শনাক্তকরণ নিম্নোক্ত পরীক্ষা দ্বারা করা যার:

(i) ধাতব Na সহ পরীক্ষা: বিশুদ্ধ ইথারে দ্রবীভূত কোনো দ্যোল দৌস Na ধাতুসহ বিক্রিয়ায় H₂ এর বুদবুদ উৎপন্ন করলে ঐ ব্রৌগে — OH এর উপস্থিতি প্রমাণিত হয়। প্রোপানলের ক্ষেত্রে বিক্রিয়াটি নিমুরূপ:

 $2CH_1 - CH_2 - CH_2OH + 2Na \xrightarrow{\Delta} 2CH_1 - CH_2 - CH_2ONa + H_2^{\uparrow}$ (ii) PCI5 मह भरीकाः जनार्ष वा निक्तित प्रावतक (देशात वा निकाल) দ্রবীভূত কোন জৈব যৌগকে PCI, এর সঙ্গে উত্তপ্ত করলে যদি FICI উৎপন্ন करत এবং निर्गंड ग्राम NH, प्रवर्ण मिळ काँ तराज्त महन्न्यर्ट NH₄CI এর সাদা ধোরাা সৃষ্টি করে, তবে ঐ বৌগে - OH এর উপস্থিতি নিশ্চিত হওয়া যায়। প্রোপানলের ক্ষেত্রে বিক্রিয়াটি নিম্নরূপ: $CH_3 - CH_2 - CH_2OH + PCI_5 \rightarrow CH_3 - CH_2 - CH_2CI + POCI_1 + HCI$ $HC/ + NH_3 \longrightarrow NH_4C/$ (সাদা ধোরাঁ)

'ग' नः २ एज शाँरे M ७ T योगद्वा यथाक्रम व्यालानाान (CH3 -CH₂ – CHO) ও প্রোপানোরিক এসিড (CH₃ – CH₂ – COOH)। (थाभागात्नत कार्यकतीभृनक कार्वनित्न C = O कार्वन ७ अस्त्रिरधारनत ভড়িৎ ঝণাতাকতার পার্থক্যের কারণে কার্বনে আংশিক ধনাতাক চার্জ (δ^+) ও অক্সিজেনে আংশিক ঋণাত্মক চার্জ (δ^-) সৃষ্টি হয়। ফলে (थाপानग्रान कारना तात्राग्रानिक विक्रिग्नाग्न अल्भघरण कन्नल विकानक्तन ঝণাতাক অংশ (নিউক্লিওফাইল) সাধারণত কার্বনিল মূলকের কার্বনে বুক্ত হয় এবং পরবর্তীতে বিকারকের ধনাতাক অংশ (ইলেকট্রোফাইল) অক্সিজেনে যুক্ত হয়ে চূড়ান্ত উৎপাদ গঠন করে।

$$R - MgX + C_{2}H_{5} - C - H \longrightarrow C_{2}H_{5} - C - H$$

$$R$$

$$OH$$

$$H_{2}O \longrightarrow C_{2}H_{5} - C - H + Mg(OH) X$$

$$R$$

প্রোপান্যাল উপরোক্ত পদ্ধতিতে কেন্দ্রাকর্ষী সংযোজন বিক্রিয়া দিলেও প্রোপানোরিক এসিড দেয় না কারণ কার্বব্রিলিক এসিড মূলক

|| (- C - OH) এর কার্বনিল মূলক (- C -) টির সাথে যুক্ত থাকা - \ddot{O} - H মূলকের নিঃসঙ্গ ইলেকট্রন যুগল C=O মূলকের

গ্রেষ রুসায়ন > ΛCS, FRB Compact Suggestion Book.....

অক্সিজেন পরমাণুর সাধে অনুরণন প্রক্রিয়ায় নিমুক্তপে সঞ্চারণশীল 🚮 উদ্দীপকের বিক্রিনাটি সম্পন্ন করে পাই, থাজে। তখন – OH মূলকের অক্সিজেন পরমাণু কার্বনের সাথে দুর্বদ কার্বন অক্সিজেন দ্বি-বদ্ধন সৃষ্টি করে। এ অনুরণন ঘটার কারণে কার্বনিল কার্বনে কোনো আংশিক ধনাত্মক চার্জ (১') ক্ষণিকের জন্যও धारु ना। करन निউक्नि कार्यन वे कार्यनिन कार्यनरक आक्रमन कतात সুযোগ পায় না।

তাই গ্রোপানোয়িক এসিত কেন্দ্রাকর্ষী সংযোজন বিক্রিয়া প্রদর্শন করে লা. কিন্তু প্রতিস্থাপন বিক্রিয়া দেয়। এক্লেত্রে প্রোপানোয়িক এসিডের OH মূলকটি ফসফরাস পেন্টাক্রোরাইত বা থায়োনিল ক্রোরাইডের শে মূলক দারা প্রতিছাপিত হয়ে প্রোপালোয়িল ক্রোরাইড উৎপন্ন করে।

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
C_2H_5 - C - OH + SOCI_2 \rightarrow C_2H_5 - C - CI + SO_2 + HCI
\end{array}$$

코파 ▶ 20

$$CH_3 - C \equiv CH + H_1O \xrightarrow{2\% Hg^{1*}} T \xrightarrow{\text{পুনর্বিন্যাস}} X$$

 $(HCOO)_2Ca \xrightarrow{\Delta} Y + CaCO_3$

(ক) টলেন বিকারক কী?

5. त्रा. २२

- (ব) দুটি যৌগ কখন এনানসিওমার হয়? ব্যাখ্যা দাও। 🛝
- ারা. বো. ২২
- (গ) X-বৌগটি টটোমারিজম প্রদর্শন করে-ব্যাখ্যা কর।
- (घ) X ७ Y এর মধ্যে কোনটি ক্যানিজারো বিক্রিয়া প্রদর্শন করবে ফুভিসহ

[দি. বো. ২০, অনুত্রণ গ্রন্ন: কু. বো. ২০, ২২; দি. বো. ১৭] বিশ্লেষণ কর।

नगाधानः

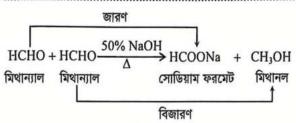
- হু আমোনিয়া দ্রবদ মিথ্রিত 10% সিল্ভার নাইট্রেট দ্রবদকে টলেন ছ বিকারক বলা হয়। এর সংকেত: [Ag(NH3)2]OH
- ব জৈব যৌগে একটি মাত্র অপ্রতিসম কার্বন পরমাণু বা কাইরাল কেন্দ্র धाकल पुष्टि जालाक সক্রিয় সমাণু হয়। এই पुष्टि जालाक সমাণুকে d-সমাণু ও /-সমাণু বলে। এদের আলোক সক্রিয়তার আবর্তন মাত্রার মান সমান কিন্তু দিক ভিন্ন থাকে। d-সমাণুর আবর্তন ডানদিকে বা দক্ষিণাবর্ত এবং I-সমাণুর আবর্তন বাম দিকে বা বামাবর্ত হয়। এরূপ ङेन्त्र भ्रभापूरक भन्न-भारतन वनानिमिश्रभात वर्ण। यम्मन d-न्माकिक এসিড ও /-ল্যাকটিক এসি**ড**।

$$CH_3 - C \equiv CH + H_2O$$
 $\xrightarrow{2\% Hg^{2*}}$ $CH_3 - C = CH_2 (T)$ \downarrow श्राविनीप्रत्र \downarrow $CH_3 - CO - CH_3 (X)$ প্রাপানোন

वर्षाः X योगिं हला ध्वानातान वा जानितान या उत्पानिकम প্রদর্শন করে। টটোমারিজম বা কিটো-ইনল সমাণুতা হলো একটি বিশেষ প্রকৃতির কার্যকরী মূলক সমাণুতা ষেখানে একই আণবিক সংকেতবিশিট কিন্তু দুইটি ভিন্ন কার্যকরীমূলক বিশিষ্ট যৌগের মধ্যে একটি গতিশীল সাম্যাবস্থার সৃষ্টি হয়। অর্থাৎ, একটি কার্যকরীমূলকযুক্ত যৌগ হতে সম্পূর্ণ ভিন্ন কার্যকরীমূলকযুক্ত যৌগে স্বতঃস্কুর্তভাবে রূপান্তরিত হয়ে যায় এবং যৌগদৃটিকে পরস্পরের উটোমার বলে। টটোমার হওয়ার শর্তঃ

- (i) যৌগের অণুতে কমপক্তে একটি α Η পরমাণু থাকতে হবে।
- (ii) যৌগের অণুতে অবশাই একটি তড়িং ঋণাত্মক পরমাণু ষেমন: O, N অধবা S, হি-বন্ধন বা ত্রি-বন্ধন এর মাধ্যমে আবন্ধ থাকতে

 $\stackrel{||}{\mathbb{Q}}$ উলীপকের X যৌগ তথা প্রোপানোনে ($\mathop{CH_3}\limits_{lpha} - \mathop{C-\mathop{CH_3}}\limits_{lpha}$) কার্যকরী গ্রুপের সাপেক্রে দৃটি α – C এ মোট 6টি α – H বিদ্যামান রয়েছে এবং তড়িৎ খণাতাক পরমাণু বি-বন্ধন (C = O) ঘারা যুক্ত থাকে। তাই যৌগটি টটোমারিজম প্রদর্শন করে।


উদ্দীপকের বিতীয় বিক্রিয়াটি সম্পন্ন করে পাই,

অর্ধাৎ, Y যৌগটি হলো মিথান্যাল যা একটি আলভিহাইড। অপরদিকে X योगि हिला ध्वालातान या वकि किछोन। योगिषरात मध्य भिषानाम कानिकादा विकिया पिलि ध्यापातान प्रयं ना ।

যেসব অ্যালডিহাইড এ α – H নেই তাদেরকে 50% জলীয় অথবা অ্যালকোহলীয় কস্টিক সোডা বা কস্টিক পটাশ দ্রবণ সহযোগে উত্তপ্ত করলে প্রতি দুই অণু অ্যালভিহাইডের স্বতঃজারণ-বিজারণ ঘটে। অর্থাৎ বিক্রিয়ায় অংশগ্রহণকারী দুই অণু আালভিহাইতের এক অণু জারিত হয়ে कार्विज्ञिनिक এসিড এবং वाकी এक অণু विकातिত হয়ে ज्यानकारन উৎপন্ন করে। এই বিক্রিনাকে ক্যানিজারো বিক্রিয়া বলে।

উদ্দীপকের ফরমাদভিহাইডে বা মিথান্যালে α - H ना থাকায় এটি ক্যানিজারো বিক্রিয়া প্রদর্শন করবে। ফরমালভিহাইডকে 50% NaOH সহযোগে উত্তপ্ত করলে বিক্রিয়ায় অংশগ্রহণকারী প্রতি দুই অণু HCHO এর মধ্যে এক অণু জারিত হয়ে ফরমিক এসিডের সোভিয়াম লবণে (সোভিয়াম হ্নরমেট) পরিণত হয় এবং অন্যটিকে বিজারিত করে মিথানলে পরিণত হয়।

Rhombus Publications

অপরদিকে, প্রোপানোন একটি কিটোন হওয়ায় এবং এতে $\alpha - H$ বর্তমান থাকায় একটি ক্যানিজারো বিক্রিয়া দিতে পারে না। সুতরাং, X ও Y যৌগদ্বয়ের মধ্যে Y (মিথান্যাল) ক্যানিজারো বিক্রিয়া দিলেও X (প্রোপানোন) দেয় না।

(ক) গামাক্সিনের গাঠনিক সংকেত লেখ।

[সি. বো. ২২]

(খ) C₃H₈O-এর সম্ভাব্য সমাণুগুলোর সংকেত লেখ।

দি, বো, ২৩

(গ) Y-যৌগ হতে কীভাবে 1° অ্যালকোহল প্রস্তুত করবে? সমীকরণসহ লেখ।

(ঘ) T-যৌগ হতে Z-যৌগ প্রস্তুত করা কি সম্ভব? বিক্রিয়াসহ বিশ্লেষণ কর।

সমাধান:

ক বেনজিন হেক্সাক্রোরাইড ($C_6H_6Cl_6$) হলো গ্যামাক্সিন। ($C_6H_6Cl_6$) এর গাঠনিক সংকেতঃ

গ্যামাক্সিন

কান যৌগের <mark>আপবিক সংকেত C_nH_{2n+2}O গঠনবিশিষ্ট হলে তার</mark> সম্ভাব্য সমাণুগুলো অ্যালকোহল ও ইথার শ্রেণির হয়। তাই, C₃H₈O যৌগটির সম্ভাব্য সমাণুগুলো হবে যথাক্রমে–

গ্ৰ উদ্দীপক হতে,

$$RX \xrightarrow{Mg} RMgX (Y)$$

মিথোক্সি ইথেন

অর্থাৎ, Y যৌগটি হলো একটি গ্রিগনার্ড বিকারক।
প্রিগনার্ড বিকারক হতে 1° অ্যালকোহল প্রস্তুতি:
শুদ্ধ ইথারে দ্রবীভূত অ্যালকাইল ম্যাগনেসিয়াম হ্যালাইড বা গ্রিগনার্ড
বিকারকের সাথে মিথান্যাল (HCHO) বা ফরমালডিহাইডের

উদ্দীপকের বিক্রিয়াসমূহে – R মূলকটিকে মিথাইল (– CH₃) মূলত ধরে বিক্রিয়া সম্পন্ন করে পাই:

$$\begin{array}{c} Mg \\ \text{শুদ্ধ ইথার} \end{array} \xrightarrow{CH_3 - MgX} \begin{array}{c} H_2O \\ \text{মিথেন} \end{array}$$
 মিথেন
$$\begin{array}{c} Na \\ \text{শুদ্ধ ইথার} \end{array} \xrightarrow{CH_3 - CH_3} (T)$$
 ইথেন

অর্থাৎ, T যৌগটি হবে ইথেন (C_2H_6) এবং Z যৌগটি হবে মিথেন (CH_4)। T হতে Z যৌগ অর্থাৎ, ইথেন হতে মিথেন প্রস্তুতি সম্ভব। নিম্নে তার প্রক্রিয়া দেয়া হলো–

সূর্যালোকের UV রশার উপস্থিতিতে ইথেন ক্রোরিনের সাথে বিক্রিয়া করে ইথাইল ক্লোরাইড উৎপন্ন করে।

$$CH_3 - CH_3 + Cl_2 \xrightarrow{UV} CH_3 - CH_2 Cl$$

ইথেন

ইথাইল ক্রোরাইড

ইথাইল কোরাইড KOH এর জলীয় দ্রবণে প্রতিস্থাপন বিক্রিয়ার মাধ্যমে ইথানল উৎপন্ন করে।

$$CH_3 - CH_2CI + KOH(aq) \longrightarrow CH_3 - CH_2 - OH$$

ইথাইল ক্রোরাইড ইথানল

ইথানলকে শক্তিশালী অশ্লীয় জারক দ্বারা জারিত করলে ইথানয়িক এসিড উৎপন্ন হয় যা ক্ষারের সাথে বিক্রিয়া করে সোডিয়াম ইথানয়েট উৎপন্ন করে।

$$CH_3-CH_2-OH+[O] \xrightarrow{K_2Cr_2O_7} CH_3-COOH$$

ইথানল H_2SO_4 ইথানয়িক এসিড

$$CH_3 - COOH + NaOH \longrightarrow CH_3COONa + H_2O$$

ইথানয়িক এসিড সোডিয়াম ইথানয়েট

প্রাপ্ত সোডিয়াম ইথানয়েট সোডালাইমের (NaOH + CaO) মিশ্রণের সাথে ডিকার্বস্ত্রিলেশন বিক্রিয়া করে মিথেন প্রস্তুত করে।

Rhombus Publications

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book

জেব রসায়ন > ACS/ FICE COMP প্রস্লা > SC CaC₂ + H₂O $\xrightarrow{\Delta}$ A $\xrightarrow{+H_2O}$ B H₂ Pd, BaSO₄

(क) क्यांटितन्यन की?

মি. বো. ২২

- (খ) জৈব যৌগে কার্বনিল (> C = O) মূলক কীভাবে শনাক্ত করবে? াদি. বো. ২৩।
- (গ) B যৌগ থেকে অ্যালকোহলের প্রস্তুতি সমীকরণ সহ লেখ।

দি. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২২, ১৭)

(ঘ) উদ্দীপকের B ও C ভিন্ন ধরনের সংযোজন বিক্রিয়া প্রদর্শন করে-বিশ্লেষণ কর। [দি. বো. ২৩]

- ক কার্বনের অসংখ্য পরমাণু নিজেদের মধ্যে যুক্ত হয়ে ছোট বড় বিভিন্ন আকার ও আকৃতির দীর্ঘ শিকল বা বলয় গঠন করার ক্ষমতাকে কার্বনের
- বা কার্বনিল (>C=O) মূলক শনাক্তকরণের জন্য কার্বনিল যৌগের ক্ষারীকৃত দ্রবণে 2, 4-ডাইনাইট্রো ফিনাইল হাইড্রাজিন (DNPH) দ্রবণ যোগ করলে 2, 4-ডাইনাইট্রো ফিনাইল হাইড্রাজোন এর কমলা বর্ণের অধঃক্ষেপ পড়ে।

$$>C = O + \underbrace{ \begin{array}{c} HN - NH_2 \\ NO_2 \\ NO_2 \\ \end{array} } > C = N - NH$$

$$+ H_2O$$

$$+ H_2O$$

$$(\text{ (Φ API | W48(TPM))})$$

উদ্দীপকের বিক্রিয়া হতে পাই,

$$CaC_2 + H_2O \xrightarrow{\Delta} CH \equiv CH \xrightarrow{H_2O} CH_3CHO$$

ইথাইন $20\% H_2SO_4$ ইথান্যাল

ইথান্যাল হতে 2° অ্যালকোহল প্রস্তুতি:

ইথান্যালের সাথে ঘিগনার্ড বিকারকের কেন্দ্রাকর্ষী সংযোজন বিক্রিয়ায় প্রথমে অস্থায়ী যুক্ত যৌগ গঠন করে। উৎপন্ন যুক্ত যৌগকে অস্ত্রীয় মাধ্যমে আর্দ্র বিশ্লেষণে 2° অ্যালকোহল প্রোপানল-2 পাওয়া যায়।

$$CH_3 - C - H \xrightarrow{H_2O} CH_3 - C - H + Mg (OH) X$$
 $CH_3 = C - H \xrightarrow{H_2O} CH_3 - C - H + Mg (OH) X$

মৃত যৌগ 2° অ্যালকোহল (প্রোপানল–2)

ঘ উদ্দীপকের বিক্রিয়া হতে,

$$CaC_2 + H_2O \xrightarrow{\Delta} CH \equiv CH \xrightarrow{H_2O} \frac{H_2O}{2\% \ Hg^+ \ 20\% \ H_2SO_4} \xrightarrow{CH_3- \ CHO}$$
 ক্যালসিয়াম ইথাইন কার্বাইড $H_2 \ Pd, \ BaSO_4$ (B)
$$CH_2 = CH_2(C)$$
 ইথিন

व्यर्थार, উদ्দीপকের B यৌগটি হলো ইথান্যাল এবং C यৌগটি হলো ইথিন। ইথান্যাল নিউক্লিওফিলিক যুতবিক্রিয়া দিলেও ইথিন ইলেকট্রোফিলিক সংযোজন বিক্রিয়া দেয়।

ইথান্যালের যুত বিক্রিয়া: ইথান্যালে থাকা কার্বনিল মূলকের (C = O)কার্বন ও অক্সিজেনের তড়িৎ ঋণাত্মকতার পার্থক্য (ΔE_N) 1) 0.5 এর চেয়ে বেশি হওয়য় কার্বনে আংশিক ধনাত্মক এবং অক্সিজেনে আংশিক ঋণাত্মক চার্জ লাভ করে। তাই কার্বনিল যৌগ যখন বিক্রিয়ায় অংশগ্রহণ করে, তখন বিকারকের ঋণাত্মক অংশ (নিউক্লিওফাইল) কার্বনিল মূলকের কার্বন পরমাণুতে যুক্ত হয়। অন্যদিকে ধনাত্মক অংশ বা ইলেকট্রোফাইল অক্সিজেনের সাথে যুক্ত হয়ে চূড়ান্ত উৎপাদ গঠন করে।

$$C = O + Nu^{-}$$
 থারে $C - O - E^{+}$ $C - O$ C $C - O$ C

ইথিনের ইলেকট্রোফিলিক যুত বিক্রিয়া: ইথিন একটি অ্যালকিন শ্রেণীর योग। ज्यानिकत्नत्र कार्वन-कार्वन षि-वन्नत्न এकि σ-वन्नन এवः একটি π বন্ধন রয়েছে। এর সঞ্চারণশীল π ইলেকট্রনের প্রভাবে বিকারক অণু আংশিক ধনাতাক এবং ঋণাতাক অংশ লাভ করে। বিক্রিয়ার গুরুতে অ্যালকিনের π ইলেকট্রন ইলেকট্রোফাইল কর্তৃক আকৃষ্ট হয় এবং ইলেকট্রোফাইল অ্যালকিনের যে কার্বনের নিকটে আসে তা ঋণাত্মক আধানযুক্ত হয় এবং ধনাত্মক ইলেকট্রোফাইল দ্বি-বন্ধনের ঋণাজ্মক আধানযুক্ত কার্বনে যুক্ত হয়। ফলে অ্যালকিনের অপর কার্বনটি ধনাত্মক আধানযুক্ত হয় এবং অন্তবতী কার্বোক্যাটায়নের উদ্ভব ঘটে। পরবর্তীতে বিকারকের ঋণাত্মক অংশটি সৃষ্ট কার্বোক্যাটায়নের ধনাত্মক

অংশের সাথে যুক্ত হয়ে বিক্রিয়ার সমাপ্তি ঘটে। C = C + E - Y alas C - C Y C - C TO F

$$CH_2 = CH_2 + HBr \longrightarrow CH_3 - CH_2Br$$

ইথান ইথাইল ব্রোমাইড

প্রমান ১১৬
$$P$$
 (কার্বলিক এসিড) $+$ $Zn \stackrel{\Delta}{\longrightarrow} Q$ প্রধান উৎপাদ $rac{Cl_2}{$ অনার্দ্র $FeCl_3$ $R+HCl$

- (ক) কার্বোক্যাটায়ন কী? [রা. বো. ২১; কু. বো. ২১; সম্মিলিত বো. ১৮; য. বো. ১৭]
- (খ) অ্যানিলিনের নাইট্রেশনে মেটা উৎপাদ পাওয়া যায় কেন?

[ঢা. বো. ২২; কু. বো. ১**৭**]

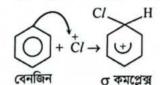
- (গ) উদ্দীপকের Q থেকে R যৌগ তৈরির ক্রিয়াকৌশল ব্যাখ্যা কর। মি. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ১৭]
- (ঘ) উদ্দীপকের Q ও R যৌগদ্বয়ের মধ্যে কোনটির নাইট্রেশন সহজে ঘটে তা বিশ্লেষণ কর। মি. বো. ২৩

Rhombus Publications

সমাধান:

ক জৈব থৌগের সমথোজী বন্ধনের বিষম বিভাজনের ফলে সৃষ্ট ধনাত্মক আধানযুক্ত কার্বন পরমাণু বিশিষ্ট আয়নকে কার্বোক্যাটায়ন বলে।

গ্র উদ্দীপকের Q যৌগটি হলো বেনজিন () এবং R যৌগটি হলো ক্রোরোবেনজিন () । বেনজিন FeCl₃ এর উপস্থিতিতে Cl₂ এর সাথে ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া করে ক্লোরোবেনজিন উৎপন্ন করে। এ বিক্রিয়ায় অনার্দ্র FeCl₃ বিক্রিয়া শেষে অপরিবর্তিত থাকে।


(Q) Cl_2 (R) + HCI (কোরোবেনজিন)

বেনজিন হতে ক্লোরোবেনজিন উৎপাদন (বেনজিনের ক্লোরিনেশন) নিম্নোক্ত তিনটি ধাপে ঘটে:

প্রথম ধাপঃ অনার্দ্র ${
m FeC} l_3$ এর সাথে ${
m C} l_2$ এর বিক্রিয়ায় ইলেকট্রোফাইল

হিসেবে ক্লোরোনিয়াম আয়ন (Cl^{\dagger}) ও $FeCl_4^{\prime}$ উৎপন্ন হয়। $FeCl_3 + Cl : Cl \rightarrow Cl^{\dagger} + FeCl_4^{\prime}$ ইলেকট্রোফাইল নিউক্লিওফাইল

দ্বিতীয় ধাপ: উৎপন্ন CI^+ আয়ন বেনজিনের π ইলেকট্রন দ্বারা আকৃষ্ট হয়ে অস্থায়ী সিগমা (σ) কমপ্লেক্স গঠন করে।

তৃতীয় ধাপ: নিউক্লিওফাইল এর সংস্পর্শে সৃষ্ট σ -কমপ্লেক্স থেকে ১টি প্রোটন (H^+) অপসারিত হয়ে ক্লোরোবেনজিন (R) ও $FeCl_3$ তৈরি হয়।

$$CI \longrightarrow H \longrightarrow CI + HCI + FeCI_{\underline{1}}$$

ক্লোরোবেনজিন (R)

Rhombus Publications

Chemistry 2nd Paper Chapter

ঘ উদ্দীপকের বিক্রিয়াটি সম্পন্ন করে পাই,

ি
$$Cl_2$$
 তারে বেনজিন (Q) (R)

অর্থাৎ, উদ্দীপকে Q যৌগটি হলো বেনজিন এবং R যৌগটি হক্ত ক্লোরোবেনজিন। নাইট্রেশন বিক্রিয়ায় বেনজিনের চেয়ে ক্লোক্র বেনজিনের সক্রিয়তা বেশী।

ক্লোরোবেনজিনের ক্লোরাইড (— Çi:) এ 3 জোড়া মুক্তজোড় ইলেবট্রন বিদ্যমান থাকায় এর বেনজিন বলয়ের 2, 4 ও 6 নং কার্বনে ইলেবট্রন ঘনত্ব বাড়িয়ে দেয়। ফলে আগত ইলেকট্রোফাইল সহজেই উচ্চ অবস্থানে প্রতিস্থাপিত হতে পারে এবং নাইট্রেশন বিক্রিয়ার মজে ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া ঘটাতে পারে।

$$\begin{array}{c|c}
CI & \circ CI & \circ CI \\
\hline
\end{array}$$

$$\begin{array}{c|c}
CI & \circ CI \\
\hline
\end{array}$$

$$\begin{array}{c|c}
CI & \circ CI \\
\hline
\end{array}$$

$$\begin{array}{c|c}
\bullet CI \\
\hline
\end{array}$$

$$\begin{array}{c|c}
\bullet CI \\
\hline
\end{array}$$

চিত্র: সক্রিয়কারী গ্রুপের প্রভাব

অন্যদিকে, বেনজিনে কোনো বলয় সক্রিয়কারী গ্রুপ না থাকায় এতে ইলেকট্রন মেঘের ঘনতু তুলনামূলক কম থাকে। তাই বেনজিন অপেক ক্রোরোবেনজিন নাইট্রেশন বিক্রিয়ায় অধিক সক্রিয়।

역하 > 9 (i) CaC₂ + 2H₂O → X + Ca(OH)₂

$$S$$
 (ii) $Y \leftarrow \frac{H_2}{Pd, BaSO_4} X \xrightarrow{Fe \ \overline{\land e}} Z$

(ক) রেসিমিক মিশ্রণ কী? | ঢা. বো. ২২, ১৭; চ. বো. ২২, ১৯, ১৭; দি. বো. ২২; ম. বো. ২২; ব. বো. ২১; ম. বো. ১৭

পাইরোল একটি অ্যারোমেটিক যৌগ ব্যাখ্যা কর।ভা. বো. ২২

(গ) X ও Y গ্যাসের মিথাণ থেকে উপাদানদমকে কীভাবে পৃথক করা যায়
 তা সমীকরণসহ লেখ।
 মি. বো. ২৩: অনুরূপ প্রশ্ন: ঢা. বো. ২২

দুটি এনানসিওমারের সমতুল মিশ্রণকে রেসিমিক মিশ্রণ বলে ।

জেব রসায়ন > ACS, FRB Compact Suggestion Book.....

গ (i) নং বিক্রিয়াটি: CaC₂ + 2H₂O → HC ≡ CH + Ca(OH)₂ উদ্দীপকের (ii) নং বিক্রিয়াটি হতে পাই,

$$CH \equiv CH(X) \xrightarrow{H_2} CH_2 = CH_2(Y)$$

সুতরাং, X ও Y গ্যাসদ্বয় হলো যথাক্রমে ইথাইন ও ইথিন; যাদের মিশ্রণ থেকে উপাদানসমূহকে নিম্নোক্ত উপায়ে পৃথক করা যায়। প্রথমে ইথাইন ও ইথিন এর গ্যাস মিশ্রণকে অ্যামোনিয়া মিশ্রিত সিলভার নাইট্রেট দ্রবণের মধ্যে চালনা করা হয়। গ্যাস মিশ্রণের ইথাইন ডাই অ্যামিন সিলভার নাইট্রেট সাথে বিক্রিয়া করে সাদা বর্ণের সিলভার অ্যাসিটিলাইড তৈরি করে।

উৎপন্ন সিলভার অ্যাসিটিলাইড এর সাদা অধ্যক্ষেপকে পৃথক করে লঘু HCl এসিডসহ তাপ প্রয়োগ করা হলে ইথাইন গ্যাস তৈরি হয়।

 $AgC \equiv CAg(g) + 2HCl(aq) \xrightarrow{\Delta} 2AgCl(\downarrow) + CH \equiv CH(g)$ সিলভার অ্যাসিটিলাইড হাইড্রোক্লোরিক সিলভার (সাদা অধঃক্ষেপ) এসিড ক্লোরাইড গ্যাস মিশ্রণ হতে ইথাইন (X) আলাদা করার পর পাত্রে ইথিন (Y) অবশিষ্ট থাকবে। এভাবে X ও Y গ্যাস তথা ইথাইন ও ইথিনের মিশ্রণ থেকে উপাদানদ্বয়কে পৃথক করা যায়।

ঘ উদ্দীপকের বিক্রিয়াদ্বয় সম্পূর্ণ করে পাই,

 $CaC_2 + 2H_2O \longrightarrow HC \equiv CH(X) + Ca(OH)_2$ ক্যালসিয়াম কাৰ্বাইড

$$(Y)$$
 $CH_2 = CH_2 \leftrightarrow H_2$ $HC = CH(X) \xrightarrow{Fe}$ (Z)
ইথিন

(Z)

व्यर्थार, উদ্দীপকের Y यৌগটি হলো ইথিন এবং Z यৌগটি হলো বেনজিন । উভয়যৌগে π -বন্ধন বিদ্যমান থাকলেও এদের অসম্পুক্ততা ভিন্ন প্রকৃতির হয়। Y যৌগটি তথা ইথিন ব্রোমিন পানির সাথে বিক্রিয়া করে এর লালচে বাদামী বর্ণ দূরীভূত করে যা যৌগে π বন্ধনের উপস্থিতি তথা অসম্পুক্ততা নিশ্চিত করে ।

$$CH_2 = CH_2 + Br_2 \xrightarrow{CCl_4} CH_2Br - CH_2 Br$$

ইথিন ব্রোমিন $1, 2$ -ডাইব্রোমোইথেন (বর্ণহীন)

কিন্তু, বেনজিন এই অসম্পৃক্ততার পরীক্ষায় ব্রোমিন দ্রবণকে বর্ণহীন করতে পারে না। এছাড়াও বেনজিন KMnO4 এর ক্ষারীয় দ্রবণ দ্বারা জারিত হয় না। অর্থাৎ, বেনজিন এক বিশেষ প্রকার অসম্পুক্ত যৌগ।

বেনজিন প্রধানত বিভিন্ন ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া যেমন-অ্যালকাইলেশন. অ্যাসাইলেশন, হ্যালোজেনেশন, নাইট্রেশন. সালফোনেশন প্রভৃতি বিক্রিয়া দেয়। সূতরাং বলা যায়, উদ্দীপকের Y (ইথিন) ও Z (বেনজিন) একই রকম বৈশিষ্ট্যপূর্ণ বিক্রিয়া দেয় না।

$$C_4H_9Br \longrightarrow (2^\circ) \xrightarrow{KOH(aq)} P \xrightarrow{K_2Cr_2O_7 + H_2SO_4} Q$$

$$KOH (alc) \longrightarrow M(80\%) + N(20\%) + KBr + H_2O$$

(ক) সমাণুতা কাকে বলে?

[য. বো. ২১]

(খ) ইথাইন অম্লধর্মী পদার্থ-ব্যাখ্যা কর।

[कृ. (वा. २७; य. (वा.२७; ज. (वा. २५; म. (वा.२১)

- (গ) উদ্দীপকের Q যৌগটির কার্যকরী মূলক শনাক্তকারী পরীক্ষা সমীকরণসহ লেখ। [ম. বো. ২৩; অনুরূপ প্রশ্ন: ম. বো. ২২; ঢা. বো. ২১, ২২; কু. বো. ২১]
- (ঘ) উদ্দীপকের M ও N যৌগের কোনটি স্টেরিও সমাণুতা প্রদর্শন করে তা বিশ্লেষণ কর। মি. বো. ২৩; অনুরূপ প্রস্ন: রা. বো. ২২; চা. বো. ২১; व. त्वा. ১৯; मि. त्वा. ১৭]

সমাধান:

- ক্র যেসব জৈব যৌগের আণবিক সংকেত এক ও অভিনু হওয়া সত্তেও এদের গাঠনিক সংকেতের ভিন্নতা এবং অণুস্থিত পরিমাণুসমূহের ত্রিমাত্রিক বিন্যাসের ভিন্নতার কারণে এদের ভৌত ও রাসায়নিক ধর্মে পার্থক্য প্রকাশ পায়, সেসব জৈব যৌগকে পরস্পরের সমাণু বলে এবং যৌগের এরূপ ধর্মকে সমাণুতা (isomerism) বলা হয়।
- ্রবন্দৌড মতবাদ অনুযায়ী যে সকল পদার্থ প্রোটন (H^+) দান করে তাদেরকে এসিড বা অস্ত্র বলে। ইথাইন অণুর কার্বন পরমাণু দুটি sp সংকরিত। সংকর অরবিটালে s ও p অরবিটালের অনুপাত 1 : 1 অর্থাৎ 50% s চরিত্র ও 50% p চরিত্র। ক্ষুদ্রাকৃতি s অরবিটালের অনুপাত বেশি হওয়ায় C – H বন্ধনের শেয়ারকৃত ইলেকট্রন যুগল C পরমাণুর নিউক্লিয়াসের অধিকতর কাছে দৃঢ়ভাবে যুক্ত থাকে। এতে C – H বন্ধন দুর্বল হয়ে যায় এবং হাইড্রোজেন পরমাণু H^+ হিসেবে বিচ্যুত হয়। যেহেতু ইথাইন প্রোটন দান করতে পারে, তাই ইথাইন অম্লবর্মী।

$$HC \equiv CH(g) + 2Na(s) \xrightarrow{\text{তরল NH}_3} NaC \equiv CNa(s) + H_2$$

সোডিয়াম কার্বাইড

ক উদ্দীপকের বিক্রিয়াটি আংশিক পূর্ণ করে পাই,

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 $CH_3 - CH_2 - C - OH$ $CH_3 - CH_2 - CO - CH_3$ $CH_3 - CH_3$

Rhombus Publications

পরীক্ষানলে 2-3 mL 2, 4- ডাইনাইট্রো ফিনাইল হাইড্রাজিন নিয়ে সমাধান: अत्र भर्या 5 – 6 र्यंग्णे नमूना प्रवंश (2- विष्णेताना) रयांश कत्रत्व श्वृप

कमना वर्ष्पत अधारकष मृष्टि रग्न। या बाता वे योग्न कार्वनिन मृनक

$$CH_3$$
 NO_2 NO_2

$$CH_3$$
 NO_2 NO_2

ত্ব উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে,

$$CH_3 - CH_2 - C - Br \xrightarrow{KOH(alc)}$$

$$H$$

 $CH_3 - CH = CH - CH_3 + CH_3 - CH_2 - CH = CH_2 + KBr + H_2O$ M(80%)N(20%)

M ও N যৌগদ্বয়ের মধ্যে M স্টেরিও সমাণুতা প্রদর্শন করতে সক্ষম। জ্যামিতিক ও আলোক সমাণুতা হল স্টেরিও সমাণুতার দৃটি ধরন। M ও N এর কেউই আলোক সমাণুতা প্রদর্শন করে না কেননা যৌগদ্বরের কারও মধ্যে অপ্রতিসম কার্বন পরমাণু বা কাইরাল কেন্দ্র নেই। জ্যামিতিক সমাণুতার শর্তগুলো হল:

- (i) চাক্রিক বা প্রতিস্থাপিত দ্বি-বন্ধনযুক্ত যৌগ হতে হবে।
- (ii) কার্বন-কার্বন দ্বি-বন্ধনের অক্ষ বরাবর ঘূর্ণন অক্ষম হতে হবে।
- (iii) यৌগण्ति गठेन काठारमा abC = Cab वा abC = Cax এর অনুরূপ হতে হবে।

M তথা বিউট-2-ইন শর্তসমূহ পূরণ করে বলে এটি জ্যামিতিক সমাণুতা প্রদর্শন করে ও নিম্নোক্ত সমাণুদ্বয় গঠন করে:

$$CH_3$$
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3

সিস-বিউট-2-ইন ট্রান্স-বিউট-2-ইন অন্যদিকে, বিউট-1-ইন জ্যামিতিক সমাণুতার ১ম শর্তঘ্য পূরণ করলেও এর গঠন কাঠামো abC = Cab বা abC = Cax এর অনুরূপ না হওয়ায় এটি জ্যামিতিক সমাণুতা প্রদর্শন করে না। উপর্যুক্ত আলোচনার প্রেক্ষিতে বলা যায়, বিউট-2-ইন স্টেরিও সমাণুতা প্রদর্শন করলেও বিউট-1-ইন তা করে না।

연화 > >>

যৌগ-A	3° অ্যালকাইল হ্যালাইড	(i) Na	A CI	+	NaOH(aq)	\rightarrow	C	+
যৌগ-B	1° অ্যালকাইল হ্যালাইড	(ii)	В+	- N	aOH(aq) →	D+	Na	CI

- (ক) ডায়াস্টেরিওমার কী?
- (খ) বিউট-2-ইন জ্যামিতিক সমাণুতা প্রদর্শন করবে কি? (রা. বো. ২২; ব. বো. ২১)
- (গ) বিক্রিয়াসহ C ও D যৌগদ্বয়ের জারণে উৎপাদের প্রকৃতি আলোচনা বো. বো. ২২
- (ঘ) উদ্দীপকের (i) নং বিক্রিয়ার কৌশল আলোচনা কর। রা. বো. ২২; অনুরূপ প্রশ্ন: রা. বো. ২২; কু. বো. ২৩, ২১; দি. বো. ২২, ১৭]

- ক দুটি অসদৃশ অপ্রতিসম কার্বনযুক্ত কোন পদার্থের দুটি আলোক সম্ভূ যদি পরস্পরের দর্পণ প্রতিবিম্বের মত আচরণ না করে ভবে তাসেইছে পরস্পরের ডায়াস্টেরিওমার বলে।
- খ জ্যামিতিক সমাণুতার শর্তগুলো হলো-
 - (i) চাক্রিক যৌগ বা প্রতিস্থাপিত দ্বি-বন্ধনযুক্ত যৌগ হতে হবে ।
 - (ii) কার্বন-কার্বন বন্ধনের অক্ষ বরাবর ঘূর্ণন অক্ষম হতে হবে।
 - (iii) যৌগটির গঠন abC = Cab বা abC = Cax বা abC = Cde কাঠামোর অনুরূপ হতে হবে।

এখানে বিউটিন-2 জ্যামিতিক সমাণুতার প্রদন্ত শর্তসমূহ পূরণ করেছে कात्रण विष्ठिणिन-२ এ कार्वन-कार्वन षि-वन्नन कार्वारमा abC = Cab 🖘 नाारा। करन विडिटिन-2 এর দুটি সমাণু সম্ভব।

$$CH_3$$
 $C = C$ CH_3 H $C = C$ CH_3 H $C = C$ H CH_3 $C = C$ H CH_3 $C = C$ H CH_3 $C = C$ CH_3 C

গ্র বিক্রিয়াদ্বয় সম্পূর্ণ করে পাই,

(i)
$$R - C - Cl + NaOH(aq) \rightarrow R - C - OH + NaCl$$

R

R

R

H

H

(ii) $R - C - Cl + NaOH(aq) \rightarrow R - C - OH + NaCl$

H

H

H

H

H

H

H

H

অর্থাৎ, C ও D যৌগদ্বয় যথাক্রমে 3° ও 1° অ্যালকোহল 3° অ্যালকোহলের জারণ কষ্টসাধ্য হলেও শক্তিশালী জারক দ্বারা জারিত করলে প্রথমে কিটোন ও পরবর্তীতে কার্বোক্সিলিক এসিড পাওয়া যায় প্রতিক্ষেত্রে এখানে C সংখ্যাহ্রাস পায়।

$$R - \stackrel{R}{\stackrel{|}{C}} - OH \xrightarrow{4[O]} R - \stackrel{Q}{\stackrel{|}{C}} - R \xrightarrow{4[O]} RCOOH + CO_2 + H_2O$$

অন্যদিকে, 1° অ্যালকোহলকে জারিত করলে প্রথমে অ্যালডিহাইড ও পরে কার্বোক্সিলিক এসিড পাওয়া যায় এবং উভয়ক্ষেত্রে কার্বন সংখ্যা অ্যালকোহলের অনুরূপ থাকে।

$$\begin{array}{c|c}
H & O \\
R - C - OH & \boxed{[O]} & R - C - H & \boxed{[O]} & RCOOH \\
H & H
\end{array}$$

ঘা উদ্দীপকের (i) নং বিক্রিয়াটি নিমুরূপ:

$$\begin{array}{c} R \\ | \\ R - C - Cl + \text{NaOH(aq)} \longrightarrow R - \begin{matrix} R \\ | \\ C - OH + \text{NaC}l \end{matrix}$$

A(3° অ্যালকাইল হ্যালাইড) C(3° অ্যালকোহল) বিক্রিয়াটি S_N1 বা এক আণবিক নিউক্লিওফিলিক প্রতিস্থাপন বিক্রিয়া কৌশল অনুসরণ করে। বিক্রিয়াটি দুই ধাপে ঘটে এবং এর হার শুধুমাত্র অ্যালকাইল হ্যালাইডের ঘনমাত্রার উপর নির্ভর করে।

Rhombus Publications

লেব রসায়ন ➤ ACS, FRB Compact Suggestion Book.........৯৫

বিক্রিয়া কৌশলঃ

১ম ধাপ: 3° অ্যালকাইল হ্যালাইড ধীর গতিতে বিয়োজিত হয়ে অধিক স্থায়ী 3° কার্বোনিয়াম আয়ন ও হ্যালাইড সৃষ্টি করে।

$$R \xrightarrow{R} C - CI \xrightarrow{\text{ধীরগতি}} R \xrightarrow{R} C^+ + X^-$$

3° অ্যালকাইল হ্যালাইড 3° কার্বোনিয়াম আয়ন

২য় ধাপ: কার্বোনিয়াম আয়নের সাথে NaOH হতে আগত OH দ্রুত যুক্ত হয়ে 3° অ্যালকোহল প্রস্তুত করে।

$$R \xrightarrow{R} C^{+} + \ddot{O}H^{-} \xrightarrow{\underline{Gronlo}} R \xrightarrow{R} C - OH$$
3° আলেকোহল

A অবু

→ সমাবু (C)
$$\frac{O_3}{H_2O, Zn}$$
 CH₃CH₂CHO + HCHO

→ সমাবু (D) $\frac{O_3}{Zn, H_2O}$ ২টি অনুরূপ কার্বনিল যৌগ

(ক) হাকেল তত্ত্বটি লেখ।

(রা. বো. ২২)

(খ) উৰ্টজ বিক্ৰিয়া বলতে কী বোঝ?

[রা. বো. ২২]

- জন্দীপকের (D) যৌগটি কোন ধরনের স্টেরিও সমাণুতা প্রদর্শন করবে?
 ব্যাখ্যা দাও।
 রা. বো. ২২: অনুরপ প্রশ্ন: ম. বো. ২৩: ঢা. বো. ২৯:
 ব. বো. ১৯: দি. বো. ১৯:
- (ঘ) উপযুক্ত কৌশলসহ দেখাও যে, (C) যৌগটি মারকনিকভের সূত্র মেলে চলে। (রা. বো. ২২; অনুরপ প্রশ্ন: কু. বো. ২৩; ম. বো. ২২; চ. বো. ২২; সি. বো. ২২; য. বো. ২১, ১৭; ব. বো. ১৯)

সমাধান:

- হাকেল প্রস্তাবিত অ্যারোমেটিসিটি প্রকাশের প্রয়োজনীয় শর্তগুলোকে হাকেল তত্ত্ব বলে। এ তত্ত্ব অনুসারে, যেসব জৈব যৌগের গঠন চ্যান্টা বা সমতলীয় বলয়াকার বিশিষ্ট এবং বলয় গঠনকারী পরমাণুসমূহের (4n + 2) সংখ্যক সঞ্চারণশীল π ইলেকট্রন দ্বারা আণবিক অরবিটাল সৃষ্টি হয়, তাদেরকে অ্যারোমেটিক যৌগ বলে, যেখানে n = 1, 2, 3, ... ইত্যাদি দ্বারা বেনজিনয়েড বলয় সংখ্যা বোঝানো হয়।
- ব্য অ্যালকাইল হ্যালাইড ধাতব সোডিয়ামের সাথে তদ্ধ ইথারের উপস্থিতিতে বিক্রিয়া করলে অ্যালকেন উৎপন্ন হয় যা উর্টজ বিক্রিয়া নামে পরিচিত।

$$2RX + 2Na \xrightarrow{\quad \mbox{GBR}} \stackrel{\mbox{SBR}}{\longrightarrow} R - R + 2NaX$$
উচ্চতর অ্যালকেন

্য উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে,

$$C_4H_8$$

$$\longrightarrow CH_3 - CH_2 - CH = CH_2 \xrightarrow{O_3} \xrightarrow{H_2O, Zn}$$

$$\longrightarrow CH_3 - CH = CH - CH_2 \xrightarrow{O_3} \xrightarrow{H_2O, Zn}$$

$$\longrightarrow CH_3 - CH = CH - CH_2 \xrightarrow{O_3} \xrightarrow{H_2O, Zn}$$

$$\longrightarrow TAII \circ (D) \qquad CH_3CHO + CH_3CHO$$

উদ্দীপকের D যৌগটি জ্যামিতিক সমাণুতা প্রদর্শন করে। জ্যামিতিক সমাণুতা ও আলোক সমাণুতা হল 2 ধরনের স্টেরিও সমাণুতা। কোন যৌগের আলোক সমাণুতা প্রদর্শনের শর্ত হল:

- (i) অপ্রতিসম কার্বন পরমাণু বা কাইরাল কেন্দ্র থাকতে হবে।
- (ii) কনফিগারেশনদ্বয় পরস্পর দর্পণ প্রতিবিদ ও অ-উপরিস্থাপনীয় হতে হবে।

অন্যদিকে, জ্যামিতিক সমাণুতা প্রদর্শনে

- (i) চাক্রিক বা প্রতিস্থাপিত দ্বি-বন্ধনযুক্ত হতে হবে
- (ii) দ্বি-বন্ধনযুক্ত যৌগের কাঠামো হতে হবে
- → abC = Cab; যেখানে a ≠ b
- → abC = Cax; যোগানে a ≠ x
- (iii) কার্বন-কার্বন দ্বি-বন্ধন অক্ষ বরাবর ঘূর্ণন অক্ষম হবে।

এখানে, সমাণু (D) হলো বিউট-2-ইন। যা জ্যামিতিক সমাণুতার শর্তসমূহ পূরণ করলেও আলোক সমাণুতা দেখাবে না কেননা এতে কোন অপ্রতিসম কার্বন বা কাইরাল কেন্দ্র নেই। এতে কার্বন-কার্বন দ্বিবদ্ধন থাকায় বন্ধনের অক্ষ বরাবর মুক্ত আবর্তন সম্ভব নয় ও এর গঠন কাঠামো abC = Cab হওয়ায় এটি জ্যামিতিক সমাণুতা প্রদর্শন করবে। এর দুটি জ্যামিতিক সমাণু হল:

া 'গ' হতে, উদ্দীপকের C যৌগটি হল বিউটিন-1 (CH2 = CH – CH2 – CH3) মারকনিকভের স্ত্রানুসারে অপ্রতিসম অ্যালকিনের সাথে অপ্রতিসম বিকারকের বিক্রিয়ায় বিকারকের H বা ধনাত্মক প্রান্তটি অ্যালকিনের দ্বি-বন্ধনযুক্ত যে কার্বনে বেশি H থাকে সেই C এ যুক্ত হয়। বিউটিন-1 একটি অপ্রতিসম অ্যালকিন যা অপ্রতিসম বিকারক HBr এর সাথে বিক্রিয়া করে মারকনিকভ নীতি অনুসারে 90% 2-ব্রোমো বিউটেন ও 10% 1-ব্রোমো বিউটেন উৎপন্ন করে।

$$CH_{2} = CH - CH_{2} - CH_{3} + HBr \xrightarrow{CCI_{4}} CH_{3} - CH_{2} - CH_{2} - CH_{3}$$

$$CH_{2}Br - CH_{2} - CH_{2} - CH_{3}$$

$$(10\%)$$

বিক্রিয়া কৌশল: অপোলার দ্রব CCl4 এর উপস্থিতিতে বিউট-1-ইন এর সধ্যারণশীল π ইলেকট্রেন এর প্রভাবে বিকারক HBr ইলেকট্রোফাইল H[†] ও নিউক্লিওফাইল Br⁻ এ বিভক্ত হয় এবং অ্যালকিনের দ্বি-বন্ধনের C এর সাথে যুক্ত হয়ে 2° বা 1° কার্বোক্যাটায়ন উৎপন্ন করে। 1° কার্বোক্যাটায়ন অধিক স্থায়ী হওয়ায় কম শক্তিসম্পন্ন 2° কার্বোক্যাটায়ন 1° কার্বোক্যাটায়নের তুলনায় অধিক সংখ্যায় উৎপন্ন হয়। যার ফলে 90% 2-ব্রোমো বিউটেন ও 10% 1-ব্রোমো বিউটেন উৎপন্ন হয়। অতএব বলা যায়, C যৌগটি মারকনিকভ সূত্র মেনে চলে।

Rhombus Publications

প্রশ্ন > ২১ নিচের উদ্দীপকটি লক্ষ্য কর এবং প্রশ্নগুলোর সঠিক উত্তর দাও:

CI | (i) CH₃ - C = CH - CH₃ CI | (ii) CH₃ - CH - CH₂ - CH₃ OH

(iii) CH₃ - CH - COOH

(ক) সমগোত্রীয় শ্রেণির সংজ্ঞা দাও।

[কু. বো. ১৯]

- (খ) ডাই মিথাইল ইথার ও ইথানল পরস্পর কোন ধরনের সমাণু? ব্যাখ্যা কর। যি. বো. ২২
- (গ) উদ্দীপকের যৌগগুলোর মধ্যে কোনটি জ্যামিতিক সমাণুতা প্রদর্শন করবে? ব্যাখ্যা কর। কু. বো. ২২; অনুরূপ প্রশ্ন: ব. বো. ২৩; ঢা. বো. ২২; সি. বো. ২২; সম্মিলিত বো. ১৮; রা. বো. ১৭]
- (ঘ) উদ্দীপকের (iii) নং যৌগটি অন্য দুটি যৌগ অপেক্ষা সম্পূর্ণ ভিন্ন এক ধরনের সমাণুতা প্রদর্শন করে─ যুক্তিসহকারে বিশ্লেষণ কর। (কৃ. বো. ২২) সমাধান:
- ক একই মৌলিক পদার্থের সমন্বয়ে গঠিত সমধর্মী জৈব যৌগসমূহ বারা একই সাধারণ সংকেতবিশিষ্ট, একই কার্যকরী মূলক যুক্ত, যাদেরকে আণবিক ভরের ক্রমবৃদ্ধি অনুযায়ী সাজালে পরপর দৃটি পাশাপাশি যৌগের মধ্যে একটি মিথিলিন মূলক (— CH_2 —) এর পার্থক্য দেখা বার এবং যাদেরকে একই সাধারণ নিয়মে প্রস্তুত করা যায়, তাদের সমগোত্রীয় প্রেণি বলে।
- া ডাই মিথাইল ইথার ও ইথানল উভয়ের আণবিক সংকেত C₂H6O। কিন্তু গাঠনিক সংকেত ভিন্ন, তাই এরা একে অপরের সমাণু।

CH₃ – O – CH₃

দোই গিথাইল ইথার

CH₃ - CH₂ - OH

ডাই মিথাইল ইথার

ইথানল

যৌগ দুইটির একটির কার্যকরী মূলক ইথার (— O —) ও অপর কার্যকরীমূলক — OH যা অ্যালকোহলকে নির্দেশ করে। যেহেতু যৌগদ্বয়ের আণবিক সংকেত একই এবং কার্যকরী মূলক ভিন্ন, ফলে এরা পরস্পর কার্যকরী মূলক সমাণু।

- প্রতিস্থাপিত অ্যালকিনের অনুরূপ যে সব যৌগের গাঠনিক সংকেত একই কিন্তু এদের কনফিগারেশন অর্থাৎ দ্বি-বন্ধন যুক্ত কার্বনদ্বয়ের সঙ্গে যুক্ত পরমাণু বা মূলকের জ্যামিতিক বিন্যাসের ভিন্নতার কারণে ভৌত ও রাসায়নিক ধর্মে পার্থক্য ঘটে তাদেরকে জ্যামিতিক সমাণু বলে। জ্যামিতিক সমাণুতার শর্তসমূহ নিমুর্নপঃ
 - (১) চাক্রিক বা প্রতিস্থাপিত দ্বি-বন্ধনযুক্ত হতে হবে।
 - (২) জ্যামিতিক সমাণুতার জন্য দ্বি-বন্ধনযুক্ত যৌগের কাঠামো হতে হবে
 - (i) abC = Cab; যেখানে a ≠ b
 - (ii) abC = Cax; যেখানে a ≠ x
 - (৩) কার্বন-কার্বন দ্বি-বন্ধন অক্ষ বরাবর ঘূর্ণন অক্ষম হতে হবে। জ্যামিতিক সমাণুতা প্রদর্শনের শর্তসমূহ একমাত্র (i) নং যৌগটি পূরণ করেছে। কারণ এটি প্রতিস্থাপিত অ্যালকিন ও এর কার্বন-কার্বন দ্বি-বন্ধন

$$CI$$
 $C = C$ CH_3 $C = C$ CH_3 CH_3

- জ্মীপকের (i) ও (ii) নং যৌগদ্বয় যথাক্রমে জ্যামিতিক ও অবস্থান
 সমাণুতা প্রদর্শন করলেও (iii) নং যৌগটি আলোক সমাণুতা প্রদর্শন
 করে। একই আণবিক সংকেত বিশিষ্ট যেসব যৌগের ত্রিমাত্রিক গঠন
 এবং ভৌত ও রাসারনিক ধর্ম এক হলেও এক সমতলীয় আলোর প্রতি
 ভিন্ন আচরণ প্রদর্শন করে তাদের আলোক সমাণু বলা হয়। আলোক
 সমাণুতা প্রদর্শনের শর্তসমূহ নিম্নরূপ।
 - (i) অপ্রতিসম কার্বন পরমাণু বা কাইরাল কেন্দ্রের উপস্থিতি
 - (ii) এক সমতলীয় আলোকে ভিন্ন দিকে আবর্তন করে।
 - (iii) কনফিগারেশনদ্বয় পরস্পরের উপর অ-উপরিস্থাপনীয় এবং দর্পণ প্রতিবিম্ব।

উদ্দীপকের (iii) নং যৌগটি হল ল্যাকটিক এসিড:

ОН

CH₃ - CH - COOH

যাতে একটি কাইরাল কেন্দ্র বিদ্যমান। এর আণবিক স্থানিক বিন্যাস ও দর্পণ প্রতিবিম্ব নিমুন্ধপ:

d-ল্যাকটিক এসিড

I-ল্যাকটিক এসিড

অর্থাৎ, কনফিগারেশনদ্বর পরস্পর দর্পণ প্রতিবিম্ব ও অ-উপরিস্থাপনীয় এবং d-ল্যাকটিক এসিড আলোর তলকে ডানে 2.24° ঘুরালেও, l ল্যাকটিক এসিড আলোর তলকে বাম দিকে 2.24° ঘুরিয়ে থাকে। অতএব, (iii) নং যৌগটি আলোক সমাণুতা দেখায় যা অন্য যৌগদ্বয় থেকে ভিন্ন প্রকৃতির।

$$C_2H_2$$
 C_2H_2
 C_2H_2
 C_2H_3
 C_2H_3
 C_2H_3
 C_3
 C_3
 C_4
 C_4
 C_5
 C_7
 C_7

(ক) নিউক্লিওফাইল কাকে বলে?

[সি. বো. ১৯]

(थ) ज्यारमानियां जरभक्ता ज्यानिनिन पूर्वन कांत्रक रकन?

[য. বো. ২২]

(গ) B হতে D প্রস্তুতির কৌশল ব্যাখ্যা কর।

वि. वा. २२; जनुक्रभ क्षम्नः मि. वा. २७; ग. वा. २२; म. वा. २२; मि. वा. ১१]

(घ) С ও D মৌগের মধ্যে কোনটি ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ার ক্ষেত্রে অধিক সক্রিয়? বিশ্লেষণ কর। বি. বো. ২২; অনুরূপ প্রয়: ঢা. বো ২৩, ২১, ১৭; কু. বো. ২৩, ২১; য. বো. ২৩, ১৭; দি. বো. ২৩, ২২, ২১, ১৯; ঢ. বো. ২২, ২১, ১৯; ম. বো. ২২, ২১; ব. বো. ২১, ১৭; সি. বো. ২১, ১৯, ১৭; য়া. বো. ১৭]

জৈব রসায়ন > ACS) FRB Compact Suggestion Book.....

সমাধান:

যে সকল বিকারক নিউক্লিয়াসের প্রতি আকর্ষণ অনুভব করে এবং বিক্রিয়াকালে ইলেকট্রন দান করে, তাদেরকে নিউক্লিওফাইল বলা হয়।

আ্যামোনিয়া (NH3) ও অ্যানিলিন (C6H5 - NH2) উভয় য়ৌগের ক্ষারকত্ব নির্ভর করে এদের নাইট্রোজেন পরমাণুতে নিঃসঙ্গ ইলেকট্রন যুগলের ঘনত্বের উপর। অ্যানিলিনের - NH2 মূলকের নাইট্রোজেন পরমাণুর নিঃসঙ্গ ইলেকট্রনযুগল বেনজিন বলয়ের অনুরণনে অংশগ্রহণ করে। ফলে যৌগটির নাইট্রোজেনে ইলেকট্রন ঘনত্ব হ্রাস পায়। কিম্ব NH3 তে এ ধরনের অনুরণন না থাকায় ইলেকট্রন ঘনত্ব বেশি থাকে। তাই অ্যানিলিনের ক্ষারকত্ব অ্যামোনিয়ার তুলনায় কম হয়।

ক্র উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে,

$$C_{2}H_{2} \xrightarrow{400^{\circ}C} B \xrightarrow{HNO_{3} \atop H_{2}SO_{4}} C$$

$$C_{2}H_{3} \xrightarrow{CH_{3}Cl} D$$

$$D$$

অর্থাৎ, B ও D যৌগদ্বয় যথাক্রমে বেনজিন ও টলুইন। বেনজিন হতে টলুইন প্রস্তুতি কৌশল নিমুক্রপঃ

১ম ধাপ: $\mathrm{CH_{3}-C}{\it l}$ অনার্দ্র $\mathrm{AlCl_{3}}$ এর সাথে বিক্রিয়া করে $\mathrm{CH_{3}}$ উৎপন্ন করে যা ইলেকট্রোফাইল হিসেবে ভূমিকা রাখে।

$$CH_3 - Cl + AlCl_3 = \overset{+}{C}H_3 + AlCl_4$$

২য় ধাপ: বেনজিন বলয়ের π ইলেকট্রনের আকর্ষণে $\overset{\cdot}{\mathrm{CH}}_3$ যে কোন C এর সাথে যুক্ত হয়ে σ-কমপ্লেক্স গঠন করে।

$$\begin{array}{c}
\text{CH}_{3} \\
\text{H}
\end{array}$$

তম ধাপ: উৎপন্ন ত-কমপ্লে<mark>ক্স</mark> হতে প্রোটন অপসারণের <mark>মাধ্যমে টলুইন</mark> উৎপন্ন হয়।

থা 'গ' হতে C ও D যৌগদ্বয় যথাক্রমে নাইট্রোবেনজিন ও টলুইন। এদের মধ্যে টলুইন ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ায় অধিক সক্রিয়। নাইট্রোবেনজিনে – NO₂ মূলকের ঋণাত্মক মেসোমেরিক প্রভাবের দ্বারা বেনজিন বলয়ের π ইলেকট্রন মেঘকে নিজের দিকে টেনে নেয়। ফলে অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব হ্রাস পায় এবং বেনজিন বলয়ের সক্রিয়তা, হ্রাস পায়।

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

$$0^{-},0^{-}$$

অন্যদিকে, টলুইনে — CH_3 মূলকের নিঃসঙ্গ ইলেকট্রন যুগল না থাকলেও C — H বন্ধনের σ ইলেকট্রনদ্বা হাইপারকনজুগেশন বা বন্ধনবিহীন অনুরণন এর মাধ্যমে বেনজিন বলয়ের অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি করে। ফলে এসব স্থানে ইলেকট্রোফাইল সহজে আকৃষ্ট হয়।

উপর্যুক্ত আলোচনায় প্রেক্ষিতে বলা যায় যে, ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ায় সক্রিয়তার ক্রম হবে:

শ্রেম ▶ ২৩ (i) R₃CX + NaOH (লঘু) — → A, [X = হ্যালোজেন] (ii) RCH₂X + NaOH (গাঢ়) — → B

(क) कार्रेज़ान कार्यन की?

(খ) অ্যালকোহল পানিতে দ্রবণীয় কেন? [ঢা. বো. ২১; সম্মিলিত বো. ১৮]

(গা) বিক্রিয়াসহ A ও B যৌগের মধ্যে পার্থক্য বর্ণনা কর। 🛮 । ঢা. বো. ২১।

(ঘ) উদ্দীপকের B যৌগ প্রস্তুতির ক্রিয়াকৌশল বিশ্লেষণ কর। ঢা. বো. ২১; অনুরূপ প্রশ্ন: চ. বো. ২৩, ২২; य. বো. ২৩; ম. বো. ২২; দি. বো. ২১; ব. বো. ১৯; সম্মিলিত বো. ১৮

স্মাধানঃ

ক একটি জৈব যৌগের অণুতে কোন কার্বন পরমাণুর সঙ্গে চারটি ভিন্ন পরমাণু বা মূলক যুক্ত থাকলে ঐ কার্বনকে কাইরাল কার্বন বলে।

আলকোহল পানিতে দ্রবণীয় হয় কারণ অ্যালকোহলে (— OH) মূলক বিদ্যমান আছে। হাইড্রোজেনের তুলনায় অক্সিজেনের তড়িং ঝণাত্মকতা বেশি হওয়ায় O — H বন্ধনে পোলারিটির উদ্ধব ঘটে। অনুরূপভাবে পানিতেও বিদ্যমান (O — H) এ পোলরিটির উপস্থিতির জন্য আংশিক ঝণাত্মক $O^{\delta-}$ এর সাথে আংশিক ধনাত্মক $H^{\delta+}$ এর মধ্যে H-bond গঠন করে। ফলে অ্যালকোহল পানিতে দ্রবীভূত হয়।

$$\begin{matrix} H^{\delta +} & & O^{\delta - - - -} H^{\delta +} & & O^{\delta -} \\ & & & & \\ H^{\delta +} & & & R \end{matrix}$$

গ উদ্দীপকের বিক্রিয়াদ্বয় হতে,

(i) $R_3CX + NaOH$ (লঘু) $\longrightarrow R_3C - OH + NaX$ 3° অ্যালকোহল (A)

(ii) $RCH_3X + NaOH(গাড়) \rightarrow RCH_2 - OH + NaX$ 1° অ্যালকোহল (B)

निद्ध A ଓ B यौश्रदात वर्षा 3° ଓ 1° व्यानकारकार मध्यकात शार्थका निक्त भ कता रनः

(১) 3° অ্যালকোহলে – OH যুক্ত কার্বন এ অ্যালকাইল মূলক সংখ্যা 3টি যেখানে 1° অ্যালকোহলে (– R) সংখ্যা 1টি।

(২) S_N1 বিক্রিয়ার মাধ্যমে 3° অ্যালকোহল পাওয়া গেলেও 1° অ্যালকোহল পাওয়া যায় S_N2 বিক্রিয়ার মাধ্যমে।

Rhombus Publications

(७) 3° प्णानारकारलात जातरण श्रथाम किरोन ७ शत कार्तास्त्रिनिक এসিড পাওয়া যায় যেখানে 1° আলকোহলের জারণ প্রথমে অ্যালডিহাইড ও পরে কার্বোক্সিলিক এসিড উৎপন্ন হয়।

$$R - \overset{R}{\overset{|}{\underset{R}{\longleftarrow}}} O \xrightarrow{\qquad \qquad } R - \overset{O}{\underset{R}{\longleftarrow}} R - \overset{O}{\underset{R}{\longleftarrow}} R \xrightarrow{\qquad \qquad } RCOOH + CO_2 + H_2O$$

3° অ্যালকোহল

এথানে, প্রতিক্ষেত্রে C সংখ্যাহ্রাস পাচ্ছে।

R –
$$CH_2$$
 – $OH \xrightarrow{[O]} R$ – C – $H \xrightarrow{[O]} R$ – $COOH$ এখানে, প্রতিক্ষেত্রে C সংখ্যা সমান থাকে।

(8) 3° অ্যালকোহল লুকাস বিকারকের সাথে বিক্রিয়ায় সাদা অধঃক্ষেপের সৃষ্টি করে। অন্যদিকে, 1° অ্যালকোহল কক্ষ তাপমাত্রায় বিক্রিয়া করে না। উত্তপ্ত করলে দীর্ঘ সময় পরে তৈলাক্ত স্তর সৃষ্টি করে।

$$R_3C-OH(I)+HCI(I) \xrightarrow{ZnCI_2} R_3C-CI(s)+H_2O(I)$$

tert-ज्यानत्काञ्च (3°)

tert-অ্যালকাইল

ক্রোরাইড

$$RCH_2$$
-OH(l)+HC l (l) $\xrightarrow{ZnCl_2}$ RCH_2 -C l (l)+H $_2$ O(l)
আলকোহল (1°) 1°-আলকাইল

ष्णानकाश्न (1°)

ক্লোরাইড

ছ উদ্দীপকের (ii) নং বিক্রিয়াটি সম্পূর্ণ করে পাই, RCH2X + NaOH (গাঢ়) → RCH2OH + NaX যা দ্বি-আণবিক নিউক্লিওফিলিক প্রতিস্থাপন বিক্রিয়ার উদাহরণ। এক্ষেত্রে ঋণাত্মক আধানযুক্ত শক্তিশালী নিউক্লিওফিলিক বিকারক বা মুক্তজোড় ইলেকট্রন বিশিষ্ট প্রশম অণু, অ্যালকাইল হ্যালাইড থেকে হ্যালাইড (X⁻) কে অপসারিত করে নিজে অ্যালকাইল কার্বনের সাথে যুক্ত হয়।

এ বিক্রিয়াটি একটি দ্বিতীয় ক্রম বিক্রিয়া যা একধাপে সম্পন্ন হয় ও 1° হ্যালাইডের ক্ষেত্রে সহজে ঘটে। বিক্রিয়ার গতিবেগ অ্যালকাইল হ্যালাইড ও নিউক্লিওফাইল উভয়ের ঘনমাত্রার উপর নির্ভরশীল। গাঢ় NaOH এর জলীয় দ্রবণে R - CH2X এর আর্দ্রবিশ্লিযণে 1° অ্যালকোহল উৎপন্ন হয়।

$$R - CH_2 - X + NaOH \rightarrow R - CH_2OH + NaX$$

 $NaOH(aq) \rightarrow Na^{+}(aq) + HO^{-}(aq)$

Rhombus Publications

의취 ▶ ২8 + R - CH₂ - CH₂Br (10%)

$$R - CH = CH_2 - R - CH - CH_3 (90\%)$$
Br

...... ACS > Chemistry 2nd Paper Chapter-2

(ক) ডিকার্বক্সিলেশন বিক্রিয়া কি?

কু. বো. ১৭

(খ) বেনজিন ইথাইনের একটি পলিমার- ব্যাখ্যা কর।

[চ. বো. ২১]

(গ) প্রদত্ত সমীকরণে 90% উৎপাদ কীভাবে পাওয়া যাবে? ব্যাখ্যা কর। যি. বো. ২১; অনুরূপ প্রশ্ন: কু. বো. ২৩; রা. বো. ২২; য. বো. ২২, ১৭; চ. বো. ২২; সি. বো. ২২; ব. বো. ১১

(ঘ) প্রদন্ত সমীকরণটির 10% উৎপাদকে 90% উৎপাদে পরিণত করতে कत्रणीग्र-क्रिग़ाक्निगनमञ् विद्भावनं कत् । [य. वा. २); अनुक्रल क्षन्नः व. व्वा. २०] সমাধান:

ক কার্বব্রিলিক এসিডের সোডিয়াম লবণ ও সোডালাইম (NaOH + CaO) এর মিশ্রণকে উত্তপ্ত করলে অ্যালকেন এবং Na₂CO₃ উৎপন্ন হয়। এ বিক্রিয়াকে ডিকার্বক্সিলেশন বলে।

$$R - COONa + NaOH(CaO) \xrightarrow{\Delta} R - H + Na_2CO_3(CaO)$$

₹ 420°C তাপমাত্রায় উত্তপ্ত Fe নলের মধ্যে দিয়ে ইথাইন গ্যাসকে চালনা করলে বেনজিন উৎপন্ন হয়। যেহেতু মনোমার ইথাইন হতে প্রিমারকরণের মাধ্যমে বেনজিন তৈরি হয়। তাই বলা যায় বেনজিন ইথাইনের একটি পলিমার।

3 CH ≡ CH
$$\xrightarrow{\text{Fe}}$$
 $\xrightarrow{\text{450°C}}$

🚰 উদ্দীপকে অ্যালকিনের ইলেকট্রোফিলিক সংযোজন বিক্রিয়া দেখানো হয়েছে। এখানে ইলেকট্রোফাইল কোনো ইলেকট্রনসমৃদ্ধ বিক্রিয়কের সাথে সরাসরি যুক্ত হয়ে যুত যৌগ গঠন করে।

মারকনিকভ স্ত্রানুসারে, অপোলার দ্রাবকের উপস্থিতিতে অপ্রতিসম অ্যালকিনের সাথে অপ্রতিসম বিকারকের সংযোজন বিক্রিয়ায় বিকারক এর ঋণাত্মক অংশ সাধারণত কম সংখ্যক হাইড্রোজেন পরমাণু যুক্ত অসম্পুক্ত কার্বনে যুক্ত হয়।

$$R - CH = CH_2 + HBr \xrightarrow{CCI_4} R - CH_2 - CH_2Br(10\%)$$

$$R - CH - CH_3(90\%)$$

$$R - CH - CH_3(90\%)$$

অপোলার দ্রাবক CCl4 এর উপস্থিতিতে অপ্রতিসম অ্যালকিনের সঞ্চারণশীল π ইলেকট্রনের প্রভাবে বিকারক HBr ইলেকট্রোফাইল H^{*} ও নিউক্লিওফাইল Br^- এ বিভক্ত হয় এবং অ্যালকিনের দ্বি-বন্ধনের Cএর সাথে যুক্ত হয়ে 2° বা 1° কার্বোক্যাটায়ন উৎপন্ন করে। 1° কার্বোক্যাটায়নের তুলনায় 2° কার্বোক্যাটায়ন অধিক স্থায়ী হওয়ায়, কম শক্তিসম্পন্ন 2° কার্বোক্যাটায়ন 1° কার্বোক্যাটায়নের তুলনায় অধিক সংখ্যায় উৎপন্ন হয়। যা প্রদত্ত সমীকরণে 90° উৎপাদ পাওয়ার জন্য দায়ী। নিউক্লিওফাইল Br^- এর পর কার্বোক্যাটায়নের সাথে যুক্ত হয়ে অণুর স্থায়িত্ব প্রদান করে।

্রের রসায়ন ➤ ১৫১০ FRB Compact Suggestion Book....

র প্রদন্ত বিক্রিয়ার 10% উৎপাদ, $R-CH_2-CH_2-Br$ কে 90% স্বি উদ্দীপকের বিক্রিয়া থেকে পাই, উৎপাদে পরিণত করতে হলে অ্যালকাইল পার অক্সাইডের উপস্থিতিতে, R – CH = CH2 এর সাথে HBr এর বিক্রিয়া সংঘটিত করতে হবে। $R - CH = CH_2 + HBr \xrightarrow{ROOR} R - CH - CH_2 + R - CH - CH_3$

ক্রিয়া-কৌশল:

প্রথম ধাপ: উত্তপ্ত অবস্থায় জৈব পারঅক্সাইডের বিয়োজন ঘটে দুটি অ্যালকোক্সি (R - O·) রেডিকেল উৎপন্ন হয়।

90%

10%

$$R - OOO - R \rightarrow 2R - OOO$$
 (অ্যালকোক্সি ফ্রি-রেডিকেল)

 $R - O \cdot + HBr \rightarrow R - OH + Br'$ (ব্রোমিন ফ্রি-রেডিকেল) দ্বিতীয় ধাপ: প্রথম ধাপের ব্রোমিন ফ্রি-রেডিকেল অ্যালকিনকে আক্রমণ করে অধিক স্থায়ী 2° ব্রোমো অ্যালকাইল ফ্রি-রেডিকেল গঠন করে। এ ধাপে অপেক্ষাকৃতভাবে কম স্থায়ী 1° -ব্রোমো অ্যালকাইল ফ্রি-রেডিকেল উৎপন্ন হয়।

$$2R-CH=CH_2+2B\dot{r}$$
 \longrightarrow $R-\dot{C}H-CH_2Br$ $2^{\circ}-$ ফ্রি-রেডিকেল \rightarrow $R-CHBr-\dot{C}H_2$ $1^{\circ}-$ ফ্রি-রেডিকেল

তৃতীয় ধাপ: জৈব পার অক্সাইডের বিয়োজনে উৎপন্ন অ্যালকোহল নিজে হাইড্রোজেন পরমাণু (H) দান করে অধিক স্থায়ী 2°-ফ্রি-রেডিক্যাল ও কম স্থায়ী 1°-ফ্রি-রেডিক্যালকে স্থায়ী যৌগে পরিণত করে।

 $C_2H_2 \xrightarrow{450^{\circ}C} A \xrightarrow{CH_3COCl} B$

(क) त्रियं का त्री विकास की शास का त्री विकास का

[কু. বো. ১৭]

(খ) - NH2 কে অর্থো-প্যারা নির্দেশক বলা হয় কেন?

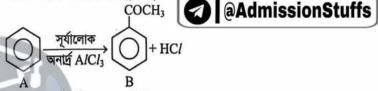
[চ. বো. ২১]

(গ) উদ্দীপকের 'A' যৌগ থেকে 'গ্যামাঝ্রিন' প্রস্তুতি সমীকরণসহ লিখ।

[চ. বো. ২১]

- (ঘ) ক্রিয়াকৌশলসহ উদ্দীপকের 'B' যৌগের প্রস্তুতি ব্যাখ্যা কর। iচ. বো. ২১] **সমাধান**:
- বেসব মূলক বেনজিন বলয়ে উপস্থিত থেকে বেনজিন বলয়ের সক্রিয়তা বৃদ্ধি করে, তাদেরকে সক্রিয়কারী মূলক বলে।
- य Ñ H₂ भृनक दिनिष्ठिन विलास अर्था-भारता निर्दिगक। कांत्रण ध्वत निঃসঙ্গ ইলেকট্রনজোড় রেজোন্যান্সের মাধ্যমে বেনজিন বলয়ে প্রবেশ করে। ফলে বেনজিনের ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। বিশেষ করে অর্থো-প্যারা অবস্থানের ইলেকট্রন ঘনত তুলনামূলকভাবে বেশি বৃদ্ধি পায়। ফলে, নবাগত প্রতিস্থাপক অর্থো-প্যারা অবস্থানে যুক্ত হয়। তাই -NH2 মূলক অর্থো-প্যারা নির্দেশক।

$$C_2H_2 \xrightarrow{450^{\circ}C} \overbrace{Fe}$$


সূতরাং A যৌগটি বেনজিন।

উজ্জল সূর্যালোকে অথবা অতিবেগুনি রশার (UV-ray) উপস্থিতিতে বেনজিনের সাথে ক্লোরিনের সংযোজনে বেনজিন হেক্সাক্লোরাইড উৎপন্ন হয়।

$$+3Cl_2 \xrightarrow{\frac{7}{4}} Cl Cl$$

বেনজিন হেক্সাক্লোরাইডের গামা সমাণুকের বাণিজ্যিক নাম গ্যামাক্সিন, যা একটি তীব্ৰ জীবাণুনাশক পদাৰ্থ।

'গ' হতে পাই, উদ্দীপকের A যৌগটি বেনজিন। এখন B যৌগ শনাক্ত করতে অবশিষ্ট বিক্রিয়া সম্পন্ন করি,

অতএব, B যৌগটি হচ্ছে অ্যাসিটোফেনোন।

নিম্নে আসিটোফেনোন প্রস্তুতির ক্রিয়া কৌশল ব্যাখ্যা করা হলো: প্রথম ধাপ: এই ধাপে অ্যাসাইল ক্যাটায়ন ইলেকট্রোফাইল তৈরি হয়–

$$\begin{array}{ccc}
O & O \\
CH_3 - C - \ddot{C}l^{:} + \dot{A}lCl_3 \longrightarrow CH_3 - C^{+} + AlCl_4
\end{array}$$

দ্বিতীয় ধাপ: এ ধাপে অ্যাসাইল ক্যাটায়ন বেনজিন বলয়ের π ইলেকট্রন দ্বারা আকষ্ট হয়ে সিগমা কমপ্লেক্স গঠন করে।

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

তৃতীয় ধাপ: শেষ ধাপে AICI ু এর সংস্পর্শে ত কমপ্লেক্স থেকে প্রোটন (H[†]) অপসারিত হয়ে অ্যাসিটোফেনোন উৎপ্র করে।

$$+ HCl + AlCl_3$$
আসিটোফেনোন

প্রশ্ন ▶ ২৬ A – ট্রাইমার

যার মনোমার C_nH_{2n-2} অনার্দ্র $AlCl_3$ CH_3Cl, Δ

(ক) ট্রাইফিনাইল মিথেনের সংকেত কী?

যেখানে n=2

[য. বো. ১৭]

(थ) व्याপात्मान ऎटोगातिञ अपर्मन कत्त- ग्राथा कत ।

[দি. বো. ২২; অনুরূপ প্রশ্ন: কু. বো. ১৯]

- (গ) উদ্দীপকের বিক্রিয়ায় অনার্দ্র AICI3 প্রভাবক ব্যবহারের কারণ ব্যাখ্যা [ব. বো. ২১]
- (ঘ) ইলেকট্রফিলিক প্রতিস্থাপন বিক্রিয়ায় A ও B এর কোনটি অধিক সক্রিয়? বিশ্লেষণ কর। বি. বো. ২১; অনুরূপ প্রশ্ন: ঢা. বো. ২৩, ২১, ১৭; कृ. ब्रा. २७, २५; य. ब्रा. २७, ১१; व. ब्रा. २७, २२, २১, ১৭; দि. ब्रा. २७, २२, २১, ১৯; ह. (वा. २२, २); म. (वा. २১, २२; প. (वा. २); त्रा. (वा. ১৭; मि. (वा. २১, ১৯, ১৭)

Rhombus Publications

সমাধান:

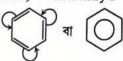
ক

ট্রাইফিনাইল মিথেন

🔁 যখন এক প্রকার কার্যকরী মূলক কাঠামো থেকে স্বতঃস্কূর্তভাবে ভিন্ন প্রকার কার্যকরী মূলকে রূপান্তরিত হয় এবং উভয় কাঠামোর মধ্যে গতিশীল সাম্যাবস্থার সৃষ্টি হয়, তবে এ ধরনের সমাণুতাকে একে অপরের টটোমার বলে।

প্রোপানোনের ক্ষেত্রে এর কার্যকরী মূলক $-\ddot{C}$ - কার্বন-কার্বন দ্বিবন্ধন ও অ্যালকোহল মূলক (–OH) অর্থাৎ 'ইন ও অল' মূলকে রূপান্তরিত হয় ও সাম্যাবস্থায় থাকে। অর্থাৎ প্রোপানোন থেকে স্বতঃস্কৃর্তভাবে প্রোপিন-2-অল এর সৃষ্টি হয়। তাই প্রোপানোন ও প্রোপিন-2-অল পরস্পর টটোমার সমাণু। সুতরা, প্রোপানোন টটোমারিতা প্রদর্শন করে।

$$\begin{array}{cccc}
 & OH \\
 & OH \\
 & CH_3 - C - CH_2 & \longrightarrow CH_3 - C & = CH_2
\end{array}$$


A যৌগটি বেনজিন এবং B যৌগটি টলুইন।

এখানে প্রভাবক হিসেবে অনার্দ্র AICl3 এর উপস্থিতিতে বেনজিনকে মিথাইল ক্লোরাইডের সঙ্গে বিক্রিয়া ঘটানো হয়। যেহেতু অনার্দ্র AlCla একটি লুইস এসিড, তাই উপরোক্ত বিক্রিয়ায় এটা মিখাইল ক্লোরাইড থেকে একজোড়া ইলেকট্রন গ্রহণ করে মিথাইল কার্বোনিয়াম আয়ন উৎপন্ন করে যা বেনজিন বলয়ের π বন্ধনকে আক্রমণ করে।

 $CH_3 - CI : + A/CI_3 \longrightarrow CH_3 + A/CI_4$ কিন্তু আর্দ্র A/Cl3 ব্যবহার করলে এটি পানি থেকে একজোড়া ইলেকট্রন গ্রহণ করার সুযোগ থেকে যায়। ফলে মিথাইল ক্লোরাইড থেকে কার্বোনিয়াম আয়ন তৈরি করতে পারে না। তাই উদ্দীপকের বিক্রিয়ায় অনার্দ্র AICI3 প্রভাবক ব্যবহার করা হয়েছে।

য় উদ্দীপকের A ও B যৌগদ্বয় যথাক্রমে বেনজিন ও টলুইন। ইলেকট্রনাকষী প্রতিস্থাপন বিক্রিয়া নির্ভর করে অ্যারোমেটিক বলয়ে ইলেকট্রন ঘনতের উপর। অ্যারোমেটিক বলয়ে ইলেকট্রন ঘনত বেশি रल रेलक्ष्वेनाकर्षी প্রতিস্থাপন বিক্রিয়া দ্রুত হয়। এখন বেনজিনের গঠনে প্রতিটি কার্বনে একটি করে অসংকরিত $2p_z^I$ অরবিটাল থাকে যা পরস্পরের সাথে পাশাপাশি অধিক্রমণ করে একটি সুষম ও সঞ্চারণশীল আণবিক অরবিটাল গঠন করে। বিক্রিয়াকালে বেনজিনে আক্রমণকারী ইলেকট্রোফাইল ঐ π ইলেকট্রন মেঘকে আক্রমণ করে বিক্রিয়া শুরু করে।

> Chemistry 2nd Paper Chapter.

অপরদিকে, টলুইনের অ্যারোমেটিক বলয়ে সংযুক্ত মিথাইল মৃল্যু धनाजाक जारतभीय कन राजिन वनस्य जर्सा छ भावा जनकृ ইলেকট্রন ঘনত্ব বৃদ্ধি করে। ফলে বেনজিন বলয়টি ইলেকট্রোস্ক্রি প্রতিস্থাপন বিক্রিয়ার জন্য অধিক সক্রিয় হয়।

역회 ▶ ২9

$$A(C_nH_{2n})$$
 O_3/CCl_4 B $+ C$ (১ কার্বনবিশিষ্ট) $K_2Cr_2O_7 + H_2SO_4$ O

(ক) d-ল্যাকটিক এসিডের সংকেত লিখ?

রা. বো. ২১

- (খ) CICH2COOH ও CH3COOH এর মধ্যে কোনটি অধিক অঞ্চী এবং কেন ব্যাখ্যা কর। মি. বো. ২২; অনুরূপ প্রশ্ন: রা. বো.১১
- গ্র উদ্দীপকের বিক্রিয়াটি হচ্ছে ফিঙেল ক্রাফট অ্যালকাইলেশন। যেখানে (গ) উদ্দীপকের B ও C যৌগের কোনটি অ্যালঙল ঘনীভবন বিক্রিয়া দেয়া রা. বো. ২২; অনুরূপ প্রশ্ন: কৃ. বো. ২৩, ২২; দি. বো. ২৩, ১৯; সি. বো. ২২, ১৯ ব. বো. ১
 - (ঘ) উদ্দীপকের B ও D যৌগের একটি কেন্দ্রাকর্ষী যুক্ত বিক্রিয়ায় সিয়ি হলেও অপরটি সক্রিয় নয়- কারণ বিশ্লেষণ কর। রা. বো. ২১ সমাধান:
 - ক d-ল্যাকটিক এসিডের সংকেত CH₃CH(OH)COOH।
 - জৈব এসিডের অম্লুতার মাত্রা ঐ এসিডের কার্যকরী মূলক COOH এর কার্বন পরমাণুর ধনাতাক চার্জের পরিমাণের উপর নির্ভর করে ধনাত্মক চার্জের মাত্রা যত বেশি হয়, – OH মূলকের আয়নিকরণ তঃ বৃদ্ধি পায়, ফলে অম্রের তীব্রতা তত বেশি হয়। এখন, CICH2COOH অণুতে - CH3 মূলক একটি H পরমাণ

ঝণাত্মক আবেশধর্মী Cl পরমাণু দ্বারা প্রতিস্থাপিত হওয়ায় — COOH মূলকের কার্বন পরমাণুতে আংশিক ধনাত্মক চার্জের মাত্রা বৃদ্ধি পায়। আবার, CH3COOH অণুতে - COOH মূলকের সাথে ধনাঅ আবেশধর্মী - CH3 মূলক যুক্ত থাকায় কার্যকরী মূলকের কার্কা পরমাণুতে ধনাত্মক চার্জের মাত্রা হ্রাস পায়। সুতরাং CH3COOH অপেক্ষা ClCH2COOH অধিক অশ্লীয়।

ক উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে,

$$\begin{array}{c} CH_3-CH=CH_2 \xrightarrow{O_3} CH_3 - CH & CH_2 \xrightarrow{CH_2} H_2O \\ \text{(প্রাপিন} & CCI_4 \end{array}$$

r Chapter-2

াইল মূলকের াারা অবস্থানে লকট্রোফিলিক

রো. বো. ২২ অধিক অশ্লীয় প্রশ্ন: রা. বো.১৯ বিক্রিয়া দেয়? সি. বো. ২২, ১৯; ব. বো. ২১ ক্রিয়ায় সক্রিয় রো. বো. ২২

of - COOH নির্ভর করে। ায়নিকরণ তত

ট Η পরমাণু ায় - COOH ত্রা বৃদ্ধি পায়। সাথে ধনাত্মক বুলকের কার্বন CH₃COOH

+ CH3CHO (B)

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book.....

অর্থাৎ, B ও C যৌগদ্বর যথাক্রমে ইথান্যাল ও মিথান্যাল। অ্যালডল সমাধান: ঘনীভবন বিক্রিয়ার শর্ত হলো $\alpha-C$ এ $\alpha-H$ থাকা। ইথান্যাল এ α – Η বিদ্যমান। তাই ইথান্যাল অ্যালডল ঘনীভবন বিক্রিয়া দেয়।

H

CH₃ - C = O + H - CH₂ - CHO
$$\xrightarrow{\text{eqg NaOH}}$$
 CH₃ -C - CH₂ - CHO

OH

OH

2-হাইড্রব্রি বিউটান্যাল

অপরদিকে, মিথান্যালে α – H না থাকায় এটি অ্যালডল ঘনীভবন বিক্রিয়া দেয় না।

্বা 'গ' হতে পাই, B যৌগটি ইথান্যাল।

সূতরাং,
$$CH_3CHO + [O] \xrightarrow{K_2Cr_2O_7} CH_3COOH$$
 D

অর্থাৎ D হলো ইথানয়িক এসিড। ইথান্যাল ও ইথানয়িক এসিডের মধ্যে ইথান্যাল কেন্দ্রাকর্ষী যুত বিক্রিয়ায় সক্রিয়তা দেখায়। ইথান্যালের কার্বনিল (>C = O) মূলকে পোলারিটির উদ্ভব হয়। C প্রান্তে আংশিক তড়িং ধনাত্মকতা ও O

প্রান্তে আংশিক তড়িৎ ঋণাত্মকতার সৃষ্টি হয়। ফলে এটি নিউক্লিওফিলিক বিকারককে আকৃষ্ট করতে পারে। অপরদিকে, ইথানয়িক এসিডের কার্বনিল মূলকে কার্বন প্রান্তে আংশিক তড়িং ধনাতাকতা ও অক্সিজেন প্রান্তে আংশিক তড়িং খাণাতাকতা সৃষ্টি হলেও পার্শ্ববর্তী - OH গ্রুপের O একজোড়া মুক্তজোড় ইলেকট্রন কার্বনিল এর কার্বনকে দেয়। ফলে কার্বনিল এর C এর ধনাত্মকতা প্রশমিত হয়। – OH গ্রুপের O তার ইলেকট্রন ঘাটতি পূরণের জন্য O - H বন্ধনের ইলেকট্রন নিজের দিকে টেনে নেয়। এতে O - H

$$CH^{3} - \overset{\circ}{C} - O - H \Longrightarrow CH^{3} - \overset{\circ}{C} - \overset{\circ}{O} - H \Longrightarrow$$

বন্ধন ভেঙ্গে প্রোটন ত্যাগ করে।

$$CH_3 - C = \mathring{O} - H \Longrightarrow CH_3 - C = O + H^+$$

অতএব, ইথানয়িক এসিডে (>C = O) মূলকের C এ ধনাত্মকতা না থাকায় কেন্দ্রাকর্ষী বিকারক যুক্ত হতে পারে না।

পরিশেষে বলা যায়, B ও D তথা ইথান্যাল ও ইথানয়িক এসিডের মধ্যে ইথান্যাল কেন্দ্রাকর্ষী যুত বিক্রিয়ায় সক্রিয় হলেও ইথানয়িক এসিড সক্রিয় নয়।

থ্ন
$$\triangleright$$
 ২৮ (i) $R - I + Mg \xrightarrow{\mathfrak{SF}} \mathfrak{F}$ থার $\longrightarrow A$ (ii) $C_2H_6O(B) \xrightarrow{\overline{\gamma}} C$

(क) कत्रभानिन की?

(ব) SO3 যৌগটি ইলেকট্রন আকর্ষী কেন?

[সি. বো. ২২]

(গ) B ও C যৌগের মধ্যে পার্থক্য সমীকরণসহ লিখ।

[पि. (वा. २১]

(प) A যৌগ হতে 1°, 2° ও 3° অ্যালকোহল প্রস্তুতি সমীকরণসহ লিখ।

দি. বো. ২১, ১৭; অনুরূপ প্রশ্ন: দি. বো. ১৭; সি. ২৩, ২১]

- ক মিথান্যাল বা ফরমালডিহাইড এর 40% জলীয় দ্রবণকে ফরমালিন বলা
- হা যে সকল বিকারকে ইলেকট্রন ঘাটতি বা শূন্য অরবিটাল থাকে এবং विकिय़ाकारन विकिय़रकत मर्तीष्ठ घनजू युक्त স্থाনে जाक्रमण करत ইলেকট্রন জোড় গ্রহণ করে বন্ধনে আবদ্ধ হয়, তাদেরকে ইলেকট্রন আকর্ষী বিকারক বলে। SO3-এ S-এর অষ্টক সংকোচন ঘটে, তাই স্থিতিশীলতার জন্য SO3 আরও দুটি ইলেকট্রন গ্রহণ করতে চায়। সূতরাং, SO1 একটি ইলেকট্রন আকর্ষী বিকারক।
- ্যা উদ্দীপকের B তথা C₂H6O এর সম্ভাব্য সমাণু হলঃ

CH3CH2OH & CH3 - O - CH3 ডাই মিথাইল ইথার

নিম্নের ইথানল ও ডাই মিথাইল ইথারের পার্থক্য নিরূপিত হলো: আয়োডোফর্ম পরীক্ষা: ইথানল এ পরীক্ষায় হলুদ অধঃক্ষেপ সৃষ্টি করলেও ডাইমিথাইল ইথার তা করে না।

$$CH_3CH_2OH + 4I_2 + 6NaOH \longrightarrow CHI_3$$
 (श्वृष्) $\downarrow +$
 $HCOONa + 5NaI + 5H_2O$

CH₃ - O - CH₃ + I₂ + NaOH → No Reaction PCI₅ अत्र সাথে विकियाः ইथानन PCI₅ अत्र সাथে विकियाय HCI গ্যাস উৎপন্ন করলেও ডাই মিথাইল ইথার তা করে না।

 $CH_3CH_2OH + PCl_5 \longrightarrow C_2H_5Cl + POCl_3 + HCl(g)$

 $CH_3 - O - CH_3 + PCI_5 \longrightarrow C_2H_5CI + POCI_3$

পরীক্ষান্বয় দ্বারা সমাণুদ্বয়ের পার্থক্য নিরূপণ করা যায়।

ঘ (i) নং হতে,

$$R-I+Mg \xrightarrow{\mathfrak{S}} \mathfrak{F}$$
থার $R-MgI$

অর্থাৎ, A হল গ্রিগনার্ড বিকারক। গ্রিগনার্ড বিকারক হতে 1°, 2° ও 3° অ্যালকোহল প্রস্তুতি নিচে দেখানো হল:

গ্রিগনার্ড বিকারকের ইথারীয় দ্রবণের সাথে মিথান্যাল এর বিক্রিয়ায় উৎপন্ন মধ্যবর্তী জটিল যৌগকে এসিডীয় মাধ্যমে অর্দ্র বিশ্লেষণ করলে 1° অ্যালকোহল পাওয়া যায়।

O OMgl OH
$$|$$
 H − C − H + RMgl \longrightarrow H − C − H $\xrightarrow{\text{H}_3\text{O}^+}$ H − C − H $\xrightarrow{\text{I}}$ RCH₂OH $\stackrel{\text{R}}{\text{R}}$ R $\stackrel{\text{R}}{\text{R}}$ $\stackrel{\text{R}}{\text{R}}$

মিথান্যালের পরিবর্তে উচ্চতর অ্যালডিহাইডের সাথে ঘ্রিগনার্ড বিকারকের বিক্রিয়ায় 2° অ্যালকোহল উৎপন্ন হয়।

विकियाय 3° ज्यानरकारन উৎপन्न रय।

 $R - \ddot{C} - R + RMgI \longrightarrow R - \overset{1}{C} - R \xrightarrow{H_3O^+} R - \overset{1}{C} - R \xrightarrow{\text{ql } R_3COH}$ 3° আলকোহল

(i)
$$R - NO_2 + [H] \xrightarrow{Sn} A$$
(ii) $Ar - NO_2 + [H] \xrightarrow{Sn} B$

(ক) কার্বানায়ন কাকে বলে?

मि. त्वा. २১, ১৯; कृ. त्वा. ১१

(খ) – OH মূলক অর্থো-প্যারা নির্দেশক কেন?

কু. বো. ২২; সি. বো. ২১)

(গ) উদ্দীপকের A ও B এর মধ্যে কোনটি অধিক ক্ষারীয়? ব্যাখ্যা কর।

[সি. বো. ২১; অনুরূপ প্রশ্ন: রা. বো. ২৩; চ. বো. ১৭]

(ঘ) উদ্দীপকের B যৌগের নাইট্রেশন ও ক্লোরিনেশন বিক্রিয়ায় একই অবস্থানে প্রতিস্থাপন ঘটে কি না? যুক্তি দেখাও। অনুরূপ প্রশ্ন: ঢা. বো. ২৩; রা. বো. ২৩; সি. বো. ২১; य. বো. ১৯)

সমাধান:

- ক একক ঋণাত্মক চার্জযুক্ত কার্বন পরমাণু বিশিষ্ট জৈব আয়নকে কার্বানায়ন বলে।
- OH মূলক অর্থো-প্যারা নির্দেশক হিসেবে কাজ করে। বেনজিন বলয়ে যুক্ত – OH ধনাতাক মেসোমেরিক প্রভাবে নিঃসঙ্গ ইলেকট্রন জোড় বেনজিন বলয়ে ঠেলে দেয়। এতে বেনজিন বলয়ে অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পায় এবং আগমনকারী ইলেকট্রোফাইল এসব সক্রিয় স্থানে সহজে প্রতিস্থাপন ঘটায়। এভাবে – OH অর্থো-প্যারা নির্দেশক হিসেবে কাজ করে।
- ত উদ্দীপকের বিক্রিয়াদ্বয় সম্পূর্ণ করে পাই

 $R - NO_2 + [H] \xrightarrow{Sn} R - NH_2$

NH2 $Ar - NO_2 + [H] \xrightarrow{Sn} Ar - NH_2 \text{ or }$

অর্থাৎ, A ও B যৌগদ্বয় যথাক্রমে অ্যালকাইল অ্যামিন ও অ্যানিলিন। 1° অ্যামিনের N এ নিঃসঙ্গ ইলেকট্রন জোড় থাকায় এটি প্রোটন গ্রহণ করতে পারে ও ক্ষারধর্ম প্রদর্শন করে। উপরম্ভ – R মূলক থাকায় ধনাত্মক আবেশীয় প্রভাবে – R মূলকটি N এর ইলেকট্রন ঘনত্বকে আরও বাড়িয়ে দেয়।

অন্যদিকে, অ্যানিলিন এর – NH2 হতে N এর মুক্তজোড় ইলেকট্রন আংশিকভাবে বেনজিন বলয়ের সঞ্চারণশীল π -ইলেকট্রনের সাথে মিলিত হয়। ফলে প্রোটনের সাথে সন্নিবেশ বন্ধন গঠনের প্রবণতা কমে याय ।

অ্যামিনের ক্ষারকত্ব নির্ভর করে N এর ইলেকট্রন প্রাপ্যতার উপর। অতএব বলা যায়, A তথা প্রাইমারী অ্যামিনের ক্ষারকত্ব অ্যানিলিনের চেয়ে বেশি।

Rhombus Publications

অ্যালডিহাইডের পরিবর্তে কিটোনের সাথে গ্রিগনার্ড বিকারকের 🔃 উদ্দীপকের B যৌগ তথা অ্যানিলিন এর ক্লোরিনেশন ও নাইট্রেশ্যু একই অবস্থানে প্রতিস্থাপন ঘটে না। অ্যানিলিন এর – NH2 মূলক্টি

......... ACS, > Chemistry 2nd Paper Chapter-2

একটি আর্থো-প্যারা নির্দেশক। এর ক্লোরিনেশনে প্রতিস্থাপহ ইলেকট্রোফাইল অর্থো ও প্যারা অবস্থানে প্রতিস্থাপন ঘটায়।

$$\begin{array}{c|c}
NH_2 & NH_2 \\
\hline
CI & \\
CI &$$

অন্যদিকে, অ্যানিলিনের ক্ষেত্রে নাইট্রেশনে এসিডের H আরু অ্যানিলিনের সাথে বিক্রিয়া করে অ্যানিলিনিয়াম আয়ন উৎপন্ন করে এটি (– NH⁺) মেটা নির্দেশক হওয়ায় নাইট্রেশনে – NO₂ (নাইস্ট্রা মেটা অবস্থানে যুক্ত হয় এবং মেটা নাইট্রো অ্যানিলিন উৎপন্ন হয়।

 NH_2 NH_2 NH3 Conc. HNO₃ Conc. HNO₃ $+ H_2O$

প্রশ্ন ▶ ৩০

C₆H₅COONa + NaOH(CaO) -

ক) কার্বলিক এসিডের সংকেতটি লেখ।

কু. বো. ১৫

(খ) জৈব যৌগের অসম্পুক্ততা নির্ণয়ের একটি পরীক্ষা বিক্রিয়াসহ বর্ণনা কর। মি. বো. ২২

(গ) উদ্দীপকের X থেকে কীভাবে অ্যানিলিন প্রস্তুত করবো? সমীকরণসহ দি. বো. ২১

(ঘ) উদ্দীপকের Y এবং Z এর মধ্যে কোনটি ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ায় অধিক সক্রিয়? অনুরণনসহ বিশ্লেষণ কর। অনুরূপ প্রশ্ন: ঢা. বো. ২৩, ২২, ২১, ১৭; কু. বো. ২৩, ২১; ম. বো. ২৩, ২২, ২১, ১৭; व. त्वा. २७, २२, २১, ১৭; मि. त्वा. २२, २७, ১৯; ह. त्वा. २२, २১, ১৯; সি. বো. ২১, ১৯, ১৭; রা. বো. ১৭

সমাধান:

ক কার্বলিক এসিডের সংকেতটি হলো:

জৈব যৌগে কার্বন-কার্বন π-বন্ধনের উপস্থিতিজনিত ধর্মাবলিকে জৈব যৌগের অসম্পৃক্ততা বলে। অসম্পৃক্ততা নির্ণয়ের জন্য বেয়ার পরীক্ষা ব্যাখ্যা করা হলো: ক্ষারীয় KMnO₄ এর গোলাপি বর্ণের দ্রবণে অসম্পৃক্ত হাইড্রোকার্বন যোগ করলে, হাইড্রোকার্বনটি জারিত হয়ে গ্রাইকল ও কার্বক্সিলিক এসিড উৎপন্ন করে। ফলে পারম্যাঙ্গানেটের গোলাপি বর্ণ দূর হয়। ফলে জৈব যৌগে কার্বন-কার্বন π বন্ধনের উপস্থিতি প্রমাণিত হয়।

a Admission Stuffs

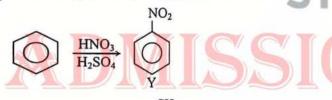
জেব রসায়ন > ACS, FRB Compact Suggestion Book

$$CH_2 = CH_2 + [O] + H_2O \xrightarrow{KMnO_4} HOCH_2 - CH_2OH$$
 ইথিলিন গ্লাইকল

$$CH \equiv CH + 4 [O] + H_2O \xrightarrow{KMnO_4} HOOC - COOH$$
 অব্ল্লালিক এসিড

ক উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$\begin{array}{c}
\text{COONa} \\
+ \text{NaOH(CaO)} \longrightarrow \bigcirc \\
X
\end{array}$$


অর্থাৎ সোডিয়াম বেনজোয়েট এর সাথে সোডালাইমের বিক্রিয়ায় ভিকার্বক্সিলেশন প্রক্রিয়ায় বেনজিন উৎপন্ন হয়। বেনজিন এর সাথে HNO_3 ও H_2SO_4 দ্বারা নাইট্রেশনে নাইট্রো বেনজিন পাওয়া যায়।

$$+ \text{HNO}_3 \frac{\text{Conc. HNO}_3}{\text{Conc. H}_2\text{SO}_4}$$

প্রাপ্ত নাইট্রো বেনজিনকে Sn ও HC/ মিশ্রণ দ্বারা 70°C এ উত্তপ্ত করলে অ্যানিলিন উৎপন্ন হয়।

$$NO_2$$
 $+ 6[H] \xrightarrow{Sn/HCl} + H_2O$ ज्यानिनिन

ঘ উদ্দীপক অনুসারে 'গ' হতে পাই X হলো বেনজিন। 🌑 🌑

অর্থাৎ, Y ও Z যথাক্রমে নাইট্রো বেনজিন ও টলুইন।
নাইট্রোবেনজিনের নাইট্রো (– NO₂) মূলকের ঋণাত্মক মেসোমেরিক
প্রভাবের ফলে বেনজিন বলয়ের π -ইলেকট্রনের মেঘ নিজের দিকে
টেনে নের। ফলে আর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত হ্রাস পায়

তথা বেনজিন বলয়টি কিছুটা সক্রিয়তা হারায়।

অপরদিকে $- CH_3$ মূলক ধনাত্মক আবেশীয় ফল দ্বারা বেনজিন বলয়ে ইলেকট্রন যোগান দিয়ে এর অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত্বকে আরও বাড়িয়ে দেয়। তথা টলুইনের $- CH_3$ বলয় সক্রিয়কারী গ্রুপ হিসেবে কাজ করে। এসব অর্থো ও প্যারা অবস্থানসমূহে ইলেকট্রোফাইল সহজে আকৃষ্ট হয়।

ফলে সক্রিয়তার ক্রম হবে:

 $\begin{array}{c}
\text{1. HCHO 2. H}_2\text{O, H}^+ \\
\text{CH}_3\text{MgI} \xrightarrow{} & \text{1. CH}_3\text{CHO 2. H}_2\text{O, H}^+ \\
\text{1. CH}_3\text{COCH}_3 2. H}_2\text{O, H}^+ \\
\text{2. CH}_3\text{COCH}_3 2. H}_2\text{O, H}^+ \\
\text{3. CH}_3\text{CO$

- (ক) কার্বোনিয়াম আয়নের সংজ্ঞা দাও।
- (খ) ফিউরান একটি অ্যারোমেটিক যৌগ ব্যাখ্যা কর।
- (গ) 'X' যৌগ হতে ইথার তৈরি সমীকরণসহ বর্ণনা কর।
 - [ম. বো. ২১; অনুরূপ প্রশ্ন: সি. বো. ২১; দি. বো. ২১; ব. বো. ১৯]
- (ঘ) X, Y এবং Z এর রাসায়নিক সক্রিয়তার ক্রম লুকাস বিকারকের সাহায়্যে কারণসহ ব্যাখ্যা কর।
- ্মি. বো. ২১; অনুরূপ প্রশ্ন: রা. বো. ২২; ঢা. বো. ২১, ১৭; সম্মিলিত বো. ১৮] সমাধান:
- ক কোন জৈব যৌগের কেন্দ্রীয় কার্বন পরমাণুর সাথে সমযোজী বন্ধনে যুক্ত কোন পরমাণু বা মূলক বিষম বিভাজনের মাধ্যমে বিচ্ছিন্ন হলে যে ধনাত্মক আধানযুক্ত আয়নের সৃষ্টি হয় তাকে কার্বোক্যাটায়ন বলে।
- স্থায়ী চাক্রিক কাঠামো বিশিষ্ট যে সকল যৌগে বলয় গঠনকারী পরমাণুসমূহের মধ্যে (4n+2) সংখ্যক সঞ্চারণশীল π -ইলেক্ট্রন দ্বারা আণবিক অরবিটাল গঠিত হয় তাদেরকে অ্যারোমেটিক যৌগ বলে।

ফিউরান এর ক্ষেত্রে দৃটি π বন্ধন এর চারটি π-ইলেকট্রন ও Ο এর মুক্তজোড় ইলেকট্রনদ্বয় সঞ্চারণশীল ইলেকট্রন হিসেবে কাজ করে। হাকেল নীতি অনুযায়ী, এখানে চক্র সংখ্যা 1 অর্থাৎ, n = 1। অতএব (4n + 2) = (4.1 + 2) = 6টি সঞ্চারণশীল π-ইলেকট্রন থাকতে হবে যা ফিউরান এ বিদ্যমান। অতএব বলা যায়, ফিউরান একটি অ্যারোমেটিক যৌগ।

গ্র গ্রিগনার্ড বিকারক CH₃MgI এর সাথে HCHO এর বিক্রিয়ায় উৎপন্ন যৌগ অল্লীয় মাধ্যমে আর্দ্র বিশ্লেষণে প্রাইমারী অ্যালকোহল উৎপন্ন করে।

Rhombus Publications

308 ..

$$CH_{3} - MgI + H - C - H \longrightarrow CH_{3} - C - OMgI$$

$$H$$

$$CH_{3} - C - OMgI \xrightarrow{H_{2}O} CH_{3} - C - OH + Mg(OH)I$$

$$H$$

$$H$$

$$H$$

$$H$$

$$H$$

উৎপন্ন ইথানল বাষ্পকে 140° C এ রাখা সমপরিমাণ ইথানল ও গাঢ় H_2SO_4 মিশ্রণের উপর চালনা করে ইথোক্সি ইথেন বা ডাইইথাইল ইথার পাওয়া যায়।

ঘ উদ্দীপকের বিক্রিয়া সম্পূর্ণ করে,

$$\begin{array}{c} \text{HCHO} \\ \hline \text{H}_2\text{O}, \text{H}^+ \end{array} \rightarrow \text{CH}_3\text{CH}_2\text{OH} \\ \\ \text{CH}_3\text{MgI} \longrightarrow \begin{array}{c} \text{CH}_3\text{CHO} \\ \text{H}_2\text{O}, \text{H}^+ \end{array} \rightarrow \begin{array}{c} \text{CH}_3 \\ \text{CH}$$

অর্থাৎ, X, Y ও Z যথাক্রমে 1°, 2° ও 3° অ্যালকোহল।
লুকাস বিকারকের সাথে 3° অ্যালকোহল যোগ করার সাথে সাথে সাদা
অধ্যক্ষেপ দেয়। 2° অ্যালকোহল 5-10 মিনিট পর অধ্যক্ষেপ দেয়
আর 1° অ্যালকোহল কক্ষ তাপমাত্রায় বিক্রিয়া করে না। দীর্ঘ সময়
উত্তপ্ত করার পর তৈলাক্ত স্তর সৃষ্টি করে।

 CH3

 CH3 — CH3 — CH4 H2O

 CH3 — CH3 — CH3

 3° আजित्काश्म

 CH3 — CH3

 CH3 — CH3

 CH3 — CH3 — CH3

 CH3 — CH3 — CH4 H2O — H

 H

 YIMI অ48€ ФР

 H

 YIMI W48€ ФР

 H

$$CH_3-C-OH+HCI \xrightarrow{ZnCI_2} CH_3CH_2CI+H_2O$$

1° অ্যালকোহল

∴ সক্রিয়তার ক্রমটি হল 3° অ্যালকোহল > 2° অ্যালকোহল > 1° অ্যালকোহল। . ACS/ > Chemistry 2nd Paper Chapter-2

$$(i) O_{3} \xrightarrow{(i) Zn/H_{1}O} A \xrightarrow{(KOH(alc))} X \xrightarrow{KOH(aq)} Y \xrightarrow{K_{1}Cr_{2}O_{7}} Y \xrightarrow{L_{1}SO_{4}} Z$$

'X' = C4H9Br এর একটি সমাণু

'Z' অথবা, 'B' + 2, 4 - DNPH ----> হলুদ অধঃক্ষেপ

(ক) জুইটার আয়ন কী?

(খ) ডিকার্বক্সিলেশন বিক্রিয়া ব্যাখ্যা কর।

কু. বো. ২১]

(গ) উদ্দীপক অনুসারে 'X' যৌগের গাঠনিক সংকেত নির্ণয় কর IIঢা. বো. ১৯

(ঘ) 'B' ও 'Z' যৌগের কেন্দ্রকর্মী যুত বিক্রিয়ার সক্রিয়তা একই হবে কি?
 বিশ্লেষণ কর।
 তা. বো. ১৯।

সমাধান:

ক একই অণুতে ধনাত্মক ও ঋণাত্মক চার্জ বিরাজ করে এরূপ উভধর্মী আয়নকে জুইটার আয়ন বলে।

কার্বক্সিলিক এসিডের সোডিয়াম লবণ ও সোডালাইম (NaOH + CaO) এর মিশ্রণকে উত্তপ্ত করলে ডিকার্বক্সিলেশন প্রক্রিয়ার অ্যালকেন ও Na₂CO₃ উৎপন্ন হয়। সোডালাইমসহ ডিকার্বক্সিলেশন বিক্রিয়াকে ভূমা বিক্রিয়াও বলা হয়। এ বিক্রিয়ায় উৎপন্ন আলকেনে কার্বন পরমাণু সংখ্যা বিক্রিয়ক এসিডের (লবণ) কার্বন সংখ্যা অপেক্ষা একটি কার্বন কম হয়।

RCOONa + NaOH (CaO)
$$\xrightarrow{\Delta}$$
 R – H + Na₂CO₃(CaO) ত্যালকেন

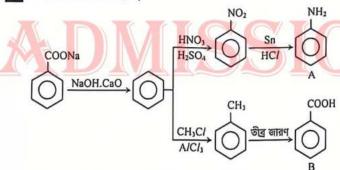
ক্র উদ্দীপক অনুসারে Z ও B উভয়ে 2, 4 DNPH এর সাথে বিক্রিয়া করে অর্থাৎ এরা অ্যালডিহাইড বা কিটোন। তবে B টলেন বিকারকের সাথে বিক্রিয়া করলেও Z বিক্রিয়া করে না। সুতরাং, B হবে অ্যালডিহাইড ও Z হবে কিটোন। Z যৌগটি কিটোন যা Y এর জারণে উৎপন্ন হচ্ছে। অতএব বলা যায়, Y হবে 2° অ্যালকোহল। আবার Y কে 2° অ্যালকোহল হতে হলে X কে হতে হবে 2° অ্যালকাইল হ্যালাইড। X বা C4H9Br এর সমাণু 2° অ্যালকাইল হ্যালাইড হলে,

$$\begin{array}{c} \text{Br} & \text{OH} & \text{O} \\ | & \text{CH}_3 - \text{C} - \text{C}_2\text{H}_5 & \text{CH}_3 - \text{C} - \text{C}_2\text{H}_5 & \text{Go\"{b}}_{-2}\text{-cnin} \\ | & \text{H} & \text{H} & \text{2°-sujinajēn zijnišu} \end{array}$$

ত্ব 'গ' হতে, Z একটি কিটোন তথা বিউট-2-নোন।

B ও Z অর্থাৎ অ্যালডিহাইড ও কিটোন এর কেন্দ্রাকর্ষী যুক্ত বিক্রিয়ার সক্রিয়তা এক হবে না। কেন্দ্রাকর্ষী যুক্ত বিক্রিয়ার সক্রিয়তা নির্ভর করে কার্বনিল মূলকের C প্রান্তের আংশিক তড়িৎ ধনাত্মকতা ও স্টেরিক বাধার উপর। অ্যালকাইলমূলক ইলেকট্রন যোগানদাতা হিসেবে কাজ করে। এটি কার্বনিল মূলকের কার্বনের দিকে ইলেকট্রন ঠেলে দেয় ফলে কার্বনিল এর কার্বন প্রান্তের আংশিক তড়িৎ ধনাত্মকতা হ্রাস পায়।

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book.....


আংশিক তড়িৎ ধনাত্মকতা বেশি হ্রাস পায়, আবার এক্ষেত্রে স্টেরিক বাঁধার পরিমাণ বেশি। তাই B ও Z তথা অ্যালডিহাইড ও কিটোনের যুত বিক্রিয়ায় অ্যালডিহাইড অধিক সক্রিয়তা দেখাবে।

প্রশ্ন 🕨 ৩৩

- (ক) এনানসিওমার কী?
 - मि. त्वा. २১, ১৯; य. त्वा. ১৯; ह. त्वा. ১९
- (খ) উর্টজ বিক্রিয়ায় কেন ভদ্ধ ইথার ব্যবহার করা হয়? fa. বা. ২২; য়. বা. ২১ (গ) A যৌগের কার্যকরী মূলকের শনাক্তকারী পরীক্ষা রাসায়নিক সমীকরণসহ লিখ।
- (घ) A ও B योगिक नारेखिन कत्रल প্রতিস্থাপক একই অবস্থানে যুক্ত হবে কিনা- বিশ্লেষণ কর। রি. বো. ১৯; অনুরূপ প্রশ্ন: য. বো. ২৩; কু. বো. 191

সমাধান:

- ক্র এনানসিওমার হলো একটি আলোক সক্রিয় যৌগের দুটি আলোক সমাণু যারা এক সমতলীয় আলোকে সম পরিমাণ ডান বা বাম দিকে আবর্তিত করে।
- প্রথমত, ভদ্ধ ইথারে Na দ্রবীভূত থাকে কিন্তু ইথারের সাথে বিক্রিরা করে না। দ্বিতীয়ত, বিক্রিয়ার বিক্রিয়ক অ্যালকাইল হ্যালাইড ও উৎপাদ অ্যালকেন এ দ্রবীভূত হলেও অপর উৎপাদ সোডিরাম হ্যালাইড দ্রবীভূত হয় না। ফলে তা সহজে অপসারণ করা যায়।
- ব্র উদ্দীপকের বিক্রিয়া হতে,

অর্থাৎ, A যৌগটি হলো অ্যানিলিন যার কার্যকরী মূলক হল $- NH_2$ । क्राताकर्म ७ ज्यानकारनीय KOH এत সাথে थाইमाती ज्यामिनक 60-70°C তাপমাত্রায় উত্তপ্ত করলে উগ্র গন্ধযুক্ত আইসো সায়ানাইড বা কার্বিল অ্যামিন উৎপন্ন হয়।

$$NH_2 + CHCI_3 + 3KOH(a/c) \xrightarrow{60-70^{\circ}C}$$

$$N = C + 3KCI + H_2O$$

মিথাইল কার্বিল অ্যামিন

এ বিক্রিয়া হতে A বা অ্যানিলিন এর কার্যকরী মূলক শনাক্ত করা যার।

অ্যালডিহাইডের তুলনায় কিটোনের ক্লেত্রে দুটি অ্যালকাইল থাকায় এই 🔯 'গ' হতে A ও B যৌগদ্বয় যথাক্রমে অ্যানিলিন ও বেনজোয়িক এসিড।

ष्णानिनिटनत नाइँऐद्वेभटन – NO₂ मृनक प्रांठा खवञ्चाटन युष्ट हरा। रग्न यथात्न (– NH) प्राप्ता निर्फिशक । এत ফলে ज्यानिनित्नत नारेखिशत्न NO₂ প্রতিস্থাপক মেটা অবস্থানে যুক্ত হয়।

$$\begin{array}{c}
NH_2 \\
+ H_2SO_4
\end{array}$$

$$\begin{array}{c}
NH_3' \\
\hline
H_2SO_4
\end{array}$$

$$\begin{array}{c}
NH_3' \\
\hline
H_2O
\end{array}$$

$$\begin{array}{c}
NH_2 \\
\hline
NO_2
\end{array}$$

$$\begin{array}{c}
NO_2
\end{array}$$

B যৌগে তথা বেনজোয়িক এসিডে মেটা নির্দেশক – COOH থাকায় এর নাইট্রেশনে – NO2 মৃলক মেটা অবস্থানে যুক্ত হয়।

COOH COOH
$$+ HNO_3 \xrightarrow{H_2SO_4}$$
NO

অর্থাৎ, A ও B এর নাইট্রেশনে প্রতিস্থাপক একই অবস্থানে যুক্ত হয়।

 $A \xrightarrow{Pd, BaSO_4} B \xrightarrow{O_3} C + D + ZnO$

A যৌগটি তিন কার্বনবিশিষ্ট অ্যালকাইন।

- (ক) অণুরণন কাকে বলে? াদি. বো. ২৩
- (খ) অ্যালকাইন-১ অস্লধর্মী কিন্তু অ্যালকাইন-২ অস্লধর্মী নয় কেন?
- (ग) A ও B स्रोत्मत পार्थका्रम्घक পत्नीक्षा সমीकत्रभगर वर्गना कत्र ।

রা. বো. ১১

(घ) C ও D यৌগषरा द्यालाकतम विकिसा प्रचारव किना প্রয়োজনীয় রাসায়নিক বিক্রিয়াসহ বিশ্লেষণ কর।

📄 িরা. বো. ১৯; অনুরূপ প্রশ্ন: দি. বো. ২১; য. বো. ১৭; ব. বো. ১৭

- কোন যৌগের অণুর মূল কাঠামোতে পরমাণুসমূহের অবস্থান অপরিবর্তিত রেখে π ইলেকট্রনসমূহের বিন্যাসের পার্থক্য জনিত একাধিক সমশক্তির কাঠামো সৃষ্টির গতিশীল প্রক্রিয়াকে অনুরণন বলে।
- আ আলকাইন-1 যেমন: ইথাইনের ত্রিবন্ধনযুক্ত কার্বন পরমাণুদ্বয়ের sp সংকরণ ঘটে। এতে ইথাইনের উভয় কার্বন পরমাণুর নিউক্লিয়াস कार्বन-कार्বन जिशमा वन्नत्न अधिक आकृष्ठ रुख्याय C – H वन्नन पूर्वन স্যালকাইন-1 মৃদু অমুধর্মী হয়ে থাকে । কিন্তু স্যালকাইন-2 তে প্রান্তীয় H না থাকার এটি অমুধর্মীতা প্রদর্শন করতে পারে না।
- 🚮 উদ্দীপক অনুসারে, A যৌগটি তিন কার্বনবিশিষ্ট অ্যালকাইন। বিক্রিয়াটি সম্পূর্ণ করে পাই

$$CH_{3}-C = CH \xrightarrow{Pd, BaSO_{4}} CH_{3}-CH = CH_{2}$$

$$CH_{3}-CH = CH_{2}+O_{3} \longrightarrow CH_{3}-CH \xrightarrow{O} CH_{2} \xrightarrow{Zn}$$

$$O \longrightarrow O$$

$$CH_{3}CHO + HCHO + ZnO$$

Rhombus Publications

४०५.

অর্থাৎ, A ও B যৌগদ্বয় যথাক্রমে প্রোপাইন ও প্রোপিন। প্রোপাইন, ডাই-অ্যামিন সিলভার নাইট্রেট দ্রবণের সাথে বিক্রিয়ায় সিলভার অ্যালকানাইডের সাদা অধঃক্ষেপ সৃষ্টি করে।

 $CH_3 - C \equiv CH + [Ag(NH_3)_2] NO_3 \rightarrow AgC \equiv CAg ↓ + NH_4NO_3 + NH_3$ (সিলভার

আালকানাইড)

প্রোপিন তথা অ্যালকিন এরূপ বিক্রিয়া প্রদর্শন করে না। এর মাধ্যমে A ও B যৌগদ্বয়ের মধ্যে পার্থক্য নিরূপণ করা যায়।

'গ' হতে পাই, উদ্দীপকের B ও D যৌগদ্বয় যথাক্রমে ইথান্যাল $(CH_3 - CHO)$ ও মিথান্যাল (H - CHO)। যে সকল যৌগে

O || CH₃ – C – (অ্যাসিটো/ মিথাইল কার্বনিল) মূলক বিদ্যমান তারা

হ্যালোফরম বিক্রিয়া দেয়। ইথান্যাল এ $CH_3 - C - থাকায় তা$ হ্যালোফরম বিক্রিয়া প্রদর্শন করে।

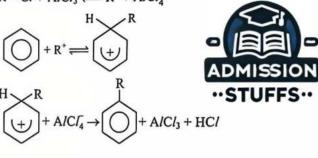
$$CH_3$$
 $C = O + Cl_2 + NaOH \rightarrow CHCl_3 + HCOONa + NaCl + H_2O$
কোরোফরম
(হলুদ অধ্যক্ষেপ)

॥ অপরদিকে, মিখান্যাল এ $CH_3 - C - না থাকায় তা স্থালোফর্ম বিক্রিয়া দেখায় না।$

 $(i) \bigcirc P + H_2O \rightarrow B + N_2 + HCI$ $(ii) C_4H_8 \longrightarrow A \xrightarrow{i. O_3 \text{ (alc.)}} C + D$ $(ii) C_4H_8 \longrightarrow B \xrightarrow{i. O_3 \text{ (alc.)}} 2E$

- (ক) মেটামারিজম কাকে বলে?
- (খ) ফিডেল-ক্রাফট বিক্রিয়ায় অনার্দ্র AICI3 ব্যবহার করা হয় কেন?

[ঢা. বো. ১৯]


- (গ) B যৌগের শনাক্তকরণ বিক্রিয়াসহ বর্ণনা কর। [কু. বো. ১৯]
- (घ) 'C' 'D' ও 'E' এর নিউক্লিওফিলিক সংযোজন বিক্রিয়ায় সক্রিয়তার কারণ বিশ্লেষণপূর্বক ক্রম নির্ধারণ কর। [कृ. বো. ১৯; অনুরূপ: রা. বো. ২৩; ব. বো. ২৩, ২২, ২১, ১৭; দি. বো. ২৩, ১৭; य. বো. ২২, ১৯; ঢা. বো. ২২, ১৯; দি. বো. ২২; ম. বো. ২২, ২১; সম্মিলিত বো. ১৮]

সমাধান:

- ক একই সমগোত্রীয় শ্রেণিভুক্ত একাধিক যৌগের কার্যকরী মূলকের উভয় পার্শ্বে কার্বন পরমাণুর সংখ্যা অসমতার কারণে যে সমাণুতার সৃষ্টি হয়, তাকে মেটামারিজম বলে।
- ক্র ফ্রিডেল-ক্রাফট বিক্রিয়ায় অনার্দ্র AICl₃ ব্যবহারের কারণ হলো এটি একটি শক্তিশালী লুইস এসিড যা ইলেকট্রোফাইল তৈরি করতে

সহায়ক। অনর্দ্র অবস্থায় AICI3 অ্যালকাইল হ্যালাইড বা অ্যাসাঠ্চ হ্যালাইডের সাথে বিক্রিয়ায় কার্বোক্যাটায়ন তৈরি করে যা অ্যারোমেটিই রিংয়ের সাথে প্রতিস্থাপনে অংশ নেয়। অন্যদিকে, আর্দ্র AICI3 বাবঞ্চ করা হলে জলীয়বান্পের সংস্পর্শে কার্যকারিতা হারায় বুইলেকট্রোফাইল তৈরি করতে পারে না।

 $R - CI + AICI_3 \rightleftharpoons R^+ + AICI_4$

র উদ্দীপকের (ii) নং বিক্রিয়া হতে,

$$N_2CI$$
 OH $+ N_2 + HCI$

অর্থাৎ, B যৌগটি ফেনল। লিবারম্যান পরীক্ষার মাধ্যমে কেনল শনাক্তকরণ সম্ভব।

ফেনলের সাথে $NaNO_2$ ও গাঢ় H_2SO_4 যোগ করে উত্তপ্ত করলে সবুজ অথবা নীল বর্ণের দ্রবণ উৎপন্ন হয়। এ দ্রবণের মধ্যে পানি যোগ করা হলে বর্ণ লাল দেখায়। এর মধ্যে অধিক NaOH দ্রবণ যোগ করলে পুনরায় সবুজ বর্ণ বা নীল বর্ণ ফেরত আসে।

$$HO \longleftrightarrow$$
 $+HO-NO \xrightarrow{NaNO_2} HO \xrightarrow{NO} NO + H_2O$ \longrightarrow P নাইট্রোসোফেনল (সবুজ)

HO
$$\longrightarrow$$
 NO $+$ OH \longrightarrow OH \longrightarrow O $+$ H2O \bigcirc Testing the property of the propert

$$HO$$
 \longrightarrow N \Longrightarrow $O + NaOH$ \longrightarrow Na^+ O \longrightarrow N \Longrightarrow O \longrightarrow N \Longrightarrow O \longrightarrow O

ঘ উদ্দীপকের (ii) নং বিক্রিয়া সম্পূর্ণ করে,

Rhombus Publications

্ৰেব রসায়ন ➤ ACS, FRB Compact Suggestion Book.....

$$C_4H_8 \rightarrow CH_3 - CH = CH - CH_3 + O_3 \xrightarrow{CH_3} C \xrightarrow{CH_3} H$$

 \longrightarrow 2CH₃ – C–H + ZnO

অর্থাৎ, C, D ও E যথাক্রমে প্রোপানোন, মিথান্যাল ও ইথান্যাল। নিউক্লিওফিলিক সংযোজনে বিক্রিয়ার সক্রিয়তা নির্ভর করে কার্বনিল মূলকের C প্রান্তে ধনাত্মকতার উপর। — CH3 এর ইলেকট্রেন ঘনত্ব যোগান দেয়ার ধর্ম রয়েছে। এখানে, প্রোপানোন এ দুটি — CH3 থাকলেও, মিথান্যাল এ নেই ও ইথান্যাল এ রয়েছে একটি। ফলে প্রোপানোন এর কার্বনিল মূলকের C প্রান্তে ধনাত্মক চার্জের মাত্রা যতটা কমে, ইথান্যাল এ তার চেয়ে কম ও মিথান্যাল এ কমেই না। এজন্য নিউক্লিওফিলিক সংযোজনে সক্রিয়তার ক্রম হবে:

প্রম্ল ▶৩৬ C_nH_{2n+2}O এখানে, n = 4

(ক) অর্থো-প্যারা নির্দেশক কাকে বলে?

- (খ) ঘিগনার্ড বিকারক পানির অনুপস্থিতিতে তৈরি করা হয় কেন? ব্যাখ্যা কর।
- (গ) উদ্দীপক যৌগের সমাণুসমূহের একটি সমাণু হতে ভিহাইজ্রোজিনেশন প্রক্রিয়ায় অ্যালকিন প্রস্তুতি সমীকরণসহ বর্ণনা কর।
- কু. বো. ১৯; জনুরূপ প্রশ্ন: ম. বো. ২২।
 (ঘ) উদ্দীপকের কোন সমাণুসমূহ মেটামারিজম দেখাতে সক্ষম? বিশ্লেষণ

সমাধান:

[কু. বো. ১৯]

- বেসব প্রমাণু বা মূলক বেনজিন চক্রে উপস্থিত থাকলে নবাগত প্রতিস্থাপক অর্থো-প্যারা অবস্থানে (2, 4, 6) নির্দেশিত হয় তাদেরকে অর্থো-প্যারা নির্দেশক বলে।
- থা পানির উপস্থিতিতে গ্রিগনার্ড বিকারক আর্দ্র বিশ্লেষিত হয়ে অ্যালকেন উৎপন্ন করে ফেলে।

 ${
m CH_3MgC}l + {
m H_2O} \longrightarrow {
m CH_4} + {
m Mg(OH)C}l$ এজন্য প্রিগনার্ড বিকারক পানির অনুপস্থিতিতে তৈরি করা হয়।

গ্ব উদ্দীপকের যৌগটি হলো C₄H₁₀O। এর একটি সমাণু হলো C₄H₉OH (বিউটানল)। এটি হতে ডি-হাইড্রোজিনেশন প্রক্রিয়ায় বিউটিন প্রস্তুতি নিম্নর্নপ:

 C_4H_9OH বা গাঢ় H_2SO_4 সহযোগে উত্তপ্ত করলে পানি অপসারিত হয়ে বিউটিন উৎপন্ন হয়।

 $C_4H_9OH + H_2SO_4 \rightarrow CH_3 - CH_2 - CH = CH_2 + H_2SO_4 + H_2O$ বিউটিন

অ উদ্দীপকের যৌগটি হলো C₄H₁₀O। এর বিভিন্ন সমাণুর মধ্যে ইথার সমাণুগুলো মেটামারিজম দেখাতে পারে। সমাণুগুলো হলো~

i.
$$CH_3 - CH_2 - CH_2 - O - CH_3$$

মিথোক্সি প্রোপেন

ii.
$$CH_3 - CH_2 - O - CH_2 - CH_3$$

ইথোক্সি ইথেন

আবার, C₄H₁₀O এর অ্যালকোহল সমাণুগুলোও মেটামারিজম দেখায়।

প্রশ্ন ▶ ৩৭

কু. বো. ১৯)

(i)
$$CH_3 - C \equiv CH + H_2O \xrightarrow{2\% \ H_2SO_4, \ 60^{\circ}C} P \xrightarrow{\text{NEW Matter P}} B$$

(ক) হফম্যান স্মুদ্রাংশকরণ বিক্রিয়া কী?

(খ) কার্বিল অ্যামিন পরীক্ষা সমীকরণসহ লিখ।

[দি. বো. ২১]

- (গঁ) M যৌগ হতে টি.এন,টি প্রস্তুতি সমীকরণসহ বর্ণনা কর। [কু. বো. ১৯]
- (ঘ) A ও B এর মধ্যে কোনটি কেন্দ্রাকর্ষী বিকারকের প্রতি অধিক সক্রিয়? বিশ্লেষণ কর। (কু. বো. ১৯; অনুরূপ: রা. বো. ২৩; ব. বো. ২৩, ২২, ২১, ১৭; দি. বো. ২৩, ১৭; य. বো. ২২, ১৯; ঢা. বো. ২২, ১৯; দি. বো. ২২; ম. বো. ২২, ২১; সম্মিলিত বো. ১৮]

সমাধান:

- ব্যামাইডকে ব্রোমিন ও গাঢ় কস্টিক সোডা দ্রবণসহ উত্তপ্ত করলে অ্যামাইড অপেক্ষা একটি কম কার্বনবিশিষ্ট অ্যামিন উৎপন্ন হয়, এ পদ্ধতিকে হফম্যান ক্ষুদ্রাংশকরণ বিক্রিয়া বলে।
- কার্বিল অ্যামিন পরীক্ষা: প্রাইমারি অ্যামিনকে ক্লোরোফর্ম ও অ্যালকোহলীয় কস্টিক পটাশ (KOH) দ্রবণের সাথে উত্তপ্ত করলে উপ্র গন্ধযুক্ত আইসো-সায়ানাইড বা কার্বিল অ্যামিন উৎপন্ন হয়। এর সাহায্যে প্রাইমারি অ্যামিনকে সহজেই শনাক্ত করা যায়।

 $CH_3NH_2 + CHCl_3 + 3KOH \text{ (alc)} \xrightarrow{\Delta} CH_3C \equiv N + 3KCl + H_2O$

ক উদ্দীপকের (iii) নং বিক্রিয়া সম্পূর্ণ করে,

অর্থাৎ, M হলো বেনজিন।

অনার্দ্র AICI3 এর উপস্থিতিতে CH3CI এর সাথে বেনজিনের প্রায় ▶ ৩৮ বিক্রিয়ায় টলুইন উৎপন্ন হয়।

)+ CH₃Cl <u>অনর্দ্রে</u> + HCl

টলুইনকে গাঢ় HNO3 ও H2SO4 এর সাথে উত্তপ্ত করলে 30°C এ 2-নাইট্রোটলুইন ও 4-নাইট্রো টলুইন এবং 60°C তাপমাত্রার 2, 4-ডাই নাইট্রোটলুইন উৎপন্ন করে।

একে ধুমায়িত HNO3 ও H2SO4 সহযোগে 100°C এ উত্তপ্ত করলে 2, 4, 6-ট্রাইনাইট্রো টলুইন (TNT) উৎপন্ন করে।

$$CH_3$$
 NO_2 $H_2S_2O_7$ NO_2 NO_2 $+$ HCl NO_2 NO_2

(TNT)

ছা উদ্দীপকের (i) ও (ii) নং বিক্রিয়া হতে,

$$CH_3 - C \equiv CH + H_2O \frac{2\% \text{ HgSO}_4}{20\% \text{ H}_2\text{SO}_4, 60°C}$$

$$CH_3-C=CH_2 \xrightarrow{\text{পুনর্বিন্যাস}} CH_3-C-CH_3$$

$$OH$$

$$C_2H_2+H_2O$$

$$20\% H_2SO_4, 60°C$$

$$CH_2 = CH - OH \xrightarrow{\text{পून(विना)}} CH_3 - C - H$$

वर्षा A अ B योगम्बर यथाक्रा क्षाभारान अ देथानान । कन्नाकर्षी বিকারকের প্রতি সক্রিয়তা নির্ভর করে কার্বনিল মূলকের C প্রান্তের ধনাত্মকতার উপর। অ্যালকাইল গ্রুপ হল ধনাত্মক আবেশধর্মী বা ইলেকট্রন যোগানকারী। অর্থাৎ, কার্বনিল মূলকে যত বেশি অ্যালকাইল থাকবে C প্রান্তের ধনাতাকতা হ্রাস পাবে এবং কেন্দ্রাকর্ষী বিকারকের প্রতি সক্রিয়তা কমবে।

ইথান্যাল ও কার্বনিল মূলকের সাথে একটি মিথাইল ও প্রোপানোন এ দুটি মিখাইল রয়েছে। এজন্য প্রোপনোন এ C প্রান্তের ধনাত্মকতা অধিক হ্রাস পায় আবার এখানে স্টেরিক বাধাও বিদ্যমান।

সংযোজনে অধিক সক্রিয়।

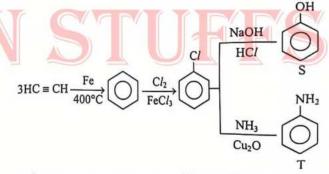
..... ACS, > Chemistry 2nd Paper Chapter-2

$$3P \xrightarrow{Fe} Q \xrightarrow{Cl_2} R \xrightarrow{350^{\circ}C, 150 \text{ atm}} S$$

$$R \xrightarrow{FeCl_3} R \xrightarrow{HCl} RHCl$$

$$NH_3, Cu_2O$$

$$200^{\circ}C, High pressure$$


P = দুই কার্বনবিশিষ্ট অশ্লীয় হাইড্রোকার্বন।

- (ক) গ্রিগনার্ড বিকারক কী?
- ইথাইল অ্যামিন অ্যামোনিয়া অপেক্ষা অধিক ক্ষারকীয় ব্যাখ্যা কর । কু. বো. ২২; य. বো. ১১|
- (গ) T-যৌগ ক্ষারীয় হলেও S-যৌগ অম্লীয় কেন? ব্যাখ্যা কর। যি. বো. ১৯; অনুদ্ধপ প্রশ্ন: রা. বো. ২৩; চ. বো. ১৭; ঢা. বো. ২৩, ১৯; কু. বো. ২০: त्रि. त्वा. २२, जि. त्वा. २२, ठ. त्वा. ১७, ১९)
- (ঘ) নাইট্রেশন বিক্রিয়ায় S- যৌগ অর্থো ও প্যারা উৎপাদ উৎপন্ন করলেও T-শুধু মেটা যৌগ উৎপন্ন করে- বিশ্লেষণ কর।

যি. বো. ১৯; অনুরূপ প্রশ্ন: ঢা. বো. ২৩; রা. বো. ২৩; সি. বো. ২১

- क ज्यानकारेन वा ज्यातारेन ग्यागरनिशाम शानारेष्ठक धिशनार्ख विकातक বলে।
- আমিন ও অ্যামোনিয়া উভয়ের ক্ষারকত্ব N এর ইলেকট্রন প্রাপ্যতার উপর নির্ভর করে। ইথাইল অ্যামিনের ইথাইল মূলক তড়িৎ ধনাত্মক আবেশধর্মী অর্থাৎ, এটি N এর উপর অতিরিক্ত ইলেকট্রন যোগানকারী। এজন্য ইথাইল অ্যামিনে N এর ইলেকট্রন প্রাপ্যতা তুলনামূলকভাবে অ্যামোনিয়ার চেয়ে বেশি হয়ে থাকে। তাই ইথাইল অ্যামিন অ্যামোনিয়া অপেক্ষা অধিক ক্ষারধর্মী।

5.0 গ্র উদ্দীপকের বিক্রিয়া হতে,

অর্থাৎ, S ও T যথাক্রমে ফেনল ও অ্যানিলিন। অ্যানিলিন ক্ষারীয় হলেও ফেনল অমুধর্মী।

অ্যানিলিনের N এর মুক্তজোড় ইলেকট্রনের সাহায্যে এসিড থেকে সৃষ্ট প্রোটনের সাথে সন্নিবেশ বন্ধন সৃষ্টি করে বলে এটি ক্ষারীয়। অন্যদিকে, ফেনলের প্রোটন ত্যাগের পর উৎপন্ন ফিনেট আয়ন অণুরণনের মাধ্যমে স্থিতিশীলতা লাভ করে। অর্থাৎ, ফেনল প্রোটন দাতা বা এসিড হিসেবে কাজ করতে পারে।

উপর্যুক্ত আলোচনা থেকে বলা যায়, T তথা অ্যানিলিন ক্ষারীয় হলেও S তথা ফেনল অমুধর্মী।

Rhombus Publications

জেব রসায়ন > ACS/ FRB Compact Suggestion Book.....

ত্ব S ও T যৌগদ্বয় তথা ফেনল ও অ্যানিলিন এর নাইট্রেশনে ফেনল অর্থো ও প্যারা উৎপাদ উৎপন্ন করে কিন্তু অ্যানিলিন গুধু মেটা উৎপাদ উৎপান করে থাকে যদিও $-NH_2$ ও -OH মূলকদ্বয় অর্থো-প্যারা নির্দেশক হিসেবে কাজ করে থাকে।

অ্যানিলিনের নাইট্রেশনে এসিডের সাথে বিক্রিয়ায় অ্যানিলিনিয়াম আয়ন উৎপন্ন হয়, যেখানে — NH_3^+ মেটা নির্দেশক। ফলে এর নাইট্রেশনে — NO_2 মূলক মেটা অবস্থানে যুক্ত হয়ে থাকে।

$$NH_2$$
 HNO_3
 H_2SO_4
 NH_3^+
 HNO_3
 NH_2
 NH_2
 NH_2
 NO_2
 NO_2
 NO_2
 NO_2

তবে ফেনল এর ক্ষেত্রে নাইট্রেশনে — NO_2 অর্থো ও প্যারা অবস্থানে যুক্ত হয়ে থাকে।

$$\begin{array}{c}
OH \\
\hline
OH \\
\hline
dil HNO_3
\end{array}$$

$$\begin{array}{c}
OH \\
\hline
NO_2
\end{array}$$

অতএব, নাইট্রেশন বিক্রিয়ায় S যৌগ অর্থো ও প্যারা উৎপাদ উৎপন্ন করলেও T মেটা যৌগ উৎপন্ন করে।

প্রশ্ন ▶৩৯ নিম্নের (i) নং বিক্রিয়াটিকে উইলিয়ামসন বিক্রিয়া বলা হয়।

- (i) $ROH + Na \longrightarrow RONa + H_2$ (A) $RONa + CH_3CH_2CI \rightarrow CH_3CH_2CH_2OCH_2CH_3 + NaCI$ (B) (C)
- (ii) $CH_3CH_2CI + KOH(aq) \longrightarrow D + KCI$
- (ক) মেসো যৌগ কি?
- (খ) কক্ষ তাপমাত্রায় ইথেন গ্যাস কিন্ত ইথানল তরল কেন? । চ. বো. ১৭।
- (গ) A ও C এর মধ্যে কিভাবে পার্থক্য করবে? সমীকরণসহ ব্যাখ্যা কর।

 [ব. ১৯; জনুরূপ প্রয়: নি. বো. ২১, দি. বো. ২১]
- (ঘ) D তৈরির বিক্রিয়া কৌশল ব্যাখ্যা কর। বি. বো. ১৯; অনুরূপ প্রশ্ন: চ. ২৩, ২২; ম. বো. ২৩, ২২; চা. বো. ২১; দি. বো. ২১; সম্মিপিত বো. ১৮] সমাধান:
- ক মেসো যৌগ বলতে ওই সমস্ত কাইরাল কার্বন বিশিষ্ট যৌগ কে বোঝারা যেগুলোতে প্রতিসম তল থাকে এবং প্রতিসম তলের এক অর্থাংশ আলোকে যত কোণে ঘোরার অন্য অর্থাংশ সমপরিমাণে বিপরীত দিকে ঘোরার।
- ইথানল (C2H3OH) এ O ও H এর মধ্যে তড়িৎ ঋণাত্মকতার পার্থকা অধিক হওয়ায় O প্রান্তে আংশিক তড়িৎ ঋণাত্মকতা ও H প্রান্তে আংশিক তড়িৎ ধনাত্মকতার তথা পোলারিটির উদ্ভব ঘটে। কলে পাশাপাশি দুটি ইথানল অণুর একটি O এর সাথে অপরটির H এর মাঝে হাইদ্রোজেন বন্ধন গঠিত হয়। কলশ্রুতিতে, ইথানলের গলনায়, কুটনায় অবিক হয় ও কক্ষ তাপমাত্রায় একে তরল অবস্থায় পাওয়া য়ায়।

অন্যদিকে, ইথেন এ পোলারিটির উডব হয় না ও আন্তঃস্মাণনিক আকর্ষণ কম থাকায় কক্ষ তাপমাত্রায় এটি প্যাসীয় স্বরন্থায় নিরাজ করে।

- জিদীপকের A ও C যৌগদ্বয় যথাক্রমে অ্যালকোহল ও ইথার।
 আ্যালকোহলের সাথে PCI₃ এর বিক্রিয়ায় HCI উৎপন্ন হয় যা NH₃
 সিব্ধ কাঁচ রডের সংস্পর্শে NH₄CI এর সাদা র্ধােয়া সৃষ্টি করে।
 R OH + PCI₃ → R CI + POCI₃ + HCI
 NH₃ + HCI → NH₄CI (সাদা র্ধােয়া)
 কিন্তু ইথার PCI₃ এর সাথে ইথারীয় বদ্দন বিয়ােজন বিক্রিয়া দেয় ফলে
 HCI উৎপন্ন হয় না এবং NH₃ য়াস রডে সাদা র্ধােয়া দেখা য়ায় না।
 C₃H₁ O C₂H₅ + PCI₃ → C₃H₁CI + C₂H₅CI + POCI₃
 এভাবে অ্যালকোহল ও ইথারের পার্থক্যকরণ সম্ভব।
- ভদ্দীপকের (ii) নং বিক্রিয়াটি সম্পূর্ণ করে গাই, CH₃CH₂CI + KOH(aq) → CH₃CH₂OH + KCI

এটি S_N2 বিক্রিয়া। দ্বি-আণবিক নিউক্লিওফিপিক প্রতিস্থাপন বিক্রিয়াটিতে KOH এর জলীয় দ্রবণে CH₃ – CH₂ – CI এর আর্দ্র বিশ্লেষণের ফলে ইথানল উৎপন্ন হয়।

$$HO^- + CH_3 \xrightarrow{H} C \longrightarrow CI \longrightarrow HO \xrightarrow{H} CH_3$$

$$HO - C \stackrel{H}{\stackrel{H}{\sim}} CH^2 + CL$$

বিক্রিয়াটিতে কোনো কার্বোক্যাটায়ন বা কার্বানায়ন সৃষ্টি হয় না এবং জ্যামিতিক কাঠামোটি বিপরীত হয়ে যায়।

था **।** 80

(i)
$$CH_3 - COOH \xrightarrow{PCI_5} 'X' \xrightarrow{Pd} 'A' + HCI$$

(ii)
$$\sim$$
 COOH $\xrightarrow{PCI_5}$ 'Y' \xrightarrow{Pd} 'B' + HCI

- (क) शातानिधामलात नएक्क लाच ।
- (च) गांशथाणिन बकि आत्वाटमिक त्यीन नाचा कन ।

(Pr. 01, 10; VI. 01, 16)

(গ) ইধাইন হতে কিভাবে 'A' প্রস্তুত করবে? সমীকরণসহ शिख।

मि. जा. ३५। षगुत्रन क्षत्रः य. जा. २२।

(घ) A ও B এর মধ্যে কোনটি অ্যালভল ঘনীভবন বিক্রিয়া দেয়? বিপ্লেম্বন কর। ানি. নো. ১১; অনুৰূপ এম: কু. নো. ২০, ২২; দি. নো. ২৯; দি. নো. ২১;

Rhombus Publications

সমাধান:

ক প্যারাসিটামলের সংকেত

N-(4 হাইড্রক্সিফিনাইল) ইথান্যামাইড বা প্যারাসিটামল

স্থায়ী চাক্রিক কাঠামোবিশিষ্ট যে সকল যৌগে বলয় গঠনকারী পরমাণুসমূহের (4n + 2) সংখ্যক সঞ্চারণশীল π ইলেকট্রন দ্বারা আণবিক অরবিটাল গঠিত হয় তাদেরকে অ্যারোমেটিক যৌগ বলে। ন্যাপথালিন এর ক্ষেত্রে:

न्गाপथानिन

পাঁচটি π বন্ধন তথা 10টি π ইলেকট্রন রয়েছে। হাকেল নীতি অনুযায়ী এখানে চক্র সংখ্যা 2 অর্থাৎ, n = 2। অতএব (4n + 2) = (4.2 + 2) = 10টি π ইলেকট্রন থাকতে হবে যা ন্যাপথালিন এর ক্ষেত্রে বিদ্যমান। অতএব বলা যায় যে, ন্যাপথালিন একটি অ্যারোমেটিক যৌগ।

গ এখানে, $CH_3COOH \xrightarrow{PCl_5} CH_3COCl \xrightarrow{Pd} CH_3CHO + HCl$ অর্থাৎ, A যৌগটি হল ইথান্যাল।

হাইড্রেশনের মাধ্যমে ইথান্যাল প্রস্তুত করা যায়।
OH
HC ≡ CH + H₂O
$$\xrightarrow{2\% \text{ HgSO}_4} \text{CH}_2 = \text{C} - \text{H} \to \text{CH}_3\text{CHO}$$

মধ্যবৰ্তী ইন रेथान्गान অল যৌগ

घ धथात.

COOH
$$C-CI$$
 $C-H$ $C-H$

সুতরাং, B যৌগটি হল বেনজালডিহাইড। আর A যৌগটি ইথান্যাল। অ্যালডল ঘনীভবন বিক্রিয়ার শর্ত হল α – H থাকা। ইথান্যালে α – H উপস্থিত থাকলেও বেনজালডিহাইডে $\alpha-H$ নেই। তাই ইথান্যাল অ্যালডল ঘনীভবন বিক্রিয়া দেয় কিন্তু বেনজালডিহাইড দেয় না। লঘু NaOH এর উপস্থিতিতে CH3CHO হতে প্রথমে কার্বানায়ন সষ্টি হয় যা অপর একটি CH₃CHO এর আংশিক ধনাতাক প্রান্তের সাথে যুক্ত হয়। অতঃপর এটি $\mathrm{H}_2\mathrm{O}$ এর H^+ এর সাথে যুক্ত হয়ে অ্যালডল তৈরি করে।

 $OH^- + H - CH_2 - CHO \Longrightarrow H_2O + CH_2 - CHO$

..... ACS, > Chemistry 2nd Paper Chapter-)

3-হাইডুক্সি বিউটান্যাল

역취 ▶ 83

(i)
$$CH_3 - CH_2 - OH \xrightarrow{K_2Cr_2O_7 + H_2SO_4(conc.)} P' + H_2O$$

(ii)
$$CH_3 - CH - CH_3 \xrightarrow{K_2Cr_2O_7 + H_2SO_4(conc.)} Q' + H_2O$$
 OH

(iii)
$$\text{CH}_3 - \text{CH}_2 - \text{OH} + \text{H}_2 \text{SO}_4 \left(\text{অভিরিক্ত} \right) \xrightarrow{\Delta} \text{`R'} + \left[\text{H}_2 \text{SO}_4 + \text{H}_2 \text{O} \right]$$

- (क) क्रानिकाद्रा विकिया की?
- (খ) অ্যালিফেটিক 1° অ্যামিন ক্ষারক কেন? ব্যাখ্যা কর।
- (গ) 'P' যৌগকে কিভাবে CH₄-এ রূপান্তর করবে? সমীকরণসহ লিখ। [সি. বো. ১১]
- (ঘ) 'Q' ও 'R' যৌগের মধ্যে কোনটি কেন্দ্রাকর্ষী সংযোজন বিক্রিয়া দেয়? বিশ্লেষণ কর। [সি. বো. ১৯; অনুরূপ প্রশ্ন: চ. বো. ২৩, ১৭]

সমাধান:

- 2% HgSO4 ও 20% H₂SO4 এর উপস্থিতিতে ইথাইন এর কি যে বিক্রিয়ায় গাঢ় ক্ষারীয় দ্রবণে α–H বিহীন **দুইটি অ্যালডিহাই**ড বা কিটোন পরস্পরের সাথে বিক্রিয়া করে এক অণু অ্যালকোহল ও এক অণু এসিডের লবণ উৎপন্ন করে, তাকে ক্যানিজারো বিক্রিয়া বলে।
 - বা লুইস তত্ত্বানুযায়ী, ক্ষারক হচ্ছে ইলেক্ট্রন-জোড় দাতা। অ্যালিফেটিক 1° অ্যামিন উদাহরণস্বরূপ: CH3 – NH2 এর N এ থাকা একটি মুক্তজোড় ইলেকট্রনকে এসিড থেকে সৃষ্ট H⁺ কে প্রদান করে সন্নিবেশ সমযোজী বন্ধন সৃষ্টি করে। এভাবে অ্যালিফেটিক 1° অ্যামিন ক্ষারক হিসেবে কাজ করে।

$$CH_3 - \overset{\bullet}{N}H_2 + \overset{+}{H}CI \longrightarrow CH_3 - \overset{+}{N}: \xrightarrow{+} \overset{+}{H}CI$$

গ (i) নং বিক্রিয়া হতে,

$$CH_3 - CH_2OH \xrightarrow{K_2Cr_2O_7} CH_3CHO + H_2O$$

অর্থাৎ, P যৌগটি হল ইথান্যাল।

ইথান্যাল থেকে CH4 প্রস্তুতি:

ইথান্যাল তীব্র জারক $m K_2Cr_2O_7$ ও গাঢ় $m H_2SO_4$ দ্বারা জারিত হয়ে CH₃COOH তৈরি করে।

$$\text{CH}_3\text{CHO} + \text{[O]} \xrightarrow{\text{K}_2\text{Cr}_2\text{O}_7} \text{CH}_3\text{COOH}$$

Rhombus Publications

জেব রসায়ন > ACS, FRB Compact Suggestion Book.....

উৎপন্ন CH3COOH এর সাথে NaOH এর বিক্রিয়ায় সোডিয়াম সমাধান: ইথানয়েট উৎপন্ন হয়।

 $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$ সোডিয়াম ইথানয়েটকে সোডালাইম দ্বারা উত্তপ্ত করলে মিথেন উৎপন্ন হয়।

$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3(CaO)$$

😈 উদ্দীপকের (ii) ও (iii) নং বিক্রিয়া সম্পূর্ণ করে:

$$\begin{array}{c} \text{OH} \\ \mid \\ \text{CH}_3-\text{CH}-\text{CH}_3 & \xrightarrow{\text{K}_2\text{Cr}_2\text{O}_7+\text{H}_2\text{SO}_4(\text{conc.})} & \text{O} \\ & \parallel \\ & \text{আংশিক জারণ} \end{array} \\ \text{CH}_3-\text{C} - \text{CH}_3+\text{H}_2\text{O} \\ \end{array}$$

$$CH_3CH_2OH + H_2SO_4$$
 (অতিরিক্ত) $\rightarrow CH_2 = CH_2 + H_2SO_4.H_2O$

অর্থাৎ, Q ও R যৌগদ্বয় যথাক্রমে প্রোপানোন ও ইথিন। প্রোপানোন কেন্দ্রাকর্ষী সংযোজন বিক্রিয়া দিলেও ইথিন ইলেকট্রোফিলিক সংযোজন বিক্রিয়া দেয়।

কার্বনিল $-\ddot{C}$ - মূলকের দ্বি-বন্ধনের π -ইলেকট্রন অক্সিজেনের দিকে অধিক আকৃষ্ট থাকায় পোলারিটির উদ্ভব হয়, যেখানে কার্বন আংশিক তড়িৎ ধনাত্মক ও অক্সিজেন আংশিক তড়িৎ ঋণাত্মক হয়। এজন্য কার্বনিলের আংশিক তড়িৎ ধনাত্মক C এ কেন্দ্রাকর্ষী সংযোজন ঘটে। অপরদিকে, ইথিনের C = C দ্বি-বন্ধন এ তড়িং ঋণাত্মকতার

পার্থক্য না থাকায় পোলারিটির উদ্ভব হয় না, π-ইলেকট্রন সমভাবে বিটিত থাকে। এজন্য ইথিন কেন্দ্রাকর্ষী সংযোজন দেয় না। এখানে ইলেকট্রনাকষী সংযোজন ঘটে থাকে।

$$CH_{3} - \overset{\circ}{C} = \overset{\circ}{O} + CN^{-} \rightarrow CH_{3} - C - \overset{\circ}{O} \xrightarrow{H - OH} CH_{3} - \overset{CN}{C - OH}$$

$$CH_{3} - \overset{\circ}{C} = \overset{\circ}{O} + CN^{-} \rightarrow CH_{3} - C - OH$$

$$CH_{3} - \overset{\circ}{C} = \overset{\circ}{O} + CN^{-} \rightarrow CH_{3} - C - OH$$

$$CH_{3} - \overset{\circ}{C} = \overset{\circ}{O} + CN^{-} \rightarrow CH_{3} - C - OH$$

$$CH_{3} - \overset{\circ}{C} = \overset{\circ}{O} + CN^{-} \rightarrow CH_{3} - C - OH$$

অতএব বলা যায়, Q ও R তথা প্রোপানোন ও ইথিন এর মধ্যে প্রোপানোন কেন্দ্রাকর্ষী সংযোজন বিক্রিয়া দেয়।

প্রশ ▶ ৪২

$$C_6H_5OH + Zn \xrightarrow{\Delta} A \xrightarrow{conc. HNO_3} X + H_2O + CH_3I \longrightarrow Y + HI$$

- (ক) অসম্পৃক্ত যৌগ কাকে বলে?
- (খ) 2-ব্রোমো বিউটেন আলোক সক্রিয় কি-না? ব্যাখ্যা কর।
- (গ) A-যৌগের প্রতিস্থাপন বিক্রিয়া করার কারণ- ব্যাখ্যা কর। রা. বো. ১৭।
- (ঘ) X ও Y এর মধ্যে কোনটিকে নাইট্রেশন করলে অধিক তাপমাত্রার প্রয়োজন হবে? বিশ্লেষণ কর। রা. বো. ১৭; অনুরূপ প্রশ্ন: ঢা. বো. ২৩, ২১, ১৭; কু. বৌ. ২৩, ২১; য. বো. ২৩, ১৭; ব. বো. ২৩, ২২, ২১, ১৭; দি. বো. ২৩, ২২, ২১, ১৯; চ. বো. ২২, ২১, ১৯; ম. বো. ২২, ২১; সি. বো. ২১, ১৯, ১৭)

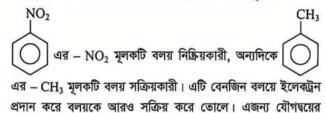
- ক যেসব জৈব যৌগের অণুতে অন্তত দুটি কার্বন পরমাণু দ্বি বা ত্রিবন্ধন দ্বারা পরস্পরের সাথে যুক্ত থাকে, তাদেরকে অসম্পুক্ত যৌগ বলে।
- খ কোনো জৈব যৌগ আলোক সক্ৰিয় হতে হলে–
 - i. অপ্রতিসম কার্বন বা কাইরাল কেন্দ্র থাকতে হবে।
 - ii. উভয় কনফিগারেশন পরস্পরের উপর দর্পণ প্রতিবিম্ব হতে হবে।
 - iii. কনফিগারেশনদ্বয় পরস্পরের উপর অসমপাতিত হবে।
 - 2-ব্রোমো বিউটেন শর্তত্রয় পূরণ করায় আলোক সক্রিয়তা দেখায়।

ন উদ্দীপক হতে,

@AdmissionStuffs

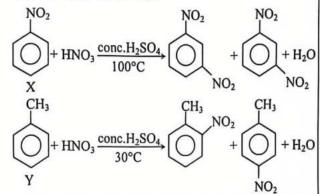
 $C_6H_5OH + Zn \longrightarrow C_6H_6$

অর্থাৎ, A যৌগটি হল বেনজিন। বেনজিন ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়া দিয়ে থাকে। বেনজিনের রেজোনেন্সের ফলে সঞ্চারণশীল **π** ইলেকট্রন কাঠামোটি স্থিতিশীল হয়ে থাকে। ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ার মাধমে বেনজিন বলয়ের সাথে যুক্ত H ইলেকট্রনাকর্ষী বিকারক দারা প্রতিস্থাপিত হয়ে নতুন যৌগ গঠন করে। এতে করে বেনজিনের স্থিতিশীলতার কোন ক্ষতি হয় না।


অপর দিকে, যুত বিক্রিয়ায় অংশগ্রহণ করলে এই সুস্থিত কাঠামো নষ্ট

এজন্য A যৌগ তথা বেনজিন প্রতিস্থাপন বিক্রিয়ায় অংশ নিয়ে থাকে।

ঘ উদ্দীপক হতে,


$$C_6H_5OH + Zn \xrightarrow{\Delta}$$
 $C_6H_5OH + Zn \xrightarrow{\Delta}$
 $C_6H_5OH + Zn \xrightarrow{\Delta}$

অর্থাৎ, X ও Y যৌগদ্বয় যথাক্রমে নাইট্রোবেনজিন ও টলুইন।

Rhombus Publications

নাইট্রেশনে টলুইন সহজে অংশ নিলেও নাইট্রো বেনজিন এর ক্ষেত্রে অধিক তাপমাত্রার প্রয়োজন পড়ে।

অতএব বলা যায়, X এর নাইট্রেশনে অধিক তাপমাত্রার প্রয়োজন পড়ে।

প্রশ্ন ▶ ৪৩

- (i) $C_6H_5CI \xrightarrow{10\% \text{ NaOH}} B + H_2O \xrightarrow{\text{লঘ HC}I} C$
- (ii) ২-কার্বনবিশিষ্ট মনোক্লোরো অ্যালকেন $\xrightarrow{\mbox{serin}} \Delta$ \mbox{D} B, C এবং D জৈব যৌগ।
- (ক) অ্যাসিটাইলেশন কী?
- (খ) 1° অ্যামিন ও 2° অ্যামিনের মধ্যে কোনটি অধিক ক্ষারধর্মী? ব্যাখ্যা কর। রা. রো. ২১]
- (গ) উদ্দীপকের C যৌগ থেকে একটি ব্যাথানাশক ঔষধ প্রস্তুতি সমীকরণের সাহায্যে দেখাও।
 (ব. বো. ১৭)
- (ঘ) উদ্দীপকের যৌগ C এবং D এর অস্ত্রধর্মীতা অনুরণনের আলোকে বিশ্লেষণ কর। [ব. বো. ১৭]

সমাধান:

- ক অ্যামিনের সাথে অ্যাসিটাইল ক্লোরাইড বা অ্যাসিটিক অ্যানহাইড্রাইড বিক্রিয়া করে অ্যাসিটামাইড তৈরি করার বিক্রিয়াকে অ্যাসিটাইলেশন বলে।
- आप्रिन সমগোত্রীয় যৌগগুলোর কার্যকরী মূলক NH_2 এর N এ মুক্ত জোড় ইলেকট্রন থাকায় এরা ক্ষারকত্ব প্রদর্শন করে। এদের ক্ষারকত্ব নির্ভর করে N এর ইলেকট্রন ঘনত্বের উপর। —R গ্রুপ ধনাত্মক আবেশীয় প্রভাবের ফলে N এর ইলেকট্রন ঘনত্ব বৃদ্ধি করে। 1° আ্যামিন এর তুলনায় 2° অ্যামিনে —R বেশি থাকায় — NH_2 এর N এ ইলেকট্রন ঘনত্ব বেশি হয়। ফলে 2° অ্যামিন 1° অ্যামিনের তুলনায় অধিক ক্ষারধর্মী হয়ে থাকে।
- গ উদ্দীপকের (i) নং হতে,

$$C_6H_5CI \xrightarrow{10\% \text{ NaOH}} + \text{NaC}I + H_2O$$

Rhombus Publications

অর্থাৎ, C যৌগটি হল ফেনল। ফেনল থেকে ব্যাথানাশক প্যারাসিটামল প্রস্তুত করা যায়।

..... ACS, > Chemistry 2nd Paper Chapter-2

ফেনলের নাইট্রেশনে প্রাপ্ত 4-নাইট্রোফেনল কে সোডিয়াম বোরো হাইড্রাইড দ্বারা বিজারিত করলে 4-অ্যামিনো ফেনল উৎপন্ন হয়। অ্যাসিটিক অ্যানহাইড্রাইডের সাথে 4-আমিনো ফেনল এর অ্যাসিটাইলেশনে প্যারাসিটামল উৎপন্ন হয়।

$$\begin{array}{c|cccc}
OH & OH & OH \\
\hline
& NaNO_3 & OH \\
& H_2SO_4 & OH \\
OH & OH & OH \\
\end{array}$$

OH OH OH
$$OH OH OH$$

$$OH OH OH$$

$$NO_{2} NABH_{4} OH$$

$$NH_{2} CH_{3}CO)_{2}O$$

$$NH - C - CH_{3}$$

প্যারাসিটামল (N অ্যাসিটো-P-অ্যামিনো ফেনল)

ঘ উদ্দীপকের (ii) নং বিক্রিয়া অনুসারে,

 $CH_3 - CH_2CI + NaOH \rightarrow CH_3 - CH_2OH + NaCI$ অর্থাৎ, D হল ইথানল।

C ও D তথা ফেনল ও ইথানলের মধ্যে ফেনল প্রোটন ত্যাগ করে ফিনোক্সাইড আয়ন প্রস্তুত করে। সৃষ্ট ফিনোক্সাইড অনুরণনের মাধ্যমে অধিকতর স্থিতিশীলতা অর্জন করে। এজন্য ফিনোক্সাইড আর প্রোটন প্রহণ করতে চায় না।

$$OH O^{-} H_{2}O(l) \longrightarrow O^{+} H_{3}O^{+}$$

অপরদিকে, ইথানল প্রোটন ত্যাগের পর ইথোক্সাইড $(CH_3CH_2O^-)$ উৎপন্ন করে। এতে অনুরণনের সুযোগ না থাকায় তা সুস্থিত হয় না। অতএব বলা যায়, C ও D তথা ফেনল ও ইথানলের মধ্যে ফেনল অধিক অস্ত্রধর্মী।

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book.....

প্রশ্ন ▶ 88

 $CHX_1 - CHX_2 \xrightarrow{Zn} A \xrightarrow{Fe} B \xrightarrow{HNO_3 \text{ (NIP)}} C + H_2O$

- (ক) প্যারাফিন কি?
- (খ) টলুইন প্রস্তুতির বিক্রিয়া দেখাও।

রা. বো. ১৯]

- (গ) উদ্দীপকের B যৌগ থেকে C যৌগ তৈরির বিক্রিয়া কৌশল দেখাও। চি. বো. ১৭; অনুরূপ প্রশ্ন: কু. বো. ২৩; ব. বো. ২৩; রা. বো. ২২, ২১; দি. বো. ২২: **ज.** त्वा. २५; य. त्वा. २১]
- (ঘ) C যৌগের বিজারণে প্রাপ্ত যৌগটি এবং A যৌগের প্রকৃতি ভিন্ন হবে কিনা- বিশ্রেষণ কর। চি. বো. ১৭; অনুরূপ প্রশ্ন: চা. বো. ২৩, ১৯; রা. বো. ২৩; কু. বো. ২৩; ম. বো. ২২; সি. বো. ২২, ২১; দি. বো. ২২; চ. বো. ১৯)

সমাধান:

- স্কল্প আসজির যৌগ তথা অ্যালকেনকে প্যারাফিন বলা হয়।
- বা অনর্দ্রে AICI3 এর উপস্থিতিতে মিথাইল ক্লোরাইড ও বেনজিনের বিক্রিয়ায় উলুইন পাওয়া যায়।

$$CH_3$$
C $I \xrightarrow{\Box}$ $AICI_3$

ক উদ্দীপকের বিক্রিয়া অনুযায়ী,

$$CHX_2 - CHX_2 \xrightarrow{Zn} HC \equiv CH$$

H2SO4(शाए)

B থেকে C তথা বেনজিন থেকে নাইট্রোবেনজিন প্রস্তুতিতে

$$\begin{array}{c|c} H & NO_2 & NO_2 \\ \hline + & + HSO_4^- & \xrightarrow{\underline{IPO}} & + H_2SO_4 \end{array}$$

NO₂ ঘ C যৌগের বিজারণ তথা কে Cu প্রভাবকের উপস্থিতিতে ${
m H_2}$

দ্বারা বিজারণে ফিনাইল অ্যামিন উৎপন্ন হয়।

ফিনাইল অ্যামিন:

0°-5°C তাপমাত্রায় ফিনাইল অ্যামিন এর সাথে HNO2 ও HCI এর বিক্রিয়ায় বেনজিন ডায়াজোনিয়াম ক্লোরাইড উৎপন্ন হয়।

$$\sim$$
 NH₂ + HCI + HNO₂ \rightarrow \sim N₂CI + H₂O

অর্থাৎ ফিনাইল অ্যামিন ক্ষারধর্মী। 'গ' নং হতে পাই, A যৌগটি ইথাইন।

সোডিয়াম দারা ইথাইনের H প্রতিস্থাপিত হয়, ফলে সোডিয়াম অ্যাসিটালাইড লবণ ও H2 উৎপন্ন হয়।

 $HC \equiv CH + Na \xrightarrow{NH_3(I)} NaC \equiv CNa + H_2$ সুতরাং, ইথাইন এর প্রকৃতি অম্লুধর্মী। অতএব, ইথাইন ও ফিনাইল অ্যামিন এর প্রকৃতি ভিন্ন যথাক্রমে অমুধর্মী ও ক্বারধর্মী।

$X (C_4H_8) \xrightarrow{O_3}$ ওজোনাইড $\xrightarrow{H_1O} Y + Z + Z_{II}O$

Y ऍलन विकात्रक्त्र भाष्य विक्रिया क्त्रला Z विक्रिया क्र

- (क) স্যালিসাইলিক এসিডের IUPAC নাম লিখ।
- (খ) ফরমিক এসিড একটি বিজারক
 ব্যাখ্যা কর।
- (গ) উন্দীপকের Y যৌগটির পরবর্তী সমগোত্রক হতে সেকেন্ডারি আলকোহল প্রস্তুতি সমীকরণসহ লিখ। চি. বো. ১৭; অনুরূপ প্রশ্ন: त्रा. त्वा. २७; नि. त्वा. २७, २১; नि. त्वा. २১, ১৭]
- ম এবং Z যৌগের যুত বিক্রিয়ার ধরন ভিন্নতার কারণ বিশ্লেষণ কর। চি. বো. ১৭; অনুরূপ প্রশ্ন: রা. বো. ১৭] সমাধান:

ক স্যালিসাইলিক এসিডের IUPAC নাম: 2-হাইড্রব্লি বেনজয়িক এসিড।

ৰ ফরমিক এসিড (HCOOH) এ – C – H মূলক থাকায় এটি মূদ্ জারক টলেন বিকারক ও ফেহলিং দ্রবণকে বিজারিত করে যথাক্রমে সিলভার দর্পণ এবং কিউপ্রাস অক্সাইডের লাল অধঃক্ষেপ উৎপন্ন করে এবং নিজে জারিত হয়।

 $HCOOH+[Ag(NH_3)_2]OH \rightarrow Ag(s)\downarrow + (NH_4)_2CO_3+NH_3$ সিলভার দর্পণ

 $HCOOH+Cu (OH)_2+NaOH \rightarrow Cu_2O(s) +Na_2CO_3+H_2O$ লাল অধ্যক্ষেপ

অতএব বলা যায়, ফরমিক এসিড একটি বিজারক।

গ উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$\begin{array}{c|c} CH_3 \ H \\ \hline | \ | \ | \\ C = C + O_3 \xrightarrow{CCI_4} CH_3 \xrightarrow{C} C \xrightarrow{C} H \xrightarrow{Zn} CH_3 - C - CH_3 + HCHO + ZnO \\ \hline | \ | \ | \ CH_3 \ H & (Z) & (Y) \end{array}$$

এখানে, HCHO টলেন বিকারকের সাথে বিক্রিয়া করলেও

CH3 - C - CH3 টলেন বিকারকের সাথে বিক্রিয়া করে না। অতএব, Y যৌগটি হবে মিথান্যাল (HCHO)।

Rhombus Publications

HCHO এর পরবর্তী সমগোত্রক হল ইথান্যাল (CH3CHO)। শুদ্ধ ইথারে দ্রবীভূত ছিগনার্ড বিকারকের সাথে ইথান্যাল এর বিক্রিয়ায়

উৎপন্ন যুত যৌগকে অশ্লীয় মাধ্যমে উত্তপ্ত করে অর্দ্র বিশ্লেষণে প্রোপানল-2 পাওয়া যায়।

$$CH_3 - C - OMgBr \xrightarrow{\mathfrak{S}}$$
 ভদ্ধ ইথার $CH_3 - C - OH + Mg(OH)Br$ CH_3 CH_3 CH_3 CH_3 CH_3

🕤 'গ' হতে, X ও Z যথাক্রমে অ্যালকিন ও কিটোন। এদের যুত বিক্রিয়ার প্রকৃতি যথাক্রমে ইলেকট্রোফিলিক সংযোজন নিউক্লিওফিলিক সংযোজন।

 C_4H_8 অর্থাৎ অ্যালকিন এর C=C এর π ইলেন্ট্রনগুলো ইলেকট্রোফাইলের কাছে ইলেকট্রন দাতা হিসেবে কাজ করে। এখানে ইলেকট্রোফাইলসমূহ π ইলেকট্রন দ্বারা সহজে আকৃষ্ট হয় এবং ইলেকট্রোফিলিক সংযোজন এর মাধ্যমে যুক্ত হয়।

্বাপরদিকে, Z তথা CH3 – C – CH3 একটি কিটোন। এখানে

কার্বনিল (– 🖰 –) মূলকের C ও O এর মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য এর মধ্যে পোলারিটির আবির্ভাব ঘটায়। C আংশিক তড়িৎ ধনাত্মক এবং O আংশিক তড়িৎ ঋণাত্মক হয়ে থাকে। এমতাবস্থায়,

এর আংশিক তড়িৎ ধনাতাক C প্রান্তে নিউক্লিওফাইল সহজে আক্রমণ করে নিউক্লিওফিলিক সংযোজন ঘটিয়ে থাকে। অতএব বলা যায়, X ও Z এর যুত বিক্রিয়ার ধরন ভিন্ন।

<u>थड़ा ▶ 8७</u> A <u>Fe</u> 400°C B A (২-কার্বন বিশিষ্ট অসম্পৃক্ত যৌগ)

 $B \xrightarrow{CH_3Cl} C \to TNT$

- (क) खिएल कार्ग्णे विकिया की?
- (খ) 1° অপেক্ষা 2° কার্বানায়ন স্বল্পস্থায়ী কেন?
- (গ) A যৌগ থেকে কিরূপে কার্বক্সিলিক এসিড প্রস্তুত করা যায়, সমীকরণসহ লিখ। [ঢা. বো. ১৭; অনুরূপ প্রশ্ন: রা. বো. ১৭]
- (घ) B এবং C এর মধ্যে কোনটি ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ায় অধিক সক্রিয়? ব্যাখ্যা কর। ঢ়া. বো. ১৭; অনুরূপ প্রশ্ন: ঢা. বো. ২৩, ২১; कू. त्वा. २७, २५; य. त्वा. २७, ১٩; त. त्वा. २७, २२, २১, ১٩; मि. त्वा. २७, २२, २১, ১৯; চ. বো. ২২, ২১, ১৯; ম. বো. ২২, ২১; সি. বো. ২১, ১৯, ১৭; রা. বো. ১৭)

..... ACS, > Chemistry 2nd Paper Chapter.

- যে বিক্রিয়ায় অনুঘটক (অনার্দ্র AICl3, BF3, FeCl3) এর উপস্থিভিত্তি বেনজিন বলয়ের হাইড্রোজেন পরমাণু অ্যালকাইল বা অ্যাসাইল ৪৮% দ্বারা প্রতিস্থাপিত হয় তাকে ফ্রিডেল ক্রাফ্ট বিক্রিয়া বলে।
- কার্বানায়নের কেন্দ্রস্থিত C এর ইলেকট্রন ঘনত্নের উপর তার স্থায়িত্ব a সক্রিয়তা নির্ভর করে। 1° কার্বানায়ন ও 2° কার্বানায়নের মধ্যে 2º কার্বানায়ন স্বল্পস্থায়ী এবং অধিক সক্রিয় হয়। কারণ এক্ষেত্রে দুট অ্যালকাইল উপস্থিত থাকে। অ্যালকাইল মূলক ইলেকট্রন বিক হওয়ায় 2° কার্বানায়নের কেন্দ্রীয় কার্বনে দুটি অ্যালকাইল দ্বারা বিকর্মি ইলেকট্রন কার্বানায়নের ইলেকট্রন ঘনত্ব যতটা বৃদ্ধি করে 🕫 কার্বানায়নে তার তুলনায় কম বৃদ্ধি করে। এজন্য 1° কার্বানায় অপেক্ষা 2° কার্বানায়ন স্বল্পস্থায়ী বা অধিক সক্রিয়।
- উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$HC \equiv CH \xrightarrow{Fe}$$
 \longleftrightarrow CH_3 \longleftrightarrow CH_3Cl \longleftrightarrow \longleftrightarrow TNT

m A যৌগ বা ইথাইন কে $2\%~H_2SO_4~$ ও $20\%~H_2SO_4~$ এর মিশ্রন্ত 60°C তাপমাত্রায় চালনা করলে ইথান্যাল উৎপন্ন হয়।

$$HC \equiv CH + H_2O \xrightarrow{2\% \text{ HgSO}_4} CH_3CHO$$

ইথান্যালকে জায়মান অক্সিজেন দারা জারিত করলে ইথানয়িক এসিঃ

$$CH_3CHO + [O] \xrightarrow{K_2Cr_2O_7} CH_3COOH$$
ইথানয়িক এসিড

B ও C যৌগদ্বর যথাক্রমে বেনজিন ও টলুইন। এদের মধ্যে টলুইন ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ায় অধিক সক্রিয়।

অ্যারোমেটিক বলয়ে ইলেকট্রন ঘনত্বের উপর যৌগসমূহের সক্রিয়ত নির্ভর করে। বলয়ে ইলেকট্রন ঘনত্ব যত বেশি হবে অর্থাৎ ঋণাত্মক হ ইলেকট্রনাকর্ষী প্রতিস্থাপন তত দ্রুত হবে।

টলুইনের অ্যারোমিটিক বলয়ে সংযুক্ত মিথাইল মূলকের ধনার্জ্ব আবেশীয় ফল বেনজিন বলয়ে ইলেকট্রন ঘনত্ব বৃদ্ধি করে এবং বেনজি বলয়টি অধিক সক্রিয় হয়। ফলে সহজেই ইলেকট্রোফাইল উলুইন্টে অ্যারোমেটিক বলয়কে আক্রমণ করে ইলেকট্রনাকর্ষী প্রতিস্থাপন দেয়।

জৈব ব্রসারন > ACS, FRB Compact Suggestion Book...

थ्य ▶89

$$CH_3 - C = CH \xrightarrow{2\% Hg^{2^*}} B$$

$$+ H_2 \xrightarrow{Pd-BaSO_4} X \xrightarrow{conc.H_2SO_4} Y \xrightarrow{H_2O} Z$$

- (ক) মুক্তমূলক কাকে বলে?
- (ব) Q একযোজী সম্পৃক্ত মূলক হলে এটি বেনজিন বলয়ে কোন নির্দেশক হবে? ব্যাখ্যা কর। । ।চ. বো. ২১: রা. বো. ১৬
- (গ) 'X' বৌগ হতে কার্বক্সিলিক এসিত প্রস্তৃতি সমীকরণসহ বর্ণনা কর।
 (রা. ১৭: অনুরুপ প্রস্তৃ: ঢা. বো. ১৭)
- (ছ) IR-বর্ণালির সাহায্যে B ও Z যৌগের কার্যকারী মূলক পার্থক্যকরণ সম্ভব-বিক্লেষণ কর। রি. বো. ১৭

সমাধান:

- সমবোজী সিগমা বন্ধনের সুষম ভাঙ্গনের ফলে উৎপন্ন বিজ্ঞাভ ইলেকট্রন যুক্ত পরমাণু বা মূলককে মুক্ত মূলক বলে।
- বেসব এক্যোজী মৃলক বেনজিন বলয়ে ইলেকট্রন প্রদান করে বেনজিন বলয়কে সক্রিয় করে তাদের কে অর্থো প্যারা নির্দেশক বলে। Q একটি এক্যোজী সম্পৃক্ত মৃলক হওয়ায় এটি বেনজিন বলয়ে ইলেকট্রন প্রদান করবে এবং একে সক্রিয় করবে। অতএব, Q বেনজিন বলয়ে অর্থো-প্যারা নির্দেশক হিসেবে কাজ করবে।
- গ উদ্দীপক হতে,

 $CH_3 - C \equiv CH \xrightarrow{H_2} CH_3 - CH = CH_2$ X তথা প্রোপিন হতে কার্বব্রিলিক এসিড প্রস্তুতিঃ

প্রোপিন-1 এর ওজোনীকরণে অ্যালডিহাইড পাওয়া যায়।

$$CH_3 H$$

$$C = C + O_3 \xrightarrow{CCI_4} CH_3 O \xrightarrow{CH_3 CHO} H$$

$$C = C + O_3 \xrightarrow{CCI_4} CH_3 O \xrightarrow{CH_3 CHO} H$$

$$CH_3 H$$

$$C = C + O_3 \xrightarrow{CCI_4} CH_3 O \xrightarrow{CH_3 CHO} H$$

CH₃CHO কে জায়মান অক্সিজেন [O] সহযোগে জারিত করলে কার্বব্রিলিক এসিড পাওয়া যাবে।

$$CH_3CHO + [O] \xrightarrow{K_2Cr_2O_7} CH_3COOH$$

ইথানয়িক এসিড

ঘ উদ্দীপক হতে,

$$CH_{3} - C \equiv CH + H_{2}O \xrightarrow{2\% Hg^{2+}} CH_{3} - C = CH_{2}$$

$$OH \qquad O$$

$$CH_{3} - C = CH_{2} \xrightarrow{\text{Affa-JIP}} CH_{3} - C - CH_{3}$$
(MINICIDE)

অর্থাৎ, B যৌগটি প্রোপানোন।

(গ) হতে X অর্থাৎ, প্রোপিন গাড় সালফিউরিক এসিভের সাথে বিক্রিরায়,

SO₄H

CH₃ - CH = CH₂
$$\xrightarrow{\text{conc. H}_2\text{SO}_4}$$
 CH₃ - CH - CH₃
 $\xrightarrow{\text{X}}$

SO₄H

CH₃ - CH - CH₃ $\xrightarrow{\text{H}_2\text{O}}$ CH₃ - CH(OH) - CH₃ + H₂SO₄
 $\xrightarrow{\text{Z}}$

वर्षार, Z इन প্রাপানন-2

IR বর্ণালীতে প্রোপানোন এর কার্যকরী মূলক — C — এর শোষণ ব্যাভ 1700-1750 cm⁻¹ এর মধ্যে বিদ্যমান থাকে। অপরদিকে প্রোপানল-2 এর কার্যকরীমূলক — OH হাইড্রোজেন বন্ধনযুক্ত 3600-3640 cm⁻¹ তরঙ্গ সংখ্যার ব্যাভ সৃষ্টি করে। অতএব, IR বর্ণালীর মাধ্যমে B ও Z তথা প্রোপানোন ও প্রোপানল এর কার্যকরী মূলক পার্যক্যকরণ সম্ভব।

$$CH_2 - CH_3$$

$$CH_3 - CH_2 - CH_2 - C - CI + KOH(aq) \longrightarrow (X)$$

- (ক) (CH3)3COH এর IUPAC নাম দেব। বা. থা
- (খ) °CH3 একটি মুক্তমূলক- বৃঞ্জিয়ে লিখ। হৈ বো. ২১)
- (গ) উদ্দীপকের বিক্রিয়াটির কৌশল বর্ণনা কর।

मि. (वा. ১१: जनुबन बन्नः कू. २०: बा. (वा. २२, २১)

(ঘ) উদ্দীপকের X- য়ৌগটি কোন ধরনের স্টেরিণ্ড সমাণুতা প্রদর্শন করবে তা মুক্তিসহকারে ব্যাখ্যা কর। দি. বো. ১৭: অনুরুপ প্রশ্ন: ম. বো. ২৬: রা. বো. ২২: গ, বো. ২১: ব. বো. ১৯)

সমাধানঃ

ক (CH₃)₃C – OH যৌগটির গাঠনিক সংকেত:

বা সাধারণত তাপ বা আলোর প্রভাবে ইথেনের কার্বন-কার্বন সিগমা বন্ধনের সুষম বিভাজনের ফলে °CH3 মুক্তম্লক উৎপন্ন হয়।

H₃C - CH₃ — তাপ 2 *CH₃
এতে একটি বিজোড় ইলেকট্রন বিদ্যমান থাকায় এটি সক্রিয়, অস্থায়ী
হয়ে থাকে। মুক্তমূলকসমূহ অন্যান্য অপুর সাথে বিক্রিয়া করে
স্থিতিশীলতা অর্জন করতে পারে। যেমন: মিথাইল মুক্ত মূলক ক্লোরিনের
সাথে বিক্রিয়ায় মিথাইল ক্লোরাইড উৎপন্ন করে।

বা উদ্দীপকের বিক্রিয়কদ্বয় 3° আলকাইল হ্যালাইড ও লঘু ক্ষার এর জলীয় দ্রবণ। এখানে এক আণবিক নিউক্লিওফিলিক প্রতিস্থাপন বিক্রিয়া সংঘটিত হয়।

বিক্রিয়া কৌশল:

প্রথম ধাপঃ

3° অ্যালকাইল হ্যালাইড প্রথমে ধীরে বিয়োজিত হয়ে 3° কার্বোনিয়াম আয়ন ও C/ সৃষ্টি করে।

$$CH_2 - CH_3$$

 $CH_3 - CH_2 - CH_2 - C - CI$
 CH_3
 CH_3
 $CH_3 - CH_2 - CH_2 - CH_3$
 $CH_3 - CH_2 - CH_2 - C^+$
 CH_3

দ্বিতীয় ধাপঃ

এরপর, OH^- নিউক্লিওফাইল এর সাথে কার্বোনিয়াম আয়নটির দ্রুত বিক্রিয়ায় অ্যালকোহল উৎপন্ন হয়।

$$CH_{2} - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{2} - C^{+} + OH^{-} \longrightarrow$$

$$CH_{3}$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{3}$$

$$CH_{2} - CH_{3}$$

$$CH_{2} - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{2} - C - OH$$

$$CH_{3}$$

ছ উদ্দীপকের, X যৌগটি হল,

যৌগটিতে কাইরাল কার্বন বিদ্যমান, যেহেতু কার্বনের সাথে চারটি ভিন্ন মূলক $-CH_3$, $-C_3H_7$, $-C_2H_5$, ও -OH যুক্ত রয়েছে। এজন্য এটি আলোক সক্রিয় সমাণুতা প্রদর্শন করে।

আলোক সক্রিয় সমাণুদ্বয়

প্রশ্ন ▶ ৪৯ নিচের উদ্দীপকটি লক্ষ কর:

- (ii) $Q \xrightarrow{[Q]} Z$
- (ক) ডায়াজোকরণ কী?
- (খ) ফ্রিডেল ক্রাফট অ্যালকাইলেশন বিক্রিয়া সমীকরণসহ লিখ।
- (গ) উদ্দীপকের L ও P এর পারস্পরিক রূপান্তর লিখ।
- (घ) উদ্দীপকের Z যৌগটি একই সাথে দুটি কার্যকারী মূলকের বৈশিষ্ট্য প্রদর্শন করে– উক্তিটি বিক্রিয়াসহ বিশ্লেষণ কর।

Rhombus Publications

..... ∧CS, ➤ Chemistry 2nd Paper Chapter-2

নমাধান:

ক আানিলিনের সাথে নাইট্রাস এসিডের বিক্রিয়ায় ডায়াজোনিয়াম লক উৎপন্ন হওয়াকে ডায়াজোকরণ বলে।

আনার্দ্র AICl₃ এর উপস্থিতিতে বেনজিন ও মিথাইল ক্লোরাইড বিক্রিক্ত করে মিথাইল বেনজিন বা টলুইন উৎপন্ন করে। এ বিক্রিরাকে ফিচেন্দ্র ক্রাফট অ্যালকাইলেশন বলা হয়।

ক উদ্দীপকের (i) নং বিক্রিয়া পূর্ণ করে পাই, n = 4 হলে,

$$C_4H_8$$
 $CH_3 - HC = CH - CH_3 \xrightarrow{O_3, Z_n} 2CH_3CHO$ ইথান্যাল (L)
$$CH_3 - CH_2CH = CH_2 \xrightarrow{O_3, Z_n} CH_3CH_2CHO + HCHO$$
 বিউটিন-1 প্রোপান্যাল মিথান্যাল B (P) (Q)

সূতরাং, L ও P যৌগ দৃটি হলো যথাক্রমে ইথান্যাল ও প্রোপান্যাল।
নিচে এদের রূপান্তর লেখা হলো-

ইথান্যাল → প্রোপান্যাল: তীব্র জারক যেমন গাঢ় H_2SO_4 মিশ্রিত $KMnO_4$ দ্বারা ইথান্যালকে জারিত করলে ইথানোয়িক এসিড উৎপন্ন হয়।

$$CH_3CHO + [O] \xrightarrow{KMnO_4} CH_3COOH$$
 ইথানোয়িক এসিড

উৎপন্ন ইথানোয়িক এসিডের সাথে কস্টিক সোডার বিক্রিয়ায় সোডিয়াম ইথানোয়েট উৎপন্ন হয়।

 $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$ উৎপন্ন সোডিয়াম ইথানয়েট সোডালাইমের সাথে বিক্রিয়া করে মিথেন উৎপন্ন করে।

$$CH_3COONa + NaOH(CaO) \xrightarrow{\Delta} CH_4 + Na_2CO_3(aq)$$
 সোডালাইম মিথেন

উৎপন্ন মিথেন হ্যালোজেন এর সাথে বিক্রিয়া করে মিথাইল হ্যালাইড গঠন করে।

$$CH_4 + X_2 \longrightarrow CH_3 - X + HX$$

মিথেন মিথাইল হ্যালাইড

শুদ্ধ ইথারে মিথাইল হ্যালাইড ও ইথাইল হ্যালাইডকে Na ধাতুসই উত্তপ্ত করলে প্রোপেন উৎপন্ন হয়।

$$CH_3 - X + 2Na + C_2H_5X \xrightarrow{\mbox{\mathfrak{G}_8}} C_3H_8 + 2NaX$$

মিথাইল হ্যালাইড ইথাইল হ্যালাইড প্রোপেন উৎপন্ন প্রোপেনকে ক্ষারীয় KMnO4 এর উপস্থিতিতে জারিত করনে

জেব রসায়ন > ACS; FRB Compact Suggestion Book.....

র্ব্ব 'গ' হতে, Q যৌগটি মিথান্যাল। (ii) নং বিক্রিয়া হতে পাই,

HCHO $\stackrel{[O]}{\longrightarrow}$ HCOOH

অতএব, Z যৌগটি হল ফরমিক এসিড। HCOOH এর গাঠনিক

সংকেত H-C-O-H। এতে -COOH মূলক বিদ্যমান এবং এটি $NaHCO_3$ এর সাথে বিক্রিয়া করে HCOONa লবণ, CO_2 ও পানি উৎপন্ন করে যা চুনের পানিকে ঘোলা করে।

 $HCOOH + NaHCO_3 \longrightarrow HCOONa + CO_2 + H_2O$ $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow + H_2O$ চুনের পানি

একইসাথে HCOOH এ – CHO মূলক বিদ্যমান। এটি টলেন বিকারকের সাথে বিক্রিয়ায় টেস্টটিউবের গায়ে সিলভার দর্পণ সৃষ্টি করে।

 $HCOOH + Ag(NH_3)_2OH$ $\rightarrow HCOONH_4 + Ag(s)$ $↓ + NH_3 + H_2O$ সিলভার দর্পণ

অতএব বলা যায়, HCOOH একই সাথে – COOH ও – CHO কার্যকরী মূলকের বৈশিষ্ট্য প্রদর্শন করে।

雪計 ▶ 60 (i) CH₃CH₂Cl(a) + NH₃ → b + HCl

$$C_6H_5OH + NH_3 \frac{ZnCl_2}{300^{\circ}C} c + H_2O$$

(ii)
$$C_{00}^{C} \xrightarrow{Cu_{2}O, NH_{3}} A$$

(ক) পরম অ্যালকোহল কী?

- (খ) ফিনাইল অ্যামিন অপেক্ষা মিথাইল অ্যামিন তীব্র ক্ষার কেন? চি. বো. ১৯
- (গ) b ও c দ্বারা গঠিত ডায়াজোনিয়াম লবণের সুস্থিতি তুলনা কর।
- (ঘ) A যৌগটি কিভাবে পরীক্ষাগারে শনাক্ত করা যায়? সমাধান:

ক 100% বিশুদ্ধ <mark>অ্যালকোহলকে</mark> পর্ম অ্যালকোহল বলা হয়।

- বুইস তত্ত্বানুযায়ী, ক্ষারকের ক্ষারকত্ব নির্ভর করে ইলেকট্রন দান ও প্রোটন গ্রহণ করার সক্ষমতার উপর। ফিনাইল আমিনের N এর মুক্তজোড় ইলেকট্রন আংশিকভাবে বেনজিন বলয়ের সঞ্চারণশীল ম ইলেকট্রনের সাথে অণুরণনে অংশগ্রহণ করে। ফলে N এর সাথে সিন্নবেশ সমযোজী বন্ধন গঠনের সুযোগ হ্রাস পায়। যেখানে, মিথাইল অ্যামিনের CH3 নাইট্রোজেনের ইলেকট্রন ঘনতু বৃদ্ধি করে। ফলে মিথাইল অ্যামিনের প্রোটন গ্রহণ ক্ষমতা বৃদ্ধি পায়। এজন্য, ফিনাইল অ্যামিন অপেক্ষা মিথাইল অ্যামিন অধিকতর তীব্র ক্ষার।
- উদ্দীপকের বিক্রিয়াটি পূর্ণ করে পাই,
 CH₃CH₂CI + NH₃ → CH₃CH₂NH₂ + HCI

$$OH \longrightarrow NH_3 \xrightarrow{ZnCl_2} \longrightarrow OH \longrightarrow H_2O$$

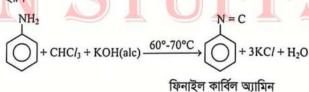
অর্থাৎ, b ও c যৌগদ্বয় যথাক্রমে ইথাইল অ্যামিন ও অ্যানিলিন। 0°-5°C তাপমাত্রায় শীতলকৃত HCl এ দ্রবীভূত অ্যানিলিনের সাথে HNO_2 এর জলীয় দ্রবণের বিক্রিয়ায় বেনজিন ডায়াজোনিয়াম ক্লোরাইড উৎপন্ন হয় যা স্থিতিশীল।

বেনজিন ডায়াজোনিয়াম ক্লোরাইড

কিন্তু ইথাইল অ্যামিন ও ডায়াজোনিয়াম লবণ উৎপন্ন করে তবে তা অস্থিতিশীল হওয়ায় বিয়োজিত হয়ে নাইট্রোজেন, অ্যালকোহল ও পানি উৎপন্ন করে।

 $CH_3CH_2NH_2 + HNO_2 \longrightarrow CH_3CH_2OH + N_2 + H_2O$ বিক্রিয়াটি অ্যালিফেটিক ও অ্যারোমেটিক অ্যামিনের মধ্যকার পার্থক্য নিরূপণে সাহায্য করে।

অতএব বলা যায়, b ও c দ্বারা গঠিত ডায়াজোনিয়াম লবণ এর মধ্যে c দ্বারা গঠিত লবণটি স্থিতিশীল হয়ে থাকে।


ত্য উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$+2NH_3 \frac{Cu_2O, 500 \text{ atm}}{200^{\circ}C} + Cu_2Cl_2 + H_2O$$

অর্থাৎ, A যৌগটি অ্যানিলিন।

কার্বিল অ্যামিন পরীক্ষাঃ

ক্লোরোফর্ম ও অ্যালকোহলীয় KOH এর সাথে 60°-70°C তাপমাত্রায়
অ্যানিলিন কে উত্তপ্ত করলে উগ্র গন্ধযুক্ত ফিনাইল কার্বিল অ্যামিন উৎপন্ন
হয়।

প্রশ্ন ৮ ৫১

বেনজিন টুলুইন বেনজালডিহাইড বেনজোয়িক এসিড A B P Q

- (ক) সোডালাইম কী?
- (খ) অ্যালডিহাইড ও কিটোনের পার্থক্য দেখাও।
- (গ) A হতে B এবং B হতে A কীভাবে প্রস্তুত করা যায় তা সমীকরণসহ বর্ণনা কর।
- (घ) В কে জারণ করলে Р এবং Q দুই ধরনের উৎপাদ উৎপন্ন হওয়ার যৌজিক কারণ বিশ্লেষণ কর।

Rhombus Publications

সমাধান:

ক চুন (CaO) ও কস্টিক সোডা (NaOH) এর শুদ্ধ মিশ্রণকে সোডালাইম বলা হয়।

ত্যালডিহাইড ও কিটোন এর মধ্যকার পার্থক্য নিম্নুর্নপ:

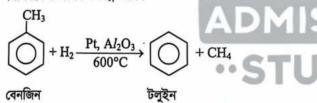
O O || || (i) এদের গঠন যথাক্রমে R – C – H ও R – C – R।

 (ii) অ্যালিডহাইড নিউক্লিওফিলিক সংযোজনে কিটোনের তুলনায় অধিক সক্রিয় হয়ে থাকে।

(iii) অ্যালডিহাইড টলেন বিকারক ও ফেহলিং দ্রবণের সাথে বিক্রিয়া দিলেও কিটোন তা দের না।

উদ্দীপকের A ও B যৌগদ্বয় যথাক্রমে বেনজিন ও টলুইন। বেনজিন ও টলুইনের পারস্পরিক রূপান্তর নিম্মরুপঃ

বেনজিন হতে টলুইনঃ


জনার্দ্র $AICl_3$ এর উপস্থিতিতে বেনজিনের সাথে CH_3Cl এর বিক্রিয়ায় টলুইন পাওয়া যায়।

বেনজিন

টলুইন

টলুইন হতে বেনজিনঃ

 ${
m Pt}$ ও ${
m Al_2O_3}$ এর উপস্থিতিতে টলুইন উচ্চচাপে ${
m H_2}$ এর সাথে বিক্রিয়ায় বেনজিন উৎপন্ন করে।

য B তথা টলুইনকে জারণ করলে P ও Q অর্থাৎ বেনজালডিহাইড ও বেনজোয়িক এসিড পাওয়া যায় ভিন্ন ভিন্ন বিক্রিয়ার শর্তসাপেকে। মৃদু জারক যেমন 65% H_2SO_4 ও MnO_2 এর মিশ্রণকে 45°C তাপমাত্রায় উত্তপ্ত করলে টলুইনের — CH_3 জারিত হয়ে বেনজালডিহাইড উৎপন্ন করে।

$$\begin{array}{c} \text{CH}_3 \\ \hline \end{array} + 2[\text{O}] \xrightarrow{65\% \text{ H}_2\text{SO}_4} \begin{array}{c} \text{CHO} \\ \hline \\ \hline \text{MnO}_2, 450^{\circ}\text{C} \end{array} \\ \end{array}$$

বেনজালডিহাইড

অপরদিকে, ক্রোমিক এসিড, $KMnO_4$ বা ফুটন্ত লঘু HNO_3 এর সাথে টলুইনের বিক্রিয়ায় $-CH_3$ এর পূর্ণ জারণের ফলে বেনজোয়িক এসিড উৎপন্ন হয়।

$$CH_3$$
 $+ 3[O]$ $\xrightarrow{KMnO_4}$ $+ H_2O$ বেনজোয়িক এসিড

Rhombus Publications

ক) আরোমেটিক যৌগ কোন ধরনের বিক্রিয়া প্রদর্শন করে?

(খ) আলোক সমাণুতার শর্তগুলো লেখ। ঢা. বো. ২১; কু. বো. ২১।

(গ) উপযুক্ত যুক্তিসহ উদ্দীপকে উল্লেখিত A যৌগের নাম ও সংকেত নির্ণয়কর।

... ACS, > Chemistry 2nd Paper Chapter-2

(ঘ) উদ্দীপকের উল্পেখিত A যৌগটি একাধারে ইলেকট্রোফিলিক সংযোজন ও প্রতিস্থাপন বিক্রিয়া প্রদর্শন করে কি? উত্তরের স্বপক্ষে যুক্তি দাও। সমাধান:

ক আরোমেটিক যৌগসমূহ সাধারণত ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিনা প্রদর্শন করে।

খ আলোক সমাণুতার শর্তসমূহ নিম্নন্নপ:

i. অপ্রতিসম কার্বন বা কাইরাল কেন্দ্র থাকতে হবে।

ii. কনফিগারেশনদ্বয় পরস্পরের ওপর অ-উপরিস্থাপনীয় হবে।

iii. উভয় কনফিগারেশন পরস্পরের দর্পণ প্রতিবিম্ব হবে।

গ্রী উদ্দীপক অনুসারে A যৌগটি HCl এর সাথে বিক্রিয়া করে B এবং B আবার HCl এর সাথে বিক্রিয়া করে জেমি ডাইক্লোরাইড ইথেন (1,1 ডাইক্লোরো ইথেন) উৎপন্ন করে। এটি দুই কার্বন বিশিষ্ট হওয়ায় বলা যায় A ও B উভয়ই দুই কার্বন বিশিষ্ট। আবার একমাত্র অ্যালকাইন হাইজ্রাসিডের সাথে বিক্রিয়া করে প্রথমে হ্যালাইড ও পরে জেমি ডাই হ্যালাইড উৎপন্ন করতে পারে।

অতএব বলা যায়, A যৌগটি দুই কার্বনবিশিষ্ট অ্যালকাইন তথা ইথাইন। যার সংকেত হল $C_2H_2(HC\equiv CH)$ ।

ম যৌগটি তথা ইথাইন একই সাথে ইলেকট্রোফিলিক সংযোজন ও প্রতিস্থাপন বিক্রিয়া দেখায়। ইথাইন অসম্পৃক্ত যৌগ হওয়ায় এতে π বন্ধন ও π ইলেকট্রন বিদ্যমান। ইলেকট্রোফাইলসমূহ π ইলেকট্রন দ্বারা আকৃষ্ট হয় এবং ইলেকট্রন আকর্ষী সংযোজন ঘটায়।

HC ≡ CH + 2H₂ — CH₃ – CH₃
আবার, ইথাইন অমুধর্মীতা প্রদর্শন করে থাকে। ইথাইনের ত্রি-বন্ধনযুক্ত

C পরমাণু হতে ইলেকট্রন আকর্ষী বিকারক দ্বারা H-প্রতিস্থাপিত হয়।

 $HC \equiv CH + 2Na \longrightarrow NaC \equiv CNa + H_2$ অর্থাৎ, A যৌগটি তথা ইথাইন একই সাথে ইলেকট্রনাকর্ষী সংযোজন ^ও প্রতিস্থাপন বিক্রিয়া প্রদর্শন করে।

তেল্ব রসায়ন > ACS, FRB Compact Suggestion Book

গুরুত্বপূর্ণ জ্ঞানমূলক প্রশ্নোত্তর

১। ক্যাটেলেশন কী?

মি. বো. ২২

উন্তর: কার্বনের অসংখ্য পরমাণু নিজেদের মধ্যে বৃক্ত হয়ে ছোট বড় বিভিন্ন আকার ও আকৃতির দীর্ঘ শিকল বা বলয় গঠন করার ক্ষমতাকে কার্বনের ক্যাটেনেশন বলে।

২ । কার্যকরী মূলক কী? । হি. বো. ২২; চ. বো. ২২, ২১; দি. বো. ২২; চ. বো. ২১; ছ. বো. ২১; ছ. বো. ২১; ছ. বো. ১৯। উস্তর্ম: বে পরমাশু বা মূলক কোনো জৈব বৌগের অণুতে বর্তমান থেকে এর কার্যক ধর্ম ও বিক্রিয়ার প্রকৃতি নির্যারণ করে থাকে, তাকে ঐ বৌগের কার্যকরী মূলক বলে।

৩। হোমোলগ বা সমগোত্রক কী?

উত্তর: একই কার্বকরীমূলক এবং একই ধরনের ধর্মবিশিষ্ট জৈব যৌগসমূহকে একত্রে সমগোত্রীয় শ্রেণি এবং সমগোত্রীয় শ্রেণির প্রত্যেকটি যৌগকে সমগোত্রক বলে।

৪। সমগোত্রীয় শ্রেণির সংজ্ঞা দাও।

কু. বো. ১৯]

উক্তর: একই মৌলিক পদার্থের সমন্বরে গঠিত সমধমী জৈব যৌগসমূহ যারা একই সাধারদ সংকেতবিশিষ্ট, একই কার্যকরী মূলক যুক্ত, যাদেরকে আদবিক ভরের ক্রমবৃদ্ধি অনুযায়ী সাজালে পরপর দৃটি পাশাপাশি বৌগের মধ্যে একটি মিথিলিন মূলক (— CH_2 —) এর পার্থক্য দেখা যায় এবং যাদেরকে একই সাধারণ নিরমে প্রস্তুত করা যার, তাদের সমগোক্রীয় শ্রেদি বলে।

৫। আরোমেটিসিটি কাকে বলে?

মি. বো. ২৩]

উক্তর: সঞ্চারণশীল π ইলেকট্রনের উপস্থিতির কারণে অ্যারোমেটিক যৌগের মধ্যে যে বৈশিষ্ট্যপূর্ণ ধর্ম ((i) বিশেষ প্রকৃতির অসম্পৃজ্জ্তা, (ii) অনুরণন, (iii) সঞ্চারণশীল π ইলেকট্রন, (iv) প্রতিস্থাপন বিক্রিরা ও (v) বিশেষ স্থায়িতৃ প্রভৃতি) প্রকাশ পার তাকে অ্যারোমেটিসিটি বলে।

ভি । হাকেল তত্ত্বটি লেই।
ভিক্তর: হাকেল প্রভাবিত অ্যারোমেটিসিটি প্রকাশের প্রয়োজনীয় শর্তগুলোকে হাকেল তত্ত্ব বলে। এ তত্ত্ব অনুসারে, যেসব জৈব যৌগের গঠন চেন্টা বা সমতলীয় বলয়াকার বিশিষ্ট এবং বলর গঠনকারী পরমাণুসমূহের (4n + 2) সংখ্যক সঞ্চারণশীল ম ইলেকট্রন ছারা আণবিক অরবিটাল সৃষ্টি হয়, তাদেরকে অ্যারোমেটিক যৌগ বলে। এক্লেত্রে (4n + 2) সংখ্যক ম ইলেকট্রন নিয়ম সংকেতে n = 0, 1, 2, 3.... ইত্যাদি ছারা বেনজিনয়েড বলয় সংখ্যা অথবা পাঁচ বা ছয় পরমাণু ছারা গঠিত বিষম চাক্রিক বলয় সংখ্যাকে বোঝানো হয়।

৭। আরোমেটিক যৌগ কোন ধরনের বিক্রিয়া প্রদর্শন করে?

উত্তর: অ্যারোমেটিক যৌগসমূহ সাধারণত ইলেকট্রনাকবী প্রতিস্থাপন বিক্রিয়া প্রদর্শন করে।

৮। হেটারোসাইক্লিক যৌগ কাকে বলে?

[দি. বো. ২৩]

উন্তর: যেসব বৃত্তাকার যৌগের বলর গঠনে কার্বন পরমাণুসহ অপর হেটারো পরমাণু যেমন অক্সিজেন (O), সালকার (S), নাইট্রোজেন (N) প্রভৃতির এক বা একাধিক পরমাণু অংশ গ্রহণ করে সেসব যৌগকে হেটারোসাইক্লিক যৌগ বলে। ১। অধুরখন কাকে বলেগ

াদি. বো. ২৩

উত্তর: কোন ঘৌগের অণুর মূল কাঠামোতে পরমাণুসমূহের অবস্থান অপরিবর্তিত রেখে π ইলেবট্রনসমূহের বিন্যাসের পার্থক্য জনিত একাধিক সমশক্তির কাঠামো সৃষ্টির গতিশীল প্রক্রিয়াকে অনুরদন বলে।

১০। গ্যামাক্সিনের গাঠনিক সংকেত লেখ।

াসি. বো. ২২

উত্তর: বেনজিন হেক্সাফ্লোরাইড (($C_6H_6Cl_6$)) হলো গ্যামাব্রিন। ($C_6H_6Cl_6$) এর গাঠনিক সংকেত:

ADMISSION
--STUFFS--

ग्रामाञ्जिन

১১। ফ্রিডেল ক্রাফ্ট বিক্রিয়া কী?

উত্তর: যে বিক্রিয়ায় অনুঘটক (অনর্দ্র AICI3, BF3, FeCI3) এর উপস্থিতিতে বেনজিন বলয়ের হাইড্রোজেন পরমাণু অ্যালকাইল বা অ্যাসাইল গ্রুপ দারা প্রতিস্থাপিত হয় তাকে ফ্রিডেল ক্রাফ্ট বিক্রিয়া বলে।

১২। 1, 3- বিউটাডাইইনের সংকেত লিখ।

কু. বো. ২২

উত্তর: H₂C = HC - CH = CH₂

1, 3- বিউটাডাইইন

১৩। (CH3)3COH এর IUPAC নাম লেখ।

(রা. বো. ২২)

উত্তর: (CH3)3C - OH যৌগটির গাঠনিক সংকেত:

CH₃
|
CH₃ - ²C - OH
|
CH₃ - ²C - OH

১৪। স্যালিসাইলিক এসিডের IUPAC নাম লিখ।

উত্তর: স্যানিসাইলিক এসিডের IUPAC নাম: 2-হাইড্রব্রি বেনজয়িক এসিড।

১৫। ফিনাইল কার্বিল অ্যামিনের সংকেত লিখ।

উত্তর: ফিনাইন কার্বিল অ্যামিনের সংকেত: C6H5-N=C।

১৬। ডায়াস্টেরিওমার কী?

উত্তর: দুটি অসদৃশ অপ্রতিসম কার্বনযুক্ত কোন পদার্থের দুটি আলোক সমাণু যদি পরস্পরের দর্পণ প্রতিবিম্বের মত আচরণ না করে তবে তাদেরকে পরস্পরের ডায়াস্টেরিওমার বলে।

১৭। মেটামারিজম কাকে বলে?

উত্তর: একই সমগোত্রীয় শ্রেণিভূক্ত একাধিক যৌগের কার্যকরী মূলকের উভয় পার্শ্বে কার্বন পরমাণুর সংখ্যা অসমতার কারণে যে সমাণুতার সৃষ্টি হয়, তাকে মেটামারিজম বলে।

১৮। আলোক সমাণুতা কাকে বলে?

উত্তরঃ আলোক সক্রিয় যৌগের একই আণবিক ও গাঠনিক সংকেত বিশিষ্ট একাধিক কনফিগারেশন যদি পরস্পর অউপরিস্থাপনীয় প্রতিবিম্বের মত আচরণ করে এবং সমবর্তিত আলোর তলকে ঘড়ির কাঁটার দিকে বা বিপরীত দিকে আবর্তন করে, তাহলে তাদের এ ধর্মকে আলোক সমাণুতা বলে।

Rhombus Publications

১৯। কাইরাল কার্বন কী? ा. वा. २२, २); व. वा. २२, ১**१**; कृ. वा. ১৯; সম্মিলিত বো. ১৮; চ. বো. ১৭; সি. বো. ১৭]

উত্তর: একটি জৈব যৌগের অণুতে কোনো কার্বন পরমাণুর সঙ্গে চারটি ভিন্ন পরমাণু বা মূলক যুক্ত থাকলে ঐ কার্বনকে অপ্রতিসম বা কাইরাল কার্বন বলে।

২০। d-ল্যাকটিক এসিডের সংকেত লিখ?

(রা. বো. ২২)

উত্তর: d-ল্যাকটিক এসিডের সংকেত CH₃CH(OH)COOH।

২১। টটোমারিজম কী?

রো. বো. ২৩: সম্মিলিত বো. ১৮]

উত্তর: যে প্রক্রিয়ায় সমাণুগুলো সাধারণ অবস্থায় এক প্রকার কার্যকরী মূলক সংবলিত কাঠামো থেকে স্বতঃস্কৃতভাবে ভিন্ন প্রকার কার্যকরী মূলক সৃষ্টির মাধ্যমে অন্য কাঠামোতে রূপান্তরিত হয় এবং উভয় কাঠামো সাম্যাবস্থায় বিরাজ করে তাকে টটোমারিজম বলে।

২২। এনানসিওমার কী? [मि. त्वा. २১, ১৯; य. त्वा. ১৯; ह. त्वा. ১৭] উত্তর: এনানসিওমার হলো একটি আলোক সক্রিয় যৌগের দুটি আলোক সমাণু যারা এক সমতলীয় আলোকে সম পরিমাণ ডান বা বাম দিকে আবর্তিত করে।

২৩। ডায়াস্টেরিওমার কী?

উত্তর: দুটি অসদৃশ অপ্রতিসম কার্বনযুক্ত কোন পদার্থের দুটি আলোক সমাণু যদি পরস্পরের দর্পণ প্রতিবিম্বের মত আচরণ না করে তবে তাদেরকে পরস্পরের ডায়াস্টেরিওমার বলে।

২৪। মেসো যৌগ কি?

যেগুলোতে প্রতিসম তল থাকে এবং প্রতিসম তলের এক অর্ধাংশ আলোকে যত কোণে ঘোরায় অন্য অর্ধাংশ সমপরিমাণে বিপরীত দিকে ঘোরায়।

২৫। মেসো টারটারিক এসিডের গাঠনিক সংকেত লেখ। উত্তরঃ মেসো টারটারিক এসিডের গাঠনিক সংকেত হলোঃ

COOH

H-C-OH H-C-OH

COOH

মেসো টারটারিক এসিড

২৬। রেসিমিক মিশ্রণ কী? [ज. वा. २२, ১৭; ज. वा. २२, ১৯, ১৭; जि. वा. २२; म. त्वा. २२; व. त्वा. २১; य. त्वा. ১१]

উত্তর: দুটি এনানসিওমারের সমতুল মিশ্রণকে রেসিমিক মিশ্রণ বলে।

২৭। কার্বোক্যাটায়ন কী? [রা. বো. ২১; কু. বো. ২১; সম্মিলিত বো. ১৮; য. বো. ১৭] উত্তর: জৈব যৌগের সমযোজী বন্ধনের বিষম বিভাজনের ফলে সৃষ্ট ধনাত্মক ় আধানযুক্ত কার্বন পরমাণু বিশিষ্ট আয়নকে কার্বোক্যাটায়ন বলে।

২৮। কার্বানায়ন কাকে বলে? [मि. त्वा. २১, ১b; क्. त्वा. ১**१**] উত্তর: একক ঋণাত্মক চার্জযুক্ত কার্বন পরমাণু বিশিষ্ট জৈব আয়নকে কার্বানায়ন বলে।

২৯। ইলেকট্রোফাইল কী?

[ज. त्वा. २२; त्रा. त्वा. ১৯, ১৭]

উত্তর: যে সকল বিকারক ইলেকট্রনের প্রতি আসক্তি প্রকাশ করে এবং विकियाकाल ইलक्क्वेन धर्श करत, जारमत्रक ইलक्क्वेनाकर्षी विकातक বা ইলেকট্রোফাইল বলে।

Rhombus Publications

ACS, > Chemistry 2nd Paper Chapter-2 ৩০। সংজ্ঞা লিখ: নিউক্লিওফাইল।

যি, বো. ২৩; সি. বো. ১১।

উত্তর: যে সকল বিকারক নিউক্লিয়াসের প্রতি আকর্ষণ অনুভব করে এশং বিক্রিয়াকালে ইলেকট্রন দান করে তাদেরকে নিউক্লিওফাইল বলা হত্ত

৩১। মুক্তমূলক কাকে বলে?

উত্তর: সমযোজী সিগমা বন্ধনের সুষম ভাঙ্গনের ফলে উৎপন্ন বিছে'ট ইলেকট্রন যুক্ত পরমাণু বা মূলককে মুক্ত মূলক বলে।

৩২। অর্থো-প্যারা নির্দেশক কাকে বলে?

উত্তরঃ যেসব পরমাণু বা মূলক বেনজিন চক্রে উপস্থিত থাকলে নবাগস্ত প্রতিস্থাপক অর্থো-প্যারা অবস্থানে (2, 4, 6) নির্দেশিত হয় তাদেরকে অর্থো-প্যারা নির্দেশক বলে।

৩৩। সক্রিয়কারী মূলক কী?

কু. বো. ১৭

উত্তরঃ যেসব মূলক বেনজিন বলয়ে উপস্থিত থেকে বেনজিন বলয়ের সক্রিয়তা বৃদ্ধি করে, তাদেরকে সক্রিয়কারী মূলক বলে।

৩৪। মেটা নির্দেশক কী?

রো. বো. ২২)

উত্তর: যেসব পরমাণু বা পরমাণু গ্রুপ বেনজিন চক্রে উপস্থিত থাকলে নবাগত প্রতিস্থাপক মেটা অবস্থানে (3, 5) নির্দেশিত হয়, তাদেরকে মেটা निर्फ्शक वरन।

৩৫। প্যারাফিন কী?

কু. বো. ২২; य. বো. ২২)

উउतः সম্পৃক্ত হাইড্রোকার্বনগুলো রাসায়নিকভাবে কম সক্রিয় হয়ে থাকে, এদেরকে প্যারাফিন বলা হয়।

৩৬ ৷ ঘিগনার্ড বিকারক কী?

উত্তরঃ মেসো যৌগ বলতে ওই সমস্ত কাইরাল কার্বন বিশিষ্ট যৌগ কে বোঝার উত্তরঃ অ্যালকাইল বা অ্যারাইল ম্যাগনেশিয়াম হ্যালাইডকে গ্রিগনার্ড বিকারক বলে।

৩৭। সো**ডালাই**ম কী?

উত্তর: চুন (CaO) ও কস্টিক সোডা (NaOH) এর শুদ্ধ মিশ্রণকে সোডালাইম বলা হয়।

৩৮। ডিকার্বক্সিলেশন বিক্রিয়া কি?

কু. বো. ১৭

উত্তর: কার্বক্সিলিক এসিডের সোডিয়াম লবণ ও সোডালাইম (NaOH + CaO) এর মিশ্রণকে উত্তপ্ত করলে আলিকেন এবং Na₂CO₃ উৎপন্ন হয়। এ বিক্রিয়াকে ডিকার্বক্সিলেশন বলে।

 $R - COONa + NaOH(CaO) \xrightarrow{\Delta} R - H + Na_2CO_3(CaO)$

৩৯। অসম্পৃক্ত যৌগ কাকে বলে?

উত্তর: যেসব জৈব যৌগের অণুতে অন্তত দুটি কার্বন পরমাণু দ্বি বা ত্রিবন্ধন দ্বারা পরস্পরের সাথে যুক্ত থাকে, তাদেরকে অসম্পুক্ত যৌগ বলে।

৪০। পরম অ্যালকোহল কী?

উত্তরঃ 100% বিশুদ্ধ অ্যালকোহলকে পরম অ্যালকোহল বলা হয়।

৪১। লুকাস বিকারক কী? [b. (वा. २১, ১৯, ১৭; मि. (वा. २১; मि. (वा. ১৯) উত্তর: গাঢ় HCl এ দ্রবীভূত অনর্দ্র (নিরুদিত) ZnCl2 এর দ্রবণকে **পু**কাস বিকারক বলা হয়।

৪২। ফরমালিন কী?

উত্তর: মিথান্যাল বা ফরমালডিহাইড এর 40% জলীয় দ্রবণকে ফরমালিন वना रय।

৪৩। টলেন বিকারক কী?

চি. বো. ২থ

উত্তর: অ্যামোনিয়া দ্রবণ মিশ্রিত 10% সিলভার নাইট্রেট দ্রবণকে টলেন বিকারক বলা হয়। এর সংকেত: [Ag(NH3)2]OH

হৈজব রসায়ন > ১৫১ FRB Compact Suggestion Book.....

88 । क्रानिषाता विकिया की?

উত্তর: যে বিক্রিয়ায় গাঢ় ক্ষারীয় দ্রবণে α-Η বিহীন দুইটি অ্যালডিহাইড বা किটোন পরস্পরের সাথে বিক্রিয়া করে এক অণু অ্যালকোহল ও এক অণু এসিডের লবণ উৎপন্ন করে, তাকে ক্যানিজারো বিক্রিয়া বলে।

৪৫। আমাইড কি?

উত্তর: এস্টার এবং NH, বা জ্যামিনের মধ্যে প্রতিস্থাপন বিক্রিয়ায় যে যৌগ উৎপন্ন হয় তাকে অ্যামাইড বলে।

৪৬। হফম্যান স্কুদ্রাংশকরণ বিক্রিয়া কী?

উত্তর: অ্যামাইডকে ব্রোমিন ও গাঢ় কস্টিক সোডা দ্রবণসহ উত্তপ্ত করলে অ্যামাইড অপেক্ষা একটি কম কার্বনবিশিষ্ট অ্যামিন উৎপন্ন হয়, এ পদ্ধতিকে হফম্যান ক্ষুদ্রাংশকরণ বিক্রিয়া বলে।

৪৭। অ্যাসিটাইলেশন কী?

উত্তর: অ্যামিনের সাথে অ্যাসিটাইল ক্লোরাইড বা অ্যাসিটিক অ্যানহাইড্রাইড বিক্রিয়া করে অ্যাসিটামাইড তৈরি করার বিক্রিয়াকে অ্যাসিটাইলেশন বলে।

৪৮। ভারাজোকরণ কী?

[य. त्वा. ১৭]

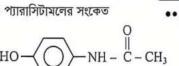
উত্তর: প্রাইমারি অ্যারোমেটিক অ্যামিনকে (0°-5°)C নিমু তাপমাত্রার খনিজ এসিডের উপস্থিতিতে নাইট্রাস এসিডের সঙ্গে বিক্রিয়া করলে ডায়াজোনিয়াম লবণ উৎপন্ন হয়। ডায়াজোনিয়াম লবণ প্রস্তুতির এ विकियाक जायाकाकत्व वना २ व।

৪৯। জুইটার আয়ন কী?

উত্তর: একই অণুতে ধনাতাক ও ঝণাতাক চার্জ বিরাজ করে এরূপ উভধর্মী আয়নকে জুইটার আয়ন বলে।

৫০। কার্বলিক এসিডের সংকেতটি লেখ।

উত্তর: কার্বলিক এসিডের সংকেতটি হলো:


৫১। ট্রাইফিনাইল মিথেনের সংকেত কী? উত্তর:

[य. (वा. ১৭]

৫২। প্যারাসিটামলের সংকেত লেখ।

ট্রাইফিনাইল মিথেন উত্তর: প্যারাসিটামলের সংকেত

N-(4 হাইডুক্সিফিনাইল) ইথান্যামাইড বা প্যারাসিটামল

৫৩। মেথিলেডেট স্পিরিট কী?

উত্তর: পানীয় হিসাবে ইথাইল অ্যালকোহলের অননুমোদিত ব্যবহার বন্ধ করার জন্য এর সাথে বিভিন্ন বিঘাক্ত পদার্থ মিগ্রিত করে বাণিজ্যিকভাবে যে অ্যালকোহল তৈরি করা হয়, তাকে মেখিলেডেট স্পিরিট বলে।

গুরুত্বপূর্ণ অনুধাবনমূলক প্রশ্নসমূহ

১। কার্যকরী মূলকই জৈব বিক্রিয়ার নিয়ন্ত্রক-ব্যাখ্যা কর। উত্তর: কোন জৈব যৌগের অণুতে উপস্থিত বিভিন্ন উপাদান মৌলের যে পর্মাণু বা মূলক উক্ত যৌগের সব রাসায়নিক ধর্ম কার্যকরভাবে নিয়ন্ত্রণ करत, जारक ये स्मार्थित जथा ये स्मार्थ स्थित कार्यकती मूनक वरन। कार्यकती मूनक रेजन त्योरण नमरणाजीय व्यणित পतिष्ठायक, करन कान সমগোত্রীয় শ্রেণির সব সদস্য রাসায়নিক ধর্মে সাদৃশ্য প্রদর্শন করে। সাধারণত যৌগের কার্যকরী মূলকের ইলেকট্রন ঘনতের উপর যৌগের সক্রিয়তা নির্ভর করে এবং কার্যকরী মূলক এর উপর ভিত্তি করে যৌগে ডাইপোল সৃষ্টি হয় যা বন্ধন গঠন ও ভাঙ্গনে ভূমিকা রাখে। সুতরাং কার্যকরী মূলকই জৈব বিক্রিয়ার নিয়ন্ত্রক।

সমগোত্রীয় শ্রেণি কাকে বলে?

[দি. বো. ২১]

উত্তর: একই প্রকার মৌল সমন্বয়ে গঠিত সমধর্মী জৈব যৌগসমূহকে আণবিক ভরের ক্রমবৃদ্ধি অনুসারে সাজালে পাশাপাশি দুটি যৌগের মধ্যে মিথিলিন (- CH2 -) মূলকের পার্থক্য থাকলে এবং ঐ যৌগসমূহের সংযুক্তিকে সাধারণ সংকেত দারা প্রকাশ করা গেলে প্রাপ্ত শ্রেণিকে সমগোতীয় শ্রেণি বলা হয়।

সমগোত্রীর শ্রেণির অন্তর্ভুক্ত যৌগ সমূহের একটি সাধারণ প্রস্তুত প্রণালি शारक। এদের নির্দিষ্ট কার্যকরী মূলক থাকে। এদের রাসায়নিক ধর্মে সাদৃশ্য থাকে এবং ভৌত ধর্ম ধারাবাহিকভাবে পরিবর্তিত হয়।

৩। ইথিন ও প্রোপিন পরস্পর সমগোত্রক কেন? ব্যাখ্যা কর। মি. বো. ২৩। উত্তর: ইথিন ও প্রোপিন পরস্পর সমগোত্রক কারণ এদের উভয় যৌগের কার্যকরী মূলক একই (C = C)। উভয় যৌগকে C_nH_{2n} এর মাধ্যমে প্রকাশ করা যায়। এদের অণুর মধ্যে গুধু "-CH2-" মূলক এর পার্থক্য বিদ্যমান । সূতরাং ইথিন ও প্রোপিন পরস্পর সমগো<u>ত্</u>রক ।

 $H_2C = CH_2$ $H_2C = CH - CH_3$ প্রোপিন

8। প্রোপেন মিথেনের সমগোত্রক-ব্যাখ্যা কর।

বি. বো. ২২)

উত্তর: প্রোপেন ও মিথেনের গাঠনিক সংকেত যথাক্রমে $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_3}$ এবং CH4। যৌগ দুটির কার্যকরী মূলক — C— C— এবং দুটি যৌগের মধ্যে (- CH2) মূলকের পার্থক্য বিদ্যমান। এদের ভৌত ও রাসায়নিক ধর্মের মিল বিদ্যমান। এদেরকে একই সাধারণ নিয়মে প্রস্তুত করা হয়ে থাকে। সূতরাং, প্রোপেন ও মিথেন পরস্পরের সমগোত্রক।

४। मिथानन ७ मिथानग्रान সমগোত্রক नয়-বয়ৢ।

(त्रा. त्वा. ১१)

উত্তর: মিথানল (CH3OH) ও মিথান্যাল (HCHO) সমগোত্রক নয়। কারণ মিখানল অ্যালকোহল (- OH) গোত্রের প্রথম যৌগ। অপরদিকে, মিথান্যাল অ্যালডিহাইড (- CHO) গোত্রের প্রথম যৌগ। এছাড়াও এ প্রস্তুতিতে প্রস্তুত করা যায় না। তাই এরা পরস্পর সমগোত্রক নয়।

Rhombus Publications

৬। বেনজিন একটি অ্যারোমেটিক যৌগ– ব্যাখ্যা কর।

উন্তরঃ অ্যারোমেটিক যৌগ হতে হলে হাকেল নীতি অনুসারে (4n+2) সংখ্যক সঞ্চারণশীল π ইলেক্ট্রন থাকতে হয়, যেখানে n হলো ষড়ভূজাকার বলয়ের সংখ্যা।

বেনজিন একটি চাক্রিক যৌগ এবং এতে সঞ্চারণশীল $6\overline{b}$ π ইলেকট্রন বিদ্যমান যা হাকেল নীতি অনুসরণ করে। কারণ, বেনজিনের ক্ষেত্রে n=1 এবং হাকেল নীতি অনুসারেও সঞ্চারণশীল π ইলেকট্রন সংখ্যা $(4.1+2)=6\overline{b}$ থাকার কথা। তাই বেনজিন একটি অ্যারোমেটিক যৌগ।

৭। পাইরোল একটি অ্যারোমেটিক যৌগ ব্যাখ্যা কর। দো. বো. ২২ উত্তর: হাকেল নীতি অনুসারে, অ্যারোমেটিক যৌগ হতে হলে যৌগে (4n + 2) সংখ্যক সঞ্চারণশীল π-ইলেকট্রন থাকতে হয়, যেখানে n হচ্ছে সুষম পঞ্চভুজ বা ষড়ভুজ বলয় বা চক্রের সংখ্যা। পাইরোলের

মেট ছয়টি সঞ্চারণশীল ইলেকট্রনরপে হাকেল সংখ্যা পূর্ণ করে থাকে। তাই পাইরোল একটি আরোমেটিক যৌগ।

৮। ফিউরান একটি অ্যারোমেটিক যৌগ – ব্যাখ্যা কর।

উত্তরঃ স্থায়ী চাক্রিক কাঠামো বিশিষ্ট যে সকল যৌগে বলয় গঠনকারী পরমাণুসমূহের মধ্যে (4n + 2) সংখ্যক সঞ্চারণশীল π-e দ্বারা আণবিক অরবিটাল গঠিত হয় তাদেরকে অ্যারোমেটিক যৌগ বলে।

ফিউরান এর ক্ষেত্রে দৃটি π বন্ধন এর চারটি π-e ও Ο এর

মুজজোড় ইলেকট্রনদ্বর সঞ্চারণশীল ইলেকট্রন হিসেবে কাজ করে। হাকেল নীতি অনুবারী, এখানে চক্র সংখ্যা 1 অর্থাৎ, n=1। অতএব (4n+2)=(4.1+2)=6টি সঞ্চারণশীল π -e থাকতে হবে যা ফিউরান এ বিদ্যামান। অতএব বলা যার, ফিউরান একটি অ্যারোমেটিক যৌগ।

वा न्गानिशानिन अकि प्यातां प्राप्तिक त्योगं – वा था कत ।

[मि. वा. ১৯; ग. वा. ১৯]

উত্তর: স্থায়ী চাক্রিক কাঠামোবিশিষ্ট যে সকল যৌগে বলয় গঠনকারী পরমাণুসমূহের (4n + 2) সংখ্যক সঞ্চারণশীল π ইলেকট্রন দ্বারা আণবিক অরবিটাল গঠিত হয় তাদেরকে অ্যারোমেটিক যৌগ বলে! ন্যাপথালিন এর ক্ষেত্রে:

न्गाপथानिन

পাঁচটি π বন্ধন তথা 10টি π ইলেকট্রন রয়েছে। হাকেল নীতি অনুযায়ী এখানে চক্র সংখ্যা 2 অর্থাৎ, n=2। অতএব (4n+2)=(4.2+2)=10টি π ইলেকট্রন থাকতে হবে যা ন্যাপথালিন এর ক্ষেত্রে বিদ্যমান। অতএব বলা যায় যে, ন্যাপথালিন একটি অ্যারোমেটিক যৌগ।

নিত্রে ➤ Chemistry 2nd Paper Chapter-2

১০ ৷ ফেনল অ্যারোমোটিক যৌগ কেন? ব্যাখ্যা কর ৷ [সি. বো. ২২: রা. বো. ১৭]

উত্তরঃ অ্যারোমেটিক যৌগে হাকেল নীতি অনুসারে (4n + 2) সংখ্যক

সঞ্চরণশীল π ইলেকট্রন থাকে যেখানে n = সুষম পঞ্চভুজ বা বভৃভুজ্

বলয় বা চক্রের সংখ্যা ৷

ফেনলের গঠন চেপ্টা সমতলীয় চাক্রিক এবং ফেনলের গাঠনিক সংকেতে 1টি বেনজিন বলয় রয়েছে। এই একটি বেনজিন বলয়ে (n=1) তিনটি দ্বি-বন্ধনে 6টি সঞ্চারণশীল π ইলেকট্রন আছে; যা হাকেল সংখ্যা $(4n+2)=(4\times 1+2)=6$ কে সমর্থন করে। তাই ফেনল অ্যারোমেটিক যৌগ।

১১। পিরিডিন একটি অ্যারোমেটিক যৌগ─ কেন? চি. বো. ২২ উত্তর: পিরিডিনের সংকেত:

পিরিভিন এর সংকেতে একটি বেনজিন বলয় রয়েছে। এ বেনজিন বলয়ে (n = 1) 3টি দ্বিবন্ধন অর্থাৎ, 6টি সঞ্চারণশীল পাই (π) ইলেকট্রন আছে; যা হাকেল সংখ্যা (4n + 2) = (4 × 1 + 2) = 6 কে সমর্থন করে। তাই আধুনিক হাকেল নিয়ম মতে, পিরিভিন একটি জ্যারোমেটিক যৌগ।

১২। C_3H_8O -এর সম্ভাব্য সমাণুগুলোর সংকেত লেখ। দি. বো. ২৩। উত্তর: কোন যৌগের আণবিক সংকেত $C_nH_{2n+2}O$ গঠনবিশিষ্ট হলে তার সম্ভাব্য সমাণুগুলো অ্যালকোহল ও ইথার শ্রেণির হয়। তাই, C_3H_8O যৌগটির সম্ভাব্য সমাণুগুলো হবে যথাক্রমে–

ОН

(i) CH₃ – CH – CH₃ 2-থোপানল

(ii) CH₃ – CH₂ – CH₂ – OH প্রোপানল

(iii) CH₃ – O – C₂H₅ মিখোক্সি ইথেন

১৩। ডাই মিথাইল ইথার ও ইথানল পরস্পর কোন ধরনের সমাণু? ব্যাখ্যা কর। যি. বো. ২২

উত্তর: একই মৌলিক পদার্থের সমন্বয়ে গঠিত সমধর্মী জৈব যৌগসমূহ যারা একই সাধারণ সংকেতবিশিষ্ট, একই কার্যকরী মূলক যুক্ত, যাদেরকে আণবিক ভরের ক্রমবৃদ্ধি অনুযায়ী সাজালে পরপর দৃটি পাশাপাশি যৌগের মধ্যে একটি মিথিলিন মূলক (— CH_2 —) এর পার্থক্য দেখা যায় এবং যাদেরকে একই সাধারণ নিয়মে প্রস্তুত করা যায়, তাদের সমগোত্রীয় শ্রেণি বলে।

Rhombus Publications

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book

১৪। জ্যামিতিক সমাণুতার শর্ত ব্যাখ্যা কর?

াকু. বো. ২১

উত্তর: জৈব যৌগে জ্যামিতিক সমাণুতার জন্য কার্বন-কার্বন দ্বি-বন্ধনের মুক্ত আবর্তন রহিত হতে হয়। সেক্ষেত্রে জ্যামিতিক সমাণুতার শর্তগুলো হলো–

(i) সাধারণত abC = Cab বা abC = Cbd বা abC = Cde সংকেতযুক্ত প্রতিস্থাপিত অ্যালকিন জ্যামিতিক সমাণুতা প্রদর্শন করে।

(ii) চাক্রিক জৈব যৌগসমূহের ক্লেত্রে যে বন্ধনের মুক্ত আবর্তন রহিত হয় তার দু-প্রান্তের প্রতিটি কার্বন পরমাণুর সঙ্গে সংযুক্ত পরমাণু বা গ্রুপদ্বয় পরস্পার থেকে ভিন্ন হলে জ্যামিতিক সমাণুতা প্রদর্শন করে।

১৫ । বিউট-2-ইন জ্যামিতিক সমাণুতা প্রদর্শন করবে কি? [রা. বো. ২২; ব. বো. ২১] উত্তর: জ্যামিতিক সমাণুতার শর্তগুলো হলো–

(i) চাক্রিক যৌগ বা প্রতিস্থাপিত দ্বি-বন্ধনযুক্ত যৌগ হতে হবে।

(ii) কার্বন-কার্বন বন্ধনের অক্ষ বরাবর ঘূর্ণন অক্ষম হতে হবে।

(iii) যৌগটির গঠন abC = Cab বা abC = Cab বা abC = Cde কাঠামোর অনুরূপ হতে হবে।

এখানে বিউটিন-2 জ্যামিতিক সমাণুতার প্রদত্ত শর্তসমূহ পূরণ করেছে। কারণ বিউটিন-2 এ কার্বন-কার্বন দ্বি-বন্ধন কাঠামো abC = Cab এর ন্যায়। ফলে বিউটিন-2 এর দুটি সমাণু সম্ভব।

$$CH_3$$
 CH_3 H CH
 $C = C$
 H CH_3 $C = C$
 H
 CH_3 $C = C$
 H
 CH_3 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_3
 $C = C$
 CH_4
 CH_3
 $C = C$
 CH_4
 CH_3
 $C = C$
 CH_4
 CH_5
 CH_5
 CH_6
 CH

১৬। 2-পেন্টিন জ্যামিতিক সমাণুতা প্রদর্শন করে-ব্যাখ্যা কর। াদি. বো. ২৩) উত্তর: 2-পেন্টিন এর সংকেত হলো: ${
m CH_3-CH_2-CH=CH-CH_3};$ যা জ্যামিতিক সমাণুতা প্রদর্শন করে। কেননা, জ্যামিতিক সমাণুতার শর্তগুলো-

(i) চাক্রিক যৌগ বা প্রতিস্থাপিত দ্বিবন্ধনযুক্ত যৌগ হতে হবে।

(ii) কার্বন কার্বন বন্ধনের অক্ষ বরাবর ঘূর্ণন অক্ষম হতে হবে।

(iii) যৌগের গঠন abC = Cab ।

এখানে, 2-পেন্টিন এ কার্বন কার্বন দ্বিবন্ধন থাকায় বন্ধনের অক্ষ বরাবর মুক্ত আবর্তন সম্ভব নয় এবং গঠন কাঠামো abC = Cab এর ন্যায় হওয়ায় এটি জ্যামিতিক সমাণুতা প্রদর্শন করে। ফলে 2- পেন্টিন এর নিম্নন্ধপ দুটি সমাণু সম্ভব হবে-

$$H_5C_2$$
 $C = C$ H_5C_2 $C = C$ CH_3 H_5C_2 $C = C$ CH_3 $C = C$

১৭। প্রোপানোন টটোমারিতা প্রদর্শন করে- ব্যাখ্যা কর।

[দি. বো. ২২; জনুরূপ প্রশ্ন: কু. বো. ১৯]

উত্তর: যখন এক প্রকার কার্যকরী মূলক কাঠামো থেকে স্বতঃস্কৃতভাবে ভিন্ন প্রকার কার্যকরী মূলকে রূপান্তরিত হয় এবং উভয় কাঠামোর মধ্যে গতিশীল সাম্যাবস্থার সৃষ্টি হয়, তবে এ ধরনের সমাণুতাকে একে অপরের টটোমার বলে।

প্রোপানোনের ক্ষেত্রে এর কার্যকরী মূলক — C — কার্বন-কার্বন দ্বিবন্ধন ও অ্যালকোহল মূলক (—OH) অর্থাৎ 'ইন ও অল' মূলকে রূপান্তরিত হয় ও সাম্যাবস্থায় থাকে। অর্থাৎ, প্রোপানোন থেকে স্বতঃক্ষুর্তভাবে প্রোপিন-2-অল এর সৃষ্টি হয়। তাই প্রোপানোন ও প্রোপিন-2-অল পরস্পর টটোমার সমাণু। সুতরাং, প্রোপানোন টটোমারিতা প্রদর্শন করে।

$$CH_3 - C - CH_2 \Longrightarrow CH_3 - C = CH_2$$

১৮। 2-ব্রোমো বিউটেন আলোক সক্রিয় কি-না? ব্যাখ্যা কর। বি. বো. ২২ উত্তরঃ কোনো জৈব যৌগ আলোক সক্রিয় হতে হলে–

i. অপ্রতিসম কার্বন বা কাইরাল কেন্দ্র থাকতে হবে।

ii. উভয় কনফিগারেশন পরস্পরের উপর দর্পণ প্রতিবিম্ব হতে হবে।

iii. কনফিগারেশদ্বয় পরস্পরের উপর অসমপাতিত হবে।

2-ব্রোমো বিউটেন শর্তত্রয় পূরণ করায় আলোক সক্রিয়তা দেখায়।

d-সমাণু

1-সমাণু

১৯। ব্যাখ্যা কর: 1-ক্লোরো-1-হাইড্রোক্সি ইথেন একটি আলোক সক্রিয় যৌগ। বি. বো. ২২১

উত্তরঃ আলোক সমাণুতার শর্তসমূহঃ

১. অপ্রতিসম কার্বন পরমাণু বা কাইরাল কেন্দ্র থাকতে হবে।

২. উভয় সমাণুর কনফিগারেশন পরস্পরের দর্পণ প্রতিবিম্ব হবে।

৩. উভয় কনফিগারেশন পরস্পরের উপর অসমাপতিত হবে।

া-ক্লোরো-1-হাইড্রোক্সি ইথেন যৌগটিকে নিমুরূপে লেখা যায়:

যৌগটিতে একটি কাইরাল কার্বন বিদ্যমান। যৌগটির পরস্পর দর্পণ প্রতিবিম্ব সম্ভব এবং এই কনফিগারেশন পরস্পরের উপর অসমাপতিত হয়। সুতরাং, যৌগটি একটি আলোক সক্রিয় যৌগ।

২০। দুটি যৌগ কখন এনানসিওমার হয়? ব্যাখ্যা দাও। রা. বো. ২২ উত্তর: জৈব যৌগের একটি মাত্র অপ্রতিসম কার্বন পরমাণু বা কাইরাল কেন্দ্র থাকলে দুটি আলোক সক্রিয় সমাণু হয়। এই দুটি আলোক সমাণুকে বি-সমাণু ও /-সমাণু বলে। এদের আলোক সক্রিয়তার আবর্তন মাত্রার মান সমান কিন্তু দিক ভিন্ন থাকে। বি-সমাণুর আবর্তন ডানদিকে বা দক্ষিণাবর্ত এবং /-সমাণুর আবর্তন বাম দিকে বা বামাবর্ত হয়। এরূপ উভয় সমাণুকে পরস্পরের এনানসিওমার বলে। যেমন বি-ল্যাকটিক এসিড ও /-ল্যাকটিক এসিড।

Rhombus Publications

২১। মেসো টারটারিক এসিডের গাঁঠনিক সংকেত লেখ। াসি. বো. ২৩।
উত্তরঃ কোন বিকারক যৌগের অণুর সমযোজী বন্ধনে উপস্থিত ইলেকট্রন
জোড়ের সৃষম বিভাজনে উৎপন্ন অযুগ্ম ইলেকট্রন যুক্ত ও আধান প্রশমিত
পরমাণু বা গ্রুপকে মুক্তমূলক বলে। যেমন অ্যালকেন অণুর কার্বনকার্বন সিগমা বন্ধনের সমভাঙ্গনের ফলে অ্যালকাইল ফ্রি-রেডিকেল বা
মুক্তমূলক উৎপন্ন হয়। মুক্তমূলকে অযুগ্ম ইলেকট্রন থাকায় এটি
অস্থিতিশীল অবস্থায় থাকে এবং দ্রুত অন্য কোন পরমাণু বা মূলকের

সাথে বন্ধনে আবদ্ধ হয়ে ইলেকট্রন সংগ্রহ করার প্রবর্ণতা দেখায়। এ

২২। রেসিমিক মিশ্রণ আলোক নিদ্রিয় -ব্যাখ্যা কর। দি. বো. ২৩। উত্তর: জৈব যৌগে দুটি এনানসিওমারের সমমোলার বা সমত্ল মিশ্রণকে রেসিমিক মিশ্রণ বলে। দুটি এনানসিওমারের একটি dexto এবং অন্যটি levo, উভরেই এক সমতলীয় আলোর তলকে সমান কৌণিক পরিমাণে বিপরীত দিকে ঘুরায়; তাই d সমাণু ও l সমাণুর এই সমত্ল মিশ্রণ আলোক নিদ্রিয় হয়। যেমন: d ল্যাকটিক ও l ল্যাকটিক এসিড উভয়েই আলোক সক্রিয় এবং এদের আপেক্ষিক আবর্তন যথাক্রমে +2.24° ও -2.24°; কিন্তু dl ল্যাকটিক এসিড আলোক নিদ্রিয় হয়।

২৩। 1° অপেক্ষা 2° কার্বানায়ন স্বল্পস্থায়ী কেন?

কারণে মুক্তমূলক অধিক সক্রিয় হয়।

উত্তর: কার্বানায়নের কেন্দ্রস্থিত C এর ইলেকট্রন ঘনত্বের উপর তার স্থায়িত্ব ও সক্রিয়তা নির্ভর করে। 1° কার্বানায়ন ও 2° কার্বানায়নের মধ্যে 2° কার্বানায়ন স্বল্পস্থায়ী এবং অধিক সক্রিয় হয়। কারণ এক্ষত্রে দুটি অ্যালকাইল উপস্থিত থাকে। অ্যালকাইল মূলক ইলেকট্রন বিকর্মী হওয়ায় 2° কার্বানায়নের কেন্দ্রীয় কার্বনে দুটি অ্যালকাইল দ্বারা বিকর্মিত ইলেকট্রন কার্বানায়নের ইলেকট্রন ঘনতু যতটা বৃদ্ধি করে 1° কার্বানায়নে হয় তার তুলনায় কম বৃদ্ধি করে। এজন্য 1° কার্বানায়ন স্বল্পস্থায়ী বা অধিক সক্রিয়।

২৪। °CH₃ একটি মুক্তমূলক ব্রিরিয়ে লিখ। [ব. বো. ২১] উত্তর: সাধারণত তাপ বা আলোর প্রভাবে ইথেনের কার্বন-কার্বন সিগমা বন্ধনের সুবম বিভাজনের ফলে °CH₃ মুক্তমূলক উৎপন্ন হয়।

 $H_3C-CH_3 \xrightarrow{\text{ord}} 2$ ${}^{\circ}CH_3$ এতে একটি বিজ্ঞোড় ইলেকট্রন বিদ্যামান থাকার এটি সক্রির, অস্থারী হয়ে থাকে। মুক্তমূলকসমূহ অন্যান্য অণুর সাথে বিক্রিয়া করে স্থিতিশীলতা অর্জন করতে পারে। যেমনঃ মিথাইল মুক্ত মূলক ক্লোরিনের

২৫। SO3 যৌগটি ইলেকট্রন আকর্বী কেন? সি. বো. ২২ উত্তর: যে সকল বিকারক ইলেকট্রনের প্রতি আসজি প্রকাশ করে এবং বিক্রিয়াকালে ইলেকট্রন গ্রহণ করে তাদের ইলেকট্রন আকর্বী বিকারক বলে। SO3 এ S এর অস্টক সংকোচন ঘটে। এ কারণে স্থিতিশীলতার জন্য SO3 আরও দুটি ইলেকট্রন গ্রহণ করে। সুতরাং, বলা যায় SO3 একটি ইলেকট্রন আকর্ষী বিকারক।

সাথে বিক্রিয়ায় মিথাইল ক্লোরাইড উৎপন্ন করে।

Rhombus Publications

১৬। মুক্তমূলক অধিক সক্রিয় কেন? ব্যাখ্যা কর। রা. কো. কা উত্তর: বিকারক অণুর সমযোজী বন্ধনে তাপ বা আলোর প্রভাবে সমভাঙ্গন (homolysis) ঘটে ফলে ফ্রি-রেডিকেল উৎপন্ন হয়। অ্যালকেন অণুর কার্বন-কার্বন সিগমা বন্ধনের সমভাঙ্গনের ফলে অ্যালকাইল ফ্রি-রেডিকেল তৈরি হয়।

২৭। - NH2 কে অর্থো-প্যারা নির্দেশক বলা হয় কেন?

উত্তর: — $\ddot{N}H_2$ মূলক বেনজিন বলয়ে অর্থো-প্যারা নির্দেশক। কারণ এর নিঃসঙ্গ ইলেকট্রন জোড় রেজোন্যাঙ্গের মাধ্যমে বেনজিন বলয়ে প্রবেশ করে। ফলে বেনজিনের ইলেকট্রন ঘনতু বৃদ্ধি পায়। বিশেষ করে অর্থো-প্যারা অবস্থানের ইলেকট্রন ঘনতু তুলনামূলকভাবে বেশি বৃদ্ধি পায়। ফলে, নবাগত প্রতিস্থাপক অর্থো-প্যারা অবস্থানে যুক্ত হয়। তাই — NH_2 মূলক অর্থো-প্যারা নির্দেশক।

২৮। — OH মূলক অর্থো-প্যারা নির্দেশক কেন? ক্সি. বো. ২২; দি. বো. ২১।
উত্তর: — OH মূলক অর্থো-প্যারা নির্দেশক হিসেবে কাজ করে। বেনজিন
বলরে যুক্ত — OH ধনাত্মক মেসোমেরিক প্রভাবে নিঃসঙ্গ ইলেকট্রন
জোড় বেনজিন বলরে ঠেলে দের। এতে বেনজিন বলরে অর্থো ও প্যারা
অবস্থানে ইলেকট্রন ঘনত বৃদ্ধি পার এবং আগমনকারী ইলেকট্রোফাইল
এসব সক্রির স্থানে সহজে প্রতিস্থাপন ঘটার। এভাবে — OH অর্থোপ্যারা নির্দেশক হিসেবে কাজ করে।

২৯। ফিডেল-ক্রাফট বিক্রিয়ায় <mark>অনার্দ্র AICl₃ ব্যবহার করা হয় কেন?</mark>

ঢ়া. বো. ১৯]
উত্তর: ক্রিডেল-ক্রাফট বিক্রিয়ার অনর্দ্র AICI3 ব্যবহারের কারণ হলো এটি
একটি শক্তিশালী লুইস এসিড যা ইলেকট্রোফাইল তৈরি করতে
সহারক। অনর্দ্র অবস্থায় AICI3 অ্যালকাইল হ্যালাইড বা অ্যাসাইল
হ্যালাইডের সাথে বিক্রিয়ার কার্বোক্যাটারন তৈরি করে যা অ্যারোমেটিক
রিংরের সাথে প্রতিস্থাপনে অংশ নেয়। অন্যদিকে, অর্দ্র AICI3 ব্যবহার
করা হলে জলীয়বান্পের সংস্পর্শে কার্যকারিতা হারায় ও

জেব রসায়ন > ACS/ FRB Compact Suggestion Book.....

৩০। Q একযোজী সম্প্রভ মূলক হলে এটি বেনজিন বলয়ে কোন নির্দেশক ৩৫। S_N1 বিক্রিয়া ব্যাখ্যা করো।

হবে? ব্যাখ্যা কর।

[চ. বো. ২১; রা. বো. ১৭]

উত্তর: যেসব একযোজী মূলক বেনজিন বলয়ে ইলেকট্রন প্রদান করে বেনজিন বলয়কে সক্রিয় করে তাদের কে অর্থো প্যারা নির্দেশক বলে। Q একটি একযোজী সম্পৃক্ত মূলক হওয়ায় এটি বেনজিন বলয়ে ইলেকট্রন প্রদান করবে এবং একে সক্রিয় করবে। অতএব, Q বেনজিন বলয়ে অর্থো-প্যারা নির্দেশক হিসেবে কাজ করবে।

৩১। বেনজিন ইথাইনের একটি পলিমার– ব্যাখ্যা কর।

উত্তর: 420°C তাপমাত্রায় উত্তপ্ত Fe নলের মধ্যে দিয়ে ইথাইন গ্যাসকে চালনা করলে বেনজিন উৎপন্ন হয়। যেহেতু মনোমার ইথাইন হতে পলিমারকরণের মাধ্যমে বেনজিন তৈরি হয়। তাই বলা যায় বেনজিন ইথাইনের একটি পলিমার।

$$3 \text{ CH} \equiv \text{CH} \xrightarrow{\text{Fe}} \bigcirc$$

৩২। টলুইন প্রস্তুতির বিক্রিয়া দেখাও।

রা. বো. ১৯

চি. বো. ২২

উত্তর: অনার্দ্র AICl₃ এর উপস্থিতিতে মিথাইল ক্লোরাইড ও বেনজিনের বিক্রিয়ায় টলুইন পাওয়া যায়।

৩৩। ফ্রিডেল ক্রাফট অ্যালকাইলেশন বিক্রিয়া সমীকরণসহ লিখ

উত্তর: অনার্দ্র AICl₃ এর উপস্থিতিতে বেনজিন ও মিথাইল ক্লোরাইড বিক্রিয়া করে মিথাইল বেনজিন বা টলুইন উৎপন্ন করে । এ বিক্রিয়াকে ফিডেল ক্রাফট অ্যালকাইলেশন বলা হয়।

৩৪। মারকনিকভ এর নীতি ব্যাখ্যা কর।

[ঢা. বো. ২৩]

উত্তর: অপোলার দ্রাবকের উপিস্থিতিতে অপ্রতিসম অ্যালকিনের সাথে অপ্রতিসম বিকারকের বিক্রিয়ায় বিকারকের H বা ধনাত্মক প্রান্তটি অ্যালকিনের দ্বিবন্ধনযুক্ত যে কার্বনে বেশি H পরমাণু থাকে প্রধানত সে কার্বন পরমাণুতে যুক্ত হয়। যা মারকনিকভ নীতি নামে পরিচিত। যেমন: অপোলার দ্রাবক CCl4 এর উপস্থিতিতে অপ্রতিসম অ্যালকিনের সাথে প্রোটিক এসিড HX (X = Cl, Br, I) এর বিক্রিয়ায়, অশ্লীয় হাইজ্রোজেন কম প্রতিস্থাপিত কার্বন পরমাণুর সাথে যুক্ত হয় এবং হ্যালাইড অধিক প্রতিস্থাপিত কার্বনের সাথে যুক্ত হয়।

$$2CH_3 - CH = CH_2 + 2H^+Br^- \xrightarrow{CCI_4} CH_3 - CHBr - CH_3$$
 (90%)
 $CH_3 - CH_2 - CH_2Br$
 (10%)

৩৫। S_N1 বিক্রিয়া ব্যাখ্যা করো।

উত্তরঃ যে নিউক্লিওফিলিক প্রতিস্থাপন বিক্রিয়ার গতি নিউক্লিওফাইলের

ঘনমাত্রার ওপর নির্ভর না করে কেবল অ্যালকাইল হ্যালাইডের

ঘনমাত্রার ওপর নির্ভর করে তাকে S_N1 বা এক আণবিক

নিউক্লিওফিলিক প্রতিস্থাপন বিক্রিয়া বলে।

(i) S_N1 বিক্রিয়া 3°- হ্যালাইডে বেশি ঘটে, (ii) প্রথমে অধিক স্থায়ী 3° কার্বোনিয়াম আয়ন সৃষ্টি হয়, (iii) বিক্রিয়াটি দু'ধাপে ঘটে, (iv) বিক্রিয়াটি পোলার দ্রাবকে অতি লঘু ক্ষার দ্রবণে যেমন, KOH এর জলীয় দ্রবণে ঘটে।

৩৬। ম্রিগনার্ড বিকারক পানির অনুপস্থিতিতে তৈরি করা হয় কেন? ব্যাখ্যা কর।

উত্তরঃ পানির উপস্থিতিতে গ্রিগনার্ড বিকারক আর্দ্র বিশ্লেষিত হয়ে অ্যালকেন উৎপন্ন করে ফেলে।

CH₃MgCl + H₂O → CH₄ + Mg(OH)Cl
এজন্য ফ্রিগনার্ড বিকারক পানির অনুপস্থিতিতে তৈরি করা হয়।

৩৭। উৰ্টজ বিক্ৰিয়া বলতে কী বোঝ?

উত্তরঃ অ্যালকাইল হ্যালাইড ধাতব সোডিয়ামের সাথে শুদ্ধ ইথারের উপস্থিতিতে বিক্রিয়া করলে অ্যালকেন উৎপন্ন হয় যা উর্টজ বিক্রিয়া নামে পরিচিত।

৩৮। উর্টজ বিক্রিয়ায় কেন শুদ্ধ ইথার ব্যবহার করা হয়? ।কু. বো. ২২ রা. বো. ২১। উত্তর: উর্টজ বিক্রিয়ায় দ্রাবক হিসেবে শুদ্ধ ইথার ব্যবহারের কারণ হলো—
প্রথমত, শুদ্ধ ইথারে Na দ্রবীভূত থাকে কিন্তু ইথারের সাথে বিক্রিয়া করে না। দ্বিতীয়ত, বিক্রিয়ার বিক্রিয়ক অ্যালকাইল হ্যালাইড ও উৎপাদ অ্যালকেন এ দ্রবীভূত হলেও অপর উৎপাদ সোডিয়াম হ্যালাইড দ্রবীভূত হয় না। ফলে তা সহজে অপসারণ করা যায়।

৩৯।জৈব যৌগের অসম্পৃক্ততা নির্ণয়ের একটি পরীক্ষা বিক্রিয়াসহ বর্ণনা কর। মি. বো. ২২

উত্তর: জৈব যৌগে কার্বন-কার্বন π-বন্ধনের উপস্থিতিজনিত ধর্মাবলিকে জৈব যৌগের অসম্পৃক্ততা বলে। অসম্পৃক্ততা নির্ণয়ের জন্য বেয়ার পরীক্ষা ব্যাখ্যা করা হলো: ক্ষারীয় KMnO₄ এর গোলাপি বর্ণের দ্রবণে অসম্পৃক্ত হাইড্রোকার্বন যোগ করলে, হাইড্রোকার্বনটি জারিত হয়ে গ্লাইকল ও কার্বব্রিলিক এসিড উৎপন্ন করে। ফলে পারম্যান্সানেটের গোলাপি বর্ণ দূর হয়়। ফলে জৈব যৌগে কার্বন-কার্বন π বন্ধনের উপস্থিতি প্রমাণিত হয়।

$$CH_2 = CH_2 + [O] + H_2O \xrightarrow{KMnO_4} HOCH_2 - CH_2OH$$
 ইথিলিন গ্লাইকল
$$CH = CH + 4 [O] + H_2O \xrightarrow{KOH} HOOC - COOH$$
 অক্সালিক এসিড

Rhombus Publications

৪০। ইখাইন অমুধর্মী পদার্থ-ব্যাখ্যা কর।

কু. বো. ২৩; य. বো.২৩; ঢা. বো. ২১; ম. বো.২১] উত্তর: ব্রনস্টেড মতবাদ অনুযায়ী যে সকল পদার্থ প্রোটন (H⁺) দান করে তাদেরকে এসিড বা অল্ল বলে। ইথাইন অণুর কার্বন পরমাণু দৃটি sp সংকরিত। সংকর অরবিটালে s ও p অরবিটালের অনুপাত l : l অর্থাৎ 50% s চরিত্র ও 50% p চরিত্র। ক্ষুদ্রাকৃতি s অরবিটালের অনুপাত বেশি হওয়ায় C – H বন্ধনের শেয়ারকৃত ইলেকট্রন যুগল C পরমাণুর নিউক্লিয়াসের অধিকতর কাছে দৃঢ়ভাবে যুক্ত থাকে। এতে C – H বন্ধন দুর্বল হয়ে যায় এবং হাইড্রোজেন পরমাণু H⁺ হিসেবে বিচ্যুত হয়। যেহেতু ইথাইন প্রোটন দান করতে পারে, তাই ইথাইন অল্লধমী।

$$HC \equiv CH(g) + 2Na(s) \xrightarrow{\text{তরল NH}_3} NaC \equiv CNa(s) + H_2$$

সোডিয়াম কার্বাইড

8)। অ্যালকাইন-১ অমুধর্মী কিন্তু অ্যালকাইন-২ অমুধর্মী নয় কেন?

উত্তর: অ্যালকাইন-1 যেমন: ইথাইনের ত্রিবন্ধনযুক্ত কার্বন পরমাণুদ্বরের sp সংকরণ ঘটে। এতে ইথাইনের উভয় কার্বন পরমাণুর নিউক্লিরাস কার্বন-কার্বন সিগমা বন্ধনে অধিক আকৃষ্ট হওয়ায় C – H বন্ধন দুর্বল হয় এবং প্রান্তীয় H টি ধাতুরূপে সহজে প্রতিস্থাপনযোগ্য হয়। এজন্য অ্যালকাইন –1 মৃদু অম্লুধমী হয়ে থাকে। কিন্তু অ্যালকাইন-2 তে প্রান্তীয় H না থাকায় এটি অম্লুধমীতা প্রদর্শন করতে পারে না।

8২। অ্যালকোহল পানিতে দ্রবণীয় কেন?
তি. বো. ২১; সন্মিলিত বো. ১৮)
উদ্তর: অ্যালকোহল পানিতে দ্রবণীয় হয় কারণ অ্যালকোহলে (— OH) মূলক
বিদ্যমান আছে। হাইড্রোজেনের তুলনায় অক্সিজেনের তড়িং ঝণাত্মকতা
বেশি হওয়ায় O — H বন্ধনে পোলারিটির উদ্ভব ঘটে। অনুরূপভাবে
পানিতেও বিদ্যমান (O — H) এ পোলরিটির উপস্থিতির জন্য আংশিক
ঝণাত্মক O⁵⁻ এর সাথে আংশিক ধনাত্মক H⁵⁺ এর মধ্যে H—bond
গঠন করে। ফলে অ্যালকোহল পানিতে দ্রবীভূত হয়।

$$H^{\delta+}$$
 $O^{\delta-}$ $C^{\delta-}$ C

80। কক্ষ তাপমাত্রার ইথেন গ্যাস কিন্তু ইথানল তরল কেন? (চ. বো. ১৭) উত্তর: ইথানল (C_2H_5OH) এ O ও H এর মধ্যে তড়িং ঋণাত্মকতার পার্থক্য অধিক হওয়ায় O প্রান্তে আংশিক তড়িং ঋণাত্মকতা ও H প্রান্তে আংশিক তড়িং ঋণাত্মকতা ও H প্রান্তে আংশিক তড়িং ঋণাত্মকতা ও H প্রান্তে আংশিক তড়িং ধনাত্মকতার তথা পোলারিটির উত্তব ঘটে। ফলে পাশাপাশি দুটি ইথানল অণুর একটি O এর সাথে অপরটির H এর মাঝে হাইড্রোজেন বন্ধন গঠিত হয়। ফলশ্রুতিতে, ইথানলের গলনান্ধ, কুটনান্ধ অধিক হয় ও কক্ষ তাপমাত্রার একে তরল অবস্থায় পাওয়া যায়।

অন্যদিকে, ইথেন এ পোলারিটির উদ্ভব হয় না ও আন্তঃআণবিক আকর্ষণ কম থাকায় কক্ষ তাপমাত্রায় এটি গ্যাসীয় অবস্থায় বিরাজ করে।

88। অ্যালডিহাইড ও কিটোনের পার্থক্য দেখাও। উত্তর: অ্যালডিহাইড ও কিটোন এর মধ্যকার পার্থক্য নিম্নুরূপ:

...... ACS, ➤ Chemistry 2nd Paper Chapter-2

 (ii) অ্যালডিহাইড নিউক্লিওফিলিক সংযোজনে কিটোনের তুপনার অধিক সক্রিয় হয়ে থাকে।

(iii) অ্যালডিহাইড টলেন বিকারক ও ফেহলিং দ্রবণের সাথে বিক্রিয়া দিলেও কিটোন তা দেয় না।

8৫। ইথান্যাল অ্যাল্ডল ঘনীভবন বিক্রিয়া দেয়- ব্যাখ্যা কর। বি. বে. ২৬। উত্তর: যে সকল কার্বনিল যৌগে α-হাইড্রোজেন থাকে, তারা অ্যাল্ডল ঘনীভবন বিক্রিয়া প্রদর্শন করে। ইথান্যালে তথা CH₃CHO যৌগে একটি অমুধর্মী α-Η বিদ্যমান থাকে, তাই এটি অ্যাল্ডল ঘনীভবন বিক্রিয়া দিবে।

$$\begin{array}{c} O & OH \\ \parallel \\ CH_3-C+H-CH_2-CHO \xrightarrow{\overline{\sigma_{1}}} CH_3-HC-CH_2CHO \\ \parallel \\ H \end{array}$$

3-হাইড্রব্সি বিউটান্যাল (অ্যালডল)

৪৬। C/CH2COOH ও CH3COOH এর মধ্যে কোনটি অধিক অস্ত্রীর এবং কেন ব্যাখ্যা কর। ম. বো. ২২; জনুরূপ প্রশ্ন: রা. বো.১১)

উত্তর: জৈব এসিডের অম্লুতার মাত্রা ঐ এসিডের কার্যকরী মূলক — COOH এর কার্বন পরমাণুর ধনাত্মক চার্জের পরিমাণের উপর নির্ভর করে। ধনাত্মক চার্জের মাত্রা যত বেশি হয়, — OH মূলকের আয়নিকরণ তত বৃদ্ধি পায়, ফলে অম্লের ভীব্রতা তত বেশি হয়।

এখন, C/CH₂COOH অণুতে – CH₃ মূলক একটি H পরমাণু ঝণাতাক আবেশধর্মী Cl পরমাণু দ্বারা প্রতিস্থাপিত হওয়ায় – COOH মূলকের কার্বন পরমাণুতে আংশিক ধনাতাক চার্জের মাত্রা বৃদ্ধি পায়। আবার, CH₃COOH অণুতে – COOH মূলকের সাথে ধনাতাক আবেশধর্মী – CH₃ মূলক যুক্ত থাকায় কার্যকরী মূলকের কার্বন পরমাণুতে ধনাতাক চার্জের মাত্রা হ্রাস পায়। সুতরাং CH₃COOH অধিক অল্লীয়।

৪৭। ফরমিক এসিড একটি বিজারক- ব্যাখ্যা কর।

উত্তর: ফরমিক এসিড (HCOOH) এ – C – H মূলক থাকায় এটি মৃদু জারক টলেন বিকারক ও ফেহলিং দ্রবর্ণকে বিজারিত করে যথাক্রমে সিলভার দর্পণ এবং কিউপ্রাস অক্সাইডের লাল অধঃক্ষেপ উৎপন্ন করে এবং নিজে জারিত হয়।

HCOOH + [Ag(NH₃)₂]OH → Ag(s)↓ + (NH₄)₂CO₃ + NH₃ সিলভার দর্পণ

 $HCOOH + Cu (OH)_2 + NaOH \rightarrow Cu_2O(s) + Na_2CO_3 + H_2O$ লাল অধঃক্ষেপ

অতএব বলা যায়, ফরমিক এসিড একটি বিজারক।

৪৮। কার্বনিল মূলককে কীভাবে মিথিলিন মূলকে পরিণত করা যায়? ব্যাখ্যা কর। (চ. বো. ২৩; ঢা. বো. ২৩)

উত্তর: ক্লিমেনসন বিজারণ বিক্রিয়ার মাধ্যমে কার্বনিল মূলককে (>C = O)
মিথিলিন মূলকে (>CH $_2$) পরিণত করা যায়। সেক্ষেত্রে কার্বনিল
যৌগকে Zn - Hg ও গাঢ় HCl দ্বারা বিজারিত করলে হাইড্রোকার্বন
পাওয়া যায়।

$$>C = O + 4[H] \frac{Zn - Hg}{HCl (\mathfrak{N})} > CH_2 + H_2O$$

Rhombus Publications

জৈব রসায়ন > ACS, FRB Compact Suggestion Book

৪৯। জৈব যৌগে কার্বনিল (> C = O) মূলক কীভাবে শনাক্ত করবে?

উত্তর: কার্বনিল (>C=O) মূলক শনাক্তকরণের জন্য কার্বনিল যৌগের ক্ষারীকৃত দ্রবণে 2, 4-ডাইনাইট্রো ফিনাইল হাইড্রাজিন (DNPH) দ্রবণ যোগ করলে 2, 4-ডাইনাইট্রো ফিনাইল হাইড্রাজোন এর কমলা বর্ণের অধঃক্ষেপ পডে।

$$NO_2$$
 NO_2 NO_2

৫০।জৈব যৌগে – COOH মূলকের উপস্থিতি শনাজকরণের পরীক্ষা সমীকরণসহ লেখ।

উত্তর: কার্বক্সিলিক এসিডসমূহ সকল কার্বনেট ও বাইকার্বনেটের সাথে বিক্রিয়া করে CO_2 বিমুক্ত করে। ফলে $NaHCO_3$ এর জলীয় দ্রবণের সাথে কার্বক্সিলিক এসিড (R – COOH) বিক্রিয়া করে সোডিয়াম কার্বোক্সেলেট, H_2O ও CO_2 উৎপন্ন করে। উৎপন্ন CO_2 বুদ বুদ আকারে বের হয় যা চুনের পানিকে ঘোলা করে। নিম্নে – COOH মূলক শনাক্তকরণের বিক্রিয়াসমূহ দেয়া হলো:

 $R-COOH+NaHCO_3 \rightarrow R-COONa+CO_2\uparrow+H_2O$ $Ca(OH)_2+CO_2 \rightarrow CaCO_3+H_2O$ (ছেনের পানি) (ঘোলা পানি)

৫১। কার্বিল অ্যামিন পরীক্ষা সমীকরণসহ লিখ।

উত্তর: কার্বিল অ্যামিন পরীক্ষা: প্রাইমারি অ্যামিনকে ক্রোরোরুর্ম ও অ্যালকোহলীয় কস্টিক পটাশ (KOH) দ্রবণের সাথে উত্তপ্ত করলে উত্ত গন্ধযুক্ত আইসো-সায়ানাইড বা কার্বিল অ্যামিন উৎপন্ন হয়। এর সাহাব্যে প্রাইমারি অ্যামিনকে সহজেই শনাক্ত করা বায়।

 $CH_3NH_2 + CHCl_3 + 3KOH (alc) \xrightarrow{\Delta} CH_3C \equiv N + 3KCl + H_2O$

৫২। প্রাইমারি অ্যামিন শনাক্তকরণে কার্বিল অ্যামিন পরীক্ষা লিখ। বি. বো. ১৭

উত্তর: ক্লোরোফরম ও আলকোহনীয় কন্টিক পটাশ (KOH) দ্রবণের সাথে প্রাইমারি (অ্যালিফেটিক ও অ্যারোমেটিক) অ্যামিনকে উত্তপ্ত করলে তীব্র গন্ধযুক্ত আইসো-সায়ানাইড বা কার্বিল অ্যামিন উৎপন্ন হয়। এই বিক্রিয়ার সাহয্যে প্রাইমারি অ্যামিনকে সহজেই শনাক্ত করা যায়। তাই এই বিক্রিয়াকে কার্বিল অ্যামিন পরীক্ষা বলা হয়।

 $CH_3 - NH_2 + CHCl_3 + 3KOH(alc) \xrightarrow{\Delta} CH_3 - N = C + 3KCl + H_2O$ প্রাইমারি জ্যামিন মিথাইল কার্বিল জ্যামিন

তে। অ্যালিফেটিক 1° অ্যামিন ক্ষারক কেন? ব্যাখ্যা কর।

উত্তর: পূইস তত্তান্যায়ী, ক্ষারক হচ্ছে ইলেকট্রন দাতা ও প্রোটন গ্রহীতা।
অ্যালিফেটিক 1° অ্যামিন উদাহরণস্বরূপ: $CH_3 - NH_2$ এর N এ থাকা
একটি মুক্তজোড় ইলেকট্রনকে এসিড থেকে সৃষ্ট H^{+} কে প্রদান করে
সন্নিবেশ সমযোজী বন্ধন সৃষ্টি করে। এভাবে অ্যালিফেটিক 1° অ্যামিন
ক্ষারক হিসেবে কাজ করে।

$$CH_3 - NH_2 + HCI \longrightarrow CH_3 - N: \rightarrow HCI$$

৫৪। 1° আমিন ও 2° আমিনের মধ্যে কোনটি অধিক ক্ষারধর্মী? ব্যাখ্যা কর। রি. বে. ২১।

উত্তর: অ্যামিন সমগোত্রীয় যৌগগুলোর কার্যকরী মূলক — NH_2 এর N এ মূক্ত জ্রোড় ইলেকট্রন থাকায় এরা ক্ষারকত্ব প্রদর্শন করে। এদের ক্ষারকত্ব নির্ভর করে N এর ইলেকট্রন ঘনত্বের উপর। —R গ্রুপ ধনাত্মক আবেশীয় প্রভাবের ফলে N এর ইলেকট্রন ঘনতু বৃদ্ধি করে। 1° অ্যামিন এর ত্লনায় 2° অ্যামিনে —R বেশি থাকায় —NH2 এর N এ ইলেকট্রন ঘনত্ব বেশি হয়। ফলে 2° অ্যামিন 1° অ্যামিনের ত্লনায় অধিক ক্ষারধর্মী হয়ে থাকে।

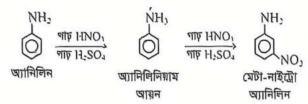
৫৫। ইথাইল অ্যামিন অ্যামোনিয়া অপেক্ষা অধিক ক্ষারকীয়– ব্যাখ্যা কর। [বু. বো. ২২; ব. বো. ১৯]

উত্তর: অ্যামিন ও অ্যামোনিরা উভয়ের ক্ষারকত্ব N এর ইলেকট্রন প্রাপ্যতার উপর নির্ভর করে। ইথাইল অ্যামিনের ইথাইল মূলক তড়িৎ ধনাত্মক আবেশধর্মী অর্থাৎ, এটি N এর উপর অতিরিক্ত ইলেকট্রন যোগানকারী। এজন্য ইথাইল অ্যামিনে N এর ইলেকট্রন প্রাপ্যতা তুলনামূলকভাবে অ্যামোনিরার চেয়ে বেশি হয়ে থাকে। তাই ইথাইল অ্যামিন অ্যামোনিরা অপেক্ষা অধিক ক্ষারধর্মী।

ক্রে। আন্মানিয়া অপেক্ষা অ্যানিলিন দুর্বল ক্ষারক কেন? যে. বের. ২২১ উত্তর: অ্যামোনিয়া (NH3) ও অ্যানিলিন (C6H5 – NH2) উত্তর বৌগের করেকের ও করলে উর্যা ব্যানিলর করে এদের নাইট্রোজেন পরমাণুতে নিঃসঙ্গ ইলেকট্রন ব্যানিলনের – NH2 মূলকের নাইট্রোজেন পরমাণুর নিঃসঙ্গ ইলেকট্রনযুগল বেনজিন বলয়ের অনুরণনে অংশগ্রহণ করে। কলে যৌগটির নাইট্রোজেনে ইলেকট্রন ঘনত হাস পায়। কিষ্ক NH3 তে এ ধরনের অনুরণন না থাকায় ইলেকট্রন ঘনত বেশি থাকে। তাই অ্যানিলিনের ক্ষারকত্ব অ্যামোনিয়ার তুলনায় কম হয়।

৫৭। আনিলিন ও মিথাইল আমিনের মধ্যে কোনটি বেশি ক্ষারকীয়? ব্যাখ্যা কর। রি. বে. ২৩; অনুরূপ প্রশ্ন: ব. বে. ২৩, ২১; চ. বো. ১৯; দি. বো. ১৯] উত্তর: অ্যানিলিন ও মিথাইল অ্যামিনের মধ্যে মিথাইল অ্যামিন বেশি ক্ষারকীয়। কারণ অ্যানিলিনে নাইট্রোজেন পরমাণুর নিঃসঙ্গ ইলেকট্রন বুগল আংশিকভাবে বেনজিন বলয়ের সঞ্চারণশীল π ইলেকট্রনের সাথে মিলিত হয়। ফলে উক্ত নিঃসঙ্গ ইলেকট্রনের সন্নিবেশ বন্ধন গঠনের সুযোগ কমে যায়। অপরদিকে মিথাইল অ্যামিনে মিথাইল মূলক নাইট্রোজেন পরমাণুতে ইলেকট্রন ঘনতু বৃদ্ধি করে। ফলে এর প্রোটন গ্রহণ ক্ষমতা বৃদ্ধি পায়।

৫৮। অ্যানিলিনের নাইট্রেশনে মেটা উৎপাদ পাওয়া যায় কেন?


(ঢা. বো. ২২; কু. বো. ১৭)

উত্তর: অ্যানিলিনের (NH2) গঠনে অ্যামিনো মূলক (-NH2) মূলত অর্থো-প্যারা নিদের্শক হলেও এর নাইট্রেশনে মেটা উৎপাদ পাওয়া যায়। কারণ নাইট্রেশনে ক্ষাররূপী অ্যানিলিনের সঙ্গে নাইট্রিক

Rhombus Publications

এসিতের বিক্রিয়ায় প্রথমে আনিদিনিয়াম আয়ন (CaHaNHa) উৎপন্ন

হয়, যেখানে NH, একটি মেটা লিদের্থক।

৫৯। ক্লোরোফর্মকে রাজিন কাঁচের বোডলে রাখা হয় কেন্য िंग. त्वा. २२। উন্তর: ক্লেরোফর্মকে রঞ্জিন কাঁচের বোডলে রাখা হয় কারণ ক্লোরোফর্ম (CHCI3) আলোর উপস্থিডিতে O3 এর সাথে বিক্রিয়া করে বিষাক্ত ফসজিল গ্যাস ও HCl উৎপন্ন করে।

$$CHCl_3 + O_2 \xrightarrow{\text{suicel}} COCl_2 + HCl$$
 ফসজিন গ্যাস

কিন্তু রঙিন বা বাদামী বর্ণের বোতলে আলো প্রবেশে বাধা পায়। তাই আলোর অনুপস্থিতিতে উপরোক্ত বিক্রিয়া ঘটে না।

৬০। ডিকার্বক্সিলেশন বিক্রিয়া ব্যাখ্যা কর।

क्. त्वा. २১

উদ্ভব্ন: কার্বব্রিলিক এসিডের সোডিয়াম লবণ ও সোডালাইম (NaOH + CaO) এর মিশ্রণকে উত্তপ্ত করলে ডিকার্বক্সিলেশন প্রক্রিয়ায় অ্যালকেন ও Na2CO3 উৎপন্ন হয়। সোডালাইমসহ ডিকার্বক্সিলেশন বিক্রিয়াকে ডুমা বিক্রিয়াও বলা হয়। এ বিক্রিয়ায় উৎপন্ন আলকেনে কার্বন পরমাণু সংখ্যা বিক্রিয়ক এসিডের (লবণ) কার্বন সংখ্যা অপেক্ষা একটি কার্বন

RCOONa + NaOH (CaO) $\xrightarrow{\Delta}$ R - H + Na₂CO₃(CaO) ज्यानात्कन

'৬১। আলোক সমাণুতার শর্তগুলো লেখ। উত্তর: আলোক সমাণুতার শর্তসমূহ নিমুরূপ: णि. त्वा. २): क्. त्वा. २)

- i. অপ্রতিসম কার্বন বা কাইরাল কেন্দ্র থাকতে হবে।
- ii. কনফিগারেশনদ্বয় পরস্পরের ওপর যে উপরিস্থাপনীয় হবে।
- iii. উভয় কনফিগারেশন পরস্পরের দর্পণ প্রতিবিদ্ব হবে।

৬২। কীভাবে > C = O মূলক $- CH_2 - (মিথিলিন)$ মূলকে পরিণত করা চি. বো. ২৩। চা. বো. ২৩।

উত্তর: > C = O মূলককে ক্লিমেনসন বিজারণ দারা অর্থাৎ জিন্দ অ্যামালগাম (Zn.Hg) ও গাঢ় HC/ হতে উৎপন্ন জায়মান H পরমাণু দারা বিজারিত করে সরাসরি মিথিলিন মূলকে (- CH2 -) পরিণত করা যায়।

$$-C = O + 4[H] \xrightarrow{\text{Zn.Hg}} -CH_2 -$$

७०। NH3 वन C2H5NH2 वन मत्या कानिए विभि मानीय? वााधा कत। कि. त्वा. २२)

উত্তর: ইথাইল অ্যামিন ও অ্যামোনিয়া উভয় যৌগের ফারকত্ব নির্ভর করে এদের নাইট্রোজেন পরমাণুর ওপর। অ্যালকাইল মূলক (R) ইলেবট্রন ত্যাগী, তাই N পরমাণুর সলে যুক্ত অ্যালকাইল মূলকের সংখ্যা যত বৃদ্ধি পায়, নাইট্রোজেন পরমাণুর উপর ইলেবট্রনের প্রাপ্যভাও তত বৃদ্ধি পায়। ফলে ক্ষারকত্বও বৃদ্ধি পায়। ইথাইল অ্যামিনে N পরমাণুর সাথে - C₂H₅ मृषक युक्त शाकारा এत मनत्रकक NH₃ जरशमा वृद्धि शारा ।

........... ACS > Chemistry 2nd Paper Chapper-2

HSC পরীক্ষার্থীদের জন্য বাছাইকৃত বহুনির্বাচনি প্রশ্নোভর

জৈব যৌগের শ্রেণিবিভাগ কার্যকরী মূলক, নামকরণ ও সমানুতা

- প্রতিটি জ্বৈব যৌগের কেন্দ্রীয় মৌল কোনটি?
 - ক্ষ কার্বন
- থ হাইড্রোজেন
- নাইট্রোজেন
- (ম) অক্সিজেন

উম্ভন্ন: 📵 কার্বন

কোন জৈব যৌগের মধ্যে হাইড্রোজেন নাই?

国 医 湖

- ক্ত ডাইক্রোরোমিথেন
- (ব) আয়োভোফর্ম
- ত্য হেল্পাক্লোরোবেনজিন
- (ছ) সাইক্রোহেক্সেন

উত্তর: 🕥 হেক্সাক্লোরোবেনজিন

ব্যাখ্যা: ডাইক্লোরোমিথেন: CH2C/2, আয়োভোফর্ম: CHI3, হেক্সাক্রোরোবেনজিন: C_6Cl_6 , সাইক্রোহেক্সেন: C_6H_{12} ।

কোনটি হাইড্রোকার্বনঃ

সি. ব্যে. ১৯র

- (ম) পেট্রোল
- (ব) চিনি
- া সেলুলোজ
- ন্থ পিডিসি

উত্তর: 📵 পেট্রোল

ব্যাখ্যা: কার্বন ও হাইড্রোজেন দারা গঠিত দিমৌল যৌগসমূহকে হাইড্রোকার্বন

- পেট্রোল: প্রাকৃতিকভাবে তৈরি হাইড্রোকার্বনের মিশ্রণ ষেষ্ট্যনে কার্বন শিকলের দৈর্ঘ্য (C₁-C₁₂)।
- চিনি: এর সংকেত C₁₂H₂₂O₁₁। এখানে O-থাকায় এ হাইজ্রোকার্বন নয়।
- সেলুলোজ: এট β-D গ্রুকোজের পলিমার (C₆H₁₀O₅)_n, এভিঙ হাইড্রোকার্বন নয়।

- পিভিসি: এর সংকেত (-H2C CH -), । এখানে Cl থাকায় এটিও হাইড্রোকার্বন নয়।
- জৈব যৌগের অণুসমূহ কোন ধরনের বন্ধন দারা গঠিত? যি, বো. ১৭)
 - ক) আয়নিক বন্ধন
- সমযোজী বন্দন
- ধাতব বন্দন
- ত্য ভ্যানডারওয়াশ বল

উত্তর: (৩) সমযোজী বন্দন

ব্যাখ্যা: জৈব যৌগসমূহ মূলত সমযোজী যৌগ। এখানে কার্বনের সাথে এক বা একাধিক মৌলের পরমাণুসমূহ ইলেকট্রন শেয়ারের মাধ্যমে বন্ধন গঠন করে।

- জৈব যৌগ সম্পর্কে নিচের কোনটি সঠিক নয়?
 - ক্তি ক্যাটেনেশন
- ডুর্যোভ্যতা
- মছর আয়নিক বিক্রিয়া

উত্তর: ৩) চতুর্যোজ্যতা

ব্যাখ্যা: ক্যাটেনেশন, সমাণুতা ও মন্থর আয়নিক বিক্রিয়া জৈব যৌগের বৈশিষ্ট্যের অর্ন্তগত। চতুর্যোজ্যতা কথাটি গুধু কার্বনের ক্ষেত্রে প্রযোজ্য হলেও জৈব যৌগের জন্য প্রযোজ্য নয়।

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book... জৈব যৌগে মৌল শনাক্তকরণের জন্য কোন পরীক্ষা ব্যবহার করা হয়? ১১। C4H8 যৌগটিতে কয়টি সিগমা বন্ধন আছে? রো, বো, ৭৩) [मि. বো. ২২] (a) 12 11 (1) আয়োডোফর্ম পরীক্ষা কার্বিলঅ্যামিন পরীক্ষা **10** (9 g গ্রে বেয়ার পরীক্ষা থে লেসাইন পরীক্ষা উত্তর: 📵 🛚 🗎 উত্তর: 📵 লেসাইন পরীক্ষা ব্যাখ্যা: CaHa এর গাঠনিক সন্তকত: ব্যাখ্যাঃ জৈব যৌগে বিভিন্ন মৌল যেমনঃ নাইট্রোজেন, সালফার, হ্যালোজেন [@AdmissionStuffs] ইত্যাদির উপস্থিতি নির্ণয়ে সোডিয়াম ধাতুকে একটি ফিউশন টিউবে জৈব যৌগের সাথে উত্তপ্ত করা হয়। উৎপন্ন আয়নিক যৌগসমূহকে (মূলত লবণ) পাতিত পানি দারা উত্তপ্ত করে অপসারণ করা হয়। C₄H₈ যৌগটিতে 11 টি একক বা সিগমা বন্ধন রয়েছে। ক্যাটেনেশন ধর্ম প্রদর্শন করে কোন মৌল? य. বো. ১৭। ১২। CH₃CN যৌগের কার্বনসমূহে সংকরণ ক্রারিন ৰ) নাইট্ৰোজেন (Hybridization) বিদ্যমান? গ) কার্বন ত্ব অক্সিজেন ⊕ sp², sp (1) sp³, sp³ (1) sp², sp² উত্তর: 🕅 কার্বন (1) sp3, sp উত্তর: 🕲 sp³, sp ব্যাখ্যা: একই মৌলের দুই বা ততোধিক পরমাণুর নিজেদের মধ্যে যুক্ত হয়ে বিভিন্ন ধরনের শিকল ও বলয় গঠন করার ক্ষমতাকে ক্যাটেনেশন ধর্ম र्याचाः CH3CN-এর গঠনে একটি কার্বনে কোন π বন্ধন না থাকায় এটি ${
m sp}^3$ সংকরিত। অপর কার্বনে দুইটি π বন্ধন থাকাতে এটি ${
m sp}$ সংকরিত। বলে। উপর্যুক্ত মৌলগুলোর মধ্যে গুধুমাত্র কার্বন এই ধর্ম প্রদর্শন করে। ১৩। RCONH2 যৌগটির C − N, এ-ত-বন্ধন কোন কোন অরবিটালের অধিক্রমণের ফলে সৃষ্টি? রা. বো. ২২] ৮। CH3 - CH3 যৌগে সংকরণ কোনটি? ম. বো. ২৩] ³ sp² ⊕ sp \P sp² – sp $\mathfrak{g} \operatorname{sp} - \operatorname{sp}^3$ 1 sp3 (1) sp3d উত্তর: @ sp³ — sp³ উত্তর: প sp³ ব্যাখ্যা: RCONH2-এর গাঠনিক সংকেত: ব্যাখ্যাঃ $R-C-NH_2$ H-C-C-H এখানে C ও O-এ দ্বি-বন্ধন থাকায় কার্বন sp² সংকরিত। অপরদিকে N-এর কোন দ্বি-বন্ধন সংযোগ নেই। ফলে C-N বন্ধনটি sp^2- ইথেনে কার্বনের সবগুলো বন্ধন একক বন্ধন দ্বারা গঠিত বিধায় এর sp3 অরবিটালের অধিক্রমণে সৃষ্টি হয়েছে। সংকরণ হবে sp³। ১৪। কার্বনিল মূলকে কার্বন পরমাণুতে কোন হাইব্রিডাইজেশন আছে? বেনজিন অণুর C-পরমাণু কোন ধরনের? Sp² @ s ক্ত sp সংকরিত ৰ) sp² সংকরিত (9) sp³ (sp3d (ছ) সবগুলো উত্তর: (ৰ) sp² উত্তর: 🕲 SD² সংকরিত ব্যাখ্যাঃ বেনজিনের গঠনে প্রতিটি কার্বন পরমাণু একটি করে π-বন্ধনে যুক্ত ব্যাখ্যা: কার্বনিল মূলকে (– C –) কার্বন ও অক্সিজেন দ্বি-বন্ধন থাকায় উভয় থাকায় এটি sp² সংকরিত। পরমাণুই sp² সংকরিত। ১০। CH₃CN অণুটিতে যথাক্রমে σ এবং π বন্ধনের সংখ্যা কত? ১৫। কোন যৌগটিতে একের অধিক ধরনের সংকরিত কার্বন আছে? [রা. বো. ১৭] (Cyclohexane (3) Benzene @ 5 8 2 3 483 (9) Toluene (1) n-butane **95**93 (T) 4 8 2 উন্তর: গ্র Toluene উত্তরঃ 🚳 5 ও 2 ব্যাখ্যা: টলুইনের গঠনে বেনজিন বলয়ের প্রতিটি কার্বন একটি করে π -বন্ধনে ব্যাখ্যা: CH₃CN এর গাঠনিক সংকেত থেকে পাই, এখানে C - H 3টি, যুক্ত থাকায় এরা sp² সংকরিত। কিন্তু টলুইনের শাখা শিকলে মিথাইল C-C 1টি ও $C\equiv N$ এ 1টি, মোট 5টি σ -বন্ধন এবং $C\equiv N$ এ মূলকে কার্বনের সাথে কোন π -বন্ধন না থাকায় এটি ${
m sp}^3$ সংকরিত। 2ि π-वश्वन त्रादाए ।

Rhombus Publications

H

 $H - C - C \equiv N$

..... ACS, > Chemistry 2nd Paper Chapter-2 ১৬। নিম্রের কোনটি সমগোত্রীয় শ্রেণি? বি. বো. ১৭ | ২১। ফ্যাটি এসিডের সাধারণ সংকেত কোনটি? 🚳 ইথেন, মিথেন, প্রোপিন থ) ইথিন, প্রোপিন, বিউটেন ⊕ C_{2n+1}OH [®] C_nH_{2n+1}COOH প) ইথেন, প্রোপেন, বিউটেন ® C_nH_{2n+2}COOH ছি ইথিন, মিথেন, বিউটেন উত্তর: 📵 C_nH_{2n+1}COOH উত্তর: 📵 ইথেন, প্রোপেন, বিউটেন ব্যাখ্যা: ইথেন, প্রোপেন, বিউটেন হলো অ্যালকেন সমগোত্রীয় শ্রেণির সদস্য। ২২। C(CH₃)₃ – OH यৌগটির IUPAC नाम की? (ब्रा. त्वा २०) এদের প্রত্যেকের সাধারণ সংকেত C_nH_{2n+2}। ② 2-মিথাইল প্রোপেন-2-অল অাইসো বিউটাইল অ্যালকোহল ১৭। অ্যালকাইল মূলকের সাধারণ সংকেত কোনটি? [চ. বো. ২১] ① 2, 2-ডাইমিথাইল ইথানল ③ C_nH_{2n+2} $C_n H_{2n+1}$ বিউটানল 1 C_nH_{2n} [®] C_nH_{2n-2} উত্তর: 📵 2-মিথাইল প্রোপেন-2-অল উত্তর: <a> © C_nH_{2n+1} ব্যাখ্যাঃ ব্যাখ্যা: অ্যালকেন (C_nH_{2n+2}) থেকে একটি হাইড্রোজেন পরমাণু অপসারণ CH₃ R দ্বারা প্রকাশ করা হয়। অ্যালকাইলের সাধারণ সংকেত $-C_{n}H_{2n+1}$ 2- মিথাইল প্রোপেন-2-অল ১৮। অ্যামাইডের কার্যকরী মূলক কোনটি? [ঢা. বো. ২৩; ১৮] → CNS (1) - CO - NH -২৩। CH₃ – CH = CH – COOH যৌগটির IUPAC নাম হলো− $9 - NH_2$ (9) - CO - NH2 যে, বো, ২০ উত্তর: 🕲 – CO – NH2 3 But -1 - en - 2 - oic acid \mathfrak{P} But -2 - en - 1 - oic acid১৯। নিচের কোনটি এসিড অ্যানহাইদ্রাইড মূলক এর গাঠনিক সংকেত? ® But -1 - oic acid উত্তর: (গ) But - 2 - en - 1 - oic acid -O-H⊕ − C − ग्राभाः CH3 - CH = CH - COOH 0 বিউট-2-ইন-1- ওয়িক এসিড ২৪। নিচের যৌগটির IUPAC পদ্ধতিতে নাম কোনটি? বি. বো. ২১ CH₂ CH3 - CH2 - C - CH - CH2 - CH3 CH₂ - CH₃ 3, 4-ডাইইথাইল পেন্টিন-4
 3, 3-ডাইইথাইল পেন্টিন-1 গ্র 2, 3-ডাইইথাইল পেন্টিন-1
 গ্র 2-ইথাইল-মিথাইল বিউটিন-। এস্টার মূলক: - C উত্তর: 何 2, 3-ডাইইথাইল পেন্টিন-1 ব্যাখ্যা: CH3 - CH2 - C - CH - CH2 - CH $CH_2 - CH_3$ অ্যানইড্রাইড মূলক: - C - O - C -IUPAC নাম: 2, 3-ডাই ইথাইল পেন্টিন-1। ব্লো. বো. ২২ ২০। - CN মূলকের নাম-২৫। CH₃ – CH = C (CH₃) – CH₂OH যৌগটির IUPAC নাম (i) সায়ানাইড মূলক [দি. বো. ২২ (ii) নাইট্রাইল মূলক 2-মিথাইল বিউট-2 ইন-1-অল
 2-মিথাইল-2-বিউটিনল (iii) নাইট্রো মূলক ছ মিথাইল-2-বিউটিন-1-অল आगाउँ जागाउँ ज নিচের কোনটি সঠিক? উত্তর: 📵 2-মিথাইল বিউট-2 ইন-1-অল (a) i v iii @i vii CH₃ (v i, ii v iii M ii & iii ব্যাখ্যা: $^4_{CH_3}$ $^3_{CH}$ = $^1_{C}$ $^1_{CH_2OH}$ উত্তর: ক) i ও ii IUPAC নাম: 2-মিথাইল বিউট-2-ইন-1-অল। ব্যাখ্যা: – CN হলো সায়ানাইড এবং নাইট্রাইল মূলকের সংকেত।

t.me/admission stuffs

জৈব রসায়ন > ACS, FRB Compact Suggestion Book......

২৬। IUPAC পদ্ধতিতে H₃C – CH(OH) – CH(Br) – CH₂Br | ৩০। CH₃ – CH(OH) – CH₂ – CH₂ – COOH বৌগের IUPAC যৌগটির সঠিক নামকরণ কী?

- কি মিথাইল ডাইব্রোমোইথাইল বিউটানল
- থ 3, 4-ডাইব্রোমো-2-বিউটানল
- গ্র 3-মিথাইল-1, 2-ডাইব্রোমোবিউটানল
- ছ 3-হাইড্রক্সি-3-মিথাইল-2, 3-ডাইব্রোমোবিউটেন

উত্তর: 🕲 3, 4-ডাইব্রোমো-2-বিউটানল

IUPAC নাম: 3, 4-ডাইব্রোমো-2- বিউটানল।

২৭। CH3 - CH = CH - COOH যৌগটির IUPAC নাম হলো-

[য. বো. ২৩]

- 3 But -1 en 2 oic acid
- (a) But -2 en 2 oic acid
- \mathfrak{P} But -2 en 1 oic acid
- (a) But 1 oic acid

উত্তর: 📵 But – 2 – en – 1 – oic acid

ব্যাখ্যা:
$$\overset{4}{\text{CH}_3} - \overset{3}{\text{CH}} = \overset{2}{\text{CH}} - \overset{1}{\text{COOH}}$$

IUPAC নাম: বিউট-2-ইন-1-ওয়িক এসিড

But-2-en-1-oic acid

२৮। CH3 - CH2 - CH2 - C - NH - CH3 सोटाइ IUPAC নিয়মে নামকরণ কোনটি সঠিক?

- 4-অ্যামিনো-পেন্টানয়িক এসিড
- থ) 2-মিথাইল বিউটান্যামাইড
- প্র 2-অ্যামিনো-বিউটানোয়িক এসিড
- (ছ) N-মিথাইল বিউটান্যামাইড

উত্তর: খি N-মিথাইল বিউটান্যামাইড

ব্যাখ্যা: CH₃ - CH₂ - CH₂ - C - NH - CH₃ IUPAC নাম: N-মিথাইল বিউট্যানামাইড

২৯। CH₃ - CH = C(CH₃) - CH₂OH যৌগটির IUPAC নাম কী?

[मि. वा. २२]

- 2-মিথাইল বিউট-2-ইন-1-অল
- থ 2-মিথাইল-2-বিউটিনল
- গ্ৰ আলাইল আলকোহল
- মিথাইল-2-বিউটিন-1-অল

উত্তর: (ক) 2-মিথাইল বিউট-2-ইন-1-অল

CH₃ ব্যাখ্যা: CH₃ - CH = C - CH₂OH 2-মিথাইল বিউট-2-ইন-1-অল

নিয়মে নামকরণ কোনটি সঠিক?

(রা. বো. ২১)

- 2-হাইড্রোক্সি পেন্টানয়িক এসিড
- ব) 4-হাইড্রোক্সি পেন্টানয়িক এসিড
- (ग) 5- कार्विख्रन (পन्টानन-2)
- ছে 1-কার্বক্সিল পেন্টানল-4

উত্তর: ﴿ 4-হাইড্রোক্সি পেন্টানয়িক এসিড

OH

ব্যাখ্যা: CH₃ - CH - CH₂ - CH₂ - COOH

IUPAC-নাম: 4- হাইড্রোক্সি পেন্টানয়িক এসিড

৩১। নিচের যৌগটির IUPAC পদ্ধতিতে নাম কোনটি?

বি. বো. ২১]

$$CH_2$$
 \parallel
 $CH_3 - CH_2 - C - CH - CH_2 - CH_3$
 $CH_2 - CH_3$

3, 4 ডাইইথাইল পেন্টিন-4
 3, 3 ডাইইথাইল পেন্টিন-1

2, 3 ডাইইথাইল পেন্টিন-1
 2 ইথাইল-মিখাইল বিউটিন-1

উত্তর: ① 2, 3 ডাইইথাইল পেন্টিন-1

IUPAC নাম: 2, 3 ডাই-ইথাইল পেন্টিন-1

৩২। CH3 - CH - CH = CH - CH3 এর IUPAC নামকরণ নিচের

কোনটি?

ক 4-মিথাইল পেন্ট-2-ইন

থ 2-মিথাইল পেন্ট-3-ইন

চ. বো. ২২)

ন্য 2-মিথাইল পেন্টিন

খ 4-মিথাইল পেন্টিন

উত্তর: 📵 4-মিথাইল পেন্ট-2-ইন

ব্যাখ্যাঃ

৩৩। CH₃CH₂ – C – OCH₂CH₃ যৌগটির IUPAC নাম কি?

- इथिक इथाइन किछान
- থাইল প্রোপানোয়েট
- ন) ইথানল অ্যাসিটাইল ইথার
- ত্ব ইথাইল ইথানোয়েট

উত্তর: 📵 ইথাইল প্রোপানোয়েট

ইথাইল প্রোপানয়েট

৩৪। নিম্নের কোনটি কাঠামোগত সমাণুতার প্রকারভেদ নয়? মেটামারিতা (ব) টটোমারিতা অবস্থান সমাণুতা (

অ) স্টেরিও সমাণুতা উত্তর: ত্ম স্টেরিও সমাণুতা ব্যাখ্যা: স্টেরিও সমাণুতা কাঠামোগত সমাণুতার প্রকারভেদ নয় কারণ এটি পরমাণু বা গ্রুপসমূহের ত্রিমাত্রিক বিন্যাসের ভিন্নতার কারণে সৃষ্টি হয়। যৌগটি কোন ধরনের সমাণুতা প্রদর্শন করে? CI কু. বো. ২৩; ১৯ ক) গাঠনিক ব) আলোক সক্রিয় कार्यकती मुनक ণ) জ্যামিতিক উন্তর: 🕦 জ্যামিতিক ব্যাখ্যা: জ্যামিতিক সমাণুতার শর্ত: (i) कार्वन-कार्वन वन्नात्तत मुक्त घृर्णन थाकरव ना। (ii) দি-বদ্ধন বুক্ত অথবা চাক্রিক যৌগ হতে হবে। (iii) $\frac{a}{d}$ = \subset $\frac{b}{a}$ অণুতে $a \neq d$ এবং $b \neq e$ । প্রদন্ত যৌগটির ∴ এটি জ্যামিতিক সমাণুতা প্রদর্শন করে। ৩৬। একটি জৈব যৌগে দুটি অসদৃশ অপ্রতিসম কার্বন আছে। যৌগটি কয়টি [ব, বো. ২৩] সমাণু গঠন করে? **3** 4 (1) 3 **1** 2 1 1 উত্তর: 🚳 4 ব্যাখ্যা: আমরা জানি, সমাণু সংখ্যা = 2º এখানে, $= 2^{2}$ n = অপ্রতিসম কার্বন প্রমাণ = 2 ৩৭। C₅H₁₂ সংকেত বিশিষ্ট যৌগের কতটি সমাণু সম্ভব? ািস, বো. ২৩ @ 2 (4) 3 (9) 4 ® 5 উত্তর: (থ) 3 ব্যাখ্যা: C5H12 এর সম্ভাব্য সমাণুগুলো নিমুরূপ: ■ CH₃ - CH₂ - CH₂ - CH₂ - CH₃ পেন্টেন-1 ■ CH₃ - CH₂ - CH - CH₃ CH: 2-মিথাইল বিউটেন

 CH_3 ■ CH₃ - C - CH₃ CH₃ 2, 2-ডাইমিথাইল প্রোপেন ACS > Chemistry 2nd Paper Chapter-I

৩৮। C3H6O যৌগটির ক্ষেত্রে কোন সমাণুটি সম্ভব নয়?

- @ প্রোপান্যাল
- ব প্রোপানোন
- ণ) প্রোপিনল
- প্রাপানোয়িক এসিভ

উন্তর: 🛈 প্রোপানোয়িক এসিড

ব্যাখ্যা: C3H6O এর গঠনে 1টি অক্সিজেন পরমাণু থাকায় প্রোপানোয়িক এসি হ সমাণুটি সম্ভব নয়। कातन এক্কেত্রে দুটি অক্সিজেন পরমাণু প্রয়োজন।

৩৯। C4H10O এর জন্য সর্বোচ্চ কতটি ইথার যৌগের সমাণু পাওয়া যায়?

3

(A) 5

1 4

® 6

উত্তর: 🕸 3

ব্যাখা: C4H10O থেকে সর্বোচ্চ তিনটি ইথার সমাণু পাওয়া যায়। যথাক্রেমে:

- (i) CH3 CH2 CH2 O CH3
- (ii) CH3 CH2 O CH2 CH3 OCH₃
- (iii) CH3 CH CH3

৪০। ডাইমিথাইল ইথার ও ইথানল পরস্পর কী ধরণের সমাণু?

- 📵 জ্যামিতিক সমাণু
- ৰ) অবস্থান সমাণু
- কার্যকরী মূলক সমাণ্
- (ছ) টটোমারিজম সমাণু
- উত্তর: 🕦 কার্যকরী মূলক সমাণু

बाभाः ডाইमिथारेन रेथाর ७ रेथानन পরস্পর কার্যকরী মূলক সমাণু। কারদ এরা যৌগের অণুস্থিত কার্যকরী মূলকের ভিন্নতার কারণে উত্তৃত।

851 CH3 - CH2 - CH2 - NH2 & CH3 - NH - CH2 - CH3 যৌগ দুটি কোন সমাণুতা প্রদর্শন করে?

- 📵 শিকল সমাণুতা
- কার্যকরী মূলক সমাণুতা
- গ্ৰ অবস্থান সমাণুতা
- বি কোনটিই নয়

উত্তর: (গ) অবস্থান সমাণুতা

ব্যাখ্যাঃ যৌগ দুটির কার্যকরীমূলক একই কিন্তু কার্বন শিকলে তার অবস্থান ভিন্ন ।

৪২। আলোক সমাণুতা প্রদর্শন করে-

मि. वा. २०॥

- ন্ধি বিউট-2-অল
- থ) 2-আমিনো প্রোপেন
- গ্র 2-ক্লোরো প্রোপান-2-অল
- ছি 3-হাইড্রব্লি প্রোপান্যাল

উত্তর: 🖚 বিউট-2-অল

ব্যাখ্যাঃ বিউট-2-অল এ কাইরাল কার্বন থাকায় এটি আলোক সমাপুতা প্রদর্শন করে।

門間 部門 > ACS / FRB Compact Suggestion Book

AD I (C, II., O সাহ্যকত বাবা গটিত সভাব্য কার্বকন্ত্রী মূলক সমাণু হলো-

- (।। ভাাদভিবাহিড
- **৷তি** কিটোৰ

(विरा) वनन्त्रुक ज्ञामित्मर्म

নিচেৰ কোনটি সমিক?

[F. 001. 20]

可i

- @ L, ii
- A iii. aii
- (i, ii, iii

TOTAL TO LILLIN

ब्याभााः त्यमर टेक्टर रॉग्टाब वार्यावक मध्कर**। कि वित्रा**खन थाक अवर দ্রদ্মিতেলটি পুৎক করলে আলকিল পাওয়া যায়, সেসব বৌগের সমাণুক जीभिनम्ह स्दः व्यामिनिस्रिहेन, किळीन वर्ष वमञ्जूक व्यामकारम (माामिनिनान)। ठाइरल, C:H6O वत महावा ममापुष्टला दरला-क्यामिष्टिस्टिंग्डः

निर्णापनः

শ্বসম্পুষ্ঠ অ্যাদকোহদ (আদকিনল):

গ্রোপিন-2-জন

क्षा । त्मान त्या ज व्यक्ति माति खम थनर्भन करत ?

$$\mathfrak{D}$$
 CH₃ - O - CH₂ - CH₂ - CH₃ \mathfrak{G} CH₃ - CH₂ - O · CH₂ - CH₃

- @ CH3 CH2 OH & CH3 O CH3
- CH1-CH2-OH & CH3-CHO
- @ CH₁ CH₂ OH @ CH₃ O CH₂ CH₁

节研: ③ CH₃ - O - CH₂ - CH₃ - CH₃ - CH₃ - CH₂ - O - $CH_1 - CH_1$

ন্যাাশাা৷ একই আণবিক সংকেত এবং উভয়েই ইথার হওয়া সত্তেও তাদের मार्रगणठ शार्थका ७ कार्यकर्ती मृनत्कत উভ्या পাশে कार्वन সংখ্যाর धिन्न टात काताप अफत याथा व्यविभातिकम मुहि इत।

🕰 । কোন সমাণুতা জাপনা আপনি ঘটতে পারে? | क्. ला. २२; म. ला. २२।

- খ্রি অবস্থান সমাণুতা
- (ব) গাঠনিক সমাণুতা
- रि) प्रशिमानिधय
- (ए) ऎটোমারিজম

地田在 同 টটামারি एम

ना।।।।।। यान धकाँ कार्वकरी मुनक সংবলিত कार्रारमा थ्यक स्वडुःक्र्डात খিন্না ব্যর্থবন্দ্রী মূলক যুক্ত কাঠামোর বৌগে রূপান্তর ঘটে এবং উভয় বদাঠানোর মধ্যে একটি গতিশীল সাম্যাবস্থার সৃষ্টি হয় তবে এ ধরনের সমাণুভাকে উটোমারিজম বলে। উটোমারিজম গতিশীল কার্যকরী মূলক मप्राापुटा २५ हारा अपि व्यापना-व्यापनि घर्ট थारक।

৪৬। কোন যৌগটি টটোমারিতা প্রদর্শন করে?

ঢো. বো. ২২

- ৢ বিউট-2-ইন
- ভাই ইথাইল ইথার
- গু প্রোপালোন
- ছিথান্যাল

উব্দ: ব্য প্রোপালোন ও ব্য ইথান্যাল

৪৭। নিচের কোনটি কিটো-ইনল টটোমারিতা প্রদর্শন করে?

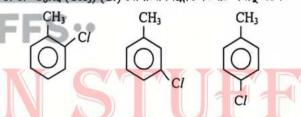
যি, বো, ২২

- 🗟 প্রোপানল-2
- প্রাপানোন
- গ্ প্রোপানল
- খে প্রোপানয়িক এসিড

উন্তর: 📵 প্রোপানোন

ব্যাখাঃ C₃H₄O এর দুটি টটোমার হলো–

৪৮। C₆H₄(CH₃)(CI) যৌগটির কতটি সমাণু সম্ভব?


[সি. বো. ১৫]

ৰ ৩

খি ড

উত্তর: 🕲 ৩

ব্যাখ্যা: C₆H₄ (CH₃) (CI) যৌগটির নিম্নোক্ত তিনটি সমাণু সম্ভব:

৪৯। $C_4H_{10}O$ দিয়ে গঠিত সকল সমাণুর মধ্যে কোনটি আলোক সমাণুতা প্রদর্শন করবে? চ. বো. ২২

- প্রাইমারি বিউটানল
- থ সেকেন্ডারি বিউটানল
- ল) টারশিয়ারি বিউটানল
- থি বিউটান্যাল

উম্বর: 🕲 সেকেন্ডারি বিউটানল

ব্যাখ্যা: C4H10O এর গঠন CnH2n+2O এর ন্যায় হওয়ায় এর সমাণ্ডলো সাধারণত অ্যালকোহল ও ইথার হয়ে থাকে।

$$CH_3 - CH_2 - CH_2 - CH_2 - OH$$
প্রাইমারি বিউটানল

সেকেভারি বিউটানল

টারশিয়ারি বিউটানল

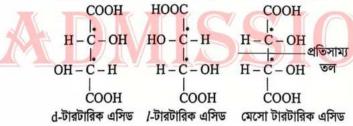
এদের মধ্যে সেকেন্ডারি বিউটানল এ একটি কাইরাল কার্বন থাকায় এটি আলোক সমাণুতা প্রদর্শন করবে।

...... ∧CS, ➤ Chemistry 2nd Paper Chapter-2 ৫০। আলোক সন্দ্রির সমাণু হওয়ার জন্য অ্যালকেনের সর্বনিম্ন কার্বন সংখ্যা ৫৪। দুটি এনানসিওমারের সমমোলার আলোক নিষ্ক্রিয় আণবিক মিশ্রণকে কি বলে? হবে-3 **3** 8 অনানসিওমারিজম 1 9 ® 10 পি ভায়াস্টেরিওমার থি মেসো যৌগ উম্ভর: 🕸 7 উত্তর: (ব) রেসিমিক মিশ্রণ

ব্যাখ্যা: আলোক সক্রিয় হওয়ার জন্য অ্যালকেনে অপ্রতিসম কার্বন থাকা অবশ্যক। অপ্রতিসম কাইরাল কার্বনে চারটি ভিন্ন একযোজী মূলক বা পরমাণু যুক্ত থাকে। সাত অপেক্ষা কম কার্বন বিশিষ্ট কোনো অ্যালকেনে অপ্রতিসম কার্বন বিদ্যমান থাকে না।

7 কার্বন বিশিষ্ট আলোক সক্রিয় অ্যালকেন

- ৫১। আলোক সক্রিয় কিয় একে অপরের দর্পণ প্রতিবিম্ব নয়; এরপ যৌগকে কী বলে? [ঢা. বো. ১৬]
 - ক ডায়াস্টেরিওমার
- মেসো যৌগ
- গে রেসিমিক মিশ্রণ
- অনানসিওমার


উত্তর: 🚳 ডায়াস্টেরিওমার

ব্যাখ্যা: দুটি কাইরাল কার্বনযুক্ত দুটি আলোক সক্রিয় যৌগ পরস্পরের দর্পণ প্রতিবিম্ব না হলে, তাদের ডায়াস্টেরিওমার বলে।

- ৫২। নিচের কোনটি মেসো যৌগ?
 - ⊕ CH₃(CH)OHCH(OH)COOH

 - ® CH₃ CH₂CH(OH)CH₃
- উত্তর: 🚳 CH3(CH)OHCH(OH)COOH

ব্যাখ্যা: কোনো কোনো যৌগের অণুতে একাধিক অপ্রতিসম কার্বন পরমাণু উপস্থিত থাকলেও অণুতে প্রতিসাম্য তল উপস্থিত থাকায় যৌগটি আলোক নিষ্ক্রিয় হয়। এ ধরনের সমাণুকে মেসো যৌগ বলা হয়।

তে। কোনটিতে দুটি কাইরাল কার্বন আছে?

[ঢা. বো. ১৬]

व. वा. २२

- ② 2-হাইড্রব্সি প্রোপানোয়িক এসিড
- বিউটেন-2, 3-ডাই-অল
- প্র 2-মিথাইল প্রোপানল-2
- খে বিউটানল-2

উত্তর: (ব) বিউটেন-2, 3-ডাই-অল

ব্যাখ্যা: বিউটেন-2, 3-ডাই-অলের গাঠনিক সংকেত থেকে পাই-

অর্থাৎ, এখানে দুটি কাইরাল কার্বন বিদ্যমান।

Rhombus Publications

- - থে রেসিমিক মিশ্রণ
- ৫৫। C4H10O সংকেত বিশিষ্ট যৌগের ক্ষেত্রে-

সি. বো. ২২)

- (i) সমাণুর সংখ্যা 5
- (ii) একটি সমাণু আলোক সক্রিয়
- (iii) একটি সমাণু 3° অ্যালকোহল

নিচের কোনটি সঠিক?

- i vi
- (a) i & iii
- ii vii
- (Tii & iii

উত্তর: প্র ii ও iii

ব্যাখ্যা: C4H10O -এর সম্ভাব্য সমাণুসমূহ

(i) CH₃ - CH₂ - CH₂ - CH₂ - OH

n বিউটানল

(ii) CH3 - CH- CH2 - CH3

বিউট-2-অল [আলোক সক্রিয়তা প্রদর্শন করবে]

- (iii) CH₃ CH CH₂ CH₃ OH
 - 2-মিথাইল প্রোপানল

OH

(iv) CH3 - CH - CH3

2-মিথাইল প্রোপান-2-অল [3° অ্যালকোহল]

(v) CH₃ - CH₂ - O - CH₂ - CH₃ ডাই ইথাইল ইথার

(vi) CH₃ - O - CH₂ - CH₂ - CH₃ 1- মিথোক্সি প্রোপেন

-CH₃

(vii) CH₃ - O - CH

2-মিথোক্সি প্রোপেন সুতরাং, মোট সমাণু ৭টি

৫৬। ফুলারিন হলো-

[কু. বো. ১৯]

- (i) কার্বনের একটি রূপভেদ
 - (ii) কার্বন ন্যানোটিউব
 - (iii) উচ্চ ঘাতসহ

নিচের কোনটি সঠিক?

- @ivi
- iii vi i
- (9) ii v iii
- Ti, ii & iii

উত্তর: খি i, ii ও iii

ব্যাখ্যা: ফুলারিন উচ্চঘাতবিশিষ্ট ন্যানোটিউব আকারের কার্বনের একটি রূপভেদ। এটি ন্যানো আকারের, ভেতরে ফাঁপা এবং কার্বন দেয়ালবিশিষ্ট ফুটবল আকৃতির।

জেব রসায়ন > ACS/ FRB Compact Suggestion Book.....

৫৭। নিম্নের কোনটি উত্তম অগ্নি নির্বাপক?

⊕ CHCI₂ CHCI₂

⊕ CBr₂C/F

1 CHC/ = CC/2

(9) CCI4

উত্তর: @ CBr₂C/F

ব্যাখ্যা: CBr₂C/F বা ব্রোমো ক্লোরো ফ্লোরো মিথেন বা BCF অন্যদের তুলনায় অদাহ্য, উদ্বায়ী ও ঘন হওয়ায় উত্তম অগ্নি নির্বাপক হিসেবে ব্যবহৃত হয়।

१४। काँपूरन गाएमत व्यान छेलानन इला-

Chloropicrin

(1) Phosgene

Chloriton

(1) Methane

উত্তর: 🚳 Chloropicrin

ব্যাখ্যা: কাঁদুনে গ্যাসের প্রধান উপাদান ক্লোরোপিক্রিন (CCl₃ - NO₂)।

CI | গাঠনিক সংকেত: CI – C – NO₂ | | CI

নিচের উদ্দীপকটি পড় এবং ৫৯ ও ৬০ নং প্রশ্নের উত্তর দাও:

X-যৌগ $\xrightarrow{\text{Fe nor}}$ A-যৌগ $\xrightarrow{\text{CH}_3\text{C}l}$ B-যৌগ $\xrightarrow{\text{অনার্ড্র A}/\text{C}l_3}$ B-যৌগ

X = দুই কার্বনবিশিষ্ট অ্যালকাইন

৫৯। উদ্দীপকের বিক্রিয়ায় X-যৌগটির বৈশিষ্ট্য হলো-

(i) মৃদু অমুধর্মী

(ii) অণুস্থিত প্রত্যেকটি C পরমাণু sp সংকরিত

(iii) পলিমারকরণ বিক্রিয়া দেয়

নিচের কোনটি সঠিক?

爾 i ଓ ii

(श) ii ଓ iii

何 i ७ iii

(1) i, ii v iii

উন্তর: 🕲 i, ii ও iii

ব্যাখ্যা: অ্যাসিটিলিনে কার্বন-হাইড্রোজেন বন্ধন দৈর্ঘ্য দীর্ঘ হওয়ায় এটি
অম্রধর্মীতা প্রদর্শন করে। এটিতে কার্বন-কার্বন বন্ধনে দুটি π-বন্ধন
থাকায় কার্বন sp সংকরিত। তাছাড়া অ্যাসিটিলিনের পলিমারকরণ
বিক্রিয়ায় বেনজিন উৎপন্ন হয়।

৬০। কোনটি অ্যালিফেটিক যৌগ?

[ঢা. বো. ১৭]

(রা. বো. ২৩)

ক ইথিলিন অক্সাইড

থ) অ্যানিলিন

গে টলুইন

থ ফেনল

উত্তর: 🚳 ইথিলিন অক্সাইড

ব্যাখ্যা: উপর্যুক্ত যৌগসমূহের মধ্যে অ্যানিলিন, টলুইন ও ফেনল বেনজিনের জাতক বিধায় এরা অ্যারোমেটিক যৌগ। শুধুমাত্র ইথিলিন অক্সাইড বিষমচাক্রিক অ্যালিফেটিক যৌগ।

৬১। উদ্দীপক অনুসারে-

রো. বো. ২৩]

(i) A-একটি অ্যারোমেটিক যৌগ

(ii) B- যৌগটি আলিফ্যাটিক যৌগ

(iii) B-যৌগের প্রতিস্থাপক অর্থো-প্যারা নির্দেশক

নিচের কোনটি সঠিক?

ii vi

iii e ii

n i s iii

(1) i, ii v iii

উত্তর: 📵 i ও iii

ব্যাখ্যা: উপরোক্ত বিক্রিয়া সম্পন্ন করে পাই,

সুতরাং, A ও B যৌগদ্বয় যথাক্রমে বেনজিন ও টলুইন। টলুইনের শাখা শিকলে – CH₃ মূলক বিদ্যমান, যা একটি অর্থো প্যারা নির্দেশক।

৬২। অগ্রগণ্য মূলক কোনটি?

[ব. বো. ১৯]

→ NH₂

(4) - COOH

(1) – CHO

⊚ co

উত্তর: <a>ම – COOH

ব্যাখ্যা: কার্যকরী মূলকের সক্রিয়তার অগ্রাধিকার ক্রম:

 $- COOH > - SO_3H > - COX > - CONH_2 > - CN >$ $CHO > = CO > - OH > - SH > - NH_2 > > C = C < >$ $- C \equiv C - > R - O - R > - NO_2$

অ্যারোমেটিক যৌগ

৬৩। কোন বিক্রিয়ার মাধ্যমে অ্যালিফেটিক হাইড্রোকার্বনকে অ্যারোমেটিক হাইড্রোকার্বনে রূপান্তর করা যায়?

পলিমারকরণ

ওজোনীকরণ

ক্তি বিজারণউত্তর: ক্তি পলিমারকরণ

🕲 প্রতিস্থাপন

ব্যাখ্যা: 400°C উষ্ণতায় লোহিত তপ্ত Fe নলের ভেতর অ্যালকাইনের পলিমারকরণের ফলে বেনজিন বা এর জাতক উৎপন্ন হয়।

3CH₃ - C ≡ C - H → H₃C CH₃

(মসিটিলিন

৬৪। বেনজালডিহাইড যৌগে কয়টি সিগমা বন্ধন আছে?

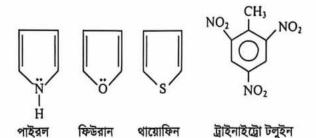
[দি. বো. ২৩]

3 4

915

প্র 14উত্তর: প্র 14

ব্যাখ্যা: বেনজালডিহাইড এর গাঠনিক সংকেত:


0 -|| H -|| C -|| H -||

কোনটি হেটারোসাইক্রিক আরোমেটিক যৌগ নয়?

- 🕏 পাইরোদ
- (ৰ) ফিউরান
- গ্ থায়োঞ্চিন
- ট্রাইনাইট্রোটলুইন

উত্তর: 🕲 ট্রাইনাইট্রোটলুইন

वाष्ठाः द्वारेनारेखाणेनुरेतनत वनक्षिन वनसा ७५ यांत्र कार्वन तसारह । ठारे এটি হোমোসাইক্রিক যৌগ।

৬৬। কোনটি বিষম-চাক্রিক যৌগ?

[কু. বো. ২৩]

- ক্রিফিউরান
- বি চাক্রিক প্রোপেন
- ন্ বেনজিন
- সাইক্রোবিউটাডাইন

উন্তর: ই ফিউরান

ব্যাখ্যা: ষেসব চাক্রিক জৈব যৌগে কার্বন ও হাইড্রোজেন ছাড়া অন্য পরমাণু থাকে, তাকে বিষম চাক্রিক যৌগ বলে।

ফিউরান একটি বিষম চাক্রিক যৌগ; কেননা এখানে হাইড্রোজেন ও কার্বনের সাথে অক্সিজেন ও চক্র গঠনে অংশ নেয়।

৬৭। নিচের কোন যৌগে সঞ্চারণশীল π ইলেকট্রন আছে?

বি. বো. ২২

- 3 C2H2
- 3 C2H4
- @ CoHo
- [®] C₃H₈

উত্তর: গ C₆H₆

ব্যাখা: C_2H_2 এ দুটো π বন্ধন থাকলেও এণ্ডলো সঞ্চারণশীল না, C_3H_8 হলো অ্যালকেন। এটিতে কোন π বন্ধন নেই। C_2H_4 হলো অ্যালকিন যাতে 1 টি π বন্ধন থাকলেও তা সঞ্চারণশীল নয় 1 অপরদিকে C_6H_6 এ 6টি সঞ্চারণশীল π ইলেকট্রন থাকায় এটি অ্যারোমেটিক যৌগ।

৬৮। কোন জৈব যৌগের স্থারোমেটিসিটি প্রফাশের কোন শর্তটি হাকেল নিরমের অন্তর্ভ্ছ নর?

- যৌগটির গঠন চ্যাপ্টা সমতলীয় হতে হবে
- তি চক্র গঠনকারী প্রতিটি পরমাণুতে s অরবিটাল থাকতে হবে
- জ) আণবিক অরবিটালে সঞ্চারণশীল 1 ইলেকট্রন সংখ্যা অবশাই (4n + 2) দ্বারা নির্বারিত হবে
- থি (4n + 2) সূত্রানুসারে n = 2 হলে যৌগটি হয় ন্যাফথ্যালিন

উত্তর: (ব) চক্র গঠনকারী প্রতিটি পরমাণুতে s অরবিটাল থাকতে হবে

ব্যাখ্যা: হাকেল নীতি: চ্যাপ্টা, সমতলীয় চাক্রিক, 5 অথবা 6টি পরমাণু দ্বারা গঠিত বলয়ে (4n + 2) সংখ্যক π ইলেকট্রন থাকলে তারা অ্যারোমেটিসিটি প্রদর্শন করবে।

Rhombus Publications

৬৯। কোনটি সুষম চাক্রিক যৌগ?

[B. ORT. 15

नाकथानिन

- किউत्रान
- প্র পিরিডিন
- ন্তি থায়োফিন

.. ACS/ > Chemistry 2nd Paper Chapter-2

উত্তর: 🚳 न्याकथ्यानिन

ব্যাখ্যা: ন্যাফখ্যালিনের গাঠনিক সংকেত:

এটি সুষম চাক্রিক যৌগ।

যৌগটিতে সঞ্চারণশীল ইলেকট্রনের সংখ্যা কত? াসি. জে. ১খ

4

9 6

8 P

উন্তর: 🕦 6

যাখা: যৌগটি হল ফিউরান। দুটি π বন্ধনের চারটি π ইলেকট্রন ও O এর একটি মুক্তজোড় ইলেকট্রন বলয়ে সঞ্চারণশীল ইলেকট্রন হিসেবে কাজ করে। অর্থাৎ এতে, 4 + 2 = 6টি সঞ্চারণশীল ইলেকট্রন রয়েছে।

৭১। কোনটি হাকেল সংখ্যা নয়?

[চা. বো. ২২]

② 2

4 ® 10

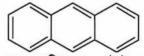
@ 6 উত্তর: 📵 4

ব্যাখা: (4n + 2) সংখ্যক সঞ্চারণশীল π ইলেকট্রনের সংখ্যাকে হাকেল সংখ্যা বলে। এখানে n এর মান শূন্য সহ ধনাত্মক পূর্ণ সংখ্যা।

- n = 0 হলে, (4n + 2) = 4 × 0 + 2 = 2; যা হাকেল সংখ্যা
- n = 1 হলে, (4n + 2) = 4 × 1 + 0 = 6; যা হাকেল সংখ্যা
- n = 2 হলে, (4n + 2) = 4 × 2 + 2 = 10; যা হাকেল সংখ্যা
- কিন্তু যদি (4n+2)=4

যেহেতু n এর মান কোন ভগ্নাংশ হতে পারে না। সুতরাং, 4 হাকেল সংখ্যা নয়।

৭২। <mark>অ্যান্থ্রাসিন অণুতে</mark> π (পাই) ইলেকট্রন সংখ্যা কত?

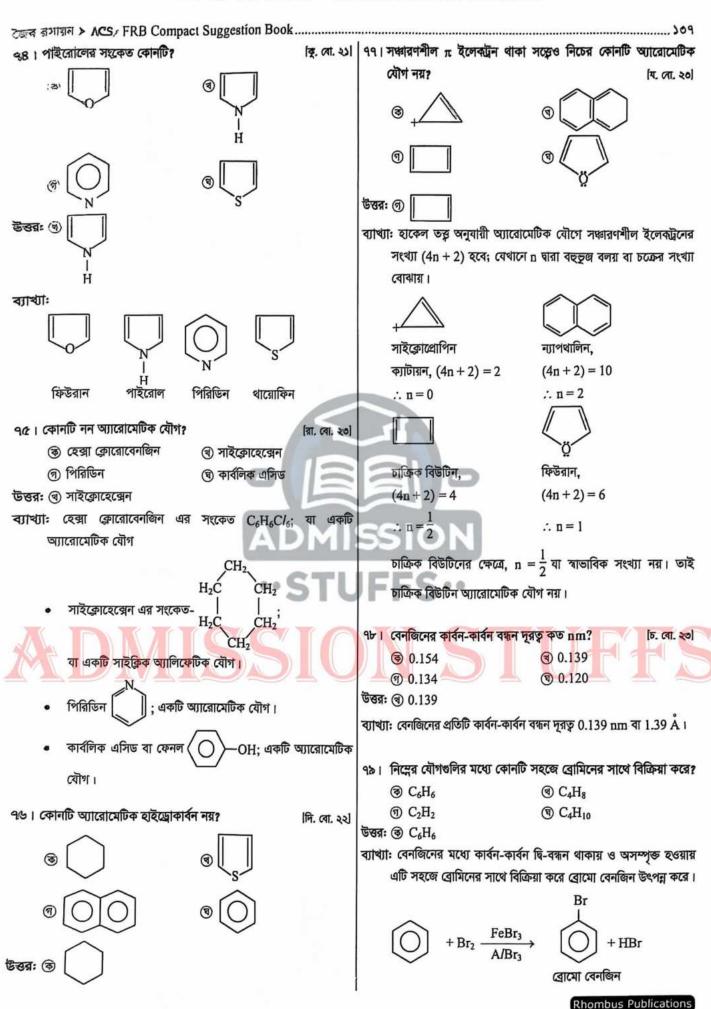

- **@** 6

(4) 10

- **(1)** 14
- **16**

উত্তর: 🕅 14

ব্যাখ্যা: অ্যান্থ্রাসিন এর সংকেত:


এখানে, দ্বিবন্ধন রয়েছে 7টি সুতরাং, পাই ইলেকট্রন রয়েছে (7×2)

৭৩। স্যারোমেটিক যৌগের বিশেষ বৈশিষ্ট্যপূর্ণ ধর্ম নয় কোনটি?

- কি বিশেষ ধরনের সম্পৃক্ততা
- থ অনুরণন
- সঞ্চারণশীল π ইলেকট্রন
- বিশেষ স্থায়িত্ব

উত্তর: 🚳 বিশেষ ধরনের সম্পৃক্ততা

ব্যাখ্যা: বিশেষ ধরনের অসম্পুক্ততা, রেজোন্যান্স, সঞ্চারণশীল বা ডিলোকালাইজড ইলেকট্রন, প্রতিস্থাপন, বিশেষ স্থায়িত্ব অ্যারোমেটিক যৌগের বৈশিষ্ট্য।

৮০। আরোমেটিক হাইড্রোকার্বন বেনজিনের প্রধান উৎসের মধ্যে যেটি ব্যাখ্যা: উর্টজ ফিটিগ বিক্রিয়া: পড়বে না- ইথাইনের পলিমারকরণ প্রাকৃতিক গ্যাস পি পেট্রোলিয়াম তেল (গ) আলকাতরা উত্তর: ﴿ প্রাকৃতিক গ্যাস অ্যালকাইল ব্যাখ্যা: আলকাতরা, পেট্রোলিয়াম, ইথাইন, কয়লা থেকে বেনজিন প্রস্তুত করা বেনজিন याय । ৮৫। কোন বিক্রিয়ার ফলে টলুইন উৎপন্ন করা সম্ভব-৮১। বেনজিন থেকে সাইক্লোহেক্সেন গঠনে কোন প্রভাবক ব্যবহৃত হয়? উর্টজ-ফিটিগ বিক্রিয়া রাইমার-টাইম্যান বিক্রিয়া ক নিকেল চূর্ণ ৰ) ভদ AlCla কাব বিক্রিয়া ल) क्यानिकारता विकिया গ) আয়রন খি প্যালাডিয়াম উত্তর: 📵 উর্টজ-ফিটিগ বিক্রিয়া উত্তর: 🕸 নিকেল চূর্ণ ব্যাখ্যাঃ শুষ্ক ইথারে দ্রবীভূত অ্যালকাইল হ্যালাইড ও অ্যারাইল হ্যালাইড ব্যাখ্যা: Ni চর্দের উপস্থিতিতে বেনজিন হাইড্রোজেনের সাথে বিক্রিয়ায় ধাতব Na এর সাথে বিক্রিয়ায় অ্যালকাইল বেনজিন উৎপন্ন করে। সাইক্লোহেক্সেন উৎপন্ন করে। একে উর্টজ ফিটিগ বিক্রিয়া বলা হয়। এই বিক্রিয়ার মাধ্যমে টলুইন উৎপন্ন করা যায়। সাইক্লোহেক্সেন ৮৬। বেনজিনের দহনে কোনটি উৎপন্ন হয় না? [♠] H₂O ৮২। গ্যামাক্সিনের সংকেত কোনটি? [চ. বো. ১৯] (9) O2 গ্ৰ ভুসাকালি ⊕ C₆Cl₆ উত্তর: 🕲 O2 [®] C₆H₅Cl ® CHCl₃ উত্তর: <a>③ C₆H₆Cl₆ ব্যাখ্যা: $+ O_2 \longrightarrow 6CO_2 + 6H_2O + 6C$ ব্যাখ্যা: গ্যামাক্সিন এর রাসায়নিক নাম বেনজিন হেক্সাক্লোরাইড, যা একটি অর্থাৎ বেনজিনের দহনে CO2, H2O, ভুসাকালি (C) উৎপন্ন হলেও শক্তিশালী জীবাণুনাশক পদার্থ। O2 উৎপন্ন হওয়া সম্ভব না। ৮৭। বেনজিন বলয়ে অর্থো-প্যারা নির্দেশক মূলক হচ্ছে– মি. বো. ২২ ⊕ − COOCH₃ (4) - CHO ⑤ − NO₂

⑤ − N NHCOCH₃ গ্যামাক্সিন (বেনজিন হেক্সাক্লোরাইড) উত্তর: খি – N NHCOCH ব্যাখ্যা: অর্থো-প্যারা নির্দেশকসমূহ হল: অ্যালকাইল বা অ্যারাইল মূলক ৮৩। কোন জৈব যৌগের মধ্যে হাইড্রোজেন নাই? [রা. বো. ১৯] (- CH₃, - C₆H₅), অ্যামিনো এবং প্রতিস্থাপিত অ্যামিনো মূলক ক) ডাইক্লোরোমিথেন (ঝ) আয়োডোফর্ম (- NH₂, - NHCH₃, - NNHCOCH₃, - N(CH₃)₂), হ্যালাইড, প্র হেক্সক্রোরোবেনজিন থ সাইক্লোহেক্সেন - OH, - OCOCH3, - COCH3। এরা বলয় সক্রিয়কারী গ্রুপ। উত্তর: গ্র হেক্সাক্রোরোবেনজিন ব্যাখ্যা: * ডাইক্লোরোমিথেনের সংকেত: CH2Cl2 ৮৮। প্রতিস্থাপন বিক্রিয়ায় কোন কার্যকরী মূলকটি অর্থো-প্যারা নির্দেশক? * আয়োডোফর্মের সংকেত: CHI3 (ট্রাইআয়োডোমিথেন)। [ম. বো. ২১] * হেক্সাক্লোরোবেনজিনের সংকেত: C6Cl6 $- N(CH_3)_2$ (1) - COOH 1 - CHO ⑤ − NO₂ * সাইক্লোহেক্সেনের সংকেতঃ वा, C₆H₁₂ উত্তর: 📵 – N(CH₃)₂ ৮৪। কোনটি উর্টজ-ফিটিগ বিক্রিয়ায় উৎপন্ন হয়? ৮৯। কোনটি অর্থো-প্যারা নির্দেশক? [ঢা. বো. ২৩] [কু. বো. ১৯] উচ্চতর অ্যালকেন অ্যালকাইল হ্যালাইড → NO₂ ③ − SO₃H ছ ফিনাইল হ্যালাইড [®] - NHCOCH₃ (9) - CHO গ্য অ্যালকাইল বেনজিন উত্তর: গ্র অ্যালকাইল বেনজিন

t.me/admission stuffs

তেব রসায়ন ➤ ACS, FRB Compact Suggestion Book.....

ব্যাখ্যা: যেসব পরমাণু বা মূলক প্রথম প্রতিস্থাপকরূপে বেনজিন বলয়ে ১৪। নিম্নের কোনটি মেটা নির্দেশক মূলক? উপস্থিত থাকলে আগত দ্বিতীয় প্রতিস্থাপকটি বেনজিন বলয়ের অর্থো-

প্যারা অবস্থানে প্রবেশ করে, তাদেরকে অর্ধো-পাারা নির্দেশক বলে।

1.10.1.14	 R(- CH₃, - C₂H₅), - X(- F, - Cl, - Br, I), -OH, - NH₂, - NHCOCH₃, - NR₂, OR, - OCH₃
মেটা নির্দেশক	 NO₂, - CO, - CHO, - COOH, - COR, SO₃H, - CN, - CONH₂

৯০ । নিচের কোন মূলকটি বেনজিন চক্রকে সক্রিয় করে?

⊕ - CN

③ - CHO

1 - CI

(9) - NHCOCH₃

উত্তর: ত্ব – NHCOCH3

৯১। নিচের কোনটি হাইপারকনজুগেটিভ ধর্ম প্রদর্শন করে?

(3) - CH;

3 - OH

例 - NH2

(9) - CHO

উন্তর: (क) - CH₃

ব্যাখ্যা:

প্রদর্শিত ধর্ম	মূলক
ধনাত্মক আবেশধর্মীতা/ হাইপারকনজুগেটিভ/ বন্ধনবিহীন অনুরণন	-CH₃
ধনাত্মক মেসোমারিক ফল	– NO ₂ , – CN, – CHO, – COOH, – SO ₃ H
ঋণাত্মক আবেশীয় ফল	$-CH_3$, $-OH$, $-NH_2$

४२ । आातात्मिक वलाय अिक्सकां मृनक कानिः

@ - NH2

③ − CHO

(1) - NO2

® - COOH

উত্তর: @ - NH2

ব্যাখ্যা: যেসব গ্রুপ প্রথম প্রতিস্থাপকরূপে বেনজিন বলয়ে উপস্থিত থাকলে আগত দ্বিতীয় গ্রুপটি বেনজিন বলয়ের অর্থো-প্যারা অবস্থানে প্রবেশ करत रत्र धन्नश्रं जा पार्था-भागा निर्मिन वा राजिन वनग्न **जिंगुकात्रीभूनक**।

অর্থোপ্যারা নির্দেশক:

$$-R(-CH_3, -C_2H_5), -X(-F, CI, -Br, -I), -OH,$$

NH₂, -NHR, -NR₂ - OR, -OCH₃

🔊 । বেনজ্ঞিন জাতকের চক্রে কোন গ্রুপ উপস্থিত থাকলে চক্রের ইলেক্ট্রন ঘনতুত্রাস পায়?

(4) - CH₃

3 - NO2

@ - OH

1 - NH2

টি প্রর: (ৰ) - NO₂

ব্যাখ্যা: বলয় সক্রিয়কারী গ্রুপ: – R, – X, – OH, – NH₂, – NHR, – NR₂,

- ON, - OCH3। অর্থো-প্যারা নির্দেশকসমূহ বলয় সক্রিয়কারী।

वनम्र निक्किम्रकांत्री राग्णे निर्फ्शक कंशः - NO2, - CO, - CHO,

– COOH, – COR, – SO₃H, – CN, – CONH₂, – COCH₃ ।

य. ला. २३।

TOCH

To OCOCH

[®] - NHCOCH₃

(9) - OCH₁

উত্তর: 🚳 – COCH1

৯৫। বেনজিন চক্রে – NO2 মূলক থাকলে কোন কার্বনে ইলেকট্রন ঘনত বেশি থাকে। বি. সো. ১৯

(3) 2

@ 3

(9) 4

(9) 6

কু. বো. ১৭। উন্তর: (ৰ) 3

ব্যাখ্যা:

রেজোন্যান্স কাঠামো অনুসারে, 3, 5 নং কার্বনে ইলেকট্রন ঘনতু বেশি থাকে।

৯৬। কোন মূলকটি বেনজিন চক্রকে নিষ্ক্রিয় করে?

यि. व्या. ५३।

→ ÖH

@ - CH3

例 - C/

(1) - NH2

উওর: (গ) – Cl

ব্যাখ্যাঃ উপরের সবওলো মূলকে একক বন্ধন থাকায় এরা বেনজিন বলয় সক্রিরকারী হিসেবে কাজ করে। কিন্তু – NH2 মূলক বেনজিনে থাকলে

এর নাইট্রেশনে – NH2 মূলক এসিডের সাথে বিক্রিয়া করে

NH, गर्रन करत या (भागे निर्फ्निक वर्षाए रवनिष्कन वनस निष्क्रिसकारी) হিসেবে কাজ করে।

৯৭। বেনজিন বলয়ে – COOH মূলক উপস্থিত থাকলে কত নং কার্বনে ইলেকট্রন বেশি থাকে? [য. বো. ২৩]

@ 2

3

1 4

(T) 6

উত্তর: (ব) 3

ব্যাখ্যা: – COOH একটি মেটা নির্দেশক মূলক, তাই এর উপস্থিতিতে বেনজিন বলয়ের 3 ও 5 অবস্থানে ইলেকট্রন ঘনত বেশি থাকে।

৯৮। কোনটি বেনজিন বলয়ের সক্রিয়তা হ্রাস করে?

[সি. বো. ২৩]

→ CHO

(1) - CHR2

9 - NHR2

(1) - OCH3

উন্তর: 🚳 – CHO

ব্যাখ্যা: মেটা নির্দেশকগুলো বেনজিন বলয়ের সক্রিয়তা,হ্রাস করে থাকে।

- CO -, - CHO, - COOH, - COR, - SO₃H, - CN,

CONH₂ ইত্যাদি মেটা নির্দেশক মূলক।

... ACS > Chemistry 2nd Paper Chapter-2 ৯৯। নিম্নের কোনটি মেটা নির্দেশক মূলক? [य. त्वा. २১] ১०२। () + CH3COCI जनार्ध AICI3 → A + B: विक्रियां ए-⊕ - COCH₃ (1) - OCOCH3 (9) - OCH3 PA. 001. 205 উত্তর: 📵 – COCH3 ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া ব্যাখ্যা: যেসব পরমাণু বা মূলক প্রথম প্রতিস্থাপকরূপে বেনজিন বলয়ে নিউক্লিওফিলিক প্রতিস্থাপন বিক্রিয়া উপস্থিত থাকলে আগত দ্বিতীয় প্রতিস্থাপকটি বেনজিন বলয়ের মেটা (গ) এক আণবিক অপসারণ বিক্রিয়া অবস্থানে প্রবেশ করে তাদেরকে মেটা নির্দেশক বলে। ইলেকট্রোফিলিক সংযোজন বিক্রিয়া মেটা নির্দেশক: - NO₂, - CO, - CHO, - COOH, - COR, উত্তর: 📵 ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া - SO₃H, - CN, - CONH₂ ব্যাখ্যা: যে ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ায় অনর্দ্রে AICI3 এর উপস্থিতিতে বেনজিনের সাথে ইথানয়িল ক্লোরাইড বিক্রিয়া করে $\left| \begin{array}{c} \text{HNO}_{3} \\ \hline \text{H}_{2}\text{SO}_{4} \end{array} \right| \times \left| \begin{array}{c} \text{III} \\ \hline \text{Sn/HCl} \end{array} \right| Y$ ইলেকট্রনাকর্ষী প্রভিন্তাপন অ্যাসাইল বেনজিন (অ্যাসিটোফেনোন) উৎপন্ন করে, তাকে ফিভেল ক্রাফট অ্যাসাইলেশন বলে। বিক্রিয়ার ক্ষেত্রে নিচের কোন ক্রমটি সঠিক? [দি. বো. ১৭] H + CH₃COCI অনার্দ্র AICI₃ -COCH3 + HC/ অ্যাসিটোফেনোন ক্রোরাইড + Cl₂ — জনার্দ্র AlCl₃ A + HCl; এই বিক্রিয়ায়-উত্তর: 例 Y > 🔘 > X ঢ়া. বো. ২২ (i) AICI3 লুইস এসিড ব্যাখ্যা: বেনজিন এর নাইট্রেশনে X তথা নাইট্রো বেনজিন পাওয়া যায় এবং (ii) ইলেকট্রোফিলিক প্রতিস্থাপন ঘটেছে (iii) A হলো কীটনাশক তৈরির উপাদান नारेखी तनिजन এর বিজারণে অ্যানিলিন উৎপন্ন হয়। অর্থাৎ Y হল আানিলিন। – NH, গ্রুপটি বলয় সক্রিয়কারী হলেও – NO, বলয় নিচের কোনটি সঠিক? নিষ্ক্রিয়কারী। তাই ইলেকট্রনাকর্ষী প্রতিস্থাপনে সক্রিয়তার ক্রম হবে-Ti vii iii & i (F) (9) ii v iii ® i, ii & iii ...STUFFS... উত্তর: 🕲 i, ii ও iii ১০১। ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়ায় কোনটি বেশি সক্রিয়? [p. বো. ১৯] + Cl₂ जनार्ष AlCl₃ (A) + HClক) টলুইন নাইট্রোবেনজিন ব্যাখ্যা: গ্র ফ্লোরোবেনজিন থি বেনজ্যালডিহাইড (i) AICl3 এ অন্তক সংকোচন ঘটায় এটি ইলেকট্রন গ্রহণ করে। উত্তর: 🚳 টলুইন ফলে AlCl3 একটি লুইস এসিড। ব্যাখ্যা: (ii) AlCl₃ + Cl₂ → AlCl₄ + Cl⁺ । বেনজিন বলয়ে Cl⁻ প্রবেশ NH_2 করে। Cl^+ একটি ইলেকট্রোফাইল। যা H প্রতিস্থাপন করে বেনজিন বলয়ে যুক্ত হয়ে ইলেকট্রোফিলিক প্রতিস্থাপন ঘটায়। A যৌগ থেকে D.D.T তৈরি হয় যা একটি কীটনাশক। টলুইন ক্লোরো বেনজিন আানিলিন ১০৪। ক্রিমেনসন বিজারণে বেনজালডিহাইড হতে নিম্নের কোনটি উৎপ্র হয়? বেনজিন থেকে অধিক সক্রিয় (4) Benzene (1) Benzoic Acid 1 Toluene ® Benzylalcohol NO_2 CHO COOH উত্তর: গি Toluene CHO CH₂ ব্যাখ্যা: নাইট্রো বেনজিন বেনজালডিহাইড বেনজয়িক এসিড

Rhombus Publications

বেনজিন থেকে কম সক্রিয়

ভৈদৰ রসায়ন ➤ ১৫১/ FRB Compact Suggestion Book.....

১০৫। টপুইনকে ক্রোমিল ক্লোরাইড দ্বারা জারিত করলে বেনজালডিহাইড ১০৯। টপুইন থেকে বেনজালডিহাইড ভৈরিতে ব্যবহৃত হয়? উৎপন্ন হয়। এটি নিচের কোন বিক্রিয়া নামে পরিচিত?

- क) रेपार्ज विकिया
- (ৰ) ফ্রিডেল ক্রাফটস বিক্রিয়া
- গ রোজেনমুভ বিক্রিয়া
- (ছ) ঘনীভবন বিক্রিয়া

উত্তরঃ ক) ইটার্ড বিক্রিয়া

गाणाः रेंगर्ड विकियाः

$$CH_3$$
 CHO $+$ $[O]$ CrO_2Cl_2 $+$ H_2O বেনজালডিহাইড

১০৬। কোন যৌগে নাইট্রেশন সহজতম?

- ক্ট বেনজিন
- (ब) ज्यानिनिन
- গ টলুইন
- ত্ব নাইট্রোবেনজিন

উত্তর: 何 টলুইন

ব্যাখ্যা: - NO2 বলম নিদ্রিয়কারী। বলম সক্রিয়কারী অ্যানিলিনের - NH2 ও টলুইনের – CH3 এর মধ্য – CH3 অধিক বলয় সক্রিয়কারী। এজন্য টলুইনে নাইট্রেশন সহজতম।

$$309 + 3A \xrightarrow{\text{Ni}} B \xrightarrow{\text{A}/\text{C}/3} C$$

[কু. বো. ২১]

6 কার্বন বিশিষ্ট অ্যারোমেটিক যৌগ কোনটি সঠিক নয়?

- ক A তে এসিডিক প্রোটন বিদ্যমান
- B ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া দেয়
- পি C তে অর্থোপ্যারা নির্দেশক গ্রুপ আছে
- ত বৌগের নাইট্রেশনে বেশি তাপমাত্রার দরকার হয়

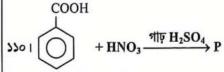
উত্তর: 📵 C যৌগের নাইট্রেশনে বেশি তাপমাত্রার দরকার হয়

CH₃ ব্যাখ্যাঃ 3 CH = CH $\frac{\text{Ni}}{70^{\circ}\text{C}}$ $\frac{\text{A/Cl}_3}{\text{CH}_3\text{I}}$

> A তথা ইথাইন অম্লুধর্মী হওয়ায় এতে ২টি এসিডিক প্রোটন বিদ্যমান। B তথা বেনজিন ইলেকট্রোফিলিক সংযোজন ও প্রতিস্থাপন বিক্রিয়া দেয়। C তথা টলুইনের – CH3 গ্রুপটি একটি অর্থো প্যারা নির্দেশক হওরায় এর নাইট্রেশন তুলনামূলক কম তাপমাত্রায় হয়ে থাকে।

১০৮। কোন যৌগটি অ্যালিফ্যাটিক ও অ্যারোমেটিক উভয় ধর্ম প্রদর্শন করে?

- (4) Benzene
- Cyclohexane
- (9) Toluene
- (1) Chlorobenzene


উত্তর: পি Toluene

ব্যাখ্যা: টলুইনে – CH3 ও – Ar উভয় থাকায় এটি অ্যালিফেটিক, অ্যারোমেটিক উভয় ধর্মই প্রদর্শন করে।

- @ MnO₂
- (ब) গাঢ় H₂SO4
- ® গাঢ় HNO3

উত্তর: ﴿ MnO₂

ব্যাখ্যা: MnO2 মৃদু জারক হওয়ায় এটি ব্যবহারে টলুইন থেকে বেনজালডিহাইড পাওয়া याग्र। जूननाभूनक "कि गानी जातक KMnO4, K2Cr2O7, H2SO4 ব্যবহার করলে বেনজোয়িক এসিড উৎপন্ন হতো।

(P) যৌগটির নাম কী?

চি. বো. ১৬]

- ক্তি অর্থোনাইট্রো বেনজোয়িক এসিড
- প্যারা নাইট্রো বেনজোয়িক এসিড
- প্রি মেটা নাইট্রো বেনজোয়িক এসিড
- বি নাইট্রো বেনজিন

a AdmissionStuffs

উত্তর: 🕣 মেটা নাইট্রো বেনজোয়িক এসিড

ব্যাখ্যা: বেনজোয়িক এসিডের নাইট্রেশনে মেটা নাইট্রো বেনজোয়িক এসিড পাওয়া যায়। – COOH মেটা নির্দেশক হওয়ায় প্রতিস্থাপক – NO2 মূলক মেটা অবস্থানে যুক্ত হয়।

[চা. বো. ১৫]

উপরোক্ত বিক্রিয়াটিতে কোন ধরনের বিক্রিয়া ঘটে?

- ক্ত কেন্দ্রাকর্ষী প্রতিস্থাপন বিক্রিয়া
- ৰ কেন্দ্ৰাকৰী যুত বিক্ৰিয়া
- গ্ৰ) ইলেকট্ৰনাকৰ্ষী প্ৰতিস্থাপন বিক্ৰিয়া
- খ ইলেকট্রনাকর্ষী যুত বিক্রিয়া

উত্তর: 痢 ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়া

ব্যাখ্যা: উপরোক্ত বিক্রিয়ায় অনার্দ্র AICl3 প্রভাবকের সাথে অ্যালকাইল হ্যালাইড (R − X)- এর বিক্রিয়ায় ইলেকট্রোফাইল (R⁺) উৎপন্ন হয়. যা পরবর্তীতে বেনজিনের H-কে প্রতিস্থাপিত করে।

জৈব বিক্রিয়ার ক্রিয়াকৌশল

১১২। কার্বোনিয়াম আয়ন স্থায়িত্বের ক্রম হলো-

- (a) +CR₁ > +CHR₂ > +CH₂R > +CH₁
- $\textcircled{1}^{+}CHR_{2} > {}^{+}CR_{3} > {}^{+}CH_{3} > {}^{+}CH_{3}R$
- †CR₃ > †CHR₂ > †CH₂R > †CH₃
- ত্ব কোনটিই নয়

উত্তর: 📵 [†]CR₃ > [†]CHR₂ > [†]CH₂R > [†]CH₃

ব্যাখ্যা: কার্বোনিয়াম আয়নে অ্যালকাইল মূলকের উপস্থিতি কেন্দ্রীয় ধনাত্মক আধানযুক্ত কার্বন পরমাণুতে ইলেকট্রন সরবরাহকারী হিসেবে কাজ करत । करन, यত বেশি অ্যালকাইল মূলক যুক্ত থাকে, কেন্দ্রীয় কার্বনে তত বেশি ইলেকট্রন ঘনতু সরবরাহ করে, ফলে স্থিতিশীলতা বৃদ্ধি পায়।

Rhombus Publications

১১৩। কোনটি অধিকতর স্থিতিশীল কার্বোনিয়াম আয়ন? ® °CR₁ (1) OCHR2 ® CH₃ উত্তর: 📵 ^eCR3 ব্যাখ্যা: কার্বোনিয়ামের স্থায়িত্বের ক্রম: $(CH_3)_3C^+ > (CH_3)_2HC^+ > CH_3 - H_2C^+ > H_3C^+$ আলকাইল মূলকসমূহ (- CH₃, - C₂H₅) ইলেক্ট্রন ঘনত্ সরবরাহকারী হিসেবে আচরণ করে। 3° কার্বো-ক্যাটায়নে সর্বাধিক 3টি অ্যালকাইল মূলক (- R) থাকায় এরা কেন্দ্রীয় কার্বন পরমাণুতে अधिक পরিমাণে ইলেকট্রন ঘনত সরবরাহ করে। ফলে ঐ কার্বন পরমাণুর অন্য পরমাণু বা মূলকের সাথে যুক্ত হয়ে অষ্টক গঠনের প্রবণতা কম থাকে। এজন্য এটি সর্বাধিক স্থায়ী হয়। ১১৪। কার্বানায়নের সৃস্থিতির ক্রম কোনটি? [কু. বো. ২২; ঢা. বো.২১] 3° > 2° > 1° (1) 1° > 2° > 3° 1°>3°>2° (1) 2° > 1° > 3° উত্তর: (ব) 1° > 2° > 3° ব্যাখ্যাঃ কোন জৈব পদার্থের অণুতে সমযোজী বন্ধনের বিষম ভাঙ্গনের ফলে ১১৯। ইলেকট্রোফাইল হলো-সৃষ্ট ঋণাত্মক চার্জযুক্ত কার্বন পরমাণু বিশিষ্ট আয়নকে কার্বানায়ন বলে। কার্বানায়নের সুস্থিতির ক্রম: CH3 > CH2R > CHR2 > CR3 (1°) (2°) কার্বানায়নের সক্রিয়তার ক্রম: $\overset{\theta}{\mathrm{CH}_3} < \overset{\theta}{\mathrm{CH}_2}\mathrm{R} < \overset{\theta}{\mathrm{CHR}_2} < \overset{\theta}{\mathrm{CR}_3}$ (1°) ১১৫। সর্বাধিক স্থায়িত্বের কার্বানায়ন কোনটি? [রা. বো. ২১] ⊕ CH₃ ® CH₃CH₂ ⑦ (CH₃)₂CH (€) (CH₃)₃C উত্তর: 奪 CH3 ব্যাখ্যা: কার্বানায়ন ঋণাত্মক চার্জযুক্ত হওয়ায় ধনাত্মক আয়নের সঙ্গে যুক্ত হয়ে চার্জ প্রশমনের উচ্চ প্রবণতা থাকে। কার্বনায়নের সাথে যতবেশি অ্যালকাইল মূলক থাকে, কেন্দ্রীয় কার্বনে তত বেশি ইলেকট্রন ঘনত বৃদ্ধি পায়, ফলে মূলকটি তত বেশি সক্রিয় হয়। ১১৬। ইলেকট্রোফাইলের উদাহরণ-® BF3 ③ FeCl₃ (**च**) সবগুলো উত্তর: ত্ম সবগুলো

..... ACS, > Chemistry 2nd Paper Chapter-2 বি. বো. ২২। ১১৭। বেনজিনের নাইট্রেশন বিক্রিয়ায় নিচের কোন ইলেকট্রোফাইলটি উৎপদ্ধ

रुग्र?

(3) NO+

1 NO.

NO,

উত্তর: 🕲 NO

ব্যাখ্যাঃ বেনজিনের নাইট্রেশনে HNO_3 ও H_2SO_4 এর বিক্রিয়ায় NO_3 ইলেকট্রোফাইল উৎপন্ন হয়:

 $HNO_3 + H_2SO_4 \Longrightarrow NO_2^+ + H_3O^+ + HSO_4^-$

১১৮। ইলেকট্রোফাইল হলো-

[ম. বো. ২১; অनुक्रण थन्नः রा. বো. २२]

(i) AICI₃

(ii) BF₃

(iii) BeCl2

নিচের কোনটি সঠিক?

ii vi

iii viii

ल i ଓ iii

(T) i, ii S iii

উত্তর: 🕲 i, ii ও iii

যি. বো. ২৩

(i) SO₃

(ii) RMgX

(iii) Br⁺

নিচের কোনটি সঠিক?

(i, ii

(1) ii, iii

(1) i, iii

(1) i, ii, iii

উত্তর: গু i, iii

ব্যাখ্যাঃ যে সকল বিকারক বিক্রিয়াকালে ইলেকট্রন গ্রহণ করে তাদেরকে ইলেকট্রনাকর্ষী বিকারক বা ইলেকট্রোফাইল বলে। ইলেকট্রোফাইল দুই প্রকার। যথা:

ধনাত্মক আধান যুক্ত ইলেকট্রোফাইল: H⁺, H₃O⁺, NO₂, NO⁺, R_3C^+ , NH_4^+ , CI^+ , Br^+ , $C_6H_5 - N ≡ N ইত্যাদি।$ প্রশম ইলেকট্রোফাইল: BF3, BCl3, AlCl3, ZnCl2, FeCl3, SO3, CO₂ ইত্যাদি।

১২০। নিচের কোনটি নিউক্লিওফাইল?

[ঢা. বো. ২১]

⊕ CH₃CH₂OH

@ FeCl3

例 SO3

® BF₃

ব্যাখ্যা: নিউক্লিওফাইল বা কেন্দ্রাকর্ষী বিকারক: জৈব বিক্রিয়া কালে যে সব বিক্রিয়কের নিউক্লিয়াস বা ধনাত্মক চার্জযুক্ত কেন্দ্রের প্রতি আকর্ষণ থাকে এবং ইলেকট্রন যোগান দিতে পারে, তাদেরকে নিউক্লিওফাইল বলে। নিউক্লিওফাইলসমূহ দু' শ্রেণিভুক্ত। যেমন-

- ১. ঋণাত্মক নিউক্লিওফাইল (: $N\bar{u}$): মিথাইল কার্বানায়ন CH_3 , $C\Gamma$ আয়ন, Br আয়ন, CN আয়ন, অ্যালকোক্সাইড আয়ন OR।
- ২. প্রশম নিউক্লিওফাইল (Nu): NH₃, H₂O, R NH₂, R OH ইত্যাদি।

ব্যাখ্যা: যে সকল বিকারকের ইলেকট্রনের প্রতি আসক্তি থাকে এবং বিক্রিয়াকালে ইলেকট্রন গ্রহণ করে তাদের ইলেকট্রোফাইল বলে। ইলেকট্রোফাইল ধনাত্মক আধানযুক্ত ও প্রশম উভয় হতে পারে। সাধারণত যেসব যৌগের কেন্দ্রীয় পরমাণুর অষ্টক অপূর্ণ থাকে তারা প্রশম ইলেকট্রোফাইল হিসেবে কাজ করে।

Rhombus Publications

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book.................................১৪৩

১২১। কোনটি নিউক্লিওফাইল?

♠ AICI₃

FeCl₃

® BF₃

(1) H₂O

উব্তর: 🕲 H₂O

ব্যাখ্যা: ইলেকট্রোফাইল: ⁺CH₃, NO₂⁺, A/Cl₃, BF₃, H⁺, H₃O⁺
নিউক্লিওফাইল: – CH₃, C/⁻, CN⁻, OH⁻, NH₃, H₂O, R – NH₂
R – OH, RO⁻

১২২। কেন্দ্রাকর্ষী বিকারক হচ্ছে-

[য. বো. ১৯]

⊕ BF₃

⊕ CO₂

⑨ CH₃

® CH₃

উজর: 🕲 CH3

ব্যাখ্যা: যে সকল বিকারক ধনাত্মক চার্জের প্রতি আকর্ষণ অনুভব করে তাদের কেন্দ্রকার্যী বিকারক বা নিউক্লিওফাইল বলে। কোন মৌল বা যৌগে ঋণাত্মক চার্জ অথবা মুক্তজোড় ইলেকট্রন থাকলে তারা নিউক্লিওফাইল হিসেবে কাজ করে। $\overline{\mathrm{CH}}_3$ তে ঋণাত্মক চার্জ থাকায় এটি নিউক্লিওফাইল।

১২৩। কোনটি নিউক্লিওফাইল?

[ম. বো. ২১]

③ FeCl₃

@ BF₃

(1) H2O

উত্তর: প BF3

ব্যাখ্যা: H_2O তে অক্সিজেনের দুইজোড়া মুক্তজোড় ইলেকট্রন থাকায় এটি নিউক্লিওফাইল।

১২৪। নিচের কোনটি প্রশম নিউক্লিওফাইলের উদাহরণ নয়?

[®] H₂O

ROH

(1) AICI3

উত্তর: (ব) AICI

ব্যাখ্যা: AICl₃-এ কেন্দ্রীয় পরমাণু AI-এর অষ্টক অপূর্ণ থাকায় এটি ইলেকট্রোফাইল হিসেবে কাজ করে।

১২৫। নিম্নের কোনটি ফ্রি র্যাডিকেল?

(4) > CH₂

> C = N -

[®] − CH₃

উত্তর: (ছ) - CH3

ব্যাখ্যা: কোন যৌগে সমবোজী সিগমা বন্ধনের সুষম বিভাজনের ফলে স্পষ্ট বিজোড় ইলেকট্রন সংবলিত পরমাণু বা মূলকই ফ্রি রেডিক্যাল।

১২৬। কোন অ্যালকাইল ফ্রি-রেডিক্যালটির স্থায়িত্ব সর্বাধিক?

⊕ H₃C

③ RH₂C

⊕ R₂HC

® R₃C

উত্তর: 🕲 R₃C

ব্যাখ্যা: অ্যালকাইল ফ্রি র্য়াডিক্যালসমূহের স্থায়িত্বের ক্রম হলো:

 $R_3\dot{C} > R_2\dot{C}H > R\dot{C}H_2 > \dot{C}H_3$

মি. বো. ২১। ১২৭। ফ্রি রেডিক্যালের ক্ষেত্রে কোনটি সত্য নয়?

ত-বন্ধনের সুষম বন্ধন বিভাজনের (homolysis) মাধ্যমে সৃষ্টি হয়

ত-বন্ধনের বিষম বন্ধন বিভাজনের (heterolysis) মাধ্যমে সৃষ্টি হয়

গ্র খুবই অস্থিতিশীল হয়

ত্বি প্রোটন সংখ্যা ও ইলেকট্রন সংখ্যা সমান থাকে

নিউক্লিওফাইল: – CH₃, CI⁻, CN⁻, OH⁻, NH₃, H₂O, R – NH₂, উত্তর: ③ σ-বন্ধনের বিষম বন্ধন বিভাজনের (heterolysis) মাধ্যমে সৃষ্টি হয়

১২৮। সামান্য উষ্ণতায় অ্যালকিন ও HX এর সংযোজনে অ্যালকাইল হ্যালাইড প্রস্তুত করা যায়। এক্ষেত্রে HX এর সক্রিয়তার সঠিক ক্রম কোনটি?

⊕ HI > HC/ > HBr > HF

HI < HC/ < HBr < HF
</p>

1 HI > HBr > HCl > HF

® HI < HBr < HC/ < HF

উত্তর: গ HI > HBr > HCl > HF

ব্যাখ্যা: হাইড্রাসিড (HX)-এর সক্রিয়তা এদের অণুস্থিত ঋণাত্মক আয়নের আকারের উপর নির্ভর করে। ঋণাত্মক আয়নের আকার যত বড় হয়, বিয়োজন তত অধিক হয়। ফলে এসিডের তীব্রতা বেশি হয়।

১২৯। ইলেকট্রোফিলিক যুত বিক্রিয়ায় কোন যৌগটি বেশি সক্রিয়? [কু. বো. ২২]

ক পেন্টাইন

পেন্টান্যাল

গ্ৰ বিউটানল

(ছ) বিউটিন

উত্তর: ত্ব বিউটিন

ব্যাখ্যা: পেন্টান্যালের গঠনে $(CH_3 - (CH_2)_3 - C - H)$ কার্যকরী মূলকের কার্বন ধনাত্মক চার্জে চার্জিত হওয়ায় এটি কেন্দ্রাকর্মী সংযোজন বিক্রিয়া দিবে। অনুরূপভাবে বিউটানলের $(CH_3 - (CH_2)_3 - OH)$ ক্ষেত্রে ও কেন্দ্রাকর্মী সংযোজন বিক্রিয়া ঘটবে। অপরদিকে বিউটিন $(CH_3 - CH_2 - CH = CH_2)$ ও পেন্টাইন $(CH_3 - (CH_2)_2 - C)$ $\Rightarrow CH)$ এর গঠনে যথাক্রমে দ্বি-বন্ধন ও ত্রি-বন্ধন থাকাতে আক্রমণকারী বিকারক ইলেকট্রোফিলিক হবে। তবে অ্যালকিন অপেক্ষা অ্যালকাইন কম সক্রিয় হওয়ায় বিউটিন ইলেকট্রোফিলিক যুত বিক্রিয়ায় অধিক সক্রিয়।

১৩০ । $R-CH_2-CH=CH_2$ মূলত কোন ধরনের বিক্রিয়া দেয়?

इलक्ष्रेनाक्से युं

ইলেকট্রানাকর্ষী প্রতিস্থাপন

নিউক্লিওফিলিক বিয়োজন

ত্ম নিউক্লিওফিলিক সংযোগ

উত্তর: 📵 ইলেকট্রনাকর্ষী যুত

ব্যাখ্যা: R — CH_2 — $CH = CH_2$ এর ইলেকট্রনাকর্ষী যুত বিক্রিয়াটি নিমুরূপ:

$$R - CH_2 - CH = CH_2 + H^+ Br^- \rightarrow R - CH_2 - CH - CH_3$$

$$Br$$

১৩১। কোনটি অপ্রতিসম অ্যালকিন?

[য. বো. ২৩]

9 CH₂ = CH₂

R CH₃ - CH = CH - CH₃

 \mathfrak{G} CH₂ = CH - CH₃

(1) CICH = CHCI

উত্তর: গ্র CH₂ = CH - CH₃

व्याधाः ज्यानिकत्नत दि-वक्तत्नत উভয়পাশে পরমাণুর সংখ্যা সমান হলে वाधाः विक्रियाि সম্পূর্ণ করে পাই. প্রতিসম অ্যালকিন আর অসমান হলে অপ্রতিসম অ্যালকিন হয়। $CH_2 = CH_2$, $CH_3 - CH = CH - CH_3$, C/CH = CHC/ইত্যাদি প্রতিসম অ্যালকিন কিন্তু CH₂ = CH - CH₃ একটি অপ্রতিসম অ্যালকিন।

>>> | CH2 = CHBr + HBr → A

A কোনটি?

[मि. त्वा. ५०]

⊕ CH₁ - CHBr₂

(9) CHBr = CH2

(1) CH2Br - CH2Br2

উত্তর: 📵 CH3 – CHBr2

ব্যাখ্যা: বিক্রিয়াটি সম্পূর্ণ করে পাই,

 $CH_2 = CHBr + H Br \rightarrow CH_3 - CHBr_2$

নিচের উদ্দীপকটি পড় এবং ১৩৩ ও ১৩৪ নং প্রশ্নের উত্তর দাও:

$$R - CH = CH_2 + HBr \xrightarrow{H_2O_2}$$
 'A' (প্রধান উৎপাদ) + B

১৩৩। A যৌগটি হলো-

[চ. বো. ২৩]

③ R - CH(OH) - CH₃

③ R − CH₂ − CH₂ − OH

 \P R - CH₂ - CH₂(Br)

® R - CH(Br) - CH₃

উত্তর: ① R – CH₂ – CH₂(Br)

ব্যাখ্যা: উদ্দীপকের বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$R - CH = CH_2 + HBr \xrightarrow{H_2O_2} R - CH_2 - CH_2Br(A) + R - CH - CH_3(B)$$

(প্রধান উৎপাদ)

Br (গৌণ উৎপাদ)

১৩৪। উক্ত বিক্রিসায়-

চি. বো. ২৩)

- (i) মারকনিকভ নীতি প্রযোজ্য নর
- (fi) উৎপাদ A আলোক সক্রিয়
- (iii) মৃক্ত মৃলক সৃষ্টির মাধ্যমে বিক্রিয়া সংঘটিত হয় निक्तत कानि गठिक?

3 i, ii

(i, iii

(9) ii, iii

(T) i, ii, iii

উखतः (i, iii

ব্যাখ্যা: ছৈব পার অন্সাইচের উপস্থিতিতে অপ্রতিসম অ্যালকিনের সঙ্গে হাইদ্রোলেন ব্রোমাইড (HBr) এর যুত বিক্রিরাটি মারকনিকভ নিরমের বিপরীত ঘটে। বিক্রিয়ার বিভিন্ন ধাপে মুক্ত মূলক সৃষ্টি হর।

উল্লেখ্য, A (R – CH2 – CH2 – Br) যৌগটিতে কোনো কাইরাল कार्वन टारे विधारा त्यीं गिष्ठे जात्गाक निकरा मरा।

$$\Rightarrow 2 + A \xrightarrow{[H]} B \xrightarrow{H_2SO_4} C \xrightarrow{O_3} D \xrightarrow{Zn/H_2O}$$

2HCHO + ZnO + H2O ७ अप्तात विकियाग कान त्योगि **क्टरनियाक्यी नध्याखन विक्रिया क्षप्रभन कराद**?

(7) A

(9) B

(9) C

(1) D

উত্তর: 🖲 C

Rhombus Publications

$$CH_3COOH \xrightarrow{[H]} CH_3 - CH_2 - OH \xrightarrow{H_2SO_4} B$$

$$CH_2 = CH_2 \xrightarrow{O_3} CH_2 \xrightarrow{CH_2} CH_2 \xrightarrow{H_2O} Z_D$$

2HCHO + ZnO + H2O

य्यर्कु ज्यानिकन इंत्नक्रोंनाकर्षी সংযোজन विक्रिय़ा श्रप्नर्भन करत, ठाउँ C যৌগটি ইলেকট্রনাকর্ষী সংযোজন বিক্রিয়া প্রদর্শন করবে।

১৩৬। $CH_3CH = CH_2 + HBr \xrightarrow{R_2O_2} A$ (প্রধান) + (গৌণ) A

(i) 2 ব্রামো প্রোপেন

(ii) 1 ব্রামো প্রোপেন

(iii) ফ্রি রেডিক্যাল কৌশলে তৈরি হয় নিচের কোনটি সঠিক?

⊕ i vii

iii vii (F)

iii v i 🕝

iii viii

উত্তর: 🕲 ii ও iii

ব্যাখ্যা: উপরোক্ত বিক্রিয়াটি বিপরীত মারকনিকভের নিয়ম অনুসারে ফ্র রেডিক্যাল কৌশলে তৈরি হয়। বিক্রিয়াটি সম্পন্ন করে পাই:

১৩৭। प्रानिकारेन द्यानारेफ कान धत्रत्नत्र विकित्रा क्षिमर्भन करतः? [व. त्वा. २०]

- ইলেকট্রোফিলিক সংযোজন
 নিউক্লিওফিলিক প্রতিস্থাপন

(2-বোমো প্রোলেন)

- ন) ডি-কার্বোক্সিলেশন
- আলাডল দনি

উত্তর: বি) নিউক্লিওফিলিক প্রতিস্থাপন

ব্যাখ্যা: অ্যালকাইল হ্যালাইডসমূহ নিউক্লিওকিলিক প্রতিস্থাপন হিত্রিয়ার অংশগ্রহণ করে থাকে। 3° ও 1° আলকাইল হ্যালাইড কথাক্রের ১১০ ও S_N2 বিক্রিয়ায় অধিক সক্রিয়।

 $R - X + KOH(aq) \rightarrow R - OH + KX$

১৩৮। আালকাইল হ্যালাইডের S_N1 বিক্রিয়ার সক্রিয়তার ক্রম নিচের কোনটি? वि. त्या. ५वी

® CH₁-X>1°>2°>3°

 $\textcircled{3} 2^{\circ} > 3^{\circ} > 1^{\circ} > CH_3 - X$

9 1° > 2° > 3° > CH₁ - X

(9) 3° > 2° > 1° > CH₁ - X

উন্তর: ৩ 3° > 2° > 1° > CH₁ – X

गाणाः S_N1 विकिताम मिक्नाण निर्स्त करत विक्रिसारित श्रथम भारण डेश्यास कार्त्वाकााणियात्वत श्विषिभीनाजात छेशत । य कार्त्वाकाणियात्वत স্থিডিশীলতা বেশি সেটি সহজে দ্রুত উৎপন্ন হবে। ফলে S_NI বিত্রিনাার সত্রিনাডা বেশি হবে। কার্বোক্যাটায়নের স্থিভিশীলভার ক্র-মঃ $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_1 - X$

ছেৰ ব্যসায়ৰ ➤ ACS, FRB Compact Suggestion Book..... ১০৯। কোন যৌগ S_N1 কৌশল অনুসরণ করে? ১৪৪। R – CH₂Br + KOH(aq) → উৎপাদ; বিক্রিয়াটির কৌশল কী? मि. त्स. २১ ® CH₃ - CH₁ - Br ® CH₃-Br ইলেকট্রাফিলিক প্রতিস্থাপন ব্য অপসারণ ⑤ CH₃ − NH₂ গ্ কেন্দ্ৰাকর্ষী প্রতিদ্বাপন থ কেন্দ্ৰকর্ষী সংযোজন **चिंखतः (CH₃)₃ – CC** উন্তর: (৭) কেন্দ্রাকর্ষী প্রতিদ্বাপন बार्षाः S_N1 विक्रियाः 3° > 2° > 1° > CH₁ - X ব্যাখ্যা: অ্যালকাইল হ্যালাইত প্রতিস্থাপন ও অপসারণ উত্যা বিক্রিয়া দেয়। S_{N} 2 विक्रियाः $CH_3 - X > 1^{\circ} > 2^{\circ} > 3^{\circ}$ জ্লীয় KOH এর সাথে প্রতিস্থাপন এবং অ্যালকোহলীয় KOH এর সাথে কেন্দ্রাকর্ষী অপসারণ বিক্রিয়া দেয়। ১৩০। S_N1 বিক্রিন্যার বৈশিষ্ট্য কোনটি? এটি এক আণবিক নিউক্লিওফিলিক বা কেন্দ্রাকর্ষী প্রতিস্থাপন বিক্রিয়া। 🔞 পোদার দ্রাবকে সহজে ঘটে ১৪৫। S_N2 বিক্রিয়ার ক্ষেত্রে প্রযোজ্য-এক ধাপে ঘটে (1) দুই ধাপে ঘটে অবহান্তর অবহার সৃষ্টি হয় (ii) নিউক্লিওফাইলের উপর নির্ভর করে (ছ) জামিতিক গঠন অপরিবর্তিত থাকে (iii) ইনভারসন ঘটে ট্ৰন্তৰ: 🗨 এক ধাপে ঘটে নিচের কোনটি সঠিক? াসি, বো, ২০1 ® ii ® Li ১৪১। S 1 বিক্রিয়ার বৈশিষ্ট্য লয় কোনটি? Ti, iii (1) i, ii, iii পোদার দ্রাবকে সহজে ঘটে উন্তর: ① ii, iii পূ দুই ধাপে ঘটে ব্যাখ্যা: S_N2 বিক্রিয়ার বৈশিষ্ট্য: অবস্থান্তর অবস্থা সৃষ্টি হয় 🔳 এ জাতীয় বিক্রিয়া একধাপেই সম্পন্ন হয়। জামিতিক গঠন অপরিবর্তিত ধাকে ■ 1° হ্যালাইডের ক্লেত্রে S_N2 বিক্রিয়া সহজে ঘটে। উন্তর: 🕙 অবস্থান্তর অবস্থার সৃষ্টি হয় विक्रिमान गिठितिंग प्रानिकारेन यानारेष ७ निष्कि अधिनिक বিকারক উভয়ের ঘনমাত্রার উপর নির্ভরশীল। 182 I S-1 विक्रियात क्वां व्यवाधा-🔳 কোনোরপ কার্বোক্যাটায়নের বা অ্যানায়নের সৃষ্টি হয় না। (i) সক্রিয়তার ক্রম 3° > 2° > 1° > CH₂X 🏿 ত্যামিতিক গঠন সম্পূর্ণ বিপরীত হয়ে যায় তথা ইনভারসন ঘটে। (□) পোলার দ্রাবকে ঘটে অালকাইল হ্যালাইড এর S_N2 বিক্রিয়ার সক্রিয়তার ক্রম: (m) অবদ্বান্তর অবদ্বা সৃষ্টি হয় $CH_1X > 1$ °RX > 2°RX > 3°RX. নিচের কোনটি সঠিক? ১৪৬। CH₃CH₂C/ <u>ডছ ইথা</u> → B; B ও C উৎপাদ্বয়ের সংকেত হলো– ③ i, ii @ ii, iii (i, iii ® i, ii, iii KOH(aq) **उं**डतः चि दं ते गाधाः SNI विक्रिगात विशिष्ठाः ○ CH₃(CH₂)₂CH₃ ○ CH₃CH₂OH
 ১. এ बाठीरा निष्कु ६ दिनिक প্রতিস্থাপন বিক্রিয়া দুই ধাপে ঘটে। (1) CH3CH2CH3 (1) CH2 = CH2 ২. 3° হ্যাদাইতের ক্ষেত্রে S_N। বিক্রিয়া সহজে ঘটে। (1) CH3 - CH3 O CH3CH2OH পোদান দ্রাব্যকে S_N। সহজে ঘটে। (T) CH3CH2CH3 & CH3CH2OH ৪. কার্বোকাটারনের সৃষ্টি হয়। উबतः ③ CH3(CH2)2CH3 ७ CH3CH2OH ৫. অবয়ান্তর গঠন অপরিবর্তিত থাকে। ব্যাখা: ৬. আমিতিক গঠন অপরিবর্তিত থাকে। CH₃CH₂CI Na | CH₃ − CH₂ − CH₂ − CH₃(B) বিউটেন আদোকাইল হ্যালাইডের Sx1 বিক্রিয়ার সক্রিয়াতার ক্রম: $3^{\circ}RX > 2^{\circ}RX > 1^{\circ}RX > CH_{1} - X$ $KOH(aq) \rightarrow CH_3 - CH_2 - OH(C)$ ১00 । R - CH1Br + KOH(aq) → উৎপাদ; বিক্রিনাটির কৌশল কী? ১৪৭। S_N1 ও E1 বিক্রিয়ার জন্য সবচেয়ে উপযোগী মাধ্যম কোনটি? मि. ला. थी ইলেকট্রাকিলিক প্রতিয়াপন (ব) অপসারণ इंलक्क्वेनीয় जावक ৰ প্ৰোটিন দ্ৰাবক त) रक्नाकर्नी धठिद्यापन ত্বি কেন্দ্রাকর্ষী সংযোজন গ্ নিরপেন্দ দ্রাবক থে অআয়নিত দ্রাবক টিব্রে: (ব) কেন্দ্রাকর্মী প্রতিস্থাপন

Rhombus Publications

বাম্বা: আদ্যকাইল ত্যালাইড প্রতিস্থাপন ও অপসারণ উচ্যা বিক্রিয়া দেয়।

क्चाकानीं विकिद्यां ।

সাত্যে ভ্রপনারণ বিক্রিয়া সেয়। উপরোক্ত বিক্রিয়াটি এক আণবিক

উত্তর: (ব) প্রোটিন দ্রাবক

ব্যাখ্যা: S_NI ও E₁ বিক্রিয়ার জন্য সবচেয়ে উপযোগী মাধ্যম প্রোটিন দ্রাবক

বেমন: অ্যালকোহল, কার্বস্থিলিক এসিড। বেশিরভাগ ক্লেত্রে নিরপেক্ল

वा ष्युमेरा माधारम व विक्रियाश्वला घर्ট बारू । শক্তिশानी कांत्रीय মাধ্যমে ভিন্ন কৌশলে (ষেমন-E2) বিক্রিয়া ঘটার সম্ভাবনা বৃদ্ধি পায়।

कर्ता राज य उर्लान शोधवा यांग्र ठांक HBr এর সাথে সংযোগ

বিক্রিয়া করা হলে কোন যৌগটি উৎপন্ন করবে?

2-ব্রোমো-3-মিথাইল বিউটেন ব) 2-মিথাইল-3-ব্রোমো বিউটেন

१ 2-ব্রোমো-2-মিখাইল বিউটেন१ 1-ব্রোমো-1-মিখাইল বিউটেন

উত্তর: 🕦 2-ব্রোমো-2-মিথাইল বিউটেন

ব্যাখ্যা: 2-ব্রোমো-2-মিথাইল বিউটেনকে KOH(alc)-এর দ্রবণে উত্তপ্ত করা ट्रांच त्रांटेखिक नीिं जनुत्रात 2-ियथारेन विषेतिन-२ उप्ता कता। याक HBr এর সাথে সংযোগ বিক্রিয়া করা হলে মার্কনিকভ নীতি অনুসারে 2-ব্রোমো-2-মিথাইল বিউটেন উৎপন্ন করবে।

$$\begin{array}{c|c} Br & CH_3 & CH_3 \\ & \mid & \mid & KOH(alc) \\ CH_3 - CH - CH - CH_3 \xrightarrow{} CH_3 - CH = C - CH_3 \\ & CH_3 \\ & \mid & CH_3 - CH = C - CH_3 \xrightarrow{} CH_3 - CH - C - CH_3 \\ & \mid & \mid & \\ CH_3 - CH = C - CH_3 \xrightarrow{} CH_3 - CH - C - CH_3 \\ & \mid & \\ Br \end{array}$$

১৪৯। যে বিক্রিয়ায় গাঢ় H_2SO_4 (নিরুদক) এর প্রভাবে $160^{\circ}C$ তাপমাত্রায় ইথানল থেকে অসম্পুক্ত যৌগ ইথিন উৎপন্ন হয়-

প্রতিস্থাপন বিক্রিয়া

(ঝ) অপসারণ বিক্রিয়া

প্রত বিক্রিয়া

থি পারমানবিক পুনর্বিন্যাস

উত্তর: 📵 অপসারণ বিক্রিয়া

ব্যাখাঃ উপরোক্ত বিক্রিয়ায় ইথানলের দুইটি কার্বন পরমাণু হতে একটি H ও একটি – OH মূলক অপসারিত হয়ে ইথিন উৎপন্ন করে।

$$CH_3 - CH_2 - OH \xrightarrow{\text{stip } H_2SO_4} CH_2 = CH_2 + H_2O$$

১৫০। 'যে β-কার্বনে কম সংখ্যক H-পরমাণু যুক্ত থাকে, সে কার্বন থেকেই বেশির ভাগ H-পরমাণু অপসারিত হয়'। এটি হলো-

🕸 রেজোন্যান্স সূত্র

কিডেল ক্রাফট্স সূত্র

ন্ত ক্যানিজারো সূত্র

দ্বি সাইজেফ সূত্র

উত্তর: ত্ব সাইজেফ সূত্র

ব্যাখ্যা: সাইজেফ নীতি অনুসারে আলকাইল হ্যালাইডের হ্যালোজেন যুক্ত কার্বনের সন্নিহিত যে β-কার্বন পরমাণুতে কম সংখ্যক হাইড্রোজেন থাকে, সেটি থেকে হাইড্রোজেন এবং পাশের কার্বন থেকে হ্যালোজেন অপসারিত হয়ে অ্যালকিন ও HX গঠিত হয়।

 $\lambda \in \lambda \mid NH_4CNO \xrightarrow{\Delta} H_2N - \overset{\parallel}{C} - NH_2$ উদ্দীপকের বিক্রিয়াটি কোন ধরনের বিক্রিয়া? বি. বো. ১৬]

ক সংযোজন

সমাণুকরণ

গু অপসারণ

থি প্রতিস্থাপন

উত্তরঃ 🕲 সমাণুকরণ

ব্যাখ্যা: যে বিক্রিয়ায় কোন যৌগের অণুস্থ পরমাণু বা মূলকণ্ডলো পুনর্বিন্যস্ত হয়ে একই আণবিক সংকেত বিশিষ্ট ভিন্ন মূলক বিশিষ্ট যৌগ উৎপন্ন করে তাকে সমাণুকরণ বলে। এখানে অ্যামোনিয়াম সায়ানেটকে উত্তপ্ত করে তার সায়ানেট মূলক পুনর্বিন্যস্ত হয়ে অ্যামাইডে পরিণত হয়েছে।

...... ACS/ > Chemistry 2nd Paper Chapter-2

5. 0吨. 26到

@ প্রোপান্যাল

B যৌগটির নাম কী?

প্রাপানল

প্রপেন

(च) প্রোপিন-।

উত্তর: 📵 প্রোপিন–।

ব্যাখ্যা: উপরের বিক্রিয়াটি সম্পন্ন করে পাই:

 $CH_1CH_2CH_2C/+KOH(a/c) \rightarrow CH_1-CH=CH_2+KC/+H_2O$

১৫৩। C₆H₅COC/ এর কার্বনিল মূলকে কোন ধরনের বিক্রিয়া সংঘটিত হয়?

নিউক্লিওফিলিক অ্যাসাইল প্রতিস্থাপন

নিউক্লিওফিলিক আরোমেটিক প্রতিস্থাপন

ক্রিফিলিক অ্যারোমেটিক প্রতিস্থাপন

ত্ত্ব ইলেকট্রোফিলিক অ্যাসাইল প্রতিস্থাপন

উত্তর: 🔞 নিউক্লিওফিলিক অ্যাসাইল প্রতিস্থাপন

ব্যাখ্যা: C₆H₅COC/ এর >C=O মূলকে নিউক্লিওফিলিক অ্যাসাইল প্রতিস্থাপন বিক্রিয়া হয়। বিক্রিয়াটিকে রোজেনমুক্ত বিজারণ বলে।

$$\begin{array}{c|c}
O & O & O \\
C - CI & C - H \\
\hline
 & Pd + BaSO_4
\end{array}$$
+ HCI

১৫৪। সোয়ার্টস বিক্রিয়াতে কোনটি উৎপন্ন হয়?

📵 অ্যালকাইল ক্লোরাইড

আলকাইল ফ্রোরাইড

গ্য অ্যালকাইল ব্রোমাইড

🕲 অ্যালকাইল অ্যায়োডাইড

উত্তর: 🖲 অ্যালকাইল ব্রোমাইড

ব্যাখ্যা: HF-এর সাথে অ্যালকোহলের বিক্রিয়া খুব ধীর গতিতে হওয়ার জন্য, অ্যালকাইল ক্লোরাইডের সাথে অজৈব ফ্লোরাইড যেমন: AgF, Hg₂F₂, ASF₃ ইত্যাদির বিক্রিয়া ঘটিয়ে অ্যালকাইল ফ্রোরাইড প্রস্তুত করা যায়, যা সোয়ার্টস বিক্রিয়া নামে পরিচিত।

 $2CH_3CH_2CI + Hg_2F_2 \rightarrow 2CH_3CH_2F + Hg_2CI_2$

১৫৫। অ্যালকাইল হালাইডকে গাঢ় কস্টিক সোডা (NaOH) বা কস্টিক পটাশ (KOH) সহ উত্তপ্ত করে তাতে AgNO3 দ্রবণ যোগ করলে কোন বর্ণের অধঃক্ষেপ পড়ে?

ক সাদা

বাদামী

গ্ৰ সবুজ

থ নীল

উত্তর: 📵 সাদা

ব্যাখ্যা: উপরোক্ত বিক্রিয়ায় AgCl-এর সাদা অধঃক্ষেপ পড়ে। বিক্রিয়াগুলো নিমুরূপ:

$$R-C/(I)+NaOH(aq)$$
 \longrightarrow $R-OH(aq)+Na^+(aq)+CI^-(aq)$ $CI^-(aq)+AgNO_3(aq)$ \longrightarrow $AgCI(s)+NO_3^+(aq)$ সাদা অধ্যক্ষেপ

১৫৬। অ্যালকাইল হ্যালাইড কোন ধরনের বিক্রিয়া দেয় না?

কন্দ্রাকর্ষী প্রতিস্থাপন (S_N) বিক্রিয়া
 অপসারণ বিক্রিয়া

পি বিজারণ বিক্রিয়া

🕲 অধাতুর সাথে বিক্রিয়া

উত্তর: ত্ম অধাতুর সাথে বিক্রিয়া

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book.....

ব্যাখ্যা: অ্যালকাইল হ্যালাইড মূলত চার ধরনের বিক্রিয়া দেয়:

- (i) কেন্দ্ৰাকর্ষী প্রতিস্থাপন
- (ii) অপসারণ
- (iii) বিজারণ ও
- (iv) ধাতুর সাথে বিক্রিয়া

১৫৭। অ্যালকাইল হ্যালাইডকে কোনটি দারা প্রতিস্থাপন করে কার্বন-শিকল বৃদ্ধিকরণ করা হয়?

- ⊕ OH দ্বারা
- প্র C₂H₅O দ্বারা
- ® NH₂

উত্তর: <a> CN দারা

ব্যাখ্যা: অ্যালকাইল হ্যালাইডকে অ্যালকোহলীয় পটাসিয়াম সায়ানাইডসহ উত্তপ্ত করলে অ্যালকাইল সায়ানাইড উৎপন্ন হয়। ফলে 1টি কার্বন সংখ্যা বৃদ্ধি পায়।

অ্যালকেন, অ্যালকিন ও অ্যালকাইন

১৫৮। প্যারাফিন কী?

- ৪০% ফরমালিডহাইড
- ৰ ৯৫% ইথানল
- প্রসম্পৃক্ত হাইড্রোকার্বন
- ত্ব উপরের সব কয়টি

ব্যাখ্যা: রাসায়নিক বিক্রিয়ার প্রতি খুবই অল্প আকর্ষণ দেখায় বলে সম্পৃত্ত হাইড্রোকার্বনগুলোকে প্যারাফিন বলা হয়।

১৫৯। রান্নার জন্য সিলিভারে কোন গ্যাস ব্যবহৃত হয়?

[সি. বো. ১৫]

- 📵 পেট্রোল
- করোসিন
- গ্র মিথেন ও প্রোপেন
- ত্ব বিউটেন ও প্রোপেন

উত্তর: 🕲 বিউটেন ও প্রোপেন

ব্যাখ্যা: রান্নার জন্য সিলিভারে প্রোপেন ও বিউটেন, মোটর জ্বালানি হিসেবে পেট্রোল বা গ্যাসোলিন এবং এরোপ্লেনের জ্বালানীরূপে কেরোসিন ব্যবহৃত হয়।

১৬০। কোন যৌগটির স্ফুটনাঙ্ক সর্বোচ্চ?

- @ n-অক্টেন
- 🕲 2, 2, 4-ট্রাইমিথাইল পেন্টেন
- গ্র 2, 2, 3, 3-ট্রেট্রামিথাইল বিউটেন
- ত্ব 3, 3 ডাইমিথাইল হেক্সেন

উত্তর: 🚳 n-অক্টেন

ব্যাখ্যা: অ্যালকেনে কার্বন সংখ্যা যত বাড়ে, গলনাস্ক ও স্ফুটনাস্ক তত বেশি হয়। অপরদিকে যত বেশি শাখায়িত হবে তত গলনাস্ক বাড়বে কিন্তু স্ফুটনাস্ক কমবে। এখানে অপর যৌগগুলো শাখায়িত এবং n-অক্টেন এ কার্বন সংখ্যা বাকিগুলোর সমান হওয়ায়, n-অক্টেন এর স্ফুটনাস্ক সবচেয়ে বেশি হবে।

১৬১। RCOONa + NaOH (CaO) $\stackrel{\Delta}{\longrightarrow}$ A + Na₂CO₃ A যৌগটি কি? দি. বো. ১৬)

- অ্যালকিন
- কার্বোক্সিলিক এসিড
- প্র অ্যালকেন
- 🕲 অ্যালডিহাইড

উত্তর: প্র অ্যালকেন

ব্যাখ্যাঃ উপরোক্ত ডিকার্বক্সিলেশন বিক্রিয়ার ফলে সোডিয়াম অ্যালকানয়েড এর তুলনায় একটি কম কার্বন বিশিষ্ট অ্যালকেন ও Na₂CO₃ উৎপন্ন হয়।

RCOONa + NaOH(CaO)
$$\xrightarrow{\Delta}$$
 R - H + Na₂CO₃ ज्यांनरकन

১৬২। জৈব যৌগের কার্বন শিকলে কার্বন সংখ্যাঞ্ছাস করার পদ্ধতি হলো–

াে বা. ২থ

- উর্টজ বিক্রিয়া
- কার্বিল অ্যামিন বিক্রিয়া
- গু ডিকার্বক্সিলেশন বিক্রিয়া
- 🕲 উইলিয়ামসন বিক্রিয়া

উত্তর: গ্র ডিকার্বস্থিলেশন বিক্রিয়া

ব্যাখ্যা: R-COONa+NaOH $\xrightarrow{CaO}R-H+Na_2CO_3$ সোডালাইম

বিক্রিয়ায় একটি কার্বন সংখ্যা হ্রাস পাওয়ায় এ বিক্রিয়াটি ডি-কার্বস্থিলেশন বিক্রিয়া নামে পরিচিত।

১৬৩। উচ্চতর অ্যালকেন প্রস্তুতির পদ্ধতি কোনটি?

- ক) হাইড্রোজিনেশন
- কাব সংশ্লেষণ
- গ্য ডিকার্বক্সিলেশন
- থি বিজারণ

উত্তর: (ৰ) কোব সংশ্লেষণ

ব্যাখ্যাঃ কোব সংশ্রেষণ পদ্ধতিতে কার্বস্থিলিক এসিডের Na/K লবণের গাঢ় জলীয় দ্রবণকে তড়িৎ বিশ্লেষণ করলে অ্যানোডে উচ্চতর অ্যালকেন উৎপন্ন হয়।

 $2CH_3COONa + 2H_2O \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \b$

১৬৪। সোডিয়াম অ্যাসিটেটের জলীয় দ্রবণে তড়িৎ বিশ্রেষণ করলে কোন অ্যালকেন উৎপন্ন হয়?

- ক্ত মিথেন
- গু প্রপেন
- ত্ব বিউটেন

উত্তর: 🕲 ইথেন

ব্যাখ্যা: কোব সংশ্লেষণ পদ্ধতিতে সোডিয়াম অ্যাসিটেটের জ্বলীয় দ্রব<mark>ণকে</mark> তড়িৎ বিশ্লেষণ করলে ইথেন উৎপন্ন হয়।

১৬৫। স্যালকাইল হ্যালাইড থেকে নিচের কোন পদ্ধতিতে স্যালকেন প্রস্তুত করা যায় না?

- উর্টজ বিক্রিয়া দ্বারা
- থ জারণ দ্বারা
- গ্র বিজারণ দ্বারা
- থি ফ্রিগনার্ড বিকারক দ্বারা

উত্তর: (ব) জারণ দারা

ব্যাখ্যা: অ্যালকাইল হ্যালাইড থেকে সাধারত তিনটি উপায়ে অ্যালকেন প্রস্তুত করা যায়: (i) বিজারণ দ্বারা (ii) উর্টজ বিক্রিয়া দ্বারা (iii) ফ্রিগনার্ড বিকারক ব্যবহার করে।

১৬৬। শুষ্ক ইথারে দ্রবীভূত অ্যালকাইল হ্যালাইডকে ধাতব সোডিয়াম দ্বারা উত্তপ্ত করলে অ্যালকেন উৎপন্ন হয়। এটি কোন বিক্রিয়া?

- উর্টজ বিক্রিয়া
- উর্টজ ফিটিগ বিক্রিয়া
- গ্র ফ্রিডেল ক্রাফট বিক্রিয়া
- 🕲 কার্বিল-অ্যামিন বিক্রিয়া

উত্তর: 🐵 উর্টজ বিক্রিয়া

১৬৭। কোনটি উর্টজ বিক্রিয়ায় সৃষ্টি হয়?

- आनकारेन शानारेष
- আলকাইল বেনজিন
- গ) অ্যালকোহল
- ডিচেতর অ্যালকেন

উত্তর: 📵 উচ্চতর অ্যালকেন

ব্যাখ্যা: তদ্ধ ইথারে দ্রবীভূত অ্যালকাইল হ্যালাইডের সাথে ধাতব Na এর বিক্রিয়ায় উচ্চতর অ্যালকেন পাওয়া যায় যাকে উর্টজ বিক্রিয়া বলা र्य ।

১৬৮। নিম্নের কোন বিক্রিয়ায় কার্বন সংখ্যা বৃদ্ধি পায়?

বি. বো. ২৩

- হফম্যান ডিগ্রেডেশন বিক্রিয়া
 উর্টজ বিক্রিয়া ণ্ড ডি-কার্বক্সিলেশন বিক্রিয়া
 - সমাণুকরণ বিক্রিয়া

উত্তর: 🕲 উর্টজ বিক্রিয়া

ব্যাখ্যা: উর্টজ বিক্রিয়ায় শুদ্ধ ইথারে দ্রবীভূত আলকাইল হ্যালাইড ধাতব সোডিয়ামের সাথে বিক্রিয়া করে অ্যালকেন উৎপন্ন করে। এক্ষেত্রে, সৃষ্ট অ্যালকেনে C সংখ্যা বৃদ্ধি পায়।

$$2R - X + 2Na \xrightarrow{\mathfrak{SR}} \overline{\mathsf{ইথার}} R - R + 2NaX$$

১৬৯। A
$$\xrightarrow{PCI_5}$$
 B $\xrightarrow{\text{Na}}$ n-বিউটেন

উদ্দীপকের A ও B যৌগদ্ম হলো-

- ⊕ CH₃OH
 ⊌ CH₃CI
- [®] CH₃CH₂OH [®] CH₃Cl
- ® CH₃CH₂OH [®] CH₃CH₂Cl

উত্তর: (ছ) CH3CH2OH ও CH3CH2Cl ব্যাখ্যা: উপরোক্ত বিক্রিয়াটি সম্পূর্ণ করে পাই.

$$CH_3CH_2OH \xrightarrow{PCI_5} 2CH_3CH_2CI \xrightarrow{Na} CH_3 - CH_2 - CH_2 - CH_3$$

\$90 | CH3CH2CH2Br + Na -

চি. বো. ১৬)

- ক) হেক্সিন
- প্রপেন
- গ) প্রপিন
- খি হেক্সেন

উত্তর: খি হেক্সেন

ব্যাখ্যা: উপরোক্ত বিক্রিয়াটিকে উর্টজ বিক্রিয়া বলে। এর ফলে প্রোপাইল ব্রোমাইড থেকে হেক্সেন উৎপন্ন হয়।

$$2CH_3CH_2CH_2Br + 2Na \xrightarrow{\ensuremath{\mathfrak{GS}}\ensuremath{\mathfrak{F}}\ensuremath{\mathfrak{F}}\ensuremath{\mathfrak{F}}\ensuremath{\mathfrak{F}}\ensuremath{\mathfrak{F}}\ensuremath{\mathfrak{F}}\ensuremath{\mathfrak{F}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{H}}\ensuremath{\mathfrak{I}}_14 + 2NaBr$$

১৭১। নিম্নের কোন যৌগটিতে সঞ্চালন অক্ষম π ইলেকট্রন আছে?

- ⊕ C₂H₆
- ③ C₆H₆
- [®] C₃H₈
- ® C₂H₄

উত্তর: 🕲 C₂H₄

ব্যাখ্যা: C_2H_6 ও C_3H_8 -এর গঠনে কোন π -ইলেকট্রন নেই। C_6H_6 -এর গঠনে 6টি সঞ্চালনক্ষম π-ইলেকট্রন আছে।

Rhombus Publications

াসি. বো. ২১। ১৭২। অ্যালকিনে কার্বন-কার্বন দৈর্ঘ্য কত?

- @ 0.121 nm
- @ 0.134 nm
- 例 0.112 nm
- খি কোনটি নয়
- উত্তর: 📵 0.134 nm

১৭৩। অ্যালকিনের সাধারণ সংকেত কোনটি?

মি. বো. ২২]

- \odot C_nH_{2n+2}
- @ C,H2n+1
- 1 CnH2n
- (1) C_nH_{2n-2}
- উত্তর: পি C_nH_{2n}
- $398 \mid CCI_4 + Br_2$ দ্ৰবণে (लान বৰ্ণ) কোন যৌগ যোগ করলে দ্ৰবণ ফ্যাকাশে বা বর্ণহীন হয়ে যায়?
 - ক) প্রোপানল
- থ) প্রোপিন-1
- গ্রে বেনজিন
- ত্ম টারশিয়ারি বিউটেন

উত্তর: (ব) প্রোপিন-1

ব্যাখ্যা: CCl4 + Br2 এর লাল বর্ণের দ্রবণে প্রোপিন-1 যোগ করলে দ্বি-বন্ধনযুক্ত প্রোপিনের সঙ্গে ব্রোমিন দ্রবণের যুত বিক্রিয়ায় বর্ণহীন 1, 2-ভাই ব্রোমো প্রোপেন এর ফ্যাকাশে বা বর্ণহীন দ্রবণ উৎপন্ন হয়।

১৭৫। অসম্পুক্ততার পরীক্ষা-

- 📵 অ্যামোনিয়া যুক্ত সিলভার নাইট্রেট
- কারীয় পটাসিয়াম পারম্যান্সানেট
- ৭) 2, 4 ডাইনাইট্রো ফিনাইল হাইড্রাজিন
- NaHCO3 দ্রবণ যোগ করে
- উত্তর: 📵 ক্ষারীয় পটাসিয়াম পারম্যাঙ্গানেট

ব্যাখ্যা: ক্ষারীয় পটাসিয়াম পারম্যাঙ্গানেটের শীতল লঘু জলীয় দ্রবণ অ্যালকিন বা অ্যালকাইনের সঙ্গে বিক্রিয়ায় অ্যালকাইল গ্লাইকল উৎপন্ন করে। ফলে, KMnO4-এর গোলাপি বর্ণ দুরীভূত হয়। এই বিক্রিয়া জৈব যৌগে অসম্পুক্ততা শনাক্ত<mark>কর</mark>ণে বে<mark>য়া</mark>র পরীক্ষা নামে পরিচিত।

১৭৬। নিম্নের কোন যৌগকে ওজোন বিশ্লেষণ করে প্রোপানোন সহ অন্য একটি যৌগ পাওয়া যায়?

- 4 (CH₃)₂C = C(CH₃)₂
- 1 CH₃ CH₂ CH = C(CH₃)₂
- \mathfrak{P} C₄H₉CH = CH₂
- \mathfrak{P} $C_2H_5(CH_3)C = CH CH_3$

উত্তর: <a>③ CH₃ - CH₂ - CH = C(CH₃)₂

ব্যাখ্যা: CH₃ – CH₂ – CH = C(CH₃)₂ — O₃

$$CH_3 - CH_2 - CH O CH_3 - CH$$

 $CH_3CH_2CHO + CH_3 - C - CH_3 + ZnO$ প্রোপান্যাল

জৈব রসায়ন > ACS/ FRB Compact Suggestion Book.................১৪৯ ১৮১। নিচের কোন যৌগটির সাথে Br, সহজে সংযোজন বিক্রিয়া দেয়? ১৭৭ ৷ ইথাইন + H₂ Pd; BaSO₄ X রো. বো. ২৩] উদ্দীপকের 'X' যৌগ কোনটি? [®] C₆H₅NO₂ ⊕ CH₃ - CH₃ (3) CH₂ = CH₂ 1 C4H10 1 C6H6 (1) C6H12 উত্তর: @ C5H10 উত্তর: <a>© CH₂ = CH₂ ব্যাখ্যা: অ্যালকিন শ্রেণির যৌগসমূহ Br2 এর সাথে সহজেই সংযোজন ব্যাখ্যা: $CH = CH + H_2 \xrightarrow{Pd; BaSO_4} CH_2 = CH_2$ বিক্রিয়া দেয়-ইথিন (X) $C_3H_7 - CH = CH_2 + Br_2 \rightarrow C_3H_7 - CH - CH_2$ উদ্দীপকের আলোকে ১৭৮ ও ১৭৯ নং প্রশ্নের উত্তর দাও: $A+O_3$ $\xrightarrow{CCI_4}$ B $\xrightarrow{H_2O/Zn}$ $2CH_3CHO$ ১৭৮। উদ্দীপকের বিক্রিয়ায় 'Zn' ব্যবহার না করলে কী উৎপদ্ম হয়? যি. বো. ২২১ পেন্টিন T - COOH (1) H - CHO $3b > |C(CH_3)_2 = C(CH_3)_2 + O_3 \xrightarrow{CCI_4} A$ 1 CH₃ - CH₂ - OH ® CH3-COOH $\xrightarrow{\text{H}_2\text{O}, \text{ Zn}}$ 2B + ZnO উপরের বিক্রিয়ায় উৎপন্ন 'B'-উত্তর: ত্ব CH₃ – COOH ব্যাখ্যা: A যৌগটি হলো CH₁ - CH = CH - CH₁ (i) 2, 4-DNPH এর সাথে হলুদ-কমলা অধঃক্ষেপ সৃষ্টি করে $\begin{array}{c} H \\ CH_3 \end{array} C = C \xrightarrow{H} \begin{array}{c} C \\ CH_3 \end{array} \xrightarrow{CCI_4} \begin{array}{c} C \\ CH_3 \end{array} \xrightarrow{CCH_3COOH} \\ CH_3 \end{array}$ (ii) টলেন বিকারকের সাথে সিলভার দর্পণ সৃষ্টি করে (iii) 'B' এর ক্লিমেনসন বিজারণে সম্পুক্ত হাইড্রোকার্বন তৈরি করে নিচের কোনটি সঠিক? 3 i, ii সুতরাং, Zn ব্যবহার না করলে CH3COOH উৎপন্ন হবে। (1) ii, iii ১৭৯। উদ্দীপকের 'A' যৌগটি-য়. বো. ২২ উত্তর: খি i, iii (i) জ্যামিতিক সমাণুতা প্রদর্শন করে ব্যাখ্যা: C(CH₃)₂ = C(CH₃)₂ + O₃ CCl₄ (ii) প্রতিস্থাপন বিক্রিয়া দেয় না CH_3 CH_3 (iii) ক্ষারীয় KMnO₄দ্রবণের সাথে গ্লাইকল উৎপন্ন করে। নিচের কোনটি সঠিক? (4) i vii (1) i v iii (B) i, ii (S) iii 1ii viii অর্থাৎ, B যৌগটি হলো প্রোপানোন (CH3COCH3)। উত্তর: 🕲 i, ii ও iii ■ প্রোপানোনে C= O মূলক থাকায় 2, 4-DNPH এর সাপে ব্যাখ্যা: A যৌগটি হলো CH₃ – CH = CH – CH₃ বিক্রিয়া করে হলুদ কমলা অধঃক্ষেপ সৃষ্টি করে। $C = O + H_2N - NH$ সিস বিউটিন-2 ট্রান্স বিউটিন-2 এটিতে অপ্রতিস্থাপনীয় হাইড্রোজেন না থাকায় এটি প্রতিস্থাপন বিক্রিয়া না দিয়ে সংযোজন বিক্রিয়া প্রদর্শন করে। ক্ষারীয় KMnO4 এর গোলাপী বর্ণের দ্রবণ অসম্পুক্ত হাইড্রোকার্বনকে জারিত করে গ্লাইকল ও কার্বক্সিলিক এসিডে পরিণত হয়। CH_3 C = N - NH $CH_3 - CH = CH - CH_3 + [O] + H_2O \rightarrow CH_3 - CH - CH - CH$ OH OH ১৮০। কার্বনিল যৌগ হতে নিচের কোন পদ্ধতিতে অ্যালকেন প্রস্তুত করা যায়? ক ডিকার্বক্সিলেশন ক্রিমেনসন বিজারণ গে) অ্যালডল ঘনীভবন (ছ) অ্যারোমেটিকরণ

উত্তর: (ব) ক্লিমেনসন বিজারণ

ব্যাখ্যা: নিম্নে ক্লিমেনসন বিজারণ বিক্রিয়া দেওয়া হল:

R-C-H/R+4[H] $\xrightarrow{Zn.Hg}$ $R-CH_2-H/R+H_2O$ $\xrightarrow{\text{SIIII}}$ R

2. 4-ডাইনাইট্রো ফিনাইল হাইড্রাজোন (হলুদ কমলা) CH3 - CO - CH3 কিটোন সমগোত্রীয় শ্রেণির যৌগ বিধায় এটি টলেন বিকারকের সাথে বিক্রিয়া করে না। CH3 - CO - CH3 क्रिय्मनञन विजातलात माधारम প्लाप्तन উৎপন্ন করে।

2, 4-ডাইনাইট্রো

ফিনাইল হাইড্রাজিন

$$CH_3 - CO - CH_3 \xrightarrow{Zn/Hg, HC/} CH_3 - CH_2 - CH_3$$
 প্রোপানোন প্রোপেন

Rhombus Publications

বি. বো. ২৩

⊕ C₅H₁₀

(1) C5H12

1, 2- ডাইব্রোমোপেন্টেন

阈 i, iii

(1) i, ii, iii

১৮৩। অ্যালকাইন-1 শনাক্তকরণে ব্যবহৃত বিকারক কোনটি? [চ. বো. ১৭]

③ [Cu(NH₃)₂]C/

(1) Br₂ + H₂O

 \P ZnC I_2 + HCI

(1) C₆H₅MgBr

উন্তর: 📵 [Cu(NH3)2]Cl

ব্যাখ্যা: $HC \equiv CH + 2Cu(NH_3)_2C/ \rightarrow Cu - C \equiv C - Cu(\downarrow)$

১৮৪। ইথিন ও ইথাইনের পার্থক্যকরণে ব্যবহৃত দ্রবণ-

টো. বো. ২২

- (i) [Ag(NH₃)₂]NO₃
- (ii) [Cu(NH₃)₂]C/
- (iii) Br₂ + CCl₄ নিচের কোনটি সঠিক?

i e ii

iii vi (F)

n ii s iii

(1) i, ii v iii

উত্তর: ক i ও ii

ব্যাখ্যা: ইথাইন [Ag(NH₃)₂]NO₃ ও [Cu(NH₃)₂]Cl এর সাথে বিক্রিয়া করে যথাক্রমে সিলভার অ্যালকানাইডের সাদা অধঃক্ষেপ ও কপার অ্যালকানাইডের লাল অধঃক্ষেপ উৎপন্ন করে। এ পরীক্ষা দ্বারা অ্যালকাইন-1 (যেমন: ইথাইন) এবং অ্যালকিন এর মধ্যে পার্থক্যকরণ করা হয়।

CH ≡ CH + $2Ag(NH_3)_2NO_3 \rightarrow AgC ≡ CAg \downarrow + 2NH_4NO_3 + 2NH_3$ CH ≡ CH + $2Cu(NH_3)_2CI \rightarrow Cu.C ≡ C.Cu+ 2NH_4CI + 2NH_3$ Br₂ + CCI_4 হলো জৈব যৌগের অসম্পৃক্ততা নির্ণয়ের পরীক্ষা। এর সাথে ইথাইন ও ইথিন উভয়ই বিক্রিয়া করে।

১৮৫। অ্যালকাইনের ত্রিবন্ধনের উপস্থিতি নির্দেশক বিক্রিয়ায় কোন মিশ্রণটি ব্যবহার করা হয়?

- ③ KMnO₄ + H₂SO₄
- পি K₂Cr₂O₇ + H₂SO₄
 উন্তর: পি K₂Cr₂O₇ + H₂SO₄
- $(NO_4 + HC)$

ব্যাখ্যা: $K_2Cr_2O_7 + H_2SO_4$ দ্বারা অ্যালকাইনকে জারিত করা হলে $K_2Cr_2O_7$ এর হলুদ বর্ণ হালকা সবুজ বর্ণে $(Cr^{3^+}$ -এর জারণে) পরিবর্তিত হয় <mark>যা ত্রিবন্ধনের উপস্থিতি নির্দেশ করে।</code></mark>

 $HC = CH + [O] \xrightarrow{K_2Cr_2O_7} CH_3COOH + Cr_2(SO_4)_3 + H_2O$

১৮৬। ক্লোরোফর্মের ক্ষেত্রে-

[ম. বো. ২৩]

- (i) শনাক্তকরণে AgNO3 দ্রবণ ব্যবহার করা হয়
- (ii) সংরক্ষণে 1% ইথানল যোগ করা হয়
- (iii) ঘুমের ঔষধ তৈরিতে ব্যবহৃত হয়

নিচের কোনটি সঠিক?

(a) i vii

(a) ii & iii

(A) i & iii

(a) i, ii v iii

উত্তর: 📵 i ও ii

ব্যাখ্যা: চেতনানাশকরপে ব্যবহৃত ক্লোরোফর্ম বিশুদ্ধ হতে হয়, তাই এটি ব্যবহারের পূর্বে AgNO3 যোগ করা হয়। ফলে এটি অবিশুদ্ধ তথা ফসজিন (COCl2)-এর উপস্থিতি থাকলে, HCl-এর সাথে AgNO3-এর বিক্রিয়ায় AgCl-এর সাদা অধ্যক্ষেপ সৃষ্টি হয়। তাছাড়া, ক্লোরোফর্মের 1% ইথানল যোগ করলে ক্লোরোফর্মের জারণে

তাছাড়া, ক্লোরোফর্মে 1% ইথানল যোগ করলে ক্লোরোফর্মের জারণে উৎপন্ন ক্ষতিকর $COCl_2$, ইথানলের সাথে বিক্রিয়ায় অক্ষতিকর ইথাইল কার্বনেটে পরিণত হয়।

Rhombus Publications

(i) A যৌগ টটোমার প্রদর্শন করে

(ii) A যৌগ ছিগনার্ড বিকারকের সাথে বিক্রিয়া করে 1° অ্যালকোবল তৈরি করে

..... ACS > Chemistry 2nd Paper Chapter-2

(iii) A এর 30-40% জলীয় দ্রবণ মাছ সংরক্ষণে ব্যবহৃত হয় নিচের কোনটি সঠিক?

⊕ i

(3) iii

iii v ii (P

(T) i, ii v jii

উত্তর: 🕸 i

ব্যাখ্যা: উপরোক্ত বিক্রিয়া সম্পূর্ণ করে পাই,

$$CH_3 - C \equiv CH \xrightarrow{20\% \text{ H}_2SO_4} CH_3 - \overset{O}{C} + \overset{O}{C} + CH_3$$

সূতরাং A যৌগটি প্রোপানোন, যা টটোমারিতা প্রদর্শন করে এবং ফ্রিগনার্ড বিকারকের সাথে বিক্রিয়ার 3° অ্যালকোহল উৎপন্ন করে।

১৮৮। নিম্লোক্ত যৌগগুলোর কার্বন-কার্বন বন্ধন দৈর্ঘ্যের বৃদ্ধির ক্রম-

 $C_2H_4(X)$, $C_2H_2(Y)$, $C_2H_6(Y)$

বি. বো. ১৭]

Y < Z < X

 $\mathfrak{I} X > X < Z$

1 Y < X < Z

উত্তর: 📵 Y < X < Z

ব্যাখ্যাঃ কার্বন-কার্বন বন্ধনে π ইলেকট্রন সংখ্যা বেশি হলে, কার্বন নিউক্লিয়াস ইলেকট্রন মেঘের দিকে বেশি আকৃষ্ট হয়, ফলে বন্ধন দৈর্ঘ্য কমে যায়।

১৮৯। গ্রোপাইনে পানি সংযোজনের ফলে উৎপন্ন হয় কোনটি?

- প্রাপানোয়িক এসিড
- প্রাপানল
- প্রাপান্যাল
- থাপানোন

উত্তর: (ছ) প্রোপানোন

ব্যাখ্যা: 2% HgSO₄ + 20% H₂SO₄- এর উপস্থিতিতে এবং 60°C তাপমাত্রায় <mark>অ্যাল</mark>কাইনের সাথে পানি যুক্ত হয়ে কার্বনিল উৎপন্ন হয়। এক্ষেত্রে একমাত্র ইথাইন থেকে অ্যালডিহাইড এবং বাকি অ্যালকাইন থেকে কিটোন পাওয়া যায়।

১৯০। $X + O_3 \xrightarrow{CCI_4}$ ওজোনাইড $\xrightarrow{Zn/H_2O}$ মিথান্যাল + প্রোপান্যাল । X যৌগটি কী?

- ক) বিউটিন-1
- বিউটিন-2
- গ্) বিউটাইন-1
- খি বিউটাইন-2

উত্তর: (ক) বিউটিন-1

ব্যাখ্যা: অ্যালকিন যৌগসমূহ ওজোনের সাথে বিক্রিয়া করে, ওজোনাইড যৌগ গঠন করে। সেই ওজোনাইডকে অর্দ্র বিশ্লেষণ করলে অ্যালডিহাইড পাওয়া যায়।

$$CH_3CH_2CH = CH_2 \xrightarrow{O_3} \xrightarrow{CCI_4} \xrightarrow{CH_3 - CH_2} \xrightarrow{CH_3 - CH_2} \xrightarrow{CH_3CH_2CHO + H - CHO + ZnO} \xrightarrow{CH_3CH_2CHO + H - CHO + ZnO}$$
্প্রেপান্যাল মিখান্যাল

১৯১। বিক্রিয়াটির প্রধান উৎপাদ কোনটি?

চি. বো. ২১। ১৯৬। ক্ষারীয় KMnO4 দারা অ্যালকাইনকে জারিত করলে কি উৎপন্ন হয়?

CH₃ - C ≡ CH + HBr (অতিরিক্ত) →?

⊕ CH₃ – CBr = CH₂

1 CH₃ - CH = CHBr

উত্তর: (৩) CH₁ - CBr₂ - CH₁

ব্যাখ্যা: প্রোপাইনে অতিরিক্ত HBr যোগ করলে 2, 2 ডাই- ব্রোমো প্রোপেন উৎপন্ন হয়। এটি একটি ইলেকট্রোফিলিক সংযোজন বিক্রিয়া।

$$CH_3 - CH \equiv CH + HBr$$
 (অতিরিক্ত) $\rightarrow H_3C - C - CH_3$ | Br

১৯২। কোনটি অসম্পূক্ত হাইড্রোকার্বন?

- ক সাইক্লোপ্রোপেন
- (ঝ) সাইক্লোহেক্সেন
- ন্যাপথালিন
- থি প্রোপেন

উন্তর: (গ) ন্যাপথালিন

ব্যাখা: ন্যাপথালিনে দ্বি-বন্ধন থাকায় এটি অসম্পুক্ত হাইড্রোকার্বন।

১৯৩ । X + O₃ → CHO – CHO; কোনটি 'X'?

- ক্ট ইথিন
- খ) ইথাইন
- গ্ৰ বিউটিন-১
- (ছ) বিউটিন-২

উত্তর: (ব) ইথাইন

ব্যাখ্যা: উপরোক্ত বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$HC = CH + O_3 \rightarrow CH \xrightarrow{O} CH \xrightarrow{H_2O} HC - CH + H_2O + Z_{11}O$$

১৯৪ । $X + O_3 \xrightarrow{CCl_4}$ ওজোনাইড $\xrightarrow{Zn/H_2O}$ ইথান্যাল + ইথান্যাল |X যৌগটি কী?

- ক) বিউটিন-1
- ৰ) বিউটিন-2
- গ্ৰ বিউটাইন-1
- ছে বিউটাইন-2

উত্তর: 📵 বিউটিন-2

ব্যাখ্যা: উপরোক্ত বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$CH_3CH = CHCH_2 \xrightarrow{O_3} \xrightarrow{CCI_4} \xrightarrow{CH_3} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{H} \xrightarrow{H_2O} \xrightarrow{Zn} \xrightarrow{CH_3CHO + CH_3 - CHO + ZnO}$$
ইথান্যাল ইথান্যাল

১৯৫। 2-বিউটাইনের ওজনোলাইসিসে পাওয়া যায়-

- (3) Formic acid
- Propanoic acid
- Acetic acid
- (1) Butanoic acid

উত্তর: প Acetic acid

ব্যাখ্যা: 2-বিউটাইনের ওজনোলাইসিস করে পাই:

$$CH_3 - C \equiv C - CH_3 \xrightarrow{O_3} CH_3 - C \xrightarrow{C} C - CH_3 \xrightarrow{ZnO} 2CH_3 - COOH$$

- অ্যালিডহাইড
- কার্বক্সিলিক এসিড
- প) কিটোন
- থে এস্টার

উত্তর: ﴿ কার্বক্সিলিক এসিড

ব্যাখ্যা: কার্বন শিকলের প্রান্তে ত্রিবন্ধন থাকলে জারণের ফলে কার্বস্থিলিক এসিড ও CO2 উৎপন্ন হয়। অপর পক্ষে, শিকলের মাঝে ত্রিবন্ধন থাকলে ভিন্ন ভিন্ন গঠনের কার্বক্সিলিক এসিড উৎপন্ন হয়।

 $CH_3 - C \equiv C - H + [O] \rightarrow CH_3 - COOH + CO_2 \uparrow + H_2O$ $CH_3 - CH_2 - C = C - CH_3 + [O] \rightarrow CH_3CH_2 - COOH + CH_3 - COOH$

১৯৭। নিচের কোনটি অমুধর্মী?

- ⊕ C₆H₅ OH
- ® C₆H₄ < OH
- (1) $CH_3 C ≡ CH$
- (9) CH₁ CH = CH₂

রো, বো, ১৭)

ব্যাখ্যা: বিউটাইন-1 মৃদু অমুধর্মী হয়ে থাকে। এতে প্রান্তীয় H থাকে যা ধাতু षाता मराज প্রতিস্থাপনযোগ্য। অ্যালকাইন ত্রি-বন্ধনে আবদ্ধ কার্বন পরমাণুদ্বয়ের নিউক্লিয়াস কার্বন-কার্বন সিগমা বন্ধনে অধিক আকৃষ্ট रस। ফলে C – H বন্ধন দুর্বল হয়ে যায় ও প্রান্তীয় H ধাতু দ্বারা প্রতিস্থাপনযোগ্য হয় ও অমুধর্মীতা প্রদর্শন করে।

১৯৮। নিম্লের কোন হাইড্রোকার্বনটি চিকিৎসা বিজ্ঞানে চেতনানাশক হিসেবে ব্যবহৃত হয়?

- ⊕ CCI3F
- [®] CF₃CHBrCl
- 1 CHCI = CCI2
- (1) CC/F2CC/F2

উত্তর: (ৰ) CF3CHBrCl

ব্যাখ্যা: ক্রোরোফর্মের লিভারে বিষাক্তকরণ ও ক্যান্সার সৃষ্টির প্রবণতার কারণে বর্তমানে CF3CHBrCl কে জনপ্রিয় চেতনানাশক হিসেবে ব্যবহৃত হয়। এর অপর নাম ফ্রুথেন বা হ্যালোথেন।

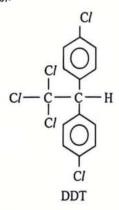
১৯৯। ফ্রিয়ন-12 এর আণবিক সংকেত হচ্ছে-

- ⊕ CF₂Cl₂
- (1) CHCl3
- (9) CC/F2CC/F2
- ® CH₃C/₂

উত্তর: 🚳 CF₂Cl₂

ব্যাখ্যা: ফ্রিয়ন তথা ক্লোরোফ্লোরোকার্বন (CFC) এর উদাহরণ:

CFCl3: क्षिय़न-11,


CF2Cl2: क्विय़न-12

CCIF2CCIF2: क्रिय़न-114

২০০। ডি.ডি.টি এর রাসায়নিক নাম-

- পাারা পাারা ভাইক্রোরো ভাই ফিনাইল ট্রাই ক্রোরো ইথেন
- ৰ) প্যারা প্যারা ডাইক্রোরো ডাই ফিনাইল ট্রাই ক্লোরো মিথেন
- গ্য প্যারা প্যারা ডাইক্লোরো ডাই ব্রোমো ট্রাই ক্লোরো ইথেন
- ত্বি মেটা প্যারা ভাইক্লোরো ভাই ফিনাইল ট্রাই ক্লোরো মিথেন

উন্তর: <a>
 <a>প্যারা প্যারা ভাইক্লোরো ভাই ফিনাইল ট্রাই ক্লোরো ইথেন
ব্যাখ্যা:

অ্যালকোহল ও ইথার

২০১। কোন সমগোত্রীয় শ্রেণির সাধারণ সংকেত ${f n}$ এর সর্বনিম্ন মান ${f 1}$ (এক)

প্রযোজ্য?

- ক্ত অ্যালকোহল
- ৰ আলডিহাইড
- গ্র ফ্যাটি এসিড
- ত্তি অ্যামাইড

উন্তর: 🚳 অ্যালকোহল

ব্যাখ্যাঃ অ্যালকোহল এর সাধারণ সংকেতঃ $C_nH_{2n+1} - OH$; সর্বনিম্ন যেখানে n এর মান 1 হলে $CH_3 - OH$ বা মিথানল পাওয়া যায়।

২০২। মিথাইল কার্বিনল কোনটি?

यि. त्वा. २३

চি. বো. ২৩)

- ⊕ CH₃ OH
- (4) HCHO
- 1 H COOH
- (1) CH₃ CH₂ OH

উত্তর: ® CH3 - CH2 - OH

वााथाः - CH2 - OH कि कार्विनन भूनक वना इरा।

সুতরাং, CH3 - CH2 - OH কে মিথাইল কার্বিনল বলা হয়।

২০৩। স্মালাইল স্মালকোহল কোনটি?

রো. বো. ২২

- ^③ CH₂ = CHOH
- [®] CH₃CH = CHOH
- (9) CH₂ = CHCH₂OH
- T $CH_2 = C CH_2OH$

CI

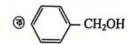
উত্তর: গ CH2 = CHCH2OH

ব্যাখ্যা: অ্যালকিন অণু থেকে একটি হাইড্রোজেন পরমাণু অপসারিত হলে যে মূলক উৎপন্ন হয় তাকে অ্যালকিনাইল মূলক বলে। অ্যালকিনাইল মূলকের নামানুসারেও যৌগের নামকরণ করা হয়। যেমন:

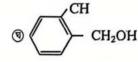
 $CH_2 = CH - CH_2 - OH$: আলাইল আলকোহল

২০৪। নিচের কোনটি অ্যালকোহল নয়?

চি বো ২১


- ③ C₆H₁₃OH
- [®] C₆H₇OH
- ® C₆H₅OH


উত্তর: 🕲 C₆H₅OH


Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter-2

২০৫। বেনজাইল অ্যালকোহলের গাঠনিক সংকেত কোনটি?

२०५। (CH3)3 C - OH এর নাম-

मि. ला. २३।

- (i) 2-মিথাইল প্রোপানল-2
- (ii) ট্রাইমিথাইল কার্বিনল
- (iii) আইসোপ্রোপাইল অ্যালকোহল

নিচের কোনটি সঠিক?

- i vi
- (a) ii & iii
- @ i v iii
- (B) i, ii 🕏 iii

উত্তর: 🗇 i ও ii

ব্যাখা: (CH3)3 C – OH এর গাঠনিক সংকেত-

সূতরাং সম্ভাব্য নাম:

- * 2-মিথাইল প্রোপানল-2 বা 2-মিথাইল প্রোপ-2-অল
- * ট্রাইমিথাইল কার্বিনল

২০৭। ওয়াটার গ্যাস থেকে কোন অ্যালকোহলটি উৎপন্ন করা হয়?

- ⊕ CH₃OH
- [®] CH₃CH₂OH
- ⊕ CH₃CH₂CH₂OH
- ® CH₃CH₂CH₂CH₂OH
- উত্তর: 📵 CH₃OH

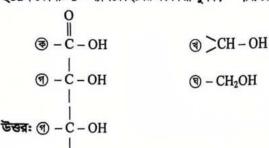
ব্যাখ্যা: নিম্নোক্ত বিক্রিয়ার সাহায্যে ওয়াটার গ্যাস থেকে CH3OH উৎপন্ন করা যায়:

$$C(s) + H_2O(g) \xrightarrow{1300^{\circ}C} [CO(g) + H_2(g)]$$

७ शांगित गांग

$$[CO(g) + H2(g)] + H2(g) \xrightarrow{\text{CuO, ZnO, Cr}_2O_3} CH_3OH(l)$$

২০৮।কোনটি 2° অ্যালকোহলের কার্যকরী মূলক?


দি. বো. ২২

⊕ CH-OH

[®] – CH₂OH

উত্তর: 🕲 🔾 CH – OH

জেব রসায়ন ➤ ACS, FRB Compact Suggestion Book...... ২০৯। কোনটি 3° অ্যালকোহলের কার্যকরী মূলক? [সি. বো. ২১; ম. বো. ২১]

২১০। কার্বনিল যৌগের সাথে ফ্রিগনার্ড-বিকারক বিক্রিয়া করে তৈরি করে-

- অ্যালডিহাইড
- অ্যালকেন
- গ্ৰ আলকোহল
- (ছ) 1° অ্যামিন

উন্তর: গ্র অ্যালকোহল

২১১। মিগনার্ড বিকারক থেকে কোনগুলো সংশ্লেষণ করা যায়- ।চ. বো. ২২।

- (i) $CH_3 CH_2 OH$
- (ii) CH₃-NO₂
- (iii) CH₃ CH₂ COOH

নিচের কোনটি সঠিক?

- ii vi, 📵
- iii vii
- (ii & ii
- i, ii v iii

উত্তর: 🕲 i ও iii

ব্যাখ্যা: ম্রিগনার্ড বিকারকের সংকেত: R – MgX

$$\begin{array}{c|c} O & OMgX & OH \\ \parallel & \parallel & H_2O & \parallel \\ R-MgX+H-C-H \rightarrow H-C-H & \xrightarrow{H_2O} H-C-H+Mg(OH)X \\ \parallel & \parallel & \parallel \\ R & & R \end{array}$$

1° অ্যালকোহল উৎপন্ন হয়। সূতরাং (i) নং সঠিক।

$$\begin{array}{c|c}
O & OMgX & OH \\
\parallel & \parallel & H_2O & \parallel \\
RMgX + C \rightarrow R - C = O & \longrightarrow R - C = O + Mg(OH)X
\end{array}$$

সুতরাং (iii) নং সঠিক।

 ${
m CH_3-NO_2}$ ফ্রিগনার্ড বিকারকের সাহায্যে প্রস্তুত করা যায় না । সূতরাং (ii) সঠিক নয় ।

২১২। কোনটি অ্যালকোহলের সাধারণ (Laboratory) প্রস্তুত প্রণালী?

- ক্তি 3° হ্যালোজেনো অ্যালকেনের অর্দ্রবিশ্লেষণ
- প্রাকৃতিক গ্যাস থেকে উৎপাদন
- গ্রি ওয়াটার গ্যাস থেকে সংশ্লেষণ
- থি ফারমেনটেশন পদ্ধতি

উত্তর: <a>® 3° হ্যালোজেনো অ্যালকেনের অর্দ্রবিশ্লেষণ ব্যাখ্যা: অ্যালকোহলের সাধারণ প্রস্তুত প্রণালীগুলো হল:

- (i) RX-এর আর্দ্র বিশ্লেষণ
- (ii) 3°-হ্যালোজেনো অ্যালকেনের আর্দ্র বিশ্লেষণ
- (iii) মিগনার্ড বিক্রিয়ার সাহায্যে
- (iv) অ্যালকিন এ পানি সংযোজন
- (v) কার্বনিল যৌগের বিজারণ ও
- (vi) এস্টার থেকে।

২১৩। $C_6H_{12}O_6$ $\stackrel{?}{\longrightarrow} 2C_2H_5OH + 2CO_2;$ যে এনজাইম দ্বারা গান্তন করঙ্গে এই রাসায়নিক বিক্রিয়াটি সম্পন্ন হবে সেটি হলো–

- अव्यादिक<
- ভায়াস্টেজ
- গু ইনভারটেজ
- भागिएक

উন্তর: ক্র জাইমেজ

ব্যাখ্যা: উপরোক্ত বিক্রিয়াটি সম্পূর্ণ করে পাই,

২১৪ । RMgX + HCHO \longrightarrow A $\xrightarrow{\text{H}_2\text{O}}$ B; B যৌগটি কী?

রা, বো, ১৯)

- প্রাইমারি অ্যালকোহল
- সেকেন্ডারি অ্যালকোহল
- গ্য টারসিয়ারি অ্যালকোহল
- ন্ব জৈব এসিড

উত্তর: 🚳 প্রাইমারি অ্যালকোহল

ব্যাখ্যা: কার্বনিল (C = O) মূলক যুক্ত যৌগের সাথে গ্রিগনার্ড বিকারক বিক্রিয়া করে অ্যালকোহল তৈরি করে।

২৯৫। অ্যালডিহাইড হতে 1º অ্যালকোহল উৎপন্ন করতে কোন বিজ্ঞারকটির

- প্রয়োজন পড়ে?
- Na
- ③ LiA/H₄
- 1 H₂/Pt
- ® Cu₂Cl₂

উত্তরঃ ① H₂/Pt ব্যাখ্যাঃ অ্যানডিহাইড উত্তপ্ত Pt প্রভাবক ও

ব্যাখ্যা: অ্যালডিহাইড উত্তপ্ত Pt প্রভাবক ও H_2 দারা বিজারিত হয়ে সমসংখ্যক কার্বনযুক্ত 1° অ্যালকোহল উৎপন্ন করে।

$$CH_3 - CHO + 2[H] \xrightarrow{H_2/Pt} CH_2 - CH_2OH$$

২১৬। CH₃MgX এর সাথে নিম্নের কোন যৌগের বিক্রিয়ায় আইসোপোনাল উৎপন্ন হয়?

- Э НСНО
- [®] CH₃CHO
- [®] CH₃COCH₃
- ® CH₃OH

উত্তর: ﴿ CH3CHO

ব্যাখ্যা: ঘ্রিগনার্ড বিকারকের সাথে বিক্রিয়া করে পাই,

$$H$$
 H H $CH_3 - C = O + CH_3MgX \rightarrow CH_3 - C - OH + Mg(OH)X$ CH_3 আইসো প্রোপানল

২১৭। ঘিগনার্ড বিকারক ব্যবহার করে কোনটি থেকে 2°- অ্যালকোহল তৈরি করা যায়? [ঢা. বো. ২৩]

- ⊕ CH₃OH
- (1) HCHO
- [®] CH₃CH₂OH
- ® CH₃CHO
- উত্তর: 🕲 CH3CHO

ব্যাখ্যা: ফ্রিগনার্ড বিকারকের সাথে ইথান্যাল এর বিক্রিয়ার অ্যালকোহল ২২২। কোন অ্যালকোহলটি নিরুদিত হয়ে অ্যালকিন গঠন করতে পারে না? উৎপন্ন হয়।

 $R - MgX + CH_3CHO \rightarrow CH_3 - \dot{C}H - OH$ ঘিগনার্ড বিকারক ইথান্যাল 2°-আলকোহল

২১৮। মিগনার্ড বিকারকের সাথে যেটির বিক্রিয়া ঘারা টারসিয়ারী বা 3° অ্যালকোহল উৎপন্ন করা যায়-

- করম্যালিডহাইড
- (ঝ) মিথান্যাল
- গু ইথান্যাল
- (ছ) কিটোন

উত্তর: ত্ম কিটোন

ব্যাখ্যা: বিক্রিয়া সম্পন্ন করে পাই,

$$CH_3 \qquad CH_3 \\ CH_3 - C = O + CH_3MgX \rightarrow CH_3 - C - OH + Mg(OH)X \\ CH_3 - C - OH + Mg(OH)X$$

২১৯। অ্যালকোহল কোন ধরনের বিক্রিয়া প্রদর্শন করে না?

- অ –OH মৃলক প্রতিস্থাপন
- গ্রহাজেন বিচ্যুতি
- (ছ) বিজারণ বিক্রিয়া

উত্তর: 📵 বিজারণ বিক্রিয়া

ব্যাখ্যা: অ্যালকোহল মূলত 5 প্রকার বিক্রিয়া প্রদর্শন করে:

- (i) H-প্রতিস্থাপন (O H বন্ধন বিভাজন)
- (ii) OH মূলক প্রতিস্থাপন (C O বন্ধন বিভাজন)
- (iii) জারণ বিক্রিয়া (C H-বন্ধন ভাঙ্গন)
- (iv) হাইড্রোজেন বিচ্যুতি ও
- (v) নিরুদন বিক্রিয়া।

২২০। অ্যালকোহল থেকে কোন উপায় দারা অ্যালকাইল হ্যালাইড যায় না?

- কুকাস বিকারক দ্বারা
- থায়ানিল ক্লোরাইডের বিক্রিয়া দারা
- গ্র ফসফরাস হ্যালাইডের বিক্রিয়া দ্বারা
- ত্তি আর্দ্র বিশ্লেষণ দারা

উত্তর: ত্ব আর্দ্র বিশ্লেষণ দারা

व्याच्याः प्यानकारला नात्यं नुकाम विकातक, थार्यानिन क्वातारेष এवः ফসফরাস হ্যালাইডের বিক্রিয়া দ্বারা অ্যালকাইল হ্যালাইড প্রস্তুত করা যায়।

২২১। ইথাইল আলকোহল বাষ্পকে 300°C তাপমাত্রায় উত্তপ্ত কপারের উপর চালনা করলে উৎপন্ন হয়-

- अणात्रिणनिष्शरेष
- (ৰ) অ্যাসিটোন
- গ্ৰ ইথেন
- থে অ্যাসিটিক এসিড

উত্তর: 📵 অ্যাসিটালডিহাইড

ব্যাখ্যা: নিম্নোক্ত বিক্রিয়ায় অ্যালকোহল থেকে হাইড্রোজেন বিচ্যুত হয়ে অ্যালডিহাইড উৎপন্ন হয়।

 $CH_3 - CH_2OH \xrightarrow{Cu, 300^{\circ}C} CH_3 - CHO + H_2$

Rhombus Publications

(রা. বো. ১৫)

- ⊕ CH₃OH
- [®] CH₃CH(OH)CH₃
- (9) CH₃CH₂C(OH)(CH₃)₂

উত্তর: 🚳 CH₃OH

व्याश्याः ज्यानरकार्य निक्रपिण रुखा प्रथमः कार्यनविशिष्ठ ज्यानिकन गर्यन করে। যেহেতু এক কার্বন বিশিষ্ট কোন অ্যালকিন নেই, তাই CH₃OH थिरक ज्यानिकन शिख्या याग्र ना। निद्ध देथानलित निक्रमन বিক্রিয়া দেখানো হল:

 $CH_3CH_2OH + H_2SO_4 \rightarrow CH_2 = CH_2 + [H_2O + H_2SO_4]$

₹₹♥ | 2CH3 - CH(CH3)OH + O2-উপরের প্রক্রিয়ায় যেটি উৎপন্ন হবে–

- বেনজাইল অ্যালকোহল
- ইথান্যাল
- প্রপান্যাল
- 🕲 প্রোপানোন

উত্তর: 🕲 প্রোপানোন

ব্যাখ্যা: বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$CH_3-CH-OH+O_2 \xrightarrow{Ag, 250^{\circ} C} CH_3-CO-CH_3+H_2O$$
 প্রাপানোন

২২৪ $+3^{\circ}$ আলকোহল $\stackrel{\text{(ii) } H_2O}{\stackrel{\text{(ii) } H_2O}{\stackrel{\text{(ii) } H_2O}{\stackrel{\text{(ii) } A}{\stackrel{\text{(ii) } H_2O}{\stackrel{\text{(ii) } H_2O}}{\stackrel{\text{(ii) } H_2O}{\stackrel{\text{(ii) } H_2O}}{\stackrel$

RMgX এর সাথে বিক্রিয়ায় অংশগ্রহণকারী যৌগ দুটির মধ্যে–

- (i) A যৌগটি মিথান্যাল
- (ii) B যৌগটি অ্যালডল ঘনীভবন বিক্রিয়া দেয়
- (iii) সাধারণ তাপমাত্রায় উভয় উৎপাদই লুকাস বিকারকের সাথে বিক্রিয়া করে

নিচের কোনটি সঠিক?

- i v i
- iii vii
- 1ii vii
- (T) i, ii v iii

উত্তর: 📵 i ও ii

ব্যাখ্যা: উপরোক্ত বিক্রিয়াটি সম্পূর্ণ করে পাই:

$$R - C - OH \xrightarrow{CH_3COCH_3} RMgX \xrightarrow{HCHO} R - CH_2 - OH$$

$$CH_3 \xrightarrow{CH_3COCH_3} RMgX \xrightarrow{HCHO} R - CH_2 - OH$$

- * লঘু ক্ষারের উপস্থিতিতে α-কার্বনে Η থাকায় প্রোপানোন অ্যালডল ঘনীভবন বিক্রিয়া দেয়।
- * 1°, 2° ও 3°-অ্যালকোহলকে শনাক্ত করতে লুকাস বিকারক ব্যবহার করা হয়। কিন্তু 1° অ্যালকোহল কক্ষ তাপমাত্রায় লুকাস বিকারকের সাথে বিক্রিয়া করে না।

২২৫। কোনটি লুকাস বিকারক?

- মিথাইল ম্যাগনেশিয়াম আয়োডাইড
- 1 Ag(NH₃)₂OH
- श ग्गां भारत गांना में प्रवर्ग + SO₂

উত্তর: 🕲 গাঢ় HCl এ দ্রবীভূত নিরুদিত ZnCl2 এর দ্রবণ

ভেলব রসায়ন ➤ ACS/ FRB Compact Suggestion Book ২২৬। ইথানল বিভিন্ন অবস্থায় H2SO4 এর সাথে বিক্রিয়ায় তৈরি করে-চি. বো. ২১; চা. বো. ১৭ (i) ডাই ইথাইল ইথার (ii) ইথিন (iii) ইথেন নিচের কোনটি সঠিক? (4) i sii (1) ii v iii 9 i viii (1) i, ii (9 iii উত্তর: 📵 i ও ii ব্যাখা: (i) অতিরিক্ত পরিমাণ ইথানলকে গাঢ় H2SO4 সহ 140°C তাপমাত্রায় উত্তপ্ত করলে ডাই ইথাইল ইথার গঠিত হয়। $CH_3CH_2OH + H_2SO_4 \rightarrow CH_3CH_2OSO_3H + H_2O$ CH_3CH_2 OSO₃H + H OCH₂CH₃ \rightarrow CH₃CH₂ - O - CH₂CH₃ + H₂SO₄ (ii) গাঢ় H₂SO₄ এবং ইথানলকে 160°C-170°C তাপমাত্রায় উত্তপ্ত করলে প্রথমে 100°C তাপমাত্রায় ইথাইল বাই সালফেট এবং পরে 160°C তাপমাত্রায় ইথাইল বাই সালফেট বিয়োজিত হয়ে ইথিন গ্যাস উৎপন্ন করে। $CH_3CH_2 - OH + H - OSO_3H \xrightarrow{100^{\circ}C} CH_3CH_2 - OSO_3H + H_2O$ $CH_3CH_2 - OSO_3H \xrightarrow{160^{\circ}C} CH_2 = CH_2 + H_2SO_4$ ২২৭। কোন যৌগটি জলীয় NaOH এর সঙ্গে বিক্রিয়া করবে না? ⊕ C₂H₅OH [®] C₆H₅OH [®] C₂H₅COOH [®] C₆H₅COOH **উত্তর: (क)** C₂H₅OH ব্যাখ্যা: সাধারণত অ্যালকোহল জলীয় NaOH-এর সাথে বিক্রিয়া করে না। যদি বিক্রিয়া করত তবে বিক্রিয়াটি এরপ হতোঃ $C_2H_5OH + NaOH \rightarrow C_2H_5ONa + H_2O$ কিন্ত H2O আালকোহলের চেয়ে অশ্লীয় এবং C2H5ONa, NaOH-এর থেকে বেশি ক্ষারীয়। কিন্তু এটা বাস্তবে সম্ভব নয়। তাই উপরোক্ত বিক্রিয়াটি ঘটবে না। ২২৮। অতিরিক্ত ইথাইল অ্যালকোহল 140°C তাপমাত্রায় সালফিউরিক এসিডের সাথে বিক্রিয়ায় উৎপন্ন করে-ম. বো. ২৩] ⊕ CH₂ = CH₂ (3) CH = CH TH3CH2-0-CH2CH3 [®] CH₃ − O − CH₃ ব্যাখ্যা: অতিরিক্ত ইথাইল অ্যালকোহলকে H2SO4 সহ 140°C তাপমাত্রায় উত্তপ্ত করলে অ্যালকোহল নিরুদিত হয়ে ডাই-ইথাইল ইথার গঠন করে। $C_2H_5OH + H_2SO_4 \xrightarrow{140^{\circ}C} CH_3CH_2OSO_3H + H_2O$ ইথানল ইথাইল হাইড্রোজেন সালফেট $CH_3 - CH_2 OSO_3H + H OCH_2CH_3 \rightarrow CH_3CH_2 - O - CH_2CH_3$ ডাই ইথাইল ইথার ২২৯। রেকটিফাইড স্পিরিট এ পানির শতকরা পরিমাণ কত? [সি. বো. ২৩]

@ 2.5% **4.4%** (F) 5.5% ® 7.4% উত্তর: 🕲 4.4% ব্যাখ্যা: রেকটিফাইড স্পিরিট হলো 95.6% ইথানল ও 4.4% পানির সমস্কুটন মিশ্রণ।

২৩০। ইথানদের সাথে কোন যৌগটি মিশিয়ে পাওয়ার অ্যালকোহল উৎপন্ন করা হয়? মি. বো. ২৩ ক মিথানল বি) বেনজিন (দ) বিউটেন প্র ফেনল উত্তর: (ব) বেনজিন ব্যাখ্যা: বিশুদ্ধ ইথানলের সাথে বেনজিন ও পেট্রোল মিশিয়ে তাপশক্তি উৎপাদনে ব্যবহারযোগ্য পাওয়ার অ্যালকোহল বা শক্তি উৎপাদন অ্যালকোহল উৎপন্ন করা হয়।

২৩১।জৈব যৌগে – OH মূলক শনাক্তকরণে নিচের কোন বিকারকটি ব্যবহৃত হয়? [ঢা. বো. ১৫]

- NaOH
- Na
- n Na2CO1
- (9) HC/

উত্তর: (ৰ) Na

ব্যাখ্যা: বিশুদ্ধ ইথারে দ্রবীভূত জৈব যৌগ Na ধাতুর সাথে বিক্রিয়ার H2 গ্যাস উৎপন্ন করলে ঐ যৌগটিতে – OH মূলকের উপস্থিতি শনাক্ত

$$2R - O - H + 2Na \rightarrow 2R - ONa + H_2 \uparrow$$

২৩২। কোন পরীক্ষা ঘারা মিথানল ও ইথানলের মধ্যে পার্থক্য করা যায়?

[ঢা. বো. ২১]

- 📵 আয়োডোফর্ম
- কার্বিল-অ্যামিন
- ণ) বেয়ার
- ব্ পুকাস বিকারক

উত্তর: 🖚 আয়োডোফর্ম

नाभाः काता योण भिथारेन कार्वनिन CH3 – 🖰 অথবা কোনো অ্যালকোহল জারিত হওয়ার পর মিথাইল কার্বনিল (CH₃CO –) মূলক উপস্থিত থাকলে তখন সেই যৌগ আয়োডোফর্ম বিক্রিয়া দেয়। – CH₃CO মূলক অবশ্যই – CH√– R/–H মূলকের সাথে যুক্ত থাকতে হবে।

CH3 - CH3OH [O] CH3 - C - H মিখাইল কার্বনিল মূলক

CH3OH — [O] H − C − H মিথানল মিথান্যাল

মিথাইল কার্বনিল মূলক অনুপস্থিত

সূতরাং, ইথানল আয়োডোর্ফম বিক্রিয়া দিলেও মিথানল দেয় না।

২৩৩।1°, 2° এবং 3° অ্যালকোহলের পার্থক্য নির্ণয়ে কোন বিকারক ব্যবহার করা হয়? দি. বো. ২২

- ক) টলেন বিকারক
- থ) গ্রীগনার্ড বিকারক
- গ্র পুকাস বিকারক
- (ছ) ফেইলিং বিকারক

উত্তর: গ) লুকাস বিকারক

ব্যাখ্যা: গাঢ় হাইড্রোক্রোরিক এসিড ও অনার্দ্র জিঙ্ক ক্রোরাইডের মিশ্রণকে (HCl(conc.) + anhydrous ZnCl₂) লুকাস বিকারক বলে। লুকাস বিকারকের সাথে অ্যালকোহলের দ্রুত বিক্রিয়ার ক্রম হলো: 3° alcohol > 2° alcohol > 1° alcohol.

Rhombus Publications

টারসিয়ারি (3°) আলকোহলের বিক্রিয়ার সক্রিয়তার ক্রম কোনটি?

(4) 1° > 2° > 3°

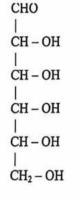
(1) 2° > 3° > 1°

① 3° > 2° > 1°

(1) 3° > 1° > 2°

উন্তর: ① 3° > 2° > 1°

২৩৫। মুক্ত শিকল কাঠামোযুক্ত গ্রুকোজ অণুতে কয়টি সেকেন্ডারি আলকোহলীয় তরঙ্গ সংখ্যা শোষণ করে?


3

(T) 5

® 6

উন্তর: ﴿ 4

ব্যাখ্যাঃ সেকেভারি অ্যালকোহলীয় গ্রুপের সংকেতঃ R CHOH

সুতরাং গাঠনিক সংকেত থেকে বোঝা যায় গ্রুকোজের অণুতে 4টি সেকেন্ডারি ञ्यानकारनीय कल, 10 वारमाति অ্যালকোহলীয় গ্রুপ এবং 1টি অ্যালডিহাইড গ্রুপ আছে।

উদ্দীপকের আলোকে ২৩৬ ও ২৩৭ নং প্রশ্নের উত্তর দাও:

 $A \xrightarrow{[O]}$ প্রোপানোন

২৩৬। উদ্দীপকের A হচ্ছে-

कि 1° प्रानिकारन

अ 3° आनत्कार्न

প) 2° অ্যালকোহল

ত্ব অসম্পৃক্ত অ্যালকোহল

উखद्रः (१) 2° प्रानिकारन ব্যাখ্যা: বিক্রিয়াটি সম্পূর্ণ করে পাই,

> $CH_3 - C - CH_3 \xrightarrow{[O]} CH_3 - C - CH_3$ ÓН Α

সূতরাং, A হচ্ছে 2° অ্যালকোহল।

২৩৭। উদ্দীপকের A এর সাথে লুকাস বিকারক যোগ করলে কী ঘটে?

চি. বো. ২২

(i) সাথে সাথে সাদা অধঃক্ষেপ পড়ে

(ii) ৫-১০ মিনিট পর সাদা অধঃক্ষেপ পড়ে

(iii) অধঃক্ষেপ পড়ে না নিচের কোনটি সঠিক?

(4) i

(3) ii

1ii

(T) i, ii v iii

উত্তর: 🕲 ii

Rhombus Publications

..... ACS, > Chemistry 2nd Paper Chapter-2 ২৩৪। শুকাস বিকারকের সাপে প্রাইমারি (1°), সেকেন্ডারি (2°) এবং ব্যাখ্যাঃ 2° অ্যালকোহল এর সাথে লুকাস বিকারকের বিক্রিয়ায় ৫-১০ মিনিট পরে সাদা অধ্যক্ষেপ পড়ে।

$$CH_3-C-CH_3+HCI \xrightarrow{ZnCI_2} CH_3-C-CH_3+H_2O$$
 CI

आप्ना अध्यक्ष

২৩৮।কোনটি দারা 1°, 2° ও 3° অ্যালকোহলের মধ্যকার পার্থক্য করা যায়

ক্রপাস বিকারক

জারণ পদ্ধতি

প্রভাবকীয় হাইড্রোজেন অপসারণ পদ্ধতি

ত্ব ফেরিক ক্লোরাইড দ্রবণ পরীক্ষা

উত্তরঃ ত্ত ফেরিক ক্লোরাইড দ্রবণ পরীক্ষা

ব্যাখ্যা: 1°, 2°, 3° অ্যালকোহলের মধ্যে পার্থক্য করা যায়:

লুকাস বিকারকের সাথে বিক্রিয়ায় অ্যালকাইল ক্লোরাইডের সাদা অধঃক্ষেপের সময় বিবেচনা করে।

(ii) জারণ দ্বারা উৎপন্ন অ্যালডিহাইড, কিটোন বা কার্বস্থিলিক এসিডের কার্বন সংখ্যা বিবেচনায়।

(iii) প্রভাবকীয় H-অপসারণে 1°, 2° ও 3° অ্যালকোহল যথাক্রমে অ্যালডিহাইড, কিটোন ও অ্যালকিন উৎপন্ন হওয়া নিরূপণ করে।

২৩৯। সবচেয়ে কম সক্রিয় (Active) যৌগ-

(Alcohol

(Amine

(9) Ether

(9) Organic acid

উত্তর: গ্রা Ether

ব্যাখ্যা: জৈব-যৌগসমূহের মধ্যে ইথার অন্যতম কম সক্রিয় যৌগ কারণ C – O বন্ধন সহজে ভাঙ্গে না অর্থাৎ –OR মূলক প্রতিস্থাপিত হয় না। ইথার ক্ষার, ক্ষারীয় ধাতু, লঘু জারণ ও বিজারণ প্রক্রিয়ায় নিষ্ক্রিয় থাকে।

২৪০। উইলিয়ামসন বিক্রিয়ায় কোনটি উৎপন্ন হয়?

क ज्यानकारन

ৰ আলডিহাইড

গ) ইথার

উত্তর: 🕥 ইথার

খ কিটোন

ব্যাখ্যা: উইলিয়াসন সংশ্লেষণ অ্যালকোহলে দ্রবীভূত সোডিয়াম বা পটাসিয়াম प्यानकाञ्चारेएव मरत्र प्यानकारेन यानारेए উउछ कतत्न रेपात উৎপন্ন হয়।

$$R - ONa(alc) + R - X(alc) \xrightarrow{\Delta} R - O - R + NaX (s)$$
 ইথার

২৪১। R – X + RONa $\stackrel{\Delta}{\longrightarrow}$ R – O – R + NaX. এই বিক্রিয়ার নাম-রো. বো. ১৬

উর্টজ বিক্রিয়া

থি) গ্রিগনার্ড বিক্রিয়া

উইলিয়ামসন বিক্রিয়া

খি ফ্রিডেল-ক্রাফট বিক্রিয়া

ব্যাখ্যা: অ্যালকোহলে দ্রবীভূত সোডিয়াম বা পট্যাসিয়াম অ্যালকোক্সাইড বা ফিনোক্সাইড এর সাথে অ্যালকাইল হ্যালাইডকে উত্তপ্ত করলে ইথার উৎপন্ন হয়। এই প্রক্রিয়াকে উইলিয়ামসন সংশ্লেষণ বিক্রিয়া বলা হয়।

জৈব রসায়ন > ACS; FRB Compact Suggestion Book.....

২৪২। নিচের কোন পদ্ধতিতে উচ্চতর ইথার প্রস্তুত করা হয়?

- মনোহাইদ্রিক অ্যালকোহল থেকে
- খে অ্যালকিন থেকে
- গ্র প্রিগনার্ড বিকারক ও হ্যালোজেনেটেড ইথার থেকে
- 🕲 অ্যালকোহল ও ডায়াজোমিথেন হতে

উত্তর: 🕦 মিগনার্ড বিকারক ও হ্যালোজেনেটেড ইথার থেকে

ব্যাখ্যা: সাধারণত ক্লোরো ইথারের সঙ্গে গ্রিগনার্ড বিকারকের বিক্রিয়া দ্বারা উচ্চতর ইথার প্রস্তুত করা হয়। যেমন:

 $R-MgX+ClCH_2-O-R\rightarrow R-O-CH_2R+MgXCl$

২৪৩। ডাই ইথাইল ইথারে পারক্সাইডের উপস্থিতি শনাক্ত করার জন্য নিচের কোনটি ব্যবহার করা হয়?

- ক্টার্চ
- প্রার্চ মিশ্রিত KI
- কিউপ্রাস অক্সাইড

উন্তর: 🕦 স্টার্চ মিশ্রিত KI

ব্যাখ্যা: ইথারে পারক্সাইড থাকলে স্টার্চ মিশ্রিত KI-এর জলীয় দ্রবণ যোগ করে ঝাঁকালে দ্রবণটি নীল বর্ণ ধারণ করে।

২৪৪।ইথার থেকে পারক্সাইড দূরীকরণের জন্য নিচের কোনটি ব্যবহার করে?

- ⊕ Cu₂O
- (1) (N)
- (9) FeSO₄
- (1) CH3CH2-OH

উত্তর: প FeSO4

ব্যাখ্যা: $FeSO_4$ বা $Na_2S_2O_3$ বিজারক দ্রবণসহ ইথারকে ঝাঁকিয়ে নিলে ইথার থেকে পারক্সাইড দূরীভূত হয়।

₹8¢ | CH₃CH₂CHO [H] Z

(Z) যৌগটির নাম কী?

[চ. বো. ১৬]

- 📵 প্রোপেন
- ৰ) বিউটনে
- গ্র প্রোপানল
- ত্বি প্রোপিন

উত্তর: (গ) প্রোপানল

ব্যাখ্যা: প্রোপান্যাল উত্তপ্ত প্লাটিনাম প্রভাবক Pt ও H_2 দ্বারা বিজারিত হয়ে প্রোপানল উৎপন্ন করে।

 $CH_3CH_2CHO \xrightarrow{[H]} CH_3CH_2CH_2OH$

অ্যালডিহাইড ও কিটোন

২৪৬। ফরমালিন হলো-

রো. বো. ২২)

- ক 60% ইথান্যাল ও 40% পানির মিশ্রণ
- (a) 40% মিথান্যাল ও 60% পানির মিশ্রণ
- (ŋ) 60% মিথান্যাল ও 40% পানির মিশ্রণ
- ছে) 40% মিথান্যাল ও 60% পানির মিশ্রণ

উত্তর: (ব) 40% মিথান্যাল ও 60% পানির মিশ্রণ

ব্যাখ্যা: মিথান্যাল বা ফরমালডিহাইডের 40% জলীয় দ্রবণকে ফরমালিন বলে। সূতরাং, ফরমালিনে 40% মিথান্যাল এবং 60% পানি বিদ্যমান।

- ২৪৭। প্রভাবকীয় হাইড্রোজেন অপসারণ দ্বারা অ্যালডিহাইড উৎপাদনে কোন ধাতু জোড়াটি ব্যবহার করা হয়?
 - ⊕ Cu, Ag
- Te, Cu
- 1 Ag, Al
- (Al, Fe

উব্তর: 🚳 Cu, Ag

ব্যাখ্যা: প্রাইমারি অ্যালকোহলের বাষ্প, উত্তপ্ত Cu বা Ag প্রভাবকের উপর দিয়ে প্রবাহিত করলে অ্যালকোহল হতে হাইড্রোজেন অপসারণের মাধ্যমে এটি অ্যালডিহাইডে পরিবর্তিত হয়।

 $CH_3 - CH_2OH \xrightarrow{Cu} CH_3 - CHO + H_2$

২৪৮। অ্যালকোহলকে জারিত করলে কি উৎপন্ন হয়?

- ক্তি অ্যালিডহাইড
- ৰ আমিন
- গ) অ্যালকেন
- থে এস্টার

উন্তর: 📵 অ্যালডিহাইড

ব্যাখ্যাঃ অ্যালকোহলকে $K_2Cr_2O_7 + H_2SO_4$ বা $KMnO_4 + H_2SO_4$ এর উপস্থিতিতে জারণ করলে অ্যালডিহাইড ও কিটোন উৎপন্ন হয়।

২৪৯। ইথাইল অ্যালকোহলের বাষ্পকে 300°C তাপমাত্রায় উত্তপ্ত কপারের উপর দিয়ে চালনা করলে উৎপন্ন হয়—

- ক্তাসিট্যালিডহাইড
- ফরমালিজহাইড
- প্র অ্যাসিটিলিন
- (ছ) অ্যাসিটোন

উব্তর: 📵 অ্যাসিট্যালডিহাইড

ব্যাখ্যা: 300°C তাপমাত্রায় উত্তপ্ত কপার প্রভাবকের উপর দিয়ে অ্যালকোহল চালনা করলে, প্রাইমারি অ্যালকোহলের ক্ষেত্রে সমকার্বন বিশিষ্ট অ্যালডিহাইড, সেকেভারি অ্যালকোহল থেকে কিটোন এবং টারসিয়ারি অ্যালকোহল থেকে অ্যালকিন গঠিত হয়। ইখাইল অ্যালকোহলের ক্ষেত্রে বিক্রিয়াটি নিমুন্ধপঃ

CH₃CH₂OH $\xrightarrow{\text{Cu}}$ CH₃CHO + H₂ \uparrow

অপরদিকে Ag ধাতু ব্যবহার করলে 600°C এর প্রয়োজন হয়। এক্ষেত্রে বিক্রিয়াটি:

 $2CH_3 - CH_2OH + O_2 \xrightarrow{Ag} 2CH_3 - CHO + 2H_2O$

২৫০। একটি জৈব যৌগ টলেন বিকারক পরীক্ষায় চকচকে সিলভার দর্পণ সৃষ্টি করে। যৌগটি কি প্রকারের হবে?

- অ্যালিডহাইড
- প্র কিটোন
- গ) অ্যালকোহল
- খে ইথার

উত্তর: 📵 অ্যালডিহাইড

২৫১। কোনটি কেন্দ্রাকর্ষী সংযোজন বিক্রিয়া দেয়?

[ঢা. বো. ২৩]

- ⊕ CH₃ CH₃
- 9 $CH_2 = CH_2$ 9 CH_3CH_2OH
- ব্যাখ্যা: অ্যালিফেটিক জৈব যৌগসমূহের যাদের মধ্যে কার্বন-নাইট্রোজেন ত্রি-বন্ধন (– C ≡ N) ও কার্বন অক্সিজেন দ্বি-বন্ধন (⊃C = O) বিদ্যমান

তারা কেন্দ্রাকর্ষী সংযোজন বিক্রিয়ায় অংশগ্রহণ করে থাকে।

২৫২। নিম্রের কোন যৌগটি টলেন বিকারকের সাথে বিক্রিয়ায় সিলভার দর্পণ গঠন করে?

প্রাপানোন

ৰ গ্ৰুকোজ

ণ্) ইথানল

(ছ) ফেনল

উত্তর: 🕲 গ্রুকোজ

ব্যাখ্যা: গ্রুকোজের গঠনে – CHO মূলক বিদ্যমান থাকায় এটি টলেন বিকারকের সাথে বিক্রিয়া দেয়।

২৫৩। 2,4-ডাইনাইট্রোফিনাইল হাইড্রাজিনের সাথে বিক্রিয়া করে হলুদ বা লাল বর্ণের অধঃক্ষেপ উৎপন্ন করে– [मि. वा. ১७]

(i) RCH₂CH₂OH

নিচের কোনটি সঠিক?

(a) i g ii

(1) ii v iii

@ i e iii

(1) i, ii G iii

উত্তর: (ৰ) ii ও iii

ব্যাখ্যা: অ্যালডিহাইড ও কিটোন 2,4-ডাই নাইট্রোফিনাইল হাইড্রাজিন (2,4 DNPH) এর সাথে বিক্রিয়া করে হলুদ বর্ণের অধ্যক্ষেপ সৃষ্টি করে।

২৫৪। কোন বিকারকটি কার্বনিল গ্রুপ শনাজকরণে ব্যবহৃত হয়? ।সি. বো. ২৩।

ক্ত লুকাস বিকারক

টলেন বিকারক

ल क्मात्रीय KMnO₄

(1) 2, 4-DNPH

উত্তর: 🕲 2, 4-DNPH

ব্যাখ্যা: কার্বনিল মূলক শনাক্তকরণ:

পরীক্ষা নলে 2-3 mL পরিমাণ 2, 4 ডাইনাইট্রো ফিনাইল হাইড্রাজিন বর্ণের অধঃক্ষেপ সৃষ্টি হলে তবে উক্ত যৌগে কার্বনিল মূলক উপস্থিতি নিশ্চিত হওয়া যায়।

$$R$$
 $C = O + H_2N - NH$ NO_2 $NO_2 \rightarrow$ কার্বনিল যৌগ 2.4 -ডাইনাইট্রো

কার্বনিল যৌগ

ফিনাইল হাইড্রাজিন

$$\begin{array}{c}
NO_2 \\
R/H
\end{array}$$

$$\longrightarrow NO_2(s) + H_2O(l)$$

2, 4-ডাইনাইট্রো ফিনাইলহাইড্রাজোন (হলুদ-কমলা)

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter-2 ২৫৫। দুই কার্বদের আলকিন (A)-C, D উভয়কে শনান্ড করে-

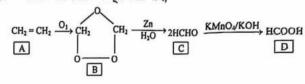
(i) $[Ag(NH_3)_2]$ OH

NO₂ (ii) H₂N - NH

> 2, 4-ডাইনাইট্রো ফিনাইল হাইড্রাজিন

(iii) Cu(OH)2 + NaOH নিচের কোনটি সঠিক?

i e i 📵


iii & i (F)

(9) ii v iii

ni v ii 🖲

উত্তর: ﴿ i ও iii

ব্যাখ্যা: উপরোক্ত বিক্রিয়াটি সম্পূর্ণ করে পাই.

C ও D তে – C – H মূলক বিদ্যমান থাকায় উভয়কে ফেহলিং দ্রবণ (Cu(OH)₂ + NaOH) ও টলেন বিকারক [Ag(NH₃)₂]OH দ্বারা শনাক্ত করা যায়।

২৫৬। নিম্রোক্ত যৌগগুলির মধ্যে কোনটি সবচেয়ে বেশি সক্রিয়?

⊕ CH₃COCH₃

⁽³⁾ CH₃CHO

1 HCHO উত্তর: 🕦 HCHO

[®] CH₃CH₂CHO

ব্যাখ্যা: নিউক্লিওফিলিক সংযোজন বিক্রিয়ায় অ্যালডিহাইড ও কিটোনের CO মূলকের মধ্যে নিউক্লিওফাইল আক্রমণ করলে তড়িৎ ঋণাত্মকতার পার্থক্যের জন্য অক্সিজেনে ঋণাত্মক ও কার্বনে ধনাত্মক আধানের সৃষ্টি হয়। কার্বনের ধনাত্মকতা বেশি হলে নিউক্লিওফাইলের আক্রমণ সহজ হয়। কিন্তু – CH3 মূলক থাকলে তা কার্বনকে ইলেকট্রন যোগান দেওয়ার ফলে কার্বনের ধনাত্মকতা কমে যায়। তাই HCHO তে - CH₃ মূলক না থাকার কারণে তা অধিক সক্রিয়।

২৫৭। ফরমালডিহাইড এর সাথে ফেহলিং দ্রবদের মিশ্রণকে উত্তপ্ত করলে—

- ক্তি ফেহলিং দ্রবণ ফরমালডিহাইড দ্বারা বিজারিত হয়ে লাল অধঃক্ষেপ
- ফেহলিং দ্রবণ জারিত হয়ে লাল অধঃক্ষেপ দেয়
- ক্রি ফেহলিং দ্রবণ বর্ণহীন হয়ে পড়ে।
- ছ) উপরের কোনটিই নয়

উত্তর: 🚳 ফেহলিং দ্রবণ ফরমালডিহাইড দ্বারা বিজারিত হয়ে লাল অধঃক্ষেপ

ব্যাখ্যা: ফরমালডিহাইডের সাথে ফেহলিং দ্রবণের বিক্রিয়া করে পাই:

 $H - CHO + 2Cu(OH)_2 + NaOH \xrightarrow{\Delta} Cu_2O\downarrow + HCOONa + 3H_2O$

২৫৮। কোনটি হ্যালোফরম বিক্রিয়ায় অংশগ্রহণ করে?

[ম. বো. ২৩]

ক বেনজিন

(ঝ) ফেনল

গু ইথান্যাল উত্তর: 🕦 ইথান্যাল থ মিথান্যাল

ব্যাখ্যাঃ ইথান্যাল এ মিথাইল কার্বনিল মূলক (CH1 – CO –) বিদ্যমান ব্যাখ্যাঃ উদ্দীপকের বিক্রিয়া হতে পাই, থাকায় এটি হ্যালোফরম বিক্রিয়া দেয়। $H - \ddot{C} - CH_3 + 3X_2 + 4NaOH \rightarrow$ **रे**थान्गान - ONa + 3NaX + 3H₂O হ্যালোফরম ২৫৯। নিচের কোনটি ফেহলিং দ্রবণকে বিজারিত করতে পারে না? অ্যাসিটালিজহাইজ করমালডিহাইড ন্যাসিটিক অ্যাসিড ছরমিক অ্যাসিড উত্তর: 📵 অ্যাসিটিক অ্যাসিড ব্যাখ্যা: সকল অ্যালডিহাইড এবং ফরমিক এসিড ফেহলিং দ্রবণকে বিজারিত করে। কিন্তু - C - H মূলক না থাকার কারণে অ্যাসিটিক অ্যাসিড ফেহলিং দ্রবণ পরীক্ষা দেয় না। ২৬০। অ্যান্সডিহাইড ও কিটোনের মধ্যে পার্থক্য নির্ণয় করা যায়- গ্রিস বিকারক দ্বারা (श) FeCl2 षात्रा গ্র নেসলার দ্রবণ দ্বারা ত্য টলেন বিকারক দ্বারা উত্তর: খি টলেন বিকারক দারা ব্যাখ্যা: অ্যালডিহাইড সমূহ টলেন বিকারক ও ফেহলিং দ্রবণের সাথে বিক্রিয়া করে যথাক্রমে সিলভার দর্পণ ও Cu2O এর লাল অধঃক্ষেপ সৃষ্টি করলেও কিটোন এই সকল বিক্রিয়া দেয় না। নিচের উদ্দীপকটি পড় এবং ২৬১ ও ২৬২ নং প্রশ্নের উত্তর দাও: O_3 , Zn/H_2O B + C $C_3H_7Br + KOH(alc) \xrightarrow{\Lambda} Acceptance Accept$ A. B. C এবং D জৈব যৌগ। ২৬১। যৌগ 'A' কোনটি? াঢা, বো. ২৩ প্রাপানল প্রাপান্যাল প্রাপিন থি) প্রোপাইন উত্তর: (গ) প্রোপিন ব্যাখ্যা: উদ্দীপকের বিক্রিয়া আংশিক পূর্ণ করে পাই, $CH_3 - CH_2 - CH_2 - Br + KOH(alc) \xrightarrow{\Lambda} CH_3 - CH = CH_2$ প্রোপাইল ব্রোমাইড প্রোপিন (A) অর্থাৎ A যৌগটি হলো প্রোপিন (C,H6)। ২৬২। যৌগ 'B' ও 'C' এর ক্ষেত্রে প্রযোজ্য এরা উভয়ই-(i) ফেহলিং দ্রবণের সাথে বিক্রিয়া করে (ii) 2, 4-DNPH এর সাথে বিক্রিয়া করে (iii) LiA/H4 ছারা 1° অ্যালকোহল তৈরি করে [ঢা. বো. ২৩] নিচের কোনটি সঠিক? (4) i (i. ii (T) i, iii (v) i, ii, iii

উক্তর: 🕲 i, ii, iii

 $CH_1 - CH_2 - CH_2Br + KOH(alc) \rightarrow CH_3 - CH = CH_2$ গ্রোপাইল ব্রোমাইড $\xrightarrow{O_3}$ CH₃CHO + HCHO वर्षा B उ C योगघर यथाकरम देथानाम (CH,CHO) उ मिथानग्राम (HCHO)। (i) এরা উভয়ই অ্যালডিহাইড হওয়ায় ফেহলিং দ্রবণের সাথে বিক্রিয়া করে লাল অধঃক্ষেপ সৃষ্টি করে। (ii) এরা উভয়েই 2, 4-DNPH এর সাথে বিক্রিয়া করে হলুদ কমলা অধঃক্ষেপ সৃষ্টি করে। HCHO + H₂N - NH মিথান্যাল 2, 4-ডাইনাইটো ফিনাইল হাইড্রাজিন NO₂ $NO_2(s) + H_2O(I)$ 2, 4-ডাইনাইট্রো ফিনাইল হাইড্রাজোন (হলদ-কমলা) NO2 CH₃CHO + H₂N - NH $NO_2 \rightarrow$ 2. 4-ডাইনাইটো ফিনাইল হাইড্রাজিন $-NO_2(s) + H_2O(l)$ 2, 4-ডাইনাইট্রো ফিনাইল হাইড়াজোন (হলুদ-কমলা) (iii) উভয় যৌগ LiA/H, এর সাথে বিক্রিয়া করে 1° অ্যালকোহন উৎপন্ন করে। HCHO LiA/H4 CH3 - OH মিথান্যাল মিথানল

২৬৩। प्रामिष्ठाइँछ + स्वर्गिर प्रवंग → नान प्रवश्यक्त्र, विक्रिग्राणि-

ইথানল

CH3CHO LiA/H4 CH3 - CH2OH

णि. (वा. २२)

- প্রতিস্থাপন বিক্রিয়া
- খ) সংযোজন বিক্রিয়া
- গ্) জারণ-বিজারণ বিক্রিয়া
- ত্য অপসারণ বিক্রিয়া

উত্তর: (ন) জারণ-বিজারণ বিক্রিয়া

ইথান্যাল

ব্যাখ্যা: $R - CHO + 2Cu(OH)_2 + NaOH \rightarrow RCOONa + Cu_2O + 3H_2O$ বিক্রিয়াটিতে অ্যালভিহাইড জারিত হয়ে এসিডের লবণে পরিণত হয়েছে। অপরদিকে Cu(OH)2 এর বিজারণ ঘটেছে। সুতরাং, বিক্রিয়াটি এক ধরনের জারণ-বিজারণ বিক্রিয়া।

২৬৪। অ্যালডিহাইডের শনাক্তকরণ বিক্রিয়া নয় কোনটি?

- ক্তামিন পানি পরীক্ষা
- উলেন বিকারক পরীক্ষা
- ভায়োডোফরম পরীক্ষা
- ত্য ক্যাকোডিল অক্সাইড পরীক্ষা
- উত্তর: (ছ) ক্যাকোডিল অক্সাইড পরীক্ষা

ব্যাখ্যা: অ্যালডিহাইডকে ব্রোমিন পানি পরীক্ষার মাধ্যমে ব্রোমিনের লাল বর্ণ দুরীভূত হওয়া, টলেন বিকারকের পরীক্ষায় সিলভার দর্পণ এবং আয়োডোফর্ম পরীক্ষার মাধ্যমে CHI3 এর হলুদ অধ্যক্ষেপ প্রত্যক্ষ করার মাধ্যমে শনাক্ত করা যায়। ক্যাকোডিল অক্সাইড পরীক্ষার মাধ্যমে মূলত ইথানয়েট মূলকের অবস্থান নিশ্চিত করা হয়। ক্যাকোডিল অক্সাইড পরীক্ষাটি নিমুরূপ:

$$CH_3COONa + As_2O_3 \rightarrow CH_3 + 2Na_2CO_3 + 2CO_2$$

$$CH_3 + 2Na_2CO_3 + 2CO_2$$

$$CH_3 + 2Na_2CO_3 + 2CO_2$$

२७४। CH3CHO जनर C6H5CHO जन मत्था भार्षकाकताम नानकण **ट्य**-

- 8 K₂Cr₂O₇/H⁺
- (1) I₂ + NaOH
- 1 LiA/H4
- (9) HCN

উত্তর: (व) I₂ + NaOH

ব্যাখ্যা: CH3CHO যৌগটি NaOH + I2 এর সাথে বিক্রিয়া অর্থাৎ হ্যালোম্বরম বিক্রিয়া দেয়, C₆H₅CHO হ্যালোম্বরম বিক্রিয়া দেয় না।

২৬৬। কোন পরীক্ষা দ্বারা মিথানল ও ইথানলের মধ্যে পার্থক্য করা যায়?

- আয়োডোফর্ম
- ৰে) কাৰ্বিল-অ্যামিন
- গে বেয়ার
- (ঘ) লুকাস বিকারক

উন্তর: 🚳 আয়োডোফর্ম

ব্যাখ্যা: ইথানলে $CH_3 - \ddot{C} - মূলক বিদ্যমান থাকলেও মিথানলে নেই, তাই$ भिथानन जारप्रार्फ्डाकर्भ विकिया मिरव ना । कल जारप्रारक्डाकर्भ পরীক্ষার সাহায্যে মিথানল ও ইথানলের মধ্যে পার্থক্য করা যায়

২৬৭। নিচের কোন যৌগটির সহিত আয়োডিন ও অ্যামোনিয়াম হাইড্রোক্সাইডের মিশ্রণকে উত্তপ্ত করলে আয়োডোফর্ম উৎপন্ন হয়-

- 1 CH3 CO CH3
- ® CH₃ COOH

ব্যাখ্যা: CH3 - CH2OH, CH3 - CHO এবং CH3 - CO - CH3 এর প্রত্যেকেই আয়োডিন ও ক্ষার দ্রবণের সাথে বিক্রিয়া করে আয়োডোফর্ম উৎপন্ন করে। কিন্তু আয়োডিন ও অ্যামোনিয়া দ্রবণের সাথে বিক্রিয়া করে আয়োডোফর্ম উৎপন্ন করে তথু অ্যাসিটোন (CH3 - CO - CH1) বা কিটোন।

২৬৮। একটি পরীক্ষা নলে সামান্য পরিমাণ জৈব তরলে KI দ্রবণে দ্রবীভূত I2 দ্রবণ এবং NaOH দ্রবণ যোগ করে গরম করার ফলে হলুদ অধঃক্ষেপ পাওয়া গেল। এই পরীক্ষাটির নাম ও কোন মূলকের উপস্থিতি নির্দেশক করে? [य. व्या. ১१]

- क्रानिकात्रा विकिया ७ विनकानिकश्रेष
- ফেহলিং দ্রবণ পরীক্ষা ও অ্যালডিহাইডমূলক
- গ্র আয়োডোফরম পরীক্ষা ও 2-কিটোন মূলক
- ত্ব লিটমাস পরীক্ষা ও কার্বব্রিলমূলক
- উত্তর: 📵 আয়োডোফরম পরীক্ষা ও 2-কিটোন মূলক

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter-2

ব্যাখ্যা: মিথাইল কার্বনিল (CH3 - CO -) মূলক বিশিষ্ট কোন জৈবযৌগ উপরে উল্লিখিত আয়োডোফর্ম বিক্রিয়া প্রদর্শন করে। বিক্রিয়াটি নিমুক্সপ:

$$R - C - CH_3 + 3I_2 + 4NaOH \rightarrow$$

$$CHI_3 + 3NaI + R - C - ONa + 3H_2O$$

২৬৯। C_nH_{2n} (n = 3) যৌগটিকে প্রথমে গুজোনীকরণ ও পরে জিল্ক এর সাথে অর্দ্র বিশ্লেষণের ফলে A ও B যৌগ উৎপন্ন হলো। B এর জলীয় দ্রবণ জীবাণুনাশক। উক্ত যৌগষয়ের ক্ষেত্রে-(i) উৎপন্ন यৌগদয় 2, 4 ডाইনাইট্রোফিনাইল হাইড্রাজিনের সাবে

হলুদ অধঃক্ষেপ

বিক্রিয়ায় হলুদ অধঃক্ষেপ দেয়

(ii) A যৌগ আয়োডোফর্ম বিক্রিয়া দেবে

(iii) B যৌগটি ক্যানিজারো বিক্রিয়া প্রদর্শন করে নিচের কোনটি সঠিক?

- ⊕ i vii
- iii vii
- (f) i v iii
- (F) i, ii & iii

উভর: 🕲 i, ii ও iii

চা. রো. ২১া ব্যাখ্যা: n = 3 হওয়ায় যৌগটি হল C₃H6 বা CH₃ – CH = CH₂

$$CH_3 - CH = CH_2 + O_3 \xrightarrow{CCl_4}$$

$$CH_3 - C$$

$$CH_2 \xrightarrow{\qquad \qquad } CH_3CHO + HCHO$$

$$A \qquad B$$

যৌগদ্বয় উভয়েই অ্যালডিহাইড হওয়ায় এরা 2,4-DNPH এর সাথে হলুদ অধঃক্ষেপ দেয়।

A যৌগ তথা CH₃ - CHO তে CH₃ - C - (মিথাইল কার্বনিল) মূলক থাকায় এরা হ্যালোফর্ম বিক্রিয়া/আয়োডোফরম বিক্রিয়া দেয়। B যৌগ তথা HCHO তে α – Η থাকায় এটি ক্যানিজারো বিক্রিয়া দেয়।

২৭০।নিচের কোনটি ফেহলিং দ্রবণের সাথে Cu₂O এর **লাল** বর্ণের অধ্যক্ষেপ দেয়? যি. বো. ১৯

- ক্ট ভিনেগার
- করমালিন
- গ্র গ্রিসারিন
- থ প্রোপানোন

উত্তর: 🕲 ফরমালিন

ব্যাখ্যা: অ্যালডিহাইড ফেহলিং দ্রবণের সাথে বিক্রিয়া করে লাল বর্ণের অধঃক্ষেপ দেয়। আর মিথান্যাল এর 40% জলীয় দ্রবণ হল ফরমালিন। তাই তা ফেহলিং দ্রবণের সাথে বিক্রিয়া করবে।

 $HCHO + 2 Cu(OH)_2 + NaOH \xrightarrow{\Delta} HCOONa + Cu_2O(\downarrow) + H_2O$ লালচে বর্ণের অধঃকেপ

জৈব রসায়ন > ACS, FRB Compact Suggestion Book..... ২৭১। যে যৌগসমূহ হ্যালোফরম বিক্রিয়া প্রদর্শন করে-[ब. त्वा. २७] २१৫। A त्योगिए-वि. व्या. २०) OH (i) অমুধর্মী (ii) বিউটিন-1 অপেক্ষা অধিক সক্রিয় (i) CH3 - CH - CH3 aAdmissionStuffs (iii) ইলেকট্রোফিলিক সংযোজন বিক্রিয়া দেয় (ii) CH₃ - CO - CH₃ (iii) CH3CONH2 নিচের কোনটি সঠিক? নিচের কোনটি সঠিক? 3 i, ii (i, iii i vi 3 i Ti, iii (1) i, ii, iii (1) ii v iii (T) i, ii v iii উত্তর: 🕙 i, iii উত্তর: (व) i ও ii ব্যাখ্যা: উদ্দীপকের A যৌগটি হলো বিউটাইন-1 ব্যাখ্যা: হ্যালোফরম বিক্রিয়া দেয়ার জন্য প্রথমত কার্বনিল যৌগ হতে হবে এবং মিখাইল কার্বনিল মূলক থাকতে হবে, বা অ্যালকোহলকে বিক্রিয়া (CH1CH2 - C = CH) এবং যৌগটি অম্রধর্মী বিধায় সোভিয়ামের সাথে বিক্রিয়া করে। কালে জারিত হয়ে $CH_3 - \ddot{C} -$ গ্রুপযুক্ত যৌগে রূপান্তরিত হতে $CH_3 - CH_2 - C \equiv CH + Na \rightarrow CH_3 - CH_2 - C \equiv CNa$ সাধারণ অ্যালকাইন অপেক্ষা অ্যালকিন বেশি সক্রিয় তাই A যৌগটি হবে। সে হিসেবে এখানে, $\mathrm{CH_3} - \mathrm{C} - \mathrm{NH_2}$ কার্বনিল যৌগের মধ্যে বিউটিন-1 অপেক্ষা অধিক সক্রিয় নয়। বিউটাইন তথা অ্যালকাইন পড়ে না। তাই এটি হ্যালোফরম বিক্রিয়া দেয় না। সমূহ ইলেকট্রোফিলিক সংযোজন বিক্রিয়া দেয়। ২৭২। নিচের কোন যৌগটি হ্যালোফরম বিক্রিয়া দেয় না? বি. বো. ২১ ২৭৬। নিম্নের কোনটি অ্যাল্ডল ঘনীভবন বিক্রিয়ায় অংশ্র্যাহণ করে? ⊕ CH₃CHOHCH₃ ⊕ CH₃CONH₂ Э НСНО ③ C₆H₅CHO (9) CH₁COCH [®] CH₃CHO (CH₃)₃CCHO উडद्रः (र) CH3CONH2 ® CH₃CHO वाचाः CH3CO - NH2 अत्र CH3CO - मृनकि H वा जानकारेन উত্তর: ভ CH3CHO মূলকের সাথে যুক্ত হয়নি। তাই $\mathrm{CH_{3}CO-NH_{2}}$ প্রকৃত কার্বনিল ব্যাখ্যা: লঘু ক্ষার দ্রবণের উপস্থিতিতে ৫-হাইড্রোজেন পরমাণু বিশিষ্ট দুটি যৌগ নয়। এটি হলো কার্বব্রিলিক এসিডের জাতক। কার্বব্রিলিক অ্যালডিহাইড বা কিটোন উৎপন্ন করে, যা অ্যালডল ঘনীভবন বিক্রিয়া এসিড ও এর জাতকসমূহ হ্যালোফরম বিক্রিয়ার প্রধান শর্তটি পুরণ নামে পরিচিত। এখানে CH3CHO এ তিনটি α – Η থাকায় এটি নিমুরূপ আলডল ঘনীভবন অংশগ্রহণ করে: সুতরাং, CH3CO - NH2 হ্যালোফরম বিক্রিয়া দেয় না। ২৭৩। নিচের কোন বিকারকের সহিত ফরমিক এসিড সিলভার দর্পণ সষ্টি $CH_3 - C = O + H - CH_2CHO \xrightarrow{\text{AVI}} NaOH \longrightarrow CH_3 - C - CH_2 - CHO$ উলেন বিকারক ফসফরাস পেন্টাকোরাইড মারকিউরিক ক্লোরাইড দ্রবণ न एक्ट्रिक्ट प्रवन উত্তর: 😵 টলেন বিকারক ২৭৭। নিম্নের কোনটি ক্যানিজারো বিক্রিয়া? ব্যাখ্যা: H - C - OH বা ফরমিক এসিডে - C - H থাকায় এটি টলেন ③ 2HCHO(l) $\xrightarrow{50\% \text{ NaOH}}$ CH₃OH(aq) + HCOONa(aq) বিকারকের সাথে বিক্রিয়া করে Ag দর্পণ তৈরি করে। নিচের উদ্দীপকটি পড় এবং ২৭৪ ও ২৭৫ নং প্রশ্নের উত্তর দাও: ® 2CH₃CHO(l) $\xrightarrow{\text{dil.NaOH}}$ CH₃CH(OH)CH₂CHO(aq) $A + H_2O \xrightarrow{\text{H}^+/\text{HgSO}_4} \text{CH}_3 - \text{CH}_2 - C = \text{CH}_2 \xrightarrow{\text{পুনর্বিন্যাস}} B$ ২৭৪। B যৌগটি কোন বিক্রিয়া প্রদর্শন করে? বি. বো. ২৩]

> $CH_3NH_2(aq) + 2NaBr(aq) + Na_2CO_3(aq) + 2H_2O(aq)$ উত্তর: ③ $2HCHO(l) \xrightarrow{50\% NaOH} CH_3OH(aq) + HCOO Na(aq)$

1 CH₃CONH₂(aq) + Br₂(aq) + 4NaOH(aq) $\xrightarrow{\text{Heat}}$

ভর্ম: ভ 2HCHO(I) — 20-30°C → CH3OH(aq) + HCOO Na(aq)

ব্যাখ্যা: ক্যানিজারো বিক্রিয়ায় α-হাইড্রোজেন বিহীন অ্যালডিহাইড ক্ষারের

ব্যাখ্যা: ক্যানিজারো বিক্রিয়ায় α-হাইড্রোজেন বিহীন অ্যালডিহাইড ক্ষারের উপস্থিতিতে যুগপৎ জারিত হয়ে কার্বোক্সিলিক এসিডের লবণ এবং বিজারিত হয়ে অ্যালকোহলে পরিণত হয়।

Rhombus Publications

t.me/admission stuffs

इक्स्गान जिल्लास्था विकिसा
 क्रिय्यनमन विकास

ব্যাব্যা: উদ্দীপকের B যৌগটি হলো বিউটান্যাল (CH₃ – CH₂ – CH₂ – CHO) বিউটান্যালকে Zn.Hg + গাঢ় HC/ দ্বারা বিজারিত করলে অ্যালকেন

 $CH_3 - CH_2 - CH_2 - CHO \xrightarrow{Zn.Hg + HC/(\P1\overline{y})} CH_3 - CH_2 - CH_2 - CH_3$

পাওয়া যায়। একে ক্রিমেনসন বিজারণ বলে।

জ উর্টজ বিক্রিয়া

উত্তর: 🔇 ক্লিমেনসন বিজারণ বিক্রিয়া

छिएल-काक्ट विकिया

> Chemistry 2nd Paper Chapter-2 ২৭৮। নিচের কোনটি ক্যানিজারো বিক্রিয়া দেয় নাং [পি. বো. ১৫] ® CH₃ - CHO আবার, CH3 – C – CH3 এ কার্বনিল মূলক থাকায় যৌগটি [®] CH₃CCl₂CHO ® (CH₃)₃C - CHO ক্লিমেনসন বিজারণ বিক্রিয়ার সাহায্যে অ্যালকেন তৈরি করবে। **উखतः ®** CH₃ – CHO ব্যাখা: CH3 – CHO এ α-হাইড্রোজেন থাকায় এটি ক্যানিজারো বিক্রিয়া $CH_3 - C - CH_3 + 4[H] \xrightarrow{\text{Zn.Hg}} CH_3 - CH_2 - CH_3$ দেয় না। ২৮২। কার্বনাইল যৌগ যেমন অ্যাসিট্যালডিহাইড ও অ্যাসিটোন Zn/Hg ও ২৭৯। কোন অ্যালডিহাইডটি ক্যানিজারো বিক্রিয়ায় সাড়া দিবে? গাঢ় HCI সহযোগে বিজারিত করলে কার্বনাইল মূলকটি বিজারিত ⊕ C₆H₅CH₂CHO (1) HCHO হয়ে মিথিলিনে পরিণত হয়ে হাইড্রোকার্বন উৎপাদন করে। বিক্রিয়াটির [®] CH₃CH₂CHO ® CH₃CHO নাম-উত্তর: 🕲 HCHO ক্সিমেনসন ব্যাখা: HCHO-এ α-হাইড্রোজেন না থাকায় গাঢ় (50%) NaOH বা ক) গ্যাটারম্যান KOH দ্রবণসহ উত্তপ্ত করলে ক্যানিজারো বিক্রিয়া প্রদর্শন করে। গ্ৰ ক্লেইজেন-শ্মিড ছি ল্যাডেরার-ম্যানাসে উত্তর: 🕲 ক্লিমেনসন ব্যাখ্যা: ক্লিমেনসন বিজারণ: উদ্দীপকটি পর্যবেক্ষণ কর: $HCHO + [H] \xrightarrow{Zn/Hg + stip} HCI \rightarrow CH_4 + H_2O$ $CH_3 - CH - CH_3 \xrightarrow{KMnO_4/KOH} A + H_2O$ $C = O + [H] \xrightarrow{Zn/Hg + \text{thip } HCI} C_3H_8 + H_2O$ ২৮০। 'A' যৌগে কয়টি বন্ধন ইলেকট্রন আছে? কু. বো. ২২ **3** 24 **9** 8 ® 6 ২৮৩।প্রোপান্যালকে Zn – Hg ও গাঢ় HCI ঘারা বিজারিত করলে নিচের উত্তর: 🕲 20 কোন যৌগ উৎপন্ন হয়? [ঢা. বো. ২১] ব্যাখ্যা: বিক্রিয়াটি: ক্তি ইথানল থ) প্রোপানল-১ গ্ৰ প্ৰোপেন থি প্রোপানয়িক এসিড $CH_3 - C - CH_3 \xrightarrow{KMnO_4/KOH} CH_3 - C - CH_3 + H_2O$ উত্তর: 🔊 প্রোপেন ব্যাখ্যাঃ যেকোনো কার্বনিল যৌগকে Zn.Hg + গাঢ় HCl দ্বারা বিজারিত করলে অ্যালকেন পাওয়া যায়। একে ক্লিমেনসন বিজারণ বলে। $C = O + 4 [H] \xrightarrow{Zn.Hg + HCl (\mathfrak{N})} CH_2 + H_2O$ A যৌগের গাঠনিক সংকেত H - $CH_3 - CH_2 - C = O + 4 [H] \xrightarrow{Zn.Hg + HC/(\pi l l p)} CH_3CH_2CH_3 + H_2O$ যৌগটিতে বন্ধন সংখ্যা = 10 ∴ বন্ধন ইলেকট্রন সংখ্যা = (10 × 2) = 20 টি কু. বো. ২২) ২৮৪। $CH_3CHO + O_2 \xrightarrow{60^{\circ} C} X$ ২৮১। 'A' নিচের কোন বিক্রিয়া প্রদর্শন করে-(i) অ্যালডল ঘনীভবন নিচের কোনটি X? (ii) ক্লিমেনসন বিজারণ (4) HCOOH (1) HCHO (iii) ক্যানিজারো বিক্রিয়া [®] CH₃COOH ® CH₃CH₂COOH নিচের কোনটি সঠিক? উত্তর:

① CH₃COOH i vi (1) i S iii ব্যাখ্যা: $CH_3CHO + O_2 \xrightarrow{60^{\circ} C} CH_3COOH$ (1) i, ii v iii त्र ii ଓ iii উত্তর: কি i ও ii ২৮৫। ঘুমের ঔষধ হিসেবে ব্যবহৃত হয় কোনটি? [য. বো. ২১] α \parallel α ব্যাখ্যাঃ A যৌগ অর্থাৎ CH_3-C-CH_3 এ α কার্বনে α হাইড্রোজেন ক ফরমালডিহাইড অ্যাসিটালডিহাইড গ্র প্যারালডিহাইড থি মেটালডিহাইড থাকায় এটি অ্যালডল বিক্রিয়া প্রদর্শন করলেও ক্যানিজারো বিক্রিয়া উত্তর: 📵 প্যারালডিহাইড প্রদর্শন করবে না। ব্যাখ্যা: • প্যারালডিহাইড ঘূমের ঔষধ হিসেবে ব্যবহৃত হয়। $2CH_3 - C - CH_3$ = निष्NaOH $CH_3 - C - CH_2 - C - CH_3$ ফরমালিডহাইড ফরমালিন তৈরিতে ব্যবহার হয়। • মেটালডিহাইড অ্যাসিটালডিহাইডের চাক্রিক পলিমার যা প্যাথজেনিক হিসেবে ব্যবহৃত হয়।

_

मि. ला. २১।

জৈব রসায়ন > ACS, FRB Compact Suggestion Book......

২৮৬। মিসারালডিহাইডে কাইরাল কার্বন কয়টি?

® 1 T

(T) 3 (D)

(B) 4 (B)

উন্তর: 🕸 1 টি

ব্যাখা: গ্লিসারালডিহাইডের গাঠনিক সংকেত নিম্নরপ:

যে কার্বন ৪টি ভিন্ন পরমাণু বা মূলক এর সাথে যুক্ত থাকে তাকে কাইরাল কার্বন বলে। গ্লিসারালডিহাইডের কাইরাল কার্বন ১টি।

২৮৭। কোন অ্যালকোহলকে জারিত করলে কিটোন পাওয়া যায়?

- ক) 1-বিউটানল
- (ৰ) 2-মিখাইল-2-প্ৰোপ্ৰানল
- প্র 1-প্রোপানল
- থ 2-বিউটানল

উন্তর: 🕲 2-বিউটানল

ব্যাখ্যা: 2° ও 3° অ্যালকোহলকে জারিত করলে কিটোন পাওয়া যায়। 2-विউটানল 2° ज्यानकार्य रुखाय नित्साक विकियात माधारम কিটোন উৎপন্ন করে।

$$H_3C - CH - CH_2 - CH_3 \xrightarrow{[O]} CH_3 - C - CH_2 - CH_3$$
OH

২৮৮। কোন যৌগটি আয়োডোফর্ম বিক্রিয়া দেয় নাঃ

- ^③ CH₁COCH₁
- [®] CH₃CH(OH)CH₃
- ® CH₃CH₂OH

বি, বো. ২২

উত্তর: 📵 CH3OH

ব্যাখ্যা: আয়োডোফর্ম বিক্রিয়ার শর্তগুলো হলো:

- (i) यिभव ज्यानिष्शिष्ट वा किस्माति ज्याभिस्मा (CH3 CO -) মূলক বিদ্যমান তারা আয়োডোফর্ম বিক্রিয়া দিবে।
- (ii) তাছাড়া যেসব অ্যালকোহলকে জারিত করলে CH3 CO -মূলক যুক্ত অ্যালডিহাইড বা কিটোন উৎপন্ন হয়, তারাও আয়োডোফর্ম বিক্রিয়া দেয়।
- (iii) এক্ষেত্রে CH3 CO মূলকটি অবশ্যই CH3/-R/-H বা H⁺ মূলকের সাথে যুক্ত হতে হবে।

এখানে, CH3OH কে জারিত করলে উৎপন্ন HCHO এ অ্যাসিটো মূলক না থাকয় আয়োডোফর্ম বিক্রিয়া দিবে না।

২৮৯। কিটোনের শনাজ্কারী বিক্রিয়া কোনটি?

- রাইমার-টাইম্যান বিক্রিয়া
- টলেন বিকারক বিক্রিয়া
- প্রায়োডোফর্ম বিক্রিয়া
- খ ফেলিং দ্রবণ বিক্রিয়া

উত্তর: 🕥 আয়োডোফর্ম বিক্রিয়া

ব্যাখ্যা: কিটোনকে 2,4-DNPH এর সাথে বিক্রিয়ায় উৎপন্ন 2,4-ডাইনাইট্রোফিনাইল হাইড্রাজোন এর কমলা-হলুদ অধঃক্ষেপ এবং আয়োডোফর্ম বিক্রিয়ায় CHI3 এর হলুদ অধ্যক্ষেপ এর মাধ্যমে শনাক্ত করা যায়।

2, 4-DNPH अंद्र विकिनााः

वारग्रारणकर्म विकिनाः

$$O$$
 || $CH_3 - C - CH_3 + NaOH + I_3 \xrightarrow{\Delta} CHI_3 + CH_3COONa + NaI + H_3O$ হসুদ অধ্যক্ষেপ

২৯০। ক্রোরালের সংকেত কোনটি?

वा. वा ३१।

- ⊕ COCI₂
- @ CI2CNO2
- ⊕ C/3CCHO
- @ CI_CCONH2

উম্বর: ① CI3CCHO

- २৯১। NaOH ७ I2 धत्र সাথে विकियाय खाद्याट्याक्त्रम गर्ठन कद्ध-ाग, ता. २১।
 - (i) C2H5OH
 - (ii) C2H5COCH3
 - (iii) C2H5CHO
 - নিচের কোনটি সঠিক?
 - i e i
- iii e i
- ii e iii
- (i, ii v iii

উত্তর: ক) i ও ii

बाचाः जाताजाकर्म वा शालाकतम भरीकाः मिषारेन कार्वनिन मनक (CH₂CO -) युक्त त्यत्काता कार्वनिन त्योग अथवा त्यमव ज्यानत्कारन হ্যালোজেন ঘারা জারিত হয়ে (CH₃CO–) মূলক যুক্ত কার্বনিল যৌগে পরিণত হয়, তারা হ্যালোফরম বিক্রিয়া দেয়।

$$\begin{array}{c}
O \\
R - C - CH_3 + 3X_2 + 4NaOH \xrightarrow{\Delta}
\end{array}$$

- ONa + CHX3 + 3NaX + 3H2O

এখানে, R = H, - CH₃, - C₂H₅ ইত্যাদি মূলক এবং

 $X_2 = Cl_2, Br_2, I_2$ ইত্যাদি।

(i) C₂H₅OH কে জারণ করলে CH₃CHO উৎপন্ন হয়।

২৯২। ইথাইল বেনজিনকে ক্ষারীয় KMnO4 ঘারা জারণ করলে উৎপন্ন হয়—

- ক্ট ফেনল
- (ব) ফরমিক এসিড
- গ্) বেনজোয়িক এসিড
- থে ফলিক এসিড

উত্তর: 🕅 বেনজোয়িক এসিড

ব্যাখ্যা: ইথাইল বেনজিনকে ক্ষারীয় KMnO4 দারা জারণে বেনজোয়িক এসিড পাওয়া যায়।

$$CH_2-CH_3$$
 COOH
 $+ KMnO_4 \longrightarrow \bigcirc$

২৯৩। বাতজ্বরের ঔষধ হিসেবে কোনটি ব্যবহৃত হয়?

ক) সাইক্রোহেক্সানল

(থ) হেক্সামিন

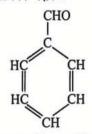
ণ্য ল্যাকটিক অ্যাসিড

ৰ্ আসিটিক আসিড

উত্তর: (ব) হেক্সামিন

২৯৪। C₆H₅CHO অণুতে α-হাইড্রোজেন এর সংখ্যা কয়টি?

@ 2


@ 0

(F) 1

উন্তর: 何 0

ব্যাখ্যা: C₆H₅CHO এর গাঠনিক সংকেত-

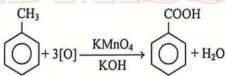
কার্যকরীমূলকের সাথে সরাসরি যুক্ত কার্বনকে α -কার্বন এবং এর সাথে যুক্ত হাইড্রোজেনকে α -হাইড্রোজেন বলে। C_6H_5CHO এর গঠন অনুসারে এতে কোন α — H নেই।

জৈব এসিড, এস্টার ও অ্যামিন

২৯৫। নিচের কোনটির জারণ দ্বারা কার্বস্থিলিক এসিড প্রস্তুত করা সম্ভব নয়?

🕸 অ্যালকিন

(ৰ) অ্যালকাইল বেনজিন


প্রাইমারী অ্যালকোহল

ছি ভায়াজোনিয়ায় লবণ

উত্তর: 🕲 ডায়াজোনিয়াম লবণ

ব্যাখ্যা: আালকিন, প্রাইমারি অ্যালকোহল ও টলুইনের জারণে কার্বব্রিলিক এসিড পাওয়া যায়। কিন্তু ডারাজোনিয়াম লবণ এর জারণে তা সম্ভব

 $R-CH=CHR \xrightarrow{KMnO_4} RCOOH + RCOOH$ $CH_3CH_2OH + [O] \rightarrow CH_3CHO + [O] \rightarrow CH_3COOH$ ইথানয়িক এসিড

বেনজোয়িক এসিড

২৯৬ । $RCH_2CH_2X \xrightarrow{KCN} X \xrightarrow{H_2O} Y$ হলো- [য. বো. ২৩]

ক্ত কিটোন

অ্যালকোহল

ल) ज्यानिष्टशरेष

ত্ব কার্বোক্সিলিক এসিড

উত্তর: ত্ম কার্বোক্সিলিক এসিড ব্যাখ্যা: বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$R - CH_2 - CH_2 - X \xrightarrow{KCN} R - CH_2CH_2 - CN(X)$$

$$\xrightarrow{H_2O} R - CH_2 - CH_2 - COOH$$

কার্বক্সিলিক এসিড (Y)

Rhombus Publications

ক) বিউটেন

বিউটানয়িক এর্সিড

প) বিউটানল

খ বিউটান্যাল

উত্তর: 📵 বিউটানয়িক এসিড

$$O$$
 $\|$ $\|$ ব্যাখ্যা: $C_3H_7MgX+CO_2 o C_3H_7-C-OMgX$ $\dfrac{H_2O}{H^+} C_3H_7-COOH+Mg(OH)$ % বিউটানয়িক এসিড

২৯৮। কোন এসিড বেশি তীব্র?

[F. AT. 26]

⊕ CH₃COOH

[®] CH₃CH₂COOH

CH₃CH₂CH₂COOH

® НСООН

উত্তর: 📵 HCOOH

ব্যাখ্যা: কার্বক্সিলিক এসিডে – COOH এর সাথে যুক্ত – R মূলকের C সংখ্যা বৃদ্ধির সাথে সাথে এসিডের তীব্রতা হ্রাস পেতে থাকে। কারণ

O || |এতে – C – এর C প্রান্তে তড়িং ধনাত্মকতাহ্রাস পায়।

২৯৯। কোনটি অ্যাসিটিক এসিড (I), ডাইক্লোরোস্যাসিটিক এসিড (II), ট্রাইক্লোরোস্যাসিটিক এসিড (III), ও ফরমিক এসিড (IV) এর এসিড শক্তির নিম্লুক্রম?

⊕ III>II>IV

I < II < VI < III (€)

11 < 1 < VI < III

I < VI < ∏ < ∏ (₹)

উত্তর: 🕲 III > II > IV > I

া।
ব্যাখ্যা: কার্বক্সিলিক এসিডের – C – এর C প্রান্তে তড়িং ধনাত্মকতা বৃদ্ধির
সাথে সাথে এসিডের তীব্রতা বৃদ্ধি পায়। এসিডের জাতকে CI পরমাণু
অধিক তড়িং ঋণাত্মক হওয়ায় ইলেকট্রনকে নিজের দিকে টেনে নেয়
এবং C প্রান্তের তড়িং ধনাত্মকতা বাড়িয়ে দেয়। আবার, যুক্ত – R

মূলকে C সংখ্যা বাড়ার সাথে সাথে – C – এর C প্রান্তে তড়িৎ ধনাত্মকতা তথা এসিডের তীব্রতা,হ্রাস পায়। Cl₃COOH > Cl₂COOH > HCOOH > CH₃COOH

৩০০।কোনটি সবচেয়ে তীব্র এসিড?

[দি. বো. ২৩]

⊕ CF₃COOH

[®] CCI₃COOH

⊕ CBr₃COOH
 ⊕ Cl₃COOH
 ⊕ Cl₃COOH
 ⊕ Cl₃COOH
 ← COOH
 ← COOH

উত্তর: 🚳 CF₃COOH

ব্যাখ্যা: হ্যালোজেন সমূহের (F, Cl, Br, I) মধ্যে F সবচেয়ে তড়িৎ ঝণাত্মক হওয়ায় কেন্দ্রীয় পরমাণু হতে ইলেকট্রন টেনে নেওয়ার ক্ষমতা অন্যান্য হ্যালোজেন (Cl ও Br) অপেক্ষা বেশি। ফলে কার্বন পরমাণু তড়িৎ ধনাত্মক হয় এবং — COOH এর কার্বনেও তড়িৎ ধনাত্মকতা বৃদ্ধি পায়। তাই এটি সহজেই H⁺ আয়ন ছেড়ে দেয়। যে এসিড যত সহজে H⁺ আয়ন দান করে, সে এসিড তত বেশি সক্রিয়। তাই এসিডের সক্রিয়তার ক্রম:

 $CF_3COOH > CCI_3COOH > CBr_3COOH > CI_3COOH$

জৈব ন্নসায়ন > ACS, FRB Compact Suggestion Book..... ৩০৫।মিথানয়িক এসিড বিক্রিয়া করেfat, on, and 903 | CO + NaOH -(I) NaHCO, 437 PICM Э НСООН (1) HCHO (II) পুকাস বিকারকের সাপে CH,OH CO CH4 (III) টলেন বিকারকের সাথে উন্তর: 📵 HCOOH নিচের কোনটি সঠিক? ব্যাখ্যা: ফরমিক এসিড প্রস্তুতি: @ i, ii (1) i, iii $\xrightarrow{8 \text{ atm}} \text{HCOONn(nq)}$ CO + NaOH -① ii, iii @ i, ii, iii উত্তর: 🕙 i, iii $HCOONa(nq) + H_2SO_4(nq) \xrightarrow{\Delta} HCOOH(nq) + NnHSO_4(nq)$ बााचाः भिधानसिक विभिन्न (HCOOH) NaHCO1 वज मार्ख विकिसा करत ৩০২। নিচের কোনটি সবচেয়ে দুর্বল এসিড? কার্বন ডাইঅক্সাইড উৎপন্ন করে। COOH COOH HCOOH + NaHCO₁ → HCOONa + H₂O + CO₂ HCOOH ऐएमन विकातरकत भारत विकिसा करत भिन्नष्ठात प्रजीव OCH, উৎপন্ন করে। СООН COOH $HCOOH + [Ag(NH_1)_2]OH \rightarrow 2Ag\downarrow + CO_2 + 2NH_1$ 1 মিথানয়িক এসিড খুকাস বিকারকের সাথে বিক্রিয়া করে না। NO₂ COOH 🔲 নিচের উদ্দীপকটি পড় এবং ৩০৬ ও ৩০৭ নং প্রশ্নের উত্তর দাও: $CH_3CH_2CH_2OH + (A) \xrightarrow{H^+} CH_3COOC_3H_7 + H_2O$ উত্তর: 📵 OCH (উৎপাদ) व्याच्याः द्वनिक्तन वलदा मिक्सिकाती धन्त्र थाकद्व द्वनिक्त वलदात बेदलब्दीन ৩০৬ 1' \\' যৌগটি কী? कि. ला. २०। ঘনত বৃদ্ধি পাবে এবং C থেকে e আকর্যণের প্রবণতা কমে যাবে। ফলে এসিডের তীব্রতা হ্রাস পাবে। এখানে - OCH, হল সবচেয়ে (9) HCOOH ⊕ CH₁COOH **শক্তिশালী** वलग्र मक्तिग्रकाती। ⊕ CH₃CH₂COOH ⊕ CH₃CH₂CH₂COOH उत्राः (CH, COOH 4114111 CH3CH2CH2OH + CH3COOH(A) H+ CH3COOC3H7 + H5O + C = O = H C-0 द्याभागण আসিটিক এসিড প্রোপাইল এসিটেট ৩০৭। উৎপাদ্যির IUPAC নাম কী? COOH প্রাপাইল ইথানোয়েট वेथावेण वेथात्नाद्यां भिथादेण मिथात्नातां (৩) মিখাইল ইথানোয়েট সবচেয়ে দুর্বল এসিড উত্তর: 📵 প্রোপাইল ইথানোয়েট ৩০৩।কোনটি বিজারক? ব্যাখ্যা: উৎপাদটির (CH1COOC1H2) IUPAC নাম প্রোপাইন্স [পি. বো. ১৭] মিথানোয়িক এসিড কে বেনজোয়িক এসিড देशात्नात्य्राप्टे । ত্তি ক্লোরো ইথানোয়িক এসিড ক) ইথানোয়িক এসিড উত্তর: 🕲 মিথানোয়িক এসিড ৩০৮। নিচের কোন যৌগটি পাকা কলায় বিদ্যমান? যি, বো. ২৩ ব্যাখ্যা: HCOOH + [O] ---- CO2 + H2O আমাইল এসিটেট অক্সাইল এসিটেট বিজারক জারক ইথাইল বিউটারেট থে বেনজাইল এসিটেট অর্থাৎ মিথানোয়িক এসিড এখানে বিজারক হিসেবে কাজ করে। উত্তর: 📵 অ্যামাইল এসিটেট ৩০৪। নিচের কোন বিকারকটি ইথানল ও ইথানোয়িক এসিড উভয়ের সাথেই ব্যাখ্যা: পাকা ফলের সুগদ্ধের মূল কারণ এস্টার। विकिसा कत्रवा (बा. व्या. ३०) বিভিন্ন এস্টারের উপস্থিতির কারণে ফল ও ফুল সুগদ্ধযুক্ত হয়। যেমন-NaOH (Na (1) Na₂CO₃ (1) H', K2Cr2O7 ১. পাকা কলায় থাকে: পেন্টাইল অ্যাসিটেট (অ্যামাইল এসিটেট) উত্তর: 👁 NaOH এস্টার, CH3CO.OC4H11 TINT: CH3COOH + NaOH → CH3COONa + H2O ২. পাকা কমলায় থাকে: অকটাইল অ্যাসিটেট CH3COOC8H17 CH3CH2OH + 4I2 + NaOH → CHI3 + HCOONa + NaI + H2O পাকা আনারসে থাকে: বিউটাইল বিউটারেট C₁H₂COOC₄H₉

t.me/admission stuffs

৩০৯। কোনটি উভধর্মী?

③ HC ≡ C

9 > C = 0

(4) > C = C <</p> $\Re > C - O$

উন্তর: (ছ) > C - O

বাাখা: HC = C (আসিটিলিন) অমুধর্মী

> C = C < (অ্যালকিন) মৃদু অমুধর্মী

> C = O (কার্বনিল গ্রুপ) ক্ষারধর্মী

> C - O (কার্বনিল গ্রুপের কার্বোক্যাটায়ন অম্প্রধর্মী আবার অক্সিজেন ক্ষারধর্মী), তাই > C – O উভয়ধর্মী।

৩১০। এস্টারের অম্লীয় আর্দ্র বিশ্লেষণে কী উৎপন্ন হয়?

ক) জৈব এসিড

ৰ আলডিহাইড

গ্ৰ স্থানহাইড্ৰাইড

খ্যামাইড

উন্তর: 🚳 জৈব এসিড

ব্যাখ্যা: এস্টারের অদ্লীয় আর্দ্র বিশ্লেষণে কার্বক্সিলিক এসিড উৎপন্ন হয়।

৩১১। গঠন অনুসারে অ্যামিন কত প্রকার?

ক) ২ প্রকার

থি ৩ প্রকার

প) ৪ প্রকার

থি ৫ প্রকার

উত্তর: (থ) ৩ প্রকার

ব্যাখ্যা: গঠন অনুসারে অ্যামিন ৩ ধরনের:

(i) অ্যালিফেটিক আমিন

(ii) আরোমেটিক আমিন

(iii) বিষমচাক্রিক অ্যামিন

1550

$$R - CN \xrightarrow{\text{LiA/H}_4} A \xrightarrow{\text{HNO}_2} B + N_2$$

$$H_2O/H^+$$

$$C + NH_3$$

(i) B যৌগটি A যৌগ হতে কম ক্ষারধর্মী

(ii) C যৌগটি B যৌগ হতে কম ক্ষারধর্মী

(iii) C যৌগটি A এবং B উভয়েই সাথেই বিক্রিয়া করে নিচের কোনটি সঠিক?

@ivi

(a) ii (s iii

9 i v iii

(T) i, ii v iii

উত্তর: গ) i ও iii

ব্যাখ্যাঃ

$$R - CN \xrightarrow{\text{LiA/H}_4} RCH_2NH_2 \xrightarrow{\text{HNO}_2} RCH_2OH + N_2 + H_2O$$

$$\downarrow H_2O/H^+ \qquad A \qquad B$$

R-COOH+NH₃

অর্থাৎ, A, B ও C যথাক্রমে প্রাইমারি অ্যামিন, অ্যালকোহল ও কার্বক্সিলিক এসিড। অ্যালকোহল অপেক্ষা প্রাইমারি অ্যামিন অধিক ক্ষারধর্মী। কার্বব্রিলিক এসিড অ্যালকোহল অপেক্ষা বেশি অমুধর্মী। কার্বক্সিলিক এসিড অ্যামিনের সাথে এসিড অ্যামাইড ও অ্যালকোহলের সাথে এস্টার উৎপন্ন করে।

Rhombus Publications

...... ACS/ > Chemistry 2nd Paper Chapter-2 াকু. বো. ২১। ৩১৩। কিউপ্রাস অক্সাইডের উপস্থিতিতে উচ্চ তাপমাত্রার ও উচ্চ চাপে

ক্রোরোবেনজিন অ্যামোনিয়ার সাথে বিক্রিয়া করে কি উৎপন্ন করে?

ক্ত এসিড অ্যামাইড

(ब) अग्रानिणिन

প্ আলকোহল

অস্টার

উठ्यः (४) प्रानिनिन

ব্যাখ্যা: কিউপ্রাস অক্সাইডের উপস্থিতিতে ক্লোরোবেনজিন অ্যামোশিয়ার সাঙ্গে বিক্রিয়া করে অ্যানিলিন উৎপন্ন করে।

$$\begin{array}{c}
CI \\
& \text{NH}_2 \\
+ \text{NH}_3 + \text{Cu}_2\text{O} \longrightarrow \\
\end{array}$$

$$+ \text{Cu}_2\text{C}I_2 + \text{H}_2\text{O}$$

৩১৪। হফম্যান ডিগ্রেডেশন ঘারা কোনটি উৎপন্ন হয়?

[मि. व्हा. २०)

এসিড অ্যামাইড

প্রাইমারী অ্যামিন

গ্র সেকেন্ডারী অ্যামিন

(ছ) কার্বব্রিলিক এসিড

উত্তর: (ব) প্রাইমারী অ্যামিন

ব্যাখ্যা: এসিড অ্যামাইডকে ব্রোমিন ও কস্টিক সোডা/কস্টিক পটাশ দ্রবণ দ্বারা উত্তপ্ত করলে প্রাইমারি অ্যামিন (1° অ্যামিন) উৎপন্ন হয়। উৎপাদিত অ্যামিনে মূল এসিড অ্যামাইড অপেক্ষা একটি কার্বন পরমাণু কম থাকে। তাই এ পদ্ধতিকে আবিষ্কারকের নাম অনুসারে হফম্যান ক্ষুদ্রাংশকরণ বিক্রিয়া বলা হয়।

$$\mathbb{R}-\mathbb{C}-\mathbb{NH}_2+\mathbb{B}r_2+4\mathbb{N}a\mathbb{O}H \xrightarrow{\Delta} \mathbb{R}-\mathbb{NH}_2+2\mathbb{N}a\mathbb{B}r+\mathbb{N}a_2\mathbb{C}O_3+2\mathbb{H}_2\mathbb{O}$$
 এসিড অ্যামাইড 1° অ্যামিন

৩১৫। প্রাইমারি অ্যামিন শনাজ্করণে ব্যবহৃত হয়-

ািত, বো. ২২

⊕ CHCI₃ + KOH

® Br₂ + KOH

¶ Cu(OH)₂ + NaOH

® KMnO₄ + KOH

উত্তর: 📵 CHCl₃ + KOH

व्याখ्याः क्रांताकर्भ ७ प्यांनरकाश्नीय KOH प्रवरंगत्र সार्थ श्रारंपाति অ্যামিনকে 60-70° C তাপমাত্রায় উত্তপ্ত করলে উপ্র গন্ধযুক্ত আইসোসায়ানাইড ও কার্বিল অ্যামিন উৎপন্ন হয়। এ বিক্রিয়া বারা শুধুমাত্র প্রাইমারি অ্যামিন শনাক্ত করা যায়। এ বিক্রিয়াকে কার্বিল অ্যামিন বিক্রিয়া বলা হয়।

$${
m CH_3-NH_2}+{
m CHC}I_3+3{
m KOH} \xrightarrow{\Delta} {
m CH_3-N}={
m C}+3{
m KC}I+3{
m H_2O}$$

মিথাইল অ্যামিন ক্লোরোফর্ম মিথাইল কার্বিল অ্যামিন

৩১৬। নিচের কোনটি থেকে অ্যামাইড প্রস্তুত করা হয় না?

📵 এসিড ক্লোরাইড থেকে

(ৰ) জৈব এসিডের অ্যামোনিয়াম লবণ থেকে

গ্য অ্যাসাইল হ্যালাইড থেকে

খি ডায়াজোনিয়াম লবণ থেকে

উত্তর: (ছ) ডায়াজোনিয়াম লবণ থেকে

বাখা: RCOCI + NH3 → RCONH2 + NH4CI

 $CH_3COONH_4 \xrightarrow{CH_3COOH} CH_3CONH_2 + H_2O$

অর্থাৎ এসিড হ্যালাইড ও জৈব এসিডের অ্যামোনিয়াম লবণ হতে এসিড অ্যামাইড প্রস্তুত করা গেলেও অ্যাসাইল হ্যালাইড ও ডায়াজোনিয়াম লবণ থেকে তা করা যায় না।

৩২২। সুন্দ্র কপারচুর্পের সান্লিধ্যে ডায়াজোনিয়াম লবণকে উত্তও্ত করলে উত্তা ৩১৭। নিচের কোন পরীক্ষা ঘারা অ্যামাইড শনাক্তকরণ করা হয়? ৰ HgO পরীক্ষা ৰ 2, 4 – DNPH পরীক্ষা विद्यािखङ इम्र । वाँदै विकिम्रादक वटन- ল্যাসাইন পরীক্ষা ত্ব অক্সামিড পরীক্ষা शाणित्रमान विकिग्ना প্রান্তমেয়ার বিক্রিয়া উত্তর: 🕸 HgO পরীক্ষা ल) डेर्जेंख विकिया থি রাইমার-টাইম্যান বিজিলা ব্যাখ্যা: এসিড অ্যামাইডের সাথে HgO (হলুদ বর্ণের) যোগ করে উত্তপ্ত উত্তর: 🚳 প্যাটারম্যান বিজিন্মা করপে দ্রবণ বর্ণহীন হয়ে যায়। @AdmissionStuffs ব্যাখ্যা: গটারম্যান বিক্রিয়া: $RCONH_2 + HgO \xrightarrow{\Delta} (RCONH)_2Hg + H_2O$ N₂CI CI ৩১৮। কোনটিতে অ্যামাইড মূলক বিদ্যামান? RCOOR ® RCONH2 @ RNH₂ ® RCN বেনজিন ডায়াজোনিয়াম ক্লোরোবেনজিন উত্তর: (ব) RCONH2 কোরাইড ব্যাখ্যা: R – C – NH2 তে – C – NH2 (অ্যামাইড) মূলক বিদ্যমান। ৩২৩।ডায়াজোনিয়াম লবণকে Na2SO3 বা SnCI/HCI বারা বিজ্ঞারিত করলে কি উৎপন্ন হয়? ৩১৯ $| C_6H_5 - CONH_2 + Br_2 + KOH \xrightarrow{\Delta} + KBr + H_2O$ বিক্রিয়ার শূন্যস্থানে কোন উৎপাদটি হবে? ক) ইথিলিন গ্লাইকল কিনাইল হাইড্রাজিন ক্ত বেনজয়িক এসিড প্রামো-বেনজোমাইড গ্ৰ ফিনাইল হাইড্ৰাজিন ডাই ফিনাইল ইথার প্রানিলিন ত্ব সায়ানো বেনজিন উত্তর: 📵 ফিনাইল হাইড্রাজিন উন্তর: প্র অ্যানিলিন ব্যাখ্যা: মৃদু বিজারণ: CONH₂ NH_2 $\operatorname{SnCl_2} + \operatorname{HCl} \longrightarrow \operatorname{SnCl_4} + 2[H]$ $+ Br_2 + KOH \xrightarrow{\Delta}$ N₂Cl NH - NH₂ ব্যাখ্যাঃ + HCI ৩২০।0°C তাপমাত্রায় অ্যানিলিন এবং NaNO2 ও HCI এর বিক্রিয়ার ফিনাইল হাইড্রাজিন উৎপাদকে কক্ষ তাপমাত্রায় রেখে দিলে কি পাওয়া যায়? Benzene diazonium chloride ৩২৪।জৈব যৌগে – COOH মূলক শনাক্তকরণে নিচের কোনটি ব্যবস্বত (4) Chlorobenzene হয়? বি. বো. ২২: রা. বো. ২২) Nitrobenzene → FeCh AgNO₃ (Phenol ® NaHCO₃ (NaNO3 উত্তর: 🚳 Benzene diazonium chloride উত্তর: গ NaHCO NH, ব্যাখ্যা: 5% NaHCO3 কার্বস্থিলিক এসিড শনাক্তকরণে ব্যবহৃত হয়। সোডিয়াম বাইকার্বনেটের 5% দ্রবণের সঙ্গে কার্বক্সিল মূলকযুক্ত জৈব ব্যাখ্যাঃ + NaNO2 + HC/ + NaCI + H2O এসিডের বিক্রিয়ায় বুদবুদসহ CO2 বের হয়। নির্গত CO2 গ্যাস চুনের বেনজিন ডায়াজোনিয়াম ক্রোরাইড পানিকে [Ca(OH)2] ঘোলাটে করে। ৩২১। ডায়াজোনিয়াম লবণ থেকে বেনজিন কার্বোনাইট্রাইল উৎপন্ন করার $CH_3COOH(aq) + NaHCO_3(aq) \rightarrow$ সময়ে নিম্নের কোন প্রভাবকের প্রয়োজন হয়? $CH_3COONa(aq) + CO_2(g) + H_2O$ পটাসিয়াম সায়ানাইড পে সোডিয়াম সায়ানাইড $Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3 + H_2O$ ল) কপার সায়ানাইড ব্রামিন সায়ানাইড উত্তর: (ক) পটাসিয়াম সায়ানাইড ৩২৫। কোনটি বেদনানাশক হিসেবে কাজ করে? N₂Cl উট্রাসাইক্রিন কুইনাইন ত্থ অ্যাসপিরিন গ্র মেট্রোনিডাজল উত্তর: 📵 অ্যাসপিরিন ব্যাখ্যা: অ্যাসপিরিন, প্যারাসিটামল বেদনানাশক হিসেবে কাজ করে। বেনজিন কার্বো নাইট্রাইল

..... ACS, > Chemistry 2nd Paper Chapter-2 উদ্দীপকের আলোকে ৩২৬ ও ৩২৭ নং প্রশ্নের উত্তর দাও: ৩২৯। RCN কে RCH2NH2 তে পরিণত করতে যে বিকারক লাগনে তা ব্যক্ত $A + CO_2 \rightarrow RCOOMgX \xrightarrow{H^{+}/H_2O} B$ ⊕ CH₁COCI 1 LiA/H4 (1) CH₁CI উন্তর: 🕲 LiA/H4 ৩২৬। B যৌগটি কী? াসি, বো, ২২ ব্যাখ্যা: তদ্ধ ইথারের উপস্থিতিতে LiA/H4 ঘারা বিজারণে অ্যাপকাইন RCHO (R) RCOX নাইট্রাইল হতে প্রাইমারি অ্যামিন উৎপন্ন হয়। ® RCOOH (9) RCOOR $R - C \equiv N + 4[H] \xrightarrow{\text{LiA/H}_4} R - CH_2 - NH_2$ উखतः 🕦 RCOOH ব্যাখ্যা: B উৎপন্ন হওয়ার পূর্বের ধাপে উৎপন্ন যৌগ RCOOMgX। সুতরাং ৩৩০। নাইট্রোবেনজিন থেকে অ্যানিলিন প্রস্তুতির সময় ব্যবহৃত হয়-A যৌগটি ম্রিগনার্ড বিকারক যার সংকেত RMgX। বিক্রিয়াটি সম্পূর্ণ AICI3 3 Sn/HCl করে পাই. 1 ZnCl2/HCl ® Ni/H₂O₂ উত্তর: 📵 Sn/HCl $RMgX + C = O \rightarrow RCOOMgX \xrightarrow{H^{\dagger}/H_2O} RCOOH$ ব্যাখ্যা: Sn ও HCl হতে প্রাপ্ত জায়মান হাইড্রোজেন দ্বারা নাইট্রোবেনজিন কে বিজারিত করলে অ্যানিলিন পাওয়া যায়। (B) NO₂ NH₂ নিচের উদ্দীপকটি পড় এবং ৩২৭ ও ৩২৮ নং প্রশ্নের উত্তর দাও: Sn/HCl $RCN + 2H_2O \xrightarrow{H^+} A + B(g)$ ৩২৭। যৌগ 'A' এর সমগোত্রীয় প্রথম সদস্য-[ঢা. বো. ২৩] ৩৩১। কোনটিতে ক্ষার ধর্ম বিদ্যমান? ঢা. বো. ২৩] (i) একটি বিজারক ⊕ CH₃CHO [®] CH₃CH₂OH (ii) যুত বিক্রিয়া দেয় COOH (iii) sp² সংকরিত নিচের কোনটি সঠিক? উত্তর: খি (4) i (ब) i ଓ ii (9) i v iii (v i, ii v iii NH2 এর – NH2 এর একটি মুক্তজোড় ইলেকট্রন দান ব্যাখ্যা: ﴿ উত্তর: 🕲 i, ii ও iii করতে পারে বলে লুইস মতবাদ অনুসারে, ব্যাখ্যা: RCN + $2H_2O \xrightarrow{H^+} RCOOH + NH_3$ NH₂ (অ্যানিলিন) একটি ক্ষারক। ৩৩২। কোন যৌগের ক্ষারধর্মীতা সবচেয়ে বেশি? R - COOH এর প্রথম সমগোত্রীয় শ্রেণি HCOOH ₱ NH₃ ③ CH₃NH₂ (i) H - COOH একটি বিজারক হিসেবে কাজ করে। 1 (CH₃)₂NH (1) C6H5 - NH2 $HCOOH + [Ag(NH₃)₂]OH \rightarrow 2Ag\downarrow + CO₂ + NH₃ + H₂O$ উত্তর: 🐒 (CH₃)₂NH ব্যাখ্যা: উপরোক্ত চারটি যৌগের ক্ষারকত্বের ক্রম: (ii) H - COOH এ - C - মূলক থাকায় সহজেই সংযোজন বিক্রিয়া দেয়। $(CH_3)_2 NH_2 > CH_3NH > NH_3 > C_6H_5 - NH_2$ ৩৩৩। ক্ষারক ধর্মের কোন ক্রমটি সঠিক? (iii) – \ddot{C} – OH এর C, sp^2 সংকরিত। 3 R₃N > R₂NH > RNH₂ > NH₃ 1 R₂NH > R₃N > RNH₂ > NH₃ ৩২৮। যৌগ 'B' এর জন্য কোনটি প্রযোজ্য? [ঢা. বো. ২৩] \P R₂NH > RNH₂ > R₃N > NH₃ এটি ইলেক্ট্রনাকর্ষী বিকারক
 এটি লুইস ক্ষার উত্তর: গ্র R₂NH > RNH₂ > R₃N > NH₃ গ্র এটি জারক ত্ব এটি আদর্শ গ্যাস ব্যাখ্যা: – CH3 মূলকের ধনাত্মক আবেশধর্মীতার জন্য অ্যালিফেটিক অ্যামিন উত্তর: (ৰ) এটি লুইস ক্ষার NH3 অপেক্ষা বেশি ক্ষারধর্মী হয় কারণ এতে N এ ইলেকট্রন প্রাপ্তি ব্যাখ্যা: B হল NH3। এতে এক জোড়া মুক্তজোড় ইলেকট্রন থাকায় এটি বেশি হয়। R_2NH এর N এ ইলেকট্রন প্রাপ্তি $R-NH_2$ অপেক্ষা বেশি। আবার R₂N এর ক্ষেত্রে স্টেরিক বাধার জন্য ইলেকট্রোফাইল লুইস ক্ষার হিসেবে কাজ করতে পারে। এর আগমন কঠিন হয়। এজন্য ক্ষারধর্মীতার ক্রম হবে- $\ddot{N}H_3 + H_2O \longrightarrow NH_4OH$ $R_2NH > R - NH_2 > R_3N > NH_3$

t.me/admission stuffs

৩৩৪। নিম্নের কোনটি সবচেয়ে দুর্বল ক্ষারক?

- [®] CH₃NH₂
- [®] (CH₃)₂NH

NH₂ উন্তর: থ

ব্যাখ্যা: অ্যালিফেটিক অ্যামিনসমূহ অ্যারোমেটিক অ্যামিন অপেক্ষা অধিক ক্ষারধর্মী। ইলেকট্রন দাতা গ্রুপের উপস্থিতিতে অ্যানিলিন এর ক্ষারধর্মীতা আরও বেড়ে যায়। – NO2 ইলেকট্রন আকর্ষী গ্রুপ হওয়ায় এটি বলয়ের সক্রিয়তা আরও হ্রাস করে থাকে। সে হিসেবে ক্ষার কত্বের ক্রম হবে।

$$(CH_3)_2 - NH > CH_3 - NH_2 > (CH_3)_3 - N >$$
 $(CH_3)_2 - NH > CH_3 - NH_2 > (CH_3)_3 - N >$
 $(CH_3)_2 - NH > CH_3 - NH_2 > (CH_3)_3 - N >$
 $(CH_3)_2 - NH > CH_3 - NH_2 > (CH_3)_3 - N >$

মাধ্যমে করা যায়?

- (ক) অ্যামিন + HNO2
- (ৰ) আমিন + HNO3
- প্র্যামিন + H₂SO₄
- (ৰ) আমিন + HCIO4

উত্তর: (ক) অ্যামিন + HNO2

ব্যাখ্যা: 1° অ্যামিনের সাথে HNO2 এর বিক্রিয়ায় অ্যালকোহল, 2° অ্যামিনের সাথে HNO2 বিক্রিয়া করে হলুদ বর্ণের তৈলান্ড নাইট্রোসো অ্যামিন ও 3° অ্যামিনের সাথে HNO, বিক্রিয়া করে কোয়ারটারনারী লবণ উৎপন্ন করে।

৩৩৬। কোন বিক্রিয়া দ্বারা প্রাইমারি অ্যামিন ও ক্লোরোফর্ম উভয়ই শনাক্ত করা যায়?

- ক ধাতব Na সহ পরীক্ষা
- কেহলিং দ্রবণ পরীক্ষা
- গে) বেয়ার পরীক্ষা
- খি কার্বিল অ্যামিন পরীক্ষা

উত্তর: 📵 কার্বিল অ্যামিন পরীক্ষা

ব্যাখ্যা: কার্বিল অ্যামিন পরীক্ষায় প্রাইমারি অ্যামিনের সাথে ক্লোরোফর্ম এর বিক্রিয়ায় উগ্র গন্ধযুক্ত কার্বিল অ্যামিন উৎপন্ন হয়।

$$\mathrm{CH_3} - \mathrm{NH_2} + \mathrm{CHC}\mathit{I_3} + 3\mathrm{KOH(alc)} \overset{\Delta}{\longrightarrow} \mathrm{CH_3} - \mathrm{CN} + \mathrm{KC}\mathit{I} + \mathrm{H_2O}$$
 মিখাইল কার্বিল জ্যামিন

এ বিক্রিয়ার সাহায্যে প্রাইমারি অ্যামিন ও ক্লোরোফরম উভয়ই শনাক্ত করা যায়।

2009 | R2NH + HNO2 → X + N2 + H2O; 'X' 2001- | lat. at. 39|

- ক) বর্ণবিহীন গ্যাস
- ৰ হলুদ তৈলাক্ত যৌগ
- প্ৰ দ্ৰবীভূত লবণ
- বিবিহীন তরল

উন্তর: ﴿ হলুদ তৈলাক্ত যৌগ

ব্যাখ্যা: 2° অ্যামিনের সাথে HNO2 এর বিক্রিয়ায় হলুদ বর্ণের তৈলাক্ত नाইট্রোসো অ্যামিন উৎপন্ন হয়।

৩৩৮। A যৌগের সাথে কিটোন যৌগের বিক্রিয়ায় কী যৌগ উৎপন্ন হবে?

সি. বো. ২২

- ক) 3° অ্যালকোহল
- থ 2° আালকোহল
- গ 1° অ্যালকোহল
- বি) কার্বক্সিলিক এসিড

উखद्रः 📵 3° प्राानरकारन

ব্যাখ্যা: ঘ্রিগনার্ড বিকারক এর সাথে কিটোনের বিক্রিয়া নিমুরূপ:

O OMgX OH |
$$H'/H_2O$$
 | $RMgX+R-C-R \rightarrow R-C-R$ H'/H_2O | $R-C-R+Mg(OH)X$ | R R R R

তেও । 1°, 2° এবং 3° অ্যামিনসমূহের পার্থক্য নিম্নুলিখিত কোন বিক্রিয়ার ৩১৯।কোনটিতে একই সাপে অ্যালকোহল ও এসিডের কার্যকরী মূলক

বিদ্যমান?

কু. বো. ২১]

- ক্তি অক্সালিক এসিড
- ৰ প্যাকটিক এসিড
- গ্) ম্যালেয়িক এসিড
- খে ফিউমারিক এসিড

উত্তর: (ব) ল্যাকটিক এসিড

ব্যাখ্যা: অক্সালিক এসিডের সংকেত: HOOC - COOH

২টি কার্বক্সিল গ্রুপ

COOH

ল্যাকটিক এসিডের সংকেত: H -CH₃

১টি কার্বক্সিলিক ও ১টি হাইড্রক্সি গ্রুপ

ম্যালেয়িক এসিডের সংকেত:

$$HOOC$$
 $C = C$ $COOH$

২টি কার্বক্সিল গ্রুপ

ফিউমারিক এসিডের সংকেত:

$$COOH$$
 $C = C$ $COOH$

২টি কার্বক্সিল গ্রুপ

Rhombus Publications

ACS/ > Chemistry 2nd Paper Chapter-1 নিজেকে যাচাই করো ১। জৈব যৌগে মৌল শনাক্তকরদের জন্য কোন পরীক্ষা ব্যবহার করা হয়? ১৩। নিচের কোনটি নিউক্তিওকাইলঃ ক আয়োভোকর্ম পরীকা কার্বিলঅ্যামিন পরীক্ষা ® CH₁CH₁OH ® FeCI; ® SO; ল) বেয়ার পরীকা ছে লেসাইন পরীক্ষা ১৪। ইলেকট্রাফিলিক যুত বিক্রিরার কোন যৌগটি বেলি সক্রিরঃ কার্বনিল মূলকে কার্বন পরমাপুতে কোন হাইব্রিভাইজেশন আছে? পেন্টাল্যাল ক বিউটানল ক বিউটান ১৫। S_N1 ও E, বিক্রিয়ার জন্য সবচেয়ে উপযোগী মাধ্যম কোনটিং (9) sp3 (sp2 (sp'd 01 CH3 - CH2 - CH2 - C - NH - CH3 स्वीलाइ IUPAC ইলেকট্রনীর দ্রাবক প্রাটিন দ্রাবক নিয়মে নামকরণ কোনটি সঠিক? নিরপেক দ্রাবক 😯 অবার্যনিত সাকত 4-জ্যামিনো-পেন্টানয়িক এসিভ
 2-মিখাইল বিউটান্যামাইভ ১৬। সোয়ার্টস বিক্রিয়াতে কোনটি উৎপদ্র হয়? ব) 2-জ্যামিনো-বিউটানোয়িক এসিভ
 ছ) N-মিখাইল বিউটান্যামাইভ व्यानकाइन क्रांदाइंड व्यानकारेन क्रातारेङ 8। C3H4O সংকেত ছারা গঠিত সম্ভাব্য কার্যকরী মূলক সমাণু হলো- জ্যালকাইল ব্রোমাইভ 🕏 कानकाईन कारदासकैस ১৭। উচ্চতর আলকেন প্রস্তৃতির পদ্ধতি কোনটি? (i) আলভিহাইভ (ii) কিটোন (iii) অসম্পুক্ত আলকোহল হাইভোজিনেশন নিচের কোনটি সঠিক? কোৰ সহক্ৰেবদ ভিকারীয়লেশন (ব) বিজ্যরণ (3) i € i, ii Ti, iii ® i, ii, iii ৫। নিচের কোনটি মেসো যৌগ? ১৮। অসম্পৃক্ততার পরীকা- CH₁(CH)OHCH(OH)COOH CH₁CH(OH)CH(CI)CH₁ ত্রামেনিরা বৃক্ত সিলতার নাইট্রেট
 ত্র ক্ষারীর পটাসিরাম পরমাজেনেট্র থ 2, 4 ভাইনাইট্রা ফিনাইল হাইফ্রাজিন ব্রি NaHCO, দ্রবল রোগ করে [®] CH₃CH(OH)CH(OH)CH₃

[®] CH₃ − CH₂CH(OH)CH₃ ও। কোনটি হেটারোসাইক্রিক জ্যারোমেটিক যৌগ নর? 28 । X + O₃ — CCl₄ → ডজেনাইভ Zn/H₂O ⊆ 🗟 পাইরোল 🔞 ফিউরান 📵 থারোফিন 🕲 ট্রাইনাইট্রোটলুইন প্রোপান্যাল। X যৌগটি কী? १। সঞ্চারণশীল π ইলেকট্রন থাকা সত্তেও নিচের কোনটি আরোমেটিক ভ বিউটিন-1 👻 বিউটিন-2 👻 বিউটাইন-1 👻 বিউটাইন-2 যৌগ নয়? ২০ 1 ভি.ভি.টি এর রাসারনিক নাম- পারা প্যারা ভাইক্রোরো ভাই ফিনাইল ট্রাই ক্রোরো ইফেন 🕲 প্যারা প্যারা ভাইক্রোরো ভাই ফিনাইল ট্রাই ক্রোরো নিচেন 🖲 প্যারা প্যারা ভাইক্রোরো ভাই ব্রোমো ট্রাই ক্রোরো ইছেন মেটা প্যারা ভাইক্রোরো ভাই ফিনাইল ট্রাই ক্রোরো নিখেন ३) । RMgX + HCHO \longrightarrow A $\xrightarrow{\text{H}_2\text{O}}$ B; B दोश्री की? ৮। কোনটি উর্টজ-ফিটিগ বিক্রিয়ায় উৎপন্ন হয়? 🛦 সেকেভারি আলকোহল अविमाति कानकारन ই উচ্চতর আলকেন उ ज्यानकारम यानारेड টারসিয়ারি অ্যালকোহল 🕏 জৈব এসিভ श व्यानकारेन दनिवन ছি ফিনাইল হ্যালাইভ ২২। অতিরিক্ত ইথাইল অ্যালকোহল 140°C তাপমাত্রর স্ক্রিক্টরিক ৯। নিম্রের কোনটি মেটা নির্দেশক মূলক? এসিভের সাথে বিক্রিয়ায় উৎপন্ন করে-③ -COCH₃ ⑤ -OCOCH₃ ⑥ -NHCOCH₃ ⑥ -OCH₃ 3 CH₂ = CH₂ CH = CH
 → Y रेलब्युनार्क्स প্रতिशायन CH₃CH₂ − O − CH₂CH₃ CH₃ − O − CH₃ ২৩। কোন পরীক্ষা হারা মিধানল ও ইথানলের মধ্যে পার্থক্য করা হারত্র বিক্রিয়ার ক্ষেত্রে নিচের কোন ক্রমটি সঠিকঃ ত্ত আয়েভাকর্ম র কার্বিল-জ্যামিন ই দুকাস বিকারক ২৪। কোন বিকারকটি কার্বনিল গ্রুপ শনাক্তকরণে ব্যবহৃত হয়? উলেন বিকারক 🗟 লুকাস বিকারক কারীর KMnO4 © 2, 4-DNPH ২৫। নিচের কোনটি সবচেয়ে দুর্বল এসিড? COOH COOH উপরোক্ত বিক্রিয়াটিতে কোন ধরনের বিক্রিয়া ঘটে? 🕄 কেন্দ্ৰাকৰ্ষী যুত বিক্ৰিয়া কেন্দ্রাকর্ষী প্রতিস্থাপন বিক্রিয়া COOH COOH ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়া (६) ইলেকট্রনাকর্ষী যুত বিক্রিয়া কার্বানায়নের সৃষ্টিতির ক্রম কোনটি? (₹) 3° > 2° > 1° (4) 1° > 2° > 3° (9) 1°>3°>2° (v) 2° > 1° > 3°

উত্তরপত্র (8) (4) 3 (4) 3 0 8 (4) ¢ 3 6 (3) 9 1 (9) 18 (4) 36 (1) (3 29 36 (3) 25 3 (3) 20 57 ₹8 22 20

পরিমাণগত রসায়ন > ACS/ FRB Compact Suggestion Book

পরিমাণগত রসায়ন **Quantitative Chemistry**

Board Questions Analysis

जुखननीन धन

বোর্ড সাল	ঢাকা	भग्नभनगिरह	রাজশাহী	কুমিল্লা	যশোর	চউহ্যাম	বরিশাল	সিলেট	দিনাজপুর
2020	٩	٩	٩	٤	٦	٦	٩	٤	2
2022	2	٩	٩	٩	٩	2	٦	>	2

বহুনির্বাচনি প্রশ্ন

নোর্ড সাল	ঢাকা	ময়মনসিংহ	রাজশাহী	কৃমিল্লা	য ে শার	চউগাম	বরিশাল	সিপেট	मिना ज्य त्र
2020	6	6	q	q	9	q	8	8	8
2022	9	8	(3)	8	8		6	٩	æ

এই অধ্যায়ের গুরুত্বপূর্ণ ধারণা ও সূত্রাবলি

রাসায়নিক গণনা, মোল সংখ

কতিপয় ভরুতুপূর্ণ মৌলের ভরঃ

स्रीण	পারমাণবিক ভর	মৌল	পারমাণবিক ভর
Н	Н		40
C	12	Cr	52
N	14	Mn	55
0	16	Fe	55.85
Na	23	Ni	58.7
Mg	24	Cu	63.5
A/	27	Zn	65.4
Р	31	Ag	108
S	32	1	127
CI	35.5	Au	197
K	39	Hg	200

শতকরা সংযুক্তি ও আণবিক সংকেত:

আণবিক সংক্ৰেড = (স্থুল সংক্ৰেড)

অ্যান্ডোগাড্রোর অনুকল্প, মোল ও মোলার ঘনমাত্রা বিষয়ক:

$$n = \frac{W}{M} = \frac{N}{N_A} = \frac{V_{STP}(L)}{22.4} = \frac{V_{SATP}(L)}{24.789} = \frac{PV}{RT} = SV(L)$$

এখানে, n = মোল সংখ্যা

W = নমুনা পদার্থের পরিমাণ (গ্রাম এককে)

M = আণবিক ডর

N = अपू वा श्रुवापुत मश्या

 $N_A =$ আভোগাড়ো সংখ্যা = 6.023×10^{22}

V_{STP} = প্রমাণ অবস্থায় গ্যাসের আয়তন

V_{SATP} = SATP তে গ্যাসের আয়তন

S = মোলার ঘনমাত্রা

P = চাপ

@AdmissionStuffs

V = আয়তন

R = মোলার গ্যাস ধ্রুবক

T = কেলভিন এককে তাপমাত্রা

- > আণবিক ভর = এক গ্রাম অণু = এক মোল অণুর ভর = STP তে 22.4 L অণুর ভর = 6.023 × 10²³ সংখ্যক অণুর ভর
- পারমাণবিক ভর = এক গ্রাম পরমাণু = 6.023 × 10²³ সংখ্যক পরমাণুর ভর
- একটি অণুর ভর = $\frac{\text{থাম আণবিক ভর}}{6.023 \times 10^{23}}$ g

সমীকরণভিত্তিক গণনা

সমীকরণভিত্তিক গণনাঃ

একটি বিক্রিয়া: aA + bB ---- cC + dD বিক্রিয়াটির ক্ষেত্রে stoichiometry অনুযায়ী,

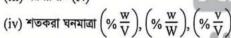
$$\frac{n_A}{a} = \frac{n_B}{b} = \frac{n_C}{c} = \frac{n_D}{d}$$

शिथिणिश् विकिसकः

- $> \frac{n_A}{a} > \frac{n_B}{b}$ হলে B লিমিটিং বিক্রিয়ক
- $ightarrow rac{n_A}{a} < rac{n_B}{b}$ হলে A লিমিটিং বিক্রিয়ক

হাইড্রোকার্বনের দহন বিক্রিয়া:

$$C_xH_y(g) + \left(x + \frac{y}{4}\right)O_2(g) \longrightarrow xCO_2(g) + \frac{y}{2}H_2O(I)$$


কিছু গুরুত্বপূর্ণ বিক্রিয়ার সমতাকৃত সমীকরণ:

- (i) CaCO₃ → CaO + CO₂
- (ii) $2KC/O_3 \longrightarrow 2KC/ + 3O_2$
- (iii) $CaCO_3 + 2HCl \longrightarrow CaCl_2 + CO_2 + H_2O$
- (iv) $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$
- (v) $2HgO \longrightarrow 2Hg + O_2$

ঘনমাত্রা, স্ট্যান্ডার্ড পদার্থ

ঘনমাত্রা প্রকাশের বিভিন্ন পদ্ধতি:

- (i) মোলারিটি (S)
- (ii) মোলালিটি (S_m)
- (iii) নরমালিটি (N)

(v) ppm, ppb, ppt

মালারিটি:

নির্দিষ্ট তাপমাত্রায় 1 L দ্রবণে দ্রবীভূত দ্রবের মোলসংখ্যা।

n = দ্রবীভূত দ্রবের মোল সংখ্যা

W = দ্রবের ভর

এখানে,

M = আণবিক ভর

V = দ্রবণের আয়তন (L এককে)

 মোলারিটি তাপমাত্রার উপর নির্ভরশীল। কারণ তাপমাত্রা পরিবর্তনের সাথে দ্রবণের আয়তনের পরিবর্তন ঘটে।

বিভিন্ন ঘনমাত্রার দ্রবণ:

দ্ৰবণ (L)	দ্রবের পরিমাণ (মোল)	দ্রবণের ঘনমাত্রা	দ্রবণের নাম
1	1	1.0 M	মোলার দ্রবণ
1	0.5	0.5 M বা <u>M</u>	সেমিমোলার দ্রবণ
1	0.1	0.1 M বা <u>M</u>	ডেসিমোলার দ্রবণ
1	0.01	0.01 M বা <u>M</u>	সেন্টিমোলার দ্রবণ
1	0.001	0.001 M বা <u>M</u>	মিলিমোলার দ্রবণ

Rhombus Publications

...... ACS > Chemistry 2nd Paper Chapter -3

মোলালিটি:

l kg দ্রাবকে দ্রবীভূত দ্রবের মোল সংখ্যা।

 $W \times 1000$

W = দ্রবের হর (g প্রকর্কে)

Ws = जावरकत स्त (ह धकरक)

M = দ্রবের আণবিক ডর

মোল ভগ্নাংশ থেকে মোলালিটি নির্ণয়:

 $X_{\Lambda} = \underline{y}$ বের মোল জ্যাংশ

X_B = দ্রাবকের মোল জ্গার্থে

M_B = দ্রাবকের আণবিক ভর

মোলালিটি তাপমাত্রার উপর নির্ভরশীল নয়।

नत्रमानिणिः

নির্দিষ্ট তাপমাত্রায় 1 L দ্রবণে দ্রবীভূত দ্রবের গ্রাম তুল্যভর।

এখানে.

E = তুল্য ভর e = তুল্য সংখ্যা

যেকোনো বম্ভর তুল্য ভর, E = তুল্য সংখ্যা (e)

মোলালিটি থেকে মোলারিটি নির্ণয়:

$$S = \frac{S_m \rho}{1 + S_m M \times 10^{-3}}$$

ρ = দ্রবণের ঘনত (g/mL এককে)

মোলারিটি থেকে মোলালিটি নির্ণয়:

$$S_{\rm m} = \frac{S}{\rho - \rm SM} \times 10^{-3}$$

নরমালিটির সাথে মোলারিটির সম্পর্কঃ

N = Se

শতকরা ঘনমাত্রা

শতকরা ঘনমাত্রা,
$$\left(\% \frac{w}{V}\right) = \frac{yেবের ভর (g)}{yেবেরে আয়তন (mL)} \times 100$$

শতকরা ঘনমাত্রা,
$$\left(\% \frac{v}{V}\right) = \frac{\underline{y} \, \text{বের আয়তন } (\text{mL})}{\underline{y} \, \text{বণের আয়তন } (\text{mL})} \times 100$$

শতকরা ঘনমাত্রা,
$$\left(\%\frac{W}{W}\right) = \frac{\underline{U}(\sqrt{3})}{\underline{U}(\sqrt{3})} \times 100$$

শতকরা ঘনমাত্রা ও মোলারিটির সম্পর্ক:

$$> x\% \left(\frac{w}{V}\right) \longrightarrow S = \frac{10x}{M}$$

- ppm, ppb, ppt নির্ণরোর সাধারণ সূত্রঃ
 - $> 1 \text{ ppm} = 10^3 \text{ ppb} = 10^6 \text{ ppt}$
 - > ঘনমাত্রা (ppm) = দ্রবের ভর (mg) দ্রবের ভর (mg) দ্রবের ভর (kg)
 - > 1 ppm = 1 mg L⁻¹ = 1 μg mL⁻¹
 - গ্যাসীয় মাধ্যমের ক্ষেত্রে সৃক্ষ কণার উপস্থিতি প্রকাশে ppmv (parts per million by volume) ব্যবহৃত হয়।
 - > ঘনমাত্রা (ppmv) = দ্রবের আয়তন (mL) দ্রবণের আয়তন (mL) × 10°
- ppm, মোলার ঘনমাত্রা ও শতকরা ঘনমাত্রার সম্পর্ক:

>
$$ppm = S \times M \times 10^3 = x\% \left(\frac{W}{V}\right) \times 10^4$$

দ্রবণের ঘনমাত্রা পদুকরণ:

$$S_1V_1 = S_2V_2$$

এখানে,

 $S_1 =$ আদি ঘণমাত্রা

 $V_1 =$ আদি আয়তন

S2 = পানি যোগ করার পর ঘনমাত্রা

V₂ = পানি যোগ করার পর আরতন

 $\Delta V = V_2 - V_1$

= যোগকৃত পানির আয়তন

🔲 তুল্য সংখ্যা:

একটি যৌগ জারণ-বিজ্ঞারণ বিক্রিয়ায় যতগুলো ইলেকট্রন আদান প্রদান করে, সেই সংখ্যা হলো যৌগটির তুলা সংখ্যা।

- भाजुत जुना मश्या = थाजुत वाक्ती।
- > অধাত্র তুল্য সংখ্যা = অধাত্র যোজনী × অণুতে পরমাণুর সংখ্যা।
- △ পিডের তুল্য সংখ্যা = এসিড যতগুলো H[†] আয়ন ত্যাগ করে।
- ফারকের তুল্য সংখ্যা = ক্ষারক যতগুলো OH⁻ আয়ন ত্যাগ করে বা যতগুলো H⁺ আয়ন গ্রহণ করে।
- লবণের তুলা সংখ্যা = লবণে উপস্থিত ধাতুর মোট বোজনী বা ক্যাটারনের চার্জ।
- প্রাইমারি স্ট্যান্ডার্ড পদার্থ:
 - (i) বিশুদ্ধ অবস্থারা প্রস্তুত করা যার।
 - (ii) এরা বাতাসের সংস্পর্শে জলীয়বাষ্প বা O2 সহ বিক্রিয়া করে না।
 - (iii) এদের ওত্তন নেওয়ার সময় রাসায়নিক নিক্তিকে ক্ষয় করে না।
 - (iv) এদের দ্রবণের ঘনমাত্রা দীর্ঘদিন অপরিবর্তিত থাকে।

বেম।: Na2CO3, H2C2O4.2H2O, Na2C2O4.2H2O, K2Cr2O7

- সেকেন্ডারি স্ট্যান্ডাড পদার্থ:
 - (i) বিশুদ্ধ অবস্থায় প্রস্তুত করা যায় না
 - (ii) এता বাতাসের সংস্পর্শে জলীয়বাষ্প বা O2 সহ বিক্রিয়া করে।
 - (iii) এদের ওজন নেওরার সমর রাসারনিক নিভিকে ক্ষয় করে।
 - (ív) এদের দ্রবণের ঘনমাত্রা পরিবর্তিত হয়।

বেমল: NaOH, HCI, H2SO4, KMnO4, Na2S2O3.5H2O

Mote: C ও Cr যুক্ত যৌগসমূহ সাধারণত প্রাইমারি স্ট্যান্ডার্ড পদার্থ।

এসিড-ক্ষার টাইট্রেশন, নির্দেশক

টাইট্রেশন ও টাইট্রেশন সংশ্রিষ্ট কতিপয় পদ:

টাইট্রেশন: উপযুক্ত নির্দেশকের উপস্থিতিতে একটি জ্ঞানা ঘনমাত্রার কোনো এসিড বা ক্ষার দ্রবণের সাথে অপর একটি অজ্ঞানা ঘনমাত্রার ক্ষার বা এসিড দ্রবণের বিক্রিয়া ঘটিয়ে ঐ দ্রবণের অজ্ঞানা ঘনমাত্রা নির্ণয় করার পদ্ধতিকে টাইট্রেশন বলে।

টাইট্রোন্ট: টাইট্রেশনে ব্যবহৃত জ্ঞানা মাত্রার দ্রবণটিকে টাইট্র্যান্ট বলে। টাইট্রেশনের সময় এটিকে সাধারণত ব্যুরেটের মধ্যে নেয়া হয়।

টাইট্র্যান্ড: অজানা ঘনমাত্রার যে দ্রবণকে টাইট্রেশন করা হয় তাকে টাইট্র্যান্ড বলে। টাইট্রেশনের সময় একে কনিক্যাল ফ্রান্কে নেয়া হয়।

- এসিড-ক্ষার প্রশমন বিক্রিয়াভিত্তিক গণনা:

 - $ightharpoonup \left[e_A V_A C_A = e_B V_B C_B \right]$

এখানে.

e_ = এসিডের তুল্য সংখ্যা;

e_B = ক্ষারের তুল্য সংখ্যা

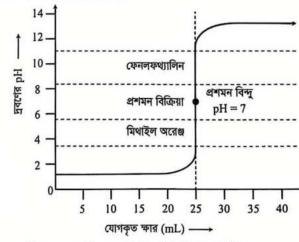
 V_{Λ} = এসিডের আয়তন;

V_B = ক্ষারের আয়তন

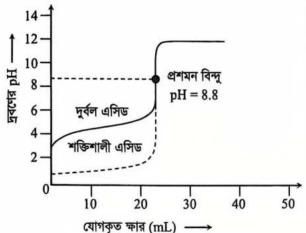
 $C_{\Lambda} = এসিডের ঘনমাত্রা;$

C_B = ক্ষারের ঘনমাত্রা

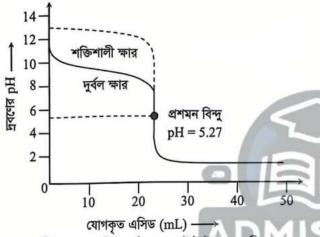
🗅 দ্রবণের প্রকৃতি নির্ণয়:

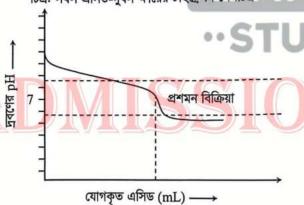

 $\frac{e_{\Lambda} \times V_{\Lambda} \times S_{\Lambda}}{e_{B} \times V_{B} \times S_{B}} = p$ হলে,

- p > 1 মিশ্রণটি অখ্রীর।
- p < 1 হলে মিশ্রণটি ক্ষারীয়।
- p = 1 হলে মিশ্রণটি নিরপেক্ষ।
- মিশ্রণে অবশিষ্ট এসিড বা ক্ষারের ঘনমাত্রা নির্ণয়:


 $\widehat{\text{DESIGN}}[H^{+}] = \frac{\sum (e_{acid} \times V_{acid} \times S_{acid}) - \sum (e_{base} \times V_{base} \times S_{base})}{\sum V_{acid} + \sum V_{base}}$

মিশ্রণে [OH] = $\frac{\sum (e_{base} \times V_{base} \times S_{base}) - \sum (e_{acid} \times V_{acid} \times S_{acid})}{\sum V_{acid} + \sum V_{base}}$


এসিড-ক্ষার টাইট্রেশন লেখচিত্র:


চিত্র: সবল এসিড-সবল ক্ষারের টাইট্রেশন লেখচিত্র

চিত্র: দুর্বল এসিড-সবল ক্ষারের টাইট্রেশন লেখচিত্র

চিত্র: সবল এসিড-দুর্বল ক্ষারের টাইট্রেশন লেখচিত্র

চিত্র: দুর্বল এসিড-দুর্বল ক্ষারের টাইট্রেশন লেখচিত্র

এসিড-ক্ষার টাইট্রেশনের গুরুত্বপূর্ণ তথ্য:

এসিড ও ক্ষারের প্রকৃতি	বর্ণ পরিবর্তনের pH পরিসর	প্রশমন বিন্দুতে pH	উপযুক্ত নির্দেশক
সবল এসিড সবল ক্ষার	4-10	7.0	সব নির্দেশক
দুর্বল এসিড সবল ক্ষার	8-10	8.8	ফেনলফথ্যালিন
সবল এসিড দুর্বল ক্ষার	4-7	5.27	মিথাইল অরেঞ্জ মিথাইল রেড
দুর্বল এসিড দুর্বল ক্ষার	নির্দিষ্ট pH পরিসর নেই	7.0	কোনো নির্দেশক উপযুক্ত নয়

নিৰ্দেশক	pH পরিসর	অপ্লীয় মাধ্যমে বৰ্ণ	ক্ষারীয় মাধ্যসে বর্ণ	
মিথাইল অরেঞ্জ	3.1-4.4	গোলাপি লাল	হলুদ	
মিথাইল রেড	4.2-6.3	नान	হলুদ	
ফেনলফখ্যালিন	8.2-9.8	বৰ্ণহীন	গোলাপি লাল	
থাইমল ব্ৰু (অম্ল)	1.2-2.8	नान	হলুদ	
থাইমল ব্লু (ক্ষার)	8.0-9.6	হলুদ	मीन	
ক্রিসল রেড	7.2-8.8	হলুদ	नान	
ফেনল রেড	6.8-8.4	হলুদ	मान	
ব্রোমোথাইমল ব্রু	6.0-7.6	হলুদ	नीन	
লিটমাস	6.0-8.0	नान	नीन	

জারণ-বিজারণ, জারণ সংখ্যা ও যোজনী, জারক-বিজারক

্র জারণ-বিজারণ ও জারক-বিজারক:

জারণ → ইলেকট্রন ত্যাগ বিজারক → ইলেকট্রন ত্যাগ

বিজারণ ightarrow ইলেকট্রন গ্রহণ ightarrow জারক ightarrow ইলেকট্রন গ্রহণ

> জারকসমূহ ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় এবং অন্যকে জারিত করে।

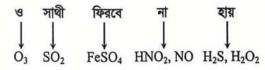
বিজারকসমূহ ইলেকট্রন ত্যাগ করে নিজে জারিত হয় এবং জন্যকে বিজারিত করে।

কয়েকটি জারক পদার্থের উদাহরণ:

গ্যাসীয় জারক পদার্থ: F₂, Cl₂, O₂, O₃, SO₂, NO₂

(ii) তরল জারক পদার্থ: Br, H2O2, HNO3, গাঢ় H2SO4

(iii) কঠিন জারক পদার্থ: I2, KMnO4, K2Cr2O7, MnO2, FeCl3


কয়েকটি বিজারক পদার্থের উদাহরণ:

(i) গ্যাসীয় বিজারক পদার্থ: H2, CO, H2S, SO2

(ii) তরল বিজারক পদার্থ: HNO2, H2SO3, HBr, HI

(iii) কঠিন বিজারক পদার্থ: অধিকাংশ ধাতু, C, FeSO₄, FeCl₂, SnCl₂, Hg₂Cl₂, H₂C₂O₄.2H₂O, Na₂S₂O₃.5H₂O

জারক-বিজারক উভয়য়য়েপ ক্রিয়া করে এমন যৌগসমৃহ:

কয়েকটি ব্যতিক্রমধর্মী জারণ সংখ্যাঃ

- (i) H এর ধাতব যৌগে জারণ সংখ্যা = 1
- (ii) H এর অধাতব যৌগে জারণ সংখ্যা = +1

(iii) O এর যৌগের বেলায়:

সাধারণ অক্সাইডে O এর জারণ সংখ্যা = - 2

পার অক্সাইডে O এর জারণ সংখ্যা = - 1

সুপার অক্সাইডে O এর জারণ সংখ্যা = $-\frac{1}{2}$

Rhombus Publications

পরিমাণপত রসায়ন > ACS, FRB Compact Suggestion Book.....

190

(iv) Na2S2O3 এর অণুতে দূটি S পরমাণুর মধ্যে একটির জারণ 🗖 কিছু জাবদ-নিজারণ বিফ্রিনার সমতাক্ত স্মীকরণা সংখ্যা - 2 এবং অপর্টির জ্ञার্প সংখ্যা + 6

(v) H2SO5 অপুতে S এর প্রকৃত জারণ সংখ্যা = +6

(vi) Na2S4O6 অণুতে প্রকৃতপক্ষে যে দুটি S পরমাণু পরস্পরের সাথে সমযোজी বন্ধনে আবদ্ধ আছে ডাদের জারণ সংখ্যা भূন্য এবং অপর দুটি S পরমাণুর প্রতিটির জারণ সংখ্যা = + 5।

$$\begin{array}{c} O & O \\ \uparrow & \uparrow \\ Na^{+}O - S - S - S - S - S - O^{-}Na^{+} \\ \downarrow & \downarrow \\ O & O \end{array}$$

(vii) CrOs এর অণুতে প্রকৃতপক্ষে Cr এর জারণ সংখ্যা = + 6

জারণ-বিজারণ সমীকরণ সমতাকরণ ও গাণিতিক সম্প্যা আয়োডোমিতি, আয়োডিমিতি

কয়েকটি জারকের জারণ সংখ্যার পরিবর্তন:

জারক	পরিবর্ডন	গৃহীত e	তৃণ্য সংখ্যা
KMnO4 (অম্লীয়)	$Mn^{7+} \rightarrow Mn^{2+}$	5e ⁻	5
$KMnO_4$ (क्वांत्रीग)	$Mn^{7+} \rightarrow Mn^{6+}$	c ⁻	
K ₂ Cr ₂ O ₇	$Cr^{6+} \rightarrow Cr^{3+}$	3e ⁻	$2 \times 3 = 6$
KXO ₃	$X^{5+} \rightarrow X^{-}$	6e ⁻	6
X ₂	$X \rightarrow X^{-}$	e ⁻	$2 \times 1 = 2$
PbO ₂	$Pb^{4+} \rightarrow Pb^{2+}$	2e ⁻	2
H_2O_2	$O^- \rightarrow O^{2-}$	c ⁻	$2 \times 1 = 2$

এখানে, X = হ্যালোজেন

কয়েকটি বিজারকের জারণ সংখ্যার পরিবর্তন:

বিজারক	পরিবর্তন	বৰ্জিত e ⁻	তুল্য সংখ্যা
FeSO ₄	$Fe^{2+} \rightarrow Fe^{3+}$	e ⁻	1
H ₂ C ₂ O ₄	$C_2O_4^{2-} \rightarrow 2CO_2$	e ⁻	2 × 1 = 2
H ₂ O ₂	$O^- \rightarrow O_2$	e ⁻	2 × 1 = 2
H ₂ S	$S^{2-} \rightarrow S$	2e ⁻	2
Na ₂ S ₂ O ₃	$S_2O_3^{2-} \to S_4O_6^{2-}$	0.5e ⁻	$0.5 \times 2 = 1$
SnCl ₂	$Sn^{2+} \rightarrow Sn^{4+}$	2e ⁻	2
SO ₂	$SO_2 \rightarrow SO_4^{2-}$	2e ⁻	2
KI	$I^- \rightarrow I_2$	e ⁻	1

(i) 10Fσ5O₄ + 2KMπO₄ + 8H₃βO₄ -----5Fe;(804), + 2MnSO4 + K; 904 + 8H20

(ii) $6FaSO_4 + K_7CF_7O_7 + 7H_1SO_4 \longrightarrow$ $3Fe_{7}(5O_{4})_{3} + K_{2}SO_{4} + Cr_{7}(5O_{4})_{3} + 7H_{2}O_{4}$

(Hi) $6KI + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow$ $3I_2 + Cr_2(3O_4)_3 + 4K_1SO_4 + 7H_2O_4$

(iv) $5H_2C_2O_4 + 2KMnO_4 + 3H_2SO_4 \longrightarrow$ $10CO_{1} + 2MnSO_{4} + K_{1}SO_{4} + 8H_{7}O$

(v) $2CuSO_4 + 4KI \longrightarrow l_2 + Cu_2l_2 + 2K_2SO_4$

(vi) $2Na_2S_2O_1 + I_2 \longrightarrow Na_2S_4O_0 + 2NaI$

(vii) $5H_2S + 2KMnO_4 + 3H_2SO_4 \longrightarrow$ 5S + 2MnSO₄ + K₂SO₄ + 8H₂O

(viii) $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow$ $5O_2 + 2MnSO_4 + K_2SO_4 + 8H_2O$

ভারণ-বিজ্ञারণ বিক্রিয়াশ্তিত্তিক গণনাঃ

 $\geq \sum (ne)_{cree} = \sum (ne)_{cree}$

 छात्रप-विजात्रप छिछिक भपनात्र छना छत्रप्रुप् किछू व्यारणत्र আণবিক ভর:

 $M_{KMpO_A} = 158 \text{ g mol}^{-1}$

 $M_{K_2Cr_2O_7} = 294 \text{ g mol}^{-1}$

 $M_{H_2C_2O_4} = 90 \text{ g mol}^{-1}$

 $M_{PeSO_4} = 151.85 \text{ g mol}^{-1}$

আয়োডোমিডি:

এই টাইট্রেশন পদ্ধতিতে জারক পদার্থের নির্দিষ্ট আয়তনের দ্রবণে षिक भित्रपाए पातााषारेष नवन त्यानं कत्त विक्रियाय छेरभन्न मुक्ट I2 এর পরিমাণ থায়োসালফেট দ্রবণ দ্বারা টাইট্রেশন করে নির্ধারণ করা ररा। (यमनः

$$2\text{CuSO}_4 + 4\text{KI} \longrightarrow \text{Cu}_2\text{I}_2 + \boxed{\text{I}_2} + 2\text{K}_2\text{SO}_4$$

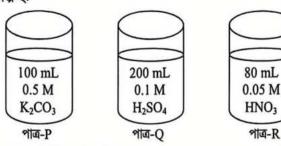
$$2Na_2S_2O_3 + \boxed{I_2} \longrightarrow Na_2S_4O_6 + 2NaI$$

উভয় সমীকরণ থেকে পাই.

2 mol CuSO₄ = 1 mol I_2 = 2 mol Na₂S₂O₁ \Rightarrow 1 mol Na₂S₂O₃ = 1 mol CuSO₄

আয়োডিমিডিঃ

এই টাইট্রেশন পদ্ধতিতে সরাসরি প্রমাণ আয়োডিন দ্রবণ যোগ করে বিজ্ঞারক পদার্থের পরিমাণ নির্ধারণ করা হয়। যেমনः


$$2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$$

HSC পরীক্ষার্থীদের জন্য বাছাইকৃত সূজনশীল প্রশ্নোত্তর

দৃশ্যকল্প-১:

20 mL 0.2 gNaOH দ্রবণ

দৃশ্যকল্প-২:

(ক) অ্যাভোগাডোর সংখ্যা কাকে বলে?

বি. বো. ২২

- (খ) K₄[Fe(CN)6] যৌগের কেন্দ্রীয় পরমাণুর জারণ সংখ্যা নির্ণয় কর। [য. বো. ২৩]
- (গ) দৃশ্যকল্প-১ এর পাত্রের দ্রবর্ণের ঘনমাত্রা ppm এককে নির্ণয় কর। यि. त्वा. २७; जनुत्राप क्षम्नः म. त्वा. २७; व. त्वा. २७, २२, ३৯; कृ. त्वा. २२, ३৯; य. व्हा. २२; मि. व्हा. २२, २५; कृ. व्हा. २५; ह. व्हा. २५, ४७; मि. व्हा. ४७]
- (ঘ) দৃশ্যকল্প-২ থেকে পাত্র-P, পাত্র-Q এবং পাত্র-R এর দ্রবর্ণ মিশ্রিত করলে মিশ্রিত দ্রবণের প্রকৃতি কীরূপ হবে- গাণিতিকভাবে বিশ্লেষণ [দি. বো. ২১; অনুরূপ প্রশ্ন: রা. বো. ১৯] কর।

সমাধান:

- ক কোনো বস্তুর 1 মোলে যত সংখ্যক অণু থাকে সেই সংখ্যাকে অ্যাভোগাড্রো সংখ্যা বা অ্যাভোগাড্রো ধ্রুবক বলা হয়। একে N্র দ্বারা সূচিত করা হয় এবং $N_A = 6.022 \times 10^{23}$ ধরা হয়।
- বা ধরি, K4[Fe(CN)6] যৌগে কেন্দ্রীয় পরমাণু Fe এর জারণ মান x। তাহলে, $(+1) \times 4 + x + (-1) \times 6 = 0$ $\Rightarrow 4+x-6=0$

 $\Rightarrow x=+2$

∴ কেন্দ্রীয় পরমাণু Fe এর জারণ সংখ্যা +2।

গ আমরা জানি,

থা পাত্র P তে
$$K_2CO_3$$
 বিদ্যমান, $n_{K_2CO_3} = V_{K_2CO_3} \times S_{K_2CO_3}$

$$= 100 \times 10^{-3} \times 0.5$$

$$= 0.05 \text{ mol}$$

...... ACS, > Chemistry 2nd Paper Chapter-3

পাত্র-R এ HNO3 বিদ্যমান, n_{HNO3} = V_{HNO3} × S_{HNO3} $= 80 \times 10^{-3} \times 0.05$ = 0.004 mol

P ও Q পাত্রের দ্রবণদ্বয়ের মধ্যে সংঘটিত প্রশমন বিক্রিয়া-

 $K_2CO_3 + H_2SO_4 \longrightarrow K_2SO_4 + H_2O + CO_2$

অর্থাৎ, 1 mol H₂SO₄ ≡ 1 mol K₂CO₃

∴ 0.02 mol $H_2SO_4 = \frac{1 \times 0.02}{1}$ mol K_2CO_3

= 0.02 mol K₂CO₃

∴ অবশিষ্ট K₂CO₃ এর পরিমাণ (0.05 – 0.02) = 0.03 mol এর সাথে আবার পাত্র-R এর বিক্রিয়ায়

 $K_2CO_3 + 2HNO_3 \longrightarrow 2KNO_3 + H_2O + CO_2$ অর্থাৎ, 2 mol HNO₃ ≡ 1 mol K₂CO₃

 $\therefore 0.004 \text{ mol HNO}_3 = \frac{1 \times 0.004}{2} = 0.002 \text{ mol } K_2CO_3$

∴ K₂CO₃ অবশিষ্ট থাকবে = (0.03 – 0.002) = 0.028 mol

🕂 মিশ্রিত দ্রবণটির প্রকৃতি ক্ষারীয়।

50 mL	20 mL	10 mL
0.21 M	1.5 g	0.4%
H ₂ SO ₄ দ্ৰবণ	Na ₂ CO ₃ দ্ৰবণ	NaOH দ্ৰবণ
X-পাত	Y-পাত্র	

(ক) প্রাইমারি স্ট্যান্ডার্ড পদার্থ কী?

क्. ता. २२; मि. ता. ১৭]

 (খ) মোলারিটি ও মোলালিটির মধ্যে কোনটি তাপমাত্রার উপর নির্ভরশীল? [ज. त्वा. २५; व. त्वा. २५; मि. त्वा. २১]

- (গ) Z-পাত্রে 40 mL পানি যোগ করলে দ্রবণের ঘনমাত্রা কত ppm হবে? হিসেব কর। [সি. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২২; ব. বো. ২১; ঢা. বো. ১৯]
- (ঘ) উদ্দীপকের X-পাত্রের দ্রবণে Y ও Z পাত্রের দ্রবণ যোগ করলে মিশ্রণের প্রকৃতি কীরূপ হবে তা বিশ্লেষণ কর এবং কোন বর্ণের লিটমাস পেপারের বর্ণ পরিবর্তন করবে? [স. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২৩; म. त्वा. २७; मि. त्वा. २२; ज. त्वा. २५; ज्ञा. त्वा. २५; क्. त्वा. २५; य. त्वा. ५७]

সমাধানঃ

- ক্রি যেসব রাসায়নিক পদার্থ বিশুদ্ধ অবস্থায় পাওয়া যায়, বায়ুর সংস্পর্শে অপরিবর্তিত থাকে, অর্থাৎ বায়ুস্থ ${
 m CO_2, O_2}$ ও জলীয় বাষ্প দ্বারা সহজে আক্রান্ত হয় না এবং রাসায়নিক নিজির সাহায্যে সঠিকভাবে ভর মেপে প্রমাণ দ্রবণ প্রস্তুত করা যায় তাদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে।
- বা কোন দ্রবণের প্রতি লিটার আয়তনে দ্রবীভূত দ্রবের মোল সংখ্যাই হল ঐ দ্রবণের মোলারিটি। তাপমাত্রা বৃদ্ধি/হ্রাসে দ্রবণের আয়তন বৃদ্ধি/হ্রাস পায়। ফলে, দ্রবণের মোলারিটি হ্রাস/বৃদ্ধি পায়। অর্থাৎ, মোলারিটি তাপমাত্রার উপর নির্ভরশীল। অন্যদিকে, কোন দ্রবণে প্রতি কেজি ভরে দ্রবীভূত দ্রবের মোল সংখ্যাকে ঐ দ্রবণের মোলালিটি বলা হয়। তাপমাত্রার হ্রাস বা বৃদ্ধিতে দ্রবণের ভরের কোন পরিবর্তন না হওয়ায় মোলালিটি অপরিবর্তিত থাকে। অতএব, মোলারিটি তাপমাত্রার উপর নির্ভরশীল হলেও মোলালিটি তাপমাত্রার উপর নির্ভরশীল নয়।

পরিমাণগত রসায়ন > ১৫১, FRB Compact Suggestion Book.....

7
$$S_1 = \frac{10x}{M} = \frac{10 \times 0.4}{40} = 0.1 M$$

আমরা জানি,

$$S_2V_2 = S_1V_1$$

$$\Rightarrow S_2 = \frac{S_1V_1}{V_2}$$

$$=\frac{0.1\times10}{50}$$

$$= 0.02 M$$

= 0.02 mol L⁻¹ [∴ NaOH এর আণবিক ভর = 40]

$$= (0.02 \times 40) \text{ g L}^{-1}$$

 $= (0.8 \times 1000) \text{ mg L}^{-1}$

= 800 ppm

সুতরাং, দ্রবণের ঘনমাত্রা 800 ppm। (Ans.)

ত্ৰ এখানে,

$$n_X = S_X V_X$$

 $= (0.21 \times 50 \times 10^{-3}) \text{ mol}$

= 0.0105 mol

$$\mathbf{n_Y} = \frac{W_Y}{M_Y} = \frac{1.5}{106} \text{ mol} = 0.01415 \text{ mol}$$

0.4% NaOH, অর্থাৎ

100 mL দ্ৰবণে NaOH আছে = 0.4 g

∴ 10 mL দ্রবর্ণে NaOH আছে =
$$\frac{0.4 \times 10}{100}$$
 g = 0.04 g

আবার.

$$\therefore \mathbf{n}_{Z} = \frac{\mathbf{W}_{Z}}{\mathbf{M}_{Z}}$$
$$= \frac{0.04}{40} \text{ mol}$$

 $= 1 \times 10^{-3} \text{ mol}$

প্রথম X ও Z পাত্রের দ্রবণ মিশ্রিত করলে নিম্লোক্ত বিক্রিয়া ঘটে,

 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ বিক্রিয়া হতে,

2mol NaOH = 1 mol H₂SO₄

∴
$$1 \times 10^{-3} \text{ mol NaOH} = \frac{1 \times 10^{-3}}{2} \text{ mol H}_2\text{SO}_4$$

 $= 0.0005 \text{ mol H}_2SO_4$

∴ দ্রবণে অতিরিক্ত H₂SO₄ = (0.0105 – 0.0005) mol = 0.01 mol

X'ও Z পাত্রের মিশ্রণে Y পাত্রের দ্রবণ মিশ্রিত করলে নিম্লোক্ত বিক্রিয়া

 $H_2SO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + CO_2 + H_2$ বিক্রিয়া হতে,

1 mol $H_2SO_4 \equiv 1 \text{ mol Na}_2CO_3$

... $0.01 \text{ mol } H_2SO_4 \equiv 0.01 \text{ mol } Na_2CO_3$

∴ দ্রবণে অতিরিক্ত Na₂CO₃ = (0.01415 – 0.01) mol

= 0.00415 molযেহেতু দ্রবণে Na2CO3 অবশিষ্ট থাকে তাই মিশ্রণের প্রকৃতি হবে

অর্থাৎ লাল বর্ণের লিটমাস পেপারকে নীল বর্ণে পরিবর্তিত করবে।

প্রশা 🕨 ৩

40 mL 0.5 M HC/ দ্রবণ HC/ দ্ৰবণ

পাত্ৰ-A

পাত্ৰ-B

50 mL

2.5 M

- (क) यानात प्रवण की?
- রো. বো. ২২; ব. বো. ২১; দি. বো. ২১/
- (খ) ppm তাপমাত্রার উপর নির্জর করবে কি? ব্যাখ্যা কর। সি. বো. ২৩।
- (গ) 'A' ও 'B' পাত্রের দ্রবণ দৃটি মিশ্রিত করে প্রাপ্ত মিশ্র দ্রবণের ঘনমাত্রা নির্ণয় কর। চি. বো. ২৩; অনুরূপ প্রশ্ন: ম. বো. ২২
- (ঘ) 'B' পাত্রের দ্রবণে 10 mL 5% (w/V) NaOH দ্রবণ যোগ করলে মিশ্র দ্রবণের প্রকৃতি কেমন হবে? গাণিতিকভাবে বিশ্লেষণ কর।

চি. বো. ২৩; অনুরূপ প্রশ্ন: য. বো. ২৩, ২২

- ক যে দ্রবর্ণের ঘনমাত্রা 1 M তাকে মোলার দ্রবণ বলে।
- ব কোন নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে কোন দ্রবের যত মিলিগ্রাম দ্রবীভূত থাকে, দ্রবের ঐ পরিমাণকে ঐ দ্রবণের ppm ঘনমাত্রা বলে। দ্রবণের আয়তন তাপমাত্রা বৃদ্ধিতে বৃদ্ধি পায় ফলে ppm কমে। আর ভাপমাত্রা কমালে দ্রবণের আয়তন কমে ও ppm বৃদ্ধি পায়। অতএব, বলা যায়, ppm তাপমাত্রার উপর নির্ভরশীল।
- প A ও B পাত্রের মিশ্রিত দ্রবণে HC/ এর মোলসংখ্যা হবে মিশ্রণের পূর্বে A ও B পাত্রে উপস্থিত HCl এর মোলসংখ্যার সমষ্টির সমান।

$$SV = S_A V_A + S_B V_B$$

এখানে.

$$\Rightarrow S = \frac{S_A V_A + S_B V_B}{V}$$

$$0.5 \times 40 + 2.5 \times 50$$

 $V = V_A + V_B$ $= (40 + 50) \, \text{mL}$ $=90 \, \mathrm{mL}$

= 1.61 Mসূতরাং, মিশ্রিত দ্রবণের ঘনমাত্রা 1.61 M (Ans.)

য 5% (w/V) NaOH অর্থাৎ

$$S_b = \frac{10x}{M} = \frac{10 \times 5}{40}$$

= 1.25 M

∴ NaOH এর ঘনমাত্রা = 1.25 M

NaOH এর মোল সংখ্যা,

 $n_b = S_b V_b$

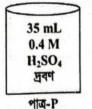
 $= (1.25 \times 0.01) \text{ mol}$

= 0.0125 mol

B পাত্রের মোল সংখ্যা,

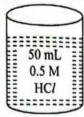
 $n_a = S_a V_a$

 $= (2.5 \times 0.05) \text{ mol}$


= 0.125 mol

 $NaOH + HCI \rightarrow NaCI + H_2O$

- ∴ 1 mol NaOH = 1 mol HCI
- ∴ 0.0125 mol NaOH বিক্রিয়া করে 0.0125 mol HCl এর সাথে।
- ∴ অবশিষ্ট HCl এর পরিমাণ = (0.125 0.0125) mol = 0.1125 mol
- মিশ্র দ্রবণের প্রকৃতি হবে অশ্লীয়।


...... ACS, > Chemistry 2nd Paper Chapter-3

প্রমা ১ ৪ দৃশ্যকল-১:

45 mL 10% Na₂CO₂ দ্রবণ পাত্ৰ-Q

দৃশ্যকল্প-২:

- (ক) জারণ সংখ্যা কী? [ज. वा. २७; बा. वा. २७, २२; म. वा. २२; त्र. वा. ১৯]
- (খ) K2Cr2O7 একটি জারক পদার্থ-ব্যাখ্যা কর।

मि. वा. २२: य. वा. २२: त्रा. वा. २১]

- (গ) দৃশ্যকল্প-২ এর পাত্রের দ্রবণকে 600 mL দ্রবণে পরিণত করলে ঘনমাত্রার পরিবর্তন কত হবে? কু. বো. ২২
- (ঘ) দৃশ্যকল্প-১ এর দ্রবণছয়কে একত্রে মিশ্রিত করলে মিশ্রিত দ্রবণের প্রকৃতি কীরূপ হবে? গাণিতিকভাবে বিশ্লেষণ কর।

সমাধান:

- ক বিক্রিয়াকালে, পরমাণুর ইলেকট্রন ত্যাগ অথবা গ্রহণের ফলে প্রমাণুতে সৃষ্ট চার্জের সংখ্যাকে ঐ মৌলের জারণ সংখ্যা বলে।
- হ কোন জারণ-বিজারণ বিক্রিয়ায় যে পরমাণু, আয়ন বা মূলক ইলেকট্রন দৃশ্যকল্প-২: গ্রহণ করে নিজে বিজারিত হয় ও অন্য পদার্থকে জারিত করে তাকে জারক বলে। বিক্রিয়ায় জারকের জারণ সংখ্যা হ্রাস পায়। K2CI2O7 এর ক্ষেত্রে জারণ অর্ধ-বিক্রিয়াটি নিমুরূপ:

 $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$ এখানে, K2Cr2O7 জারক হিসেবে কাজ করছে কেননা, Cr2O7 থেকে Cr3+ পাওয়া যায় যেখানে প্রতিটি Cr পরমাণু 3টি করে ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় ও অন্যকে জারিত করে।

গ্র দ্রবণের লঘুকরণ সূত্র অনুযায়ী,

$$S_{2}V_{2} = S_{1}V_{1}$$

$$\Rightarrow S_{2} = \frac{S_{1}V_{1}}{V_{2}}$$

$$\Rightarrow S_{2} = \frac{0.5 \times 50}{600}$$

$$\therefore S_{2} = 0.04167 \text{ M}$$

$$V_{1} = 50 \text{ mL}$$

$$S_{1} = 0.5 \text{ M}$$

$$V_{2} = 600 \text{ mL}$$

$$S_{2} = ?$$

সূতরাং, ঘনমাত্রার পরিবর্তন হবে = (0.5 – 0.04167) M = 0.4583 M

য় 10% Na₂CO₃ অর্থাৎ,

$$S_b = \frac{10x}{M}$$
$$= \frac{10 \times 10}{106} M$$
$$= 0.94 M$$

Rhombus Publications

পাত্র-Q এর মোলসংখ্যা.

 $n_b = S_b V_b$

 $= (0.94 \times 45 \times 10^{-3}) \text{ mol}$

= 0.0423 mol

পাত্র-P এর মোলসংখ্যা,

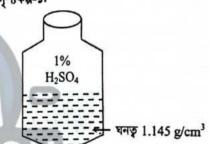
 $n_a = S_a V_a$

 $= (0.4 \times 35 \times 10^{-3}) \text{ mol}$

= 0.014 mol

সংঘটিত বিক্রিয়া,

 $H_2SO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + H_2O + CO_2$


∴ 1 mol H₂SO₄ = 1 mol Na₂CO₃

সুতরাং, 0.014 mol H₂SO₄ 0.014 mol Na₂CO₃ এর সাবে বিক্রিয়া করবে।

অবশিষ্ট Na₂CO₃ এর পরিমাণ = (0.0423 - 0.014) mol = 0.0283 mol

দ্রবণের প্রকৃতি হবে ক্ষারীয়।

প্রশা ৮ ৫ দৃশ্যকল্প-১:

5% (w/V)	0.1 M	A+B	x mL
Na ₂ CO ₃	Na ₂ CO ₃		0.1 M
50 mL	50 mL		HCl

A B C D (ক) ppm কাকে বলে? দি. বো. ২২; য. বো. ২১; দি. বো. ২১; ম. বো. ২১; ব. বো. ১১)

(খ) H2O2 জারক ও বিজারক উভয় হিসাবে কাজ করে- ব্যাখ্যা কর।

[ম. বো. ২২; ঢা. বো. ১৯; অনুরূপ প্রশ্ন: চ. বো. ২৩]

- (গ) দৃশ্যকল্প-১ এর দ্রবণে এসিডের মোলারিটি নির্ণয় কর।
- (ঘ) দৃশ্যকল্প-২ এর C ও D পাত্রের মিশ্রণ একত্রিত করলে যদি পূর্ণ প্রশমন ঘটে তবে x এর মান নির্ণয় কর।

সমাধান:

- ক কোনো নির্দিষ্ট তাপমাত্রার দ্রবণের প্রতি দশ লক্ষ ভাগে কোনো দ্রবের যত ভর দ্রবীভূত থাকে তাকে ঐ দ্রবের ppm ঘনমাত্রা বলে।
- H_2O_2 ২টি ইলেকট্রন দান করে জারিত হয় অর্থাৎ, বিজারক হিসেবে কাজ করে।

 $O_2^{2-} \rightarrow O_2 + 2e^-$ [জারণ অর্ধ-বিক্রিয়া]

আবার ২টি ইলেবট্রন গ্রহণ করে বিজারিত হয় অর্থাৎ, জারক হিসেবেও

 $O_2^{2-} \rightarrow 2e^- \rightarrow O^{2-}$ [বিজারণ অর্ধ-বিক্রিয়া]

অতএব বলা যায়, H_2O_2 জারক ও বিজারক উভয় হিসেবেই কাজ

পরিমাণগত রসায়ন > ১০৫/ FRB Compact Suggestion Book

গ দেওয়া আছে,

 H_2SO_4 এর শতকরা ঘনমাত্রা x = 1% H_2SO_4 এর ঘনত্ব $d = 1.145 \text{ g/cm}^3$ আমরা জানি,

মোলারিটি, S = $\frac{10 dx}{M} = \frac{10 \times 1.145 \times 1}{98}$ = 0.117 M

∴ निर्पिग्र H2SO4 अत्र स्मामातिष्ठि 0.117 M।

- মূশ্যকল্প-২ এর C পাত্রে Na_2CO_3 এর পরিমাণ- $= V_AS_A + V_BS_B$ $= \left(50 \times 10^{-3} \times \frac{10 \times 5}{106}\right) + (50 \times 10^{-3} \times 0.1)$
 - = 0.0286 mol

D পাত्र्य HCI त्रद्याटल.

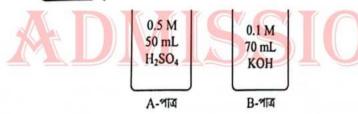
- $= V_D S_D$
- $= x \times 10^{-3} \times 0.1$
- = 0.0001x mol

C ও D পাত্রের মিশ্রণ একত্রিত করায় পূর্ণ প্রশমন ঘটপে:

Na2CO3 + 2HCl → 2NaCl + CO2 + H2O

বিক্রিয়া থেকে, $\frac{n_a}{n_b} = \frac{2}{1}$

 \Rightarrow $n_a = 2n_b$


 $\Rightarrow 0.0001x = 2 \times 0.0286$

 $\Rightarrow x = \frac{2 \times 0.0286}{0.0001}$

 \Rightarrow x = 572 mL

সুভরাং, С ও D পাত্রের মিশ্রণ একত্রিত করপে যদি পূর্ণ প্রশমন ঘটে, ভাহলে D পাত্রের দ্রবণের আয়তন x হবে 572 mL।

প্রশ্ন ১৬ দৃশ্যকল-১:

দৃশ্যকল্প-২:

(क) जनामधना विकिया की?

- [5. CAT. 22, 28]
- (খ) মৃদু এসিড ও তীব্র ক্ষারের টাইট্রেশনে ফেনলফগ্যালিনকে নির্দেশক হিসেবে ব্যবহার করা হয় কেন?
- (গ) দৃশ্যকল্প-২ এর পাত্রের দ্রবণের ঘনমাত্রা শতকরা এককে প্রকাশ কর।
- (খ) দৃশ্যকল্প-১ এর A ও B দ্রবণের মিশ্রণে আরও কত গ্রাম Ca খাতৃ দিলে দ্রবণটি সম্পূর্ণ প্রশমিত হবে?
 রি. বে. ২২১

সমাধানঃ

- ক্রানো জারণ-বিজারণ বিক্রিয়ায় বিক্রিয়কের নির্নিষ্ট মৌলের যদি একই জারণ অবস্থা থেকে একই সাপে জারিত ও বিজারিত হয় তবে তাতে অসামগুস্য বিক্রিয়া বঙ্গে।
- য় মৃদু এসিড ও তীব্র ক্ষারের টাইট্রেশনে মিরণের pH পরিসর 7 এর বেশি
 হয়ে থাকে। ফেনলফথ্যালিন এর বর্ণ পরিবর্তনের pH সীমা ৪-10।
 অতএব, ফেনলফথ্যালিন এখানে নির্দেশক হিসেবে কাজ করতে সক্ষম।
 তাই মৃদু এসিড ও তীব্র ক্ষারের টাইট্রেশনে ফেনলফথ্যালিন কে
 নির্দেশক হিসেবে ব্যবহার করা হয়।
- বা দৃশ্যকল্প-২ এর পাত্মে বিদ্যমান MOH এর M এর পারমাণকিক ভর 23। অর্থাৎ, M হল Na আর MOH হল NaOH।

वर्षात्न, शाय्वत्र धनमावा S = 0.1 M

আয়তন V = 100 ml

NaOH এর আণবিক ভর = 40

∴শতকরা এককে ঘনমাত্রা x% $\left(\frac{w}{V}\right) = \frac{SM}{10}$ $= \frac{0.1 \times 40}{10}$ = 0.4

 \cdot , দৃশ্যকল্প-২ এর পাত্রের দ্রবণের ঘননাত্রা $0.4\% \left(rac{w}{V}
ight)$ ।

য A পাত্ৰস্থিত H₂SO₄ আছে,

 $n_a = V_a S_a$

 $= 50 \times 10^{-3} \times 0.5$

= 0.025 mol

B পाळ KOH चारण,

 $n_b = V_b S_b$

 $= 70 \times 10^{-3} \times 0.1$

= 0.007 mol

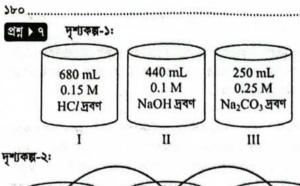
A ও B পাত্র মিথিত করলে সংঘটিত বিক্রিয়া,

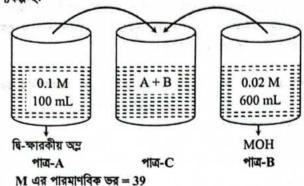
2KOH + H₂SO₄ → K₂SO₄ + <math>2H₂Oअर्था९, 2 mol KOH = 1 mol H₂SO₄

 $\therefore 0.007 \text{ mol KOH} = \frac{1 \times 0.007}{2} \text{ mol H}_2SO_4$

 $= 0.0035 \text{ mol H}_2SO_4$

অবশিষ্ট H_2SO_4 এর পরিমাণ (0.025-0.0035)=0.0215 mol Ca যোগে অবশিষ্ট H_2SO_4 প্রশমিত হলে সংঘটিত বিক্রিয়া,


 $Ca + H_2SO_4 \rightarrow CaSO_4 + H_2$


$$\therefore \frac{n_{Ca}}{n_{H_2SO_4}} = \frac{1}{1}$$

- \Rightarrow $n_{Ca} = n_{H_2 SO_4}$
- $\Rightarrow \frac{W_{Ca}}{M_{Ca}} = 0.0215$
- $\Rightarrow W_{C_a} = 0.0215 \times M_{C_a}$

 $= 0.0215 \times 40$ = 0.86 g (Ans.)

সূতরাং, নির্ণেয় Ca এর পরিমাণ 0.86 g।

(ক) সেমি মোলার দ্রবণ কাকে বলে?

কু. বো. ২৩; ব. বো. ১৯]

- (খ) 0.1 M Na₂CO₃ দ্রবণ বলতে কি বোঝায়- ব্যাখ্যা কর। । য. বো. ২২
- ্গে) দৃশ্যকল্প-১ এর (III) নং পাত্রের দ্রবণে উপস্থিত Na⁺ এর সংখ্যা নির্ণয় কর।
- ক যে দ্রবণের ঘনমাত্রা $0.5 \; \mathrm{mol} \; \mathrm{L}^{-1}$ তাকে সেমি মোলার দ্রবণ বলে।
- 0.1 M Na₂CO₃ দ্রবণ বলতে বোঝায়, দ্রবণটির প্রতি লিটায়ে
 0.1 mol বা 10.6 g Na₂CO₃ দ্রবীভূত আছে।
- গু দৃশ্যকল্প-১ এর (III) নং পাত্রে Na₂CO₃ এর মোলসংখ্যা,

$$n = VS$$

= 250 × 10⁻³ × 0.25
= 0.0625 mol

এখানে, আয়তন, V = 250 mL = 250 × 10⁻³ L

ঘনমাত্রা, S = 0.25 M

 $Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2-}$

- \therefore 1 mol Na₂CO₃ \equiv 2 mol Na⁺
- :. $0.0625 \text{ mol Na}_2\text{CO}_3 = \frac{2 \times 0.0625}{1} \text{ mol Na}^+$ = 0.125 mol Na^+

আবার.

$$n = \frac{x}{N_A}$$

 $\Rightarrow x = n \times N_A = 0.125 \times 6.02 \times 10^{23} = 7.53 \times 10^{22}$ fb $_{I}$

- ∴ III নং পাত্রে উপস্থিত Na⁺ সংখ্যা 7.53 × 10²² টি।
- দৃশ্যকল্প-২ অনুসারে,

 M এর পারমাণবিক ভর = 39
 অর্থাৎ, M হল পটাসিয়াম (K)
 - ∴ B পাত্রের দ্রবণটি হল KOH যা এক অম্লীয় ক্ষার।

Rhombus Publications

..... ACS, > Chemistry 2nd Paper Chapter-3

∴ KOH এর মোলসংখ্যা n_b = V_bS_b

$$=600 \times 10^{-3} \times 0.02$$

= 0.012 mol

A পাত্রের দ্বি-ক্ষারীয় অফ্রের মোলসংখ্যা $n_a = V_a S_a$


$$= 100 \times 10^{-3} \times 0.1$$

= 0.01 mol

যেহেতু A পাত্রের দ্রবণটি দ্বি-ক্ষারীয় অস্ত্র ও B পাত্রে রয়েছে এক অশ্রীয় ক্ষার KOH।

- ∴ 2 mol KOH বিক্রিয়া করে 1 mol অম্রের সাথে
- $\therefore 0.012 \text{ mol KOH বিক্রিয়া করে} = \frac{1 \times 0.012}{2} \text{ mol অম্লের সাথে}$ = 0.006 mol অম্ল প্রশমিত হবে।
- ∴ অবশিষ্ট অম্লের পরিমাণ (0.01 0.006) mol = 0.004 mol
- .. অবশিষ্ট অমুকে প্রশমিত করতে প্রয়োজনীয়

$$KOH = (0.004 \times 2) \text{ mol}$$

= 0.008 mol

(ক) টাইট্রেশন কী?

[कू. त्वा. २२; म. त्वा. २२; ह. त्वा. २১]

- (খ) মৃদু এসিড ও মৃদু ক্ষারকের টাইট্রেশনের জন্য কোন উপযুক্ত নির্দেশক নেই কেন?
- (গ) A পাত্রে কডটুকু পানি যোগ করলে তা সেমি মোলার দ্রবণে পরিণত হবেঃ [সি. বো. ২১; অনুত্রপ প্রশ্ন: ব. বো. ২১; রা. বো. ১৯]
- (घ) (A + B) মিশ্রণের pH কত হবে গাণিতিকভাবে নির্ণয় কর। াসি. বো. ২১। সমাধানঃ
- ক নির্দেশকের উপস্থিতিতে কোনো বিক্রিয়কের প্রমাণ দ্রবণ বা জানা ঘনমাত্রার দ্রবণের সাহায্যে অজানা ঘনমাত্রার বিক্রিয়কের ঘনমাত্রা নির্ণয়ের পদ্ধতিকে টাইট্রেশন বলে।
- নির্দিষ্ট ঘনমাত্রার মৃদু এসিড দ্রবণে নির্দিষ্ট ঘনমাত্রার মৃদু ক্ষার দ্রবণ ফোটায় ফোটায় যোগ করলে দ্রবণের pH মান ধীরে ধীরে বৃদ্ধি পায়। প্রশমন বিন্দুর কাছাকাছি এলেও এক্ষেত্রে pH মানের হঠাৎ কোন পরিবর্তন দেখা যায় না। এখানে দ্রবণের pH ভরু থেকে শেষ পর্যন্ত ধীরগতিতে বৃদ্ধি পেতে থাকে। তাই কোন একক নির্দেশক এক্ষেত্রে কাজ করে না বলে ফেনলফখ্যালিন ও মিথাইল রেড এর মিশ্রণ ব্যবহৃত হয়।
- গ এখানে,

A পাত্রের দ্রবণ = $8\% \left(\!\frac{w}{V}\!\right) H_2 C_2 O_4$

 $M = (1 \times 2 + 12 \times 2 + 16 \times 4) = 90$

$$\therefore S_1 = \frac{10x}{M}$$
$$= \frac{10 \times 8}{90}$$
$$= 0.889 M$$

@AdmissionStuffs

পরিমাণগত রসায়ন > ১০৭) FRB Compact Suggestion Book

আবার,

$$S_1V_1 = S_2V_2$$

$$\Rightarrow V_2 = \frac{S_1V_1}{S_2}$$

$$= \frac{0.889 \times 500}{0.5} \text{ mL}$$

$$= 889 \text{ mL (Ans.)}$$

∴ পানি যোগ করতে হবে = (889 – 500) mL = 389 mL (Ans.)

য

$$n_{H_2C_2O_4} = S_{H_2C_2O_4} \times V_{H_2C_2O_4}$$
 $= (0.889 \times 0.5) \text{ mol}$
 $= 0.4445 \text{ mol}$
 $S_{H_2C_2O_4} = 0.889 \text{ M}$
 $H_2C_2O_4$ এর খনমাত্রা,
 $V_{H_2C_2O_4} = 500 \text{ mL}$
 $= 0.5 \text{ L}$
 $N_{KOH} = S_{KOH} \times V_{KOH}$
 $= (0.01 \times 0.25) \text{ mol}$
 $= 0.0025 \text{ mol}$
 $V_{KOH} = 250 \text{ mL}$
 $= 0.25 \text{ L}$

সংঘটিত বিক্রিয়া,

$$H_2C_2O_4 + 2KOH \rightarrow K_2C_2O_4 + 2H_2O$$

2 mol KOH = 1 mol $H_2C_2O_4$

:.
$$0.0025 \text{ mol KOH} = \frac{0.0025}{2} \text{ mol H}_2C_2O_4$$

∴ মিশ্রণে H₂C₂O₄ অবশিষ্ট থাকবে

এখানে

মিশ্রাণের ঘনমাত্রা, S =
$$\frac{n}{V}$$
 = $\frac{0.44325}{0.75}$

যেহেড়ু $H_2C_2O_4$ দুর্বল এসিড, ডাই জলীয় দ্রবণে আংশিক আয়নিত ২ বৈ । এখানে.

 ${
m H_2C_2O_4}$ এর বিয়োজন ধ্রুবক, ${
m K_a} = 6.5 \times 10^{-2}$ ঘনমাত্রা, C = 0.591 M

আমরা জানি,

$$\alpha = \sqrt{\frac{K_n}{C}} = \sqrt{\frac{6.5 \times 10^{-2}}{0.591}}$$

= 0.332
 $\therefore [H^+] = 2 \times 0.332 \times 0.591$

= 0.392 M
∴ pH =
$$-\log [H^{+}]$$

= $-\log (0.392)$

= 0.4067 সূতরাং, (A + B) মিশ্রণের pH হবে 0.4067। 29 18

$$\overline{\text{(i) } \text{Fe}^{2^{\circ}}} + \text{MnO}_{4}^{-} + \text{H}^{\circ} \longrightarrow \text{Fe}^{1^{\circ}} + \text{Mn}^{1^{\circ}} + \text{H}_{1}\text{O}$$

(ii)
$$I_2 + S_2O_1^2 \longrightarrow S_4O_4^2 + \Gamma$$

(क) विद्यातक काटक वटन?

পটাশিয়াম পারম্যালানেটের কেন্দ্রীয় সৌলের ছারদ সংখ্যা নির্ণয় কর ।

(গ) (I) নং বিক্রিনার ছারক ও বিল্লারক পদার্থ টিহ্নিত করে কারণ বর্ণনা করো। (গ. লে. ১৯)

(ঘ) (ध) गर ও (ध) गर विक्रिना। একই ধরনের কী? বিশ্রেবণ করো। চি. নে. ১৯। সমাধান:

কোন জারণ-বিজ্ঞারণ বিক্রিনার যে রাসায়নিক পদার্থ ইলেকট্রন ত্যাগ করে এবং যার জারণ মান বৃদ্ধি পার তাকে বিজ্ঞারক বলে।

★ KMnO₄ এর কেন্দ্রীর পরমাণু হলো- Mn
মনে করি, Mn এর জারণ মান x
আমরা জানি,

নিরপেক্ষ বৌগে পরমাণু সমৃহের মোট ভারণ মান শৃন্য।

আরণ-বিজারণ বিক্রিয়ায় বেসব পরমাণু, মৃলক বা আয়ন ইলেকয়্রন
গ্রহণ করে নিজে বিজারিত হয় এবং অপর কোন পদার্থকে জারিত করে
তাদেরকে জারক পদার্থ বলে। জায়কের জারণ মান য়াস পায়।
উদ্দীপকের (i) নং বিক্রিয়ায় MnO₄ ড়ায়ক পদার্থ।

MnO₄+ 5e → Mn²+
আবার, যেসব পরমাণু, মূলক বা জারন ইলেকট্রন ত্যাগ করার দ্বারা
নিজে জারিত হয় এবং অপর কোন পদার্থকে বিজারিত করে তাদেরকে
বিজারক বলে। বিজারকে<mark>র জারণ মান</mark> বৃদ্ধি পায়।

বিক্রিরাটিতে Fe^{2+} একটি ইলেকট্রন চ্যাগ করার মাধ্যমে জারিত হয়ে Fe^{3+} উৎপ্র করে। এতে Fe^{2+} এর জারণ মান বৃদ্ধি পায়। অর্থাৎ, Fe^{2+} এখানে বিজারক হিসেবে ভূমিকা রাখে।

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

বিক্রিয়ক পার্শ্বে H^+ ও উৎপাদ H_2O c b H এর জারণ মান +1. অর্থাৎ, H এক্ষেত্রে জারক বা বিজারক হিসেবে। কাজ করছে না ।

ব উদ্দীপকে (ii) নং বিক্রিয়াটি জারণ-বিষ্গারণ বিক্রিয়া হলেও (iii) নং এ উপস্থাপিত বিক্রিয়াটি প্রশামন বিক্রিয়া। অর্থাৎ, বিক্রিয়ান্বয় একই ধরনের নয়।

(ii) নং বিক্রিয়াটিতে $S_2O_3^{2-}$ দুটি ই.লেকট্রন ত্যাগ করে $S_4O_6^{2-}$ উৎপন্ন করে জারিত হয় এবং I_2 ইলেকট্রনদ্বয় গ্রহণ করে Γ (আয়োডাইড) উৎপন্ন করার মাধ্যমে বিজ্ঞারিত হয়।

জারণ অর্থবিক্রিয়া: $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$

বিজারণ অর্ধ বিক্রিয়া: $I_2 + 2e^- \rightarrow 2\Gamma$

অর্থাৎ, বিক্রিয়াটিতে ইলেক্ট্রনের আদান-প্রদান ঘটে এবং জারণ সংখ্যা ব্রাস ও বৃদ্ধি পায়। সুতরাং, (ii) নং বিক্রিয়াটি একটি জারণ বিজারণ বিক্রিয়া।

অন্যদিকে, (iii) নং বিক্রিয়ায় HCOOH একটি জৈব এসিড ও Na2CO3 একটি ক্ষারক হওয়ায় এখানে এসিড ও ক্ষারের প্রশমন বিক্রিয়ার দ্বারা লবণ ও পানি উৎপন্ন হয়।

2HCOOH + Na₂CO₃ → 2HCOONa + H₂O + CO₂ এসিড ক্ষারক লবণ পানি কার্বন ডাই অক্সাইড

উপযুক্ত আলোচনার প্রেক্ষিতে বলা যায় যে, (ii) ও (iii) নং বিক্রিয়াদ্বয় যথাক্রমে জারণ-বিজারণ ও প্রশমন বিক্রিয়া।

প্রশা ১ ১০ দুশ্যকর-১:

দৃশ্যকল্প-২: X → ASO4 দ্রবণ, A এর পারমাণবিক ভর 63.5

 $B \rightarrow KI$ দ্রবণ,

C → 50 mL 0.02 M Na₂S₂O₃ দ্ৰবণ

- (ক) অর্ধবিক্রিয়া কী?
- (थं) रकननकथानिन এসিড দ্রবণে বর্ণহীন কিন্তু ক্ষারীয় দ্রবণে গোলাপি-ব্যাখ্যা কর।
- (গ) দৃশ্যকল্প-১ এর পাত্রে H_2S চালনা করলে সংঘটিত জারণ-বিজারণ বিক্রিয়া অর্ধ-বিক্রিয়ার সাহায্যে সমতা বিধান করো 📗 🕟 বো. ১৯
- (घ) मृग्यकब्र-२ (थरक A²⁺ जाग्रत्नित्र পরিমাণ নির্ণয়ে B দ্রবণের প্রয়োজন আছে কী? বিক্রিয়াসহকারে যৌজিকতা বিশ্লেষণ করো। 🔝 🙀 রো. ১৯) সমাধান:
- ক কোনো রিডক্স বিক্রিয়ার জারক কর্তৃক ইলেকট্রন গ্রহণ বা বিজারক কর্তৃক ইলেকট্রন ত্যাগের প্রক্রিয়াই হচ্ছে অর্ধবিক্রিয়া।
- ব্দনলফথ্যালিন একটি মৃদু জৈব এসিড। অবিয়োজিত অবস্থায় এটি বর্ণহীন ও বিয়োজিত হলে এর অ্যানায়ন গোলাপি-লাল বর্ণ দেখায়।

এসিড দ্রবর্ণে H^+ আয়নের ঘনমাত্রা বাড়ে, ফলে সমআয়ন প্রভাবে সাম্যের সরণ বামদিকে হয় ও অবিয়োজিত HPh অণুতে পরিণত হয়। ফলে দ্রবণটি বর্ণহীন হয়। ক্ষার দ্রবণে H^+ এর সাথে OH^- এর বিক্রিয়ায় H_2O উৎপন্ন হলে দ্রবণে H^+ কমে যায়। ফলে সাম্যাবস্থা ডানদিকে সরে যায় ও Ph আয়নের ঘনমাত্রা বৃদ্ধি পায়। ফলে দ্রবণের বৰ্ণ গোলাপি লাল হয়।

🛐 দৃশ্যকল্প-১ এর পাত্রের অ $rac{1}{2}$ ীয় $m K_2Cr_2O_7$ দ্রবণের মধ্য দিয়ে $m H_2S$ (ঘ) উদ্দীপকের কোন কোম্পানির আকরিক হতে আয়রন উৎপাদন বেশি চালনা করলে K2Cr2O7 জারক এবং H2S বিজারক হিসেবে কাজ করবে।

জারণ অর্ধবিক্রিয়া:
$$S^{2-} \rightarrow S + 2e^-$$
....(i)

বিজারণ অর্ধবিক্রিয়া: $Cr_2O_7^{2-} + 6e^- + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$

.....(ii)

...... ACS, > Chemistry 2nd Paper Chapter-3

সমতাবিধানের জন্য (i) × 3 + (ii) করে পাই,

$$3S^{2-} \rightarrow 3S + 6e^{-}$$

$$Cr_2O_7^{2-} + 6e^- + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$$

$$Cr_2O_7^{2-} + 3S^{2-} + 14H^+ \rightarrow 3S + 2Cr^{3+} + 7H_2O$$

সমতাকৃত আয়নিক সমীকরণে দর্শক আয়ন রূপে K⁺ ও SO₄²⁻ যোগ করে পাই.

 $K_2Cr_2O_7 + 3H_2S + 4H_2SO_4 \rightarrow 3S + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O$

য় A এর পারমাণবিক ভর 63.5। অর্থাৎ, A হলো Cu।

সুতরাং, X হলো CuSO4 দ্রবণ।

 $CuSO_4$ এ কপার Cu^{2+} আয়ন হিসেবে থাকে। $CuSO_4$ এর সাবে KI দ্রবণ যোগ করলে নিমুরূপ বিক্রিয়া ঘটে:

 $2\text{CuSO}_4 + 4\text{KI} \longrightarrow 2\text{K}_2\text{SO}_4 + \text{Cu}_2\text{I}_2 + \text{I}_2 \dots (i)$ দর্শক আয়ন বাদ দিয়ে পাই,

$$2Cu^{2+} + 2I^{-} \longrightarrow 2Cu^{+} + I_{2}$$

অর্থাৎ 2 mol Cu²⁺ আয়ন দ্রবণ উপস্থিত থাকলে 1 mol I₂ উৎপন্ন হয়। এখন উৎপন্ন I_2 এর সাথে $Na_2S_2O_3$ এর টাইট্রেশন হতে পাই,

 $I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI$ (ii)

(i) ও (ii) নং হতে পাই,

- $2 \text{ mol CuSO}_4 \equiv 2 \text{ mol Na}_2S_2O_3$
- \therefore 1 mol CuSO₄ \equiv 1 mol Na₂S₂O₃

ুতরাং, KI ও CuSO4 এর বিক্রিয়ায় প্রাপ্ত I2 কে Na2S2O3 দারা টাইট্রেশনের মাধ্যমে Cu²⁺ এর পরিমাণ নির্ণয় করা সম্ভব। অর্থাৎ, B দ্রবণের প্রয়োজন আছে।

প্রশ্ন ১১১

কো-স্পানির নাম	পোহার আকরিকের পরি <mark>মা</mark> ণ	আকরিকে H_2SO_4 এসিড যোগ করার পর প্রাপ্ত দ্রবণ	টাইট্রেশনের জন্য গৃহীত দ্রবণের পরিমাণ	টাইট্রেশনে ব্যবহৃত বিকারক
A	10 g	1L	25 mL	4 mL 0.1 M KMnO ₄
В	10 g	1 L	25 mL	12 mL 0.02 M K ₂ Cr ₂ O ₇

(ক) মোলার আয়তন কাকে বলে?

[দি. বো. ২৩]

(গ) দ্রবণের মোলারিটি তাপমাত্রার উপর নির্ভরশীল-ব্যাখ্যা কর।

[ज. ता. २७; कृ. ता. २७; म. ता. २७; त्रा. ता. २२, २५; দি. বো. ২২; সি. বো. ২১, ১৯; চ. বো. ১৯]

(গ) উদ্দীপকের A কোম্পানিতে ব্যবহৃত বিক্রিয়াটি আয়ন-ইলেকট্রন পদ্ধতিতে সমতা বিধান কর।

[ঢা. বো. ২৩; জনুরূপ প্রশ্ন: রা. বো. ২৩; য. বো. ২২, ২১; ঢা. বো. ২১; ম. বো. ২১] লাভজনক হবে? গাণিতিকভাবে বিশ্লেষণ কর।

[ঢা. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২৩]

সমাধান:

ক কোনো নির্দিষ্ট তাপমাত্রা ও চাপে এক মোল পরিমাণ যেকোনো গ্যাসের আয়তনকে ঐ গ্যাসের মোলার আয়তন বলে।

পরিমাণাত রসায়ন > ACS. FRB Compact Suggestion Book

- শিষ্টি তাপমাত্রায় কোন দ্রবণের 1L আয়তনে যত মোল দ্রব দ্রবীতৃত থাকে, দ্রবের ঐ মোল সংখ্যাকে ঐ দ্রবণে দ্রবটির মোলারিটি বলে। মোলারিটি তাপমাত্রার উপর নির্ভরশীল একটি রাশি। কারণ দ্রবণের আয়তন তাপমাত্রার সাথে পরিবর্তিত হয়। তাপমাত্রার বৃদ্ধিতে আয়তন বৃদ্ধি পায় ফলে মোলারিটি হাস পায়। আবার তাপমাত্রার হাস করলে আয়তন কমে ও মোলারিটি বৃদ্ধি পায়।
- ত্রী উদ্দীপকের A কোম্পানির লোহার আকরিক বা গোহার টুকরাকে H₂SO₄ দ্রবণে দ্রবীভূত করলে FeSO₄ উৎপন্ন হয়। উক্ত দ্রবণে KMnO₄ যোগ করলে নিম্লোক্ত বিক্রিয়া ঘটে:

$$FeSO_4 + KMnO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3$$

+ MnSO₄ + K₂SO₄ + H₂O

উপরোক্ত বিজারণ বিক্রিয়ার আয়নিক সমীকরণটি হলো:

 Fe^{2+} + MnO₄ + H⁺ → Fe^{3+} + Mn²⁺ + H₂O জারণ অর্ধ-বিক্রিয়া:

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}....(i)$$

বিজারণ অর্ধ-বিক্রিয়াঃ

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
 (ii)

সমতাবিধানের জন্য (i) \times 10 + (ii) \times 2 করে পাই,

$$10Fe^{2+} \rightarrow 10Fe^{3+} + 10e^{-}$$

 $2MnO_1 + 16H^{+} + 10e^{-} \rightarrow 2Mn^{2+} + 8H_2O$

$$10\text{Fe}^{2^+} + 2\text{MnO}_1^- + 16\text{H}^+ \rightarrow 10\text{Fe}^{3^+} + 2\text{Mn}^{2^+} + 8\text{H}_2\text{O}$$

এ সমতাকৃত আয়নিক সমীকরণে দর্শক আয়নরূপে K আয়ন ও SO আয়ন যোগ করে গাই-

ভদীপকের A কোম্পানির Fe নমুনাকে H₂SO₄ এ দ্রবীভূত করার মাধ্যমে FeSO₄ উৎপন্ন করে KMnO₄ ছারা টাইট্রেশনে সংঘটিত বিক্রিয়া,

2KMnO₄ + 10FeSO₄ + 8H₂SO₄ ->

$$5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O$$

Tele 2 mol KMnO4 = 10 mol Fe2+

- :. 1000 mL 2M KMnO4 = 10 × 55.85 g Fe2+
- \therefore 4 mL 0.1M KMnO₄ = $\frac{10 \times 55.85 \times 4 \times 0.1}{1000 \times 2}$ g Fe²

 $= 0.1117 \, \text{g Fe}^{2+}$

- .: 25 mL দ্ৰবাৰ Fe2 আছে 0.1117 g
- :. 1 L বা 1000 mL দ্ৰবলৈ Fe আছে = $\frac{0.1117 \times 1000}{25}$ g

= 4.468 g ∴ A কোম্পানির Fe²⁺ এর বিজ্ঞভা = $\left(\frac{4.468 \times 100}{10}\right)$ %

B কোম্পানির Fe নমুনাকে H₂S(), এ দ্রবীভূত করার পর উৎপদ্ধ FeSO₄ কে K₂Cr₂O₇ ছারা টাইট্রেশনে সংঘটিত বিক্রিয়া:

$$K_2Cr_2O_7 + 6FeSO_4 + 7H_2SO_4 \longrightarrow$$

 $3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + 7H_2O + K_2SO_4$

The I mol K2Cr2O7 = 6 mol Fe2+

∴ 1000 mL 1 M K₂Cr₂O₂ = 6 × 55.85 g Fe²⁺

- ∴ 12 mL 0.02 M K₂Cr₂O₇ = $\frac{6 \times 55.85 \times 12 \times 0.02}{1000 \times 1}$ g Fe²⁺ = 0.0804 g Fe²⁺
- ∴ 25 mL এ Fe আছে 0.0804 g
- ∴ 1 L বা 1000 mL এ Fe²⁺ আছে = $\frac{0.0804 \times 1000}{25}$ g = 3.21 g
- ∴ B কোম্পানির Fe এর বিভদ্ধতা = $\left(\frac{3.21 \times 100}{10}\right)$ % = 32.1%
- A কোম্পানির Fc এর বিওছতা B কোম্পানির তুলনার অধিক হওরার A কোম্পানির আকরিক হতে Fc উৎপাদন লাভজনক হবে।

四日 ト 75

50 mL	30 mL	24 mL
0.1 M	KMnO ₄	অহীয়
H ₂ C ₂ O ₄	দ্রবণ	FeSO₄ <u>उ</u> दव
A-দবণ	B-नदप	C-द्वरप

(ক) দৰ্শক আয়ন কী?

原風物用風彩刻

(খ) ডেসিমোলার দ্রবদ একটি প্রমাদ দ্রবদ-ব্যাখ্যা কর।

डि. ला. २३: म. ला. २३: म. ला. ३५: म. ला. ३५)

 (গ) উদীপকের A ও B দ্রবদহয়ের অন্তীয় মাধ্যমে সংঘটিত বিক্রিয়াকে আয়ন-ইলেকট্রন পছতিতে সমতা বিধান কর।

र ता २०: र ता २०: बनुवन वड: र ता २०।

- (ঘ) উদীপাকের A ও B দ্রবদহরের সাহাত্যে C দ্রবদে Fe এর পরিমান নির্দায় কর। হি বে. ২০: বনুরপ গ্রহ: ব বে. ২০: দি বে. ২১: দি বে. ২১। সমাধান:
- জ্বীয় দ্রবপে যে সকল আয়ন সরাসরি রাসায়নিক বিক্রিয়য় অংশয়হল করে না তাদেরকে দর্শক আয়ন বলে।
- যে দ্রবদের ঘনমাত্রা সঠিকভাবে জানা থাকে অর্থাৎ, নির্দিষ্ট দ্রাবাক দ্রবের
 পরিমাণ নির্দিষ্ট তাকে প্রমাণ দ্রবণ বলে। এক নিটার দ্রবলে 0.1 মোল দ্রব
 দ্রবীভূত থাকলে ঐ দ্রবণকে ঐ দ্রবের ভেনিমোলার দ্রবণ বলে। অর্থাৎ
 ভেনিমোলার দ্রবণের ঘনমাত্রা 0.1 M। বেহেতু ভেনিমোলার দ্রবলের
 ঘনমাত্রা সঠিকভাবে জানা আছে, সেহেতু এটি একটি প্রমাণ দ্রবণ।
- ত্মীয় মাধ্যমে (H_SSO₄ দ্রবলে) A ও B দ্রবদহয় মিপ্রত করলে নিম্নরণ বিক্রিয়া সংঘটিত হয়:

 $KMnO_4 + H_2SO_4 + H_2C_2O_4 \rightarrow K_2SO_4 + MnSO_4$

$$+ H_2O + CO_2$$

বিক্রিয়াটির আয়নিক সমীকরণ হলো-

$$C_2O_4^{-1} + MnO_4 + H^{-1} \rightarrow CO_2 + Mn^{2-1} + H_2O$$

জারণ অর্থ-বিক্রিয়া:

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2r} + 4H_2O$ (ii)

সমতা বিধানের জন্য (i) \times 5 + (ii) \times 2 করে পাই,

 $5C_2O_4^{2-} \rightarrow 10CO_2 + 10e^{-}$

 $2MnO_4^- + 16H^+ + 10e^- \rightarrow 2Mn^{2+} + 8H_2O$

 $SC_2O_4^{3-} + 2MnO_4^{3-} + 16H^* \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$ এ সমতাকৃত আয়নিক সমীকরণে দর্শক আয়নরূপে K^* ও SO_4^{3-} আয়ন যোগ করে সমতাকৃত সমীকরণ পাই–

 $5H_2C_2O_4 + 2KMnO_4 + 3H_2SO_4 \rightarrow$

10CO2 + 2MnSO4 + K2SO4 + 8H2O

Rhombus Publications

t.me/admission_stuffs

...... ACS, > Chemistry 2nd Paper Chapter-3

ম A ও B দ্রবণের মধ্যে সংঘটিত বিক্রিয়াঃ

 $5H_2C_2O_4 + 2KMnO_4 + 3H_2SO_4 \rightarrow$ 2MnSO₄ + K₂SO₄ + 10CO₂ + 8H₂O

এখন,
$$\frac{n_{H_2C_2O_4}}{n_{KMnO_4}} = \frac{5}{2}$$

$$\Rightarrow 2 \times n_{H_2C_2O_4} = 5 \times n_{KMnO_4}$$

$$\Rightarrow 2 \times V_{H_2C_2O_4} \times S_{H_2C_2O_4} = 5 \times V_{KMnO_4} \times S_{KMnO_4}$$

$$\Rightarrow 2 \times 50 \times 0.1 = 5 \times 30 \times S_{KMnOA}$$

$$\Rightarrow S_{\text{KMnO}_4} = \frac{2 \times 50 \times 0.1}{5 \times 30}$$

$$\therefore S_{KMnO_A} = 0.067 M$$

আবার, B ও C দ্রবণের মধ্যে সংঘটিত বিক্রিয়া:

 $10\text{FeSO}_4 + 2\text{KMnO}_4 + 8\text{H}_2\text{SO}_4 \rightarrow 5\text{Fe}_2(\text{SO}_4)_3 +$ $2MnSO_4 + K_2SO_4 + 8H_2O$

$$\therefore \frac{n_{\text{KMnO}_4}}{n_{\text{Fe}}} = \frac{2}{10}$$

$$\Rightarrow n_{Fe} = 5 \times n_{KMnO_4}$$

$$\Rightarrow \frac{W_{Fe}}{M_{Fe}} = 5 \times S_{KMnO_4} \times V_{KMnO_4}$$

$$\Rightarrow W_{Fe} = 5 \times S_{KMnO_4} \times V_{KMnO_4} \times M_{Fe}$$

$$\Rightarrow$$
 W_{Fe} = 5 × 0.067 × 30 × 10⁻³ × 55.85

$$W_{Fe} = 0.56 \text{ g}$$

সুতরাং, C দ্রবণে আয়রনের পরিমাণ 0.56 g। (Ans.)

(i) $H_2SO_4 + H_2O_2 + KMnO_4 \rightarrow MnSO_4 + K_2SO_4 + O_2 + H_2O_4$

- (ii) $KClO_3 \xrightarrow{\Delta} O_2 + KCl$
- (ক) অম্ল-ক্ষার নির্দেশক কী?

০০ ি ঢা. বো. ২২

(খ) Na2S2O3 একটি সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ-ব্যাখ্যা কর।

[ব. বো. ২৩; অনুরূপ প্রশ্ন: ব. বো. ১৯; সম্মিলিড বো. ১৮]

- (গ) উদ্দীপকের (i) नং বিক্রিয়াটি জারণ-বিজারণ অর্ধ-বিক্রিয়ার সাহায্যে সমতা কর। [চ. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২১; দি. বো. ২১]
- (ঘ) (i) নং ও (ii) নং বিক্রিয়ায় STP তে 50 L করে অক্সিজেন তৈরি করতে একই পরিমাণ H_2O_2 এবং $KCIO_3$ প্রয়োজন হবে কি? উদ্দীপকের আলোকে বিশ্লেষণ কর।

সমাধান:

- ক টাইট্রেশনকালে যেসব জৈব যৌগ নিজের বর্ণ পরিবর্তনের মাধ্যমে টাইট্রেশনের সমাপ্তি বিন্দু নির্দেশ করে এদেরকে অস্ত্র-ক্ষার নির্দেশক বলে।
- সেকেন্ডারি স্ট্যান্ডার্ড পদার্থসমূহের বৈশিষ্ট্য নিম্নরপ–
 - বায়ুর সংস্পর্শে CO₂, O₂ ও জলীয় বাষ্প দ্বারা আক্রান্ত হয়।
 - (ii) রাসায়নিক নিজির ক্ষতি করে ও বায়ৣর সংস্পর্শে এসে ভরের পরিবর্তন ঘটায় বলে সঠিকভাবে ভর মেপে প্রমাণ দ্রবণ প্রস্তুত করা যায় না।
 - (iii) কিছু সময় রেখে দিলে ঘনমাত্রা পরিবর্তিত হয়ে যায়। Na₂S₂O₃ এর মধ্যে উপর্যুক্ত বৈশিষ্ট্যসমূহ বিদ্যমান বলে একে সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ বলা হয়।

গ উদ্দীপকের (i) নং বিক্রিয়াটি নিমুক্রপঃ

 $KMnO_4 + H_2SO_4 + H_2O_2 \rightarrow K_2SO_4 + MnSO_4 + H_2O + O_2$ জারণ-বিজ্ঞারণ বিক্রিয়াটির আয়নিক সমীকরণটি নিমুক্সপ:

$$MnO_4^- + O_2^{2-} + H^+ \rightarrow Mn^{2+} + O_2 + H_2O$$

জারণ অধিবিক্রিয়া:

$$O_2^{2-} \rightarrow O_2 + 2e^-$$
....(i)

বিজারণ অর্ধবিক্রিয়া:

$$MnO_4^- + 5e^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$$
 (ii)

$$50_2^{2-} \rightarrow 50_2 + 10c^{-}$$

$$2MnO_4^- + 10e^- + 16H^+ \rightarrow 2Mn^{2+} + 8H_2O$$

 $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \rightarrow 5O_2 + K_2SO_4 + 2MnSO_4 + 8H_2O_4$

ঘ উদ্দীপকের (i) নং বিক্রিয়াটির সমতাকৃত সমীকরণ নিমুরূপ: $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \longrightarrow 5O_2 + 2MnSO_4 + K_2SO_4 + 8H_2O$ (5 × 34) g (5 × 22.4) L

এখন, STP তে,

(5 × 22.4) L O2 তৈরিতে H2O2 দরকার = (5 × 34) g

∴ 50 L O₂ তৈরিতে H₂O₂ দরকার =
$$\frac{170 \times 50}{5 \times 22.4}$$
 g
= 75.89 g

আবার, (ii) নং বিক্রিয়াটি:

$$2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$$

245.2 g $(3 \times 22.4) L$

এখন STP তে, 3 × 22.4 L O2 তৈরিতে KClO3 লাগবে = 245.2 g

∴ 50 L O₂ তৈরিতে KClO₃ লাগবে =
$$\frac{245.2 \times 50}{3 \times 22.4}$$
 g

$$= 182.44 g$$

সূতরাং 50 L অক্সিজেন উৎপন্ন করতে H2O এবং KClO3 এর ভিন্ন ভিন্ন পরিমাণ দরকার হবে।

প্রশ ▶ ১৪

1.0 g
1.0 g অশ্লীয়
FeSO ₄ দ্ৰবণ

0.05 M K2Cr2O7

Y-পাত্ৰ

(ক) সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ বঁগী?

যি. বো. ২২

- (খ) F'e²⁺ আয়ন জারক ও বিজারক উভয় হিসেবে ক্রিয়া করে কেন? ব্যাখ্যা [ঢা. বো. ২২; রা: বো. ২২; অনুরূপ প্রশ্ন: সি. বো. ২২; য. বো. ১৯]
- (গ) Y--পাত্রের দ্রবণে অক্সালিক এসিড যোগ করলে সংঘটিত জারুণ-বিঙাারণ বিক্রিয়া আয়ন-ইলেকট্রন পদ্ধতিতে সমতা বিধান কর।

[সি. বো. ২৩; ব. বো. ১৯]

(ঘ) উদ্দীর্গকের বিজারক পদার্থটি জারিত করতে $K_2Cr_2O_7$ এর কত মিদি প্রয়োৎদন হবে? গাণিতিকভাবে বিশ্লেষণ কর।

[সি. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২৩; ব. বো. ১৯]

পরিমাণগত রসায়ন > ACS FRB Compact Suggestion Book
সমাধানঃ

- বৈশের পদার্থের মধ্যে প্রাইমারি স্ট্যান্ডার্ড পদার্থের বৈশিষ্ট্য যেমন বিশুদ্ধতা, বাতাসে অপরিবর্তিত থাকা, রাসায়নিক নিজির ক্ষয় না করা অথবা ঘনমাত্রার পরিবর্তন না ঘটা ইত্যাদির কোনো একটির অভাব ঘটে তথ্বন এদেরকে সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ বলে।
- জারক-বিজারকের ইলেকট্রনীয় মতবাদ অনুসারে, রাসায়নিক বিক্রিয়ায় যে সকল পদার্থ ইলেকট্রন ত্যাগ করে জারিত হয় তাকে বিজারক আর যে সকল পদার্থ ইলেকট্রন গ্রহণ করে বিজারিত হয় তাদেরকে জারক বলে। Fe²⁺ আয়ন রাসায়নিক বিক্রিয়ায় ইলেকট্রন ত্যাগ এবং গ্রহণ উভয় করতে পারে। তাই Fe²⁺ আয়ন একাধারে একটি জারক ও বিজারক।

$$Fe^{2+} + 2e^{-} \rightarrow Fe$$
 (জারক)
 $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ (বিজারক)

গ Y-পাত্রের দ্রবণে অর্থাৎ $K_2Cr_2O_7$ এ অক্সালিক এসিড $(H_2C_2O_4)$ দ্রবণ যোগ করলে সংঘটিত বিক্রিয়া:

 $K_2Cr_2O_7 + H_2C_2O_4 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + CO_2 + H_2O$ উপর্যুক্ত জারণ-বিজারণ বিক্রিয়ার আয়নিক সমীকরণ,

$$Cr_2O_7^{2-} + C_2O_4^{2-} + H^+ \rightarrow CO_2 + Cr^{3+} + H_2O$$

জারণ অর্ধ-বিক্রিয়া:

$$C_2O_4^{2-} \rightarrow 2CO_2 + 2e^- \dots (1)$$

বিজারণ অর্ধ-বিক্রিয়াঃ

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$
 (2)

্র সমতাবিধানের জন্য (i) × 3 + (ii) করে পাই,

$$3C_2O_4^{2-} \rightarrow 6CO_2 + 6e^-$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

 $Cr_2O_7^{2-} + 14H^+ + 3C_2O_4^{2-} \rightarrow 2Cr^{3+} + 7H_2O + 6CO_2$

সমতাকৃত আয়নিক সমীকরণে দর্শক আয়নরূপে K^{+} ও SO_{4}^{2-} আয়ন যোগ করে পাই,

$$K_2Cr_2O_7 + 3H_2C_2O_4 + 4H_2SO_4 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O + 6CO_2$$

ত উদ্দীপকের বিজারক পদার্থটি $FeSO_4$ । অস্ট্রীয় $FeSO_4$ এর সাথে $K_2Cr_2O_7$ এর সমতাকৃত বিক্রিয়াটি নিম্নরূপ,

$$6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \rightarrow$$

$$3Fe_2(SO_4)_3 + K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O$$

বিক্রিয়া হতে, 1 mol $K_2Cr_2O_7 \equiv 6$ mol $FeSO_4$

ধরি, x mL K2Cr2O7 প্রয়োজন হবে।

∴ 1000 mL 1 M K2Cr2O7 দ্ৰবণ = 6 × 151.9 g FeSO4

∴ x mL 0.05 M
$$K_2Cr_2O_7$$
 जुन्म = $\frac{6 \times 151.9 \times x \times 0.05}{1000}$ g FeSO₄

প্রশ্নমতে,
$$\frac{6 \times 151.9 \times x \times 0.05}{1000} = 1.0$$

$$\Rightarrow x = \frac{1000}{6 \times 151.9 \times 0.05}$$

x = 21.944 mL

∴ 21.944 mL K₂Cr₂O₁ প্রয়োজন হবে। (Ans.)

প্রমু \triangleright ১৫ $A_2O_7^{2-} + Fe^{2+} + H^+ \rightarrow$ উৎপাদ

A এর পারমাণবিক সংখ্যা = 24

- (ক) আয়োডোমিতি টাইট্রেশন কী? [চ. রো. ২২: য. রো. ১৭]
- (খ) $H_2C_2O_4$ একটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ-ব্যাখ্যা কর। মি. বো. ২২া
- (গ) প্রদন্ত বিক্রিয়াটি আয়ন-ইলেকট্রন পদ্ধতিতে সমতা কর। দি. বো. ২৩; জনুরূপ প্রয়: কু. বো. ২৩, ২২; ব. বো. ২২, ২১; চ. বো. ২২; দি. বো. ২২, ১৯]
- (ঘ) উদ্দীপকের $A_2O_7^2$ এর পরিবর্তে BO_4^- (B এর পারমাণবিক সংখ্যা = 25) ব্যবহার করা হলেও আয়রনের পরিমাণ নির্ণয় করা সম্ভব- বিশ্লোষণ কর।

সমাধানঃ

- ক্র দ্রবণে একটি জারক পদার্থের সঙ্গে আয়োডাইড লবণের (KI) বিক্রিয়ায় যে আয়োডিন বিমৃক্ত হয় তাকে বিজারকের প্রমাণ দ্রবণ (যেমন থায়োসালফেট দ্রবণ) দ্বারা টাইট্রেশন করে বিমৃক্ত আয়োডিনের পরিমাণ নির্ণয় করার পদ্ধতিকে আয়োডোমিতি (Iodometry) বলে।
- যেসব পদার্থকে প্রকৃতি থেকে বিশুদ্ধরূপে সংগ্রহ করা যায়, যারা বায়ুর বিভিন্ন উপাদান যেমন: O_2 , CO, H_2O দ্বারা আক্রান্ত হয় না এবং যাদের দ্বারা প্রস্তুতকৃত দ্রবণের ঘনমাত্রা বহুদিন পর্যন্ত অপরিবর্তিত থাকে তাদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে। $H_2C_2O_4$ কে বিশুদ্ধ অবস্থায় পাওয়া যায়, বায়ুর সংস্পর্শে অপরিবর্তিত থাকে এবং এর দ্বারা প্রস্তুতকৃত দ্রবণের ঘনমাত্রাও বহুদিন পর্যন্ত অপরিবর্তিত থাকে। সূতরাং, $H_2C_2O_4$ একটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ।
- ্য উদ্দীপকের A পরমাণ্টি যেহেত্ Cr(24), সেহেত্ প্রদন্ত বিক্রিয়াটি হবে:

$$Cr_2O_7^{2-} + H^+ + Fe^{2+} \rightarrow Fe^{3+} + Cr^{3+} + H_2O$$

জারণ অর্ধ-বিক্রিয়া: $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$(i)

বিজারণ অর্ধবিক্রিয়া:

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$
 (ii)

সমতাবিধানের জন্য (i) × 6 + (ii) করে পাই,

 $6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-}$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

 $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$ এ সমতাকত আয়নিক সমীকরণে দর্শক আয়নরূপে K⁺ও SO²⁻ আ

এ সমতাকৃত আয়নিক সমীকরণে দর্শক আয়নরূপে K^{+} ও SO_{4}^{2} আয়ন যোগ করে পাই,

 $6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \rightarrow$

$$3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + 7H_2O + K_2SO_4$$

ঘ B পরমাণ্টি Mn(25) অর্থাৎ, BO_4^- আয়নটি MnO_4^- এখন $Cr_2O_7^{2-}$ এর পরিবর্তে MnO_4^- ব্যবহার করলে,

 $MnO_4^- + Fe^{2+} + H^+ \rightarrow Mn^{2+} + Fe^{3+} + H_2O$

∴ বিক্রিয়াটিঃ

 $10\text{FeSO}_4 + 2\text{KMnO}_4 + 8\text{H}_2\text{SO}_4 \rightarrow$

 $5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O$

অর্থাৎ

 $2 \text{ mol MnO}_4^- \equiv 10 \text{ mol Fe}^{2+}$

 $1 \text{ mol } MnO_4^- \equiv 5 \text{ mol } Fe^{2+}$

:. 1000 mL 1 M MnO₄ = 5×55.85 g Fe²⁺

$$\therefore 1 \text{ mL } 1 \text{ M MnO}_{4}^{-} = \frac{5 \times 55.85}{1000} \text{ g Fe}^{2+}$$

∴ V mL x M MnO₄ =
$$\frac{5 \times 55.85 \times V \times x}{1000}$$
 g Fe²⁺

এখানে ${
m MnO_4^-}$ এর আয়তন ও ঘনমাত্রার মান বসিয়ে আয়রনের পরিমাণ নির্ণয় করা সম্ভব।

असे > ১৬ मृन्यक्क्र-১: 0.80 g ভরের আয়রন ট্যাবলেটকে H₂SO₄ এ य দ্রবীভূত করে প্রাপ্ত 25 ml দ্রবণকে 0.1M KMnO4 দ্রবণ দারা টাইট্রেশন

করে আয়রন ট্যাবলেটের বিশুদ্ধতা যাচাই করা হল।

দৃশ্যকল্প-২:

ছি-ক্ষারীয় অস্ল	এক অ্ট্রীয় ক্ষার	HNO ₃
0.2 M	0.3 M	0.2 M
200 mL	300 mL	50 mL
K-পাত্র	L-পাত্র	<u>M-श्रोव</u>

(ক) নির্দেশক কী?

[य. त्वा. २७; म. त्वा. २७; ज. त्वा. २२; मि. त्वा. २२; मि. त्वा. २১, ১৯; त्रा. त्वा. ১৯] (খ) তীব্র অন্ন ও তীব্র ক্ষার টাইট্রেশনে কোন নির্দেশক উপযোগী? ব্যাখ্যা কর। চি. বো. ২২; কু. বো. ১৯]

(গ) দৃশ্যকল্প-২ থেকে M-পাত্রের দ্রবর্ণ দারা (K + L) পাত্রের মিশ্র দ্রবণের প্রশমন সম্ভব কিনা- বিশ্লেষণ কর। [চ. বো. ১৯]

(ঘ) দৃশ্যকল্প-১ এর টাইট্রেশনে আয়রনের বিভদ্ধতা নির্ণয়ে Na₂Cr₂O₇ ব্যবহার করা হলে, কোন জারক পদার্ষের সাহায্যে আয়রনের পরিমাণ নির্ণয় উত্তম? বিশ্লেষণ কর। কু. বো. ২২

সমাধান:

- ক টাইট্রেশনকালে বিক্রিয়া মাধ্যমে উপস্থিত থেকে যে পদার্থ নিজস্ব বর্ণ পরিবর্তনের দ্বারা টাইট্রেশনের সমান্তি বিন্দু নির্দেশ করে তাকে নির্দেশক বলে।
- তীব্র এসিড ও তীব্র ক্ষারের প্রশমনে দ্রবণের pH হয় 7। এ অবস্থায় প্রশম দ্রবণে সামান্য এসিড বা ক্ষার যোগ করলে দ্রবণের pH খুব দ্রুত পরিবর্তিত হয়। তীব্র এসিড ও তীব্র ক্ষারের টাইট্রেশনে বর্ণ পরিবর্তন পরিসর 4.0 -10.0 এর মধ্যে থাকে। এ দীর্ঘ pH পরিসরে যে কোনো নির্দেশক কার্যকর হয়। অর্থাৎ, ফেনলফথ্যালিন, মিথাইল অরেঞ্জ, মিথাইল রেড, থাইমল ব্র প্রভৃতি যে কোনো নির্দেশক এক্ষেত্রে কার্যকর হবে।
- গ K পাত্রের দ্বি-ক্ষারীয় অম্রের পরিমাণ,

$$n_a = V_a S_a$$

= 200 × 10⁻³ × 0.2

= 0.04 mol

L পাত্রে, এক অখ্লীয় ক্ষার আছে.

$$n_b = V_b S_b$$

$$=300 \times 10^{-3} \times 0.3$$

= 0.09 mol

K ও L পাত্রদ্বয় মিশ্রিত করলে,

K পাত্রের অম্লের 1 মোল L পাত্রের ক্ষারের 2 mol এর সাথে বিক্রিয়া করে [যেহেতু K পাত্রে দ্বি-ক্ষারীয় অমু ও L পাত্রে রয়েছে এক অম্লীয় ক্ষার]

∴ 0.04 mol অস্ত্র বিক্রিয়া করে $\frac{0.04 \times 2}{1}$ = 0.08 mol ক্ষারের সাথে

∴ ক্ষার অবশিষ্ট থাকবে (0.09 – 0.08) = 0.01 mol।

M পাত্রের HNO3 এর পরিমাণ,

$$n_a = V_n S_n$$

$$=50 \times 10^{-3} \times 0.2$$

= 0.01 mol

সুতরাং, (K + L) পাত্রের মিশ্রণের অবশিষ্ট ক্ষার এক অস্ত্রীয় ও M পাত্রের অস্লটি এক ক্ষারীয় এবং উভয়ের মোলসংখ্যা সমান হওয়ায় M পাত্রের দ্রবণ দ্বারা (K + L) পাত্রের মিশ্রণের পূর্ণ প্রশমন সম্ভব হবে।

Chemistry 2nd Paper Chapter-3 ➤ Chemistry 2nd Paper Chapter-3

আয়রন ট্যাবলেট ও H2SO4 এর বিক্রিয়ায় উৎপন্ন FeSO4 ও KMnO4 এর জারণ-বিজারণ বিক্রিয়াটি নিমুরপ:

$$K_2SO_4 + 5Fe_2(SO_4)_3 + 2MnSO_4 + 8H_2O$$

 \therefore 2 mol KMnO₄ = 10 mol Fe²⁺

∴ 1000 mL 2 M KMnO₄ = (10×55.85) g Fe²⁺

∴ 25 mL 0.1 KMnO₄ =
$$\frac{10 \times 55.85 \times 25 \times 0.1}{1000 \times 2}$$
 g Fe²⁺

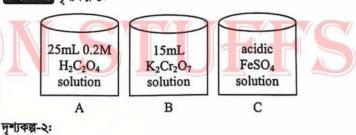
= 0.6981 g Fe

আবার, FeSO4 ও Na2Cr2O7 এর জারণ-বিজারণ বিক্রিয়াটি নিম্নরূপ:

 $Na_2Cr_2O_7 + 6FeSO_4 + 7H_2SO_4 \rightarrow$

$$3Fe_2(SO_4)_3 + Na_2SO_4 + Cr_2(SO_4)_3 + 7H_2O$$

∴ 1 mol Na₂Cr₂O₇ \equiv 6 mol Fe²⁺


:. 1000 mL 1 M Na₂Cr₂O₇ = 6×55.85 g Fe²⁺

∴ 25 mL 0.1 M Na₂Cr₂O₇ =
$$\frac{6 \times 55.85 \times 25 \times 0.1}{1000}$$
 g Fe²⁺

এখানে, KMnO₄ ও Na₂Cr₂O₇ জারকদ্বরের মধ্যে Na₂Cr₂O₇ প্রাইমারী স্ট্যান্ডার্ড পদার্থ হওয়ায় এর 0.1 M ঘনমাত্রার দ্রবণ তৈরি সহজসাধ্য, ঘনমাত্রা সহজে পরিবর্তন হয় না, বাতাসের জলীয় বাষ্প দ্বারাও আক্রান্ত হয় না। সেখানে, KMnO₄ সেকেন্ডারী স্যান্ডার্ড পদার্থ হওয়ায় দ্রবণের ঘনমাত্রা পরিবর্তিত হয়ে যায়, বাতাসের জলীয় বাস্পের সাথে সহজে বিক্রিয়া করে তথা বিশুদ্ধ অবস্থায় পাওয়া যায় না।

অতএব, KMnO4 এর চেয়ে Na2Cr2O7 এর সাহায্যে Fe এর পরিমাণ নির্ণয় করা উত্তম।

প্রশ্ন ১ ১৭ দৃশ্যকল্প-১:

4.9% 50 ml H₂SO₄ দ্রবণ

- (क) Redox विकिय़ा की?
- মি. বো. ২৩; সি. বো. ২৩; ম. বো. ২১]
- (খ) মোলাল দ্রবণ তাপমাত্রার উপর নির্ভরশীল কিনা ব্যাখ্যা কর। বি. বো. ২২)
- (গ) দৃশ্যকল্প-২ এর পাত্রের দ্রবণের ঘনমাত্রাকে ppb এককে রূপান্তর কর।
- (ঘ) দৃশ্যকল্প-১ থেকে C পাত্রের আয়রনের পরিমাণ নির্ণয় করতে A ও B এর মধ্যে কোন দ্রবণটি উপযুক্ত? বিশ্লেষণ কর।

পরিমাণগত রসায়ন ➤ ১৫১৮ FRB Compact Suggestion Book সমাধানঃ

- যে রাসায়নিক বিক্রিয়ায় বিক্রিয়কসমৃহের মধ্যে একই সাথে ইলেকট্রনের দান-গ্রহণ ঘটে তাকে Redox বিক্রিয়া বলা হয়।
- ব 1000 g দ্রাবকের মধ্যে কোনো দ্রবের 1 mol দ্রবীভূত থাকলে দ্রবণটিকে মোলাল দ্রবণ বলা হয়। দ্রবণের মোলালিটি দ্রাবকের ভর ও দ্রবের মোলসংখ্যার সাথে সম্পর্কযুক্ত। তাপমাত্রার পরিবর্তনে দ্রাবকের ভর বা দ্রবের মোল সংখ্যার কোনো পরিবর্তন ঘটে না। অতএব, মোলাল দ্রবণ তাপমাত্রার উপর নির্ভরশীল নয়।
- ্বা এখানে, শতকরা হারে H_2SO_4 এর ঘনমাত্রা = 4.9% আয়তন V = 50 ml আণবিক ভর M = 98

∴ দ্রবণের ঘনমাত্রা
$$S = \frac{10x}{M}$$

$$= \frac{10 \times 4.9}{98}$$

$$= 0.5 M$$

∴ ppb এককে ঘনমাত্রা = SM × 10⁶ = 0.5 × 98 × 10⁶ = 49 × 10⁶ ppb

- ∴ দৃশ্যকল্প-২ এর পাত্রের ঘনমাত্রা = 49 × 10⁶ ppb
- দৃশ্যকল্প-১ এর C পাত্রের Fe এর পরিমাণ নির্ণয় করতে A পাত্র তথা $H_2C_2O_4$ ব্যবহার করা যাবে না। যেহেতু উভয়ই বিজারক। আবার, B পাত্রের $K_2C_{12}O_7$ দ্বারা Fe এর পরিমাণ নির্ণয় করা সম্ভব হলেও এখানে $K_2C_{12}O_7$ এর দনমাত্রা অজানা। তাই প্রথমে A পাত্রের $H_2C_2O_4$ এর সাহায্যে $K_2C_{12}O_7$ এর ঘনমাত্রা নির্ণয় করে তারপর C পাত্রের Fe এর পরিমাণ নির্ণয় করা যাবে। $H_2C_2O_4$ ও $K_2C_{12}O_7$ এর বিক্রিয়ায়—

3H₂C₂O₄ + K₂C_{T2}O₇ + 4H₂SO₄ → Cr₂(SO₄)₃ + 6CO₂ + 7H₂O + K₂SO₄ বিক্রিয়া হতে,

$$\frac{n_{K_2Cr_2O_7}}{n_{H_2C_2O_4}} = \frac{1}{3}$$

$$\Rightarrow n_{K_2Cr_2O_7} = \frac{1}{3} \times n_{H_2C_2O_4}$$

$$\Rightarrow V_1S_1 = \frac{1}{3} \times V_2S_2$$

$$\Rightarrow S_1 = \frac{V_2S_2}{3 V_1} = \frac{25 \times 10^{-3} \times 0.2}{3 \times 15 \times 10^{-3}}$$

$$\Rightarrow S_1 = 0.111 M$$

অপ্লীয় মাধ্যমে $K_2Cr_2O_7$ এর সাথে $FeSO_4$ এর বিক্রিয়ায়: $6FeSO_4+K_2Cr_2O_7+7H_2SO_4\rightarrow 3Fe_2(SO_4)_3+Cr_2(SO_4)_3+K_2SO_4+7H_2O$ অর্থাৎ, $1\ mol\ K_2Cr_2O_7\equiv 6\ mol\ Fe^{2+}$

∴ 1000 mL 1 M $K_2Cr_2O_7 = 6 \times 55.85$ g Fe^{2+}

∴ 15 mL 0.111 M K₂Cr₂O₇ =
$$\frac{6 \times 55.85 \times 15 \times 0.111}{1000 \times 1}$$

= 0.55 g Fe²⁺

∴ C পাত্রের Fe নির্ণয়ে B পাত্রের দ্রবণটি উপযুক্ত।

প্রা > ১৮ দৃশ্যকল্প-১: একটি 1g ভরের লোহার টুকরাকে লঘু H₂SO₄ এ দ্রবীভূত করে 0.04 M KMnO₄দ্রবদের 60 mL দ্বারা পূর্ণ জারিত করা হলো। দৃশ্যকল্প-২:

KMnO₄ : 30 mL 0.5 M

(ক) প্রমাণ দ্রবণ কী?

[त्रा. त्वा. ১৭]

(थ) জाরণ সংখ্যা ও যোজনীর মধ্যে দৃটি পার্থক্য লিখ।

কু. বো. ২২

- (গ) অন্লীয় মাধ্যমে H₂S এর সাথে দৃশ্যকল্প-২ এর দ্রবণের বিক্রিয়াটি আয়ন-ইলেকট্রন পদ্ধতিতে সমতাকরণ কর। (রা. বো. ২১)
- (ঘ) প্রদন্ত লোহার টুকরাটিতে ভেজালের শতকরা পরিমাণ নির্ণয় কর।
 [য. বো. ২১; অনুরূপ প্রয়: চ. বো. ২২, ২১; চা. বো. ২১; য়া. বো. ১৯]

সমাধানঃ

- ক কোনো প্রাইমারি স্ট্যান্ডার্ড পদার্থের নমুনা দিয়ে তৈরি করা দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকলে তাকে ঐ নমুনা দ্রবের প্রমাণ দ্রবণ বলে।
- জারণ সংখ্যা ও যোজনীর মধ্যে পার্থক্য নিম্নর্নপ:

জারণ সংখ্যা	যোজনী	
মৌগ গঠনের সময় কোনো মৌলের ইলেকট্রন বর্জন বা গ্রহণের ফলে সৃষ্ট		
ধনাত্মক বা ঋণাত্মক চার্জের সংখ্যাকে	বর্জন বা শেয়ার করে তাকে ঐ	
ঐ মৌলের জারণ সংখ্যা বলে।	মৌলের যোজনী বলে।	
জারণ সংখ্যা পূর্ণ বা ভগ্নাংশ হতে	যোজনী পূর্ণ সংখ্যা হয়, কখনো	
পারে।	ভগ্নাংশ হয় না।	

 H_2S এর অস্ত্রীয় দ্রবণে $KMnO_4$ চালনা করলে নিম্নোক্ত বিক্রিয়া ঘটে: $KMnO_4 + H_2SO_4 + H_2S \rightarrow MnSO_4 + S + K_2SO_4 + H_2O$ উপরোক্ত রিজক্স বিক্রিয়ার আয়নিক সমীকরণটি হলো:

$$MnO_4^- + S^{2-} + H^+ \rightarrow Mn^{2+} + S + H_2O$$

জারণ অর্ধ-বিক্রিয়া: $S^{2-} \rightarrow S + 2e^-$ (1)

বিজারণ অর্ধ-বিক্রিয়াঃ

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (2) সমতাবিধানের জন্য (1) × 5 + (2) × 2 করে পাই,

$$5S^2 \rightarrow 5S + 10 e^{-}$$

$$2MnO_4^- + 16 H^+ + 10e^- \rightarrow 2Mn^{2+} + 8H_2O$$

 $2MnO_4^- + 16H^+ + 5S^{2-} \rightarrow 2Mn^{2+} + 5S + 8H_2O$

এ সমতাকৃত আয়নিক সমীকরণে দর্শক আয়নরূপে K^+ ও SO_4^{2-} আয়ন যোগ করে আণবিক সমীকরণ পাই-

 $2KMnO_4 + 5H_2S + 3H_2SO_4 \rightarrow 2MnSO_4 + 5S + K_2SO_4 + 8H_2O_4$

অ্লীয় H₂SO₄ এ Fe দ্রবীভূত করে KMnO₄ দ্বারা জারণে সংঘটিত বিক্রিয়া: 10FeSO₄ + 2KMnO₄ + 8H₂SO₄ → 5Fe₂(SO₄)₃ + 2MnSO₄ + K₂SO₄ + 8H₂O
অর্থাৎ

2 mol KMnO₄ \equiv 10 mol Fe²⁺

- ∴ 1000 mL 2M KMnO₄ = 10×55.85 g Fe²⁺
- ∴ 60 mL 0.04m KMnO₄ = $\frac{10 \times 55.85 \times 60 \times 0.04}{1000 \times 2}$ g Fe²⁺ = 0.67g Fe²⁺
- :. ভেজালের শতকরা পরিমাণ = $\frac{(1-0.67)}{1} \times 100\%$ = 33%

প্রসা ১ ১৯ X ও Y কোম্পানির 10 ml , টিংচার আয়োডিন দরদ

ছক নিম্নরূপ:

কোম্পানি	ব্যবহৃত Na ₂ S ₂ O ₃ এর আয়তন	Na ₂ S ₂ O ₃ এর ঘনমাত্রা
X	15 mL	2.48%
Y	10 mL	2.68%

- (ক) ক্ষারকত্ব কী?
- (খ) LiA/H4 এর কেন্দ্রীয় পরমাণুর জারণ সংখ্যা নির্ণয় কর। াস. বো. ১৭
- (গ) টিংচার আয়োভিনের মৌলটি বিজ্ঞারক হিসেবেও আচরণ করে-ব্যাখ্যা করো। [য. বো. ১৯]
- (घ) কোন কোম্পানির টিংচার আয়োডিনে আয়োডিনের ঘনমাত্রা অধিক?
 গাণিতিকভাবে বিশ্লেষণ করো।
 [য. বো. ১৯]

সমাধানঃ

- ক এক মোল অদ্র যত মোল NaOH বা এক অদ্রীয় ক্ষারকে প্রশমিত করতে পারে অথবা যত মোল H[†] দান করতে পরে তাকে সেই অদ্রের ক্ষারকত্ব বলে।
- LiA/H₄ মৌগে Li এর জারণ সংখ্যা +1 এবং H এর জারণ সংখ্যা −1 ।
 ধরি, A/ এর জারণ সংখ্যা x ।

$$\therefore +1+x+(-1)\times 4=0$$

$$\Rightarrow x-4+1=0$$

$$\therefore x = +3$$

সূতরাং, LiA/H4 যৌগে A/ এর জারণ সংখ্যা +3

গ টিংচার আয়োডিন হল আয়োডিন (I₂) ও সোডিয়াম আয়োডাইড (NaI) বা পটাশিয়াম আয়োইডের (KI) এর মিশ্রণ। উদ্দীপক অনুসারে টিংচার আয়োডিনের মৌলটি হল I যা বিজারক হিসেবে ও কাজ করে।

শীতল ও লঘু NaOH এর সাথে বিক্রিয়ায় I_2 হাইপো আয়োডাস এসিড উৎপন্ন করে।

$$NaOH + \stackrel{0}{I}_{2} \rightarrow NaI^{-1} + HOI^{+1}$$

বিক্রিয়ায় I_2 এর একটি পরমাণু জারিত হয়ে 0 থেকে +1 অবস্থায় যায় $(HOI\ co)$ এবং অপরটি বিজারিত হয়ে 0 থেকে -1 অবস্থায় যায় $(NaI\ co)$ । প্রথম ক্ষেত্রে আয়োভিন বিজারক এবং দ্বিতীয় ক্ষেত্রে জারক হিসেবে কাজ করে।

আবার, উত্তপ্ত NaOH এর সাথে বিক্রিয়ায় একই সাথে সোডিয়াম আয়োডাইড ও আয়োডেট উৎপন্ন করে।

$$6\text{NaOH} + \overset{0}{\text{I}_2} \longrightarrow \text{NaIO}_3 + \text{NaI}^{-1} + 3\text{H}_2\text{O}$$

বিক্রিয়কে I এর জারণ মান শূন্য, যেখানে উৎপাদ $NaIO_3$ তে + 5 অর্থাৎ I বিজারক হিসেবে কাজ করে। আবার উৎপাদ NaI এ I এর জারণ মান -1 অর্থাৎ, এক্ষেত্রে জারক হিসেবে কাজ করছে।

উপর্যুক্ত আলোচনার প্রেক্ষিতে বলা যায়, টিংচার আয়োডিনের মৌলটি বিজারক হিসেবে ও আচরণ করে।

...... ACS/ > Chemistry 2nd Paper Chapter-3

প্রম্ন ho ho ho ho ho কোম্পানির ho hoL টিংচার আয়োডিন দ্রবণের টাইট্রেশনের ho ho

$$Na_2S_2O_3$$
 এর ঘনমাত্রা $S = \frac{10x}{M}$

$$= \frac{10 \times 2.48}{158}$$

$$= 0.156M$$

$$Na_2S_2O_3$$
 এর পরিমাণ $n = SV$
= $0.156 \times 15 \times 10^{-3}$
= 2.35×10^{-3} mol

2 mol Na₂S₂O₃ \equiv 1 mol I₂

- $\therefore 2.35 \times 10^{-3} \text{ mol Na}_2 \text{S}_2 \text{O}_3 \equiv 1.175 \times 10^{-3} \text{mol I}_2$
- ∴ X কোম্পানির টিংচার আয়োডিনে আয়োডিনের ঘনমাত্রা,

$$S_x = \frac{n}{V}$$

$$= \frac{1.175 \times 10^{-3}}{10 \times 10^{-3}}$$

$$= 0.117M$$
আবার, Y কোম্পানির ক্ষেত্রে,

$$Na_2S_2O_3$$
 এর ঘনমাত্রা $= \frac{10x}{M}$
 $= \frac{10 \times 2.68}{158}$

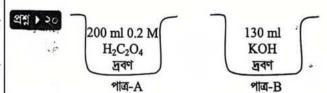
$$= 0.169 \times 10 \times 10^{-3}$$

= 1.69×10^{-3} mol

$$2 \text{ mol Na}_2S_2\Theta_3 \equiv 1 \text{ mol } I_2$$

$$1.69 \times 10^{-3} \text{ mol Na}_2 \text{S}_2 \text{O}_3 = \frac{1 \times 1.69 \times 10^{-3}}{2} \text{ mol I}_2$$

= $8.45 \times 10^{-4} \text{ mol I}_2$


∴ Y কোম্পানির টিংচার আয়োডিনে আয়োডিনের ঘনমাত্রা,

$$S_{Y} = \frac{n}{V}$$

$$= \frac{8.45 \times 10^{-4}}{10 \times 10^{-3}}$$

$$= 0.0845 \text{ M}$$

∴ X কোম্পানির টিংচার আয়োড়িনে আয়োড়িনের ঘনমাত্রা অধিক।

(ক) টাইটার কী?

- [সি. বো. ২৩]
- (খ) 0.01M Na₂CO₃ দ্রবর্ণ একটি প্রমাণ দ্রবণ-ব্যাখ্যা কর। বি. বো. ২৩।
- (গ) উদ্দীপকের B-পাত্রের দ্রবণকে সম্পূর্ণরূপে প্রশমিত করতে A-পাত্রের সম্পূর্ণ দ্রবণের প্রয়োজন হলে দ্রবণে দ্রবীভৃত KOH এর পরিমাণ নির্ণয় কর।
- পাত্র-A এর দ্রবণকে পাত্র-B এর দ্রবণ দ্বারা টাইন্ট্রেট করতে কোন নির্দেশক উপযোগী? নির্দেশক লেখচিত্রের সাহায্যে ব্যাখ্যা কর।

[ঢা. বো. ২৩; অনুরূপ প্রস্ল: ঢা. বো. ২১]

পরিমাণগত রসায়ন > ACS, FRB Compact Suggestion Book..

সমাধানঃ

ত্ত্ব আয়তনিক বিশ্লেষণকালে টাইট্রেশনে ব্যবহৃত প্রমাণ দ্রবণ বা জ্ঞাত ঘনমাত্রার দ্রবণটিকে টাইটার বলে।

ব দ্রবণের ঘনমাত্রা সুনির্দিষ্টভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বা স্ট্যাভার্ড দ্রবণ বলে। কোনো Na₂CO₃ দ্রবণের প্রতি লিটার বা 1 dm³ বা 1000 mL

কোনো Na_2CO_3 দ্রবণের প্রতি লিটার বা $1~dm^3$ বা 1000~mL আয়তনে দ্রবের 0.01 মোল পরিমাণ Na_2CO_3 দ্রবীভৃত থাকলে উৎপন্ন দ্রবণের ঘনমাত্রা $0.01~mol~L^{-1}$ বা 0.01~M হয়। যেহেতু এই দ্রবণের প্রতি লিটারে দ্রবের নির্দিষ্ট পরিমাণ অর্থাৎ 0.01~মোল Na_2CO_3 দ্রবীভৃত থাকে এবং দ্রবের এই পরিমাণ নির্দিষ্টভাবে জানা থাকে, তাই $0.01~M~Na_2CO_3$ দ্রবণ একটি প্রমাণ দ্রবণ।

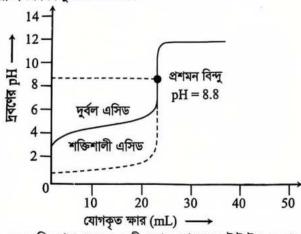
পাত্র-A এর অক্সালিক এসিডের সাথে পাত্র-B এর কস্টিক পটাশ এর মধ্যকার প্রশমন বিক্রিয়াটি নিমুন্ধপ:

 $H_2C_2O_4 + 2KOH \rightarrow K_2C_2O_4 + 2H_2O$ বিক্রিয়া হতে,

$$\frac{n_{\text{H}_2\text{C}_2\text{O}_4}}{n_{\text{KOH}}} = \frac{1}{2}$$

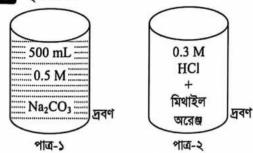
$$\Rightarrow 2 \times S_{H_2C_2O_4} \times V_{H_2C_2O_4} = \frac{W_{KOH}}{M_{KOH}}$$

$$\Rightarrow W_{KOH} = 2 \times S_{H_2C_2O_4} \times V_{H_2C_2O_4} \times M_{KOH}$$

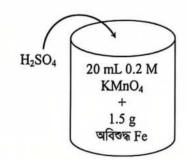

$$\Rightarrow$$
 W_{KOH} = 2 × 0.2 × 200 × 10⁻³ × 56.1
= 4.488 g

∴ পাত্র B এর দ্রবণে দ্রবীভৃত KOH এর পরিমাণ 4.488 g

য যেহেতু পাত্র A ও পাত্র B এর দ্রবণে যথাক্রমে মৃদু এসিড $(H_2C_2O_4)$ ও তীব্র ক্ষার KOH বিদ্যমান সেহেতু এদের টাইট্রেশনে ফেনলফথ্যালিন উপযুক্ত নির্দেশক।


এসিড ও ক্ষারদ্বয়ের মধ্যে প্রশমন বিক্রিয়াটি নিমুরূপ:

 $H_2C_2O_4 + 2KOH \longrightarrow K_2C_2O_4 + 2H_2O$ টাইট্রেশনকালে উৎপন্ন লবণটি মৃদু এসিড ও তীব্র ক্ষার হতে উৎপন্ন হওয়ায় $K_2C_2O_4$ (পটাশিয়াম অক্সালেট) দ্রবণের প্রকৃতি ক্ষারকীয় । ফলশ্রুতিতে, এক্ষেত্রে প্রশমন বিন্দুতে pH এর মান 8-10 এর মধ্যে হয় । এ জাতীয় টাইট্রেশনে এমন নির্দেশক ব্যবহার করতে হবে যার প্রশমন বর্ণ ক্ষারীয় এলাকায় পড়ে । ফেনলফথ্যালিনের বর্ণ পরিবর্তনের pH সীমা 8.3-10 হওয়ায় ফেনলফথ্যালিন কার্যকর ভূমিকা রাখবে । অশ্রীয় মাধ্যমে বর্ণহীন অবস্থা থেকে হঠাৎ গোলাপি লাল বর্ণ পরিবর্তন ঘারা প্রশমন বিন্দু নির্দেশ করবে ।



চিত্র: মৃদু এসিড $(H_2C_2O_4)$ ও তীব্র ক্ষারের (KOH) টাইট্রেশন লেখ।

প্রশা ১২১ দৃশ্যকল্প-১:

দৃশ্যকন্প-২:.

(ক) মোলারিটি কাকে বলে?

[চ. বো. ২৩, ২১; য. বো. ২৩, ১৯; সি. বো. ২২; রা. বো. ২১]

(খ) "সেমিমোলার দ্রবণ একটি প্রমাণ দ্রবণ"-ব্যাখ্যা কর।

সিম্মিলিত বো. ১৮; দি. বো. ১৭; অনুরূপ প্রশ্ন: ঢা. বো. ১৭; সি. বো. ১৭]

(গ) দৃশ্যকল্প-২ এর জারক পদার্থের পূর্ণ প্রশমনে $20~{
m mL}~{
m H}_2{
m O}_2$ যোগ করা হলে ${
m H}_2{
m O}_2$ এর ঘনমাত্রা নির্ণয় কর।

চি. বো. ২১; অনুরূপ প্রশ্ন: রা. বো. ১৯]

(ঘ) দৃশ্যকল্প-১ থেকে পাত্র-২ এর দ্রবর্ণ ব্যবহার করে পাত্র-১ এর দ্রবর্ণকে পূর্ণ প্রশামনে সমান্তি বিন্দু নির্ণয়ে নির্দেশকের ভূমিকা বিশ্লেষণ কর।

[য. বো. ২১]

সমাধান:

ক নির্দিষ্ট তাপমাত্রায় এক লিটার দ্রবণে যত মোল দ্রব দ্রবীভূত থাকে, তাকে ঐ দ্রবণে দ্রবটির মোলারিটি বলে।

যে দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বলা হয়। সেমিমোলার দ্রবণের ক্ষেত্রে ঘনমাত্রা হল 0.5 M বা 0.5 molL⁻¹ অর্থাৎ, নির্দিষ্ট তাপমাত্রায় 1L বা 1000 mL দ্রাবকে 0.5 mol দ্রব দ্রবীভূত থাকে। যেহেতু, সেমিমোলার দ্রবণের নির্দিষ্ট আয়তনে দ্রবের পরিমাণ নির্দিষ্ট অর্থাৎ ঘনমাত্রা সঠিকভাবে জানা থাকে সেহেতু সেমি মোলার দ্রবণ একটি প্রমাণ দ্রবণ।

্বা অম্লীয় H_2SO_4 দ্রবণে $KMnO_4$ ও H_2O_2 এর মধ্যে সংঘটিত জারণ বিজ্ঞারটি নিমুরূপ:

 $2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \rightarrow 2MnSO_4 + 5O_2 + K_2SO_4 + 8H_2O$ पर्शा
९, 2 mol $KMnO_4 \equiv 5$ mol H_2O_2

আমরা জানি,

2 mol KMnO₄ \equiv 5 mol H₂O₂

$$\therefore \frac{n_{\text{KMnO}_4}}{n_{\text{H}_2\text{O}_2}} = \frac{2}{5}$$

বা,
$$n_{H_2O_2} = \frac{5}{2} \times n_{KMnO_4}$$

এখানে,

 $S_{KMnO_4} = 0.2 M$

 $V_{KMnO_4} = 20 \text{ mL}$

 $V_{\rm H_2O_2} = 20 \text{ mL}$

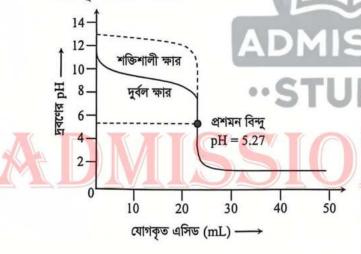
 $S_{H_2O_2} = ?$

वा, $S_{H_2O_2} \times V_{H_2O_2} = \frac{5}{2} \times S_{KMnO_4} \times V_{KMnO_4}$

বা,
$$S_{H_2O_2} \times 20 = \frac{5}{2} \times 0.2 \times 20$$

ৰা,
$$S_{H_2O_2} = \frac{5 \times 0.2 \times 20}{2 \times 20}$$

$$\therefore S_{H_2O_2} = 0.5 M$$


সূতরাং, H_2O_2 এর ঘনমাত্রা = 0.5 M

য পাত্র-1 ও পাত্র-2 এর দ্রবণদ্বয় যথাক্রমে মৃদু ক্ষার (Na2CO3) ও তীব্র এসিড (HCI) হওয়ায় এদের টাইট্রেশনে মিথাইল অরেঞ্জ বা মিথাইল রেড ব্যবহারযোগ্য।

দ্রবণদয়ের মিশ্রণে সংঘটিত প্রশমন বিক্রিয়াটি হল:

 $2HCI + Na₂CO₃ \longrightarrow 2NaCI + H₂O + CO₂$

Na₂CO₃ দ্রবদে তীব্র এসিড HCI ফোঁটায় ফোঁটায় যোগ করা হলে pH ধীরে ধীরে ্রাস পেতে থাকে। প্রশমন বিন্দুতে সামান্য এসিড যোগ করা হলে pH আকম্মিকভাবে হ্রাস পেয়ে 7 থেকে 4 হয়। এক্ষেত্রে এমন নির্দেশক ব্যবহার করতে হবে যার প্রশমন বর্ণ অম্লীয় এলাকায় পড়ে। মিথাইল অরেঞ্জের বর্ণ পরিবর্তনের pH সীমা (3.1-4.5) ও মিথাইল রেড এর ক্ষেত্রে (4.2-6.3) হওয়ায় এখানে মিথাইল অরেঞ্জ বা মিথাইল রেড এর যেকোন একটি ব্যবহারে টাইট্রেশনের সমাপ্তি বিদ্য নির্ণয়ে ভূমিকা রাখতে পারবে।

প্রমা ১২২ 0.55g বিশুদ্ধ চুনাপাথর 55 mL HCl দ্রবণে দ্রবীভূত করা হলো। দ্রবণটি পূর্ণরূপে প্রশমন করতে অতিরিক্ত 28 mL 0.4 M NH4OH দ্রবণ প্রয়োজন।

- (ক) স্বতঃরিডক্স বিক্রিয়া কী?
- (খ) অখ্লীয় KMnO4 জারক পদার্থ কেন? [সি. বো. ২৩; কু. বো. ১৯]
- (গ) কত অণু গ্যাসীয় পদার্থ উৎপন্ন হবে যখন উদ্দীপকের বিশুদ্ধ বস্তুকে তাপীয় বিয়োজন করা হয়?
- (घ) উদ্দীপকের টাইট্রেশনে কোন নির্দেশক ব্যবহার করা যুক্তিযুক্ত? pH মানের আলোকে বিশ্লেষণ করো। মি. বো. ২১; অনুরূপ প্রশ্ন: কু. বো. ২২ সমাধান:

Rhombus Publications

..... ACS > Chemistry 2nd Paper Chapter-3 ক যে বিক্রিয়ায় কোনো বিক্রিয়ক পদার্থের অণুস্থিত কোনো মৌলের

পরমাণু জারিত হয় এবং একই সাথে ঐ একই অণুস্থিত অপর মৌলের পরমাণু বিজারিত হয়, তখন সে বিক্রিয়াকে স্বতঃরিডক্স বিক্রিয়া বলে।

ব অন্নীয় মাধ্যমে KMnO₄ এর জারণ অর্ধ-বিক্রিয়াটি নিম্নরূপ: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ অর্থাৎ, এখানে KMnO4 এর MnO4 আয়ন ইলেকট্রন গ্রহণ করে Mn²⁺ আয়নে বিজারিত হয় এবং অন্যের জারণ ঘটায়। অতএব, অশ্লীয় KMnO₄ জातक পদার্থ হিসেবে বিক্রিয়ায় ভূমিকা রাখে।

= 100 g/mol

গ চুনাপাথরের সংকেত = CaCO₃ তাপীয় বিয়োজন করা হলে নিম্রোক্ত বিক্রিয়া ঘটে: $CaCO_3 \rightarrow CaO + CO_2(g)$ $CaCO_3$ এর আণবিক ভর = $(40 + 12 + 16 \times 3)$

$$\Rightarrow$$
 $n_{CO_2} = n_{CaCO_3}$

$$\Rightarrow \frac{N_{CO_2}}{N_A} = \frac{W_{CaCO_3}}{M_{CaCO_3}}$$

$$\Rightarrow N_{CO_2} = \frac{W_{CaCO_3} \times N_A}{M_{CaCO_3}}$$

$$=\frac{0.55\times6.022\times10^{23}}{100}$$

$$= 3.312 \times 10^{21} \, \text{lb} \, (\text{Ans.})$$

ঘা HCl এ দ্রবণে CaCO₃ এবং NH₄OH যোগ করলে সংঘটিত বিক্রিয়াটি নিমুরপঃ

$$CaCO_3 + 2HCI \rightarrow CaCI_2 + H_2O + CO_2$$

$$CO_2 + 2NH_4OH \rightarrow (NH_4)_2CO_3 + H_2O$$

$$HCl + NH_4OH \rightarrow NH_4Cl + H_2O$$

1 mol
$$CaCO_3 \equiv 2 \mod HCl$$

: 100g CaCO3 থেকে উৎপন্ন হয় 1 mol CO2 গ্যাস

$$= \frac{1 \times 0.55}{100} \text{ mol CO}_2$$

$$= 0.0055 \text{ mol CO}_2$$

আবার, 1 mol HCI = 1 mol NH4OH

: 1 mol CO2 গ্যাস ≡ 2 mol NH4OH

0.0055 mol CO₂ গাস ≡ 2 × 0.0055 mol NH₄OH

 $= 0.011 \text{ mol NH}_4\text{OH}$ প্রশ্নমতে, 28 mL দ্রবর্ণে 0.011 mol NH4OH দ্রবীভূত আছে

∴1 L বা, 1000 mL দ্ৰবণে $\frac{0.011 \times 1000}{28}$ mol NH₄OH

= 0.393 mol NH₄OH দ্রবীভূত আছে।

যেহেতু, 1 mol NH4OH = 1 mol HCl

∴ 0.393 mol NH₄OH = 0.393 mol HCl

∴ দ্রবর্ণে HC/ এর মোলার ঘনমাত্রা 0.393 M

পরিমাণগত রসায়ন > ACS/ FRB Compact Suggestion Book

 $pH = -\log [H^{\dagger}]$ $= -\log [0.393]$ = 0.4056

সবল এসিড ও দুর্বল ক্ষারের প্রশমন বিক্রিয়ায় উৎপন্ন লবণ NH4Cl এর অর্দ্র বিশ্লেষণে NH আয়ন সৃষ্টি হয় যা দুর্বল এসিড হিসেবে কাজ করে। ফলে এ ধরনের টাইট্রেশনে প্রশমন বিন্দুতে pH এর মান 7 অপেক্ষা কম হয়। সামান্য এসিড যোগের ফলে pH রেঞ্চ (4.0 - 7.0) হয়। এই pH মানের পরিসরে মিথাইল অরেঞ্জ বা মিথাইল রেড ব্যবহৃত হয়।

NH₄Cl → NH₄ + Cl $NH_4^+ + H_2O \rightarrow NH_4OH + H^+$

দৃশ্যকল্প-১: অনু > ২০

4.9% 10 mL 50 mL ডেসিমোলার H2SO4 NaOH দ্রবণ দ্ৰবণ A-পাত্ৰ B-পাত্ৰ

দৃশ্যকল্প-২:

0.52 g Fe 2.94 g +H2SO4 K2Cr2O2 দ্ৰবণ 100 mL দ্ৰবণ-২ দ্ৰবণ-১ বি. বো. ২৩)

- (ক) মোল ভগ্নাংশ কাকে বলে?
- (ব) 10% NaOH এর ঘনমাত্রা নির্ণয় কর।

[কু. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২২; ম. বো. ২১]

- (গ) দৃশ্যকল্প-২ এর ১ নং দ্রবণকে সম্পূর্ণ জারিত করতে ২ নং দ্রবণের 10 mL প্রয়োজন হলে লোহার বিশুদ্ধতা গাণিতিকভাবে বিশ্লেষণ কর। [य. त्वा. २२; जनुक्रभ क्षत्रः त्रा. त्वा. २२; म. त्वा. २১; मि. त्वा. ১৯]
- (ঘ) দৃশ্যকল্প-১ এর A দ্রবণকে B দ্রবণ ঘারা টাইট্রেশন করতে কোনটি উপযুক্ত নির্দেশক-লেখচিত্রের মাধ্যমে ব্যাখ্যা কর।

রো. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২৩; য. বো. ১৯]

সমাধান:

- কোন মিশ্রণের একটি উপাদানের মোলসংখ্যার সাথে ঐ মিশ্রণে উপস্তিত মোট মোলসংখ্যার অনুপাতকে উক্ত উপাদানের মোল ভগ্নাংশ বলে।
- য এখানে,

শতকরায় NaOH এর ঘনমাত্রা, x = 10% NaOH এর আণবিক ভর, M = 40 আমরা জানি.

ঘনমাত্রা, S =
$$\frac{10x}{M}$$

= $\frac{10 \times 10}{40}$
= 2.5 M

: 10% NaOH এর ঘনমাত্রা 2.5 M

গ দ্রবণ -2 এর K2Cr2O2 এর ঘনমাত্রা,

$$S = \frac{1000W}{MV}$$

$$= \frac{1000 \times 2.94}{294 \times 100}$$

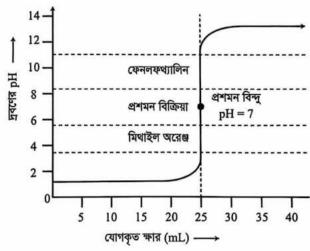
$$= 0.1M$$

দ্রবণ-1 এর সাথে দ্রবণ-2 এর সংঘটিত জারণ-বিজারণ বিক্রিয়াটি

 $6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \rightarrow 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + 7H_2O + K_2SO_4$ অর্থাৎ 1 mol K2Cr2O7 = 6 mol Fe2+

∴ 1000 mL 1M $K_2Cr_2O_7 = 6 \times 55.85$ g Fe^{2+}

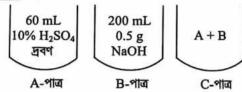
∴ 10 mL 0.1 M K₂Cr₂O₇ =
$$\frac{6 \times 55.85 \times 10 \times 0.1}{1000 \times 1}$$
 g Fe²⁺
= 0.3351 g


∴ Fe এর বিশুদ্ধতা =
$$\frac{0.3351}{0.52}$$
 × 100%
= 64.44%

পাত্র-A ও পাত্র-B এর দ্রবণদ্বয় যথাক্রমে তীব্র এসিড (H_2SO_4) ও তীব্র ক্ষার (NaOH) হওয়ায় এদের টাইট্রেশনে যে কোন নির্দেশকই ব্যবহারপোযোগী।

H2SO4 ও NaOH এর মধ্যকার প্রশমন বিক্রিয়াটি নিম্নরূপ:

 $H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$


এক্ষেত্রে এসিড ও ক্ষার উভয়ই তীব্র হওয়ায় প্রশমন বিন্দুতে pH মান থাকে 7। বিক্রিয়ায় উৎপন্ন লবণ Na2SO4 জলীয় দ্রবণে আর্দ্র বিশ্লেষিত না হওয়ায় প্রশমন বিন্দুতে সামান্য তীব্র এসিড বা ক্ষার যোগে pH পরিবর্তনের বিস্তার (3-10) হয়ে থাকে। ফলে মিথাইল অরেঞ্জ, মিথাইল तिष, रकननकथानिनमर क्षाय मन धतरनत निर्दम्भक अत्र वर्ष পরিবর্তনের pH ওই সীমার মধ্যে পড়ায় এ জাতীয় যে কোন নির্দেশক এক্ষেত্রে ব্যবহারযোগ্য। উদাহরণস্বরূপ নিৰ্দেশক **क्विनक्थानित वावशेत क्ता श्ल क्ष्मिम विन्मुट्ट ध्र वर्ष वर्षशैन** থেকে গোলাপি লাল হয়ে যায়।

চিত্র: সবল এসিড-সবল ক্ষারের টাইট্রেশন লেখচিত্র

...... ACS, > Chemistry 2nd Paper Chapter-3

গ্রন ১২৪ দৃশ্যকল-১:

দৃশ্যকল্প-২:

১ নং দ্রবণ	KI ও লঘু H₂SO₄ এর দ্রবণ	
২ নং দ্রবণ	KMnO ₄ এর দ্রবণ	

(ক) জারণের ইলেকট্রনীয় সংজ্ঞা দাও।

[সি. বো. ২৩]

- (খ) $10\% \left(\frac{W}{V}\right) H_2 SO_4$ দ্রবণের মোলারিটি কত?

[রা. বো. ২৩]

- (গ) দৃশ্যকল্প-২ এর ১ নং ও ২ নং দ্রবণের মধ্যে সংঘটিত বিক্রিয়া আয়ন-ইলেকট্রন পদ্ধতিতে সমতাকরণ কর।
 - রো. বো. ২২
- (घ) मृन्यकन्न-১ এর C-পাত্রের দ্রবণের pH এর মান কেমন হবে? গাণিতিকভাবে বিশ্লেষণ কর।

কু. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২৩; চ. বো. ২২; ব. বো. ১৯; সি. বো. ১৯)

- ক যে রাসায়নিক বিক্রিয়ায় পরমাণু, অণু বা আয়ন ইলেকট্রন বর্জন বা ত্যাগ করে তাকে জারণ বিক্রিয়া বলে।
- য এখানে,

শতকরায় H_2SO_4 এর ঘনমাত্রা, x = 10%H2SO4 এর আণবিক ভর, M = 98

আমরা জানি, মোলারিটি, S = $=\frac{10\times10}{}$

র উদ্দীপকের ১ নং এবং ২ নং দ্রবণ একত্র করলে নিশ্লোক্ত বিক্রিয়া সংঘটিত হয়,

= 1.02 M

 $KMnO_4 + KI + H_2SO_4 \rightarrow MnSO_4 + H_2O + I_2 + K_2SO_4$ উভয় পক্ষ থেকে দর্শক আয়ন K^+ ও SO_4^{2-} আয়ন বাদ দিয়ে সমীকরণটি

 $MnO_4^- + I^- + H^+ \rightarrow Mn^{2+} + H_2O + I_2$

জারণ অর্ধ বিক্রিয়া:

 $2\Gamma \rightarrow I_2 + 2e^-$ (i)

বিজারণ অর্ধ বিক্রিয়া:

 $MnO_4^- + 5e^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$ (ii) সমতা বিধানের জন্য (i) \times 5 + (ii) \times 2 করে পাই,

 $10\Gamma \rightarrow 5I_2 + 10e^-$

 $2MnO_4^- + 10e^- + 16H^+ \rightarrow 2Mn^{2+} + 8H_2O$

 $2MnO_{1}^{-} + 10\Gamma + 16H^{+} \rightarrow 5I_{2} + 2Mn^{2+} + 8H_{2}O$

এ সমতাকৃত আয়নিক সমীকরণে দর্শক আয়নরূপে K^+ ও SO_4^{2-} আয়ন যোগ করে সমতাকৃত সমীকরণ পাই,

 $2KMnO_4 + 10KI + 8H_2SO_4 -$

 $5I_2 + 2MnSO_4 + 8H_2O + K_2SO_4$

য এথানে,

$$S_A = \frac{10x}{M} = \frac{10 \times 10}{98}$$

= 1.02 mol L⁻¹

∴ H₂SO₄ এর ঘনমাত্রা= 1.02 M

$$n_A = S_A V_A$$

 $= (1.02 \times 60 \times 10^{-3}) \text{ mol}$

= 0.0612 mol

$$n_B = \frac{W_B}{M_B}$$

$$=\frac{0.5}{40}\,\mathrm{mol}$$

= 0.0125 mol

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

∴ 2 mol NaOH = 1 mol H₂SO₄

∴ 0.0125 mol NaOH = $\frac{0.0125}{2}$ mol H₂SO₄

 $= 0.0065 \text{ mol } H_2SO_4$

∴ H₂SO₄ অবশিষ্ট থাকবে = (0.0612 - 0.0065) mol = 0.055 mol

এখানে,

সায়তন, V = (200 + 60) mL

$$= 0.26 L$$

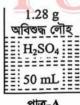
মিশ্রতার ঘনমাত্রা, S = $\frac{n}{V}$ = $\frac{0.055}{0.26}$ M

 $H_2SO_4 = 2H^+ + SO_4^{2-}$

 $\therefore [H^{\dagger}] = 0.211 \times 2 = 0.422$

$$\therefore pH = -\log [H^{+}]$$

$$= -\log(0.422)$$


$$= 0.374$$

= 0.374

যেহেতু মিশ্রণের pH < 7, সেহেতু C দ্রবণের প্রকৃতি অশ্লীয় হবে।

প্রশা > ২৫

দৃশ্যকল্প-১:

পাত্ৰ-A

দৃশ্যকল্প-২: 3.04 গ্রাম ব্লিচিং পাউডারকে নিয়ে 400 মিলি দ্রবণ তৈরি করে তা হতে 25 মিলি নিয়ে আয়োডোমিতিক পদ্ধতিতে টাইট্রেশন করতে 0.075 M সোডিয়াম থায়োসালফেট দ্রবণের 40 মিলি প্রয়োজন হলো।

- (ক) জারক বলতে কী বুঝ?
- কু. বো. ২৩; ম. বো. ২১)
- (খ) Fe³⁺ আয়ন একটি জারক পদার্থ-ব্যাখ্যা কর।
- (গ) দৃশ্যকল্প-১ হতে A পাত্রের দ্রবণ থেকে প্রমাণ অবস্থায় কত cm³ H2 গ্যাস উৎপন্ন হবে? নির্ণয় কর।
- (ঘ) দৃশ্যকল্প-২ হতে আয়োডোমিতিক পদ্ধতিতে Fe²⁺ এর পরিমাণ নির্ণয়ের মাত্রিক সম্পর্ক প্রতিষ্ঠা কর। मि. त्वा. ১१; जनुक्रभ क्षष्ट्रः य. त्वा. ১৫।

পরিমাণগত রসায়ন ➤ ১৫১/ FRB Compact Suggestion Book
সমাধান:

- ক্ষ জারণ-বিজারণ বিক্রিয়ায় যে মৌল, মূলক বা আয়ন ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় এবং অপর বিক্রিয়ক পদার্থকে জারিত করে তাকে জারক বলে।
- স্থা জারণ-বিজারণ বিক্রিয়ায় যেসব মৌল, মূলক বা আয়ন ইলেকট্রন গ্রহণ করে, তাদেরকে জারক পদার্থ বলে। Fe^{3+} একটি জারক পদার্থ। কারণ এটি একটি ইলেকট্রন গ্রহণ করে Fe^{2+} আয়নে এবং তিনটি ইলেকট্রন গ্রহণ করে Fe মৌলে পরিণত হয়।

 $Fe^{3+} + e^- \rightarrow Fe^{2+}$ $Fe^{3+} + 3e^- \rightarrow Fe$

তা উদ্দীপক অনুযায়ী পাত্র A তে 1.28 g অবিশুদ্ধ Fe রয়েছে। একে টাইট্রেশন করে বিশুদ্ধ Fe এর পরিমাণ নির্ণয় করার পর Fe এর সাথে H_2SO_4 এর বিক্রিয়ায় কত cm³ H_2 গ্যাস উৎপন্ন হবে তা নির্ণয় করা সম্ভব। কিন্তু এখানে বিশুদ্ধ Fe এর পরিমাণ নির্ণয়ে পর্যাপ্ত তথ্য না থাকায় অবিশুদ্ধ 1.28 g লৌহের স্থলে 1.28 g বিশুদ্ধ লৌহ আছে ধরে নেই।

 $Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2$ বিক্রিয়া থেকে,

 $1~{
m mol}$ Fe এর সাথে ${
m H_2SO_4}$ এর বিক্রিয়ায় ${
m H_2}$ পাওয়া যায় $1~{
m mol}$ বা, প্রমাণ তাপমাতা ও চাপে $22.4~{
m L}$

এখানে,
$$n_{Fe} = \frac{1.28}{55.85} = 0.0229$$
 mol

অর্থাৎ, বিক্রিয়ায় উৎপন্ন H2 এর পরিমাণও হবে 0.0229 mol

 $= 0.0229 \times 22.4L$ = 0.513 L

 $= 513 \text{ cm}^3$

আয়োডোমিতি পদ্ধতিতে $Fe_2(SO_4)_3$ এর সাথে আয়োডাইড লবণের বিক্রিয়ায় যে I_2 বিমুক্ত হয় তাকে বিজারক সোডিয়াম থায়োসালফেট $(Na_2S_2O_3)$ এর প্রমাণ দ্রবণ দ্বারা টাইট্রেশন করে Fe^{2+} আয়নের পরিমাণ নির্ণয় করা যায়।

 $Fe_2(SO_4)_3 + 2KI \rightarrow 2FeSO_4 + I_2 + K_2SO_4$ আবার, $I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$ উপরোক্ত টাইট্রেশন হতে পাই,

1 mol $Fe_2(SO_4)_3 \equiv 2 \text{ mol } Na_2S_2O_3$

বা, 1 mol Fe^{3+} ≡ 2 mol $Na_2S_2O_3$

বা, 1 mol Na₂S₂O₃ $\equiv \frac{1}{2}$ mol Fe³⁺

বা, 1000 mL 1 M Na₂S₂O₃ = $\frac{55.85}{2}$ g Fe³⁺

∴ V mL X M $Na_2S_2O_3 = \frac{55.85 \times V \times X}{1000 \times 2}$ g Fe^{3+} যা Fe^{3+} এর পরিমাণ নির্ণয়ের মাত্রিক সম্পর্ক।

গুরুত্বপূর্ণ জ্ঞানমূলক প্রশ্নোত্তর

১। অ্যাভোগাডোর সংখ্যা কাকে বলে?

বি. বো. ২২

উত্তরঃ কোনো বস্তুর । মোলে যত সংখ্যক অণু থাকে সেই সংখ্যাকে অ্যাভোগাড্রো সংখ্যা বা অ্যাভোগাড্রো ধ্রুবক বলা হয়। একে N_A দারা সূচিত করা হয় এবং $N_A=6.022\times 10^{23}$ ধরা হয়।

২। মোল ভগ্নাংশ কাকে বলে?

বি. বো. ২৩]

উত্তর: কোন মিশ্রণের একটি উপাদানের মোলসংখ্যার সাথে ঐ মিশ্রণে উপস্থিত মোট মোলসংখ্যার অনুপাতকে উক্ত উপাদানের মোল ভগ্নাংশ বলে।

৩। মোলার আয়তন কাকে বলে?

[দি. বো. ২৩]

উন্তর: কোনো নির্দিষ্ট তাপমাত্রা ও চাপে এক মোল পরিমাণ যেকোনো গ্যাসের আয়তনকে ঐ গ্যাসের মোলার আয়তন বলে।

8। মোলার দ্রবণ কী?

(त्रा. त्वा. २२; व. त्वा. २১; मि. त्वा. २১)

উত্তর: যে দ্রবণের ঘনমাত্রা 1 M তাকে মোলার দ্রবণ বলে।

৫। সেমি মোলার দ্রবণ কাকে বলে?

[কু. বো. ২৩; ব. বো. ১৯]

উত্তরঃ যে দ্রবণের ঘনমাত্রা 0.5 mol L⁻¹ তাকে সেমি মোলার দ্রবণ বলে।

৬। মোলারিটি কাকে বলে?

[চ. বো. ২৩, ২১; য. বো. ২৩, ১৯; সি. বো. ২২; রা. বো. ২১;] উত্তরঃ নির্দিষ্ট তাপমাত্রায় এক লিটার দ্রবণে যত মোল দ্রব দ্রবীভূত থাকে, ভাকে ঐ দ্রবণে দ্রবটির মোলারিটি বলে।

৭। প্রমাণ দ্রবণ কী?

রা, বো, ১৭

উত্তরঃ কোনো প্রাইমারি স্ট্যান্ডার্ড পদার্থের নমুনা দিয়ে তৈরি করা দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকলে তাকে ঐ নমুনা দ্রবের প্রমাণ দ্রবণ বলে।

৮। ppm কাকে বলে?

(দি. ৰো. ২২; য. বো. ২১; সি. বো. ২১; ম. বো. ২১; ব. বো. ১৯) উত্তরঃ কোনো নির্দিষ্ট তাপমাত্রার দ্রবণের প্রতি দশ লক্ষ ভাগে কোনো দ্রবের যত ভর দ্রবীভূত থাকে তাকে ঐ দ্রবের ppm ঘনমাত্রা বলে।

৯। অম্ল-ক্ষার নির্দেশক কী?

উত্তর: টাইট্রেশনকালে বিক্রিয়ার মধ্যে উপস্থিত থেকে যে সকল নির্দেশক নিজের বর্ণ পরিবর্তনের মাধ্যমে টাইট্রেশনের সমাপ্তি বিন্দু নির্দেশ করে সে সকল নিদেশককে অম্ল-ক্ষার নির্দেশক বলে।

১০। প্রাইমারি স্ট্যান্ডার্ড পদার্থ কী?

कि. वा. २२; पि. वा. ১१]

উত্তর: যেসব রাসায়নিক পদার্থ বিশুদ্ধ অবস্থায় পাওয়া যায়, বায়ুর সংস্পর্শে অপরিবর্তিত থাকে, অর্থাৎ বায়ুস্থ CO_2 , O_2 ও জলীয় বাষ্প্প দ্বারা সহজে আক্রান্ত হয় না এবং রাসায়নিক নিন্ডির সাহায্যে সঠিকভাবে ভর মেপে প্রমাণ দ্রবণ প্রস্তুত করা যায় তাদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে।

১১। সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ কী?

যি. বো. ২২

উত্তর: যেসব পদার্থের মধ্যে প্রাইমারি স্ট্যান্ডার্ড পদার্থের বৈশিষ্ট্য যেমন বিশুদ্ধতা, বাতাসে অপরিবর্তিত থাকা, রাসায়নিক নিক্তির ক্ষয় না করা অথবা ঘনমাত্রার পরিবর্তন না ঘটা ইত্যাদির কোনো একটির অভাব ঘটে তখন এদেরকে সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ বলে।

১২। অসামঞ্জস্য বিক্রিয়া কী?

[চ. বো. ২২, ১৯]

উত্তর: কোনো জারণ-বিজারণ বিক্রিয়ায় বিক্রিয়কের নির্দিষ্ট মৌলের যদি একই জারণ অবস্থা থেকে একই সাথে জারিত ও বিজারিত হয় তবে তাকে অসামঞ্জস্য বিক্রিয়া বলে।

১৩ । স্বতঃরিডক্স বিক্রিয়া কী?

উত্তর: যে বিক্রিয়ায় কোনো বিক্রিয়ক পদার্থের অণুস্থিত কোনো মৌলের পরমাণু জারিত হয় এবং একই সাথে ঐ একই অণুস্থিত অপর মৌলের পরমাণু বিজারিত হয়, তখন সে বিক্রিয়াকে স্বতঃরিডক্স বিক্রিয়া বলে।

১৪। টাইট্রেশন কী?

[কু. বো. ২২; ম. বো. ২২; চ. বো. ২১]

উত্তর: নির্দেশকের উপস্থিতিতে কোনো বিক্রিয়কের প্রমাণ দ্রবণ বা জানা ঘনমাত্রার দ্রবণের সাহায্যে অজানা ঘনমাত্রার বিক্রিয়কের ঘনমাত্রা নির্পয়ের পদ্ধতিকে টাইট্রেশন বলে।

১৫। টাইটার কী?

[সি. বো. ২৩]

উত্তর: আয়তনিক বিশ্লেষণকালে টাইট্রেশনে ব্যবহৃত প্রমাণ দ্রবণ বা জ্ঞাত ঘনমাত্রার দ্রবণটিকে টাইটার বলে।

১৬। নির্দেশক কী?

থি. বো. ২৩; ম. বো. ২৩; ঢা. বো. ২২; দি. বো. ২২; দি. বো. ২১, ১৯; রা. বো. ১৯। উত্তরঃ টাইট্রেশনকালে বিক্রিয়া মাধ্যমে উপস্থিত থেকে যে পদার্থ নিজস্ব বর্ণ পরিবর্তনের দ্বারা টাইট্রেশনের সমাপ্তি বিন্দু নির্দেশ করে তাকে নির্দেশক বলে।

১৭। জারণের ইলেকট্রনীয় সংজ্ঞা দাও।

[সি. বো. ২৩]

উত্তর: যে রাসায়নিক বিক্রিয়ায় পরমাণু, অণু বা আয়ন ইলেকট্রন বর্জন বা ত্যাগ করে তাকে জারণ বিক্রিয়া বলে।

১৮। Redox বিক্রিয়া কী?

[ম. বো. ২৩; সি. বো. ২৩; য. বো. ২১]

উত্তরঃ যে রাসায়নিক বিক্রিয়ায় বিক্রিয়কসমূহের মধ্যে একই সাথে ইলেকট্রনের দান-গ্রহণ ঘটে তাকে Redox বিক্রিয়া বলা হয়।

১৯। জারণ সংখ্যা কী? [ঢা. বো. ২৩; রা. বো. ২৩, ২২; ম. বো. ২২; দি. বো. ১৯] উত্তর: বিক্রিয়াকালে, পরমাণুর ইলেকট্রন ত্যাগ অথবা গ্রহণের ফলে পরমাণুতে সৃষ্ট চার্জের সংখ্যাকে ঐ মৌলের জারণ সংখ্যা বলে।

২০। জারক বলতে কী বুঝ?

[কু. বো. ২৩; ম. বো. ২১]

উত্তর: জারণ-বিজারণ বিক্রিয়ায় যে মৌল, মূলক বা আয়ন ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় এবং অপর বিক্রিয়ক পদার্থকে জারিত করে তাকে জারক বলে।

২১। বিজারক কাকে বলে?

উত্তর: কোন জারণ-বিজারণ বিক্রিয়ায় যে রাসায়নিক পদার্থ ইলেকট্রন ত্যাগ করে এবং যার জারণ মান বৃদ্ধি পায় তাকে বিজারক বলে।

২২। অর্ধবিক্রিয়া কী?

উত্তর: কোনো রিডক্স বিক্রিয়ায় জারক কর্তৃক ইলেকট্রন গ্রহণ বা বিজারক কর্তৃক ইলেকট্রন ত্যাগের প্রক্রিয়াই হচ্ছে অর্ধবিক্রিয়া।

২৩। দর্শক আয়ন কী?

[मि. वा. २७; ज. वा. २२, २১]

উত্তর: জলীয় দ্রবণে যে সকল আয়ন সরাসরি রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে না তাদেরকে দর্শক আয়ন বলে।

২৪। আয়োডোমিতি টাইট্রেশন কী?

চি. বো. ২২; য. বো. ১৭]

উত্তর: দ্রবণে একটি জারক পদার্থের সঙ্গে আয়োডাইড লবণের (KI) বিক্রিয়ায় যে আয়োডিন বিমুক্ত হয় তাকে বিজারকের প্রমাণ দ্রবণ (যেমন থায়োসালফেট দ্রবণ) দ্বারা টাইট্রেশন করে বিমুক্ত আয়োডিনের পরিমাণ নির্ণয় করার পদ্ধতিকে আয়োডোমিতি (Iodometry) বলে।

২৫। ক্ষারকত কী?

উত্তর: এক মোল অম্র যত মোল NaOH বা এক অম্রীয় ক্ষারকে প্রশমিত করতে পারে অথবা যত মোল H⁺ দান করতে পরে তাকে সেই অম্রের ক্ষারকত্ব বলে।

Rhombus Publications

.... ACS, > Chemistry 2nd Paper Chapter-3

গুরুত্বপূর্ণ অনুধাবনমূলক প্রশ্নোত্তর

১। H₂C₂O₄ একটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ-ব্যাখ্যা কর। মি. বো. ২২। উত্তর: যেসব পদার্থকে প্রকৃতি থেকে বিশুদ্ধরূপে সংগ্রহ করা যায়, যারা বায়ৣর বিভিন্ন উপাদান যেমন: O₂, CO, H₂O দ্বারা আক্রান্ত হয় না এবং যাদের দ্বারা প্রস্তুতকৃত দ্রবণের ঘনমাত্রা বহুদিন পর্যন্ত অপরিবর্তিত থাকে তাদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে। H₂C₂O₄ কে বিশুদ্ধ অবস্থায় পাওয়া যায়, বায়ৣর সংস্পর্শে অপরিবর্তিত থাকে এবং এর দ্বারা প্রস্তুতকৃত দ্রবণের ঘনমাত্রা বহুদিন পর্যন্ত অপরিবর্তিত থাকে। সূতরাং, H₂C₂O₄ একটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ।

২। Na₂S₂O₃ একটি সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ-ব্যাখ্যা কর।

বি. বো. ২৩; অনুরূপ প্রশ্ন: ব. বো. ১৯; সম্মিলিত বো. ১৮)

উত্তর: সেকেন্ডারি স্ট্যান্ডার্ড পদার্থসমূহের বৈশিষ্ট্য নিমুরূপ-

- (i) বায়ুর সংস্পর্শে CO2, O2 ও জলীয় বাষ্প দ্বারা আক্রান্ত হয়।
- রাসায়নিক নিজির ক্ষতি করে ও বায়ুর সংস্পর্শে এসে ভরের পরিবর্তন ঘটায় বলে সঠিকভাবে ভর মেপে প্রমাণ দ্রবণ প্রস্তুত করা যায় না।
- (iii) কিছু সময় রেখে দিলে ঘনমাত্রা পরিবর্তিত হয়ে যায়। ${
 m Na_2S_2O_3}$ এর মধ্যে উপর্যুক্ত বৈশিষ্ট্যসমূহ বিদ্যমান বলে একে সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ বলা হয়।
- ৩। দ্রবণের মোলারিটি তাপমাত্রার উপর নির্ভরশীল-ব্যাখ্যা কর।

[চা. ৰো. ২৩; কু. বো. ২৩; ম. বো. ২৩; রা. বো. ২২, ২১; দি. বো. ২২; সি. বো. ২১, ১৯; চ. বো. ১৯]

উত্তর: নির্দিষ্ট তাপমাত্রায় কোন দ্রবণের 1L আয়তনে যত মোল দ্রব দ্রবীভূত থাকে, দ্রবের ঐ মোল সংখ্যাকে ঐ দ্রবণে দ্রবটির মোলারিটি বলে। মোলারিটি তাপমাত্রার উপর নির্ভরশীল একটি রাশি। কারণ দ্রবণের আয়তন তাপমাত্রার সাথে পরিবর্তিত হয়। তাপমাত্রার বৃদ্ধিতে আয়তন বৃদ্ধি পায় ফলে মোলারিটি হ্রাস পায়। আবার তাপমাত্রার হ্রাস করলে আয়তন কমে ও মোলারিটি বৃদ্ধি পায়।

8। মোলারিটি ও মোলালিটির মধ্যে কোনটি তাপমাত্রার উপর নির্ভরশীল?

णि. त्वा. २५; व. त्व. २५; फि. त्वा. २১)

উত্তর: কোন দ্রবণের প্রতি লিটার আয়তনে দ্রবীভূত দ্রবের মোল সংখ্যাই হল

ঐ দ্রবণের মোলারিটি। তাপমাত্রা বৃদ্ধি/হ্রাসে দ্রবণের আয়তন বৃদ্ধি/হ্রাস

পায় ফলে দ্রবণের মোলারিটি হ্রাস/বৃদ্ধি পায়। অর্থাৎ, মোলারিটি

তাপমাত্রার উপর নির্ভরশীল। অন্যদিকে, কোন দ্রবণে প্রতি কেজি ভরে

দ্রবীভূত দ্রবের মোল সংখ্যাকে ঐ দ্রবণের মোলালিটি বলা হয়।

তাপমাত্রার হ্রাস বা বৃদ্ধিতে দ্রবণের ভরের কোন পরিবর্তন না হওয়ায়

মোলালিটি অপরিবর্তিত থাকে। অতএব, মোলারিটি তাপমাত্রার উপর
নির্ভরশীল হলেও মোলালিটি তাপমাত্রার উপর নির্ভরশীল নয়।

৫। 0.1 M Na₂CO₃ দ্রবর্ণ বলতে কি বোঝায়— ব্যাখ্যা কর। যে. বো. ২২।
 উত্তরঃ 0.1 M Na₂CO₃ দ্রবরণ বলতে বোঝায়, দ্রবরণটির প্রতি লিটারে
 0.1 mol বা 10.6 g Na₂CO₃ দ্রবীভূত আছে।

পরিমাণগত রসায়ন > ACS; FRB Compact Suggestion Book

 মোলাল দ্রবণ তাপমাত্রার উপর নির্ভরশীল কিনা ব্যাখ্যা কর। বি. বো. ২২। উত্তর: 1000 g দ্রাবকের মধ্যে কোনো দ্রবের 1 mol দ্রবীভূত থাকলে দ্রবণটিকে মোলাল দ্রবণ বলা হয়। দ্রবণের মোলালিটি দ্রাবকের ভর ও দ্রবের মোলসংখ্যার সাথে সম্পর্কযুক্ত। তাপমাত্রার পরিবর্তনে দ্রাবকের

ভর বা দ্রবের মোল সংখ্যার কোনো পরিবর্তন ঘটে না। অতএব, মোলাল দ্রবণ তাপমাত্রার উপর নির্ভরশীল নয়।

৭। 0.01M Na₂CO₃ দ্রবণ একটি প্রমাণ দ্রবণ-ব্যাখ্যা কর। যি. বো. ২৩। উত্তর: যে দ্রবণের ঘনমাত্রা সুনির্দিষ্টভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বা

স্ট্যান্ডার্ড দ্রবণ বলে।

কোনো Na_2CO_3 দ্রবণের প্রতি লিটার বা $1~\mathrm{dm}^3$ বা $1000~\mathrm{mL}$ আয়তনে দ্রবের 0.01 মোল পরিমাণ Na2CO3 দ্রবীভূত থাকলে উৎপন্ন দ্রবর্ণের ঘনমাত্রা 0.01 mol L^{-1} বা 0.01 M হয়। যেহেতু এই দ্রবর্ণের প্রতি লিটারে দ্রবের নির্দিষ্ট পরিমাণ অর্থাৎ, 0.01 মোল Na2CO3 দ্রবীভূত থাকে এবং দ্রবের এই পরিমাণ নির্দিষ্টভাবে জানা থাকে, তাই 0.01 M Na₂CO₃ দ্রবণ একটি প্রমাণ দ্রবণ।

৮। ডেসিমোলার দ্রবণ একটি প্রমাণ দ্রবণ-ব্যাখ্যা কর।

[ह. त्वा. २२; म. त्वा. २১; य. त्वा. २১; हा. त्वा. ১**१**] উত্তর: যে দ্রবণের ঘনমাত্রা ঠিকভাবে জানা থাকে। অর্থাৎ, নির্দিষ্ট দ্রাবকে দ্রবের পরিমাণ নির্দিষ্ট তাকে প্রমাণ দ্রবণ বলে। এক লিটার দ্রবণে 0.1 মোল দ্রব দ্রবীভূত থাকলে ঐ দ্রবণকে ঐ দ্রবের ডেসিমোলার দ্রবণ বলে। অর্থাৎ, ডেসিমোলার দ্রবণের ঘনমাত্রা 0.1 M। যেহেত ডেসিমোলার দ্রবণের ঘনমাত্রা সঠিকভাবে জানা আছে, সেহেতু এটি একটি প্রমাণ দ্রবণ।

"সেমিমোলার দ্রবণ একটি প্রমাণ দ্রবণ"-ব্যাখ্যা কর।

[সম্মিলিত বো. ১৮; দি. বো. ১৭; অনুরূপ প্রশ্ন: ঢা. বো. ১৭; সি. বো. ১৭] উত্তর: যে দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বলা হয়। সেমিমোলার দ্রবণের ক্ষেত্রে ঘনমাত্রা হল 0.5 M বা 0.5 molL অর্থাৎ, নির্দিষ্ট তাপমাত্রায় 1L বা 1000 mL দ্রাবকে 0.5 mol দ্রব দ্রবীভূত থাকে। যেহেতু, সেমিমোলার দ্রবণে নির্দিষ্ট আয়তনে দ্রবের পরিমাণ নির্দিষ্ট অর্থাৎ ঘনমাত্রা সঠিকভাবে জানা থাকে সেহেতু

১০। 10% NaOH এর ঘনমাত্রা নির্ণয় কর।

সেমি মোলার দবণ একটি প্রমাণ দ্রবণ।

কু. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২২; ম. বো. ২১]

উত্তর: এখানে,

শতকরায় NaOH এর ঘনমাত্রা x = 10%

NaOH এর আণবিক ভর M = 40

আমরা জানি.

ঘনমাত্রা S =
$$\frac{10x}{M}$$

$$= \frac{10 \times 10}{40}$$

$$= 2.5 M$$

: 10% NaOH এর ঘনমাত্রা 2.5 M

১১। ppm তাপমাত্রার উপর নির্ভর করবে কি? ব্যাখ্যা কর। [সি. বো. ২৩] উত্তর: কোন নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে কোন দ্রবের যত মিলিগ্রাম দ্রবীভূত থাকে, দ্রবের ঐ পরিমাণকে ঐ দ্রবণের ppm ঘনমাত্রা বলে। দ্রবর্ণের আয়তন তাপমাত্রা বৃদ্ধিতে বৃদ্ধি পায় ফলে ppm কমে। আর তাপমাত্রা কমালে দ্রবণের আয়তন কমে, তাই ppm বৃদ্ধি পায়। অতএব, বলা যায়, ppm তাপমাত্রার উপর নির্ভরশীল।

১২। জারণ সংখ্যা ও যোজনীর মধ্যে দুটি পার্থক্য লিখ। কু. বো. ২২) উত্তর: জারণ সংখ্যা ও যোজনীর মধ্যে পার্থক্য নিমুরূপ:

জারণ সংখ্যা	যোজনী	
যৌগ গঠনের সময় কোনো মৌলের ইলেকট্রন বর্জন বা গ্রহণের ফলে সৃষ্ট ধনাত্মক বা ঋণাত্মক চার্জের সংখ্যাকে ঐ মৌলের জারণ সংখ্যা বলে।	আয়ন যে কয়টি ইলেকট্রন গ্রহণ, বর্জন বা শেয়ার করে	
জারণ সংখ্যা পূর্ণ বা ভগ্নাংশ হতে পারে।	যোজনী পূর্ণ সংখ্যা হয় কখনো ভগ্নাংশ হয় না।	

১৩। Fe3+ আয়ন একটি জারক পদার্থ-ব্যাখ্যা কর। উত্তর: জারণ-বিজারণ বিক্রিয়ায় যেসব মৌল, মূলক বা আয়ন ইলেকট্রন গ্রহণ করে, তাদেরকে জারক পদার্থ বলে। Fe³⁺ একটি জারক পদার্থ। কারণ এটি একটি ইলেকট্রন গ্রহণ করে Fe²⁺ আয়নে এবং তিনটি ইলেকট্রন গ্রহণ করে Fe মৌলে পরিণত হয়।

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

 $Fe^{3+} + 3e^{-} \rightarrow Fe$

১৪। অখ্রীয় KMnO4 জারক পদার্থ কেন?

[সি. বো. ২৩; কু. বো. ১৯]

উত্তর: অম্লীয় মাধ্যমে KMnO4 এর জারণ অর্থ-বিক্রিয়াটি নিম্লুরূপ:

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

অর্থাৎ, এখানে KMnO4 এর MnO4 আয়ন ইলেকট্রন গ্রহণ করে Mn2+ আয়নে বিজারিত হয় এবং অন্যের জারণ ঘটায়। অতএব, অম্লীয় KMnO4 জারক পদার্থ হিসেবে বিক্রিয়ায় ভূমিকা রাখে।

১৫। K2Cr2O2 একটি জারক পদার্থ-ব্যাখ্যা কর।

দি. বো. ২২; य. বো. ২২; রা. বো. ২১]

উত্তর: কোন জারণ-বিজারণ বিক্রিয়ায় যে পরমাণু, আয়ন বা মূলক ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় ও অন্য পদার্থকে জারিত করে তাকে জারক বলে। বিক্রিয়ায় জারকের জারণ সংখ্যা হ্রাস পায়। K2Cr2O7 এর ক্ষেত্রে জারণ অর্ধ-বিক্রিয়াটি নিমুরূপ:

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$$

এখানে, $K_2Cr_2O_7$ জারক হিসেবে কাজ করছে কেননা, $Cr_2O_7^{2-}$ থেকে Cr^{3+} পাওয়া যায় যেখানে প্রতিটি Cr পরমাণু 3টি করে

ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় ও অন্যকে জারিত করে।

Rhombus Publications

t.me/admission stuffs

১৬। ${\bf Fe}^{2+}$ আয়ন জারক ও বিজারক উভয় হিসেবে ক্রিয়া করে কেন? ব্যাখ্যা [ঢা. বো. ২২; রা. বো. ২২; অনুরূপ প্রশ্ন: সি. বো. ২২; য. বো. ১৯] উত্তরঃ জারক-বিজারকের ইলেকট্রনীয় মতবাদ অনুসারে, রাসায়নিক বিক্রিয়ায় যে সকল পদার্থ ইলেকট্রন ত্যাগ করে জারিত হয় তাকে বিজারক আর যে সকল পদার্থ ইলেকট্রন গ্রহণ করে বিজারিত হয় তাদেরকে জারক বলে। Fe^{2+} আয়ন রাসায়নিক বিক্রিয়ায় ইলেকট্রন ত্যাগ এবং গ্রহণ উভয় করতে পারে। তাই Fe²⁺ আয়ন একাধারে একটি জারক ও বিজারক। $Fe^{2+} + 2e^- \rightarrow Fe$ (জারক) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ (विজातक) ১৭। H₂O₂ জারক ও বিজারক উভয় হিসাবে কাজ করে- ব্যাখ্যা কর। মি. বো. ২২; ঢা. বো. ১৯; অনুরূপ প্রশ্ন: চ. বো. ২৩) উত্তর: H2O2 ২টি ইলেকট্রন দান করে জারিত হয় অর্থাৎ, বিজারক হিসেবে কাজ করে। $O_2^{2-} \to O_2 + 2e^-$ [জারণ অর্ধ-বিক্রিয়া] আবার ২টি ইলেকট্রন গ্রহণ করে বিজারিত হয় অর্থাৎ, জারক হিসেবেও কাজ করে। $O_2^{2-} \rightarrow 2e^- \rightarrow O^{2-}$ [বিজারণ অর্ধ-বিক্রিয়া] করে। ১৮। K4[Fe(CN)6] যৌগের কেন্দ্রীয় পরমাণুর জারণ সংখ্যা নির্ণয় কর। উত্তরঃ ধরি, K₄[Fe(CN)6] যৌগে কেন্দ্রীয় পরমাণু Fe এর জারণ মান 🗴। তাহলে, $(+1) \times 4 + x + (-1) \times 6 = 0$ $\Rightarrow 4 + x - 6 = 0$ $\Rightarrow x=+2$ ∴ কেন্দ্রীয় পরমাণু Fe এর জারণ সংখ্যা +2। ১৯। পটাশিয়াম পারম্যাঙ্গানেটের কেন্দ্রীয় মৌলের জারণ সংখ্যা নির্ণয় কর। [কু. বো. ২১] উত্তর: KMnO4 এর কেন্দ্রীয় প্রমাণু হলো- Mn মনে করি, Mn এর জারণ মান x আমরা জানি, নিরপেক্ষ যৌগে পরমাণু সমূহের মোট জারণ মান শূন্য। $1 + x + (-2) \times 4 = 0$ এখানে, $\Rightarrow 1 + x - 8 = 0$ K এর জারণ মান = + 1 $\Rightarrow x = 8 - 1$ O এর জারণ মান = - 2 $\therefore x = +7$ ২০। LiA/H4 এর কেন্দ্রীয় পরমাণুর জারণ সংখ্যা নির্ণয় কর। । সি. বো. ১৭) **উত্তরঃ** LiA/H₄ যৌগে Li এর জারণ সংখ্যা +1 এবং H এর জারণ সংখ্যা –1। ধরি, Al এর জারণ সংখ্যা x। $\therefore + 1 + x + (-1) \times 4 = 0$

...... ACS/ > Chemistry 2nd Paper Chapter-3

২১। $10\% \left(rac{w}{V}
ight)
m{H}_2SO_4$ দ্রবণের মোলারিটি কত?

[রা. বো. ২৩]

উত্তর: এখানে,

শতকরার H_2SO_4 এর ঘনমাত্রা x=10% H_2SO_4 এর আণবিক ভর M=98 আমরা জানি,

মোলারিটি S =
$$\frac{10x}{M}$$

= $\frac{10 \times 10}{98}$
= 1.02 M

২২। তীব্র অম্ল ও তীব্র ক্ষার টাইট্রেশনে কোন নির্দেশক উপযোগী? ব্যাখ্যা কর। (চ. বো. ২২; কু. বো. ১৯)

উত্তর: তীব্র এসিড ও তীব্র ক্ষারের প্রশমনে দ্রবণের pH হয় 7। এ অবস্থায় প্রশম দ্রবণে সামান্য এসিড বা ক্ষার যোগ করলে দ্রবণের pH খুব দ্রুত পরিবর্তিত হয়। তীব্র এসিড তীব্র ক্ষারের টাইট্রেশনে বর্ণ পরিবর্তন পরিসর 4.0 – 10.0 এর মধ্যে থাকে। এ দীর্ঘ pH পরিসরে যে কোনো নির্দেশক কার্যকর হয়। অর্থাৎ, ফেনলফথ্যালিন, মিথাইল অরেঞ্জ, মিথাইল রেড, থাইমাল ব্লু প্রভৃতি যে কোনো নির্দেশক এক্ষেত্রে কার্যকর হরে।

অতএব বলা যায়, H_2O_2 জারক ও বিজারক উভয় হিসেবেই কাজ ২৩। মৃদু এসিড ও তীব্র ক্ষারের টাইট্রেশনে ফেনলফথ্যালিনকে নির্দেশক করে। (য. বে. ১৭)

উত্তরঃ মৃদু এসিড ও তীব্র ক্ষারের টাইট্রেশনে মিশ্রণের pH 7 এর বেশি হয়ে থাকে। ফেনলফথ্যালিন এর বর্ণ পরিবর্তনের pH সীমা 8-10। অতএব, ফেনলফথ্যালিন এখানে নির্দেশক হিসেবে কাজ করতে সক্ষম। তাই মৃদু এসিড ও তীব্র ক্ষারের টাইট্রেশনে ফেনলফথ্যালিন কে নির্দেশক হিসেবে ব্যবহার করা হয়।

২৪। মৃদু এসিড ও মৃদু ক্ষারকের টাইট্রেশনের জন্য কোন উপযুক্ত নির্দেশক নেই কেন?

উত্তর: নির্দিষ্ট ঘনমাত্রার মৃদু এসিড দ্রবণে নির্দিষ্ট ঘনমাত্রার মৃদু ক্ষার দ্রবণ কোঁটার ফোঁটার যোগ করলে দ্রবণের pH মান ধীরে ধীরে বৃদ্ধি পার। প্রশমন বিন্দুর কাছাকাছি এলেও এক্ষেত্রে pH মানের হঠাৎ কোন পরিবর্তন দেখা যায় না। এখানে দ্রবণের pH শুরু থেকে শেষ পর্যন্ত ধীরগতিতে বৃদ্ধি পেতে থাকে। তাই কোন একক নির্দেশক এক্ষেত্রে কাজ করে না বলে ফেনলফথ্যালিন ও মিথাইল রেড এর মিশ্রণ ব্যবহৃত হয়।

২৫। ফেনলফথ্যালিন এসিড দ্রবণে বর্ণহীন কিন্তু ক্ষারীয় দ্রবণে গোলাপি-ব্যাখ্যা কর।

উত্তর: ফেনলফথ্যালিন একটি মৃদু জৈব এসিড। অবিয়োজিত অবস্থায় এটি বর্ণহীন ও বিয়োজিত হলে এর অ্যানায়ন গোলাপি-লাল বর্ণ দেখায়।

$$HPh \Longrightarrow H^+ + Ph^-$$
বর্ণহীন বর্ণহীন গোলাপি-লাল

এসিড দ্রবণে H^+ আয়নের ঘনমাত্রা বাড়ে, ফলে সমআয়ন প্রভাবে সাম্যের সরণ বামদিকে হয় ও অবিয়োজিত HPh অণুতে পরিণত হয়। ফলে দ্রবণটি বর্ণহীন হয়। ফার দ্রবণে H^+ এর সাথে OH^- এর বিক্রিয়ায় H_2O উৎপন্ন হলে দ্রবণে H^+ কমে যায়। ফলে সাম্যাবস্থা ডানদিকে সরে যায় ও Ph^- আয়নের ঘনমাত্রা বৃদ্ধি পায়। ফলে দ্রবণের বর্ণ গোলাপি লাল হয়।

Rhombus Publications

 $\therefore x = +3$

 $\Rightarrow x-4+1=0$

সুতরাং, LiA/H4 যৌগে A/ এর জারণ সংখ্যা +3

t.me/admission_stuffs

পরিমাণগত রসায়ন > ACS/ FRB Compact Suggestion Book

HSC পরীক্ষার্থীদের জন্য বাছাইকত বহুনির্বাচনি প্রশ্নোত্তর

রাসায়নিক গণনা, মোল সংখ্যা

- 14 g N₂ গ্যাসে কভটি অণু বিদ্যমান? [চ. বো. ২১; অনুরূপ প্রশ্ন: কৃ. বো. ১৯]
 - 3.011×10^{-23}
- 3.011×10^{23}
- \bigcirc 6.023 \times 10⁻²³
- $(9) 6.023 \times 10^{23}$

উত্তর: @ 3.011 × 10²³

ব্যাখ্যা:
$$n = \frac{W}{M} = \frac{x}{N_A}$$

$$\Rightarrow \frac{14}{28} = \frac{x}{6.02 \times 10^{23}}$$

$$\Rightarrow x = \frac{14 \times 6.02 \times 10^{23}}{28}$$

- ∴ $x = 3.01 \times 10^{23}$ ਿ |
- প্রমাণ অবস্থায় 10.0 L CH4 গ্যাসে অণুর সংখ্যা কত? বি. বো. ২২
 - ⊕ 0.2689 × 10²³
- $\textcircled{3} 2.689 \times 10^{23}$
- \mathfrak{I} 26.89 × 10^{23}
- 3 0.02689 × 10²³

উত্তর: <a>© 2.689 × 10²³

ব্যাখ্যা:
$$\frac{x}{N_A} = \frac{V}{22.4}$$

$$\Rightarrow x = \frac{V \times N_A}{22.4} = \frac{10 \times 6.023 \times 10^{23}}{22.4}$$
$$= 2.689 \times 10^{23}$$

- । অর্ধমোল CO₂ গ্যাসে অক্সিজেন পরমাণুর সংখ্যা কত? াসি. বো. ২২।
 - **爾 1** 印
- (ৰ) 2টি
- 例 3.01 × 10²³ 6
- (1) 6.023 × 10²³ (1)

উত্তর: (খ 6.023 × 10²³ টি

ব্যাখ্যা: $n = \frac{x}{N_A}$ [X = CO₂-এর অণু সংখ্যা]

- \Rightarrow x = nN_A = 0.5 × 6.023 × 10²³
- $\Rightarrow x = 3.0115 \times 10^{23}$
- .. অক্সিজেন পরমাণু সংখ্যা = 2x = 6.023 × 10²³ টি
- প্রমাণ অবস্থায় 9.0 g পানিতে কয়টি হাইড্রোজেন পরমাণু থাকে?
 - 3 6.023 × 10²³
- [রা. বো. ২১; অনুরূপ প্রশ্ন: য. বো. ২১] 3.0115×10^{23}
- 例 6.023 × 10²¹
- (9) 12.046 × 10^{23}

উত্তর: 📵 6.023 × 10²³

ব্যাখ্যা: x = পানির অণু সংখ্যা হলে,

$$\frac{W}{M} = \frac{x}{N_A}$$

$$\Rightarrow x = \frac{W \times N_A}{M} = \frac{9 \times 6.023 \times 10^{23}}{18}$$

$$= 3.01 \times 10^{23}$$

- ∴ H পরমাণ সংখ্যা = (2 × 3.01 × 10²³) = 6.023 × 10²³ টি
- প্রমাণ অবস্থায় 10 cm3 NH3 গ্যাসের ভর কত? (রা. বো. ২২)
 - (3) 5.583×10^{-3} g (9) 7.589×10^{-2} g
- 3 6.589 × 10⁻³ g
- $(3) 7.589 \times 10^{-3} g$
- উত্তর: খি 7.589 × 10⁻³ g

- ব্যাখ্যা: $n = \frac{W}{M} = \frac{V}{22.4}$
 - :. W = $\frac{V \times M}{22.4}$ = $\frac{10 \times 10^{-3} \times 17}{22.4}$ = 7.589 × 10⁻³ g
- ৬। STP তে 22.4 L H2 গ্যাস 11.2 L Cl2 গ্যাসের সাথে মিশ্রিত করে HCI গ্যাস তৈরি করা হলো। উৎপন্ন HCI গ্যাস এর পরিমাণ (মোলে) কত হবে?
 - **@** 0.5
- (4) 0.75

@ 1.0

(T) 1.5

উত্তর: 何 1.0

ব্যাখা: H₂ + Cl₂ → 2HCl

প্রশানুসারে, এখানে লিমিটিং বিক্রিয়ক হচ্ছে Cl2।

$$n_{Cl_2} = \frac{11.2}{22.4} = 0.5 \text{ mol}$$

- ∴ n_{HCl} = 2 × n_{Cl}, (বিক্রিয়া থেকে)
 - $= 2 \times 0.5 \text{ mol}$
 - = 1 mol
- একটি অক্সিজেন পরমাণুর ভর কত?

[কু. বো. ২২; অনুরূপ প্রশ্ন: সম্মিলিত বে. ১৮]

- \odot 2.66 × 10⁻²³ g
- $\textcircled{3}.76 \times 10^{-23} \text{ g}$
- ① 1.33 × 10⁻²² g উত্তর: ক্টি 2.66 × 10⁻²³ g
- 9 1.88 × 10⁻²² g
- ব্যাখ্যা: $\frac{W}{M} = \frac{x}{6.02 \times 10^{23}}$
 - $W = \frac{1 \times 16}{6.02 \times 10^{23}} = 2.66 \times 10^{-23} \,\mathrm{g}$
- STP তে নিচের কোন গ্যাসের এক মি.লি. এর ভর কম? (য. বো. ২১)
 - 1 N2

- ⑤ CO₂
- উত্তর: 📵 N₂
- ব্যাখ্যা: আমরা জানি,
 - গ্যাসের আণবিক ভর = 22.4 × 10³ mL (STP তে)

যেহেতু N_2 এর আণবিক ভর সবথেকে কম, তাই এর প্রতি মি.লি.

- ৯। STP তে 3.2 g একটি গ্যাস 2.24 লিটার আয়তন দখল করলে গ্যাসটি হতে পারে-চি. বো. ২২
 - @ C/2
- @ CO2
- 1 N2
- (1) O2

উত্তরঃ 🕲 O2

ব্যাখ্যা:
$$\frac{W}{M} = \frac{V}{22.4}$$

$$\Rightarrow M = \frac{W \times 22.4}{V}$$

$$=\frac{3.2\times22.4}{2.24}$$

- ় গ্যাসটি O2

১০। 32 g O₂ এর অর্থ হলো-(i) 1 mol O₂ (ii) প্রমাণ অবস্থায় 24.8 L আয়তন (iii) অ্যাভোগাড্রো সংখ্যার সমান অণু নিচের কোনটি সঠিক? [চ. বো. ২১] ⊕ i (1) i, ii 1, iii (1) i, ii, iii উত্তর: (গ) i, iii ১১। $10\% \left(\frac{w}{w} \right) Na_2CO_3$ এর জলীয় দ্রবণে পানির মোল ভগ্নাংশ কড? বি. বো. ২৩] ● 0.0185 **(4)** 0.98 ① 0.9815 (9) 0.9833 উত্তর: গু 0.9815 ব্যাখ্যা: $10\% \left(\frac{W}{W}\right) Na_2CO_3$ এর জলীয় দ্রবণে Na_2CO_3 ও H_2O এর পরিমাণ যথাক্রমে 10 g ও 90 g. ∴ ${ m H_2O}$ এর মোল ভগ্নাংশ, ${ m x_{H_2O}}={r_{{ m H_2O}}+n_{{ m Na_2CO_3}}}$ = 0.981590 + 10 সমীকরণ ভিত্তিক গণনা ১২। 50 g CaCO3 এর তাপীয় বিয়োজনে উৎপন্ন CO2 এর ভর কত গ্রাম? [क्. त्वा. २७; मि. त्वा. ১৬] (4) 11 **(4)** 22 (A) 44 (T) 88 উত্তর: 🕲 22 ব্যাখ্যা: $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$ 44 g 100 g CaCO3 এর বিয়োজনে উৎপন্ন CO2 এর ভর = 44 g ∴ 50 g CaCO₃ अत विस्ताज्ञत्न উৎপन्न CO₂ अत जत $=\frac{44 \times 50}{100}$ g ১৩। STP তে 2 mol CaCO3 ও HCl এর বিক্রিয়ায় উৎপন্ন CO2 গ্যাসের আয়তন কত লিটার? [দি. বো. ২৩] (4) 11.2 **3** 22.4 **44.8** (A) 34.8 উত্তর: 🕲 44.8 ব্যাখ্যা: CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O এখন, 1 mol CaCO₃ থেকে CO₂ উৎপন্ন হয় = 22.4 L ∴ 2 mol CaCO₃ থেকে CO₂ উৎপন্ন হয় = (2 × 22.4)L = 44.8 L

..... ACS, > Chemistry 2nd Paper Chapter-3

- ১৪। 95% (w/W) বিশুদ্ধ চুনাপাথরের 120 g নিয়ে HCl এসিডে দ্রবীভূত করলে STP-তে কত লিটার CO2 গ্যাস পাওয়া যাবে?
 - 3 29.75

(4) 28.26

1 26.89

(T) 25.55

উত্তর: (ছ) 25.55

ব্যাখ্যা: 95% বিশুদ্ধ চুনাপাথরে,

100 g পরিমাণে চুনাপাথর আছে 95 g

$$\therefore$$
 120 g পরিমাণে চুনাপাথর আছে = $\frac{95 \times 120}{100}$ g = 114 g

$$CaCO_3 + 2HCI \rightarrow 2NaCI + CO_2 + H_2O$$

100 g 22.4 L

100 g চুনাপাথর থেকে CO2 উৎপন্ন হয় 22.4 L

∴ 114 g চুনাপাথর থেকে
$$CO_2$$
 উৎপন্ন হয়
$$= \frac{22.4 \times 114}{100} L$$

- ১৫। একটি চুনাপাথর খণ্ডের ভর 250 g। একে উচ্চ তাপমাত্রায় কয়েক घन्টा উত্তপ্ত করলে STP তে 44.8 निটার CO2 পাওয়া গেল। চুনাপাথরের নমুনাতে CaCO3 এর পরিমাণ শতকরা কতভাগ?

1 88

9 96

উত্তর: থ 80

ব্যাখ্যা: CaCO₃ — CaO + CO₂

100 g 22.4 L

22.4 L CO₂ এর জন্য CaCO₃ প্রয়োজন 100 g

∴ 44.8 L CO₂ এর জন্য CaCO₃ প্রয়োজন =
$$\frac{100 \times 44.8}{22.4}$$

= 200 g

$$\therefore \%CaCO_3 = \frac{200}{250} \times 100\%$$
= 80%

১৬। $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$ এই বিক্রিয়ার মাধ্যমে 16 g O2 তৈরিতে কত গ্রাম H2O2 লাগবে? চি. বো. ২২

® 64

(1) 34 (T) 8.5

17 উত্তর: 📵 34

ব্যাখ্যা: 1 mol বা 32 g O2 তৈরিতে H2O2 লাগবে 2 mol বা 68 g

∴ 16 g
$$O_2$$
 তৈরিতে H_2O_2 লাগবে = $\frac{68 \times 16}{32}$ = 34 g

১৭। অ্যামোনিয়াম ক্লোরাইড ও ক্যালসিয়াম অক্সাইড বিক্রিয়া করে STP তে 44.8 L NH3 গ্যাস প্রস্তুত করতে ব্যবহৃত ক্যালসিয়াম অক্সাইডের পরিমাণ কত? ঢ়া, বো. ২৩

3 28 g

14 g

3 7 g

উত্তর: 📵 56 g

ব্যাখ্যা: বিক্রিয়াটি নিমুরূপ:

$$2NH_4Cl + CaO \rightarrow CaCl_2 + 2NH_3 + H_2O$$

56 g (2 × 22.4) L
= 44.8 L

∴ STP তে 44.8 L NH₃ প্রস্তৃতিতে CaO প্রয়োজন = 56 g

পরিমাণগত রসায়ন > ACS, FRB Compact Suggestion Book ১৮। 2.2 g C₁H₈ দহন করে CO₂ ও H₂O তৈরী করতে কত মোল O₂ ব্যাখ্যা: H₂ এর আয়তন নির্ণয়: সংঘটিত বিক্রিয়ার সমতাকৃত সমীকরণ, প্রয়োজন? **③** 0.050 **3** 0.15 $2Na(s) + H_2O(l) \rightarrow Na_2O + H_2(g)$ ® 0.50 (2×23) **1** 0.25 উক্তর: 例 0.25 = 46 gবা, 24.8 L [SATP বলে] 46 g Na-ধাতু বিক্রিয়া করে তৈরি হয় 24.8 L H2 গ্যাস ব্যাখ্যা: C₃H₈ + 5O₂ → 3CO₂ + 4H₂O $11.5~{
m g~Na}$ -ধাতু বিক্রিয়া করে তৈরি হয় = $\frac{24.8 \times 11.5}{46}~{
m L~H_2}$ গ্যাস 44 g 5 mol 44 g C₃H₈ দহন করতে O₂ প্রয়োজন 5 mol $2.2~g~C_3H_8~$ দহন করতে O_2 প্রয়োজন $\frac{5\times 2.2}{44}~\mathrm{mol}$ পদার্থের স্ট্যান্ডার্ড ও ঘনমাত্রা = 0.25 mol২৩। কোনটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ? ১৯। কত গ্রাম KCIO3 কে উত্তপ্ত করলে প্রমাণ অবস্থায় 20 L অক্সিজেন বি. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো.২২; ম. বো. ২২; রা. বো. ১৯] [য. বো. ১৯] পাওয়া যাবে? NaOH (1) ₹ 36.49 g ^③ 54.73 g ¶ K₂Cr₂O₇ (1) HC! (1) 72.98 g (1) 61.01 g উত্তর: 🕲 72.98 g ব্যাখ্যা: প্রাইমারি স্ট্যান্ডার্ড পদার্থ: ব্যাখ্যা: 2 KClO₃ — 2KCl + 3O₂ (i) বিশুদ্ধ অবস্থায় প্রস্তুত করা যায় (ii) এরা বাতাসের সংস্পর্শে জলীয়বাষ্প বা O2 সহ বিক্রিয়া করে না 3 × 22.4 L 2×122.5 (iii) এদের ওজন নেয়ার সময় রাসায়নিক নিক্তিকে ক্ষয় করে না 3 × 22.4 L O2 পেতে KClO3 প্রয়োজন 2 × 122.5 g (iv) এদের দ্রবণের ঘনমাত্রা দীর্ঘদিন অপরিবর্তিত থাকে ∴ 20 L O₂ পেতে KC/O₃ প্রয়োজন = $\frac{2 \times 122.5 \times 20}{3 \times 22.4}$ दियान: Na2CO3, H2C2O4.2H2O, Na2C2O4.2H2O, K2CI2O2 $= 72.92 \text{ g} \approx 72.98 \text{ g}$ মেকেভারি স্ট্যাভার্ড পদার্থ: (i) বিশুদ্ধ অবস্থায় প্রস্তুত করা যায় না ২০। আয়রনের একটি আকরিকের মধ্যে 30% Fe₂O₃ আছে। 500 kg (ii) এরা বাতাসের সংস্পর্শে জলীয়বাষ্প বা O2 সহ বিক্রিয়া করে ঐ আকরিক থেকে কত kg আয়রন উৎপাদন করা যাবে? (iii) এদের ওজন নেয়ার সময় রাসায়নিক নিক্তিকে ক্লয় করে ₹ 140.9155 kg (4) 401.9155 kg (iv) এদের দ্রবণের ঘনমাত্রা পরিবর্তিত হয় 例 410.9155 kg त्यानः NaOH, HCl, H2SO4, KMnO4, Na2S2O3.5H2O উত্তর: 🕲 104.9155 kg ACS Tricks: C ও Cr যুক্ত যৌগসমূহ সাধারণত প্রাইমারি স্ট্যান্ডার্ড পদার্থ। ব্যাখ্যা: 500 kg আকরিকে Fe_2O_3 আছে $500 \times \frac{30}{100} = 150 \text{ kg}$ ২৪। বাতাসে অপরিবর্তিত থাকে কোনটি? [কু. বো. ১৯] Fe_2O_3 এর মোলার ভর $(56 \times 2 + 16 \times 3) = 160$ (1) Na₂S₂O₃.5H₂O অর্থাৎ, 160 kg তে Fe রয়েছে = 56 × 2 kg ® KMnO₄ Na2SO4 ∴ 150 kg Fe₂O₃ © Fe রয়েছে = $\frac{56 \times 2 \times 150}{160}$ উত্তর: 📵 Na₂C₂O₄.2H₂O ব্যাখ্যা: Na₂C₂O₄.2H₂O একটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ। ২৫। কোন দ্রবণটি দীর্ঘদিন সঠিকভাবে সংরক্ষণ করা যায়? াদি, বো. ২৩] ২১। 0.566 g কার্বন দ্বারা CuO কে বিজারিত করলে কত গ্রাম কপার NaOH উৎপন্ন হয়? (Cu = 63.5) TH2SO4 (4) 2.995 g উত্তর: প্র K₂Cr₂O₇ 1 29.95 g (1) 39.95 g ব্যাখ্যা: K₂Cr₂O₇ একটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ। প্রাইমারি স্ট্যান্ডার্ড উত্তর: 🕲 2.995 g পদার্থসমূহকে দীর্ঘদিন সঠিক ভাবে সংরক্ষণ করা যায় কারণ এর ব্যাখ্যা: CuO + C --- CO + Cu ঘনমাত্রা সর্বদা অপরিবর্তিত থাকে। ২৬। কোন যৌগটি সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ? ∴ 0.566 g C দ্বারা কপার পাওয়া যায় = $\frac{63.5 \times 0.566}{12} \text{ g}$ মি. বো. ২৩ ক্সোডিয়াম অক্সালেট পটাশিয়াম ডাইক্রোমেট অক্সালিক এসিড গ) কস্টিক সোডা উত্তর: 🕅 কস্টিক সোডা ২২। 11.5 g Na ধাতু ও পানির বিক্রিয়ায় SATP-তে কত লিটার H2 ২৭। কোন যৌগটি সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ? (চ. বো. ২৩; य. বো. ২১; চ. বো. ২১) উৎপন্ন হবে? Na2CO3 (4) K2Cr2O7 ♠ 6.20 **(4)** 12.38 ® KMnO₄ 1 Na2C2O4 **9** 5.60 ₹ 6.10 উন্তর: খি KMnO4 উত্তর: ক্ 6.20 Rhombus Publications

200	o					. ACS; > (Chemistry 2 nd P	aper Chapter-3
২৮	। টাইট্রেশন বিক্রিয়ায় কোন যৌ ^গ				মোলার দ্রবণের ক্ষে			[কু. বো. ২২]
			[দি. বো. ২১]		(i) এটি একটি প্রমা	ণ দ্ৰবণ		
					(ii) দ্রবণের ঘনমাত্রা	1 M		
19.0	\P $K_2Cr_2O_7$				(iii) 1 L দ্রবণের 0	.1 মোল পরি	মাণ পদার্থ দ্রবীভূত	থাকে
	₹: ® KMnO₄	2		1	নিচের কোনটি সঠিব	F?		
ব্যাৎ	ায়: প্রাইমারি স্ট্যান্ডার্ড পদার্থগুরে	লা রাসায়নিক নিক্তিতে সঠি	কভাবে ভর	(爾 i, ii		(1) i, iii	
	মেপে প্রমাণ দ্রবণ প্রস্তুত ক		T (T.O.)		¶ ii, iii		(1) i, ii, iii	
	H₂C₂O₄.2H₂O প্রত্যেকেই	প্রাইমারি স্ট্যান্ডার্ড পদার্থ।	অপরদিকে	উত্তর: (
	KMnO₄ সেকেন্ডারি স্ট্যান্ডার্ড	10.5	, KMnO ₄		স্থির তাপমাত্রায় যে			
	দ্বারা প্রমাণ দ্রবণ তৈরি করা যা	ग्र नो ।			থাকে তাকে মোলার	র দ্রবণ বলে	। মোলার দ্রবণ ও	াক ধরনের প্রমাণ
			a constant and the	3	দ্রবণ, এর ঘনমাত্রা ।	MI		
২৯ ৷	নিচের কোন পদার্থের প্রমাণ দ্র	বণের ঘনমাত্রা সময়ের সাৎে	া পরিবর্তিত					
	হয়?		(কু. বো. ১৭)	I .	মোলারিটি পরিবর্তন		রবর্তিত হয়−	[সি. বো. ১৭]
					(i) দ্রাবকের আয়তন	Г		
	\bigcirc Na ₂ C ₂ O ₄				(ii) দ্রবের পরিমাণ			
	f:				(iii) তাপমাত্রা			
ব্যাখ	্যা: KMnO₄ একটি সেকেভারি	স্ট্যান্ডার্ড পদার্থ ।			নিচের কোনটি সঠিব	5?	- SEETING PID DIS	
					爾 i, ii		③ i, iii	
90 1	প্রমাণ দ্রবণ কোনটি?		[ম. বো. ২১]	TO STATE OF THE PARTY OF THE PA	① ii, iii		® i, ii, iii	
	1.0 M H₂SO₄	③ 1.0 g H₂SO₄	1		🧃 i, ii, iii		C C>	
	1.0 mL H₂SO₄		9		স্থির তাপমাত্রায় বে			
	f: 1.0 M H₂SO₄				মোল সংখ্যাকে দ্রব			
ব্যাখ	্যা: 1 M H₂SO₄ হলো মোলার		discountries in	ACCRECATE VALUE OF THE PARTY OF	তাপমাত্রার উপর			তাহ তাপমাত্রার
	নির্ভুলভাবে জানা থাকে তাকে	প্রমাণ দ্রবণ বলা হয়। মো	লার দ্রবণও		পরিবর্তনে মোলারিটি	তও পারবাতত	241	
	একটি প্রমাণ দ্রবণ।				4			
100000000000000000000000000000000000000		Contract of the Contract of th		0611	নিচের কোনটির জন	্য w প্রযোজ্য	7?	[য. বো. ২৩]
021	দ্রবণে মোলারিটির একক হচ্ছে	W ^ 2 W A	ম. বো. ২ ২]	~	ক্ত মোলারিটি	**	মালালিটি	
	$^{\odot} \frac{N}{V}$	⊚ mol kg		-	ल) नत्रभाविष्ठि		ত্ত ফরমালিটি	
	A	All the last of th	200	2	ক্ত মোলালিটি		Q 1 # 111 112	
	① mol	® g S	IU	The State of	প্রতি কেজি দ্রাব	কে দবীভত	দেবের মোল সংখ	াাকে ঐ দবণের
		2		- 10000-0000	মোলালিটি বলে।	01 U.Z	4	,,,, <u> </u>
উত্তর	: ⑨ <u>mol</u> L					মোলসংখ্যা (n) (= /	DE//G
						কর ভর (W)		
७२।	কোনটি সেমিমোলার দ্রবণ?		মি. বো. ২২					
77 - 2	③ 0.1 M	③ 0.05 M		9913	ব্রবণের কোন একক	টি তাপমাত্রার	উপর নির্ভরশীল ন	ग्र?
	① 0.01 M	⑨ 0.5 M			- 19 10 9111			বো. ২২; কু. বো. ২১]
উত্তর	: ® 0.5 M			(ক্ক মোলালিটি		 মালারিটি 	
ব্যাখ	া: নির্দিষ্ট তাপমাত্রায় 1 L দ্রবণে ().5 mol দ্ৰব দ্ৰবীভূত থাকলে	ঐ দ্রবণকে	(ন্য নরমালিটি		ত্ত পিপিএম	
	সেমিমোলার দ্রবণ বলে। সেমিমে	ালার দ্রবণের ঘনমাত্রা = 0.5	M	উত্তর: (ক্ক মোলালিটি			
					দ্রবের	মোল সংখ্য	t	
৩৩।	5% Na ₂ CO ₃ দ্রবণের ঘনমাত্র	কত মোলার?		ব্যাখ্যাঃ	মোলালিটি = <u>দ্রুবের</u> দ্রাব	কর ভর (kg)	<u> </u>	
		া প্রশ্ন: সি. বো. ২৩, ২২, ২১; রা.	179.70	Ę	ব্রবের মোল সংখ্যা	বা দ্রাবকের	া ভর কোনোটিই	তাপমাত্রার উপর
		ঢা. বো. ২২, ১৯; চ. বো. ২২; ব.	বো. ২২, ২১]	f	নির্ভরশীল নয়। তাই	, মোলালিটি	তাপমাত্রার উপর বি	নর্ভরশীল নয়।
	③ 0.98	@ 0.89						
7	⑨ 0.74	₪ 0.47		OF 1 2	27° C তাপমাত্রাতে	31.50 g	HNO3 এসিড 12	200 mL পানিতে
	€ 10×				ব্রবীভূত করা হলো	-		
ব্যাখ	$\pi: S = \frac{10x}{M}$				পানির ঘনত = 0.9			100 to 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					⊕ 0.41 molal		③ 0.42 molal	
	$=\frac{10\times5}{106}$				1 0.60 molal		1.66 mola	
	= 0.47 M			9000	3 0.42 molal			
			J.					

পরিমাণগত রসায়ন > ১৫১/ FRB Compact Suggestion Book.....

ব্যাখ্যা: মোলালিটি = দ্রবের মোল (mol) দ্রাবকের ভর (kg)
$$= \frac{\frac{W}{M}}{\rho \times V}$$
$$= \frac{\frac{31.50}{63} \text{ mol}}{0.9877 \times 1200 \text{ g}}$$
$$= \frac{0.5 \text{ mol}}{1000} \frac{0.9877 \times 1200 \text{ g}}{1000}$$
$$= 0.42 \text{ mol kg}^{-1}$$
$$= 0.42 \text{ molal}$$

৩৯। 500 mL ডেসিমোলার দ্রবণে দ্রবীভূত সোডিয়াম কার্বনেট এর পরিমাণ কত গ্ৰাম্য [য. বো. ২২; চ. বো. ১৫; অনুরূপ প্রশ্ন: রা. বো. ২৩; ব. বো. ২২:

3 2.65

সি. বো. ২২; দি. বো. ২১; চ. বো. ১৯) **3** 5.30

9 6.30

(9) 10.60

উত্তর: 🕲 5.30

ব্যাখ্যা:
$$W = \frac{SMV}{1000}$$

$$= \frac{0.1 \times 106 \times 500}{1000}$$
= 5.3 g

80। 250 mL সেন্টিমোলার দ্রবর্ণ প্রস্তুতিতে কত গ্রাম অক্সালিক এসিড [দি. বো. ১৯] প্রয়োজন হবে?

③ 0.225

@ 0.315

旬 11.250

(T) 15.750

উত্তর: 📵 0.225

ব্যাখ্যা: অক্সালিক এসিডের আণবিক সংকেত = $H_2C_2O_4$ আণবিক ভর = 90

এখন, S = $\frac{W \times 1000}{M \times V}$ $W = \frac{S \times M \times V}{1000} = \frac{0.01 \times 90 \times 250}{1000}$ 1000 = 0.225 g

৪১। দ্রবণের শতকরা ঘনমাত্রা কত? যি. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২২)

1%

1.2%

旬 1.5%

1.96%

উত্তর: খে 1.96% ব্যাখ্যা: আমরা জানি,

$$S = \frac{10x}{M}$$

$$\Rightarrow x = \frac{S \times M}{10} = \frac{0.2 \times 98}{10} = 1.96\%$$

8२। ppm धात क्काया- (ता. वा. २२: क्. वा. २১: अनुत्रम क्षम: मि. वा. ১৭; मि. वा. ১৭

(i) 1 ppm = 1 g/m^3

(ii) 1 ppm = 1 mg/L

(iii) 1 ppm = $1 \mu g/L$ নিচের কোনটি সঠিক?

(4) i, ii

(1) i, iii

(1) ii, iii

(1) i, ii, iii

উত্তর: 📵 i, ii

ব্যাখা: 1 ppm = 1 mg/L = 1 µg/mL = 1 g/m³

8৩। $0.5 \text{ mol L}^{-1} \text{ H}_2 \text{SO}_4$ দ্রবণে H^+ এর ঘনমাত্রা কত পিপিএম?|ঢা. বো. ২৩|

(4) 10000

③ 1000

100

(T) 10

উত্তর: 🕲 1000

ব্যাখ্যা: H₂SO₄ — H₂O 2H⁺ + SO₄²⁻ 0.5 M (2 × 0.5) M

 $\therefore [H^{+}] = 1 \text{ mol } L^{-1}$

= $(1 \times 1 \times 1000) \text{ mg L}^{-1} \text{ [:: ppm} = S \times M \times 10^3 \text{]}$

= 1000 ppm

৪৪। পাত্রের দ্রবণের ঘনমাত্রা ppm এককে কত?

িচ. বো. ২৩; অনুরূপ প্রশ্ন: ব. বো. ২৩; য. বো. ২৩; রা. বো. ২২; সি. বো. ২২)

সেমিমোলার Na₂CO₃ দ্ৰবণ

3 1.06 \times 10³

ⓐ 9.8×10^3

(1.96 × 104)

উত্তর: 📵 5.3 × 10⁴

ব্যাখ্যা: ppm ঘনমাত্রা = $S \times M \times 10^3 = 0.5 \times 106 \times 10^3$

 $= 5.3 \times 10^4$ ppm.

৪৫। 200 mL 10% HC/ দ্রবর্ণের ঘনমাত্রা ppm এককে কত?

ঢি. বো. ২১; অনুরূপ প্রশ্ন: য. বো. ২২১ (1) 1 × 105

何 5.48

(T) 2.74

উত্তর: (ৰ) 1 × 10⁵

ব্যাখ্যা: ppm ঘনমাত্রা = $x \times 10^4 = 10 \times 10^4 = 10^5$ ppm

৪৬। 50 mL দ্রবর্ণে 4.9 g H₂SO₄ দ্রবীভূত আছে। দ্রবণটির ঘনমাত্রা-

দি. বো. ২৩; অনুরূপ প্রশ্ন: ম. বো. ২৩)

(i) 1 M

(ii) 9800 ppm

(iii) $9.8 \times 10^4 \, \mu g/mL$

নিচের কোনটি সঠিক? (3) i, ii

(i, iii

1i, iii

(T) i, ii, iii

উত্তর: (ব) i, iii

ব্যাখ্যা: দ্রবণের ঘনমাত্রা, $S = \frac{1000W}{MV} = \frac{1000 \times 4.9}{98 \times 50} = 1 M$ $ppm = SM \times 10^3 = 1 \times 98 \times 10^3$ = 98000 ppm $= 9.8 \times 10^4 \, \mu \text{g mL}^{-1}$

..... Chemistry 2nd Paper Chapter-3

৪৭। দ্রবণের ঘনমাত্রা লঘুকরণের মূলভিত্তি হলো-

- 🕸 দ্রবের ভর
- প্রাবকের আয়তন
- ণ্) দ্রবণের আয়তন
- ছ দ্রবের মোল সংখ্যা

উত্তর: (৭) দ্রবণের আয়তন

ব্যাখ্যা: দ্রবণ লঘুকরণের জন্য, $V_1S_1=V_2$ S_2 সূত্রের সাহায্যে পরিবর্তিত ঘনমাত্রায় দ্রবণের আয়তন হিসেব করে প্রয়োজনীয় দ্রাবক যোগ করতে হয়। তাই, দ্রবণের আয়তন দ্রবণের ঘনমাত্রা লঘুকরণের মূলভিত্তি।

৪৮। 50 mL 0.5 M NaOH দ্রবণকে ডেসিমোলার দ্রবণে পরিণত করতে কত mL পানি যোগ করতে হবে? [চ. বো. ২১]

- (4) 200 mL
- 150 mL
- (100 mL

উত্তর: 🕲 200 mL

ব্যাখ্যাঃ আমরা জানি, $S_2V_2 = S_1V_1$

$$\Rightarrow V_2 = \frac{S_1 V_1}{S_2} = \frac{0.5 \times 50}{0.1} = 250 \text{ mL}$$

∴ পানি যোগ করতে হবে, V₂ – V₁ = (250 – 50) mL

85। 1 M H2SO4 দ্রবর্গ থেকে 100 mL 0.5 N এবং 50 mL 0.25 N দ্রবণ তৈরি করতে যথাক্রমে-

- ® 25 mL ♥ 6.25 mL
- (₹) 50 mL № 25 mL
- 100 mL 9 50 mL
- (ছ) 50 mL ও 100 mL প্রয়োজন হবে

উন্তর: @ 25 mL ও 6.25 mL

ব্যাখ্যা: আমরা জানি,

নরমালিটি = মোলারিটি × তুল্যসংখ্যা

$$N = S \times e$$

$$\therefore S = \frac{N}{e}$$

এখন.

$$V_1S_1 = V_2S_2$$

$$V_1S_1 = V_2S_2 \qquad V_3S_3 = V_2S_2$$

$$\Rightarrow 100 \times \frac{0.5}{2} = V_2 \times 1 \qquad \Rightarrow 50 \times \frac{0.25}{2} = V_2 \times 1$$

:. $V_2 = 25 \text{ mL}$

$$V_2 = 6.25 \text{ mL}$$

৫০। 24.5 g H2SO4 বিশিষ্ট 250 mL দ্রবণে আরও 250 mL পানি যোগ করলে ঘনমাত্রা কত হবে? [ঢা. বো. ১৯]

③ 0.1

@ 0.25

- **9** 0.5
- (T)

উত্তর: গ 0.5

ব্যাখ্যা: H₂SO₄ এর আণবিক ভর = 98 g

দ্রবণের মোট আরতন = 250 + 250 = 500 mL

∴ ঘণমাত্রা,
$$S = \frac{W \times 1000}{M \times V} = \frac{24.5 \times 1000}{98 \times 500} = 0.5 \text{ M}$$

৫১। 3 mL 0.1 M কস্টিক সোডা দ্রবণে 1 mL 0.3 M কস্টিক সোডা দ্রবর্ণ যোগ করা হলো। মিশ্রিত দ্রবণের ppm ঘনমাত্রা কত?

বি. বো. ১৯; অনুরূপ প্রশ্ন: কু. বো. ১৭]

- **3** 4000
- **(4)** 6000
- (P) 8000
- **(1)** 12000

উত্তর: 🕲 6000

Rhombus Publications

য়. বো. ২১। ব্যাখ্যা: SV = S₁V₁ + S₂V₂

$$\Rightarrow S = \frac{S_1V_1 + S_2V_2}{V} = \frac{S_1V_1 + S_2V_2}{V_1 + V_2}$$

$$= \frac{0.1 \times 3 + 0.3 \times 1}{3 + 1}$$

$$= 0.15 \text{ M}$$

$$= 0.15 \times 40 \times 10^3 \text{ ppm}$$

$$= 6000 \text{ ppm}$$

৫২। 10% Na₂CO₃ 250 ml দ্রবণে কি পরিমাণ পানি মিশালে দ্রবণের ঘনমাত্রা সেমিমোলার হবে? পি. বো. ১৯; অনুরূপ প্রশ্ন: চ. বো. ২১; কু. বো. ১৭

- → 220 mL
- (1) 235 mL
- 1 250 mL
- (1000 mL

উত্তর: 🕸 220 mL

ব্যাখ্যা: আমরা জানি,

$$S = \frac{10x}{M}$$

$$S_1 = \frac{10 \times 10}{106} = 0.94 \text{ M}$$

 $V_1 = 250 \text{ mL}$

সেমিমোলার দ্রবণের ক্ষেত্রে $S_2 = 0.5 M$

$$V_2 = ?$$

তাহলে, $S_1V_1 = S_2V_2$

$$\Rightarrow V_2 = \frac{S_1 V_1}{S_2} = \frac{0.94 \times 250}{0.5} = 470$$

$$\therefore$$
পানি মেশাতে হবে = $V_2 - V_1 = 470 - 250$

৫৩। 1000 mL 1N H₂SO₄ এর দ্রবণ তৈরি করতে 98 % H₂SO₄ এর কত মিলিলিটারের প্রয়োজন হবে? [দ্রবণের ঘনত্ব = 1.8 g/cc]

- **3** 27.8
- **(4)** 55.6

- **19** 4.9
- (T) 98

উত্তর: 📵 27.8

ব্যাখ্যা: W = SMV

$$= 0.5 \times 98 \times 1$$

আমরা জানি, N = S × e

V = 1000 mL = 1 L

$$=49 \text{ g H}_2\text{SO}_4$$

$$S = \frac{N}{e} = 0.5$$

98 g বিদ্যমান 100 g দ্রবণে

∴ 49 g বিদ্যমান =
$$\frac{100 \times 49}{98}$$
 দ্রবণে = 50 g দ্রবণে

এখন, আয়তন,
$$V = \frac{50 \text{ g}}{1.8 \text{ g/cc}} = 27.8 \text{ cc}$$

$$= 27.8 \text{ mL} [:: 1 \text{ mL} = 1 \text{ cc}]$$

৫৪। 10 mL 0.5 M Na₂CO₃ দ্রবণ প্রশমিত করতে 12.6 mL H2SO4 দ্রবণ প্রয়োজন হলে এসিড দ্রবণের ঘনমাত্রা কত হবে? রা. বো. ১৯; অনুরূপ প্রশ্ন: ব. বো. ২১; ঢা. বো. ১৯; ব. বো. ১৯)

- @ 0.396 M
- ③ 0.387 M
- @ 0.358 M
- (T) 0.333 M

উত্তর: 📵 0.396 M

ব্যাখা: eAVASA = eBVBSB

$$\Rightarrow$$
 2 × 12.6 × S_A = 2 × 10 × 0.5

 $S_A = 0.396 \text{ M}$

পরিমাণগত রসায়ন > ACS) FRB Compact Suggestion Book......২০৩ वद । 100 cm³ 0.3 M HC/ धनः 200 cm³ 0.6 M H2SO4 धकव्व | वाशाः A পাত্রের দ্রবণের ঘনমাত্রা, $S_A = \frac{10 \times 2}{36.5}$ | HCI এর আণবিক ভর = 36.5মিশ্রিত করা হলো। দ্রবণটির মোলারিটি কত? ⊕ 0.45 M (4) 0.6 M ① 0.9 M ® 0.25 M = 0.548 Mউত্তর: 📵 0.9 M $= 0.548 \times 36.5 \times 10^{3} \text{ ppm}$ = 20000 ppmব্যাখ্যা: দেওয়া আছে. 10 × 2 | কম্টিক সোডা = NaOH HC/ এর আয়তন, $V_1 = 100 \text{ cm}^3$ B পাত্রের দ্রবণের ঘনমাত্রা, S_B = আণবিক ভর = 40 HCI এর ঘনমাত্রা, $S_1 = 0.3 \text{ M}$ H_2SO_4 এর আয়তন, $V_2 = 200 \text{ cm}^3$ = 0.5 M $=0.5\times40\times10^3$ ppm H_2SO_4 এর ঘনমাত্রা, $S_2 = 0.6 \text{ M}$ = 20000 ppmমিশ্রণের পরে মোট ঘনমাত্রা, S₃ = ? A পাত্রে এসিডের মোল সংখ্যা, $n_A = 0.548 \times 50 \times 10^{-3}$ mol = 0.0274 mol \sum (মোলসংখ্যা \times তুলাসংখ্যা) μ তুলাসংখ্যা \times তুলসংখ্যা) μ তুলসংখ্যা \times তুলসংখ্যা B পাত্রে এসিডের মোল সংখ্যা, $n_B = 0.5 \times 50 \times 10^{-3} \text{ mol}$ $\Rightarrow \sum (n \times e)_{\text{flations with}} = \sum (n \times e)_{\text{flations with}}$ = 0.025 mol $\Rightarrow \sum (V(L) \times S \times e)$ fuziona valion $= \sum (V(L) \times S \times e)$ fuziona vica যেহেতু, এক ক্ষারকীয় এসিড ও এক অম্লীয় ক্ষারকের মোল সংখ্যা $\Rightarrow \frac{100}{1000} \times 0.3 \times 1 + \frac{200}{1000} \times 0.6 \times 2 = \frac{300}{1000} \times S \times 1$ সমান নয় এবং $n_A > n_B$ হওয়ায় মিশ্রিত দ্রবণের প্রকৃতি অস্লীয়। \Rightarrow 0.1 \times 0.3 + 0.2 \times 0.6 \times 2 = 0.3 \times S অমুমিতি, ক্ষারমিতি, টাইট্রেশন, নির্দেশক \therefore S = $\frac{0.1 \times 0.3 + 0.2 \times 0.6 \times 2}{0.00 \times 0.00 \times 2} = 0.9 \text{ M}$ নিচের উদ্দীপকটি পড় এবং ৫৮ ও ৫৯ নং প্রশ্নের উত্তর দাও: A (আয়রন (III) অক্সাইড) + HCl → B + H2O ৫৬। 150 mL HNO3 এ 1.5 g দ্রব আছে। দ্রবণটি 2% Na2CO3 ৫৮ | 'A' যৌগের অস্ত্রতু কত? [য. বো. ১৯; অনুরূপ প্রশ্ন: ঢা. বো. ১৭; চ. বো. ১৭] দ্রবণকে প্রশমিত করল। ক্ষারীয় দ্রবণটির ক্ষেত্রে প্রযোজ্য- [ম. বো. ২৩] (a) 4 **(4)** 3 (i) ঘনমাত্রা 0.189 M **1** 5 (T) 6 (ii) আয়তন 37.3 mL উত্তর: (ম) 6 (iii) আয়তন 57.6 mL ব্যাখ্যা: Fe₂O₃ + 6HCl -> 2FeCl₃ + 3H₂O নিচের কোনটি সঠিক? সুতরাং, Fe₂O₃ এর অম্লত্ব 6 ҈ ii, iii (i, ii (1) i, ii, iii 1, iii [य. व्या. ১৯] ৫৯। B যৌগের দ্রবণ– উত্তর: সঠিক উত্তর নেই। (ৰ) ক্লারীয় ক্ত অশ্লীয় ব্যাখ্যা: HNO_3 এর মোলসংখ্যা, $n_1 = \frac{W}{M} = \frac{1.5}{63} = 0.0238 \text{ mol}$ (ছ) নিরপেক্ষ গ) প্রশম উত্তর: 🖚 অশ্রীয় Na_2CO_3 এর ঘনমাতা, $S = \frac{2 \times 10}{106} = 0.189 \text{ M}$ वार्थाः Fe2O3 + 6HCl → 2FeCl3 + 3H2O $2HNO_3 + Na_2CO_3 \rightarrow CO_2 + 2NaNO_3 + H_2O$ তীব্র এসিড ও মৃদু ক্ষার বা ক্ষারকের বিক্রিয়ায় উৎপন্ন লবণের জলীয় $\frac{\mathbf{n_1}}{2} = \frac{\mathbf{n_2}}{1}$ দ্রবণ অশ্লীয় প্রকৃতির। $\Rightarrow \frac{0.0238}{2} = \frac{0.189 \times V}{1}$ ৬০। অক্সালিক এসিডের ক্ষারকত্ব কত? [কু. বো. ২১] (a) 1 (4) 2 .: V = 0.06296 L = 62.96 mL (T) 3 **1** 4 উত্তর: 🕲 2 নিচের উদ্দীপকটি পড় এবং ৫৭ নং প্রশ্নের উত্তর দাও। वाधाः H2C2O4 + 2NaOH → Na2C2O4 + 2H2O 2% 50 cm³ HC/ দ্রবণ 2% 50 cm³ কস্টিক সোডা দ্রবণ এক মোল H2C2O4 প্রশমনের জন্য দুই মোল NaOH (মনোপ্রোটিক ক্ষারক) প্রয়োজন। তাই H2C2O4 এর ক্ষারকত্ব 2। ৫৭। উদ্দীপকের দ্রবণ দুটির ক্ষেত্রে-[কু. বো. ১৭] ৬১। Al₂O₃ এর অম্লুত্ কত? [চ.বো. ২১] (i) A ও B পাত্রের দ্রবণের ঘনমাত্রা ppm এককে সমান **(4)** 6 (a) 4 (ii) A ও B পাত্রের মিশ্রিত দ্রবণের প্রকৃতি নিরপেক্ষ (9) 3 (iii) A ও B পাত্রের মোলার ঘনমাত্রা সমান নয় উত্তর: 🕦 6 নিচের কোনটি সঠিক? ব্যাখ্যা: Al₂O₃ + 6HCl → 2AlCl₃ + 3H₂O (1) ii, iii (4) i, ii অর্থাৎ Al₂O₃ 6টি মনোপ্রোটিক অম্ল (HCI) এর সাথে বিক্রিয়া করে। (1) i, ii, iii 何 i, iii এজন্য Al₂O₃ এর অমুত 6. উত্তর: প্র i, iii

৬২। H₂SO₄ এর ক্ষারকত্ব কত? **3** 2 (3) क रकननकथानिन **(9)** 4 (B) 5 মিথাইল অরেঞ্জ উত্তর: 🕸 2 উত্তর: 📵 ফেনলফথ্যালিন ব্যাখ্যা: H2SO4 + 2NaOH -> Na2SO4 + 2H2O H_2SO_4 এর প্রশমনে 2 অণু মনোপ্রোটিক ক্ষারক প্রয়োজন। তাই H₂SO₄ এর ক্ষারকত্ব হবে 2। (রা. বো. ২৩; অনুরূপ প্রশ্ন: ব. বো. ২১; রা. বো. ২১; ম. বো. ২১) 3.2 – 4.2 ৬৩। টাইট্রেশনে ব্যবহৃত অজানা দ্রবণকে বলা হয়-[দি. বো. ২৩] 到 5.0 - 8.0 ক টাইটান্ট ভাইট্ৰেট উত্তর: 🚳 3.2 – 4.2 ল) টাইটার (ছ) ট্রাইমার উত্তর: (ব) টাইট্রেট (a) 10 - 4 ব্যাখ্যাঃ টাইট্রেশনে ব্যবহৃত অজানা ঘনমাত্রার দ্রবণটিকে টাইট্রেট বলে। আর (9) 7 - 4 জানা ঘনমাত্রার দ্রবণটিকে টাইটার বলে। উত্তর: 何 7 – 4 ৬৪। নির্দেশক কোনো রাসায়নিক বিক্রিয়ায় উপস্থিত থেকে-[রা. বো. ১৯] (i) বিক্রিয়ার শেষ বিন্দু নির্দেশ করে মিথাইল রেড (ii) বিক্রিয়াকে প্রভাবিত করে প) থাইমল ব্ল (iii) নিজের বর্ণ পরিবর্তন করে উত্তর: 🕲 ফেনলফথ্যালিন নিচের কোনটি সঠিক? (1) ii, iii (i, ii (1) i, ii, iii 1, iii উত্তর: 何 i, iii ৬৫। মিথাইল অরেঞ্জ অশ্লীয় দ্রবণে কোন বর্ণ প্রদর্শন করে? চি. বো. ২২; অনুরূপ প্রশ্ন: য. বো. ১৯; ব. বো. ২১/ ক) বৰ্ণহীন (খ) কমলা चि शानाशि नान প্র হলুদ উত্তর: 取 গোলাপি লাল ব্যাখ্যা: বর্ণ পরিবর্তনে অশ্লীয় মাধ্যমে ক্ষারীয় মাধ্যমে নির্দেশকের নাম ক) মিথাইল রেড বর্ণ বর্ণ pH পরিসর গ্র থাইমল ব্ল বৰ্ণহীন লালচে বেগুনি ফেনলফথ্যালিন 8.2-9.8 উত্তর: 📵 মিথাইল রেড, 🕲 মিথাইল অরেঞ্জ ফেনল রেড হলুদ नान 6.8-8.4 লিটমাস नीन नान 6.0-8.0 মিথাইল রেড नान হলুদ 4.2-6.3 নিচের কোনটি সঠিক? মিথাইল অরেঞ্জ লাল 3.1-4.4 হলুদ (7) i থাইমল ব্ল नान হলুদ 1.2 - 2.81 ii, iii উত্তর: 🕲 i, ii, iii ७७। HBr प्रवर्ण रक्षननकथानिन की वर्ण धावन करत? [সি. বো. ২২] क) नान (ব) হলুদ গ্ৰ গোলাপি (ছ) বর্ণহীন উত্তর: 🕲 বর্ণহীন ব্যাখ্যা: HBr একটি এসিড। এসিডীয় মাধ্যমে ফেনলফথ্যালিন বর্ণহীন হয়। আবার ক্ষারীয় মাধ্যমে (যেমন- NaOH) লালচে বেগুনি বর্ণ ধারণ করে।

..... ACS, > Chemistry 2nd Paper Chapter-3 ৬৮। কোন নির্দেশকের pH সীমা 8-10 এর মধ্যে? টো. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২৩] মিথাইল রেড (ঘ) থাইমল ব্ৰ

৬৯। মিথাইল অরেঞ্জের বর্ণ পরিবর্তনের pH সীমা কোনটি?

(4) 4.3 - 5.4 ® 8.2 - 10.0

৭০। মিখাইল রেড এর বর্ণ পরিবর্তনের pH সীমা-[ঢা. বো. ২১]

> (4) 10 - 8 □ 1 - 3

9১। $H_2C_2O_4 + NaOH \rightarrow$ বিক্রিয়ায় উপযুক্ত নির্দেশক কোনটি?

[সি. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২২; ২১]

মথাইল অরেঞ্জ থি ফেনলফথ্যালিন

ব্যাখ্যা: বিক্রিয়াটি মৃদু এসিড (H2C2O4) ও তীব্র ক্ষার (NaOH) এর মধ্যে হওয়ায় ফেনলফথ্যালিন উপযুক্ত নিদের্শক।

টাইট্রেশন	নিৰ্দেশক		
তীব্র এসিড বনাম তীব্র ক্ষার	যেকোনো নির্দেশক		
তীব্র এসিড বনাম মৃদু ক্ষার	মিথাইল অরেঞ্জ বা মিথাইল রেড		
মৃদু এসিড বনাম তীব্র ক্ষার	ফেনলফখ্যালিন		
মৃদু এসিড বনাম মৃদু ক্ষার	কোনো উপযুক্ত নির্দেশক নেই		

৭২। Na₂CO₃ এবং HCI এর প্রশমন বিক্রিয়ায় উপযুক্ত নির্দেশক কোনটি? [য. বো. ২২]

মিথাইল অরেঞ্জ

(ছ) ফেনলফথ্যালিন

৭৩। HCl ও NaOH এর টাইট্রেশনে নির্দেশক ব্যবহৃত হয়–

চি. বো. ২১; অনুরূপ প্রশ্ন: সি. বো. ২১]

(i) মিথাইল অরেঞ্জ (ii) মিথাইল রেড (iii) ফেনলফথ্যালিন

(1) i, ii

(1) i, ii, iii

ব্যাখ্যা: যেহেতু, HCl একটি তীব্র এসিড ও NaOH একটি তীব্র ক্ষার, সূতরাং এদের টাইট্রেশনে যেকোনো নির্দেশক ব্যবহার করা যাবে।

98। প্রমাণ KMnO4 দ্রবর্ণের সাহায্যে আয়রন (II) আয়নের পরিমাণ নির্ধারণে নির্দেশক হিসাবে কোনটি কাজ করে? [সম্মিলিত বো. ১৮]

পটাশিয়াম পারম্যান্সানেট

মথাইল অরেঞ্জ

গে) ফেনলফথ্যালিন

(ম) আয়রন (II) দ্রবণ

উত্তর: 📵 পটাশিয়াম পারম্যাঙ্গানেট

ব্যাখ্যা: প্রমাণ KMnO₄ দ্রবণের সাহায্যে আয়রন (II) আয়নের পরিমাণ নির্ধারণে নির্দেশক হিসাবে পটাশিয়াম পারম্যাঙ্গানেট ব্যবহৃত হয়। এক্ষেত্রে পটাসিয়াম পারম্যাঙ্গানেট স্ব-নির্দেশক হিসেবে কাজ করে।

Rhombus Publications

ক) বেগুনি

११) नीन

উত্তর: 🕲 হলুদ

৬৭। মিথাইল রেড ক্ষারীয় মাধ্যমে কোন বর্ণ প্রদর্শন করে?

থ হলুদ

(घ) नान

[চ. বো. ১৯]

পরিমাণগত রসায়ন ➤ ১৫১৫ FRB Compact Suggestion Book ৭৫। রিডক্স বিক্রিয়ায় টাইট্রেশনে ব্যবহৃত KMnO₄ দ্রবণ– ৭৮। 100 mL ডেসিমোলার HCl ও 100 mL ডেসিমোলার Na, CO, (i) প্রাইমারি স্ট্যান্ডার্ড পদার্থ দ্রবণের মিশ্রণের প্রকৃতি কীরূপ হবে? দি, বো. ২৩; অনুরূপ প্রশ্ন: ২২; সি. বো. ২১ (ii) স্বনির্দেশকরূপে কাজ করে क कातीग्र অপ্ৰীয় (iii) অখ্লীয় মাধ্যম করতে HCI এসিড ব্যবহার করা যায় না ন্য উভধর্মী বি) নিরপেক্ষ নিচের কোনটি সঠিক? উত্তর: ক্র ক্লারীয় (i, ii (ii, iii বাখা: $Na_2CO_3 + 2HCI \rightarrow 2NaCI + CO_2 + H_2O$ (1) i, iii (T) i, ii, iii উভর: 🕲 ii, iii : 1 mol Na₂CO₃ = 2 mol HC/ সমমোলার Na₂CO₃ কে HC/ দ্বারা পূর্ণ প্রশমিত করতে দ্বিগুণ ব্যাখ্যা: KMnO4 একটি সেকেন্ডারি স্টান্ডার্ড পদার্থ। টাইট্রেশনে এটি পরিমাণ HCI এর প্রয়োজন। যেহেতু উভয়ের আয়তন একই তাই স্বনির্দেশক হিসেবে কাজ করে। KMnO4 কে দ্রবীভূত করলে বেগুনি HC/ দ্বারা Na2CO3 পূর্ণ প্রশমিত হয় না। সুতরাং, মিশ্রণে অতিরিক্ত বর্ণের দ্রবণ পাওয়া যায়। কিন্তু টাইট্রেশনের শেষে এটি বর্ণহীন হয়ে Na2CO3 থাকায় মিশ্রণটি ক্ষারীয় প্রকৃতির হবে। যায়। এতে আরেক কোঁটা পটাশিয়াম পারম্যান্সানেট দিলে এটি গোলাপি রং ধারণ করে। এতে বোঝা যায় গোলাপি রং ধারণের পূর্বেই নিচের উদ্দীপকটি পড় এবং ৭৯ নং প্রশ্নের উত্তর দাও: বিক্রিয়াটির সমাপ্তি ঘটেছে এবং প্রমাণ করে দ্রবণে অতিরিক্ত পটাশিয়াম পারম্যাঙ্গানেট আছে। টাইট্রেশনে KMnO₄ নিজেই এভাবে 150 mL 200 mL নির্দেশক হিসেবে ভূমিকা রাখে। এজন্য KMnO4 কে সেলফ ইন্ডিকেটর বা স্ব-নির্দেশক বলা হয়। 0.2 M 0.25 M HCl একটি রিডিউসিং এজেন্ট, তাই এটি টাইট্রেশনের সময় একটি H₂SO₄ NaOH নির্দিষ্ট পরিমাণ KMnO4 কে বিজারিত করবে। এতে KMnO4 এর B পরিমাণ প্রয়োজনের তুলনায় বেশি লাগবে। এজন্য KMnO4 এর ৭৯। উদ্দীপকের দ্রবণদ্বয়ের মিশ্রণের ক্লেত্রে-[য. বো. ২৩] রেডক্স বিক্রিয়ায় HC/ ব্যবহার হয় না। (i) মিশ্রণটি অম্লীয় হবে (ii) A দ্রবণ দারা B দ্রবণ পূর্ণ প্রশমিত হবে নিচের উদ্দীপকটি লক্ষ্য কর এবং ৭৬ নং প্রশ্নের উত্তর দাওঃ (iii) B দ্রবণ দ্বারা A দ্রবণ পূর্ণ প্রশমিত হবে 10 mL H2A কে 0.1 M MOH দ্বারা টাইট্রেশনের লেখচিত্র নিমুরূপঃ নিচের কোনটি সঠিক? 10 (4) i, ii (1) ii, iii (9) i, iii (1) i, ii, iii pH উত্তর: 📵 i, ii 6 ব্যাখ্যা: A দ্ৰবণের মোল সংখ্যা, n_A = S_AV_A = 0.2 × 0.15 = 0.03 mol B দ্রবণের মোল সংখ্যা, $n_B = S_B V_B = 0.25 \times 0.2 = 0.05$ mol H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O 10.6 mL \therefore 2 mol NaOH = 1 mol H₂SO₄ $\therefore 0.05 \text{ mol NaOH} \equiv \frac{0.05}{2} \text{ mol H}_2\text{SO}_4$ MOH দ্রবণের আয়তন ৭৬। H2A এর ঘনমাত্রা কত? [সি. বো. ১৭] = 0.025 mol H₂SO₄ ⊕ 0.053 M ∴ দ্রবণে অতিরিক্ত H₂SO₄ এর পরিমাণ @ 0.094 M (F) 0.100 M (1) 0.106 M =(0.03-0.025)=0.005 mol উত্তর: 📵 0.053 M ∴ মিশ্রণটি অম্লীয় হবে এবং A (H₂SO₄) দ্বারা B(NaOH) পূর্ণ ব্যাখ্যা: H₂A + 2MOH → M₂A + 2H₂O প্রশমিত হবে। আমরা জানি, ৮০। 0.001 M HC/ দ্রবর্ণের pH এর মান কত? [ম. বো. ২৩] $e_A V_A S_A = e_B V_B S_B$ (4) 2 \Rightarrow 2 × 10 × S_A = 1 × 10.6 × 0.1 (A) 3 (F) 4 \Rightarrow S_A = 0.053 M উত্তর: (গ) 3 ৭৭। টাইট্রেশনটিতে উপযুক্ত নির্দেশক কোনটি? [সি. বো. ১৭] $\xrightarrow{\text{H}_2\text{O}} \text{H}^+(\text{aq}) + C\Gamma(\text{aq})$ ব্যাখা: HC! কি মিথাইল অরেঞ্জ মিথাইল রেড 0.001 M ন্ত্ৰ) ফেনলফথ্যালিন খি থাইমল ব্ল $pH = -\log [H^{+}] = -\log (0.001) = 3$ উত্তর: 🕲 ও 🕅 ব্যাখ্যা: টাইট্রেশনটির pH পরিসর প্রায় 4.5 থেকে 10। যেহেতু মিথাইল ৮১। 0.01 M HC/ এর 500 mL এর সাথে 0.5 M 20 mL Na₂CO₃ রেড ও ফেনলফথ্যালিন এর কার্যকর pH পরিসর 4.2 থেকে 10 এর দ্রবণ মিশ্রিত করা হলো। মিশ্রণের ঘনমাত্রা কত মোলার?

Rhombus Publications

3 0.014

® 0.019

(a) 0.011

(9) 0.017

উত্তর: 🕲 0.014

মধ্যে, তাই এদেরকে নির্দেশক হিসেবে ব্যবহার করা যাবে। মিথাইল

অরেঞ্জ ও থাইমল ব্লু এর pH পরিসর 4.5 পরিসর এর নিচে। তাই

মিথাইল অরেঞ্জ ও থাইমল ব্লু এক্ষেত্রে উপযুক্ত নির্দেশক নয়।

ব্যাখ্যা: সংঘটিত বিক্রিয়াটি, ৮৫। কোন যৌগে 'C' এর জারণ মান শুন্য? [চ. বো. ২৩; রা. বো. ২১] 2HCI + Na₂CO₃ = 2NaCI + H₂CO₃⊕ CH₄ (1) CO HCI এর মোল সংখ্যা, $n_A = S_A V_A = 0.01 \text{ mol/L} \times 0.5 \text{L}$ ⑨ CH₂Cl₂ (1) C2H2 = 0.005 molউত্তর: প CH2Cl2 আবার. ব্যাখ্যা: ধরি, CH2Cl2 যৌগে, Na_2CO_3 এর মোলসংখ্যা, $n_B = S_BV_B = 0.5 \times 0.02$ C এর জারণ মান = x $\therefore x + 2 \times 1 + 2 \times (-1) = 0$ \therefore 2 mol HC/ = 1 mol Na₂CO₃ $\Rightarrow x = 0$ ∴ 0.005 mol HC $l = \frac{0.005}{2}$ mol Na₂CO₃ ৮৬। SO4 আয়নে সালফারের জারণ মান কত? [চ. বো. ১৯] = 0.0025 mol Na₂CO₃ 3 + 2 (3) + 2.3∴ দ্রবণে অতিরিক্ত Na2CO3 এর পরিমাণ, (9) + 2.5 (F) + 6 $\Delta n = 0.01 - 0.0025$ উত্তর: (ঘ) + 6 = 0.0075 molব্যাখ্যা: ধরি, SO_4^{2-} আয়নে S এর জারণ মান x, $\Delta n = SV$ \Rightarrow S = $\frac{\Delta n}{V} = \frac{0.0075}{0.52}$ M = 0.014 M তাহলে, $x + 4 \times (-2) = -2$ $\Rightarrow x = -2 + 8 = 6$ x = +6৮২। একটি বিকারে 20 mL 0.1 M HC/ এর সঙ্গে 50 mL 0.1 M H₂SO₄ মিশ্রিত করা হলো। এই দ্রবণে 60 mL অজ্ঞাত ঘনমাত্রার NaOH মিশ্রিত করলে দ্রবণটি সম্পূর্ণ প্রশমিত হয়। NaOH দ্রবণের ৮৭। K₄[Fe(CN)6] জটিল যৌগে Fe এর জারণ মান কত? [কু. বো. ২৩] অজ্ঞাত ঘনমাত্রা কত মোলার? (4) 9 + 4 ⊕ 0.10 M 3 0.12 M (T) + 6 (1) 0.22 M উত্তর: (ক) +2 例 0.20 M ব্যাখ্যা: ধরি, যৌগটিতে Fe এর জারণ সংখ্যা = x উত্তর: গ 0.20 M ব্যাখ্যা: আমরা জানি, $1 \times 4 + x + (-1 \times 6) = 0$ \sum (মোলসংখ্যা \times তুল্যসংখ্যা) $_{alpha} = \sum$ (মোলসংখ্যা \times তুলসংখ্যা) $_{alpha}$ $\Rightarrow x-6=-4$ $\Rightarrow \sum (V(L) \times S \times e)$ এনিত = $\sum (V(L) \times S \times e)$ জার $\therefore x = +2$ $\Rightarrow \frac{20}{1000} \times 0.1 \times 1 + \frac{50}{1000} \times 0.1 \times 2 = \frac{60}{1000}$ ৮৮। $I_2+2Na_2S_2O_3 \rightarrow A+2NaI;$ A যৌগের কেন্দ্রীয় পরমাণুর জারণ মান কত? [সি. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২১; ঢা. বো. ২১] $\Rightarrow 0.06 \text{ S} = 2 \times 10^{-3} + 0.01$ + 4.0 $\Rightarrow S = \frac{2 \times 10^{-3} + 0.01}{0.06}$ (3) + 3.59 + 2.5(9) + 2.0উত্তর: 🕦 + 2.5 \therefore S = 0.2 M वार्थाः I2 + 2Na2S2O3 → Na2S4O6 + 2NaI ৮৩। 5 g Na₂CO₃ 100 g দ্রাবকে দ্রবীভূত করে দ্রবণ তৈরি করা হল। :. A যৌগটি Na2S4O6 দ্রবণের ঘনমাত্রা কিভাবে প্রকাশ করা যায়? [সম্মিলিত বো. ১৮] ধরি, Na2S4O6 এর কেন্দ্রীয় পরমাণু S এর জারণ মান = x (1) %(v/W) $1 \times 2 + 4x + (-2) \times 6 = 0$ 例 %(w/W) উত্তর: প্র %(w/W) \Rightarrow 4x + 2 - 12 = 0 $\Rightarrow 4x = 10$ ব্যাখ্যাঃ 5% $\left(\frac{w}{W}\right)$ Na₂CO₃ দ্ৰবণ বলতে বুঝায়– x = +2.5100 g দ্রবণে 5 g Na2CO3 দ্রবীভূত আছে অথবা, 95 g পানি দিয়ে তাতে 5 g Na₂CO₃ দ্রবীভূত করে দ্রবণ প্রস্তুত করা হয়েছে। ৮৯। NaOH + $Cl_2 \xrightarrow{70^{\circ}C}$ NaC $l + A + H_2O$; উক্ত বিক্রিয়ায় Clএর পরিবর্তিত জারণ অবস্থা-চি. বো. ২৩] জারণ-বিজারণ, জারণ-বিজারণ অর্ধবিক্রিয়া, সমতাকরণ (i) - 1৮৪। ম্যাগনেসিয়াম কার্বাইডে কার্বনের জারণ মান কত? (ii) + 1[ঢা. বো. ২৩] (iii) + 5→ 4 (3) - 1 নিচের কোনটি সঠিক? (A) + 1 (T) +4 (क) i (1) i, ii উত্তর: (খ) - 1 (9) ii, iii (T) i, iii ব্যাখ্যা: ম্যাগনেসিয়াম কার্বাইড (MgC2) এর ক্ষেত্রে, উত্তর: 🕲 i, ii $2 + (x \times 2) = 0$ ব্যাখ্যা: NaOH + $\overset{0}{C}l_2 \xrightarrow{70^{\circ}\text{C}} \text{NaC}l + \text{NaOC}l + \text{H}_2\text{O}$ $\Rightarrow 2x = -2$ $\therefore x = -1$

t.me/admission stuffs

পরিমাণগত রসায়ন > ACS) FRB Compact Suggestion Book২০৭ ৯০। পার ক্লোরিক এসিডের কেন্দ্রীয় পরমাণুর জারণ সংখ্যা কত? ঢা. বো. ২২ ব্যাখ্যা: LiCoO2 = CoO2 + nLi+ ne-(4) + 1 (4) + 3 ধরি, CoO ু এ Co এর জারণমান = x (1) + 7 1 + 5 $x-2\times 2=-1$ উত্তর: 🕲 + 7 $\Rightarrow x = +3$ ব্যাখ্যা: HClO₄ এ Cl এর জারণ সংখ্যা = x হলে ৯৬। Fe3O4 এর Fe এর জারণ মান-[য. বো. ১৯] $1 + x + (-2) \times 4 = 0$ (4) + 2 $\Rightarrow x = 8 - 1$ 9 + 2.67(F) + 3 $\therefore x = +7$ উত্তর: 📵 + 2.67 ব্যাখ্যা: ধরি, Fe এর জারণ মান = x ৯১। [Co(NH₃)₆]³⁺ আয়নটিতে কেন্দ্রীয় পরমাণুর জারণ মান কত? [ব্লা. বো. ২২] এখন, x × 3 + {(-2) × 4} = 0 (a) +1 (4) + 2 $\Rightarrow 3x = 8$ a AdmissionStuffs (9) + 3 (T) + 6 $x = \frac{8}{3} = +2.67$ উত্তর: (গ) + 3 ব্যাখ্যা: কেন্দ্রীয় পরমাণু কোবাল্টের (Co) জারণ মান x হলে ৯৭। সোডিয়াম ট্ট্রো থায়োনেট যৌগে কেন্দ্রীয় পরমাণুর জারণ মান কত? $\therefore x + (0 \times 6) = 3$ কু. বো. ১৭] $\therefore x = +3$ $^{\odot} + 2.0$ (3) + 2.59 + 3.5(q) + 4.0 ৯২। কোন যৌগের অণুতে নাইট্রোজেন সর্বোচ্চ জারণ অবস্থা প্রদর্শন উত্তর: 🕲 + 2.5 কু. বো. ২২) ব্যাখ্যা: ধরি, সোডিয়াম টেট্রা থায়োনেট (Na2S4O6) এর কেন্দ্রীয় পরমাণু ® NH₂OH ③ N₂H₄ সালফার S এর জারণ মান = x 1 NH3 ® N₃H $2 \times 1 + 4x - 2 \times 6 = 0$ উত্তর: প NH3 $\Rightarrow 2 + 4x - 12 = 0$ ব্যাখ্যা: NH₂OH এ, $x + (1 \times 2) - 2 + 1 = 0$ \Rightarrow 4x = 10 = +2.5 $\therefore x = -1$ ৯৮ + $\mathrm{Br}_2 o \mathrm{BrO}_3^-$ এ বিক্রিয়ায় Br এর জারণ সংখ্যার পরিবর্তন হয়- N_2H_4 = 0, $2x + (1 \times 4) = 0$ [ব. বো. ১৭] $\therefore x = -2$ ③ 0 (2)(本+5 (到 0 (2)(本 - 3) $NH_3 = 4$, $x + (1 \times 3) = 0$ (旬) -1 (থ(本 + 5) $\therefore x = -3$ উত্তর: ক) 0 থেকে + 5 আবার, N_3H এ, 3x + 1 = 0ব্যাখ্যা: Br2 এ Br এর জারণ সংখ্যা 0 $\therefore x = -\frac{1}{3}$ BrO3 এ Br এর জারণ সংখ্যা = + 5 জারণ সংখ্যার পরিবর্তন 0 থেকে + 5 ৯৩। যোজনী ও জারণ সংখ্যা উভয় শূন্য কোনটির? [সি. বো. ২২; অনুরূপ প্রশ্ন: য. বো. ২১] উদ্দীপকটি পড় এবং ৯৯ ও ১০০ প্রশ্নের উত্তর দাও: ® Br2 (4) Ar $2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \rightarrow$ (9) CH2Cl2 (F) HCHO $5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O_4$ উত্তর: 📵 Ar ৯৯। বিক্রিয়াটিতে H2SO4 এর ভূমিকা কোনটি? [চ. বো. ১৭] ব্যাখ্যা: নিষ্ক্রিয় গ্যাসসমূহ সাধারণত কোন যৌগ গঠন করতে না পারায় বিজারক ক) জারক এদের যোজনী ও জারণ মান উভয়ই শূন্য হয়। (ছ) নিরুদক গ্ৰ অশ্লীয় মাধ্যম উত্তর: 🕦 অম্রীয় মাধ্যম ৯৪। কোন যৌগের ক্লোরিনের জারণ মান সর্বোচ্চ-[ম. বো. ২২] ব্যাখ্যা: বিক্রিয়াটি অ্ট্রীয় মাধ্যমে সংঘটিত করতে H_2SO_4 ব্যবহার করা হয়। (4) HC/O (1) HClO2 例 HClO3 [®] HClO₄ ১০০।বিক্রিয়াটিতে ম্যাঙ্গানিজের জারণ সংখ্যা<u>ত্রা</u>স পায়-[দি. বো. ১৭] উত্তর: 🕲 HClO4 (a) +5 (4) + 2 (9) - 1 (9) + 1 ব্যাখ্যা: HClO₄ > HClO₃ > HClO₂ > HClO উত্তর: 📵 + 5 ব্যাখ্যা: KMnO4 এ Mn এর জারণ সংখ্যা x হলে, ১৫। LiCoO₂ = A + nLi⁺ + ne⁻; A যৌগে Co এর জারণ মান $1 + x + (-2) \times 4 = 0$ [ঢা. বো. ১৯; অনুরূপ প্রশ্ন: দি. বো. ২১] কত? $\Rightarrow 1 + x - 8 = 0$ (4) + 3 (a) +4 $\therefore x = +7$ (F) + 1

Rhombus Publications

MnSO4 এ Mn এর জারণ সংখ্যা = + 2

∴ Mn এর জারণ সংখ্যাহ্রাস পায় = 7 - 2 = + 5

(A) + 2

উত্তর: 📵 + 3

..... ACS, > Chemistry 2nd Paper Chapter-3 ১০১। কোনটি জারণ-বিজারণ বিক্রিয়া? াण. বো. ২৩। ১০৭। MnO + H+ + Fe2 → উৎপাদঃ এই বিক্রিয়ায়-वि. त्वा. २२। जनुद्रन ब्रमः कृ. त्वा. २२। नि. त्वा. २२। 3 CaCO₃ $\xrightarrow{\Delta}$ CaO + CO₂ (i) MnO₄ জারক NaOH + HC/ → NaC/ + H₂O (ii) Fe2+ ভারিত হয় \P CaF₂ + 2AgNO₃ \longrightarrow 2AgF + Ca(NO₁)₂ (iii) 5টি ইলেবট্রন স্থানাম্বরিড হয় 3 2H₂S + SO₂ \longrightarrow 2H₂O + 3S নিচের কোনটি সঠিক? উত্তর: (ছ) 2H₂S + SO₂ ----> 2H₂O + 3S 3 i, ii (i, iii ব্যাখ্যা: 2H₂S + SO₂ ---- 2H₂O + 3S 1i, iii (1) i, ii, iii S এর অণুর জারণ মানের পরিবর্তন হয়েছে। সূতরাৎ এটি একটি উন্তর: 📵 i, ii, iii জারণ-বিজারণ বিক্রিয়া। ব্যাখ্যা: MnO₄ + H + Fe² · → Mn² · + Fe³ · + H₂O MnO_4^- 5টি ইলেকট্রন গ্রহণ করে Mn^{2+} এ পরিণত হয়। সুতরাং ১০২। কোনটি জারণ-বিজারণ বিক্রিয়া? [সি. বো. ২১] MnO₄ जातक। Fe2' একটি ইলেকট্রন ত্যাগ করে Fe3' এ পরিণত হয়। ⓐ $Na_2SO_4(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$ সুতরাৎ, Fe2+ বিজারক ও নিজে জারিত হবে। \P Zn(s) + H₂SO₄(aq) \rightarrow ZnSO₄(aq) + H₂(g) যেহেড়ু MnO₄ 5টি ইলেকট্রন গ্রহণ করে সুতরাং 5টি Fc² 5টি \P A/C/₃(s) + H₂O(I) \rightarrow A/(OH)₃(s) + 3HC/(aq) ইলেকট্রন ত্যাগ করতে হবে। ফলে বিক্রিয়ায় 5টি ইলেকট্রন উত্তর: গ্র Zn(s) + H₂SO₄(aq) → ZnSO₄(aq) + H₂(g) স্থানান্তরিত হবে। ব্যাখ্যা: Zn + H₂SO₄ → ZnSO₄ + H₂ এখানে, Zn থেকে Zn2+ এবং H+ থেকে H2 এ পরিণত হরেছে। ১০৮।কোনটি সবচেয়ে বেশি শক্তিশালী বিজ্ঞারক? রা. সো. ২৩] অর্থাৎ জারণ ও বিজারণ ঘটেছে। (Li (1) Na ① K (1) Ag ১০৩। কোন জারক পদার্থটি সর্বাধিক ইলেকট্রন গ্রহণ করে? উত্তর: গ K ারা. বো. ২৩ ব্যাখ্যাঃ পর্যার সারণির ঞ্রপ-1 এর ক্ষার ধাতুগুলোর আরণিকরণ শক্তি হ্রাসের 3 K2Cr2O2 সাথে ইলেট্রন ভ্যাণের প্রবণতা বৃদ্ধি পার। তাই ক্ষারধাডুগুলো তীব্র 9 H2C2O4 (1) H2O2 উত্তর: <a>ම K2Cr2O7 বিজ্ঞারক এবং এদের বিজ্ঞারণ ক্ষমতা বৃদ্ধির ক্রম হলো– ব্যাখ্যা: Cr₂O₇²⁻ + 14H⁺ + 6e⁻ → 2Cr³⁺ + 7H₂O Li < Na < K < Rb < Cs অপরদিকে, Ap অনেক দুর্বল বিজারক। ∴ Cr2O2 - अष्ट्रीरा भाषास्य ६ि टेलक्ट्रिन धर्ण करत । ১০৯ | 2FeCl₄ + SnCl₂ → 2FeCl₂ + SnCl₄ বিক্রিয়াটিতে জারিত ১০৪। ক্ষারীয় দ্রবণে KMnO4 করাটি ইলেকট্রন গ্রহণ করে? বি. বো. ২৩] হয়েছে কোনটি? াব, বো. ২৩ 3 1 (a) 3 **9** 5 @ FeCh **9** 7 3 FeCl (1) SnCl উত্তর: (ব) 3 1 SnCl4 উত্তর: 🔊 SnCl2 वाधाः कातीत प्रवरम, MnO4 + 4H + 3e → MnO2 + 2H2O ব্যাখ্যা: ∴ कातीरा प्रवर्ण KMnO4 3 ि देलकर्रेन श्रद्ध करता। ১০৫। কোনটি ভারক পদার্থ? SnCl2 + 2FeCl3- \rightarrow SnCl₄ + 2FeCl₂ াি বা. ২২ FeSO₄ @ H2C2O4 @ Na₂S₂O₃ ® KMnO₄ SnCl2 ইলেকট্রন ত্যাগ করে SnCl4 এ পরিণত হয়। অর্থাৎ SnCl2 উত্তর: 📵 KMnO4 বিজারক। SnCl2 বিজারক হওয়ায় তা জারিত হয় এবং FeCl3 ব্যাখ্যা: KMnO4 এর MnO4 5 টি ইলেকট্রন গ্রহণ করে Mn²+ এ পরিণত জারক হওয়ায় তা বিজারিত হয়। হয়। সুতরাৎ, KMnO4 একটি জারক। $MnO_4^- + 5e^- + 8H^2 \rightarrow Mn^{2} + 4H_2O$ ১১০। কোনটি বিভারক পদার্থ? যে. বো. ২৩ ১০৬। প্রশম মাধ্যমে KMnO4 কোনটিডে পরিণত হয়? চি. বো. ২২ 9 H2SO4 (1) K2Cr2O7 MnSO₄ (9) MnO উত্তর: (ব) FcSO4 9 MnS [®] MnO₂ व्याখाः कारना विकियाय ए भार्ष देलक्क्रेन मान करत खातिक द्या जाक উত্তর: 📵 MnO2 বিজারক পদার্থ বলে। Fe²⁺ 2টি ইলেকট্রন ত্যাণ করে জারিত হয়। ব্যাখ্যা: প্রশম মাধ্যমে ও ক্ষারীয় মাধ্যমে KMnO4 3টি ইলেকট্রন প্রহণ করে তাই FeSO4 বিজারক পদার্থ। MnO2 তে পরিণত হয়। Rhombus Publications

t.me/admission stuffs

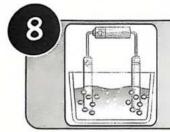
১১১। CIO = + 5CГ + 6H → 3Cl2 + 3H2O; এখানে জারণ ঘটেছে-ব্যাখ্যা: বিক্রিয়াটির সমতাকৃত রূপ: $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_2O_4 + 2NaI$ ③ CI⁻ ⊕ ClO₂ জারণ অর্ধ-বিক্রিয়া: $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^{-}$ 1 H (1) C/O3 & C/ বিজারণ অর্ধ-বিক্রিয়া: $I_2 + 2e^- \rightarrow 2I^-$ উত্তর: খে CI ব্যাখ্যা: এখানে, CI ইলেকট্রন ত্যাগ করে CI2 অণুতে পরিণত হয় তাই CI ১১৭। নিচের কোনটি স্থারক ও বিস্থারক উভয়রূপে ক্রিয়া করে? এর জারণ ঘটেছে, [কু. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ১৯] @ Fe3+ $C\Gamma - e^- \rightarrow \frac{1}{2} Cl_2$ 1 Hg2+ উত্তর: ﴿ Sn²⁺ ১১২। ${\bf IO}_3^- + {\bf 5I}^- + {\bf 6H}^+
ightarrow {\bf 3I}_2 + {\bf 3H}_2{\bf O};$ এখানে কোনটির জারণ ব্যাখ্যা: Sn²⁺ ইলেকট্রন ত্যাগ করে Sn⁴⁺ এ পরিণত হয় এবং ইলেকট্রন ঘটেছে? বি. বো. ২৯; রা. বো. ১৫] গ্রহণ করে Sn এ পরিণত হয়। তাই Sn²⁺ জারক ও বিজ্ঞারক উভয় ⊕ IO₁ (1) (P) রূপে ক্রিয়া করতে পারে। 何 H⁺ ি ত্র ও 31 উভয়ের Sn2+ + 2e- → Sn (জারক) উত্তর: খ I $Sn^{2+} \longrightarrow Sn^{4+} + 2e^{-}$ (বিজারক) ব্যাখ্যা: 2I ----- I2 + 2e -যেহেতু I ইলেকট্রন ত্যাগ করছে, তাই I এর জারণ ঘটছে। ১১৮। কোনটি জারক ও বিজারক উভয় হিসেবে ক্রিয়া করে? যি. বো. ২৩; অনুদ্রপ প্রশ্ন: কু. বো. ১৭] ১১৩ । $3H_2S + 2HNO_3 \rightarrow 2NO + 3S + 4H_2O$ বিক্রিয়াটিতে H_2S FeSO₄ (a) KI এর ভূমিকা কী? কু. বো. ২২; ম. বো. ২২; অনুরূপ প্রশ্ন: য. বো. ১৭) 1 H2 (9) H2O2 উটাইট্রান্ট ব) টাইট্রেট উত্তর: 🕲 Н2О2 (ঘ) বিজারক গ) জারক ব্যাখা: H2O2 বিজারিত হয়ে H2O উৎপন্ন করায় H2O2 একটি জারক। উত্তর: 🕲 বিজারক আবার H₂O₂ জারিত হয়ে O₂ উৎপন্ন করায় H₂O₂ একটি বিজারক। ব্যাখ্যা: জারণ অর্ধবিক্রিয়া: $S^{2-} + 2e^- \rightarrow 2S$ যেহেতু S2- অর্থাৎ H2S দুটি ইলেক্ট্রন ত্যাগ করেছে এজন্য ১১৯। নিচের কোন আয়নটি জারক ও বিজারক উভয় হিসেবে কাজ করবে? বিক্রিয়াটিতে H2S একটি বিজারক। ১১৪ | CuSO₄ + KI → Cu₂I₂ + K₂SO₄ + I₂ বিক্রিয়াটিতে বিজারক ⊕ Pb⁴⁺ 3 Sn4+ কোনটি? यि. त्वा. २२) ⑤ Fe²⁺ 例 Mn7+ ⑦ Cu²⁺ উত্তর: (ছ) Fe²⁺ ব্যাখ্যাঃ Fe²⁺ জারক ও বিজারক উভয় হিসেবে কাজ করে। উত্তর: 🖘 🗀 জারণ অর্ধ-বিক্রিয়া: $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ ব্যাখ্যা: বিক্রিয়াটিতে KI বা I বিজারক এবং CuSO4 জারক ∴ Fe²⁺ 1 টি ইলেকট্রন ত্যাগ করে তাই এটি বিজারক। $2I^- \longrightarrow I_2 + 2e^-$ বিজারণ অর্ধ-বিক্রিয়া: $Fe^{2+} + 2e^- \rightarrow Fe$ ১১৫। জারণ-বিজারণ বিক্রিয়ায় বিজারক পদার্থ-রো. বো. ২২) :. Fe²⁺ 2 টি ইলেকট্রন গ্রহণ করে তাই এটি জারক। (i) ইলেক্ট্রন বর্জন করে (ii) জারিত হয় ১২০। কোনটি জারক ও বিজারক উভয় হিসেবে ক্রিয়া করে? [ম. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ১৯] (iii) ইলেকট্রন গ্রহণ করে নিচের কোনটি সঠিক? (1) H₂S 1 Cl2 ⊕ i, ii ® O₃ (1) i, iii @ ii, iii উত্তর: 🚳 SO2 (1) i, ii, iii উত্তর: 🚳 i, ii ব্যাখ্যা: 2H₂S + SO₂ (জারক) → 2H₂O + 3S ব্যাখ্যা: বিজারক পদার্থ: $2HNO_3 + SO_2$ (বিজারক) $\rightarrow H_2SO_4 + 2NO_2$ (i) ইলেক্ট্রন দান করে। উদ্দীপকের O3 ও Cl2 শুধু জারক হিসেবে এবং H2S শুধু বিজারক (ii) অন্যকে বিজারিত করে। হিসেবে কাজ করে। (iii) নিজে জারিত হয়। ১২১ | Na₂S₂O₃ + I₂ → Na₂S₄O₆ + NaI এই বিক্রিয়ায় কোনটি দর্শক ১১৬ । $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$ বিক্রিয়ায় কোনটির জারণ ঘটেছে? আয়ন? কু. বো. ২১) (1) S2O3 Na⁺ (1) S4O62-(9) S2O2-(9) T

Rhombus Publications

উত্তর: 🚳 S₂O₂

উত্তর: 📵 Na⁺

..... ACS, > Chemistry 2nd Paper Chapter-3 ব্যাখ্যা: সমতাকৃত সমীকরণটি: ব্যাখ্যা: বিক্রিয়াটির সমতাকৃত রূপ: $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + NaI$ $2KMnO_4 + 8H_2SO_4 + 5FeC_2O_4 \rightarrow K_2SO_4$ বিক্রিয়াটির আয়নিক সমীকরণ হলো: $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2\Gamma$ + 5FeSO₄ + 2MnSO₄ + 10CO₂ + 8H₂O এখানে, জারক KMnO4 ও বিজারক FeC2O4 এর মোল সংখ্যা এখানে, গুধুমাত্র সোডিয়াম আয়ন (Na⁺) কোনো ইলেকট্রন গ্রহণ বা বর্জন করে না। অর্থাৎ, Na এর জারণ মান অপরিবর্তিত থাকে। यथाकरम 2 ७ 5 সূতরাং, প্রদত্ত বিক্রিয়ায় সোডিয়াম আয়ন (Na⁺) হলো দর্শক আয়ন। ১২৬। জারক ও বিজারকের মোল সংখ্যা x ও y, আয়তন V_O ও V_R এবং ১২২। নিম্নের বিক্রিয়ায় কতটি ইলেকট্রন আদান প্রদান হয়? ঘনমাত্রা $\mathbf{M_O}$ ও $\mathbf{M_R}$ হলে জারণ-বিজারণ টাইট্রেশনের মূল সমীকরণ $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$ [সম্মিলিত বো. ১৮] কোনটি? [চ. বো. ২১; অনুরূপ প্রশ্ন: ব. বো. ২১] $\textcircled{9} y V_0 M_0 = x V_R M_R$ 3 x $V_0M_R = y V_RM_O$ **a** 2 **1** 4 **(9)** 6 উত্তর: (ৰ) y $V_0M_0 = x V_RM_R$ উত্তর: ক) 2 ব্যাখ্যা: $\frac{V_O M_O}{V_R M_R}$ ব্যাখ্যা: জারণ অর্ধ-বিক্রিয়া: $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$ বিজারণ অর্ধ-বিক্রিয়া: $I_2 + 2e^- \rightarrow 2\Gamma$ \Rightarrow y $V_0M_0 = x V_RM_R$ বিক্রিয়াটির সমতাকৃত রূপ: $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2\Gamma$ নিচের উদ্দীপকটি পড় এবং ১২৭ ও ১২৮ নং প্রশ্নের উত্তর দাও: $2Na_{2}S_{2}O_{3} + I_{2} \rightarrow Na_{2}S_{4}O_{6} + 2NaI$ $50 \text{ mL } 0.2 \text{M Na}_2 \text{C}_2 \text{O}_4 \equiv \text{X mL } 0.1 \text{ M KMnO}_4$ ১২৩ | $K_2Cr_2O_7 + FeSO_4 + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 +$ ১২৭। 'X' এর আয়তন কত মিলিলিটার? Fe₂(SO₄)₃ + H₂O; বিক্রিয়াটিতে জারক ও বিজারকের মোল [ঢা. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২৩; ব. বো. ১৭] সংখ্যার অনুপাত কোনটি? **40 4** 20 4 1:1 @ 6:1 **1** 60 **3** 80 @ 1:6 ® 1:12 উত্তর: 📵 40 উত্তর: গ্র 1:6 ব্যাখ্যা: সংঘটিত বিক্রিয়াটি: ব্যাখ্যা: জারণ অর্ধবিক্রিয়াটি: $5Na_2C_2O_4 + 2KMnO_4 + 8H_2SO_4 \rightarrow$ $6Fe^{2+} - 6e^{-} \rightarrow 6Fe^{3+}$ (i) $2MnSO_4 + 10CO_2 + 5Na_2SO_4 + K_2SO_4 + 8H_2O$ এখানে, বিজারণ অর্ধবিক্রিয়া: $Cr_2O_7^{2-} + 14H^+ + 6e^- + \rightarrow 2Cr^{3+} + 7H_2O \dots$ (ii) $(e_1V_1S_1)_{Na_2C_2O_4} = (e_2V_2S_2)_{KMnO_4}$ (i) ও (ii) যোগ করে এবং প্রয়োজনীয় দর্শক আয়ন যোগ করে পাই, \Rightarrow 2 × 50 × 0.2 = 5 × V_2 × 0.1 \therefore V₂ = 40 mL $K_2Cr_2O_7 + 6FeSO_4 + 7H_2SO_4 \rightarrow$ $K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O$ ∴ জারক (K₂Cr₂O₇): বিজারক (FeSO₄) = 1 : 6 ১২৮। বিক্রিয়ায় উৎপন্ন গ্যাস হতে-[ঢা. বো. ২৩] (i) জৈব এসিড তৈরি করা যায় $38 | FeSO_4 + KMnO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + K_2SO_4 +$ (ii) কার্বনেট যৌগ তৈরি করা যায় MnSO₄ + H₂O; উক্ত বিক্রিয়ার সমতাযুক্ত সমীকরণে বিজারক ও (iii) ইউরিয়া তৈরি করা যায় জারকের মোল সংখ্যার অনুপাত কত? নিচের কোনটি সঠিক? **③** 5:2 @1:5 **9** 5:1 ⊕ i (T) 2:5 (1) i, ii উত্তর: প 5:1 1, iii (1) i, ii, iii ব্যাখ্যা: জারণ অর্ধবিক্রিয়া: $Fe^{2+} - e^{-} \rightarrow Fe^{3+}$ (i) উত্তর: 🕲 i, ii, iii ব্যাখ্যা: বিক্রিয়ায় উৎপন্ন গ্যাসটি CO2। CO2 গ্যাস জৈব এসিড, কার্বনেট বিজারণ অর্ধবিক্রিয়াঃ $MnO_4^- + 5e + 8H^+ \rightarrow Mn^{2+} + 4H_2O$ (ii) যৌগ, ইউরিয়া তৈরীসহ আরও অনেক সংশ্লেষণে ব্যবহার করা হয়। (i) + (ii) করে প্রয়োজনীয় দর্শক আয়ন সরবরাহ করে পাই, $10\text{FeSO}_4 + 2\text{KMnO}_4 + 8\text{H}_2\text{SO}_4 \rightarrow$ ১২৯। 10 গ্রাম FeSO4 কে জারিত করতে কত গ্রাম পটাশিয়াম ডাইক্রোমেট $5Fe_2(SO_4)_3 + K_2SO_4 + 2MnSO_4 + 8H_2O$ প্রয়োজন? যি. বো. ২২, ১৯ ∴ বিজারক : জারক = 10 : 2 = 5 : 1 📵 3.22 গ্রাম (ৰ) 3.87 গ্রাম পি 4.12 গ্রাম (ছ) 4.44 গ্রাম ১২৫।KMnO₄ + H₂SO₄ + FeC₂O₄ → উৎপাদ। উক্ত বিক্রিয়ার উত্তর: 📵 3.22 গ্রাম সমতাকৃত সমীকরণে জারক ও বিজারকের মোল সংখ্যা যথাক্রমে– ব্যাখা: (e₁n₁)_{FeSO4} = (e₂n₂)_{K₂Cr₂O₇} [দি. বো. ১৯] @ 2 8 5 @ 2 8 6 $\Rightarrow 1 \times \frac{10}{151.85} = 6 \times \frac{W}{294}$ $M_{FeSO_4} = 151.85$ @ 3 8 5 (B) 3 8 6 $M_{K_2Cr_2O_7} = 294$ উত্তর: 🚳 2 ও 5 : W = 3.22 gRhombus Publications


পরিমাণগত রসায়ন > ACS/ FRB Compact Suggestion Book..... ১৩০। লঘু H_2SO_4 এ এক টুকরা লোহার তার দ্রবীভূত করার পর প্রাপ্ত ব্যাখ্যা: $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$ জারণ অর্ধবিক্রিয়া: $2S_2O_3^{2-} - 2e^- \rightarrow 2S_4O_6^{2-}$ দ্রবণটিকে সম্পূর্ণরূপে জারিত করতে 0.03 M KMnO4 দ্রবণের বিজারণ অর্ধবিক্রিয়া: $I_2 + 2e^- \rightarrow 2I^-$ 27.5 cm3 লাগে। লোহার তারটির ভর কত? $Na_2S_2O_3$ ইলেকট্রন ত্যাগ করে জারিত হয়েছে। I_2 ইলেকট্রন গ্রহণ ③ 3.5 g करत विजातिक ररारा । সালফার (S) এর জারণ মান + 2 থেকে (9) 4.4 g (9) 0.231 g + 2.5 रु७ यात्र अत जात्र भारतत वृक्ति घरिए । উত্তর: 🕲 0.231 g ব্যাখা: Fe + H2SO4 -> FeSO4 ১৩৪।30 mL 0.1 M FeSO4 এর অম্লীয় দ্রবণকে টাইট্রেশন করতে 30 $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow$ mL কত ঘনমাত্রার KMnO4 দ্রবর্ণ লাগবে? [চ. বো. ২২; রা. বো. ১৫] $K_2SO_4 + 2MnSO_4 + 8H_2O + 5Fe_2(SO_4)_3$ (4) 0.02 M ♠ 0.01 M \therefore 1 mol KMnO₄ = 5 mol FeSO₄ = 5 mol Fe ① 0.03 M ® 0.06 M ∴ 1000 cm³ 1 M KMnO₄ দ্ৰবণ ≡ 5 × 55.85 g Fe উত্তর: ﴿ 0.02 M ... 27.5 cm³ 0.03 M KMnO₄ দ্ৰবণ = $\frac{5 \times 55.85 \times 27.5 \times 0.03}{5}$ ব্যাখ্যা: e₁V₁S₁ = e₂S₂V₂ 1000×1 $\Rightarrow 1 \times 30 \times 0.1 = 5 \times 30 \times S_2$ = 0.23 g $S_2 = 0.02 \text{ M}$ ১৩১। অস্ট্রীয় মাধ্যমে $\frac{1}{2}$ মোল $\mathrm{KMnO_4}$ কত মোল ফেরাস সালফেটকে ১৩৫ | Br + BrO = + 6H + → Br2 + 3H2O এ বিক্রিয়াটিতে -यि. वा. २५; जनुक्रभ क्षम्नः व. वा. २२, ४४, ४५; नि. वा. २১) জারিত করতে পারবে? [ঢা. বো. ২১] (i) Br বিজারক **(4)** 10 (A) 6 (ii) BrO ্ব এর বিজারণ ঘটেছে (A) 5 **(9)** 2.5 (iii) H⁺ জারক উত্তর: খি 2.5 নিচের কোনটি সঠিক? ব্যাখ্যা: (e₁n₁)_{FeSO₄} = (e₂n₂)_{KMnO₄} (1) i, ii $\Rightarrow 1 \times n_1 = 5 \times \frac{1}{2}$ (1) i, ii, iii 3 ii, iii উত্তর: (খ) i, ii \therefore n₁ = 2.5 mol ব্যাখ্যা: প্রদত্ত বিক্রিয়াটি নিমুরূপ: ১৩২। 9.5 g FeSO4 কে জারিত করতে 1 M KMnO4 দ্রবণের কর্তটুকু প্রয়োজন? @ 12.5 mL ③ 11.2 mL ● ● 例 10.6 mL বিক্রিয়াটিতে Br⁻ বিজারক। BrO₃ এর বিজারণ ঘটেছে। H⁺ হলো উত্তর: 📵 12.5 mL ব্যাখ্যা: অশ্লীয় মাধ্যমে FeSO4 ও KMnO4 এর মধ্যে সংঘটিত সমতাকৃত $1 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + \text{H}^+ \longrightarrow \text{'A'} + \text{Cr}^{3+} + \text{H}_2\text{O}_7$ বি. বো. ২১; অনুরূপ প্রশ্ন: দি. বো. ২২; দি. বো. ১৭ $10\text{FeSO}_4 + 2\text{KMnO}_4 + 8\text{H}_2\text{SO}_4 = 5\text{Fe}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4 +$ (i) $Cr_2O_7^2$ বিজারিত হয়েছে $2MnSO_4 + 4H_2O$ (ii) Fe²⁺ একটি বিজারক 10 মোল FeSO4 কে জারিত করতে 2 মোল KMnO4 প্রয়োজন (iii) $Cr_2O_7^{2-}$ 5টি ইলেকট্রন গ্রহণ করে ⇒ 10 × 151.85g জারিত করতে 1M 2000 mL KMnO₄ প্রয়োজন \Rightarrow 9.5 g জারিত করতে 1 M $\frac{2000 \times 9.5}{10 \times 151.85}\,\mathrm{mL~KMnO_4}$ প্রয়োজন নিচের কোনটি সঠিক? (क) i, ii (1) ii, iii (1) i, iii (1) i, ii, iii = 12.51 mL KMnO₄ প্রয়োজন। উত্তর: 📵 i, ii ব্যাখ্যা: Fe²⁺ + Cr₂O₇²⁻ + H⁺ -> Fe³⁺ + Cr³⁺ + H₂O ১৩৩। 2Na₂S₂O₃ + I₂ → Na₂S₄O₆ + 2NaI বিক্রিয়াটিতে-বিক্রিয়াটিতে ক্রোমিয়ামের (Cr) জারণ মান + 6 থেকে + 3 হয়েছে। রা. বো. ২৩; অনুরূপ প্রশ্ন: ঢা. বো. ২২ অর্থাৎ, ক্রোমিয়ামের বিজারণ ঘটেছে। (i) Na₂S₂O₃ জারিত হয়েছে বিজারণ অর্ধবিক্রিয়া: $Cr_2O_7^{2-} + 6e^- + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$ (ii) I2 বিজারিত হয়েছে আবার আয়রনের (Fe) জারণ মান + 2 থেকে + 3 হয়েছে। অর্থাৎ (iii) S এর জারণ মানহাস পেয়েছে আয়রনের জারণ ঘটেছে। নিচের কোনটি সঠিক? জারণ অর্থবিক্রিয়া: 6Fe²⁺ + 6e⁻ → 6Fe³⁺ (i, ii (a) ii, iii Fe²⁺ ইলেকট্রন দান করেছে, সুতরাং এটি বিজারক। 1, iii (1) i, ii, iii বিক্রিয়া অনুসারে $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ 6িট ইলেকট্রন গ্রহণ করে Cr^{3+} এ পরিণত হয়।

Rhombus Publications

উত্তর: 🚳 i, ii

নিজেকে যাচাই করো ১। কোনটি জারক ও বিজারক উভয় হিসেবে ক্রিয়া করে? निচের উদ্দীপকটি পড় এবং ১৪ নং প্রশ্নের উত্তর দাও। (1) H2S 1 Cl2 2% 50 cm³ কস্টিক সোডা দ্রবণ 2% 50 cm3 HC/ দ্রবণ ২। Br + BrO + 6H + → Br2 + 3H2O এ বিক্রিয়াটিতে-(i) Br বিজারক (ii) BrO, এর বিজারণ ঘটেছে ১৪। উদ্দীপকের দ্রবণ দুটির ক্ষেত্রে-(iii) H⁺ জারক (i) A ও B পাত্রের দ্রবর্ণের ঘনমাত্রা ppm এককে সমান @AdmissionStuffs নিচের কোনটি সঠিক? (ii) A ও B পাত্রের মিশ্রিত দ্রবণের প্রকৃতি নিরপেক্ষ (iii) A ও B পাত্রের মোলার ঘনমাত্রা সমান নয় ♠ i (1) i, ii (1) ii, iii (1) i, ii, iii । বিক্রিয়ায় উৎপন্ন গ্যাস হতে— নিচের কোনটি সঠিক? (i) জৈব এসিড তৈরি করা যায় (ii) কার্বনেট যৌগ তৈরি করা যায় (7) i, ii (1) ii, iii (9) i, iii (T) i, ii, iii (iii) ইউরিয়া তৈরি করা যায় ১৫। 50 mL দ্রবর্ণে 4.9 g H2SO4 দ্রবীভূত আছে। দ্রবণটির ঘনমাত্রা-নিচের কোনটি সঠিক? (ii) 9800 ppm (i) 1 M (iii) $9.8 \times 10^4 \, \mu g/mL$ (1) i, ii 1, iii (1) i, ii, iii নিচের কোনটি সঠিক? 8 | 3H₂S + 2HNO₃ → 2NO + 3S + 4H₂O বিক্রিয়াটিতে H₂S এর (1) ii, iii (1) i, ii, iii ⊕ i, ii (1) i, iii ভূমিকা কী? ১৬। ppm এর ক্ষেত্রে-টাইট্রান্ট থ টাইট্রেট গে) জারক বিজারক (ii) 1 ppm = 1 mg/L(i) 1 ppm = 1 g/m^3 ৫। 10 গ্রাম FeSO₄ কে জারিত করতে কত গ্রাম পটাশিয়াম ডাইক্রোমেট (iii) 1 ppm = 1 μ g/L নিচের কোনটি সঠিক? ব) 4.44 গ্রাম (i, ii 1i, iii (1) i, ii, iii (1) i, iii ৬। প্রশম মাধ্যমে KMnO4 কোনটিতে পরিণত হয়? ১৭। প্রমাণ দ্রবণ কোনটি? MnO 例 MnS @ MnO2 @ 1.0 M H₂SO₄ @ 1.0 g H₂SO₄ 9। Fe²⁺ + Cr₂O₇²⁻ + H⁺ ---- 'A' + Cr³⁺ + H₂O বিভিন্নার-1.0 ml H2SO4 (1) 1.0 mol H2SO4 (i) Cr₂O₂⁻ বিজারিত হয়ছে (ii) Fe²⁺ একটি বিজারক ১৮ | 10 mL 0.5 M Na₂CO₃ দ্রবণ প্রশমিত করতে 12.6 mL H₂SO₄ (iii) $Cr_2O_7^2$ 5টি ইলেকট্রন গ্রহণ করে দ্রবণ প্রয়োজন হলে এসিড দ্রবণের ঘনমাত্রা কত হবে? ● 0.396 M ② 0.387 M ③ 0.358 M (9) 0.333 M নিচের কোনটি সঠিক? ১৯। ফেনলফখ্যালিনের বর্ণ পরিবর্তনের pH পরিসর কত? (1) i, iii (a) ii, iii (1) i, ii, iii ৮। STP তে নিচের কোন গ্যাসের এক মি.লি. এর ভর কম? ⊕ 3.2 – 4.4 4 4.8 - 6.0® 8.2 - 10.0 96.8 - 8.4⑦ CO₂ ® N₂ @ O2 ২০। টাইট্রেশন বিক্রিয়ায় কোন যৌগ দিয়ে প্রমাণ দ্রবণ তৈরি করা যায় না? ৯। 32 g O₂ এর অর্থ হলো-(1) Na₂CO₃ (ii) প্রমাণ অবস্থায় 24.8 L আয়তন (i) 1 mol O₂ 1 H2C2O4.2H2O 1 K2Cr2O7 (iii) আভোগাডো সংখ্যার সমান অণু ২১। LiCoO2 = A + nLi⁺ + ne⁻; A যৌগে Co এর জারণ মান কত? নিচের কোনটি সঠিক? (1) + 2 (a) +4 (a) +3 ® i (1) i, ii (1) i, iii (T) i, ii, iii ২২। ${\rm Br}_2
ightarrow {\rm BrO}_3^-$ এ বিক্রিয়ায় ${\rm Br}$ এর জারণ সংখ্যার পরিবর্তন হয়-১০। আয়রনের একটি আকরিকের মধ্যে $30\%~{
m Fe_2O_3}$ আছে। $500~{
m kg}$ ক 0 থেকে + 5 থ 0 থেকে – 3 ঐ আকরিক থেকে কত kg আয়রন উৎপাদন করা যাবে? প্র + 1 থেকে + 5 (ছ) - 1 থেকে + 5 401.9155 kg ২৩। প্রমাণ অবস্থায় 10 cm³ NH3 গ্যাসের ভর কত? 1 410.9155 kg (1) 104.9155 kg 9 5.583 × 10⁻³ g ১১। 95% বিশুদ্ধ 1 কেজি চুনাপাথরকে সম্পূর্ণরূপে বিয়োজিত করলে প্রমাণ 9 6.589 \times 10⁻³ g \mathfrak{T} 7.589 × 10^{-2} g উষ্ণতা ও চাপে কত লিটার CO2 উৎপন্ন হবে? (\mathfrak{T}) 7.589 × 10^{-3} g ২৪। STP তে 3.2 g একটি গ্যাস 2.24 লিটার আয়তন দখল করলে (a) 212.8 **旬 112.8** (T) 202.8 গ্যাসটি হতে পারে-১২। 500 mL ডেসিমোলার দ্রবণে দ্রবীভূত সোডিয়াম কার্বনেট এর পরিমাণ → Cl₂ কত গ্ৰাম? @ CO2 1 N2 ২৫। প্রমাণ অবস্থায় 9.0 g পানিতে কয়টি হাইড্রোজেন পরমাণু থাকে? **@** 2.65 ₹ 5.30 (9) 6.30 (T) 10.60 9 6.023 × 10²³ ১৩। দ্রবণের কোন এককটি তাপমাত্রার উপর নির্ভরশীল নয়? (4) 3.0115 × 10²³ \bigcirc 6.023 \times 10²¹ (1) 12.046 × 10²³ क सानानि है (२) त्यानातिष्ठि(१) नत्रमानिष्ठि পিপিএম উত্তরপত্র (1) 2 0 (1) 8 (9) ¢ **(4)** (4) 9 **(**1) 9 (T) 20 22 (1) 32 18 30 (1) (P) 36 ২০ 23 22 ২৩ 28 Rhombus Publications

ভড়িৎ রসায়ন > ACS, FRB Compact Suggestion Book

তড়িৎ রসায়ন **Electro Chemistry**

Board Questions Analysis

সৃজনশীল প্রশ্ন

्वार्ड मान	ঢাকা	ग यमनिश् र	রাজশাহী	কুমিল্লা	যশোর	চউগ্রাম	বরিশাল	সিলেট	দিনাজপুর
২০২৩	١	٦	2	٥	ર	2	2	2	2
২০২২	2	2	2	٥	٥	2	2	2	۵

বহুনির্বাচনি প্রশ্ন

বোর্ড সাল	ঢাকা	ময়মনসিংহ	রাজশাহী	কৃমিল্লা	যশোর	চউগ্রাম	বরিশাল	সিলেট	দি <mark>নাজপু</mark> র
২০২৩	৩	Œ	9	9	9	œ	8	8	8
২০২২	٩	8	8	8	8	&	৬	٩	Œ

এই অধ্যায়ের গুরুত্বপূর্ণ ধারণা ও সূত্রাবলি

তডিৎ বিশ্লেষ্যের পরিবাহিতা

- তড়িৎ পরিবহন করে কিনা এর ভিত্তিতে পদার্থসমূহ ২ প্রকার:
 - (i) তড়িৎ পরিবাহী: কপার তার, গ্রাফাইট, এসিড মিশ্রিত পানি, ক্ষার দ্ৰবণ ইত্যাদি।
 - (ii) তড়িৎ অপরিবাহী: কাঠ, কাঁচ, চিনি, পেট্রোল, রাবার ইত্যাদি।
- তিড়িৎ পরিবহন ক্ষমতা অনুসারে তিড়ৎ পরিবাহী ৩ প্রকার:
 - (i) তড়িৎ সুপরিবাহী: তামা, অ্যালুমিনিয়াম, আয়রনসহ সকল ধাতু, ক্ষার দ্রবণ, লবণের দ্রবণ, এসিড মিশ্রিত পানি।
 - (ii) তড়িৎ অর্ধপরিবাহী: Si, Ge
 - (iii) সুপার কভান্তর: Nb3Ge
- 🔲 তড়িৎ পরিবহনের পদ্ধতি তথা পরিবহনের কৌশলের উপর ভিত্তি করে তড়িৎ পরিবাহী দুই প্রকার:
 - (i) ইলেকট্রনীয় পরিবাহী বা ধাতব পরিবাহী
 - (ii) তড়িৎ বিশ্লেষ্য পরিবাহী বা আয়নিক পরিবাহী
- ইলেকট্রনীয় পরিবাহী ও তড়িৎ বিশ্লেষ্য পরিবাহীর বৈশিষ্ট্য:

বৈশিষ্ট্য	ইলেকট্রনীয় পরিবাহী	তড়িৎ বিশ্লেষ্য পরিবাহী
সংঘটিত পরিবর্তন	ভৌত পরিবর্তন	রাসায়নিক পরিবর্তন
সূত্রের প্রযোজ্যতা	ওহমের সূত্র প্রযোজ্য	ফ্যারাডের সূত্র প্রযোজ্য
তড়িৎ পরিবহন কৌশল	সঞ্চারণশীল e ⁻ দ্বারা	আয়ন স্থানান্তর দ্বারা
তাপমাত্রার সাথে সম্পর্ক	T বাড়লে তড়িৎ পরিবহন ক্ষমতা কমে	T বাড়লে তড়িৎ পরিবহন ক্ষমতা বাড়ে
তড়িৎ প্রবাহ ক্ষমতা	অনেক বেশি	তুলনামূলক কম

তড়িৎ বিশ্লেষ্য পরিবাহীর প্রকারভেদ:

তড়িৎ বিশ্লেষ্য পরিবাহী বা আয়নিক পরিবাহী

সবল তড়িৎ বিশ্লেষ্য (তীব্র এসিড বা ক্ষার বা লবণ) যেমন: HCl, NaCl, NaOH

দুবর্ল তড়িৎ বিশ্লেষ্য (মৃদু এসিড ও ক্বার) যেমন: CH3COOH, H2CO3

তড়িৎ অবিশ্লেষ্য यमनः H2O, ज्यानकार्न, CCl4

তড়িৎ বিশ্লেষ্যের পরিবাহিতা সম্পর্কিত রাশি:

বিষয়	আপেক্ষিক পরিবাহিতা	তুল্য পরিবাহিতা	মোলার পরিবাহিতা
প্রতীক	к	Λ	Λ _m /μ
সমীকরণ	$\kappa = \frac{1}{R} \times \frac{l}{A}$	$\Lambda = \frac{1000\kappa}{\text{Ce}}$	$\Lambda_{\rm m} = \frac{1000\kappa}{\rm C}$
CGS একক	ohm ⁻¹ cm ⁻¹	ohm ⁻¹ cm ² (g.eqv) ⁻¹	ohm ⁻¹ cm ² mol ⁻¹
SI একক	S m ⁻¹	S m ² (g.eqv) ⁻¹	S m ² mol ⁻¹

এখানে,

তড়িৎদ্বার দুটির মধ্যবর্তী দূরত্ব (cm)

A = তড়িৎদারের প্রস্থচ্ছেদের ক্ষেত্রফল (cm²)

R = তডিৎ বিশ্লেষ্য দ্রবণের রোধ (Ω)

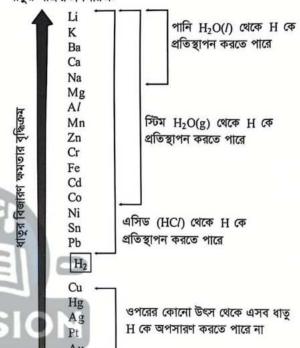
C = তড়িৎ বিশ্লেষ্য দ্রবণের ঘনমাত্রা (M)

e = তড়িৎ বিশ্লেষ্যের তুল্য সংখ্যা

Rhombus Publications

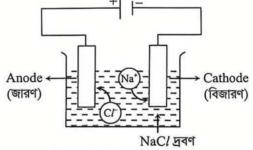
t.me/admission stuffs

- দ্রবণ লঘু করলে তুল্য পরিবাহিতা ও মোলার পরিবাহিতা বাড়ে কিন্তু আপেক্ষিক পরিবাহিতা কমে।
 - তড়িং বিশ্রেষাসমূহের পরিবাহিতা অসীম লঘুতায় একটি স্থির মানে পৌঁছায়। এ পরিবাহিতাকে অসীম লঘুতায় তুল্য পরিবাহিতা বলে।
 - > তীব্র তড়িৎ বিশ্লেষ্য (যেমন: NaCl এর দ্রবণ) এর ঘনমাত্রা হ্রাসের সাথে আপেক্ষিক পরিবাহিতা হ্রাস পায়।
 - > মৃদু তড়িৎ বিশ্লেষ্যের (যেমন: CH3COOH এর দ্রবণ) ঘনমাত্রা হ্রাসে আপেক্ষিক পরিবাহিতা হ্রাস পায়; কিন্তু তুল্য পরিবাহিতা
- তড়িৎ বিশ্লেষ্যের তুল্য পরিবাহিতার সাথে ঘনমাত্রার সম্পর্কঃ
 - সবল তড়িৎ বিশ্লেষ্যের তুল্য পরিবাহিতা তডিৎ বিশ্লেষ্যের ঘনমাত্রা হ্রাসের সাথে সরলরৈখিকভাবে বৃদ্ধি পায়।
- তীব্র তড়িৎ বিশ্লেষ্য √c
- দুর্বল তড়িৎ বিশ্লেষ্যের ক্ষেত্রে ঘনমাত্রা হ্রাসের সাথে তুল্য পরিবাহিতা বক্র আকারে বৃদ্ধি পায়।


তডিৎ রাসায়নিক সারি

কাটায়ন ও আনায়নের তড়িৎ রাসায়নিক সারি

	ভ অ্যানারনের তাড়ৎ রা <u>তড়িৎ রাসায়নিক সারি</u>		টুৎ রাসায়নিক সারি
ছন্দ	ক্যাটায়নসমূহ	ছন্দ	অ্যানায়নসমূহ
नि	Li ⁺	ना	NO ₃
কে 🖺	// K+	म	SO ₄ ²⁻
কা	Ca ²⁺	4	Cr
না	Na ⁺	বে	Br ⁻
ম্যাগাইভ	গর Mg ²⁺	আইলো	Γ
এলো	1720	হায়	OH-
যেনো	Zn^{2+}		
ফিরে	Fe ²⁺		
সোনা	Sn ²⁺		
পাবে	Pb ²⁺ ·		
হায়	H ⁺		
কোথাক	ার Cu ²⁺	0	
হাজি	Hg ²⁺	ADM	SSION
আজ	Ag^{+}	The Control of the Co	JFFS
পিটাবে		310	OFF3.
আমায়	Au ³⁺		


Rhombus Publications

- ₹38 ACS/ ➤ Chemistry 2nd Paper Chapter-4 > উভয় সারিতে যত নিচে যাওয়া হয় ততই আয়নগুলোর চার্জমুক্ত
 - হওয়ার প্রবর্ণতা বাড়ে। সক্রিয়তা সিরিজের উপর থেকে নিচে ধাতুর সক্রিয়তা হাস পায়।
 - > क्रांोग्रानिक তिए तानाग्रनिक नातित्र छेनत थिएक निए विजातन বিভব বৃদ্ধি পায় এবং জারণ বিভব হ্রাস পায়।
 - স্থানায়নিক তড়িৎ রাসায়নিক সারির উপর থেকে নিচে জারণ বিভব বৃদ্ধি পায় এবং বিজারণ বিভব হ্রাস পায়।
 - ধাতুর সক্রিয়তা সিরিজ:

তডিৎ বিশ্লেষ্য কোষ

- তড়িৎ বিশ্লেষ্য কোষ:
 - এই কোষে তড়িৎ শক্তি রাসায়নিক শক্তিতে রূপান্তরিত হয়।
 - অ্যানোডে জারণ ঘটে ও ক্যাথোডে বিজারণ ঘটে।
 - তডিৎ বিশ্লেষ্য কোষে অ্যানোড (+)ve ও ক্যাথোড (-)ve।

চিত্র: তডিৎ বিশ্লেষ্য কোষ

- NaCl এর বিভিন্ন অবস্থার তড়িৎ বিশ্লেষণ:
 - ➤ NaCl এর সম্পুক্ত দ্রবণ বা ব্রাইনের তড়িৎ বিশ্লেষণ: ক্যাথোডে বিক্রিয়া:

Pt তড়িৎদ্বার ব্যবহারে, $2H^+ + 2e^- \longrightarrow H_2$ Hg তড়িৎদার ব্যবহারে, $Na^+ + e^- \longrightarrow Na$

Na + Hg --- Na.Hg

ভড়িৎ রসায়ন ➤ ১৫১/ FRB Compact Suggestion Book

আনোডে বিক্রিয়া:

 $2CI \rightarrow CI_2 + 2c$

NaCl এর গলিত দ্রবণের তড়িৎ বিশ্লেষণঃ

ক্যাথোডে বিক্রিয়া: Na * + c $^{-}$ \longrightarrow Na

আনোডে বিক্রিয়া: $2C\Gamma \longrightarrow Cl_2 + 2c$

NaCl এর লঘু জলীয় দ্রবদের তড়িৎ বিশ্লেষণঃ

ক্যাথোডে বিক্রিয়া: $2H^+ + 2c^- \longrightarrow H_2$

স্থানোডে বিক্রিয়া: 4OH → 2H2O + O2 + 4c

তিঙং বিশ্লেষ্য পদার্থের তিঙং বিশ্লেষণে প্রাপ্ত উৎপাদ:

তড়িৎ বিশ্লেষ্য	ক্যাথোডে উৎপন্ন উৎপাদ	অ্যানোডে উৎপন্ন উৎপাদ
NaC/ (গলিত)	Na	C/ ₂
গাঢ় NaC/(aq)	H ₂	C/ ₂
KNO ₃ (aq)	H ₂	O ₂
NaOH(aq)	H ₂	O ₂

ফ্যারাডের সূত্র

ফ্যারাডের প্রথম সূত্রঃ

দ্রবণে বা গলিত অবস্থায় কোনো তড়িৎ বিশ্লেষ্যের মধ্য দিয়ে তড়িৎ চালনা করলে প্রতি তড়িংদ্বারে উৎপন্ন বা দ্রবীভূত পদার্থের গ্রামে প্রকাশিত ভর তড়িৎ বিশ্লেষ্যের মধ্য দিয়ে প্রবাহিত চার্জের সমানুপাতিক।

অর্থাৎ, W ∝ O

$$\therefore W = ZQ = ZIt \qquad [Q = It]$$

এখানে, Z = তড়িৎ রাসায়নিক তুল্যান্ক

- ➣ তড়িৎ রাসায়নিক তৃল্যায় (Z) এর একক: g C^{-1 © ©}
- ➣ তড়িৎ রাসায়নিক তুল্যায় (Z) এবং রাসায়নিক তুল্যায় (E) এর

মধ্যে সম্পর্ক:

$$Z = \frac{E}{F} = \frac{M}{eF}$$
 $E = \frac{M}{e}$

$$\Rightarrow$$
 $W = \frac{MIt}{eF}$

[e = যোজ্যতা]

▶ Q = It = neF [n = মোল সংখ্যা]

ফ্যারাডের দিতীয় সূত্র:

বিভিন্ন তড়িং বিশ্লেষ্যের (গলিত বা দ্রবীভূত) মধ্য দিয়ে একই পরিমাণ তড়িৎ চালনা করলে তড়িৎদ্বারে জমা হওয়া ভর মৌলের নিজ নিজ রাসায়নিক তুল্যাঙ্কের সমানুপাতিক।

অর্থাৎ, W ∝ E

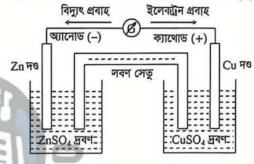
$$\therefore \boxed{\frac{W_1}{E_1} = \frac{W_2}{E_2}}$$

$$\Rightarrow \boxed{\frac{W_1 e_1}{M_1} = \frac{W_2 e_2}{M_2}}$$

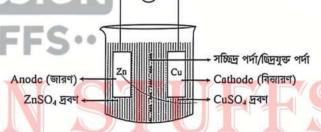
ठिष्ट विश्वामालन अन मुनालन चनमाळा निर्मसः

তড়িং বিশ্লেষণের পর দ্রবনের অবশিষ্ট মোল সংখ্যা, □' = S₁∨ --

তড়িৎ বিশ্লেষণের পর দ্রবনেন ঘনমাত্রা,


यापात, S1 = म्वरान क्षाणिक ननगाना

V = দ্রবণের আয়তন


क्गाएगारक समा एउग्रा व्योजन अतिमाध তড়িৎ দক্ষতা = ফ্যানাডের সূত্রানুসারে অমা হওয়া মৌসের পরিমান × 100%

তড়িৎ রাসায়নিক কোষ

- তড়িৎ রাসায়নিক কোষঃ
 - এই কোষে রাসায়নিক শক্তি বিদ্যুৎ শক্তিতে রূপান্তরিত হয়।
 - তড়িৎ রাসায়নিক কোষে অ্যানোড (–)vc ও ক্যাথোড (+)vc।

চিত্র: ২ প্রকোষ্ঠ বিশিষ্ট গ্যালভানিক কোষ वा পরোক্ষ সংযোগ বা লবণ সেতু ঘারা সংযোগ

চিত্র: ১ প্রকোষ্ঠ বিশিষ্ট গ্যালভানিক কোষ বা প্রত্যক্ষ সংযোগ বা লবণ সেতু বিহীন সংযোগ

- লবণ সেতৃঃ
 - এটি একটি ইউ (U) আকৃতির কাঁচের নল।
 - > এতে KCl, KNO₃, NH₄NO₃ বা Na₂SO₄ এর 0.1 M ঘনমাত্রার দ্রবর্ণ নেয়া হয়।
 - লবণ সেতৃতে KCI দ্রবণ সর্বোৎকৃষ্ট লবণ হিসেবে ব্যবহৃত হয়।
 - কোষ সংকেত বা কোষ ডায়ায়াম:

$$Zn(s)/Zn^{2+}(aq)$$
 $\parallel Cu^{2+}(aq)/Cu(s)$ অ্যানোড অর্ধকোষ ক্যাথোড অর্ধকোষ

জারণ তড়িৎদার (অ্যানোড) এর উদাহরণ:

- (i) Pt, $\frac{1}{2}$ H₂(g) (1 atm)/H⁺(1.0 M)
- (ii) $Zn(s)/Zn^{2+}(1.0 M)$

বিজারণ তড়িৎদার (ক্যাথোড) এর উদাহরণ:

- (i) Sn4+(0.2 M)/Sn2+(0.1 M), Pt
- (ii) Ag*(0.3 M)/Ag(s)

পূর্ণ কোষ এর উদাহরণ:

- (i) $Zn(s)/Zn^{2+}(1.0 \text{ M}) \parallel Cu^{2+}(0.2 \text{ M})/Cu(s)$
- (ii) $Cr(s)/Cr^{3+}(0.5 \text{ M}) \parallel Pb^{2+}(0.1 \text{ M})/Pb(s)$

অধকোষ:

তড়িৎ রাসায়নিক কোষের যেকোনো একটি তড়িৎদ্বার এবং এর তড়িৎ বিশ্লেষ্যের দ্রবণের সমষ্টিকে অর্ধকোষ বলে।

দণ্ড (তড়িৎদ্বার) + দ্রবণ (তড়িৎ বিশ্লেষ্য) = অর্ধকোষ

অর্ধকোষের শ্রেণিবিভাগ:

- (i) ধাতু-ধাতব আয়ন অর্থকোষ: M/M^{n+} রূপে নির্দেশ করা হয়। বিক্রিয়া: $M(s) \to M^{n+}(aq) + ne$ উদাহরণ: $Zn(s) \to Zn^{2+}(aq) + 2e^-$
- (ii) ধাতু ও ধাতুর অদ্রবণীয় লবণ অর্ধকোষ:
 Hg(I), Hg₂Cl₂(s)/KCl(aq)
 বিক্রিয়া: Hg₂Cl₂(s) + 2e⁻ = 2Hg(I) + 2Cl⁻(aq)
- (iii) জারণ-বিজারণ অর্থকোষ: Pt, $Fe^{2^+}(aq)/Fe^{3^+}(aq)$ বিক্রিয়া: $Fe^{2^+}(aq) = Fe^{3^+}(aq) + e^-$
- (iv) গ্যাস অর্ধকোষ: Pt, $H_2(g)$ (1 atm)/ $H^+(aq)$ (1 M) বিক্রিয়া: $\frac{1}{2}H_2(g) = H^+(aq) + e^-$
- (v) ধাতৃ অ্যামালগাম ও ধাতৃর আয়ন অর্থকোয়:
 Na.Hg(s)/Na⁺(aq)
 বিক্রিয়া: Na.Hg(s) = Na⁺(aq) + e⁻ + Hg(I)

তড়িৎদ্বার, তড়িৎদ্বার বিভব, কোষের EMF

নির্দেশক তড়িৎদ্বার:

যেসব তড়িৎদ্বারকে আদর্শ ধরে অন্য কোনো অজানা তড়িৎদ্বারের তড়িৎ বিভব নির্ণয় করা হয় তাদেরকে নির্দেশক তড়িৎদ্বার বলে। নির্দেশক তড়িৎদ্বার ২ প্রকার।

- (i) প্রাইমারি বা মুখ্য নির্দেশক তড়িংদ্বার: প্রমাণ হাইড্রোজেন তড়িংদ্বার।
- (ii) সেকেন্ডারি <mark>বা গৌণ নির্দেশক ভড়িৎদ্বার: ক্যালোমেল তড়িৎদ্বার,</mark> সিলভার-সিলভার ক্লোরাইড তড়িৎদ্বার।
- প্রমাণ হাইড্রোজেন তড়িংদ্বার: Pt(s).H₂(g)(1 atm)/H⁺(aq)(1 M) অ্যানোড হিসেবে: H₂ (g, 1 atm) → 2H⁺ (aq, 1 M) + 2e⁻ ক্যাথোড হিসেবে: 2H⁺ (aq, 1 M) + 2e⁻ → H₂ (g, 1 atm)
- ক্যালোমেল তড়িৎদ্বার: Pt, Hg, Hg₂Cl₂/KCl(aq) অ্যানোড হিসেবে বিক্রিয়া:

 $2Hg(I) + 2CI^{-}(aq) = Hg_2CI_2(s) + 2e^{-}$ ক্যাখোড হিসেবে বিক্রিয়া:

 $Hg_2CI_2(s) + 2e^- = 2Hg(I) + 2CI^-(aq)$

কোষ বিভব নির্পয়ের সূত্র:

$$\begin{bmatrix} E_{cell}^0 = E_{anode(ox)}^0 + E_{cathode(red)}^0 \\ = E_{anode(ox)}^0 - E_{cathode(ox)}^0 \\ = -E_{anode(red)}^0 + E_{cathode(red)}^0 \\ = -E_{anode(red)}^0 - E_{cathode(ox)}^0 \end{bmatrix}$$

Rhombus Publications

..... ACS, > Chemistry 2nd Paper Chapter-4

এখানে, $E_{anode(ox)}^0 =$ অ্যানোডের প্রমাণ জারণ বিভব

E cathode(red) = ক্যাথোডের প্রমাণ বিজ্ঞারণ বিভব

E anode(red) = অ্যানোডের প্রমাণ বিজ্ঞারণ বিভব

E of this control of the control of

কাষের স্বতঃস্ফুর্ততা:

কোষ বিভব, $E_{cell}^0>0$ হলে, কোষ বিক্রিয়া স্বতঃস্কূর্ত হয় $E_{cell}^0<0$ হলে, কোষ বিক্রিয়া স্বতঃস্কূর্ত হয় না $E_{cell}^0=0$ হলে, কোষ বিক্রিয়া সাম্যাবস্থায় থাকবে

পাত্রে দ্রবণ রাখার শর্ড:

পাত্রকে অ্যানোড আর পাত্রে বিদ্যমান দ্রবণকে ক্যাথোড বিবেচনা করে যদি, $E_{\rm cell}>0$ হয়, তবে কোষ বিক্রিয়া স্বতঃস্ফূর্ত হয়। ফলে পাত্র ক্ষয় হবে। দ্রবণ পাত্রে রাখা যাবে না।

 $E_{cell} < 0$ হয়, তবে কোষ বিক্রিয়া স্বতঃস্ফূর্ত হয় না। ফলে পাত্র ক্ষয় হবে না। দ্রবণ পাত্রে রাখা যাবে।

নার্নস্ট সমীকরণ

নার্নস্ট সমীরকণঃ

$$E_{cell} = E_{cell}^0 - \frac{RT}{eF} \ln Q$$
 এখানে, $R =$ মোলার গ্যাস ধ্রুবক $T =$ তাপমাত্রা $e =$ সংখ্যা $E_{cell} = E_{cell}^0 - \frac{2.303RT}{eF} \log Q$ $E_{cell}^0 = \frac{0.0592}{e} \log Q$ $E_{cell}^0 = \frac{1}{2}$ প্রমাণ কোষ বিভব $Q =$ বিক্রিয়া ধ্রুবক

একটি কোষ বিক্রিয়া: $xA(s) + yB^{+}(aq) \stackrel{ne^{-}}{=} xA^{+}(aq) + yB(s)$ বিক্রিয়াটির জন্য নার্নস্ট সমীকরণ:

 $E_{cell} = E_{cell}^{0} - \frac{RT}{eF} ln \frac{[A^{+}]^{x}}{[B^{+}]^{y}} [$ কঠিন পদার্থের ক্ষেত্রে সক্রিয় ভর = 1]

➤ অর্থকোষের জন্য নার্নস্ট সমীকরণ.

$$E_{A/A^{+}} = E_{A/A^{+}}^{0} - \frac{2.303RT}{eF} \log [A^{+}]$$

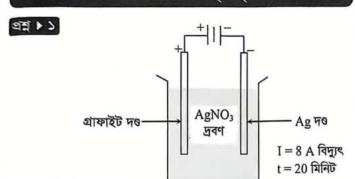
হাইড্রোজেন তড়িংদ্বারে জারণের জন্য নার্নস্ট সমীকরণ,

$$E_{H_2/H^+} = E_{H_2/H^+}^0 - \frac{2.303RT}{eF} \log \frac{[H^+]}{[P_{H_2}]^2}$$

∴
$$E_{H_2/H^+} = -\frac{2.303RT}{eF} \log [H^+]$$

$$E_{H_2/H^*}^0 = 0 \text{ V এবং } P_{H_2} = 1 \text{ atm}$$

➢ নার্নস্ট সমীকরণ হতে pH নির্ণয়, E_{cell} = 0.0592 pH


□ গিবসের মুক্ত শক্তির পরিবর্তনঃ

- ightarrow আদর্শ অবস্থায় গিবসের মুক্ত শক্তির পরিবর্তন, $\Delta G^0 = \, \mathrm{nFE}_{\mathrm{cell}}^0$
- ho $\Delta G^0 = 0$ হলে $E_{cell}^0 = 0$ হয়। সেক্ষেত্রে কোষ বিক্রিয়াটি সাম্যাবস্থায় থাকবে। তখন কোষটিকে মৃত কোষ বলে।
- $ightarrow \Delta G^0 > 0$ হলে $E_{cell}^0 < 0$ হয়। সেক্ষেত্রে কোমে বিক্রিয়া ঘটবে না।
- > ΔG⁰ < 0 হলে E oracle > 0 হয় । সেক্ষেত্রে কোষ বিক্রিয়া
 য়তঃক্তৃতভাবে ঘটবে ।

ত্তিহুৎ রসায়ন ➤ ACS, FRB Compact Suggestion Book

239

HSC পরীক্ষার্থীদের জন্য বাছাইকৃত সৃজনশীল প্রশ্নোত্তর

(ক) অর্ধকোষ কাকে বলে?

[य. व्वा. २७; व. व्वा. २১]

- (ব) Zn ইলেকট্রোডের প্রমাণ জারণ বিভব $E_{Zn/Zn^{2+}}^0 = +0.76 \text{ V}$ বলতে কী বুঝ?
- (গ) উন্দীপকের কোষে অনুসূত ফ্যারাডের সূত্র বিবৃত ও ব্যাখ্যা কর। । য. রো. ২৩।
- (ঘ) উদ্দীপকের কোষে Ag দণ্ডে কতটি Ag পরমাণু সঞ্চিত হবে? গাণিতিকভাবে বিশ্রেষণ কর। (য. বো. ২৩; অনুরূপ প্রশ্ন: ম. বো. ২২; ব. বো. ২১) [Ag এর পারমাণবিক ভর = 108]

সমাধান:

- কানো তড়িৎ রাসায়নিক কোষের প্রতিটি তড়িৎদ্বার ও তড়িৎ বিশ্লেষ্য যুগলকে একসাথে অর্ধকোষ বলে।
- তড়িংদার ও দ্রবণের সংযোগস্থলে অ্যানোড কর্তৃক ইলেবট্রন ত্যাগের প্রবণতার ফলে যে বিভব পার্থক্যের সৃষ্টি হয়, তাকে প্রমাণ জারণ বিভব বলে। জিংক ইলেকট্রোডের প্রমাণ জারণ বিভব $E^0_{Zn/Zn^{2+}} = + 0.76 \text{ V}$ বলতে বোঝায়, 25°C তাপমাত্রায় Zn এর ধাতব তড়িংদারকে $ZnSO_4$ লবণের 1 মোলার ঘনমাত্রার দ্রবণে নিমজ্জিত করলে Zn তড়িংদার ও $ZnSO_4$ দ্রবণের সংযোগ স্থলে যে জারণ বিভবের সৃষ্টি হয় তার মান হলো 0.76 V।

তড়িৎ বিশ্লেষ্য কোষের ক্ষেত্রে ফ্যারাডের প্রথম সূত্রটি হচ্ছে,

"তড়িৎ বিশ্লেষণের ফলে কোনো তড়িৎদ্বারে সংঘটিত রাসায়নিক বিক্রিয়ার পরিমাণ (উৎপন্ন বা দ্রবীভূত পদার্থের ভর) তড়িৎ বিশ্লেষ্যের মধ্য দিয়ে প্রবাহিত মোট তড়িৎ এর সমানুপাতিক"।

যদি কোনো তড়িং বিশ্লেষ্যের মধ্যদিয়ে Q কুলম্ব পরিমাণ বিদ্যুৎ প্রবাহিত করার ফলে তড়িংদ্বারে W গ্রাম ভর সঞ্চিত বা দ্রবীভূত হয়, তবে ফ্যারাডের ১ম সূত্রানুযায়ী-

$$W \propto Q$$

 $\Rightarrow W = ZQ$ (i)

যদি, উক্ত তড়িৎ বিশ্লেষ্যের মধ্য দিয়ে I অ্যাম্পিয়ার মাত্রার বিদ্যুৎ প্রবাহ t সময় ধরে প্রবাহিত করা হয়,

তবে, Q = It

(i) নং সমীকরণ হতে পাই,

 $W = ZIt \dots (ii)$

यि I = 1 ज्यां िलग्रात थवः t = 1 लात्कङ इ.स.

তবে W = Z

অর্থাৎ, কোনো তড়িৎ বিশ্লেষ্যের মধ্যদিয়ে এক কুলম বিদ্যুৎ প্রবাহিত করলে অথবা এক অ্যাম্পিয়ার বিদ্যুৎ এক সেকেন্ড যাবৎ প্রবাহিত করলে তড়িৎদারে যে পরিমাণ ভর সঞ্চিত বা দ্রবীভূত হয় তাকে তড়িৎ রাসায়নিক তুল্যান্ধ বলে।

সুতরাং, ফ্যারাডের প্রথম সূত্রানুযায়ী, W = ZQ ব্যবহার করে বিভিন্ন তড়িংদ্ধারে তড়িং প্রবাহের কলে সঞ্চিত পদার্থের পরিমাণ বের করা যায়।

ম Ag দণ্ডে সঞ্চিত Ag এর পরিমাণ,
$$W=ZIt$$

$$=\frac{MIt}{eF}$$

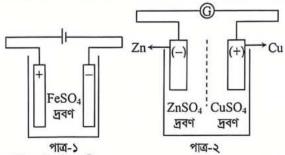
$$=\frac{108\times8\times1200}{1\times96500}$$

$$=10.744 g$$
 এখানে, $M_{Ag}=108 \text{ g mol}^{-1}$
$$I=8 \text{ A}$$

$$t=20 \text{ min}$$

$$=1200 \text{ s}$$
 যোজ্যতা, $e=1$

 $\frac{W}{M} = \frac{N}{N_A}$ $\therefore N = \frac{W}{M} \times N_A = \frac{10.744 \times 6.023 \times 10^{23}}{108} \text{ fb}$ $= 5.992 \times 10^{22} \text{ fb}$


প্রা ১২ দৃশ্যকল্প-১:

এখন,

১ম দ্রবণ = A/Cl₃ এর গলিত দ্রবণে 10 মিনিট ধরে বিভিন্ন মাত্রার বিদ্যুৎ প্রবাহিত করা হলে ক্যাথোডে প্রদন্ত পরিমাণ ধাতু জমা হয়। তড়িৎ প্রবাহ (A) 20 40 50 100

জ্মাকৃত ধাতু W 1.68×10⁻³ 3.36×10⁻³ 4.2×10⁻³ 8.4×10⁻³ (kg)

দৃশ্যকল্প-২:

(ক) তড়িৎ পরিবাহিতা কী?

বি. বো. ২১

- (খ) তাপমাত্রা বৃদ্ধিতে ইলেকট্রনীয় পরিবাহীর তিড়িৎ প্রবাহ হাস পায় কেন?
 (চ. বো. ১৯)
- (গ) দৃশ্যকল্প-১ এর W vs Q (কুলম্ব) এর লেখচিত্র আঁক, ধাতুটির তড়িৎ রাসায়নিক তুল্যাঙ্কের মান হিসাব কর।
- (ঘ) দৃশ্যকল্প-২ এর উদ্দীপকের পাত্র-১ ও পাত্র-২ দৃটি তড়িৎ কোষ হলেও এদের শক্তির রূপান্তরের ধরন ভিন্ন- বিশ্লেষণ করো। । চ. বো. ২১)

ক্র তড়িৎ পরিবাহিতা তড়িৎ মাধ্যমের একটি ধর্ম যার দক্রন এর মধ্য দিয়ে তড়িৎ প্রবাহিত হয়।

ইলেকট্রনীয় পরিবাহীর পরমাণুর বহিঃস্তরে এক বা একাধিক সঞ্চারণশীল ইলেকট্রন থাকে। এসব ইলেকট্রনের প্রবাহের মাধ্যমে ইলেকট্রনীয় পরিবাহীর ভেতর দিয়ে তড়িৎ প্রবাহিত হয়। যদি তাপমাত্রা বৃদ্ধি পায়, তবে এসব সঞ্চারণশীল ইলেকট্রনের কম্পন বৃদ্ধি পায়। এতে তড়িৎ পরিবহনের সময় তাদের নিজেদের মধ্যে সংঘর্ষের পরিমাণও বৃদ্ধি পায় এবং বেগ হ্রাস পায়। ফলে তড়িৎ প্রবাহের মান হ্রাস পায়।

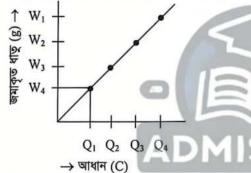
উদ্দীপকের দ্রবণের জন্য প্রবাহিত চার্জের পরিমাণ Q = It হলে,

$$Q_1 = 20 \times 10 \times 60 = 12000 \text{ C}$$

$$Q_2 = 40 \times 10 \times 60 = 24000 \text{ C}$$

$$Q_3 = 50 \times 10 \times 60 = 30000 \text{ C}$$

$$Q_4 = 100 \times 10 \times 60 = 60000 C$$


প্রদত্ত জমাকৃত ধাতু, $W_1 = 1.68 \times 10^{-3} \text{ kg}$

$$W_2 = 3.36 \times 10^{-3} \text{ kg}$$

$$W_3 = 4.2 \times 10^{-3} \text{ kg}$$

$$W_4 = 8.4 \times 10^{-3} \text{ kg}$$

উপরের তথ্য অনুসারে লেখচিত্র অঙ্কন করলে,

লেখচিত্র থেকে দেখা যাচ্ছে যে, জমাকৃত ধাতু (W) ও প্রবাহিত চার্জ (Q) সমানুপাতিক হারে বৃদ্ধি পাচ্ছে। অর্থাৎ $W \propto Q$, ফ্যারাডের ১ম সূত্রকে সমর্থন করে।

বা, W = ZQ [এখানে, Z = তড়িৎ রাসায়নিক তুল্যাস্ক]

বা,
$$\frac{W}{O} = Z$$
(i)

নমুনাগুলোর ক্ষেত্রে,

$$Q_1 = 12000$$

= 1.4 × 10⁻⁷ kg C⁻¹

$$\frac{W_2}{W_2} = \frac{3.36 \times 10^{-3}}{10^{-3}}$$

$$Q_2 = 24000$$

$$= 1.4 \times 10^{-7} \text{ kg C}^{-1}$$

$$= \frac{4.2 \times 10^{-3}}{300000}$$

$$\frac{W_3}{4.2 \times 10^{-3}}$$

$$Q_3 = 30000$$

$$= 1.4 \times 10^{-7} \text{ kg C}^{-1}$$

$$\frac{W_4}{Q_1} = \frac{8.4 \times 10^{-3}}{600000}$$

$$Q_4 = 60000$$

$$= 1.4 \times 10^{-7} \text{ kg C}^{-1}$$

(1) নং হতে,

$$\frac{W}{Q} = \frac{W_1}{Q_1} = \frac{W_2}{Q_2} = \frac{W_3}{Q_3} = \frac{W_4}{Q_4} = 1.4 \times 10^{-7} \text{ kg C}^{-1}$$

 $\therefore Z = 1.4 \times 10^{-7} \text{ kg C}^{-1}$

সুতরাং, প্রদত্ত A/ ধাতুর তড়িং রাসায়নিক তুল্যান্ধ $1.4 \times 10^{-7} \, \mathrm{kg} \, \mathrm{C}^{-1}$ ।

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter-4

च উদ্দীপকের পাত্র-১ এর কোষটি তড়িৎ বিশ্লেষ্য কোষ। তড়িৎ বিশ্লেষ্য কোষে তড়িৎ বিশ্লেষ্য পদার্থের গলিত তরলে অথবা জলীয় দ্রবণে বাহ্যিক উৎস থেকে তড়িৎ প্রবাহ চালনা করে তড়িৎ বিশ্লেষ্যের আয়নগুলোর জারণ-বিজারণের মাধ্যমে নতুন পদার্থ তৈরি করা হয়। ফলে তড়িৎ বিশ্লেষ্য কোষে তড়িৎশক্তি রাসায়নিক শক্তিতে রূপান্তরিত হয়। এই কোষে আয়নের চলাচলের ফলে বিদ্যুৎ উৎপন্ন হয়। এই কোষের বিক্রিয়া ব্যাটারির সংযোগ অর্থাৎ, তড়িৎ শক্তি ছাড়া সংগঠিত হবে না। তাই এটি একটি তড়িৎ শক্তি ব্যয়ী কোষ।

উদ্দীপকের পাত্র-২ এর তড়িৎ কোষ একটি গ্যালভানিক কোষ। একটি ধাতৃর তার দ্বারা পাত্র-২ এর কপার ও জিঙ্ক ধাতুর দণ্ডদয়কে সংযোগ করানো হলে তারের মধ্য দিয়ে জিঙ্ক দণ্ড হতে কপার দণ্ডের দিকে ইলেকট্রন প্রবাহিত হবে। এই বিক্রিয়ায় রাসায়নিক শক্তিই বিদ্যুৎ শক্তিতে রূপান্তরিত হয়। অর্থাৎ, পাত্র-২ এর কোষে রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত হয়। এটি একটি তড়িৎ শক্তি উৎপাদী কোষ। সুতরাং, পাত্র-১ ও পাত্র-২ উভয় তড়িৎ কোষ হলেও এদের শক্তির রূপান্তর ভিন্ন।

প্রমা ১৩ দৃশ্যকল্প-১:

একটি তড়িৎ কোষের সংকেত নিম্নরূপ: A/A²⁺(0.05 M)||B⁺(0.01M)/B

 $(A ext{ } ext{B} ext{ } ext{তড়িংঘারের জারণ বিভব যথাক্রমে } + 1.18 ext{ } ext{V} ext{ } ext{এবং } -0.80 ext{ } ext{V})$

দৃশ্যকল্প-২: কতিপয় ধাতুর বিজারণ বিভব এর মান নিম্নে দেওয়া হলো–

- (i) $M^{2+}(aq)/M(s) = +0.40 \text{ V}$
- (ii) $N^{3+}(aq)/N(s) = +1.66 V$
- (iii) $P^{2+}(aq)/P(s) = +0.44 V$
- (ক) ফ্যারাডে ধ্রুবক কাকে বলে? (কু. বো. ২৩; সি. বো. ২২, ১৭; দি. বো. ২১)
- (খ) Ag এর রাসায়নিক তুল্যান্ধ 0.001118 g/C বলতে কী বুঝ?

वि. त्वा. २७; म. त्वा. २७; जा. त्वा. २२, २५; य. त्वा. २२)

(গ) দৃশ্যকল্প-১ থেকে 30°C তাপমাত্রায় উদ্দীপকের কোষটির ই.এম.এফ নির্ণয় কর।

(ঘ) দৃশ্যকল্প-২ থেকে উল্লিখিত (iii) নং দ্রবণকে 'M' ও 'N' ধাতুর নির্মিত পাত্রের কোনটিতে রাখা নিরাপদ? কু. বো. ২২

সমাধানঃ

🚁 এক মোল ইলেকট্রনের মোট চার্জ 96,500 কুলম্ব। এ পরিমাণ বিদ্যুৎ চার্জকে এক ফ্যারাডে চার্জ বা ফ্যারাডে ধ্রুবক বলে।

তাড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোনো পদার্থের যে পরিমাণ অ্যানোডে দ্রবীভূত হয় বা ক্যাথোডে সঞ্চিত হয়, তাকে সেই পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক বলা হয়। সিলভারের তড়িৎ রাসায়নিক তুল্যাঙ্ক 0.001118 g/C বলতে বোঝায় তড়িৎ বিশ্লেষণের সময় সিলভার দ্রবণে 1.0 C চার্জ প্রবাহিত করলে 0.001118 g Ag অ্যানোড তড়িৎদ্বারে দ্রবীভূত হবে অথবা ক্যাথোড তড়িৎদ্বারে সঞ্চিত হবে।

ভড়িৎ রসায়ান > ACS, FRB Compact Suggestion Book.

ল অ্যালোডে অর্ধকোষ বিক্রিয়া:

$$A-2e^- \rightarrow A^{2^+}; E^0_{NA^{2^+}}=1.18 \text{ V}$$
 ক্যাথোডে অর্থকোষ বিক্রিয়াঃ

$$2B^+ + 2e^- \rightarrow 2B$$
; $E_{B^+/B}^0 = 0.8V$

কোষ বিক্রিয়া:
$$A + 2B^4 \rightarrow A^{24} + 2B$$

এখানে, c = 2

 $[A^{2+}] = 0.05 M$

 $[B^{+}] = 0.01 \text{ M}$

 $T = 30^{\circ}C = 303 \text{ K}$

∴ কোষটির ডড়িচ্চালক বল (e.m.f),

$$E_{cell} = E_{cell}^{0} - \frac{RT}{cF} \ln \frac{[A^{2^{+}}]}{[B^{+}]^{2}}$$

$$= \left\{ (1.18 + 0.8) - \frac{8.314 \times 303}{2 \times 96500} \times \ln \frac{0.05}{(0.01)^{2}} \right\} = 1.8989 \text{ V}$$

হা উদ্দীপকে উল্লিখিত P²⁺ দ্ৰবণকে,

M ধাতুর পাত্রে রাখলে M পাত্রটি অ্যানোড হিসেবে কাল করবে এবং P দ্রবণটি ক্যাথোড হিসেবে কাজ করবে।

কোষটি হবে নিমুরূপ: $M(s)/M^{2+}(aq) \parallel P^{2+}(aq)/P(s)$

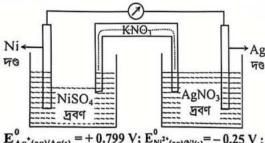
অ্যানোডে জারণ: M – 2e⁻ → M²⁺; E⁰_{MM²⁺} = – 0.4 V

ক্যাথোডে বিজারণ: $P^{2+} + 2e^- \rightarrow P$; $E_{P^{2+}/P}^0 = 0.44 \text{ V}$

কোষ বিক্রিয়া: M + $P^{2+} \rightarrow M^{2+} + P$; $E_{cell}^{0} = 0.04 \text{ V}$

যেহেতু, $E_{cell}^0 > 0$, সুতরাং, কোষ বিক্রিয়া স্বতঃস্কৃর্তভাবে ঘটবে। ফলে, পাত্র ক্ষরপ্রাপ্ত হবে। এ কারণে M পাত্রে P2+ দ্রবণ রাখা নিরাপদ নর। অনুরূপভাবে P²⁺ দ্রবণকে N ধাতুর পাত্রে রাখলে N পাত্রটি অ্যানোড হিসেবে কাজ করবে এবং P দ্রবণটি ক্যাথোড হিসেবে কাজ করবে।

কোষটি হবে নিম্নুন্নপ: N (s)/ N²⁺ (aq) || P²⁺ (aq)/P (s)


অ্যানোডে জারণ: $2N - 6e^- \rightarrow 2N^{3+}$; $E^0_{NN}^{3+} = -1.66 \text{ V}$

ক্যাথোডে বিজারণ: $3P^{2+} + 6e^- \rightarrow 3P$; $E^0_{P^{-}/P} = 0.44 \text{ V}$

কোষ বিক্রিয়া: $2N + 3P^{2+} \rightarrow 2N^{3+} + 3P$; $E_{coll}^{0} = -1.22 \text{ V}$ বেহেতু $E_{cell}^0 < 0$; সূতরাং কোষ বিক্রিয়া স্বতঃস্কূর্তভাবে ঘটবে না। কলে পাত্র অক্ষত থাকবে। এ কারণে N ধাতুর নির্মিত পাত্রে P²⁺ দুবণ त्राचा यादव।

অতএব, P2+ এর দ্রবণকে N ধাতুর পাত্রে রাখা সম্ভব হলেও M ধাতুর পাত্রে রাখা সম্ভব না।

প্রা ▶ ৪ দৃশ্যকল্প-১:

$$\begin{split} \mathbf{E}_{\text{Ag}^{+}(\text{aq})/\text{Ag(s)}}^{0} &= +0.799 \text{ V; } \mathbf{E}_{\text{Ni}^{2}}^{0}(\text{aq})/\text{Ni(s)} = -0.25 \text{ V ; } \\ \mathbf{E}_{\text{Zn}^{2}}^{0}(\text{aq})/\text{Zn(s)} &= -0.76 \text{ V} \end{split}$$

(i) $Fe(s)/Fe^{2+}(aq) \parallel Cu^{2+}(aq)/Cu(s)$

(ii) $Ag(s)/Ag^{+}(aq) \parallel Zn^{2+}(aq)/Zn(s)$

নেওয়া আছে, $E^0_{Fe/Fe^{2+}}=0.44~V; E^0_{Cu^{2+}/Cu}=0.34~V$ $E^0_{Ag/Ag^{+}}=-0.799~V; E^0_{Zu^{2+}/Zu}=-0.76~V$

(क) थमाप रुफिछात विध्व नगत्क तप्प्र?

ति वा २० प्र वा १४ मा वा १४ में वर भा

(ब) गामसामिक त्याप्य नवन त्यसूत्र सूमिनम नामिता नज । कि. त्य. २०. २४० मा जा करार जा कर का मि जा कर कर जा कर जा की

(গ) দৃশ্যকন্ত্র-১ এ উদীপদের কোনে সংঘটিত অর্ণকোন নিক্রিয়া এনাঃ কোন निकिया निर्मितनार्गण लाम । ति त्वा १०% वस्तुतन वधाः वा त्वा प्राप्त के त्वा प्राप्त

(ঘ) দৃশ্যকল্প-২ এ, কোষ বিক্রিরান্বতার নতে কোনটি স্বন্ধ্যক্রিরান নাটিলে?

यगाधामः

ক বিভিন্ন ভড়িত্যানের বিভবের তুলনামূদক নাম প্রকাশের ভান্য প্রতিটি एक्षित्रात्वत रिष्ट्र विद्या वनपत्र वनभावा । M क्रवर राश्नावा 25°C ना 298 K ग्रामा रत्र । व चनचान शिथिंग रिविधातिक निष्ठतक প্রমাণ ভড়িৎযার বিভব বলে।

गाणसानिक कारा नवप टास्त स्मिकाः

(i) লবণ সেতু অর্ধকোমন্বরের উত্তর প্রবণের মতের সত্যোগ দ্বাপন करत कारमत वर्डनी शुर्भ करत ।

(ii) লবণ সেতুর মধ্যন্থ ভড়িৎ বিশ্রেষ্য, সেমন- KNO, উভার धर्वरकारमत मुक्पत गार्ज त्यान बागातानिक बिक्रिया करत गए बता উভার তরলের মধ্যে প্রয়োগ্রনমত ধনাত্রক ও কণাত্রক আদান বিনিময়ের কাল করে।

(iii) লবণ সেতু উভর অর্থকোনের দ্রবদের তড়িৎ-নিরপেঞ্চা বঞার রাখতে কাল করে।

वा जिल्ला चारह,

 $E^0_{\Lambda_S^*(\text{Leg})'\Lambda_S(\text{S})} = +0.799 \text{ V}$ বা, $E^0_{\Lambda_S^*(\text{Leg})} = -0.799 \text{ V}$ $E^0_{N_1^*(\text{Leg})N_3(\text{S})} = -0.25 \text{ V}$ বা, $E^0_{N_1(\text{Leg})N_2^*(\text{Leg})} = 0.25 \text{ V}$ নেহেতু, নিকেলের আরণ বিভব বেশি, সেহেতু সিম্ভাবের বিভারণ

এবং নিকেলের ভারণ খটবে। তাহলে তভিচ্চালক কোনটি হনে-

Ni(s)/Ni2*(aq) || Ag*(aq)/Ag(s)

আালোডে অর্ধকোর বিক্রিনা: Ni - 2e → Ni2 *

ক্যাথোডে অর্থকোব বিক্রিনা: 2Ag* + 2e⁻ → 2Ag

কোষ বিজিনাা: Ni + $2Ag^* \rightarrow Ni^{2*} + 2Ag$

(i) नः काय विकितात क्वात

Fe(s)/Fe2'(aq) || Cu2'(aq)/Cu(s)

আনোডে বিক্রিনা: Fe - 2e → Fe2

ক্যাথোডে বিক্রিয়া: Cu²* + 2e⁻ → Cu

কোৰ বিক্ৰিনা:
$$Fe + Cu^{2+} \rightarrow Fe^{2+} + Cu$$

এখন,
$$E_{ccll}^0 = E_{FoFc}^0 + E_{Cu}^0 2 \cdot _{ICu} = (0.44 + 0.34) \text{ V}$$

এখানে, E_{cell} > 0

সুতরাৎ (i) নং কোব বিক্রিনাটি স্বতঃস্কর্ভভাবে ঘটবে।

আবার, (ii) নং কোয বিক্রিনার ক্রেট্র,

 $Ag(s)/Ag^*(aq) \parallel Zn^2^*(aq)/Zn(s)$

স্যানোডে বিক্রিয়া: 2Ag – 2e⁻ → 2Ag˚

ক্যাথোডে বিক্রিনা: Zn2° + 2e → Zn

কোৰ বিক্ৰিনা: $2Ag + Zn^{2+} \rightarrow 2Ag^{+} + Zn$

এখন, $E_{ccll}^0 = E_{Ag/Ag}^0 + E_{Zn^{2}/Zn}^0$ = (- 0.799 - 0.76) V

এখানে, $E_{cell}^0 > 0$, অতএব, (ii) নং কোষ বিক্রিয়াটি স্বতঃস্কৃর্তভাবে घटेंदि ना।

ব্রন > ৫ ∧ এর ভারণ বিভব + 1.66 V, ∧ এর ভারণ মান = + 3

B এর জারণ বিভব + 0.76 V, B এর জারণ মান = + 2

C এর ভারণ বিভব - 0.80 V, C এর ভারণ মান = + 1

(ক) তড়িৎ ন্নাসায়নিক তুল্যান্ধ কাকে বলে?

পি. বো. ২৩, ২২। দি. বো. ২৩। ব. বো. ২২)

- (থ) তড়িং বিশ্লেঘ্য পরিবাহীকে আয়নিক পরিবাহী বলা হয় কেন? ।দি. বো. ২৩।
- (গ) Λ/Λ^{3} (0.15 M) || B² (0.02 M)/B; 27°C তাপমাত্রায় কোষটির তড়িচালক বল (c.m.f) কত? |িস. বো. ১৯৷ অনুরূপ প্রশ্নঃ চ. বো. ১৯৷
- তড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোন পদার্থের যত পরিমাণ অ্যানোডে দ্রবীভূত হয় বা ক্যাথোডে সঞ্চিত হয়, তাকে সেই পদার্থের তড়িৎ রাসায়নিক তুল্যান্ত বলা হয়।
- জাদীয় দ্রবণে আয়নিক যৌগের ও পোলার সমযোজী যৌগের ধনাত্মক ও ঝণাত্মক আয়নগুলো যথাক্রমে ইলেকট্রন গ্রহণ ও বর্জন করে অর্থাৎ, রাসায়নিক পরিবর্তনের মাধ্যমে তড়িং পরিবহন করে থাকে এদেরকে তড়িং বিশ্লেষ্য পরিবাহী বলে। দ্রবণে এসব আয়ন চলাচলের মাধ্যমে তড়িং পরিবহন হয়ে থাকে। আয়নের চলাচল দ্বারা এই তড়িং পরিবাহিত হয় বলে তড়িং বিশ্লেষ্য পরিবাহীকে আয়নিক পরিবাহী বলে।
- দেওয়া আছে, তড়িচ্চালক কোৰ: A/A³⁺ (0.15 M) || B²⁺ (0.02M)/B A এর জারণ বিভব: E⁰_{I/A³⁺} = 1.66 V B এর জারণ বিভব: E⁰_{B/B²⁺} = 0.76 V

A এর জারণ বিভব B এর জারণ বিভবের চেয়ে বেশি হওয়ায় A অ্যানোড ও B ক্যাথোড হিসেবে কাজ করবে।

অ্যানোড ও B ক্যাখোড হিসেবে ফাজ করবে। অ্যানোডে অর্ধকোষ বিক্রিয়া: 2A – 6e[−] → 2A³⁺

ক্যাথোডে অর্থকোষ বিক্রিয়া: $3B^{2+} + 6e^- \rightarrow 3B$

কোষ বিক্রিয়া: $2A + 3B^{2+} \rightarrow 2A^{3+} + 3B$

কোষের তড়িচ্চালক বল,

$$E_{cell} = E_{cell}^{0} - \frac{RT}{nF} ln \frac{[A^{3+}]^{2}}{[B^{2+}]^{3}}$$

$$= 0.9 - \frac{8.314 \times 300}{6 \times 96500} ln \frac{(0.15)^{2}}{(0.02)^{3}}$$

$$= 0.8658 \text{ V}$$

$$= 0.8658 \text{ V}$$

$$= 0.8658 \text{ V}$$

$$= 300 \text{ K}$$

∴ কোষটির তড়িচ্চালক বল (e.m.f) = 0.8658 V

উদ্দীপকের B দ্বারা নির্মিত পাত্রে C_2SO_4 দ্রবণ রাখলে B পাত্র অ্যানোড হিসেবে এবং C_2SO_4 ক্যাথোড হিসেবে আচরণ করবে। অ্যানোডে বিক্রিরা: $B-2e^- \to B^{2+}$

ক্যাথোডে বিক্রিয়া:
$$2C^+ + 2e^- \rightarrow 2C$$

কোষ বিক্রিয়া: $B + 2C^+ \rightarrow B^{2+} + 2C$ কোষটির e.m.f,

$$E_{\text{cell}}^{0} = E_{\text{B/B}^{2*}}^{0} + E_{\text{C}^{*}/\text{C}}^{0}$$

= (0.76 + 0.80) V
= 1.56 V

|এখানে,
$$E_{B/B^{2+}}^0 = 0.76 \text{ V}$$
 $E_{C^+/C}^0 = 0.80 \text{ V}$

Rhombus Publications

B দ্বারা নির্মিত পাত্রে $A_2(SO_4)_3$ দ্রবণ রাখলে B পাত্র অ্যানোড হিসেবে এবং $A_2(SO_4)_3$ ক্যাথোড হিসেবে আচরণ করবে।

অ্যানোডে বিক্রিয়া: $3B - 6c^{\circ} \rightarrow 3B^{2+}$

ক্যাথোডে বিক্রিয়া: 2A³⁺ + 6c⁻ → 3A

কোষ বিক্রিয়া: $3B + 2A^{3+} \rightarrow 3B^{2+} + 3A$

कायिज c.m.f,

$$\begin{split} E^0_{coll} &= E^0_{B/B^{2*}} + E^0_{A^{2*}/A} & \text{ anice,} \\ &= (0.76 - 1.66) \text{ V} & E^0_{B/B^{2*}} = 0.76 \text{ V} \\ &= -0.9 \text{ V} & E^0_{A^{3*}/A} = -1.66 \text{ V} \end{split}$$

যেহেতু $E_{coll}^0 < 0$, তাই কোষ বিক্রিয়া স্বতঃস্ক্র্তভাবে ঘটবে না। সূতরাং B পাত্রের ক্ষয় হবে না। অর্থাৎ, B ধাতু দ্বারা নির্মিত পাত্রে $A_2(SO_4)_3$ দ্রবণ দীর্ঘদিন সংরক্ষণ করা যাবে।

প্রশ্ন ১৬ দৃশ্যকল্প-১:

$$Y^{2+} + 2e^- \rightarrow Y; E^0 = -0.25 V$$

 $Z^{2+} + 2e^{-} \rightarrow Z$; $E^{0} = -0.23 \text{ V}$

Zn—Cu
TM ZnSO₄
IM CuSO₄

 $E_{Zn^{2+}/Zn}^{0} = -0.76 \text{ V}, E_{Cu^{2+}/Cu}^{0} = +0.34 \text{ V}$

- (क) ফ্যারাডের প্রথম সূত্রটি লিখ। কু. বো. ২২, ২১; য. বো. ২২; ব. বো. ২২, ১৯; ম. বো. ২২, ২১; চা. বো. ২১; চ. বো. ২১
- (খ) কপারের প্রমাণ বিজারণ বিভব + 0.34 Volt। কথাটির অর্থ কী? ব্যাখ্যা কর। চি. বো. ২৩; সি. বো. ২৩, ২২।
- (घ) Y²⁺ আয়নের দ্রবণকে Z-ধাতৃ নির্মিত পাত্রে সংরক্ষণ করা যাবে কিনাতা গাণিতিকভাবে বিশ্লেষণ কর।
 াসি. বো. ২৩; অনুরূপ প্রশ্ল: य. বো. ২২)
 সমাধান:
- তড়িৎ বিশ্লেষণের সময় যেকোনো তড়িৎদ্বারে সংঘটিত রাসায়নিক বিক্রিয়ার পরিমাণ অর্থাৎ, কোনো তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত পদার্থের পরিমাণ চার্জের সমানুপাতিক।
- তড়িৎদ্বার ও দ্রবণের সংযোগস্থলে ক্যাথোড কর্তৃক ইলেকট্রন গ্রহণ প্রবণতার ফলে যে বিভব পার্থক্যের সৃষ্টি হয়, তাকে প্রমাণ বিজারণ বিভব বলে। কপারের বিজারণ বিভব 0.34 V বলতে বোঝায়, 25°C তাপমাত্রায় Cu এর ধাতব তড়িৎদ্বারকে CuSO₄ লবণের 1 মোলার ঘনমাত্রার দ্রবণে নিমজ্জিত করলে Cu তড়িৎদ্বার এবং CuSO₄ দ্রবণের সংযোগস্থলে যে বিজারণ বিভবের সৃষ্টি হবে তার মান হবে 0.34 V।

তভিৎ রসায়ন > ACS; FRB Compact Suggestion Book

র দেওয়া আছে,

$$E_{Zn}^{0}^{2-}/Z_{n} = -0.76 \text{ V}$$

 $E_{Cn}^{0}^{2-}/C_{n} = +0.34 \text{ V}$

যেহেত্ E_{Cu}^{0} 2 7 / $_{Cu}$ > E_{Zn}^{0} 2 7 / $_{Zn}$, সূতরাং কপার (Cu) তড়িৎদ্বারটি ক্যাথোড এবং Zn তড়িৎদ্বারটি অ্যানোড হিসেবে কাজ করবে। আবার দুই দ্রবণের ঘনমাত্রা একই হওয়ায় প্রমাণ কোষ বিভব নির্ণয়ের সূত্র ব্যবহার করা যাবে। এক্ষেত্রে,

জ্যানোডে জারণ: $Zn-2e^- \to Zn^{2+};$ $E^0_{Zn/Zn^{2+}}=+0.76 \ V$ ক্যাথোডে বিজারণ: $Cu^{2+}+2e^- \to Cu;$ $E^0_{Cu^{2-}/Cu}=+0.34 \ V$

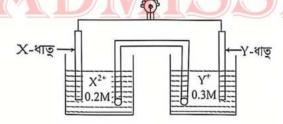
কোষ বিক্রিয়া: $Zn + Cu^{2^+} \rightarrow Zn^{2^+} + Cu; \; E^0_{cell} = 1.1 \; V$ সূতরাং, দৃশ্যকল্প-২ এর কোষ বিভব = $1.1 \; V$ ।

- উদ্দীপকের Y²⁺ আয়নের দ্রবণটিকে Z ধাতু নির্মিত পাত্রে রাখা যাবে কিনা তা নিম্নোক্ত ২টি বিষয়ের উপর নির্ভরশীল:
 - (i) Z ধাতু নির্মিত পাত্রটি অ্যানোড হিসেবে ক্রিয়া করছে কিনা
 - (ii) কোষ বিক্রিয়া স্বতঃস্কূর্ত হচ্ছে কিনা।

Z ধাতব পাত্রে জারণ বিক্রিয়া এবং Y দ্রবণে বিজারণ বিক্রিয়া সংঘটিত হবে। তাহলে সৃষ্ট তড়িচ্চালক কোবটি হবে-

$$Z(s)/Z^{2+}(aq) \parallel Y^{2+}(aq)/Y(s)$$

$$\therefore E_{cell}^{0} = E_{Z/Z}^{0} + E_{Y^{2-}/Y}^{0}$$


$$= (0.23 - 0.25) V$$

$$= -0.02V$$

বেহেতু, $E_{cell}^0 < 0$; সূতরাং Z নির্মিত পাত্রে Y^{2+} আয়নের দ্রবণকে রাখলে কোষ বিক্রিয়া স্বতঃক্তৃতভাবে ঘটবে না । অর্থাৎ, Z পাত্র ক্ষয়প্রাপ্ত হবে না । তাই Z পাত্রে Y^{2+} আয়নের দ্রবণকে সংরক্ষণ করা যাবে ।

প্রশ্ল ▶ ৭ দৃশ্যকল্প-১:

Ni/Ni²⁺ (0.15 M), $E_{Nl^{2+}/Nl}^{0} = -0.18 \text{ Volt}$ Ag/Ag⁺ (0.2 M), $E_{Ag^{-}/Ag}^{0} = +0.799 \text{ Volt}$ $\sqrt[4]{100}$

X ও Y এর পারমাণবিক সংখ্যা যথাক্রমে 28 ও 47

$$\mathbf{E}_{X}^{0_{2+}}/X = -0.25V; \, \mathbf{E}_{Y}^{0_{1}}/Y = +0.80V$$

(ক) প্রমাণ হাইড্রোজেন তড়িংদার কী?

[ঢা. বো. ২২]

(খ) ভড়িৎদ্বার বিভব বলতে কী বৃঝ?

[কু. বো. ২১]

- (গ') দৃশ্যকল্প-১ এর প্রদন্ত তড়িৎদারদ্বয়ের সমন্বয়ে কোষ গঠন করে অর্ধকোষ ও কোষ বিক্রিয়া লিখ। [য়. রো. ২১]
- (ঘ) দৃশ্যকল্প-২ এর কোষটির Y⁺ আয়নের ঘনমাত্রা 1.5 M হলে বৈদ্যুতিক বাতিটির উজ্জ্বলতার পরিবর্তন হবে কি-না? গাণিতিকভাবে বিশ্লেষণ কর। দি. বো. ২৩

সমাধান:

- ক একক মোলার ঘনমাত্রা বিশিষ্ট কোনো H⁺ আয়নের দ্রবণে প্লাটিনাম গুঁড়ার আন্তরণ যুক্ত প্লাটিনাম পাত রেখে 1 atm বায়ুচাপে বিশুদ্ধ হাইড্রোজেন গ্যাস বুদবুদ আকারে সরবরাহ করলে যে তড়িৎদার উৎপন্ন হয়, তাকে প্রমাণ হাইড্রোজেন তড়িৎদার বলা হয়।
- ধাতব দণ্ডের কেলাসে ধাতুর আয়নসমূহ ল্যাটিসে নির্দিষ্ট স্থানে থাকে
 এবং এর যোজনী ইলেকট্রনসমূহ ল্যাটিসের কাঁকা স্থানে চলাচল করে।
 কোনো ধাতুর দণ্ডকে এর কোনো লবণের দ্রবণে ডুবালে তখন ধাতুর
 আয়ন ল্যাটিস ত্যাগ করে দ্রবণে প্রবেশের প্রবণতা দেখায়। এ অবস্থায়
 ধনাত্মক চার্জবুক্ত আয়নের চার্জের সমসংখ্যক ইলেকট্রন ধাতব দণ্ডে
 অতিরিক্ত থাকে, এই ধাতব দণ্ডটি ঝণাত্মক চার্জবুক্ত হয়। ধাতব
 আয়নগুলো পানির সাথে যুক্ত হয়ে হাইড্রেটেড আয়নরূপে থাকে।
 আবার হাইড্রেটেড ধাতব ধনাত্মক আয়নগুলো ঐ ধাতব দণ্ডের
 ইলেকট্রন গ্রহণ করে পুনরায় পরমাণুরূপে ধাতব দণ্ডে যুক্ত হতে চায়।
 এরূপে ধাত্রির ইলেকট্রন ত্যাগের বেশি বা কম প্রবণতার ফলে ধাতব
 দণ্ড ঋণাত্মক বা ধনাত্মক চার্জবুক্ত হতে পারে।

প্রত্যেকটি তড়িৎদারের পৃষ্ঠতলে ইলেকট্রন ত্যাগ বা ইলেকট্রন গ্রহণ-এ দুটি বিপরীতমুখী প্রবণতার পরিমাণ কখনো সমান হয় না; তাই ধাতব দণ্ড ও এর দ্রবণের আয়নের মধ্যে একটি বৈদ্যুতিক বিভব সৃষ্টি হয়। এ বিভবকে তড়িৎদার বিভব বলা হয়।

র দেওরা আছে,

নিকেলের বিজারণ বিভব, $E_{Ni}^{0}^{2} \cdot_{Ni} = -0.25 \text{ V}$

সিলভারের বিজারণ বিভব, $E_{Ag^*/Ag}^0 = + 0.80 \text{ V}$

্যেহেতু সিলভারের বিজারণ বিভব বেশি, তাই সিলভারের বিজারণ এবং নিকেলের জারণ ঘটবে।

তড়িচ্চালক কোৰ: Ni (s)/Ni²⁺ (aq) || Ag⁺ (aq)/Ag (s)

অ্যানোডে অর্ধকোষ বিক্রিয়া: $Ni - 2e^- \rightarrow Ni^{2+}$

ক্যাথোডে অর্ধকোষ বিক্রিয়া: $2Ag^+ + 2e^- \rightarrow 2Ag$

কোৰ বিক্ৰিয়া: $Ni + 2Ag^+ \rightarrow Ni^{2+} + 2Ag$

জদীপকের দৃশ্যকল্প-২ এর X ও Y মৌল দুটি হলো যথাক্রমে নিকেল (Ni) ও সিলভার (Ag)।

সৃষ্ট তড়িচ্চালক কোষটি হবে:

 $Ni(s)/Ni^{2+}(aq) \parallel Ag^{+}(aq)/Ag(s)$

অ্যানোডে জারণ বিক্রিয়া:

 $Ni - 2e^- \rightarrow Ni^{2+}; E^0_{Ni(s)/Ni^{2-}(aq)} = + 0.25 \text{ V}$

ক্যাথোডে বিজারণ বিক্রিয়া:

$$2Ag^{+} + 2e^{-} \rightarrow 2Ag; E_{Ag^{-}(aq)/Ag(s)}^{0} = + 0.80 \text{ V}$$
কোষ বিক্রিয়া: Ni + $2Ag^{+} \rightarrow \text{Ni}^{2+} + 2Ag; E_{cell}^{0} = 1.05 \text{ V}$

এখানে, যোজ্যতা, e = 2

 $[Ni^{2+}] = 0.2 \text{ M}, [Ag^{+}] = 0.3 \text{ M}$

 $T = 25^{\circ}C = 298 \text{ K}$

$$\therefore E_{\text{cell}} = E_{\text{cell}}^{0} - \frac{RT}{eF} \ln \frac{[\text{Ni}^{2+}]}{[\text{Ag}^{+}]^{2}} = 1.05 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{(0.2)}{(0.3)^{2}}$$

$$= 1.0397 \text{ V}$$

আবার, [Ag⁺] = 1.5 M হলে,

$$E'_{cell} = E^{0}_{cell} - \frac{RT}{eF} \ln \frac{[Ni^{2+}]}{[Ag^{+}]^{2}} = 1.05 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{(0.2)}{(1.5)^{2}}$$

∴ Ag⁺ এর ঘনমাত্রা 0.3 M থেকে 1.5 M হলে তড়িচ্চালক শক্তি
বৃদ্ধি পাবে এবং বাতিটি আরো উজ্জ্বলভাবে জ্বলবে।

২২২

(i) A/A^{2+} ; $E^0 = +0.75 \text{ V}$ (ii) B/B^{2+} ; $E^0 = +0.40 \text{ V}$

(iii) C/C^{2+} ; $E^0 = +0.35 \text{ V}$

(ক) প্রমাণ জারণ বিভব কী?

রো. বো. ২২

- (খ) ফ্যারাডের সূত্র হতে একটি ইলেকট্রনের চার্জ নির্ণয় কর। iরা. বো. ২২
- (গ) (i) ও (iii) নং তড়িংছার ছারা লবণ সেতৃসহ কোষ তৈরি করে তার বিভব নির্ণয় কর। রা. বো. ২২; ছনুরুগ প্রশ্ন: সি. বো. ২৬; কু. বো. ২২; য. বো. ২২; ব. বো. ২২; চ. বো. ২১; ঢা. বো. ২১; দি. বো. ১৯
- (ঘ) B-নির্মিত পাত্রে A ও C এর লবণ এর দ্রবণ রাখলে কোনটি রাসায়নিক বিক্রিয়ায় ক্ষয়প্রাপ্ত হবে? বিশ্লেষণ কর। রা. বো. ২১ সমাধান:
- ত ড়িংদ্বার ও দ্রবণের সংযোগ স্থলে অ্যানোড কর্তৃক ইলেক্ট্রন ত্যাগের প্রবণতার ফলে যে বিভব পার্থক্যের সৃষ্টি হয়, তাকে প্রমাণ জারণ বিভব বলে।
- তড়িং বিশ্লেষণের সমীকরণ মতে, একযোজী এক মোল ক্যাটায়নকে চার্জ মুক্ত করতে 1 F চার্জের প্রয়োজন হয়। এক মোল ক্যাটায়নের সংখ্যা হলো অ্যাভোগাড্রো সংখ্যা = N_A একটি ইলেকট্রনের চার্জ = e^-

∴
$$N_A \times e^- = 1$$
 ফ্যারাডে = 96500 C
∴ $e^- = \frac{96500 \text{ C}}{N_A} = \frac{96500 \text{ C}}{6.022 \times 10^{23}}$
= 1.60246 × 10⁻¹⁹ C

প্র আমরা জানি, যে তড়িংদ্বারের জারণ বিভব বেশি সেটি অ্যানোডরূপে এবং যে তড়িংদ্বারের জারণ বিভব কম সেটি ক্যাথোডরূপে কাজ করে । দেওয়া আছে,

 $E_{A/A}^{0}^{2*} = +0.75 \text{ V}; E_{C/C}^{0}^{2*} = +0.35 \text{ V}$ যেহেতু, $E_{A/A}^{0}^{2*} > E_{C/C}^{0}^{2*}$; কাজেই A তড়িৎদ্বার অ্যানোড এবং C তড়িৎদ্বার ক্যাথোড হিসেবে কাজ করে। লবণ সেতু সহ কোষ ডায়াগ্রাম: A (s)/ A^{2+} (aq) $\|C^{2+}$ (aq)/C (s)

অ্যানোডে জারণ বিক্রিয়া:

$$A-2e^- \to A^{2+}; E^0_{A/A}{}^{2+}=+0.75 \text{ V}$$
ক্যাথোডে বিজারণ বিক্রিয়া:

 $C^{2+} + 2e^- \rightarrow C; E_{C^{2+}/C}^{0} = -0.35 \text{ V}$ কোষ বিক্রিয়া: $A + C^{2+} \rightarrow A^{2+} + C$

$$E_{cell}^{0} = E_{N/A}^{0}^{2+} + E_{C}^{0}^{2+}/C$$

$$= (0.75 - 0.35) V$$

$$= 0.4 V$$

- B নির্মিত পাত্রে A ও C লবণ রাখলে কোনটি রাসায়নিক বিক্রিয়ায়
 ফয়প্রাপ্ত হবে তা নিম্নোক্ত দুটো বিষয়ের উপর নির্ভর করে:
 - (i) কোষ বিক্রিয়া স্বতঃস্কূর্ত হচ্ছে কিনা।
 - (ii) B নির্মিত পাত্রটি অ্যানোড হিসেবে ব্যবহৃত হচ্ছে কিনা।
 - B পাত্রকে অ্যানোড বিবেচনা করে কোষ দুটোকে নিম্নন্ধপে উপস্থাপন করা যায়:

$$B(s)/B^{2+}(aq)||A^{2+}(aq)/A(s)$$
(i)
 $B(s)/B^{2+}(aq)||C^{2+}(aq)/C(s)$ (ii)

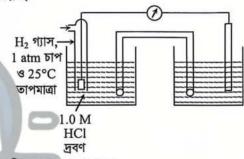
(i) নং কোষের জন্য, $E_{cell}^0 = E_{B/B}^{0}{}^{2+} + E_{A}^{0}{}^{2+}{}_{/A} = (0.40 - 0.75) \text{ V}$

= -0.35 V

Rhombus Publications

ACS ➤ Chemistry 2nd Paper Chapter-4
থেহেত্, E⁰_{cell} < 0; সূতরাং, B নির্মিত পাত্রে A এর লবণের দ্রবণ
রাপ্তলে B পাত্র স্থানেয়া কিন্তাৰ কিয়া করবে না এবং কোম বিভিয়া

রাখলে B পাঁত্র অ্যানোড হিসেবে ক্রিয়া করবে না এবং কোষ বিক্রিয়া স্বতঃস্কূর্তভাবে ঘটবে না। অর্ধাৎ, B পাত্র ক্ষয়প্রাপ্ত হবে না। তাই B নির্মিত পাত্রে A এর লবণ রাখা যাবে।


(ii) নং কোষের জন্য,

$$E_{cell}^{0} = E_{B/B}^{0}^{2+} + E_{C}^{0}^{2+}/C$$
= (0.40 - 0.35) V
= 0.05 V

যেহেতু, $E_{cell}^0 > 0$; সুতরাং B নির্মিত পাত্রে C এর লবণের দ্রবণ রাখা হলে B অ্যানোড হিসেবে ক্রিয়া করবে এবং কোষ বিক্রিয়া স্বতঃস্কৃতভাবে ঘটবে। অর্থাৎ, B পাত্র ক্ষয়প্রাপ্ত হবে। তাই B নির্মিত পাত্রে C এর লবণ রাখা যাবে না।

প্রশ্ন ১৯ দৃশ্যকল্প-১:

 $Zn(s) + Ni^{2+}(aq)(0.1M) \rightarrow Zn^{2+}(aq)(0.1M) + Ni(s)$ Zn এর প্রমাণ জারণ বিভব = 0.76 V এবং $E_{cell}^0 = 0.51$ V দু*গ্রকল্প-২:

ক) তড়িং বিশ্লেষণের সংজ্ঞা দাও।

[ম. বো. ২১]

(थ) छ्यानिस्त्रन कारमज तकाम विकिसा लिथ।

সি. বো. ২২

- (গ) 25°C ভাপমাত্রায় Ni²⁺(aq)(0.1M) → Ni(s) এর অর্ধকোষ বিভব নির্ণয় কর। সি. বো. ২২
- (घ) দৃশ্যকল্প-২ এর কোষ বিক্রিয়া উল্লেখপূর্বক বাম কোষটির কোষ— সমীকরণ বিশ্লেষণ কর।
 িল. বো. ২২।

সমাধান:

- ক তড়িৎ বিশ্লেষ্যের মধ্য দিয়ে তড়িৎ চালনা করা হলে তড়িৎ বিশ্লেষ্য পদার্থের রাসায়নিক বিয়োজন ঘটে এবং নতুন ধর্মবিশিষ্ট পদার্থ উৎপন্ন হয়। এরূপ পরিবর্তনকে তড়িৎ বিশ্লেষণ বলে।
- ভ্যানিয়েল কোষের কোষ বিক্রিয়া: ${
 m Sin}(R) = {
 m Sin}($
- জামরা জানি, $E_{coll}^0 = E_{Zn/Zn}^{0}^{2+} + E_{Ni}^{0}^{2+}/Ni$ $\Rightarrow 0.51 = 0.76 + E_{Ni}^{0}^{2+}/Ni$ $\therefore E_{Ni}^{0}^{2+}/Ni} = -0.25 \text{ V}$

Ni তড়িৎদ্বার দ্রবণে ডুবালে সংঘটিত বিক্রিয়াটি নিমুরূপ:

$$Ni^{2+} + 2e^{-} \rightarrow Ni$$

$$\therefore E_{Ni^{2+}/Ni} = E_{Ni^{2+}/Ni}^{0} - \frac{RT}{eF} ln \frac{1}{[Ni^{2+}]}$$

$$= -0.25 - \frac{8.314 \times 298}{2 \times 96500} ln \frac{1}{(0.1)}$$

$$\therefore E_{Ni^{2+}/Ni} = -0.279 \text{ V}$$

নুহ ক্রনারাল > ১৫১ FRB Compact Suggestion Book

👼 শ্রাদীন্যান্দশ্র প্রক্রিস্যাটির কোষ বিক্রিয়া হলো–

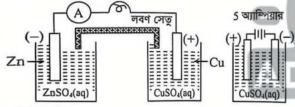
 $\text{PL }HI_{\mathcal{C}}(\mathbb{T} \text{ extrn})/H^{-}(\text{aq}) \parallel A^{2^{+}}(\text{aq})/A \text{ (s)}$

व्याप्नाड

ক্যাথোত

ন্টান্দীন্দকের বাম কোষ প্রমাণ হাইদ্রোজেন তড়িংছার। নিচে প্রমাণ মাটোদ্রোছেল তড়িংছারের গঠন বিশ্লেষণ করা হলো:

শ্রাঘাল ছাইজ্রোজেন গ্যাস তড়িংবারের বেলায় বিগত H_2 গ্যাসকে 1 থ nm চাপে 25° C তাপমাত্রায় 1.0 M H^{\dagger} আয়নের দ্রবণে ড্বানো বিক্রিয়া খাতৃ প্লাটিনাম (Pt) পাতের সংস্পর্শে চালনা করা হয়। প্লাটিনাম খাতৃ H_2 গ্যাস শোষণ করে। শোষিত অবস্থায় নিমুরপ অর্ধকোষ হিটিন্রুয়া চলতে থাকে এবং এক্কেত্রে তড়িংঘার বিভবকে 0 V ধরা হয়। স্র্যাালোত তড়িংঘার: H_2 (g) (1 atm) $\rightarrow 2H^{\dagger}$ (aq) (1 M) ফ্যাখোড তড়িংঘার: $2H^{\dagger}$ (aq) (1 M) $+2e^{-} \rightarrow H_2$ (g) (1 atm)


∴ ℍ-তড়িৎহার ডায়াগ্রামঃ

 $\mathbb{P}_1(s)$. $H_2(g)$ (1 atm)/ $H^*(aq)$ (1 M), $E^0 = 0 \text{ V}$

⊈ ▶ ১০ দৃশ্যকল-১:

 ${\rm Sm}^{2-}/{\rm Sm}(s)$ এবং ${\rm Ag}^+/{\rm Ag}(s)$ তড়িংদারের প্রমাণ বিজারণ বিভব ন্যাক্রেনে + $0.14~{
m V}$ ও + $0.80~{
m V}$ ।

रणकान-२ः

- (ব) ব্যারাডে কী?
- (⁴) সেখাও যে, 1 F = 96500 কুলাষ।
- দি. বো. ২১] চি. বো. ২১]
- (ग) দৃশ্যকল্প-১ এর কোষে $Ag^+/Ag(s)$ ইলেকট্রোডের পরিবর্তে যদি প্রমাণ $Fe^{2+}/Fe(s)$ ইলেকট্রোড ব্যবহার করা হয়। তাহলে কোষটির e.m.f
 কেমন হবে- ব্যাখ্যা কর।
- (९) উদ্দীপকের কোষ দুটির তুলনামূলক বিশ্লেষণ কর। কু. বো. ২১। সমাধানঃ
- ফ্যারাডে হলো বিদ্যুৎ চার্জ প্রবাহের একক যা দ্বারা প্রতি মোল ইলেকট্রন প্রবাহের উৎপন্ন মোট চার্জের পরিমাণ নির্বারণ করা হয়।
- । মোল ইলেকট্রনে অ্যাভোগাড্রোর সংখ্যার সমান ইলেকট্রন থাকে।
 - একটি ইলেকট্রনের চার্জ হলো = 1.602×10^{-19} কুলম্ব।
 - ∴ 1 mol ইলেকট্রন = 6.023 × 10²³ টি ইলেকট্রন
 - .: 1 মোল ইলেকট্রনের মোট চার্জ
 - $= 1.602 \times 10^{-19} \times 6.022 \times 10^{23} \,\mathrm{C}$
 - = 96472.44 C
 - ≈ 96500 C
 - মোল পরিমাণ ইলেকট্রন এর চার্জকে এক ফ্যারাডে বলা হয়।
 সুতরাং, 1 F = 96500 C।

व श्राम क्वा

Ag*/Ag তড়িংদার ব্যবহার করলে কোষ বিভব,

$$\begin{split} E_{cell}^{0} &= E_{So/So^{2}}^{0} + E_{Ag^{*}/Ag}^{0} \\ &= 0.14 + 0.8 \\ &= 0.94 \text{ V} \end{split} \qquad \begin{aligned} & \text{Qalica}, \\ E_{Sn/So^{2}}^{0} &= +0.14 \text{ V} \\ E_{Ag^{*}/Ag}^{0} &= +0.8 \text{ V} \end{aligned}$$

∴ Ag*/Ag তড়িংদার ব্যবহার করলে কোষটির c.m.f = 0.94 V দিতীয় ক্ষেত্রে.

আমরা জানি, $E_{Fe/Fe^{2}}^{0} = + 0.44 \text{ V}$ দেওয়া আছে, $E_{So/So^{2}}^{0} = + 0.14 \text{ V}$

Fe এর প্রমাণ জারণ বিভব Sn এর প্রমাণ জারণ বিভবের চেয়ে বেশি। অর্থাৎ, Fc অ্যানোড ও Sn ক্যাথোড হিসেবে কাজ করবে।

কোষটি হবে, Fc (s)/Fe $^{2+}$ (aq) \parallel Sn $^{2+}$ (aq)/Sn (s)

কোষ বিভব, c.m.f = $E^0_{Fe/Fe^{2r}}$ + $E^0_{Sn^{2r}/Sn}$ = (0.44 - 0.14) V = 0.30 V

 \therefore Ag^{+}/Ag এর পরিবর্তে প্রমাণ $Fe^{2^{+}}/Fe$ ইলেকট্রোভ ব্যবহার করলে e.m.f = 0.30 V ।

উদ্দীপকের প্রথম কোষটি একটি ডেনিয়েল কোষ, যা এক ধরনের তড়িৎ রাসায়নিক কোষ। দ্বিতীয় কোষটি একটি তড়িৎ বিশ্রেষ্য কোষ। নিচে তড়িৎ বিশ্রেষ্য ও তড়িৎ রাসায়নিক কোষের তুলনামূলক বিশ্রেষণ করা হলোঃ

তড়িৎ রাসায়নিক কোষ	তড়িৎ বিশ্লেষ্য কোষ
 (i) যে কোষে রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত হয় তাকে তড়িৎ রাসায়নিক কোষ বলে। 	রাসায়নিক শক্তিতে
(ii) তড়িৎ রাসায়নিক কোষে <mark>অ্যানোড</mark> ঋণা <mark>ত্ম</mark> ক এবং ক্যাখোড ধনাত্মক হয়ে থাকে।	অ্যানোড ধনাত্মক এবং
বিক্রিয়া: (iii) অ্যানোডে জারণ: $Zn - 2e^- \rightarrow Zn^{2+}$ ক্যাথোডে বিজারণ: $Cu^{2+} + 2e^- \rightarrow Cu$	বিক্রিয়া: (iii) অ্যানোডে জারণ: Cu – 2e ⁻ → Cu ²⁺ ক্যাথোডে বিজারণ: Cu ²⁺ + 2e → Cu
(iv) রাসায়নিক বিক্রিয়ায় বিমুক্ত ইলেকট্রন দ্বারা তড়িৎ প্রবাহ সৃষ্টি হয়।	(iv) বিগলিত বা দ্রবণে দ্রবীভূত আয়ন দ্বারা তড়িৎ প্রবাহিত হয়।
(v) ইলেকট্রন প্রবাহের বিপরীত দিকে তড়িং প্রবাহিত হয়।	(v) অ্যানায়নের প্রবাহের দিকেতড়িৎ প্রবাহিত হয়।
(vi) লবণ সেতু ব্যবহারের প্রয়োজন হয়।	(vi) লবণ সেতু ব্যবহারের প্রয়োজন হয় না।

228

정치 ▶ 22

...... ACS, > Chemistry 2nd Paper Chapter-4

কোষের তড়িৎচ্চালক বল,

$$E_{cell} = E_{cell}^{0} - \frac{RT}{eF} ln \frac{[Cr^{3+}]^{2}}{[Sn^{2+}]^{3}}$$

$$= 0.6 - \frac{8.314 \times 298}{6 \times 96500} ln \frac{(0.1)^{2}}{(0.15)^{3}}$$

$$= 0.595 \text{ V}$$

∴ কোষটির তড়িচ্চালক বল = 0.595 V

 $E_{Cr/Cr^{3*}}^{0} = +0.74 \text{ V}$

 $E_{Sn/Sn^{2+}}^{0} = +0.14 \text{ V}$

(क) कृदान त्मन की?

[ব. বো. ১৯; রা. বো. ১৭]

0.15 M SnSO₄

(খ) কপার অপেক্ষা জিম্ব সক্রিয় কেন?

Cr-

[চ. বো. ১৭]

(গ) উদ্দীপকের কোষটির তড়িচ্চালক বল নির্ণয় করো।

0.1 M Cr₂(SO₄)₃

[দি. বো. ২১; অনুরূপ প্রশ্ন: চ. বো. ২২; কু. বো. ২১; য. বো. ২১; ব. বো. ২১]

NH₄NO₃

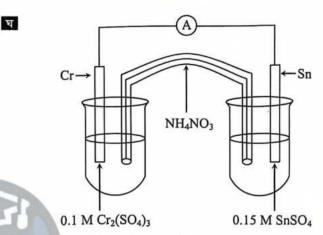
- (ঘ) উদ্দীপকের কোষের কার্যকারিতা সচল রাখতে NH_4NO_3 এর ভূমিকা অপরিসীম- উক্তিটির যথার্থতা মূল্যায়ন করো।

 সমাধান:
- ক ফুয়েল সেল এক প্রকার গ্যালভানিক সেল যেখানে ফুয়েল হিসেবে H_2 গ্যাস বা CH_3OH এবং অক্সিজেন গ্যাস ব্যবহৃত হয় এবং রাসায়নিক শক্তি সরাসরি তড়িৎ শক্তিতে রূপান্তরিত হয়।
- যথ ধাতুর ইলেকট্রন ত্যাগ করে জারণ ঘটানোর প্রবণতা যত বেশি সে ধাতু তত বেশি সক্রিয়। যার ইলেকট্রন ত্যাগের প্রবণতা যত বেশি তার জারণ বিভবের মানও তত বেশি। কপারের প্রমাণ জারণ বিভব 0.34 V এবং জিঙ্কের প্রমাণ জারণ বিভব 0.76 V। জিঙ্ক ধাতুর জারণ বিভব বেশি মানে কপারের চেয়ে জিঙ্কের সক্রিয়তা বেশি। কপারের চেয়ে জিঙ্কের ইলেকট্রন ছেড়ে দেওয়ার প্রবণতা বেশি। তাই কপার জিঙ্ক অপেক্ষা সক্রিয়।
- ক দেওয়া আছে,

 $E_{Cr/Cr^{3+}}^0 = 0.74 \text{ V}; E_{Sn/Sn^{2+}}^0 = 0.14 \text{ V}$

যেহেতু ক্রোমিয়ামের জারণ বিভব বেশি, সুতরাং ক্রোমিয়ামের জারণ এবং টিনের বিজারণ ঘটবে।

অ্যানোডে অর্ধকোষ বিক্রিয়া:


$$2Cr - 6e^{-} \rightarrow 2Cr^{3+}$$
; $E_{Cr/Cr^{3+}}^{0} = 0.74 \text{ V}$

ক্যাথোডে অর্ধকোষ বিক্রিয়া:

$$3\text{Sn}^{2+} + 6\text{e}^- \rightarrow 3\text{Sn}; \ E^0_{\text{Sn}^{2+}/\text{Sn}} = -0.14 \ \text{V}$$

কোষ বিক্রিয়া: $2Cr + 3Sn^{2+} \rightarrow 2Cr^{3+} + 3Sn$; $E_{cell}^{0} = 0.6 \text{ V}$

Rhombus Publications

উদ্দীপকের তড়িৎ কোষের একটি পাত্রে $Cr_2(SO_4)_3$ দ্রবণে Crতড়িৎদ্বার এবং অপর পাত্র $SnSO_4$ দ্রবণে Sn তড়িৎদ্বার আংশিক
নিমজ্জিত আছে। প্রতিটি দ্রবণ ও তড়িৎদ্বার মিলে একটি অর্থকোষ সৃষ্টি
হয়। অর্থকোষ দুইটিকে NH_4NO_3 এর লবণ সেতু ও তড়িৎদ্বার দুটিকে
পরিবাহী তার দ্বারা যুক্ত করলে ইলেকট্রন প্রবাহ শুরু হয়।

অ্যানোডে জারণ বিক্রিয়া:

$$2Cr(s) \rightarrow 2Cr^{3+}(aq) + 6e^{-}$$

ইলেকট্রনদ্বয় তার দিয়ে টিন দণ্ডের দিকে যায় এবং বিকারের সালফেট দ্রবণের Sn^{2+} আয়ন এ ছয়টি ইলেকট্রন গ্রহণ করে ধাতব টিন হিসেবে দণ্ডের গায়ে জমা হয়।

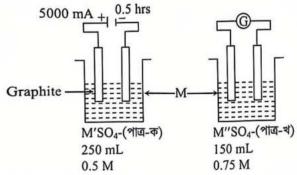
ক্যাথোডে বিজারণ বিক্রিয়া:

$$3\text{Sn}^{2+}(\text{aq}) + 6\text{e}^- \rightarrow 3\text{Sn}(\text{s})$$

সামগ্রিকভাবে কোষ বিক্রিয়া:

$$2Cr(s) + 3Sn^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Sn(s)$$

চিত্রের অ্যানোডের ক্রোমিয়াম ক্ষয়প্রাপ্ত হয়ে Cr^{3+} দ্রবণে চলে আসায় দ্রবণে Cr^{3+} আয়ন এর আধিক্য দেখা যায় তখন লবণ সেতু হতে বিপরীত আয়ন (NO3) এসে চার্জের সমতাবিধান করে ক্রোমিয়ামের ক্ষয় অব্যাহত রাখে। অন্যদিকে, উক্ত কোষের ক্যাথোডে দ্রবণ হতে Sn^{2+} ইলেকট্রন গ্রহণ করে টিন দণ্ডে জমা হয়, এর ফলে দ্রবণে ধনাত্মক আয়নের ঘাটতি দেখা যায়; লবণ সেতু বিপরীত আয়ন (NH4) সরবরাহ করে চার্জের সমতাবিধান করে ক্যাথোডে Sn এর জমা হওয়ার প্রক্রিয়াকে অব্যাহত রাখে। সর্বোপরি লবণ সেতু কোষের বর্তনী পূর্ণ করে তড়িৎপ্রবাহ অক্ষুন্ন রাখে। তাই কোষের কার্যকারীতা সচল রাখতে NH_4NO_3 এর ভূমিকা অপরিসীম।


তড়িৎ রসায়ন > ACS; FRB Compact Suggestion Book

প্রমা ১১২ দৃশ্যকল্প-১:

 25° C তাপমাত্রায় Z_n/Z_n^{2+} এবং N_i/N_i^{2+} কোষের $E^0=0.51~V$ কোষের নীট বিক্রিয়াটি হলো-

 $Zn(s) + Ni^{2+}(aq, 0.1 \text{ M}) \rightarrow Zn^{2+}(aq, 0.1 \text{ M}) + Ni(s)$ Zn/Zn^{2+} এর জারণ বিভব হল 0.76 V

দৃশ্যকল্প-২:

M' এর পারমাণবিক ভর = 58.7

25°C তাপমাত্রা,

$$E_{M_0^{2*}/M}^0 = -0.77 \text{ V}$$

$$E_{M'/M'^{2+}}^{0} = + 0.23 \text{ V}$$

$$E_{M^{"2+}/M"}^{0} = +0.34 \text{ V}$$

(ক) তড়িৎ প্রলেপন কাকে বলে?

(খ) তড়িৎ বিশ্লেষণ একটি রেডক্স বিক্রিয়া কেন?

(গ) দৃশ্যকল্প-১ এর উদ্দীপকের আলোকে $\mathrm{Ni}^{2+}(\mathrm{aq}),\ (1\ \mathrm{M}) \to \mathrm{Ni}(\mathrm{s})$ এর অর্থকোষ বিভব নির্ণয় কর।

(घ) কোষদ্বয় দীর্ঘ সময় ব্যবহারের ক্ষেত্রে কোনো সমস্যা সৃষ্টি হবে কী?
 গাণিতিকভাবে বিশ্লেষণ করো।
 । বি. বো. ১৯; অনুরূপ প্রশ্ন: ঢা. বো. ১৭।

সমাধান:

তড়িৎ বিশ্লেষণের মাধ্যমে একটি ধাতুর তৈরি জিনিসপত্রের উপর অন্য একটি কম সক্রিয় ধাতুর প্রলেপ সৃষ্টি করাকে তড়িৎ প্রলেপন বলে।

- তিজ্ৎ বিশ্লেষণ একটি রেডক্স বা জারণ-বিজারণ বিক্রিয়া।
 তিজ্ৎ বিশ্লেষণে অ্যানোডে জারণের ফলে ত্যাগকৃত ইলেকট্রন
 পরিবাহীর মধ্য দিয়ে প্রবাহিত হয়ে ক্যাথোডে গৃহীত হয়। যেমন—
 NaCl এর তিজ্ৎ বিশ্লেষণে Na ধাতু অ্যানোডে ইলেকট্রন ত্যাগ করে
 দ্রবণে চলে যায় এবং Cl আয়ন সেই ইলেকট্রন ক্যাথোডে গ্রহণ করে।
 অ্যানোডে জারণ বিক্রিয়া— 2Cl 2e — Cl2
 ক্যাথোডে বিজারণ বিক্রিয়া— 2Na + 2e — 2Na
 সূতরাং, তিজ্ৎ বিশ্লেষণ একটি জারণ-বিজারণ বিক্রিয়া।

পাত্র-ক এর ক্ষেত্রে, দ্রবণ হিসেবে M'SO₄ ব্যবহার করা হয়েছে। সূতরাং, পাত্র এবং দ্রবণের মধ্যে নিম্নোক্ত বিক্রিয়া সংঘটিত হবে-

$$M + M'^{2+} \rightarrow M^{2+} + M'$$

$$\therefore E_{cell}^{0} = E_{anodo(ox)}^{0} + E_{cathode(red)}^{0}$$

$$= E_{M/M}^{0}^{2+} + E_{M'}^{0}^{2+}/M'$$

$$= (0.77 - 0.23) V$$

$$= 0.54 V$$

যেহেতু, $E_{\rm cell}^0>0$ তাই কোষ বিক্রিয়া স্বতঃস্কূর্তভাবে ঘটবে। তাই 'ক' পাত্রে M' ${
m SO_4}$ দ্রবণ রাখা যাবে না। এতে পাত্রটি ক্ষয় হয়ে যাবে। ফলে দীর্ঘ সময় ব্যবহারের ক্ষেত্রে সমস্যা সৃষ্টি হবে।

পাত্র-'খ' এর ক্ষেত্রে, দ্রবণ হিসেবে M"SO4 ব্যবহার করা হয়েছে। সূতরাং, নিম্নোক্ত বিক্রিয়া সংঘটিত হবে-

M + M''²⁺ → M²⁺ + M''
∴
$$E_{cell}^0 = E_{annode(ox)}^0 + E_{cathode(red)}^0$$

= $E_{M/M}^{0}^{2+} + E_{M''^{2+}/M''}^{0}$
= (0.77 + 0.34) V
= 1.11 V

যেহেতু, $E_{cell}^0>0$ তাই কোষ বিক্রিয়া স্বতঃস্কূর্তভাবে ঘটবে। এর ফলে পাত্রটি ক্ষয় হবে; দীর্ঘ সময় ব্যবহার করা যাবে না।

প্রশ্ন ▶ ১০ দৃশ্যকল্প-১:

 X/X^{2+} (0.15 M) || Y^{+} (0.2 M) / Y

 $E_{Y^+/Y}^0 = 0.80 \text{ V}, E_{X^{2+}/X}^0 = -0.14 \text{ V}$

তাপমাত্রা = 298 K

দৃশ্যকল্প-২:

নিম্নের কোষটির কোষ বিভব + 0.42 V

 $Pt, H_2(g) (1 atm, 25^{\circ}C) / H_2SO_4(aq) \parallel CuSO_4(aq) / Cu(0.1 M)$

(ক) সেকেভারি তড়িং কোষ কাকে বলে?

চি. বো.

(খ) AI এর তড়িৎ রাসায়নিক তুল্যাঙ্কের মান নির্ণয় কর।

- (গ) দৃশ্যকল্প-১ এর উদ্দীপকের কোষটিতে কিভাবে রাসায়নিক শক্তি বিদ্যুৎ
 শক্তিতে রূপান্তরিত হয় তা ব্যাখ্যা কর।
 দি. বো. ১৭
- (ঘ) দৃশ্যকল্প-২ এর উদ্দীপকের তথ্যের ভিত্তিতে H₂SO₄ দ্রবণের ঘনমাত্রা নির্ণয় সম্ভব কি? গাণিতিকভাবে বিশ্লেষণ করো। বি. বো. ১৯। সমাধানঃ
- বৈ তড়িং রাসায়নিক কোষে বাইরে থেকে বিদ্যুৎ প্রবাহিত করে বিদ্যুৎ শক্তিকে রাসায়নিক শক্তিরূপে সঞ্চিত করা হয় এবং পরে ঐ রাসায়নিক শক্তিকে পুনরায় বিদ্যুৎ শক্তিতে রূপান্তরিত করা হয়, তাকে গৌণ বা সেকেন্ডারি তড়িৎ কোষ বলে।
- ম Al এর ভড়িৎ রাসায়নিক তুল্যাঙ্ক, $Z = \frac{Al \text{ এর গ্রাম পারমাণবিক ভর}}{\text{যোজনী} \times 96500}$ $= \frac{27}{3 \times 96500}$ $= 9.33 \times 10^{-5} \text{ g C}^{-1}$
- গ উদ্দীপকের কোষটিতে স্বতঃস্ফূর্ত জারণ-বিজারণ ঘটে।

 অ্যানোডে জারণ বিক্রিয়া: $X 2e^- \longrightarrow X^{2+}$ ক্যাথোডে বিজারণ বিক্রিয়া: $2Y^+ + 2e^- \longrightarrow 2Y$ বিদ্যুৎ উৎপাদনকালে X-দণ্ডের প্রতিটি পরমাণু থেকে একটি X^{2+} আয়ন

 উৎপন্ন হয়ে দ্রবণে আসে এবং দুটি ইলেকট্রন মুক্ত হয়ে X-দণ্ডে বা

 অ্যানোডে সঞ্চিত হয়ে।

226 ...

অ্যানোডে জমাকৃত ইলেকট্রন তারের মধ্য দিয়ে Y দণ্ডে বা ক্যাথোডে চলে যায় এবং Y⁺ আয়ন এ ইলেকট্রন গ্রহণ করে Y এ পরিণত হয়ে ক্যাথোডের গায়ে লেগে যায়। কোষ বিক্রিয়াটিঃ

$$X + 2Y^{\dagger} \longrightarrow X^{2+} + 2Y$$

এখানে, X দণ্ড বা অ্যানোড থেকে Y দণ্ড বা ক্যাথোডের দিকে ইলেকট্রন প্রবাহিত হয় ফলে বিদ্যুৎ প্রবাহ এর বিপরীত দিকে অর্থাৎ ক্যাথোড থেকে অ্যানোডের দিকে হয়। এভাবে কোষের অভ্যন্তরের রাসায়নিক শক্তি বিদ্যুৎ শক্তিতে রূপান্তরিত হয়ে থাকে।

ভ্যানোডে অর্ধকোষ বিক্রিয়া: $H_2 - 2e^- oup 2H^+$ ক্যাথোডে অর্ধকোষ বিক্রিয়া: $Cu^{2^+} + 2e^- oup Cu$ কোষ বিক্রিয়া: $H_2 + Cu^{2^+} oup 2H^+ + Cu$ তড়িৎ রাসায়নিক সারি থেকে পাই, $E^0_{H_2(g),PVH^+} = 0 \text{ V}; E^0_{Cu^{2^+}/Cu} = 0.34 \text{ V}$ এখানে, $E_{cell} = E^0_{cell} - \frac{RT}{eF} \ln \frac{[H^+]^2}{[Cu^{2^+}]}$ $\Rightarrow 0.42 = 0.34 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{[H^+]^2}{[Cu^{2^+}]}$ $\Rightarrow 0.42 = 0.34 - 0.01 \ln \frac{[H^+]^2}{[Cu^{2^+}]}$ $\therefore [H^+] = 0.014 \text{ M}$ H_2SO_4 জলীয় দ্রবণে নিম্নরূপে বিয়োজিত হয়, $H_2SO_4 = 2H^+ + SO_4^{2^-}$

∴ H_2SO_4 এর ঘনমাত্রা = $\frac{0.014}{2}$ M = 7×10^{-3} M

역 > 58 Fe/Fe⁺⁺(0.13 M)||Ag⁺(0.0004 M)/Ag T = 25°C, $E_{Fe^{++}/Fe}^{0} = -0.44 \text{ V}$; $E_{Ag^{+}/Ag}^{0} = +0.80 \text{ V}$

- (ক) রাসায়নিক তুল্যাঙ্ক কাকে বলে?
- (খ) লবণ সেতুর ভূমিকা ব্যাখ্যা কর।
- (গ) উদ্দীপকের কোষের তড়িচ্চালক বল নির্ণয় কর।

ক্রি. বো. ১৭; জনুরপ প্রশ্ন: ঢা. বো. ১৭; দি. বো. ১৭।

(ঘ) উদ্দীপকের অর্ধকোষ দুইটি আলাদাভাবে প্রমাণ হাইড্রোজেন অর্ধকোমের সাথে যুক্ত করে কোষ গঠন করলে উৎপন্ন কোষ দুইটির মধ্যে কি পার্থক্য পরিলক্ষিত হবে চিত্রসহ ব্যাখ্যা কর।

সমাধান:

- 1 F তড়িৎ চার্জ প্রবাহিত করলে যে পরিমাণ পদার্থ অ্যানোডে দ্রবীভূত বা ক্যাথোডে সঞ্চিত হয় তাকে ঐ মৌলের রাসায়নিক তুল্যান্ধ বলা হয়।
- তড়িং রাসায়নিক কোষে লবণ সেতু ব্যবহার করা হয়। তড়িং
 রাসায়নিক কোষের তড়িংদ্বারের জারণ-বিজারণ বিক্রিয়ার সময় লবণ
 সেতুর অনুপস্থিতিতে জারণ অর্ধকোষে ক্যাটায়ন ও বিজারণ অর্ধকোষে
 অ্যানায়ন এর আধিক্য ঘটে। ফলে তড়িং প্রবাহ ব্যাহত হয় এবং হ্রাস
 পেয়ে এক সময় তা বন্ধ হয়ে যায়। তাই পূর্ণ তড়িং রাসায়নিক কোষ
 উপস্থাপনের ক্ষেত্রে জারণ তড়িংদ্বার এবং বিজারণ তড়িংদ্বার এর সাথে
 লবণ সেতুকে উপস্থাপন করা হয়।
- আনোডে জারণ বিক্রিয়া: Fe 2e⁻ → Fe²⁺
 ক্যাথোডে বিজারণ বিক্রিয়া: 2Ag⁺ + 2e⁻ → 2Ag
 সংঘটিত কোষ বিক্রিয়াটি,
 Fe + 2Ag⁺ → Fe²⁺ + 2Ag

Rhombus Publications

..... ACS, ➤ Chemistry 2nd Paper Chapter-4

কোষের প্রমাণ তড়িচ্চালক বল,

$$E_{cell}^{0} = E_{Fe/Fe^{2*}}^{0} + E_{Ag^{*}/Ag}^{0}$$
= 0.44 + 0.8
= 1.24 V

কোষের তড়িচ্চালক বল,

$$E_{cell} = E_{cell}^{0} - \frac{RT}{eF} \ln \frac{[Fe^{2^{+}}]}{[Ag^{+}]^{2}} = 1.24 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{0.13}{(0.0004)^{2}}$$
$$= 1.065 \text{ V}$$

ঘ Fe/Fe²⁺ এর ক্ষেত্রে:

অ্যানোড অর্থকোষ বিক্রিয়া: $Fe \to Fe^{2+} + 2e^-$ ক্যাথোড অর্থকোষ বিক্রিয়া: $2H^+ + 2e^- \to H_2$ কোষ বিক্রিয়া: $Fe + 2H^+ \to Fe^{2+} + H_2$

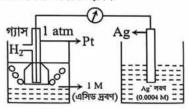
$$\therefore E_{cell} = E_{cell}^{0} - \frac{RT}{eF} \ln \frac{[Fe^{2+}]}{[H^{+}]^{2}}$$

$$= E_{Fe/Fe^{2+}}^{0} + E_{H^{+}/H_{2}}^{0} - \frac{RT}{eF} \ln \frac{[Fe^{2+}]}{[H^{+}]^{2}}$$

 $= (0.44 + 0) - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{(0.13)}{(1)^2} = 0.466 \text{ V}$

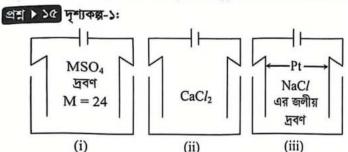
Ag⁺/Ag এর ক্ষেত্রে:

অ্যানোড অর্থকোষ বিক্রিয়া: $\frac{1}{2}$ $H_2(g) o H^+(aq) + e^-$


ক্যাথোড অর্থকোষ বিক্রিয়া: $Ag^+ + e^- \rightarrow Ag(s)$

কোষ বিক্রিয়া:
$$\frac{1}{2}$$
 H₂ + Ag⁺ \rightarrow H⁺ + Ag
$$E_{cell} = E_{cell}^{0} - \frac{RT}{eF} \ln \frac{[H^{+}]}{[Ag^{+}]}$$

$$= (E_{H/H^{+}}^{0} + E_{Ag^{+}/Ag}^{0}) - \frac{RT}{eF} \ln \frac{[H^{+}]}{[Ag^{+}]}$$


$$= (0 + 0.8) - \frac{8.314 \times 298}{1 \times 96500} \ln \frac{1}{0.0004} = 0.59 \text{ V}$$

১ম ও ২য় কোষের তড়িচ্চালক বল যথাক্রমে 0.466 V ও 0.59 V ।
১ম কোষের ক্ষেত্রে অ্যানোড আয়রন তড়িংদ্বার হওয়ায় ইলেকট্রন
আয়রন থেকে হাইড্রোজেন তড়িংদ্বারের দিকে প্রবাহিত হবে ।
২য় কোষের ক্ষেত্রে অ্যানোড হাইড্রোজেন তড়িংদ্বার হওয়ায় বিদ্যুৎ
প্রবাহ ১ম কোষের বিপরীত দিকে হবে ।

চিত্ৰ: তডিৎ কোষ

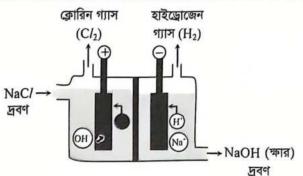
তড়িৎ রসায়ন ➤ ACS FRB Compact Suggestion Book

দৃশ্যকল্প-২:

$$M^{2+}$$
দ্ৰবণ $E_{M^{2+}/M}^0 = 0.34 \text{ V}$

- (i) $E_{A^{3+}/A}^{0} = 0.77 \text{ V}$, (ii) $E_{B^{3+}/B}^{0} = 0.54 \text{ V}$
- (ক) কোষ ধ্রুবক কি?
- (খ) ইলেকট্রনীয় পরিবাহী ও ইলেকট্রোলাইটিক পরিবাহীর মধ্যে পার্থক্য উল্লেখ কর।
- (গ) (iii) নং কোষে তড়িৎ বিশ্লেষণ প্রক্রিয়া ব্যাখ্যা কর।
- (ঘ) দৃশ্যকল্প-২ এ M^{2+} আয়নের ঘনমাত্রা কত হলে তড়িৎদ্বারের বিজ্ঞারণ বিভব শূন্য হবে?

সমাধান:


- ক কোনো কোষের দুই তড়িংদ্বারের মধ্যবর্তী দূরত্ব এবং প্রতিটি তড়িংদ্বারের প্রস্থচ্ছেদের অনুপাতকে কোষ ধ্রুবক বলা হয়।
- ইলেকট্রনীয় পরিবাহী ও ইলেকট্রোলাইটিক পরিবাহীর মধ্যে পার্থক্য নিমুরূপ:

ইলেকট্রনীয় পরিবাহী	ইলেকট্রোলাইটিক পরিবাহী			
১। ইলেকট্রনের সঞ্চারণ দ্বারা	১। আয়নের সঞ্চারণ দ্বারা তড়িৎ			
তড়িৎ প্রবাহের সৃষ্টি হয়।	প্রবাহের সৃষ্টি হয়।			
২। তাপ <mark>মাত্রা বৃদ্ধি করলে এ</mark>	২। তাপমাত্রা বৃদ্ধি করলে এ			
পরিবাহীর তড়িৎ পরিবাহিতা	পরিবাহীর তড়িৎ পরিবাহিতা			
ক্রাস পায়।	বৃদ্ধি পায়।			

ক্রা উদ্দীপকের (iii) নং কোষটি Pt তড়িৎদ্বার যুক্ত NaCl এর জলীয় দ্রবণ। নিচে এ কোষে তড়িৎ বিশ্লেষণ প্রক্রিয়া ব্যাখ্যা করা হলো− তড়িৎ বিশ্লেষ্য NaCl জলীয় দ্রবণে নিম্নরূপে আয়নিত হয়:

$$NaCl \rightarrow Na^{+} + Cl^{-}$$

 $H_2O \rightarrow H^{+} + OH^{-}$

তড়িৎ বিশ্লেষ্য কোষে NaCI এর তড়িৎ বিশ্লেষণের সময় বিদ্যুৎ প্রবাহকালে Na^+ ও H^+ একই সাথে ক্যাথোডের দিকে যাবে। Na^+ আয়নের চেয়ে H^+ আয়নের ইলেকট্রন গ্রহণ করার প্রবণতা বেশি হওয়ায় ক্যাথোডে H^+ একটি ইলেকট্রন গ্রহণ করে H পরমাণুতে পরিণত হয়। দুটি হাইড্রোজেন পরস্পর যুক্ত হয়ে H_2 অণু উৎপন্ন করবে।

চিত্র : NaCl দ্রবণের তড়িৎ বিশ্লেষণ

ক্যাথোড তড়িৎদ্বারে বিক্রিয়া:

$$H + H \longrightarrow H_2$$

অ্যানোডে একই সাথে CI ও OH যার। আমরা জানি, OH এর ইলেকট্রন দানের প্রবর্ণতা CI আয়নের চেয়ে বেশি থাকলেও দ্রবণে CI আয়নের ঘনমাত্রার চেয়ে অনেক বেশি বলে OH এর চেয়ে CI আয়ন আগে অ্যানোডে ইলেকট্রন ত্যাগ করে। একটি CI আয়ন আ্যানোড তড়িৎদারে একটি ইলেকট্রন ত্যাগ করে একটি CI পরমাণুতে পরিণত হয়। দুটি ক্লোরিন পরমাণু এক সাথে বুক্ত হয়ে CI_2 অণু উৎপন্ন করে।

অ্যানোড তড়িৎদ্বারে বিক্রিয়া:

$$CI \rightarrow CI + e^-$$
 (জারণ বিক্রিয়া)
$$CI + CI \rightarrow CI_2$$

পাত্রে Na^+ ও OH^- থেকে যায়। ফলে Na^+ ও OH^- একত্রিত হয়ে NaOH ক্ষার উৎপন্ন করে।

ঘ দেওয়া আছে,

$$E_{M^{2+}/M}^{0} = 0.34 \text{ V}$$

$$E_{M^{2+}/M} = 0$$

n = 2 (ইলেকট্রন স্থানান্তর)

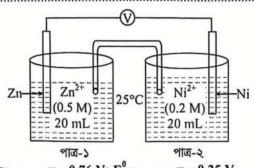
$$[M^{2+}] = ?$$

নার্নস্ট সমীকরণ অনুসারে-

$$E_{M^{2+}/M} = E_{M^{2+}/M}^{0} + \frac{0.0592}{n} \log [M^{2+}]$$

বা, –
$$0.34 = \frac{0.0592}{n} \log [M^{2+}]$$

$$\overline{M}^{2+} = 10^{-11.486}$$


$$= 3.266 \times 10^{-12} \text{ M}$$

সুতরাং, উদ্দীপকের M^{2+} আয়নের ঘনমাত্রা $3.266 \times 10^{-12}~M$ হলে তড়িৎদ্বারের বিজারণ বিভব শূন্য হবে।

Rhombus Publications

t.me/admission_stuffs

প্রশ > ১৬

 $E_{Zn^{2+}(nq)/Zn(s)}^{0} = -0.76 \text{ V}; E_{Ni^{2+}(nq)/Ni(s)}^{0} = -0.25 \text{ V}$

- (ক) নির্দেশক তড়িৎদার কী?
- [ঢা. বো. ২৩; রা. বো. ২৩]
- (খ) ধাতুর ক্ষয় একটি রাসায়নিক প্রক্রিয়া-ব্যাখ্যা কর।
- [দি. বো. ২৩]
- (গ) ১নং পাত্রের ধাতব আয়নটির অর্ধেক পরিমাণ ক্যাথোডে সঞ্চিত করতে A বিদ্যাৎ কত সময় প্রবাহিত করতে হবে? গণনা কর।
- (ঘ) উদ্দীপকের কোষ বিক্রিয়া স্বতঃস্কৃর্তভাবে ঘটবে কি? গাণিতিক যুক্তি দাও। [চ. বো. ২৩; জনুরূপ প্রশ্ন: সি. বো. ২৩; দি. বো. ২২]

সমাধান:

- বে তড়িৎদ্বারের বিভব নির্দিষ্ট এবং সঠিকভাবে জানা থাকে এবং যার দ্বারা অপর কোনো অজ্ঞাত তড়িৎদ্বারের বিভব নির্ণয় করা যায়, তাকে নির্দেশক তড়িৎদ্বার বলে।
- ষা ধাতু পানির উপস্থিতিতে পরিবেশের O2 এর সাথে জারণ-বিজারণ বিক্রিয়ার মাধ্যমে ক্ষরপ্রাপ্ত হয়। যেমন: লোহার মরিচা ধরা। লোহার Fe পরমাণু অ্যানোড তড়িৎদ্বার এবং কার্বন ও কম সক্রিয় ধাতুসমূহ ক্যাথোড তড়িৎদ্বার হিসেবে কাজ করে।

জারণ: $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$

বিজারণ: $H_2O(I) + \frac{1}{2}O_2(g) + 2e^- \rightarrow 2OH^-(aq)$

জারণ-বিজারণ: $Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(aq)$

পুনরায় জারণ: $2\text{Fe}(OH)_2(aq) + H_2O(l) + \frac{1}{2}O_2(g) \rightarrow$

Fe₂O₃.3H₂O(s)

তাই, ধাতু ক্ষয় একটি রাসায়নিক প্রক্রিয়া।

র পাত্র-১ এর ক্ষেত্রে-

$$Z = \frac{M}{e \times 96500}$$

$$= \frac{65.38}{2 \times 96500}$$

$$= 3.388 \times 10^{-4} \text{ g/C}$$

এখানে. Zn এর মোলার ভর, M = 65.38 gযোজ্যতা, e = 2

আবার.

$$: W_1 = \frac{S_1 \times M \times V}{1000}$$

$$= \frac{0.5 \times 65.38 \times 20}{1000}$$

$$= 0.6538 \text{ g}$$

$$= 0.6538 \text{ g}$$

$$= 0.6538 \text{ g}$$

$$= 0.6538 \text{ g}$$

তাহলে ক্যাথোডে সঞ্চিত ভর, $W_2 = \frac{0.6538}{2} \, \mathrm{g}$ = 0.3269 g

Rhombus Publications

...... ACS, > Chemistry 2nd Paper Chapter-4

আবার, ফ্যারাডের সূত্রানুসারে,

∴
$$W_2 = ZIt$$

$$\Rightarrow t = \frac{W_2}{ZI}$$

$$= \frac{0.3269}{3.388 \times 10^{-4} \times 2}$$

$$= 482.44 \text{ sec}$$

$$= 8.04 \text{ min}$$

$$= \frac{0.3269}{3.388 \times 10^{-4} \times 2}$$

$$= 482.44 \text{ sec}$$

$$= 8.04 \text{ min}$$

ঘ্যু সৃষ্ট তড়িচ্চালক কোষটি হবে:

$$Zn(s)/Zn^{2+}(aq)||Ni^{2+}(aq)/Ni(s)|$$

অ্যানোডে জারণ বিক্রিয়া:

$$Zn - 2e^- \rightarrow Zn^{2+}$$
; $E^0_{Zn(s)/Zn^{2+}(nq)} = 0.76 \text{ V}$

ক্যাথোডে বিজারণ বিক্রিয়া:

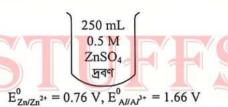
$$Ni^{2^+} + 2e^- \rightarrow Ni; E^0_{Ni^{2^+}(aq)/Ni(s)} = -0.25 \text{ V}$$
কোষ বিক্রিয়া: $Zn + Ni^{2^+} \rightarrow Zn^{2^+} + Ni; E^0_{cell} = 0.51 \text{ V}$

যোজ্যতা, e = 2

 $[Zn^{2+}] = 0.5 \text{ M}; [Ni^{2+}] = 0.2 \text{ M}$

 $T = 25^{\circ}C = 298 \text{ K}$

নার্নস্ট সমীকরণ প্রয়োগ করে পাই,


$$E_{\text{cell}} = E_{\text{cell}}^{0} - \frac{\text{RT}}{\text{eF}} \ln \frac{[\text{Zn}^{2+}]}{[\text{Ni}^{2+}]}$$
$$= 0.51 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{(0.5)}{(0.2)}$$

= 0.4982 V

যেহেত, E_{cell} > 0

সুতরাং, উদ্দীপকের কোষটিতে জারণ-বিজারণ কোষ বিক্রিয়া শ্বতঃস্ফূৰ্তভাবে ঘটবে।

প্রশ ▶ ১৭

[ঢা. বো. ২৩]

- (ক) তড়িৎ রাসায়নিক সারি কী?
- তিৎ বিশ্লেষণ একটি জারণ-বিজারণ প্রক্রিয়া
 – ব্যাখ্যা কর। ঢ়া. বো. ২৩; অনুরূপ প্রশ্ন: य. বো. ২৩; রা. বো. ২২, ২১; সি. বো. ২১; দি. বো. ২১; সম্মিলিত বো. ১৮; ঢা. বো. ১৭]
- (গ) উদ্দীপকের দ্রবণ AI-ধাতুর পাত্রে সংরক্ষণ করা যাবে কিনা? বিশ্লেষণ [ঢা. বো. ২৩, ২২; অনুরূপ প্রশ্ন; य. বো. ২৩; ম. বো. ২৩; ঢা. বো. ২২; কর। সি. বো. ২২; চ. বো. ২২, ২১, ১৯; ব. বো. ২২, ২১; কু. বো. ২১, ১৯; त्रा. वा. ১৯; मि. वा. ১৯)
- (घ) উদ্দীপকের দ্রবণের মধ্যে 2.5 amp বিদ্যুৎ 1 घन्টা যাবৎ চালনা করা হলো। তড়িৎ বিশ্লেষণের পর দ্রবণের ঘনমাত্রা কত হবে? গাণিতিকভাবে বিশ্রেষণ কর। ঢা. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২৩; ম. বো. ২৩
- ক তড়িৎ বিশ্লেষণের সময় বিভিন্ন আয়নের চার্জমুক্ত হওয়ার প্রবণতার উপর ভিত্তি করে আয়নসমূহকে একটি সারিতে সাজানো হয়েছে, তাকে তডিৎ রাসায়নিক সারি বলা হয়।

তড়িৎ রসায়ন > ACS/ FRB Compact Suggestion Book

তি তি বিশ্লেষণ একটি রিডক্স বা জারণ-বিজ্ঞারণ বিক্রিয়া।
তি তি বিশ্লেষণের সময় ক্যাটায়ন ক্যাথোড তি তি ছারে ইলেকট্রন গ্রহণ করে বিজ্ঞারিত হয় এবং অ্যানায়ন অ্যানোড তি তি ছারে ইলেকট্রন দান করে জারিত হয়। যেমন— গলিত NaCl এর তি ছিৎ বিশ্লেষণে Na[†] আয়ন ক্যাথোডে ইলেকট্রন গ্রহণ করে Na ধাতু এবং Cl আয়ন অ্যানোডে ইলেকট্রন দান করে ক্লোরিন গ্যাস উৎপন্ন করে।
ক্যাথোডে বিজ্ঞারণ বিক্রিয়া: Na[†] + e — Na (s)
অ্যানোডে জারণ বিক্রিয়া: 2Cl — Cl₂ (g) + 2e

জন্দীপকের পাত্রের দ্রবণটিকে দীর্ঘকাল AI নির্মিত পাত্রে সংরক্ষণ করা যাবে কিনা তা নির্ভর করে কোষটির E_{cell}^0 এর মানের উপর। যদি $E_{cell}^0>0$ হয়; তবে স্বতঃস্কূর্ত জারণ-বিজারণ ঘটবে এবং AI নির্মিত পাত্রটি ক্ষয়প্রাপ্ত হবে। আবার, $E_{cell}^0<0$ হলে স্বতঃস্কূর্ত জারণ-বিজারণ ঘটবে না। ফলে দ্রবণটিকে পাত্রে সংরক্ষণ করা যাবে। উদ্দীপকের পাত্রের দ্রবণটি হলো $ZnSO_4$ দ্রবণ। এ দ্রবণটিকে AI পাত্রে রাখলে AI পাত্র অ্যানোড ও $ZnSO_4$ দ্রবণ ক্যাথোড হিসেবে কাজ করবে। সেক্ষেত্রে,

অ্যানোডে অর্থকোষ বিক্রিয়া: $2Al \longrightarrow 2Al^{3+} + 6e^-$ ক্যাথোডে অর্থকোষ বিক্রিয়া: $3Zn^{2+} + 6e^- \longrightarrow 3Zn$ কোষ বিক্রিয়া: $2Al + 3Zn^{2+} \longrightarrow 2Al^{3+} + 3Zn$ এখানে, $E_{Zn^{2+}/Zn}^0 = -E_{Zn/Zn^{2+}}^0 = -0.76 \text{ V}$ $E_{Al/Al^{3+}}^0 = 1.66 \text{ V}$ আমরা জানি,

 $E_{\text{cell}}^{0} = E_{A//A/^{3+}}^{0} + E_{Zn^{2+}/Zn}^{0}$ = (1.66 - 0.76) V

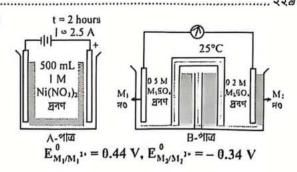
বেহেতু, $E_{cell}^0 > 0$; সূতরাং Al নির্মিত পাত্রে $ZnSO_4$ দ্রবণটি রাখলে স্বতঃস্ফূর্ত জারণ-বিজারণ ঘটবে এবং Al নির্মিত পাত্রটি ক্ষয়প্রাপ্ত হবে। তাই, Al নির্মিত পাত্রে $ZnSO_4$ দ্রবণ সংরক্ষণ করা যাবে না।

च তড়িৎ বিশ্লেষণের পূর্বে দ্রবণে বিদ্যমান ধাতুর ভর,

$$W_1 = \frac{SMV}{1000}$$
 $= \frac{0.5 \times 65.4 \times 250}{1000}$
 $= 8.175 \text{ g}$

আবার,
ক্যাথোডে সঞ্চিত ধাতুর ভর,

 $W_2 = ZIt = \frac{M}{eF} \times It$
 $= \left(\frac{65.4}{2 \times 96500} \times 2.5 \times 3600\right)$
 $\therefore W_2 = 3.0497 \text{ g}$

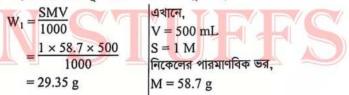

তাহলে, দ্রবণে অবশিষ্ট জিঙ্ক ধাতুর পরিমাণ,

 $W = W_1 - W_2$
 $= (8.175 - 3.0497) \text{ g}$

= 5.1253 g
 ∴ তড়িৎ বিশ্লেষণের পর দ্রবণের পরিবর্তিত ঘনমাত্রা,

$$S' = \frac{1000W}{MV} = \frac{1000 \times 5.1253}{65.4 \times 250}$$
$$= 0.313 M$$

প্রশা ১ ১৮


- (क) e.m.f এর সংজ্ঞা দাও।
 রা. বো. ২০, ১১; অনুরূপ প্রশ্ন: কু. বো. ২২, ২১;
 ব. বো. ২১; দি. বো. ২১; চ. বো. ২১, ১৭; য. বো. ১১; দি. বো. ১৭]
- (খ) কপারের ভড়িৎ রাসায়নিক ভুল্যাঙ্ক 0.000329 g/C বলতে কী বুঝ? [কু. বো. ২৩; জনুরূপ ধ্রশ্ন: সি. বো. ২৩; চ. বো. ২১]
- (গ) বিদ্যুৎ প্রবাহের পরে A পাত্রের দ্রবণের পরিবর্তিত ঘনমাত্রা নির্ণয় কর। ারা. বো. ২৩; অনুরূপ প্রশ্ন: চা. বো. ২২; য. বো. ১১।
- (ঘ) কোষ বিক্রিয়া উল্লেখপূর্বক B কোষের e.m. ি নির্ণয় কর।

রা. বো. ২৩; অনুরূপ প্রশ্ন: ব. বো. ২৩)

সমাধান:

- কে কোষের অ্যানোডের জারণ বিভব ও ক্যাথোডের বিজারণ বিভবের সমষ্টিকে কোষ বিভব বা কোষটির তড়িচ্চালক বল বা কোষটির electro motive force (e.m.f) বলে।
- তড়িং বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোনো পদার্থের যে পরিমাণ অ্যানোডে দ্রবীভূত হয় বা ক্যাথোডে সঞ্চিত হয়, তাকে সেই পদার্থের তড়িং রাসায়নিক তুল্যান্ধ বলা হয়। কপারের তড়িং রাসায়নিক তুল্যান্ধ 0.000329 g/C বলতে বোঝায় তড়িং বিশ্লেষণের সময় দ্রবণে 1 কুলম্ব চার্জ প্রবাহের ফলে অ্যানোড তড়িংদ্বারে 0.000329 g কপার দ্রবীভূত হয় অথবা ক্যাথোড তড়িংদ্বারে 0.000329 g কপার সঞ্চিত হয়।

ক তড়িৎ বিশ্লেষণের পূর্বে দ্রবণে বিদ্যমান ধাতুর ভর,

আবার, ক্যাথোডে সঞ্চিত ধাতুর ভর,

$$W_2 = ZIt$$
 $= \frac{M}{eF} \times It$
 $= \left(\frac{58.7}{2 \times 96500} \times 2.5 \times 2 \times 3600\right)$
 $= \left(\frac{258.7}{2 \times 96500} \times 2.5 \times 2 \times 3600\right)$
 $= \left(\frac{258.7}{2 \times 3600} \times 2.5 \times 2 \times 3600\right)$

 $W_2 = 5.475 \text{ g}$

∴দ্রবণে অবশিষ্ট নিকেল ধাতুর পরিমাণ,

$$W = W_1 - W_2$$

= (29.35 - 5.475) g
= 23.875 g

তড়িৎ বিশ্লেষণের পর দ্রবণের পরিবর্তিত ঘনমাত্রা,

$$S' = \frac{1000W}{MV} = \frac{1000 \times 23.875}{58.7 \times 500}$$
$$= 0.8135 \text{ M}$$

...... ACS, > Chemistry 2nd Paper Chapter-4

ঘ দেওয়া আছে,

M₁ এর জারণ বিভব, E_{M₁/M₁²⁺} = 0.44 V এবং M₂ এর জারণ বিভব, E_{M-M-2}⁰ = - 0.34 V $\Rightarrow E_{M_2}^0 \cdot_{M_2} = 0.34 \text{ V}$

যেহেতু, E_{M,M,2+} > E_{M,M,2+}

সুতরাং, M1 এর জারণ এবং M2 এর বিজারণ ঘটবে। তাহলে সৃষ্ট তড়িচ্চালক কোষটি হবে.

 $M_1(s)/M_1^{2+}(aq)||M_2^{2+}(aq)/M_2(s)|$ অ্যানোডে অর্ধকোষ বিক্রিয়া:

 $M_1 (s) - 2e^- \rightarrow M_1^{2+} (aq)$; $E_{M_1/M_1^{2+}}^0 = 0.44 \text{ V}$

ক্যাথোডে অর্ধকোষ বিক্রিয়া:

$${\rm M_2}^{2^+}$$
 (aq) + 2e $^
ightarrow$ ${\rm M_2}$ (s); ${\rm E}_{{\rm M_2}^{2^+}/{\rm M_2}}^0$ = 0.34 V

কোষ বিক্রিয়া: $M_1(s) + M_2^{2+}(aq) \rightarrow M_1^{2+}(aq) + M_2(s)$;

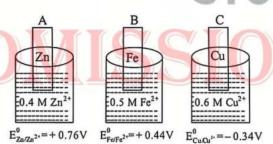
$$E_{cell}^0 = 0.78 \text{ V}$$

এখানে, e = 2

$$[M_1^{2+}] = 0.5 \text{ M}$$

$$[M_2^{2+}] = 0.2 \text{ M}$$

$$T = 25^{\circ} C = 298 K$$


কোষটির তড়িচ্চালক বল.

$$E_{cell} = E_{cell}^{0} - \frac{RT}{eF} ln \frac{[M_1^{2+}]}{[M_2^{2+}]}$$

$$= \left\{ 0.78 - \frac{8.314 \times 298}{2 \times 96500} ln \left(\frac{0.5}{0.2} \right) \right\}$$

$$= 0.768 \text{ V}$$

- (ক) তড়িৎ রাসায়নিক কোষ কী?
- [কু. বো. ২২; ঢা. বো ১৯]
- (খ) NaCl(aq) তড়িৎ বিশ্লেষ্য কি? ব্যাখ্যা কর।
- [ঢা. বো. ১৯]
- (গ) উদ্দীপকে উল্লিখিত 'B' অর্ধকোষ হতে 'C' অর্ধকোষে 2 কুলম্ব বিদ্যুৎ প্রবাহিত করলে কত গ্রাম ধাতু সঞ্চিত হবে?

[কু. বো. ২২; অনুরূপ প্রশ্ন; ব. বো. ২২, ১৯; দি. বো. ২২; কু. বো. ২২, ২১; চ, বো. ২১; সি. বো. ১৯)

- (ঘ) উদ্দীপকে উল্লিখিত কোন দুটি অর্ধকোষ দ্বারা সৃষ্ট কোষের EMF এর মান সবচেয়ে অধিক? বিশ্লেষণ কর। সমাধান:
- ক যে কোষে রাসায়নিক জারণ-বিজারণ বিক্রিয়ার ফলে রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত হয়, তাকে তড়িৎ রাসায়নিক কোষ বলে।

Rhombus Publications

- যা NaCl একটি আয়নিক কেলাসাকার যৌগ। জলীয় দ্রবণে NaCl লবণ সম্পর্ণরূপে বিয়োজিত হয়ে ধনাত্মক Na⁺ আয়ন ও ঋণাত্মক CI আয়ন তৈরি করে। NaCl জলীয় দ্রবণে প্রায় 70-100% পরিমাণে আয়নিত হয়। ধনাতাক ও ঋণাতাক আয়ন থাকায় এর মধ্য দিয়ে তড়িৎ প্রবাহিত করলে অ্যানোডে Cl2 গ্যাস এবং ক্যাথোডে Na ধাতু জমা হয়। অর্থাৎ, NaCl দ্রবণের তড়িৎ প্রবাহ পরিবাহীর আয়ন দারা সম্পন্ন হয়। সূতরাং, NaCl দ্রবণ একটি তড়িৎ বিশ্লেষ্য পরিবাহী।
- গ দেওয়া আছে,

$$E^0_{Fe/Fe^{2+}}=0.44 \text{ V}; E^0_{Cu/Cu^{2+}}=-0.34 \text{V}$$
 যেহেতু, $E^0_{Fe/Fe^{2+}}>E^0_{Cu/Cu^{2+}};$ সুতরাং Fe অ্যানোড তড়িৎদার এবং Cu ক্যাথোড তড়িৎদার হিসেবে কাজ করে।

অ্যানোডে বিক্রিয়া: Fe – 2e⁻ → Fe²⁺(i)

ক্যাথোডে বিক্রিয়া: Cu²⁺ + 2e⁻ → Cu(ii)

সূতরাং ক্যাথোডে সঞ্চিত ধাতু কপার (Cu)।

(ii) নং বিক্রিয়া অনুসারে,

(2 × 96500) C চার্জ প্রবাহিত করলে সঞ্চিত কপার = 63.5 g

∴2 C চার্জ প্রবাহিত করলে সঞ্চিত কপার = $\frac{63.5 \times 2}{2 \times 96500}$ g

A ও B অর্থকোষ দ্বারা গঠিত কোষের ক্ষেত্রে $E^0_{Zn/Zn}^{2+} > E^0_{Fe/Fe}^{2+}$ হওরার, Zn অ্যানোড তড়িৎদার এবং আয়রন ক্যাথোড তড়িৎদার হবে। এক্ষেত্রে কোষ বিক্রিয়া:

অ্যানোডে জারণ বিক্রিয়া:

 $Zn - 2e^- \rightarrow Zn^{2+}$; $E^0_{Zn/Zn^{2+}} = 0.76 \text{ V}$

ক্যাথোডে বিজারণ বিক্রিয়া:

$$Fe^{2+} + 2e^{-} \rightarrow Fe$$
; $E_{Fe^{2+}/Fe}^{0} = -0.44V$

কোষ বিক্রিয়া: $Zn + Fe^{2+} \rightarrow Zn^{2+} + Fe$; $E_{cell}^{0} = 0.32 \text{ V}$

$$[Zn^{2+}] = 0.4 \text{ M}; [Fe^{2+}] = 0.5 \text{ M}$$

 $T = 25^{\circ}C = 298 \text{ K}$

$$\therefore E_{cell} = E_{cell}^{0} - \frac{RT}{eF} ln \frac{[Zn^{2+}]}{[Fe^{2+}]}$$
$$= 0.32 - \frac{8.314 \times 298}{2 \times 96500} ln \left(\frac{0.4}{0.5}\right)$$

= 0.323 V

আবার, B ও C অর্ধকোষ দ্বারা গঠিত কোষের ক্ষেত্রে $E^0_{Fe/Fe}^{2+} > E^0_{Cu/Cu}^{2+}$ হওয়ায়, Fe অ্যানোড এবং Cu ক্যাথোড তড়িৎদার রূপে ক্রিয়া করবে। এক্ষেত্রে সংঘটিত কোষ বিক্রিয়া:

অ্যানোডে জারণ বিক্রিয়া:

$$Fe - 2e^- \rightarrow Fe^{2+}; E^0_{Fe/Fe^{2+}} = 0.44 \text{ V}$$

ক্যাথোডে বিজারণ বিক্রিয়া:

$$Cu^{2+} + 2e^{-} \rightarrow Cu; E_{Cu^{2+}/Cu}^{0} = 0.34V$$

 ${
m Cu^{2+}} + 2e^-
ightarrow {
m Cu}; \ {
m E}_{{
m Cu^{2+}}/{
m Cu}}^0 = \ 0.34{
m V}$ কোষ বিক্রিয়া: Fe + Cu²⁺ ightarrow Fe²⁺ + Cu; E $_{
m cell}^0 = 0.78{
m ~V}$

ভড়িৎ রসায়ন > ACS, FRB Compact Suggestion Book

এখানে, e = 2

 $[Fe^{2+}] = 0.5 \text{ M}; [Cu^{2+}] = 0.6 \text{ M}$

$$E'_{\text{cell}} = E_{\text{cell}}^{0} - \frac{RT}{eF} \ln \frac{[Fe^{2^{+}}]}{[Cu^{2^{+}}]}$$
$$= 0.78 - \frac{8.314 \times 298}{2 \times 96500} \ln \left(\frac{0.5}{0.6}\right)$$

আবার, A ও C অর্থকোষ দ্বারা গঠিত কোষের ক্ষেত্রে $E^0_{Zu/Zu^{2+}} > E^0_{Cu/Cu^{2+}}$ হওয়ায়, Zn অ্যানোড এবং Cu ক্যাথোড রূপে ক্রিয়া করবে।

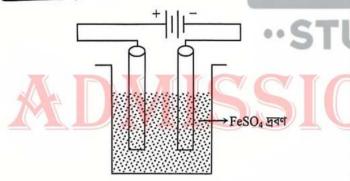
অ্যানোডে জারণ বিক্রিয়া:

$$Zn - 2e^- \rightarrow Zn^{2+}$$
; $E^0_{Zn/Zn^{2+}} = 0.76 \text{ V}$

ক্যাথোডে বিজারণ বিক্রিয়া:

$$Cu^{2+} + 2e^{-} \rightarrow Cu; E_{Cu}^{0} + 2e^{-}$$

কোষ বিক্রিয়া:
$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$
; $E_{cell}^0 = 1.1 \text{ V}$


$$E''_{cell} = E_{cell}^{0} - \frac{RT}{eF} ln \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

$$= 1.1 - \frac{8.314 \times 298}{2 \times 96500} ln \left(\frac{0.4}{0.6}\right)$$

$$= 1.105 \text{ V}$$

সুতরাং, A ও C অর্থকোষ দ্বারা সৃষ্ট কোষের EMF তুলনামূলক অধিক

প্রম ▶ ২০ দৃশ্যকল্প-১:

দৃশ্যকল্প-২:

- (i) Zn/Zn^{2+} ; $E^0 = +0.76 \text{ V}$
- (ii) Cu/Cu^{2+} ; $E^0 = -0.34 \text{ V}$
- (iii) Ag/Ag^+ ; $E^0 = -0.88 \text{ V}$
- (ক) আপেক্ষিক পরিবাহিতা কী?

কু. বো. ২১)

- (খ) প্রমাণ তড়িং

 রার হিসেবে হাই

 জ্রোজেন ত

 ড়িং

 রার ব্যবহৃত হয় কেন?
- (গ) দৃশ্যকল্প-১ এর কোষটিতে 210A বিদ্যুৎ কতক্ষণ পর্যন্ত কোষটিতে চালনা করলে ক্যাথোডে 8.87 মোল ধাতু জমা হবে? ।ম. রো. ২১।
- (ঘ) দৃশ্যকল্প-২ এর Zn²+ দ্রবণের ঘনমাত্রা 1.5 × 10⁻⁴ M হলে, 37°C তাপমাত্রায় (i) ও (ii) নং তড়িংদ্বার দ্বারা গঠিত কোষের বিভবের পরিবর্তন কেমন হবে? গাণিতিকভাবে দেখাও।

দমাধান:

- ব 1 cm দ্রত্বে থাকা ও 1 cm² ক্ষেত্রফলবিশিষ্ট দুটি তড়িৎদ্বারের মধ্যবর্তী অংশের তড়িৎ বিশ্লেষ্য দ্রবণের পরিবাহিতাকে ঐ তড়িৎ বিশ্লেষ্যের আপেক্ষিক পরিবাহিতা বলে।
- প্রমাণ তড়িৎদার হিসেবে হাইড্রোজেন তড়িৎদার ব্যবহৃত হয়। কারণ সর্বজনীন রীতি অনুযায়ী প্রমাণ হাইড্রোজেন তড়িৎদারের মান শৃন্য। ফলে এর দারা অন্যান্য তড়িৎদারের প্রমাণ তড়িৎ বিভব নির্ণয় করা যায়। প্রমাণ হাইড্রোজেন তড়িৎদারের সাথে পরীক্ষণীয় তড়িৎদার সংযোগে সৃষ্টি কোষের উৎপন্ন e.m.f-কে তড়িৎদার বিভব ধরা হয়।
- গ ক্যাথোডে 8.87 mol Fe জমা করতে হবে। আমরা জানি.

$$n = \frac{W}{M}$$

$$\Rightarrow W = nM = (8.87 \times 55.85) \text{ g}$$

$$= 495.39 \text{ g}$$
এখন, আমরা জানি,

W = ZIt =
$$\frac{MIt}{eF}$$

⇒ 495.39 = $\frac{55.85}{2 \times 96500} \times 210 \times t$
= 495.39 g
⇒ t = 8151.96 s

 $\Rightarrow t = 8151.96 \text{ s}$ $= \frac{8151.96}{3600} \text{ s} = 2.26 \text{ h}$

সুতরাং, 2.26 h বিদ্যুৎ চালনা করলে 8.87 mol Fe জমা হবে।

আ উদ্দীপকের (i) নং তড়িৎদ্বার অর্থাৎ, Zn তড়িৎদ্বারের জারণ বিভব (iii) নং তড়িৎদ্বার অর্থাৎ, Ag তড়িৎদ্বারের জারণ বিভবের মানের চেয়ে বেশি হওয়ায় Zn অ্যানোড হিসেবে ও Ag ক্যাথোড হিসেবে কাজ করবে।

আনেডে বিক্রিয়া: Zn – 2e⁻ → Zn²⁺

ক্যাথোডে বিক্রিয়া: $2Ag^+ + 2e^- \rightarrow 2Ag$

কোষ বিক্রিয়া:
$$Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$$
 প্রথম ক্ষেত্রে, কোষ বিভব, $E_{cell}^0 = E_{Zn/Zn}^{0}^{2+} + E_{Ag^+/Ag}^{0} = (0.76 + 0.88) \text{ V}$

আবার, পরবর্তী ক্ষেত্রে, ${\rm Zn}^{2+}$ এর ঘনমাত্রা, ${\rm [Zn}^{2+]}=1.5\times 10^{-4}\,{\rm M}$

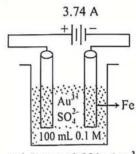
একেনে,
$$E_{Zn/Zn^{2+}} = E_{Zn/Zn^{2+}}^0 - \frac{RT}{nF} \ln [Zn^{2+}]$$

= $0.76 - \frac{8.314 \times 310}{2 \times 96500} \ln (1.5 \times 10^{-4})$
= 0.88 V

এই ক্লেব্ৰে,
$$E_{cell}^{'} = E_{Zn/Zn^{2+}} + E_{Ag^{4}/Ag}^{0}$$

$$= (0.88 + 0.88) V$$

$$= 1.76 V$$


 $E_{cell}^{'}>E_{cell}^{''}$ অতএব, Zn^{2+} এর ঘনমাত্রা 1.5×10^{-4} M হলে 37° C তাপমাত্রায় (i) ও (iii) নং তড়িৎদ্বার দ্বারা গঠিত কোষের কোষ বিভব পূর্বের কোষ বিভব অপেক্ষা বৃদ্ধি পাবে।

Rhombus Publications

t.me/admission_stuffs

...... ACS/ ➤ Chemistry 2nd Paper Chapter-4

প্রশ্ন ১ ২১ দৃশ্যকর-১:

সোনার ঘনত 8.903 g/cm3

দৃশ্যকল্প-২:

- (i) Zn/Zn^{2+} ; $E^0 = +0.76 \text{ V}$
- (ii) Fe/Fe^{2+} ; $E^0 = +0.44 \text{ V}$
- (iii) Cu/Cu^{2+} ; $E^0 = -0.34 \text{ V}$
- (ক) মোলার তড়িৎ পরিবাহিতা কী?
- (খ) তড়িৎদার কখন অ্যানোড বা ক্যাথোড হিসেবে কাজ করবে?
- (গ) দৃশ্যকল্প-১ এর ক্যাথোডের উপর 1050 cm² পৃষ্ঠতলের 0.0895 mm পুরুত্বের সোনার প্রলেপ দিতে কত সময় ধরে বিদ্যুৎ চালনা
- (ঘ) FeSO4 দ্রবণ Zn ও Cu দারা নির্মিত পাত্রের একটিতে রাখা নিরাপদ হলেও অন্যটিতে নিরাপদ নয়-উজিটি গাণিতিকভাবে ব্যাখ্যা কর। [ঢা. বো. ২১; অনুরূপ প্রশ্ন: ম. বো. ২১]

সমাধান:

- । মোল পরিমাণের দ্রবণকে 1 cm দূরত্বে থাকা 2 টি উপযুক্ত তড়িংদ্বারের মধ্যবর্তী স্থানে রাখলে সৃষ্ট তড়িং পরিবাহিতাকে মোলার তড়িৎ পরিবাহিতা বলে।
- বা কোনো তড়িৎদ্বারের বিভব জারণ অথবা বিজারণ বিভব হিসেবে বের করা যায়। বিভব যতো ধনাতাক হবে তড়িৎদারটি ততই অ্যানোড বা ঋণাতাক তড়িৎদার হিসেবে আচরণ করবে। আর বিভব যতো ঋণাতাক হবে তড়িৎদ্বারটি ততোই ক্যাথোড বা ধনাতাক তড়িৎদ্বার হিসেবে কাজ कत्रद्व।

ল দেওয়া আছে,

সোনার ঘনতু, ρ = 8.903 g/cm³ ক্রেফল, A = 1050 cm² পুরুত্ব, d = 0.0895 mm = 8.95 × 10⁻³ cm বিদ্যাৎ প্রবাহ, I = 3.7 A याजनी, e = 3 Au এর পারমাণবিক ভর, M = 196.97 আমরা জানি, $W = \rho V = \rho Ad$ $= (8.903 \times 1050 \times 8.95 \times 10^{-3}) \text{ g}$ = 83.666 gAu এর, আবার, W = ZIt196.97 $\Rightarrow 83.666 = \frac{196.97}{3 \times 96500} \times 3.7 \times t$

Rhombus Publications

 \Rightarrow t = 33235.00629 s

9.232 h ধরে বিদ্যুৎ চালনা করতে হবে।

= 9.232 h

য Zn পাত্রকে অ্যানোড বিবেচনা করে কোষটিকে নিমুরূপে উপস্থাপন করা যায়, $Zn/Zn^{2+}(aq) \parallel Fe^{2+}(aq)/Fe$

ञ्यारनार७ जात्रन विकियाः

$$Zn - 2e^- \rightarrow Zn^{2+}$$
; $E^0_{Zn/Zn^{2+}} = 0.76 \text{ V}$

ক্যাথোডে বিন্ধারণ বিক্রিয়া:

$$Fe^{2+} + 2e^{-} \rightarrow Fe; E_{Fe^{2-}/Fe}^{0} = -0.44 \text{ V}$$

কোষ বিক্রিয়া: $Zn + Fe^{2+} \rightarrow Zn^{2+} + Fe$; $E_{cell}^{0} = + 0.32 \text{ V}$

যেহেত্, $E_{cell}^0 > 0$; সূতরাং, Zn নির্মিত পাত্রে $FeSO_4$ আয়নের जुनन ताथल Zn भाज जाात्माछ हिरमत किय़ा कतरन धनश काव বিক্রিয়া স্বতঃস্ফুর্তভাবে ঘটবে। অর্থাৎ, Zn পাত্র ক্ষয়প্রাপ্ত হবে। তাই Zn পাত্রে FeSO. আয়নের দ্রবণ সংরক্ষণ করা নিরাপদ নয়।

আবার, Cu পাত্রকে অ্যানোড বিবেচনা করে কোষটিকে নিমুরূপে উপস্থাপন করা যায়,

$$Cu/Cu^{2+}(aq) \parallel Fe^{2+}(aq)/Fe$$

অ্যানোডে জারণ বিক্রিয়া:

$$Cu - 2e^{-} \rightarrow Cu^{2+}$$
; $E^{0}_{Cu/Cu^{2+}} = -0.34 \text{ V}$

ক্যাথোডে বিজারণ বিক্রিয়া:

$$Fe^{2+} + 2e^{-} \rightarrow Fe$$
; $E_{Fe}^{0} / F_{Fe} = -0.44 \text{ V}$

 ${
m Fe^{2^+} + 2e^-}
ightarrow {
m Fe}; \ E^0_{
m Fe^2}
ightarrow_{/
m Fe} = -0.44 \ {
m V}$ কোষ বিক্রিয়া: ${
m Cu + Fe^{2^+}}
ightarrow {
m Cu}^{2^+} + {
m Fe}; \ E^0_{
m cell} = -0.78 \ {
m V}$

যেহেতু, $\operatorname{E}_{\operatorname{cell}}^0 < 0$; সূতরাং , Cu নির্মিত পাত্রে FeSO_4 আয়নের দ্রবণ রাখলে Cu পাত্র অ্যানোড হিসেবে ক্রিয়া করবে না এবং কোষ বিক্রিয়া স্বতঃস্ফূর্তভাবে ঘটবে না। অর্থাৎ, Cu পাত্র ক্ষয়প্রাপ্ত হবে না। তাই Cu পাত্রে FeSO4 দ্রবণ সংরক্ষণ করা নিরাপদ।

$A(s)/A^{2+}(0.5 \text{ M}) \parallel B^{2+}(0.3 \text{ M})/B(s)$ (i) $\mathbf{E}_{\Lambda^{2*}/\Lambda}^{0} = -0.76 \text{ V}$

(ii)
$$E_B^{0.2} \cdot_{/B} = + 0.34 \text{ V}$$

(iii) $E_C^{0.2} \cdot_{/C} = -0.79 \text{ V}$

- (ক) তড়িৎদার বিভব কী?
- (খ) প্রমাণ H-তড়িৎদার কী?
- वि. व्वा. ১৯; व. व्वा. ১৭]
- (গ) উদ্দীপকের কোষটির কোষ ডায়াগ্রাম অংকন করে কোষ বিক্রিয়াটির স্বতঃক্ষূর্ততা ব্যাখ্যা কর। (রা. বো. ২১)
- (ঘ) ইলেকট্রোড (i), (ii) ও (iii) দ্বারা গঠিত সম্ভাব্য কোষগুলোর কোনটি থেকে অধিক পরিমাণ বিদ্যুৎ উৎপন্ন হবে যুক্তি দাও।

রো. বো. ২১; অনুরূপ প্রশ্ন: সি. বো. ১৯]

সমাধান:

- ক তড়িংদ্বারের পৃষ্ঠতলে ইলেকট্রন ত্যাগ বা ইলেকট্রন গ্রহণ এ দুটি বিপরীতমুখী প্রবণতার পরিমাণ কখনো সমান হয় না। তাই ধাতব দণ্ড ও এর দ্রবণের আয়নের মধ্যে একটি বৈদ্যুতিক বিভব সৃষ্টি হয়। এ বিভবকে তড়িৎদ্বার বিভব বলা হয়।
- একক মোলার ঘনমাত্রা বিশিষ্ট কোনো H[™] আয়নের দ্রবলে প্রাটিনাম গুঁড়ার আন্তরণ যুক্ত প্লাটিনাম পাত রেখে 1 atm বায়ুচাপে বিশুদ্ধ হাইড্রোজেন গ্যাস বুদবুদ আকারে সরবরাহ করলে যে তড়িৎদার উৎপন্ন হয়, তাকে প্রমাণ হাইড্রোজেন তড়িংদার বলা হয়। প্লাটিনাম ধাতু $m H_2$ গ্যাস শোষণ করে। শোষিত অবস্থায় ${
 m H}_2$ তড়িৎদ্বারে নিম্নুন্নপ অর্ধকোষ বিক্রিয়া চলতে থাকে এবং এর তড়িৎদ্বার বিভবকে 0.0 V ধরা হয়।

 $H_2(g)(1 \text{ atm}) \rightarrow 2H^+(aq)(1 \text{ M}) + 2e^-; \quad E^0 = 0.0 \text{ V}$

 $2H^{+}(aq)(1 M) + 2e^{-} \rightarrow H_{2}(g)(1 atm)$; $E^{0} = 0.0 V$ হাইড্রোজেন তড়িৎদ্বারকে নিম্নরূপে লেখা হয়:

Pt(s), $H_2(g)$ (1 atm) / $H^+(aq)$ (1 M); $E^0 = 0.0 \text{ V}$

তদ্দীপকের প্রদত্ত কোষ,

 $A(s)/A^{2+}(0.5 M) \parallel B^{2+}(0.3 M)/B(s)$

A তড়িৎদ্বারটি অ্যানোডরূপে ব্যবহৃত হবে এবং B তড়িৎদ্বারটি ক্যাথোডরূপে ব্যবহৃত হবে। কোষ ডায়াগ্রাম নিম্নরূপঃ

জারণ অর্ধবিক্রিয়া: $A-2e^- \rightarrow A^{2+}$; $E^0_{N/A^{2+}}=+0.76~V$ বিজারণ অর্ধবিক্রিয়া: $B^{2+}+2e^- \rightarrow B$; $E^0_{B^{2+}/B}=+0.34~V$ কোষ বিক্রিয়া: $A+B^{2+} \rightarrow A^{2+}+B$; $E^0_{cell}=1.1~V$ যেহেতু ঘনমাত্রা ভিন্ন সূতরাং নার্নস্ট সমীকরণ প্রয়োগ করে পাই,

$$E_{cell} = E_{cell}^{0} - \frac{RT}{eF} ln \frac{[A^{2+}]}{[B^{2+}]}$$

$$= 1.1 - \frac{8.314 \times 298}{2 \times 96500} ln \left(\frac{0.5}{0.3}\right)$$

$$= 1.093 \text{ Volt}$$
CHARGE OF THE SET $E^{0} > 0$

যেহেতু, কোষ বিভব $E_{cell}^0>0$ সূতরাং, বিক্রিয়াটি স্বতঃস্ফূর্তভাবে ঘটবে।

ঘ যেকোনো ২টি ইলেকট্রোড দ্বারা গঠিত সম্ভাব্য কোষগুলোর মধ্যে যার E_{cell}^0 এর মান সর্বোচ্চ হবে ঐ কোষ থেকে অধিক পরিমাণ বিদ্যুৎ উৎপন্ন হবে।

(i) ও (ii) নং ইলেকট্রোড দ্বারা গঠিত সম্ভাব্য কোষ:

$$E_{A^{2+}/A}^{0} = -0.76 \text{ V}$$

$$E_{B^{2+}/B}^{0} = +0.34 \text{ V}$$

যেহেতু, $E_{B^{2+}/B}^0 > E_{A^{2+}/A}^0$; কাজেই A তড়িংদ্বার অ্যানোড এবং B তড়িংদ্বার ক্যাথোড হবে।

$$E_{cell}^{0} = E_{A/A^{2+}}^{0} + E_{B^{2+}/B}^{0}$$

= (0.76 + 0.34) V = 1.1 V

(ii) ও (iii) নং ইলেকট্রোড দ্বারা গঠিত সম্ভাব্য কোষ:

$$E_{B^{2+}/B}^{0} = +0.34 \text{ V}$$

$$E_{C^{2+}/C}^{0} = -0.79 \text{ V}$$

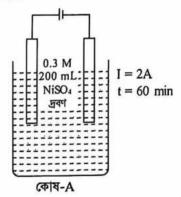
যেহেতু, $E^0_{B^{2+}/B} > E^0_{C^{2+}/C}$; কাজেই C তড়িংদ্বার অ্যানোড এবং B তড়িংদ্বার ক্যাথোড হবে।

$$E_{cell}^{0} = E_{C/C^{2+}}^{0} + E_{B^{2+}/B}^{0}$$

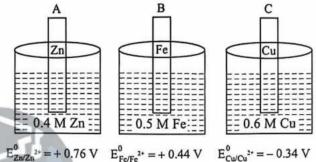
= (0.79 + 0.34) V = 1.13 V

(iii) ও (i) নং দ্বারা গঠিত সম্ভাব্য কোষ:

$$E_{A^{2+}/A}^{0} = -0.76 \text{ V}$$


$$E_{C^{2+}/C}^{0} = -0.79 \text{ V}$$

যেহেতু, $E_{A^{2+}/A}^{0} > E_{C^{2+}/C}^{0}$; কাজেই C তড়িৎদ্বার অ্যনোড এবং A তড়িৎদ্বার ক্যাথোড হবে।


$$\begin{split} E_{cell}^{0} &= E_{C/C^{2+}}^{0} + E_{A^{2+}/A}^{0} \\ &= (0.79 - 0.76) \ V = 0.03 \ V \end{split}$$

যেহেতু, (ii) ও (iii) নং দ্বারা গঠিত কোষের তড়িংচ্চালক শক্তি (E_{cell}^0) সবচেয়ে বেশি, তাই এই কোষ থেকেই অধিক পরিমাণ বিদ্যুৎ উৎপন্ন হবে।

প্রশ্ন ১ ২৩ দৃশ্যকল্প-১:

দৃশ্যকল্প-২:

E_{Zn/Zn}²⁺ = + 0.76 V E_{Fc/Fc}²⁺ = + 0.44 V (ক) তড়িং বিশ্ৰেষ্য কী?

[पि. वा. २२; त्रा. वा. २১]

(খ) Zn এর তড়িংঘার বিভব 0.76 V বলতে কী বুঝ?

0 [--- --- 1.0]

(গ) দৃশ্যকল্প-১ এর দ্রবণের অবশিষ্ট Ni²⁺ কে তড়িংদ্বারে সঞ্চিত করতে কত কুলম্ব তড়িং চালনা করতে হবে− হিসাব কর।

বি. বো. ২১; অনুরূপ প্রশ্ন: সি. বো. ২২

(ঘ) দৃশ্যকল্প-২ এর উদ্দীপকের কোন দুটি অর্ধকোষ দ্বারা সৃষ্ট কোষের
 EMF এর মান সবচেয়ে অধিক− বিশ্লেষণ কর।

সমাধানঃ

ক্র দ্রবণে বা গলিত অবস্থায় যে সকল পদার্থের মধ্য দিয়ে তড়িৎ প্রবাহিত করলে পদার্থগুলো বিয়োজিত হয়ে নতুন পদার্থের সৃষ্টি করে এবং তড়িৎ পরিবহন করে, তাদেরকে তড়িৎ বিশ্লেষ্য বলে।

জিম্ব (Zn) এর তড়িংদ্বার বিভব 0.76 V বলতে বুঝায়, কোন বিদ্যুৎ উৎস হতে যদি 0.76 V বিদ্যুৎ সরবরাহ করা হয় তাহলে Zn ইলেকট্রোড হতে Zn ইলেকট্রন ত্যাগ করে ধাতব আয়ন হিসেবে দ্রবণে চলে আসে।

ক NiSO4 দ্রবণে নিম্নরূপে আয়নিত হয়:

$$NiSO_4 \rightarrow Ni^{2+} + SO_4^{2-}$$

1 mol 1 mol

তড়িৎ বিশ্লেষণের পূর্বে দ্রবণে বিদ্যমান ধাতুর ভর,

$$W = \frac{\text{SMV}}{1000}$$
$$= \frac{0.3 \times 58.7 \times 200}{1000} = 3.522 \text{ g}$$

তড়িৎ প্রবাহ চালনায় ক্যাথোডে জমাকৃত ভর,

$$W = \frac{MIt}{cF}$$
= $\frac{58.7 \times 2 \times 60 \times 60}{2 \times 96500} = 2.19 \text{ g}$

দ্রবণে অবশিষ্ট
$$Ni^{2+}$$
 এর পরিমাণ = $(3.522 - 2.19)$ g

ভামরা জানি, W = ZQ এখানে, $Q = \frac{W}{Z} = \frac{1.332}{\frac{58.7}{2 \times 96500}}$ = 4380 C = 1.332 g এখানে, $\nabla = \frac{W}{e^{\times} \text{ Given}} = \frac{58.7}{2 \times 96500}$

অবশিষ্ট Ni কে তড়িংদ্বারে সঞ্চিত করতে 4380 C তড়িং চালনা করতে হবে।

ব্ব এক্ষেত্রে তিনটি ভিন্ন কোষ গঠন করা সম্ভব।

প্রথম ক্ষেত্রে, A ও B দ্রবণ নিলে Fe ক্যাথোড এবং Zn অ্যানোড হিসেবে কাজ করবে।

বৈহেজু,
$$E_{Zn/Zn^{2+}}^{0} > E_{Fe/Fe^{2+}}^{0}$$
 এখানে, $E_{Zn/Zn^{2+}}^{0} = 0.76 \text{ V}$ $E_{Fe/Fe^{2+}}^{0} = 0.44 \text{ V}$ $E_{Fe^{2+}/Fe}^{0} = -0.44 \text{ V}$ তাহলে, $E_{cell}^{0} = E_{Zn/Zn^{2+}}^{0} + E_{Fe^{2+}/Fe}^{0}$ $= (0.76 - 0.44) \text{ V}$ $= 0.32 \text{ V}$

এখন নার্নস্ট সমীকরণ হতে পাই,

$$\begin{split} E_{coll} &= E_{coll}^{0} - \frac{RT}{nF} \ln \frac{[Zn^{2+}]}{[Fe^{2+}]} \\ &= 0.32 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{0.4}{0.5} \\ &= 0.32286 \text{ V} \end{split}$$

এখানে, T = 298 K R = 8.314 J mol⁻¹ K⁻¹ F = 96500 C n = 2 [Zn²⁺] = 0.4 M

 $[Fe^{2+}] = 0.5 M$

আবার, দ্বিতীয় ক্ষেত্রে,

B ও C দ্রবর্ণ নিলে Fe অ্যানোড এবং Cu ক্যাথোড হিসেবে কাজ করবে,

$$\begin{array}{ll} E_{coll}^0 = E_{Fe/Fo^{2+}}^0 + E_{Cu^{2+}/Cu}^0 & \qquad & \text{adic4}, \\ = (0.44 + 0.34) \ V & \qquad & E_{Pe/Fo^{2+}}^0 = 0.44 \ V \\ = 0.78 \ V & \qquad & E_{Cu^{2+}/Cu}^0 = 0.34 \ V \end{array}$$

এখন নার্নস্ট সমীকরণ হতে পাই,

$$\begin{split} E_{coll} &= E_{coll}^0 - \frac{RT}{nF} \ln \frac{[Fe^{2^+}]}{[Cu^{2^+}]} \\ &= 0.78 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{0.5}{0.6} \\ &= 0.7823 \text{ V} \end{split} \qquad \begin{cases} 4 \text{ even}, \\ T &= 298 \text{ K}, \\ R &= 8.314 \text{ J mol}^{-1} \text{ K}^{-1}, \\ F &= 96500 \text{ C}, \\ n &= 2, \\ [Fe^{2^+}] &= 0.5 \text{ M}, \\ [Cu^{2^+}] &= 0.6 \text{ M} \end{cases}$$

আবার, A ও C দ্রবণ নিলে Zn অ্যানোড এবং Cu ক্যাথোড হিসেবে কাজ করবে।

Rhombus Publications

..... ACS > Chemistry 2°d Paper Chapter-4

এখানে,

এখানে,
$$E_{Cu/Cu^{2}}^{0} = 0.76 \text{ V}$$
 $E_{Cu/Cu^{2}}^{0} = -0.34 \text{ V}$
 $E_{Cu^{2}/Cu}^{0} = 0.34 \text{ V}$
ভাহলে, $E_{coll}^{0} = E_{Zu/Zu^{2}}^{0} + E_{Cu^{2}/Cu}^{0}$
 $= (0.76 + 0.34) \text{ V}$
 $= 1.10 \text{ V}$

এখন নার্নস্ট সমীকরণ হতে পাই,
$$E_{cell} = E_{cell}^0 - \frac{RT}{nF} \ln \frac{[Zn^2]}{[Cu^2]}$$

$$\begin{array}{l} \text{T} = 298 \text{ K} \\ = 1.1 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{0.4}{0.6} \\ = 1.105 \text{ V} \\ \end{array}$$

$$\begin{array}{l} \text{T} = 298 \text{ K} \\ \text{R} = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \\ \text{F} = 96500 \text{ C} \\ \text{n} = 2 \\ \text{[Zn}^{2^*]} = 0.4 \text{ M} \\ \text{[Cu}^{2^*]} = 0.6 \text{ M} \\ \end{array}$$

সূতরাং দেখা যাচেছ যে, A ও C দ্রবণ দ্বারা সৃষ্ট কোবে EMF এর মান সবচেয়ে অধিক।

প্রশ্ন ▶ ২৪

 $X(s)/X^{+}(aq) (0.01 \text{ M}) \parallel Y^{2+}(aq) (0.02 \text{ M})/Y(s)$ 역한다, $E_{X^{+}/X} = +0.799 \text{ V}$ 역한 $E_{Y/Y}^{+} = +2.87 \text{ V}$

(Br এর পারমাণবিক ভর = 79.9)

(ক) লবণ সেতু কাকে বলে?

वि. वा. २२; नि. वा. २२, २১, ১৭

(খ) NaCl দ্রবণ ভড়িৎবিশ্লেষ্য পরিবাহী কেন?

कि. त्वा. ১१

(গ) YBr₂ এর গলিত দ্রবণে, 1.26 F বিদ্যুৎ প্রদান করা হলে অ্যানোডে কভটি অণু জমা হবে?

 প্রদত্ত বিক্রিয়া এবং তার বিপরীত বিক্রিয়ার ক্ষেক্রে EMF এর কোনো পরিবর্তন হবে কি? গাণিতিকভাবে বিশ্লেষণ কর।

সমাধান:

কু দুটি অর্থকোষের মধ্যে পরোক্ষ সংযোগ সাধনের জন্য ব্যবহৃত U আকৃতির বাঁকানো কাচনল যা KCl, KNO3 বা NH4NO3 এর সম্পৃক্ত দ্রবণ দিয়ে পূর্ণ থাকে, তাকে লবণ সেতু বলে।

দ্রবণ অবস্থায় সোডিয়াম ক্লোরাইডের সোডিয়াম আয়ন (Na⁺) ও ক্লোরাইড (CI⁻) আয়নসমূহ মোটামুটি মুক্ত অবস্থায় চলাচল করে। তখন Na⁺ ও CI⁻ দ্বারা তড়িৎ পরিবহন করা সম্ভব হয়।

$$NaCl \longrightarrow Na^{+} + Cl^{-}$$

এ তরলে দুটি তড়িংদ্বার প্রবেশ করিয়ে এদের মধ্যে ব্যাটারির সাহায্যে বিভব পার্থক্য সৃষ্টি করা হয়। তখন ঋণাত্মক ক্যাথোডে ধনাত্মক আধানযুক্ত সোডিয়াম আয়নসমূহ আকৃষ্ট হয়ে ক্যাথোডে পৌছামাত্র ক্যাথোড এদেরকে ইলেকট্রন দান করে; ফলে সোডিয়াম ধাতুরূপে ক্যাথোডে সঞ্চিত হয়।

$$Na^+ + e^- \longrightarrow Na(s)$$

অন্যদিকে অ্যানোডে ঋণাত্মক ক্লোরাইড আয়নসমূহ আকৃষ্ট হয়ে ইলেকট্রন ত্যাগ করে ক্লোরিন পরমাণু এবং শেষে ক্লোরিন গ্যাসের অণু সৃষ্টি করে। এ প্রক্রিয়াকে গলিত NaCl এর তড়িৎ বিশ্লেষণ বলা হয়।

$$2Cl^- - 2e^- \longrightarrow Cl_2(g)$$

এ কারণে NaCl দ্রবণ তড়িৎ বিশ্লেষ্য পরিবাহী।

জিং রসায়ন ➤ ACS, FRB Compact Suggestion Book

্বা সাধারণত অ্যানোড কর্তৃক অ্যানায়ন আকৃষ্ট হয়। YBr2 এর গলিত দ্রবণে নিম্নোক্তভাবে YBr2 বিয়োজিত হয়,

$$YBr_2 \longrightarrow Y^{2+} + 2Br^-$$

অ্যানোডে সংঘটিত বিক্রিয়া: 2Br⁻ – 2e⁻ —→ Br₂

সুতরাং,

 $2 \; \mathrm{F}$ চার্জ দ্বারা $\mathrm{Br_2}$ অণু জমা হয় $1 \; \mathrm{mol} \; \mathrm{al} \; 6.023 \times 10^{23} \, \mathrm{b}$

$$1 \, \, \mathbf{F} \,$$
 চার্জ দ্বারা $\, \mathbf{Br}_2 \,$ অণু জমা হয় = $\frac{6.023 \times 10^{23}}{2} \,$ টি

$$1.26~\mathrm{F}$$
 চার্জ দ্বারা $\mathrm{Br_2}$ অণু জমা হয় = $\frac{6.023 \times 10^{23} \times 1.26}{2}$

 $= 3.80 \times 10^{23}$ fb

সূতরাং, 3.80×10^{23} টি অণু জমা হবে।

ত্ব কোষ বিক্রিয়াটি নিম্নরপ:

অ্যানোডে বিক্রিয়া: $2X - 2e^- \rightarrow 2X^+$

ক্যাথোডে বিক্রিয়া: $Y^{2+} + 2e^- \rightarrow Y$

কোষ বিক্রিয়া: $2X + Y^{2+} \rightarrow 2X^{+} + Y$

এখানে,
$$E_{X/X^+}^0 = -0.799 \text{ V}$$

$$E_{Y^{2+}/Y}^{0} = -2.87 \text{ V}$$

উদ্দীপকের বিক্রিয়ার ক্ষেত্রে,

প্রমান কোষ বিভব,
$$E_{cell}^0 = E_{X/X^+}^0 + E_{Y^{2+}/Y}^0$$

= $-0.799 - 2.87$

$$= -3.669 \text{ V}$$

কোষ বিভব,
$$E_{cell} = E_{cell}^0 - \frac{RT}{nF} ln \frac{[X^{\dagger}]^2}{[Y^{2+}]}$$

$$= -3.669 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{(0.01)^2}{0.02}$$
$$= -3.54 \text{ V}$$

বিপরীত বিক্রিয়ার ক্ষেত্রে,

 $Y(s)/Y^{2+}(aq) (0.02 M) \parallel X^{+}(aq) (0.01 M) / X(s)$

প্রমাণ কোষ বিভব =
$$E_{X^+/X} - E_{Y^{2+}/Y}$$

$$= 0.799 - (-2.87)$$

$$= 0.799 + 2.87$$

$$= +3.669 \text{ V}$$

কোষ বিভব,
$$E_{coll} = E_{coll}^0 - \frac{RT}{nF} \ln \frac{[Y^{2^+}]}{[X^+]^2}$$

$$= 3.669 - \frac{8.314 \times 298}{2 \times 96500} \ln \frac{0.02}{(0.01)^2}$$

$$= +3.60 \text{ V}$$

সুতরাং প্রদত্ত বিক্রিয়া এবং তার বিপরীত বিক্রিয়ার ক্ষেত্রে e.m.f এর মানের কোনো পরিবর্তন হবে না; শুধু চিহ্ন বিপরীত হবে। গুরুত্বপূর্ণ জ্ঞানমূলক প্রশ্নোত্তর

১। তড়িৎ পরিবাহিতা কী?

বি বো ১১

উত্তর: তড়িৎ পরিবাহিতা তড়িৎ মাধ্যমের একটি ধর্ম যার দরুন এর মধ্য দিয়ে তড়িৎ প্রবাহিত হয়।

२। अर्थभितवाश काक वर्ण?

উত্তর: তড়িৎ পরিবাহী ও অপরিবাহী এ দুরের মাঝামাঝি পরিবাহিতা গুণসম্পন্ন কিছু পদার্থ আছে। এদেরকে অর্থপরিবাহী বা সেমিকভাক্টর বলা হয়।

৩। তড়িৎ বিশ্লেষ্য কী?

[मि. वा. २२; त्रा. वा. २১]

উত্তর: দ্রবণে বা গলিত অবস্থায় যে সকল পদার্থের মধ্য দিয়ে তড়িৎ প্রবাহিত করলে পদার্থগুলো বিয়োজিত হয়ে নতুন পদার্থের সৃষ্টি করে এবং তড়িৎ পরিবহন করে, তাদেরকে তড়িৎ বিশ্লেষ্য বলে।

৪। তড়িৎ বিশ্লেষণের সংজ্ঞা দাও।

[ম. বো. ২১]

উত্তর: তড়িৎ বিশ্লেষ্যের মধ্য দিয়ে তড়িৎ চালনা করা হলে তড়িৎ বিশ্লেষ্য পদার্থের রাসায়নিক বিয়োজন ঘটে এবং নতুন ধর্মবিশিষ্ট পদার্থ উৎপন্ন হয়। এরূপ পরিবর্তনকে তড়িৎ বিশ্লেষণ বলে।

৫। তড়িৎ প্রলেপন কাকে বলে?

উত্তর: তড়িং বিশ্লেষণের মাধ্যমে একটি ধাতুর তৈরি জিনিসপত্রের উপর অন্য একটি কম সক্রিয় ধাতুর প্রলেপ সৃষ্টি করাকে তড়িং প্রলেপন বলে।

৬। ড্যানিয়েল কোষ কি?

উত্তরঃ জ্যানিয়েল কোষ একটি দুই প্রকোষ্ঠ বিশিষ্ট গ্যালভানিক বা ভোল্টার কোষ যার অ্যানোড হলো Zn দণ্ড এবং ক্যাথোড হলো Cu দণ্ড।

৭। ধাতু ক্ষয় কি?

উত্তরঃ কোনো ধাতু পরিবেশ থেকে পানি ও অক্সিজেন সহযোগে বিক্রিয়া করে ক্ষমপ্রাপ্ত হলে, তাকে Corros<mark>i</mark>on বা <mark>ধা</mark>তুর ক্ষয় বলে।

৮। ব্ৰাইন কি?

উত্তরঃ NaCl (খাদ্য লবণ) এর গাঢ় জলীয় দ্রবণকে ব্রাইন বলা হয়।

৯। তড়িৎ রাসায়নিক সারি কী?

চিচ বো ১৩

উত্তর: তড়িৎ বিশ্লেষণের সময় বিভিন্ন আয়নের চার্জমুক্ত হওয়ার প্রবণতার উপর ভিত্তি করে আয়নসমূহকে একটি সারিতে সাজানো হয়েছে, তাকে তড়িৎ রাসায়নিক সারি বলা হয়।

১০। পরিবাহিতা কোষ কাকে বলে?

উত্তর: একটি নির্দিষ্ট আয়তনের তড়িৎ বিশ্লেষ্যের রোধ পরিমাপের জন্য নির্দিষ্ট ক্ষেত্রফলবিশিষ্ট দুটি তড়িৎদ্বারকে নির্দিষ্ট ব্যবধানে কাঁচের পাত্রে রেখে যে কোষ তৈরি করা হয়়, তাকে পরিবাহিতা কোষ বলে।

১১। আপেক্ষিক পরিবাহিতা কী?

কি বো. ২১

উত্তর: 1 cm দ্রত্বে থাকা ও 1 cm² ক্ষেত্রফলবিশিষ্ট দৃটি তড়িৎদারের মধ্যবর্তী অংশের তড়িৎ বিশ্লেষ্য দ্রবণের পরিবাহিতাকে ঐ তড়িৎ বিশ্লেষ্যের আপেক্ষিক পরিবাহিতা বলে।

১২। তড়িৎ রাসায়নিক কোষ কী?

[কু. বো. ২২; ঢা. বো ১৯]

উত্তরঃ যে কোষে রাসায়নিক জারণ-বিজারণ বিক্রিয়ার ফলে রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত হয়, তাকে তড়িৎ রাসায়নিক কোষ বলে।

১৩। সেকেন্ডারি তড়িৎ কোষ কাকে বলে?

[চ. বো. ১৯]

উত্তর: যে তড়িৎ রাসায়নিক কোষে বাইরে থেকে বিদ্যুৎ প্রবাহিত করে বিদ্যুৎ শক্তিকে রাসায়নিক শক্তিরূপে সঞ্চিত করা হয় এবং পরে ঐ রাসায়নিক শক্তিকে পুনরায় বিদ্যুৎ শক্তিতে রূপান্তরিত করা হয়, তাকে গৌণ বা সেকেন্ডারি তড়িৎ কোষ বলে।

১৪। e.m.f এর সংজ্ঞা দাও। রো. বো. ২৩, ১৯; অনুরূপ প্রশ্ন: কু. বো. ২২, ২১; व. वा. २); मि. वा. २); ह. वा. २), ४१; य. वा. ४৯; मि. वा. ४१]

উত্তর: কোম্বের অ্যানোডের জারণ বিভব ও ক্যাথোডের বিজারণ বিভবের সমষ্টিকে কোষ বিভব বা কোষটির তড়িচ্চালক বল বা কোষটির electro motive force (e.m.f) বলে।

১৫। মোলার তড়িৎ পরিবাহিতা কী?

উন্তর: 1 মোল পরিমাণের দ্রবণকে 1 cm দ্রত্বে থাকা 2 টি উপযুক্ত তড়িৎদ্বারের মধ্যবর্তী স্থানে রাখলে সৃষ্ট তড়িৎ পরিবাহিতাকে মোলার পরিবাহিতা বলে।

১৬। রাসায়নিক তুল্যাঙ্ক কাকে বলে?

উত্তর: 1 F তড়িৎ চার্জ প্রবাহিত করলে যে পরিমাণ পদার্থ অ্যানোডে দ্রবীভূত বা ক্যাথোডে সঞ্চিত হয় তাকে ঐ মৌলের রাসায়নিক তুল্যান্ধ বলা ২৭। প্রমাণ তডিংদ্বার বিভব কাকে বলে? रय ।

১৭। কোষ ধ্রুবক কি?

উত্তর: কোনো কোষের দুই তড়িংদ্বারের মধ্যবর্তী দূরত্ব এবং প্রতিটি তড়িৎদ্বারের প্রস্থচ্ছেদের এর অনুপাতকে কোষ ধ্রুবক বলা হয়।

১৮। ফ্যারাডের প্রথম সূত্রটি লিখ।

क्. त्वा. २२, २५; य. त्वा. २२;

व. त्वा. २२, ১৯; म. त्वा. २२, २১; ज. त्वा. २১; ज. त्वा. २১] উত্তরঃ তড়িৎ বিশ্লেষণের সময় যেকোনো তড়িৎদ্বারে সংঘটিত রাসায়নিক বিক্রিয়ার পরিমাণ অর্থাৎ, কোনো তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত পদার্থের পরিমাণ প্রবাহিত চার্জের সমানুপাতিক।

১৯। ফ্যারাডে কী?

[দি. বো. ২১]

উত্তর: ফ্যারাডে হলো বিদ্যুৎ চার্জ প্রবাহের একক যা দ্বারা প্রতি মোল ইলেকট্রন প্রবাহের ফলে উৎপন্ন মোট চার্জের পরিমাণ নির্বারণ করা

২০। ফ্যারাডে ধ্রুবক কাকে বলে? [क्. त्वा. २७; मि. त्वा. २२, ১१; मि. त्वा. २১] উত্তর: এক মোল ইলেকট্রনের মোট চার্জ 96,500 কুলম্ব। এ পরিমাণ বিদ্যুৎ চার্জকে এক ফ্যারাডে চার্জ বা ফ্যারাডে ধ্রুবক বলে।

২১। তড়িৎ রাসায়নিক তুল্যাঙ্ক কাকে বলে?

সি. বো. ২৩, ২২; দি. বো. ২৩; ব. বো. ২২

উত্তর: তড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোন পদার্থের যত পরিমাণ অ্যানোডে দ্রবীভূত হয় বা ক্যাথোডে সঞ্চিত হয়, তাকে সেই পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক বলা হয়।

Rhombus Publications

২২। অর্ধকোষ কাকে বলে?

..... ACS, > Chemistry 2nd Paper Chapter-4 [য. বো. ২৩; ব. বো. ২১]

উত্তর: কোনো তড়িৎ রাসায়নিক কোষের প্রতিটি তড়িৎদ্বার ও তড়িৎ বিশ্লেষ্য যুগলকে একসাথে অর্থকোষ বলে।

২৩। জারণ অর্ধকোষ কী?

কু. বো. ২১]

উত্তর: জারণ অর্ধকোষ হলো ঐ সকল অর্ধকোষ যেখানে একটি ধাতব দন্তকে তার দ্রবণে নিমজ্জিত করলে ধাতব দণ্ডটি ইলেকট্রন ত্যাগ করে জারিত

২৪। প্রমাণ জারণ বিভব কী?

ন্না. বো. ২২)

উত্তরঃ তড়িৎদ্বার ও দ্রবণের সংযোগ স্থলে অ্যানোড কর্তৃক ইলেকট্রন ত্যাগের প্রবণতার ফলে যে বিভব পার্থক্যের সৃষ্টি হয়, তাকে প্রমাণ জারণ বিভব বলে।

২৫। প্রমাণ হাইড্রোজেন তড়িৎদার কী?

ঢা. বো. ২২)

উত্তর: একক মোলার ঘনমাত্রা বিশিষ্ট কোনো H⁺ আয়নের দ্রবণে প্লাটিনাম ওঁড়ার আন্তরণ যুক্ত প্লাটিনাম পাত রেখে 1 atm বায়ুচাপে বিশুদ্ধ হাইড্রোজেন গ্যাস বুদবুদ আকারে সরবরাহ করলে যে তড়িৎদ্বার উৎপন্ন হয়, তাকে প্রমাণ হাইড্রোজেন তড়িৎদ্বার বলা হয়।

২৬। রেফারেন্স তড়িৎদ্বার কী?

[मि. त्वा. **১**9]

উত্তর: জানা বিভবের তড়িৎদারের সঙ্গে কোনো পরীক্ষণীয় তড়িৎদার সংযোগ করে জানা বিভবের সাপেকে পরীক্ষণীয় তড়িৎদ্বারটির বিভব নির্ণয় করা হয়। এই জানা বিভবের তড়িৎদ্বারটিকে রেফারেন্স তড়িৎদ্বার বলে।

মি. বো. ২৩; ঢা. বো. ২১; রা. বো. ২১; চ. বো. ১৯]

উত্তর: বিভিন্ন তড়িংশ্বারের বিভবের তুলনামূলক মান প্রকাশের জন্য প্রতিটি তড়িংদারের তড়িং বিশ্লেষ্য দ্রবণের ঘনমাত্রা 1 M এবং তাপমাত্রা 25°C বা 298 K রাখা হয়। এ অবস্থায় প্রতিটি তড়িৎদ্বারের বিভবকে প্রমাণ তড়িৎদ্বার বিভব বলে।

২৮। তড়িৎদার বিভব কী?

উত্তর: তড়িৎদ্বারের পৃষ্ঠতলে ইলেকট্রন ত্যাগ বা ইলেকট্রন গ্রহণ এ দুটি বিপরীতমুখী প্রবণতার পরিমাণ কখনো সমান হয় না। তাই ধাতব দণ্ড ও এর দ্রবণের আয়নের মধ্যে একটি বৈদ্যুতিক বিভব সৃষ্টি হয়। এ বিভবকে তড়িৎদ্বার বিভব বলা হয়।

২৯। নির্দেশক তড়িৎদার কী?

[ঢা. বো. ২৩; রা. বো. ২৩]

উত্তরঃ যে তড়িৎদারের বিভব নির্দিষ্ট এবং সঠিকভাবে জানা থাকে এবং যার দ্বারা অপর কোনো অজ্ঞাত তড়িৎদ্বারের বিভব নির্ণয় করা যায়, তাকে নির্দেশক তড়িৎদ্বার বলে।

৩০। লবণ সেতু কাকে বলে?

[व. त्वा. २२; जि. त्वा. २२, २১, ১৭]

উত্তরঃ দুটি অর্ধকোষের মধ্যে পরোক্ষ সংযোগ সাধনের জন্য ব্যবহৃত U আকৃতির বাঁকানো কাঁচনল যা KCI, KNO3 বা NH4NO3 এর সম্পৃক্ত দ্রবণ দিয়ে পূর্ণ থাকে, তাকে লবণ সেতু বলে।

৩১। অসমোটিক চাপ কি?

উত্তর: কোনো ধাতু বা হাইড্রোজেনকে তাদের নিজেদের আয়নের দ্রবণে স্থাপন করা হলে ধাতু অথবা হইড্রোজেন গ্যাসের দ্রবণে যাওয়ার প্রবণতা যে বিপরীতমুখী চাপ দারা বাধাগ্রস্থ হয়, তাকে দ্রবণের অভিশ্ৰবণ বা অসমোটিক চাপ বলে।

ভড়িৎ রসায়ন ➤ ACS, FRB Compact Suggestion Book

গুরুত্বপূর্ণ অনুধাবনমূলক প্রশ্নোত্তর

১। ধাত্র ক্ষয় একটি রাসায়নিক প্রক্রিয়া-ব্যাখ্যা কর। দি. বো. ২৩। উত্তর: ধাতৃ পানির উপস্থিতিতে পরিবেশের O2 এর সাথে জারণ-বিজারণ বিক্রিয়ার মাধ্যমে ক্ষয়প্রাপ্ত হয়। য়েমন: লোহার মরিচা ধরা। লোহার Fe পরমাণু অ্যানোড তড়িৎদ্বার এবং কার্বন ও কম সক্রিয় ধাতৃসমৃহ ক্যাথোড তড়িৎদ্বার হিসেবে কাজ করে।

জারণ: Fe(s) -> Fe21(aq) + 2e-

বিজারণ: $H_2O(I) + \frac{1}{2}O_2(g) + 2e^- \rightarrow 2OH^-(aq)$

জারণ-বিজারণ: $Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(aq)$

পুনরায় জারণ: $2\text{Fe}(OH)_2(aq) + H_2O(l) + \frac{1}{2}O_2(g) \rightarrow$

Fc₂O₃.3H₂O(s) মরিচা

তাই, ধাতু ক্ষয় একটি রাসায়নিক প্রক্রিয়া।

২। তড়িৎ বিশ্লেষ্য পরিবাহীকে আয়নিক পরিবাহী বলা হয় কেন? দি. বো. ২৩। উব্দ্র: জলীয় দ্রবণে আয়নিক যৌগের ও পোলার সমযোজী যৌগের ধনাত্মক ও ঝণাত্মক আয়নগুলো যথাক্রমে ইলেকট্রন গ্রহণ ও বর্জন করে অর্থাৎ, রাসায়নিক পরিবর্তনের মাধ্যমে তড়িৎ পরিবহন করে থাকে; এদেরকে তড়িৎ বিশ্লেষ্য পরিবাহী বলে। দ্রবণে এসব আয়ন চলাচলের মাধ্যমে তড়িৎ পরিবহন হয়ে থাকে। আয়নের চলাচল দ্বারা এই তড়িৎ পরিবাহিত হয় বলে তড়িৎ বিশ্লেষ্য পরিবাহীকে আয়নিক পরিবাহী বলে।

ত। NaCl(aq) তড়িৎ বিশ্লেষ্য কি? ব্যাখ্যা কর। জি. বে. ১৯। উন্তর: NaCl একটি আরনিক কেলাসাকার যৌগ। জলীয় দ্রবণে NaCl লবণ সম্পূর্ণরূপে বিয়োজিত হয়ে ধনাত্মক Na⁺ আয়ন ও ঝণাত্মক Cl আয়ন তৈরি করে। NaCl জলীয় দ্রবণে প্রায় 70-100% পরিমাণে আয়নিত হয়। ধনাত্মক ও ঝণাত্মক আয়ন থাকায় এর মধ্য দিয়ে তড়িৎ প্রবাহিত করলে অ্যানোডে Cl₂ গ্যাস এবং ক্যাথোডে Na ধাতু জমা হয়। অর্থাৎ, NaCl দ্রবণের তড়িৎ প্রবাহ পরিবাহীর আয়ন য়য়া সম্প্র হয়। সুতরাং, NaCl দ্রবণ একটি তড়িৎ বিশ্লেষ্য পরিবাহী।

8। NaCl দ্রবণ তড়িৎবিশ্লেষ্য পরিবাহী কেন? দি. বো. ১৭ উক্তরঃ দ্রবণ অবস্থায় সোডিয়াম ক্লোরাইডের সোডিয়াম আয়ন (Na[†]) ও ক্লোরাইড (CI) আয়নসমূহ মোটামুটি মুক্ত অবস্থায় চলাচল করে। তখন Na[†] ও CI⁻ দ্বারা তড়িৎ পরিবহন করা সম্ভব হয়।

$$NaCI \longrightarrow Na^{+} + CI^{-}$$

এ তরলে দুটি তড়িৎদ্বার প্রবেশ করিয়ে এদের মধ্যে ব্যাটারির সাহায্যে বিভব পার্থক্য সৃষ্টি করা হয়। তখন ঋণাত্মক ক্যাথোডে ধনাত্মক আধানযুক্ত সোভিয়াম আয়নসমূহ আকৃষ্ট হয়ে ক্যাথোডে পৌছামাত্র ক্যাথোড এদেরকে ইলেকট্রন দান করে; ফলে সোভিয়াম ধাতুরূপে ক্যাথোডে সঞ্জিত হয়।

$$Na^+ + e^- \longrightarrow Na(s)$$

অন্যদিকে অ্যানোডে ঋণাত্মক ক্লোরাইড আয়নসমূহ আকৃষ্ট হয়ে ইলেকট্রন ত্যাগ করে ক্লোরিন পরমাণু এবং শেষে ক্লোরিন গ্যাসের অণু সৃষ্টি করে। এ প্রক্রিরাকে গলিত NaC/ এর তড়িৎ বিশ্লেষণ বলা হয়। $2CI^{-}-2e^{-}\longrightarrow CI_{2}(g)$

এ কারণে NaCl দ্রবণ তড়িৎবিশ্লেষ্য পরিবাহী।

৫। তাপমাত্রা বৃদ্ধিতে ইলেকট্রনীয় পরিবাহীর তড়িৎ প্রবাহ হ্রাস পায় কেন? চি. বো. ১১

উন্তর: ইলেকট্রনীয় পরিবাহীর পরমাণুর বহিঃস্তরে এক বা একাধিক সঞ্চারণশীল ইলেকট্রন থাকে। এসব ইলেকট্রনের প্রবাহের মাধ্যমে ইলেকট্রনীয় পরিবাহীর ভেতর দিয়ে তড়িৎ প্রবাহিত হয়। যদি তাপমাত্রা বৃদ্ধি পায়, তবে এসব সঞ্চারণশীল ইলেকট্রনের কম্পন বৃদ্ধি পায়। এতে তড়িৎ পরিবহনের সময় তাদের নিজেদের মধ্যে সংঘর্ষের পরিমাণ্ড বৃদ্ধি পায় এবং বেগ হ্রাস পায়। ফলে তড়িৎ প্রবাহের মান হ্রাস পায়।

৬। ইলেকট্রনীয় পরিবাহী ও ইলেকট্রোলাইটিক পরিবাহীর মধ্যে পার্থক্য উল্লেখ কর।

উত্তর: ইলেকট্রনীয় পরিবাহী ও ইলেকট্রোলাইটিক পরিবাহীর মধ্যে পার্থক্য নিমুদ্ধণ:

ইলেক্ট্রনীয় পরিবাহী	ইলেকট্রোলাইটিক পরিবাহী		
 ইলেকট্রনের সঞ্চারণ দ্বারা তড়িৎ প্রবাহের সৃষ্টি হয়। 	১। আয়নের সঞ্চারণ দারা তি প্রবাহের সৃষ্টি হয়।		
২। তাপমাত্রা বৃদ্ধি করলে এ পরিবাহীর তড়িৎ পরিবাহিতা হ্রাস পায়।			

তিড়িৎ বিশ্লোষণ একটি জারণ-বিজারণ প্রক্রিয়া
 ব্যাখ্যা কর।
 (छा. ব্যা. ২৩; জনুরূপ প্রশ্ল: य. বো. ২৩; য়া. বো. ২২, ২১; দি. বো. ২১; দি. বো. ২১;
 সম্মিলিত বো. ১৮; ঢা. বো. ১৭)

উত্তর: তড়িৎ বিশ্লেষণ একটি রিডক্স বা জারণ-বিজারণ বিক্রিয়া।

তড়িৎ বিশ্লোবণের সময় ক্যাটায়ন ক্যাথোড তড়িৎদারে ইলেকট্রন গ্রহণ

করে বিজারিত হয় এবং অ্যানায়ন অ্যানোড তড়িৎদারে ইলেকট্রন দান

করে জারিত হয়। ষেমন– গলিত NaCl এর তড়িৎ বিশ্লেষণে Na⁺

আয়ন ক্যাথোডে ইলেকট্রন গ্রহণ করে Na ধাতু এবং Cl আয়ন

অ্যানোডে ইলেকট্রন দান করে ক্রোরিন গ্যাস উৎপন্ন করে।

ক্যাথোডে বিজারণ বিক্রিয়া: $Na^+ + e^- \longrightarrow Na$ (s) অ্যানোডে জারণ বিক্রিয়া: $2Cl^- \longrightarrow Cl_2$ (g) $+ 2e^-$

৮। কপারের তড়িৎ রাসায়নিক তুল্যান্ধ 0.000329 g/C বলতে কী বুঝ?

কি. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২৩; চ. বো. ২১]

উত্তর: তড়িৎ বিশ্লেষণের সময় এক কুলম বিদ্যুৎ প্রবাহের ফলে কোনো পদার্থের যে পরিমাণ অ্যানোডে দ্রবীভূত হয় বা ক্যাথোডে সঞ্চিত হয়, তাকে সেই পদার্থের তড়িৎ রাসায়নিক তুল্যাদ্ধ বলা হয়। কপারের তড়িৎ রাসায়নিক তুল্যাদ্ধ 0.000329 g/C বলতে বোঝায় তড়িৎ বিশ্লেষণের সময় দ্রবণে 1 কুলম চার্জ প্রবাহের ফলে অ্যানোড তড়িৎদ্বারে 0.000329 g কপার দ্রবীভূত হয় অথবা ক্যাথোড তড়িৎদ্বারে 0.000329 g কপার সঞ্চিত হয়।

৯। Ag এর রাসায়নিক তুল্যাঙ্ক 0.001118 g/C বলতে কী বুঝ?

বি. বো. ২৩; ম. বো. ২২; ए. বো. ২২, ২১; ম. বো. ২২। উত্তরঃ তড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোনো পদার্থের যে পরিমাণ অ্যানোডে দ্রবীভৃত হয় বা ক্যাথোডে সঞ্চিত হয়, তাকে সেই পদার্থের তড়িৎ রাসায়নিক তুল্যান্ধ বলা হয়। সিলভারের তড়িৎ রাসায়নিক তুল্যান্ধ 0.001118 g/C বলতে বোঝায় তড়িৎ বিশ্লেষণের সময় সিলভার দ্রবণে 1.0 C বিদ্যুৎ চার্জ প্রবাহিত করলে 0.001118 g Ag অ্যানোড তড়িৎদ্বারে দ্রবীভৃত হবে অথবা ক্যাথোড তড়িৎদ্বারে সঞ্চিত হবে।

Rhombus Publications

t.me/admission stuffs

১০। AI এর তড়িৎ রাসায়নিক তুল্যাঙ্কের মান নির্ণয় কর।

উত্তর: Al এর তড়িৎ রাসায়নিক তুল্যান্ধ,

$$Z = \frac{AI \text{ এর প্রাম পারমাণবিক ভর}}{\text{যোজনী} \times 96500}$$
$$= \frac{27}{3 \times 96500}$$
$$= 9.33 \times 10^{-5} \text{ g C}^{-1}$$

১১। ফ্যারাডের সূত্র হতে একটি ইলেকট্রনের চার্জ নির্ণয় কর। (রা. বো. ২২। উত্তর: তড়িৎ বিশ্লেষণের সমীকরণ মতে, একযোজী এক মোল ক্যাটায়নকে চার্জ মুক্ত করতে 1 F চার্জের প্রয়োজন হয়।

এক মোল ক্যাটায়নের সংখ্যা হলো অ্যাভোগাড্রো সংখ্যা = N_A একটি ইলেকট্রনের চার্জ = e^-

$$e^{-} = \frac{96500 \text{ C}}{N_A}$$

$$= \frac{96500 \text{ C}}{6.022 \times 10^{23}}$$

$$= 1.60246 \times 10^{-19} \text{ C}$$

১২। দেখাও যে, 1 F = 96500 কুলম।

[ह. त्वा. २**)**]

উত্তর: 1 মোল ইলেকট্রনে অ্যাভোগাড্রোর সংখ্যার সমান ইলেকট্রন থাকে একটি ইলেকট্রনের চার্জ হলো = 1.602×10^{-19} কুলম্ব।

∴ 1 mol ইলেক্ট্রন = 6.023 × 10²³ টি ইলেক্ট্রন

.: 1 মোল ইলেকটনের মোট চার্জ

=
$$1.602 \times 10^{-19} \times 6.022 \times 10^{23}$$
 C
= 96472.44 C

≃ 96500 C

মোল পরিমাণ বিদ্যুৎ চার্জকে এক ক্যারাডে চার্জ বলা হয়। সুতরাং,
 F = 96500 C।

১৩। তড়িৎদ্বার কখন অ্যানোড বা ক্যাথোড হিসেবে কাজ করবে?

উত্তর: কোনো তড়িংদ্বারের বিভব জারণ অথবা বিজারণ বিভব হিসেবে বের করা যায়। বিভব যতো ধনাতাক হবে তড়িংদ্বারটি ততই অ্যানোড বা ঋণাত্মক তড়িংদ্বার হিসেবে আচরণ করবে। আর বিভব যতো ঋণাতাক হবে তড়িংদ্বারটি ততোই ক্যাথোড বা ধনাতাক তড়িংদ্বার হিসেবে কাজ করবে।

১৪ । প্রমাণ H-তড়িংদার কী?

বি. বো. ১৯; ব. বো. ১৭)

উত্তর: একক মোলার ঘনমাত্রা বিশিষ্ট কোনো H^+ আরনের দ্রবণে প্লাটিনাম গ্র্ডার আন্তরণ যুক্ত প্লাটিনাম পাত রেখে 1 atm বায়্চাপে বিশুদ্ধ হাইড্রোজেন গ্যাস বৃদবৃদ আকারে সরবরাহ করলে যে তড়িংদ্বার উৎপন্ন হয়, তাকে প্রমাণ হাইড্রোজেন তড়িংদ্বার বলা হয়। প্লাটিনাম ধাতু H_2 গ্যাস শোষণ করে। শোষিত অবস্থায় H_2 তড়িংদ্বারে নিমুরূপ অর্থনোর বিক্রিয়া চলতে থাকে এবং এর তড়িংদ্বার বিভবকে 0.0~V ধরা হয়। $H_2(g)(1~atm) \rightarrow 2H^+(aq)(1~M) + 2e^-; \quad E^0 = 0.0~V$ হাইড্রোজেন তড়িংদ্বারকে নিমুরূপে লেখা হয়: $Pt(s), H_2(g) (1~atm) / H^+(aq) (1~M); E^0 = 0.0~V$

Rhombus Publications

উত্তর: ধাতব দণ্ডের কেলাসে ধাতৃর আয়নসমূহ ল্যাটিসে নির্দিষ্ট স্থানে থাকে এবং এর যোজনী ইলেকট্রনসমূহ ল্যাটিসের কাঁকা স্থানে চলাচল করে। কোনো ধাতৃর দণ্ডকে এর কোনো লবণের দ্রবণে ডুবালে তখন ধাতৃর আয়ন ল্যাটিস ত্যাগ করে দ্রবণে প্রবেশের প্রবণতা দেখায়। এ অবস্থায় ধনাত্মক চার্জযুক্ত আয়নের চার্জের সমসংখ্যক ইলেকট্রন ধাতব দণ্ডে অতিরিক্ত থাকে, এই ধাতব দণ্ডটি ঋণাত্মক চার্জযুক্ত হয়। ধাতব আয়নগুলো পানির সাথে যুক্ত হয়ে হাইড্রেটেড আয়নরূপে থাকে। আবার হাইড্রেটেড ধাতব ধনাত্মক আয়নগুলো ঐ ধাতব দণ্ডের ইলেকট্রন গ্রহণ করে পুনরায় পরমাণুরূপে ধাতব দণ্ডে যুক্ত হতে চায়। এরূপে ধাতৃটির ইলেকট্রন ত্যাগের বেশি বা কম প্রবণতার ফলে ধাতব দণ্ড ঋণাত্মক বা ধনাত্মক চার্জযুক্ত হতে পারে।

প্রত্যেকটি তড়িংদ্বারের পৃষ্ঠতলে ইলেকট্রন ত্যাগ বা ইলেকট্রন গ্রহণ-এ দুটি বিপরীতমুখী প্রবণতার পরিমাণ কখনো সমান হয় না; তাই ধাতব দণ্ড ও এর দ্রবণের আয়নের মধ্যে একটি বৈদ্যুতিক বিভব সৃষ্টি হয়। এ বিভবকে তড়িংদ্বার বিভব বলা হয়।

১৬। Zn ইলেকট্রোডের প্রমাণ জারণ বিভব $E^0_{Zn/Zn^2} = +0.76 \text{ V}$ বলতে কী বুঝ? [य. ৰো. ২১; বি. ৰো. ২১; বি. ৰো. ১১]

উত্তর: তড়িংদার ও দ্রবণের সংযোগস্থলে অ্যানোড কর্তৃক ইলেকট্রন ত্যাগের প্রবণতার ফলে যে বিভব পার্থক্যের সৃষ্টি হয়, তাকে প্রমাণ জারণ বিভব বলে। জিংক ইলেকট্রোডের প্রমাণ জারণ বিভব $E^0_{Zn/Zn^{2+}} = +0.76 \text{ V}$ বলতে বোঝায়, 25°C তাপমাত্রায় Zn এর ধাতব তড়িংদারকে $ZnSO_4$ লবণের 1 মোলার ঘনমাত্রার দ্রবণে নিমজ্জিত করলে Zn তড়িংদার ও $ZnSO_4$ দ্রবণের সংযোগ স্থলে যে জারণ বিভবের সৃষ্টি হয় তার মান হলো 0.76 V।

১৭। কপারের প্রমাণ বিজারণ বিভব + 0.34 Volt। কথাটির অর্থ কী? ব্যাখ্যা কর। চি. বো. ২৩; দি. বো. ২৩, ২২

উত্তর: তড়িংদ্ধার ও দ্রবণের সংযোগস্থলে ক্যাথোড কর্তৃক ইলেকট্রন গ্রহণ প্রবণতার ফলে যে বিভব পার্থক্যের সৃষ্টি হয়, তাকে প্রমাণ বিজারণ বিভব বলে। কপারের বিজারণ বিভব 0.34 V বলতে বোঝায়, 25°C তাপমাত্রায় Cu এর ধাতব তড়িংদ্ধারকে CuSO4 লবণের 1 মোলার ঘনমাত্রায় দ্রবণে নিমজ্জিত করলে Cu তড়িংদ্ধার এবং CuSO4 দ্রবণের সংযোগস্থলে যে বিজারণ বিভবের সৃষ্টি হবে তার মান হবে 0.34 V।

১৮। Zn এর তড়িংদ্বার বিভব $0.76\ V$ বলতে কী বুঝ? (রা. বে. ১৭) উত্তর: জিম্ক (Zn) এর তড়িংদ্বার বিভব $0.76\ V$ বলতে বুঝায়, কোন বিদ্যুৎ উৎস হতে যদি $0.76\ V$ বিদ্যুৎ সরবরাহ করা হয় তাহলে Zn ইলেকট্রোড হতে Zn ইলেকট্রন ত্যাগ করে ধাতব আয়ন হিসেবে দ্রবণে চলে আসে।

১৯। কপার অপেক্ষা জিল্ক সক্রিয় কেন?

[চ. বো. ১৭]

উত্তরঃ যে ধাতুর ইলেকট্রন ত্যাগ করে জারণ ঘটানোর প্রবণতা যত বেশি সে ধাতু তত বেশি সক্রিয়। যার ইলেকট্রন ত্যাগের প্রবণতা যত বেশি তার জারণ বিভবের মানও তত বেশি কপারের প্রমাণ জারণ বিভব 0.34 V এবং জিঙ্কের প্রমাণ জারণ বিভব 0.76 V। জিন্ধ ধাতুর জারণ বিভব বেশি মানে কপারের চেয়ে জিঙ্কের সক্রিয়তা বেশি। কপারের চেয়ে জিঙ্কের ইলেকট্রন ছেড়ে দেওয়ার প্রবণতা বেশি। তাই কপার জিঙ্ক অপেক্ষা সক্রিয়।

ভড়িৎ রসায়ন > ১৫১) FRB Compact Suggestion Book

২০। প্রমাণ তড়িৎদ্বার হিসেবে হাইড্রোজেন তড়িৎদ্বার ব্যবহৃত হয় কেন?

উত্তর: প্রমাণ তড়িৎদ্বার হিসেবে হাইড্রোজেন তড়িৎদ্বার ব্যবহৃত হয়। কারণ সর্বজনীন রীতি অনুযায়ী প্রমাণ হাইড্রোজেন তড়িৎদ্বারের মান শূন্য। ফলে এর দ্বারা অন্যান্য তড়িৎদ্বারের প্রমাণ তড়িৎ বিত্তব নির্ণয় করা যায়। প্রমাণ হাইড্রোজেন তড়িৎদ্বারের সাথে পরীক্ষণীয় তড়িৎদ্বার সংযোগে সৃষ্টি কোষের উৎপন্ন e.m.f-কে তড়িৎদ্বার বিত্তব ধরা হয়।

২১। ড্যানিয়েল কোষের কোষ বিক্রিয়া লেখ।

[সি. বো. ২২]

উত্তর: ড্যানিয়েল কোষের কোষ বিক্রিয়া:

জ্যানোডে জারণ বিক্রিয়া: $Zn-2e^- \rightarrow Zn^{2+}$ ক্যাথোডে বিজারণ বিক্রিয়া: $Cu^{2+}+2e^- \rightarrow Cu$ কোষ বিক্রিয়া: $Zn+Cu^{2+} \rightarrow Zn^{2+}+Cu$

২২। গ্যালভানিক কোষে লবণ সেতুর ভূমিকা ব্যাখ্যা কর। মি. বো. ২৩; ঢা. বো. ২২; য. বো. ২২, ২১; দি. বো. ২২, ১৯; ম. বো. ২১; ব. বো. ১৯; ব. বো. ১৭। উত্তরঃ গ্যালভানিক কোষে লবণ সেতুর ভূমিকা:

> লবণ সেতৃ অর্ধকোষদ্বয়ের উভয় দ্রবণের মধ্যে সংযোগ স্থাপন করে কোষের বর্তনী পূর্ণ করে।

> (ii) লবণ সেত্র মধ্যস্থ তড়িৎ বিশ্লেষ্য, বেমন- KNO3 উভয় অর্ধকোষের দ্রবণের সাথে কোন রাসায়নিক বিক্রিয়া করে না; বরং উভয় তরলের মধ্যে প্রয়োজনমত ধনাত্মক ও ঋণাত্মক আয়ন বিনিময়ের কাজ করে।

> (iii) লবণ সেতু উভয় অর্বকোষের দ্রবণের তড়িৎ-নিরপেক্ষতা বজায় রাখতে কাজ করে।

২৩। লবণ সেতুর ভূমিকা ব্যাখ্যা কর।

উত্তর: তড়িৎ রাসায়নিক কোষে লবণ সেতু ব্যবহার করা হয়। তড়িৎ রাসায়নিক কোষের তড়িৎদ্বারের জারণ-বিজারণ বিক্রিয়র সময় লবণ সেতুর অনুপস্থিতিতে জারণ অর্থকোষে ক্যাটায়ন ও বিজারণ অর্থকোষে অ্যানায়ন এর আধিক্য ঘটে। ফলে তড়িৎ প্রবাহ ব্যাহত হয় এবং হ্রাস পেয়ে এক সময় তা বন্ধ হয়ে য়য়। তাই পূর্ণ তড়িৎ রাসায়নিক কোষ উপস্থাপনের ক্ষেত্রে জারণ তড়িৎদ্বার এবং বিজারণ তড়িৎদ্বার এর সাথে লবণ সেতুকে উপস্থাপন করা হয়।

২৪। গ্যালভানিক কোষ কয় প্রকোষ্ঠবিশিষ্ট কোষ? ব্যাখ্যা কর। । কু. বো. ১৯। উত্তর: গ্যালভানিক কোষ দুই প্রকোষ্ঠ বিশিষ্ট কোষ। গ্যালভানিক কোষে সাধারণত দুটি পাত্র ব্যবহৃত হয়। প্রতিটি পাত্রে একটি উপয়ুক্ত তড়িং বিশ্লেষ্য ও একটি ধাতব তড়িংদ্বার আংশিক নিমজ্জিত থাকে। প্রতিটি পাত্রে ব্যবহৃত তড়িং বিশ্লেষ্য ও অর্ধ নিমজ্জিত তড়িংদ্বারের সমন্বয়ে একটি অর্ধকোষ সৃষ্টি হয়। যেমন: ডেনিয়েল কোষ (যা একটি গ্যালভানিক কোষ) এর অর্ধকোষ দুটি হলো: Zn(s) / ZnSO4(aq) এবং Cu(s) / CuSO4(aq)। জিংক তড়িংদ্বার অ্যানোড ও কপার তড়িংদ্বার ক্যাথোড হিসেবে কাজ করে।

২৫। দ্রবণ চাপ ও অভিশ্রবণ চাপ কী?

উন্তর: দ্রবণ চাপ: কোনো ধাতু তার আয়নের দ্রবণে স্থাপন করলে ধাতু থেকে দ্রবণের দিকে যে চাপের সৃস্টি হয় তাকে দ্রবণ চাপ বলে।

 $M(s) \rightarrow M^{n+} + ne^-$; দ্ৰবণ চাপ

অভিস্রবণ চাপ: একই সঙ্গে কোনো ধাতু বা হাইড্রোজেনকে তাদের নিজেদেরকে আয়নের দ্রবণে স্থাপন করা হলে ধাতু অথবা হাইড্রোজেন গ্যাসের দ্রবণে যাওয়ার প্রবণতা বিপরীতমুখী যে চাপ দ্বারা বাধাপ্রাপ্ত হয় তাকে অভিস্রবণ বলে।

 $M^{n+}(aq) + ne^- \rightarrow M(s)$; অসমোটিক চাপ।

HSC পরীক্ষার্থীদের জন্য বাছাইকৃত বহুনির্বাচনি প্রশ্নোত্তর

তড়িৎ পরিবাহী ও পরিবাহিতা

কোনটির তড়িৎ পরিবাহিতা অধিক?

িঢা. বো. ২৩; অনুরূপ প্রশ্ন: ২১

@ Be

3 Al

① Cu

(9) Sc

উত্তর: 📵 Cu

ব্যাখ্যা: প্রদত্ত মৌলসমূহের মধ্যে কপার (Cu) এর সর্বশেষ শক্তিস্তরে একটি ইলেকট্রন রয়েছে; যা ধাতুর মধ্যে মুক্তভাবে চলাচল করতে পারে। এই মুক্ত ইলেকট্রনই কপারকে একটি উত্তম তড়িৎ পরিবাহী করে তোলে।

২। ইলেকট্রনীয় তড়িৎ পরিবাহী কোনটি?

বি. বো. ২৩

⊕ CuSO₄ দ্রবণ

FeSO₄ দ্রবণ

1 Fe

ি Fe₂(SO₄)₃ দ্রবণ
 ি স্ব
 ি স্

উত্তর: 🕦 Fe

ব্যাখ্যা: ইলেকট্রনীর/ধাতব পরিবাহী: তামা (Cu), অ্যালুমিনিরাম (AI), লোহা (Fe), দস্তা (Zn) সহ সকল ধাতু।

এখানে, Fe এর সর্ববহিঃস্থ কক্ষপথের মুক্ত ইলেকট্রন গুলো তড়িৎ প্রবাহের সৃষ্টি করে।

FeSO₄, NaCl, CuSO₄ দ্রবণ ইলেকট্রোলাইটিক বা তড়িৎ বিশ্লেষ্য পরিবাহী।

৩। কোনটি ইলেকট্রনীয় পরিবাহী?

যি, বো, ২২)

© CuSO₄ দ্ৰবণ
 ☐

থ Cu তার

ৰ্ গলিত NaCl

(ছ) কাঁচানল

উত্তর: 🕲 Cu তার

ব্যাখ্যা: (i) ইলেকট্রনীয়/ধাতব পরিবাহী:

■ সকল ধাতু, যেমন কপার (Cu), আ্যালুমিনিয়াম (Al), দস্তা (Zn), লোহা (Fe) ইত্যাদি।

(ii) তড়িৎ বিশ্লেষ্য পরিবাহী:

পানি, এসিড ও ক্ষারের <u>দ্রু</u>বণ, লবণের দ্রুবণ ইত্যাদি।

8। নিচের কোনটি বিদ্যুৎ সুপরিবাহী নয়?

চ. বো. ২২

ক্ত কপার

কার্বন

গে) সিলভার

ত্য অ্যালুমিনিয়াম

উত্তর: 🕲 কার্বন

ব্যাখ্যা: (i) সুপরিবাহী: সহজে বিদ্যুৎ পরিবহন করতে পারে। যেমন: কপার, অ্যালুমিনিয়াম, লোহা, জিঙ্ক বা দস্তা, সিলভার ইত্যাদি।

(ii) অর্থপরিবাহী বা সেমিকভায়ৢর: এরা তড়িৎ পরিবাহী ও অপরিবাহীর মাঝামাঝি পদার্থ। যেমন পর্যায় সারণির Group-14 এর Si ও Ge।

(iii) সুপার কডায়র: সির্দ্ধ তাপমাত্রার নিচে কোনো রোধ থাকে না ও শক্তির অপচয় ছাড়া তড়িৎ পরিবহন সম্ভব। যেমন− Nb₃Ge, YBa₂Cu₃O₁।

(iv) অপরিবাহী/ইনসুলেটর: এদের মধ্য দিয়ে তড়িৎ প্রবাহ হয় না। যেমন− কাঁচ, রাবার, কার্বন, চিনি, পোর্সেলিন ইত্যাদি।

Rhombus Publications

t.me/admission_stuffs

280				ACS; >	Chemistry 2 nd Paper	Chanter-4
¢1	সেমিকভাক্টর হিসেবে ব্যবহৃত হয়			পরিবাহিতার একক হলো-	Chemistry 2 Taper	[ঢা. বো. ২২]
4 1	to the control of the	২২; অনুরূপ প্রশ্ন: ম. বো. ২২; ঢা. বো. ১		(i) mho		101. 011. 20
	⊕ Ge	(1) Zn	"	(ii) ohm ⁻¹		
	① Cu	® A <i>I</i>		(iii) Siemens		
উত্তর	⊚ Ge	G 12		নিচের কোনটি সঠিক?		
	: অর্ধপরিবাহী (Semiconduc	ctor): তড়িৎ পরিবাহী ও তা	-e	⊕ i, ii	(1) i, iii	
		পরিবাহিতা গুণসম্পন্ন কিছু পদ		(f) ii, iii	(1) i, ii, iii	
	আছে। এদেরকে অর্ধপবিবাহী	বা সেমিকভার্ট্টর বলা হয়। যেম	ন. উত্তর	: (1) i, ii, iii	J , , ,	
	সিলিকন (Si), জার্মেনিয়াম (Ge)			The same of the sa	1 1	
	11111 (00), -11411 (1111 (00)	S.M.	ব্যাখ	্যাঃ তড়িৎ পরিবাহিতার একক = 7	রাধের একক ⁼ ohm	
ঙা	গলিত NaCl এর তড়িৎ পরিবারি	হৈতার কারণ কী? ঢা. বো. ১	ы	SI পদ্ধতিতে তড়িৎ পরিবাহিতা	র একক সিমেন্স (sieme	ns)
	কু মুক্ত ইলেকট্রন	মুক্ত পরমাণু	-	CGS পদ্ধতিতে তড়িৎ পরিবাহি		
	ণ্ড মুক্ত আয়ন	মৃক্ত অণু				
উত্তব	প্রত্থারন	0 10 11	321	আপেক্ষিক পরিবাহিতার একক	কোনটি?	[ব. বো. ২৩]
	া: গলিত NaCl এ Na⁺ এবং C	ে আয়ন থাকে। একটি পাতে গৰি	CONSTRU	कि किलां जुन	প্রত্থন ।	5.7
טוט		মাধ্যমে বাহির থেকে তড়িৎ প্রবাহি		 প্রামি⁻¹ 	® ওহম [।] সেমি [।]	
	. [2] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	কে একটি ইলেকট্রন গ্রহণ করে <u>৷</u>	1 4 4	া: ৃত্তি ওহম [া] সেমি [।]	G 54 5114	
		ক <i>CI</i> আয়ন অ্যানোডে ইলেক্	_		1	
		মৃক্ত হয়। এভাবে মুক্ত আয়ন দ্ব	1 4013	্যাঃ আপেক্ষিক পরিবাহিতা, κ = ፲	RA	
	গলিত NaCl এ তড়িৎ প্রবাহিত :		ווא			1 /
	মান্ত Mact ল তাল্ব প্ৰবাহিত :	रक्ष ।		CGS পদ্ধতিতে আপেক্ষিক পৰি	রবাহিতা, ĸ এর একক: :	$\frac{1}{R} \times \frac{1}{A}$
91	কোনটি দুর্বল তড়িৎ বিশ্লেষ্য?	াসি. বো. ২	21	া দৈর্ঘ্যের ও	1কক	
	® NH₄OH	® NaOH		$=rac{1}{ ext{রোধের একক}} imesrac{ ext{দৈর্ঘ্যের ও}}{ ext{দ্মেত্রফলের}}$	একক	
	⊕ H ₂ SO ₄	® HNO ₃				
উত্তর	⊕ NH₄OH	G III.O,		$=\frac{1}{ভহম} \times \frac{সেমি}{(সেমি)^2}$		
	া: দুবর্ল তড়িৎ বিশ্লেষ্য জলীয় দ্রব	্রণে খব কম পরিমাণে (1%-10°	6)	= ওহ্ম ⁻¹ সেমি ⁻¹ (ohm ⁻¹ cm	-I ₁	
010		₃COOH, NH₄OH দ্ৰবণ, ইত্যাদি	1000			MISSIO
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	SI এককে: সিমেন্স × (মিটার)	$s = Sm^{-1}$	THE WAR ENGINEERS
ъΙ	কোনটি তীব্ৰ তড়িৎ বিশ্লেষ্য পদাৰ্থ	f?	N.	DON (HUIS)	••	STUFFS
0 1	ক্তি বিশুদ্ধ পানি	® CH₃COOH				
	ন্ত সুক্রোজ	® H₂SO₄ দ্রবণ		CGS এককে তুল্য পরিবাহিত		
টকন	থি H₂SO₄ দ্ৰবণ	G 112504441	ᅫᆫ	(g. eqv) ⁻¹		
	: (i) সবল তড়িৎ বিশ্লেষ্য:			(9) ohm ⁻¹ .cm ² .mol ⁻¹	® ohm ⁻¹ .(g. eqv)_,
40170	 য়্রি সবল এসিড ও ক্ষারের 	क्रमीय प्रति ।	উত্তর	f: ③ ohm ⁻¹ .cm ² .(g. eqv) ⁻¹		
		তিলার প্রথণ। ত্বিণ যেমন– NaCl, KCl দ্রবণ	ব্যাখ	্যা: তুল্য পরিবাহিতা = $\frac{\kappa \times 100}{C}$	0 cm ³	
1	B. N. C. 1 (1997) 1 (1997) 2 (1997) 1 (1997) 2 (The state of the s		C		
		র্বল এসিডের জলীয় দ্রবণ, যেম		তুল্য পরিবাহিতা = κ এর একব	আয়তনের একক ×	
	CH₃COOH দ্ৰবণ।	water and five out				
	(iii) তড়িৎ অবিশ্লেষ্য: চিনি বা	সুজোজ প্রবণ, ।বজন্ধ সানি ।		ohm ⁻¹ .cm	-1.cm ³	
2.10				(g.eq		
91	কোনটি তড়িৎবিশ্লেষ্য পরিবাহী?	ि	2]	= ohm ⁻¹ . cm	1 ² .(g.eqv) ⁻¹	
	কি বিশুদ্ধ পানি	NaCl(s)		S.I এককে তুল্য পরিবাহিতার এ	একক = S.m²(g.eqv) ⁻¹	
	[⊕] CuSO ₄ (aq)					
উত্তর	⊕ CuSO₄(aq)		78 1	CGS পদ্ধতিতে মোলার পরিব	াহিতার একক কী?	
		•		Ohm ⁻¹ .cm ² .(g. eqv) ⁻¹	³ Ohm ⁻¹ .cm ⁻² .r	nol ^{-l}
701	সুক্রোজের দ্রবণটি–	[ঢা. বো. ২	ય	[⊕] Ohm ⁻¹ .mol ⁻¹	[™] Ohm ⁻¹ .cm ² .m	
	ক্তি তড়িৎ বিশ্লেষ্য	তড়িৎ অবিশ্লেষ্য	উত্তর	f: ⁽¹⁾ Ohm ⁻¹ .cm ² .mol ⁻¹		
	গ্র ইলেকট্রনীয় পরিবাহী	ত্ত্ব অধাতব পরিবাহী		κ× 10	00 cm ³	
	তিড়ৎ অবিশ্লেষ্য			্যাঃ মোলার পরিবাহিতা = <u>κ× 10</u>		
ব্যাখ্য	: যেসব যৌগ পানিতে আয়নিত	না হওয়ায় তড়িৎ পরিবহন কর	ত	মোলার পরিবাহিতার একক = -	ে এর একক × আয়তনে	র একক
	পারে না তাদেরকে তড়িৎ অবিশ্রেষ	য্য পদার্থ বলে।		মোলার পরিবাহিতার একক = -	দ্রবণের মোলার এক	<u>क</u>
	যেমন: চিনি বা সুক্রোজের দ্রবণ,	অ্যালকোহল, তরল হাইড্রোকার্বনসং	হ		ohm ⁻¹ .cm ⁻¹ .cm ³ = ohn	() S
	ইত্যাদি।	and the second s		= 2	ohn = ohn	n ⁻¹ .cm ² .mol ⁻¹

ভড়িৎ রসায়ন > ১৫১/ FRB Compact Suggestion Book২৪১

ফ্যারাডের সূত্র

১৫। 2.5 A বিদ্যুৎ 1 মিনিট ধরে কোনো ইলেকট্রোডে প্রবাহিত করলে প্রবাহিত বিদ্যুতের চার্জ কত কুলম্ব? (রা. বো. ২২; অনুরূপ প্রশ্ন: ব. বো. ২২)

- **®** 0.15
- **(4)** 1.5

15

(F) 150

উত্তর: ত্ম 150

ব্যাখ্যা: আমরা জানি,

- Q = It
 - $= 2.5 \times 60$ = 150 C

১৬। 1 মোল ইলেকট্রনের মোট চার্জ কত?

বি. বো. ২১]

- ক 1.602 × 10⁻¹⁹ কুলম্ব
- 1.602 × 10⁻¹⁹ × 6.022 × 10²³ কুলম্ব
- গী 6.022 × 10²³ কুলম্ব
- 196500 কুলম্ব

উত্তর: ③ 1.602 × 10⁻¹⁹ × 6.022 × 10²³ কুলম্ব

ব্যাখ্যা: 1 মোল ইলেকট্রনে 6.022 × 10²³ টি ইলেকট্রন আছে

1টি ইলেকট্রনের চার্জ = 1.602×10^{-19} C

- ∴ 6.023 × 10²³ টি ইলেক্ট্রনের চার্জ
- $= (1.602 \times 10^{-19} \times 6.022 \times 10^{23}) \text{ C}$

১৭। 0.5 F = কত কুলম্ব?

- **③** 96500 € (9) 289500 C
- 例 193000 C
- উত্তর: 📵 48250 C

ব্যাখ্যা: আমরা জানি,

1F = 95000 C

$$\therefore 0.5 \text{ F} = \left(96500 \times \frac{1}{2}\right) \text{ C} = 48250 \text{ C}$$

১৮। ফ্যারাডের সূত্র প্রযোজ্য-

বি. বো. ২২; অনুরূপ প্রশ্ন: কু. বো. ১৯]

- (i) ইলেকট্রনের চার্জ গণনায়
- (ii) ধাতুর পরিমাণ নির্ণয়ে
- (iii) তড়িৎ বিশ্লেষ্য পরিবাহীর ক্ষেত্রে

নিচের কোনটি সঠিক?

(i, ii

- (1) i, iii
- @ ii, iii
- (1) i, ii, iii

উত্তর: 🕲 i, ii, iii

১৯। Zn এর তড়িৎ রাসায়নিক তুল্যাঙ্ক হচ্ছে-

রো. বো. ২২; অনুরূপ প্রশ্ন: ম. বো. ২২; চ. বো. ২২, ২১; সি. বো. ২১; দি. বো. ১৭]

- (₹) 7.5 g/C
- ③ 5.6994 × 10⁻⁴ g/C
- ³ 5.6994 × 10⁻³ g/C
- (9) 3.388 × 10⁻⁴ g/C

উত্তর: 📵 3.388 × 10⁻⁴ g/C

ব্যাখ্যা: Zn এর তড়িৎ রাসায়নিক তুল্যাঙ্ক,

$$Z = \frac{M}{eF} = \frac{65.4}{2 \times 96500}$$
$$= 3.388 \times 10^{-4} \text{ g/C}$$

- ২০। অ্যালুমিনিয়ামের তড়িৎ রাসায়নিক তুল্যাঙ্ক কত?
 - 3 2.8 × 10⁻⁵ g/C
- $9.33 \times 10^{-5} \text{ g/C}$
- ① $1.4 \times 10^{-1} \text{ g/C}$
- (\P) 2.8 × 10⁻¹ g/C

উত্তর: <a>(२) 9.33 × 10⁻⁵ g/C

ব্যাখ্যা: AI এর তড়িৎ রাসায়নিক তুল্যাঙ্ক, $Z = \frac{M}{e^{E}}$

$$= \frac{27}{3 \times 96500}$$
$$= 9.33 \times 10^{-5} \text{ g/C}$$

২১। FeCl3 এ Fe এর তড়িৎ রাসায়নিক তুল্যাম্ব কত? Fe = 55.85

- ③ 1.93 × 10⁻⁴
- 3 2.89 × 10⁻⁴
- (f) 1.93 × 10⁻³
- (1) 2.89 × 10⁻³

উত্তর: (ক) 1.93 × 10⁻⁴

ব্যাখ্যা: FeCl₃ = Fe³⁺ + 3CI

এখানে, Fe এর যোজনী = 3

$$Z = \frac{55.85}{3 \times 96500} = 1.93 \times 10^{-4} \text{ g/c}$$

২২। কোনটির ভড়িৎ রাসায়নিক তুল্যাঙ্ক সবচেয়ে বেশি?

[ঢা. বো. ২২; অনুরূপ প্রশ্ন: দি. বো. ২২, ১৯; ম. বো. ২১]

⊕ Cu

- (Ag
- (7) Zn
- (F) Fe

মৌলের গ্রাম পারমাণবিক ভর যোজনী × 96500

 $= \frac{63.5}{2 \times 96500} = 3.29 \times 10^{-4} \text{ g/C}$

$$Z_{Ag} = \frac{108}{1 \times 96500} = 1.12 \times 10^{-3} \text{ g/C}$$

$$Z_{Z\pi} = \frac{65.4}{2 \times 96500} = 3.388 \times 10^{-4} \text{ g/C}$$

$$Z_{\text{Fe}} = \frac{55.85}{2 \times 96500} = 2.89 \times 10^{-4} \text{ g/C}$$

:. Ag এর তড়িৎ রাসায়নিক তুল্যাঙ্ক সবচেয়ে বেশি।

২৩। গলিত অ্যালুমিনার মধ্য দিয়ে 30 অ্যাম্পিয়ার বিদ্যুৎ 90 মিনিট যাবৎ প্রবাহিত করলে ক্যাথোডে কত গ্রাম ধাতু জমা হবে?

ািচা. বাে. ২৩; অনুরূপ প্রশ্ন: ম. বাে. ২১; দি. বাে. ১৯

- **3** 7.27
- (N) 15.10
- **1 21.82**
- **(9)** 45.32

উত্তর: 🕲 15.10

ব্যাখ্যা: ক্যাথোডে সঞ্চিত ভর, W = ZIt

$$\Rightarrow W = \frac{MIt}{eF} \qquad \left[Z = \frac{M}{eF} \right]$$

$$\Rightarrow W = \frac{27 \times 30 \times 90 \times 60}{3 \times 96500}$$

২৪। AgNO3 এর একটি দ্রবণে 60 মিনিট 5A বিদ্যুৎ চালনা করলে ক্যাথোডে কত গ্রাম Ag জমা হবে? রা. বো. ২৩।

€ 8.766

(4) 16.812

1 20.145

3 24.854

উত্তর: 📵 20.145

ব্যাখ্যাঃ

$$Ag^{+} + e^{-} \rightarrow Ag$$

$$1 \text{ mol} \qquad 1 \text{ F} \qquad 1 \text{ mol}$$

$$W = ZIt$$

$$\Rightarrow W = \frac{MIt}{eF}$$

$$= \frac{108 \times 5 \times 60 \times 60}{1 \times 96500}$$

২৫। CuSO₄ দ্রবর্ণে 4 অ্যাম্পিয়ার বিদ্যুৎ 45 মিনিট যাবৎ চালনা করলে ক্যাথোডে কী পরিমাণ (g) কপার জমা হবে? [চ. বো. ২৩; জনুরূপ প্রশ্ন: কু. বো. ২৬; রা. বো. ২১; ব. বো. ২১; দি. বো. ২১; য. বো. ১৯]

→ 7.11

€ 3.55

(9) 0.118

(T) 0.059

উত্তর: 📵 3.55

ব্যাখ্যা: ক্যাথোডে সংঘটিত বিজারণ বিক্রিয়া:

= 20.145 g

 $Cu^{2+} + 2e^- \rightarrow Cu$ 1 mol 2 F 1 mol
আমরা জানি, ক্যাথোডে সঞ্চিত ভর, W = ZIt $\therefore W = \frac{MIt}{eF}$

 $\therefore W = \frac{MIt}{eF}$ $= \frac{63.5 \times 4 \times 45 \times 60}{2 \times 96500}$ = 3.55 g

২৬। তুঁতের দ্রবণে 50 min ধরে 500 mA বিদ্যুৎ প্রবাহিত করলে কী পরিমাণ কপার ধাতু জমা হবে?

⊕ 0.29 g

0 30 0

① 0.49 g

③ 0.39 g⑤ 0.59 g

উত্তর: 🕥 0.49 g

ব্যাখ্যাঃ সংঘটিত বিক্রিয়াটি-

 $Cu^{2+} + 2e^{-} \rightarrow Cu$ 2 F 63.5 g

ফ্যারাডের প্রথম সূত্রানুসারে, W = ZIt $= \frac{MIt}{eF}$ $= \frac{63.5}{2 \times 96500} \times 500 \times 10^{-3} \times 50 \times 60$ = 0.49 g

২৭। ক্রোমিক সালফেট দ্রবণে 3A বিদ্যুৎ 6 ঘণ্টা চালনা করলে কত গ্রাম ক্রোমিয়াম সঞ্চিত হবে?

3 11.64

14.2121.32

Rhombus Publications

২৪। AgNO3 এর একটি দ্রবণে 60 মিনিট 5A বিদ্যুৎ চালনা করলে ব্যাখ্যা: ক্রোমিক সালফেট জলীয় দ্রবণে নিম্নরূপে আয়নিত হয়,

 $\mathrm{Cr_2(SO_4)_3(aq)} = 2\mathrm{Cr}^{3+}(\mathrm{aq}) + 3\mathrm{SO}_4^{2-}(\mathrm{aq})$ দ্রবণে তড়িৎ প্রবাহিত করলে Cr নিমুরূপে সঞ্চিত হবে,

 $Cr^{3+} + 3e^- \rightarrow Cr$

∴ ক্রোমিয়াম সঞ্চিত হবে,

 $W = ZIt = \frac{MIt}{eF}$ $= \frac{52}{3 \times 96500} \times 3 \times 3600 \times 6$ = 11.64 g

২৮। 10 g NiCl₂ দ্রবণে 10 A বিদ্যুৎ প্রবাহিত করলে সবটুকু ধাতৃ ক্যাথোডে সঞ্চিত হয়। এক্ষেত্রে কত সময়ের প্রয়োজন হবে?

[Ni = 58.69]

[ম. বো. ২৩]

③ 3680 sec ⑤ 6200 sec

ব্যাখ্যা: সংঘটিত বিক্রিয়া:

 $NiCl_2 \longrightarrow Ni + Cl_2$

129.69 g 58.69 g

∴ 10 g NiC l_2 হতে উৎপন্ন Ni = $\frac{58.69 \times 10}{129.69}$ = 4.53 g

ক্যাথোডে সংঘটিত বিজারণ প্রক্রিয়া:

 $Ni^{2+} + 2e^{-} \rightarrow Ni$

1 mol 2 F 1 mol

∴ ক্যাথোড়ে সঞ্চিত ভর, $W = ZIt = \frac{MIt}{eF}$

 $\simeq 1496 \text{ sec}$

২৯। AgNO₃ দ্রবর্ণে 1.2 amp বিদ্যুৎ কতক্ষণ চালনা করলে 1.61 g Ag জমা হবে?

→ 40 min

30 min

পু 25 min উত্তর: খি 20 min **1** 20 min

ব্যাখ্যা: আমরা জানি,

 $W = \frac{MIt}{eF}$

 $\Rightarrow t = \frac{WeF}{MI}$

 $=\frac{1.61 \times 1 \times 96500}{108 \times 1.2}$

= 1198.805 sec

= 19.98 min

≈ 20 min

৩০। ক্রোমিয়াম সালফেট দ্রবণের মধ্য দিয়ে 50 A বিদ্যুৎ প্রবাহিত করে ৩৩। AgNO3 দ্রবণের মধ্যে 3000 C বিদ্যুৎ চালনা করলে ক্যাথোডে কড ক্যাথোডে 1 g Cr ধাতু সঞ্চিত করতে কত সময় প্রয়োজন হয়?

[Cr = 52]

কু. বো. ২১]

ক 1 ঘণ্টা 85 মি

খ) । ঘণ্টা 23 মি

1.86 মি

থে 0.55 মি

উত্তর: গু 1.86 মি

ব্যাখ্যা: তড়িৎ রাসায়নিক তুল্যাঙ্ক, Z = e × 96500 $=\frac{52}{3 \times 96500}$ mol

> আমরা জানি, W = ZIt $t = \frac{W}{ZI}$ $=\frac{3\times96500\times1}{52\times50}$ = 111.34 সেকেভ

 $=\frac{111.34}{60}$ মিনিট

= 1.86 মিনিট (প্রায়)

৩১। CuSO4 দ্রবণের মধ্য দিয়ে 0.16 A বিদ্যুৎ 40 মিনিট চালনা করা হলো। ক্যাথোডে সঞ্চিত কপার পরমাণুর সংখ্যা কত? [Cu = 63.5]

3 1.342 × 10²¹ fb

例 1.546 × 10²¹ 6

(1) 1.921 × 10²¹ (1)

উত্তর: 📵 1.198 × 10²¹ টি

ব্যাখ্যাঃ সঞ্চিত কপার, $W = ZIt = \frac{MIt}{eF}$

 $= \frac{63.5}{2 \times 96500} \times 0.16 \times 40 \times 60$ = 0.1263 g

63.5 g Cu এ আছে = 6.023 × 10²³ টি পরমাণু

.. 0.1263 g Cu এ আছে

6.023 × 10²³ × 0.1263 টি পরমাণু

= 1.198 × 10²¹ টি পরমাণ

৩২। সিলভার নাইট্রেট দ্রবণের মধ্যে দিয়ে 160 mA বিদ্যুৎ 40 min ধরে চালনা করলে ক্যাথোডে কতটি সিলভার পরমাণু জমা হবে? [ঢা. বো. ২১]

② 2.396 × 10²¹ 市

③ 6.023 × 10²³ ©

例 6.505 × 10²⁵ 6

(1) 2.584 × 10²³ (1)

উত্তর: 📵 2.396 × 10²¹ টি

ব্যাখ্যা: ফ্যারাডের সূত্রানুসারে,

$$W = ZIt = \frac{MIt}{eF}$$

$$= \frac{108}{1 \times 96500} \times (160 \times 10^{-3}) \times (40 \times 60)$$

$$= 0.4297 \text{ g}$$
এখন, $108 \text{ g Ag} = 6.023 \times 10^{23}$ টি Ag প্রমাণ্

$$\Rightarrow 0.4297 \text{ g Ag} = \frac{0.4297 \times 6.023 \times 10^{23}}{108} \hat{\mathbb{D}}$$
$$= 2.396 \times 10^{21} \hat{\mathbb{D}}$$

গ্রাম Ag সঞ্চিত হবে? [Ag = 108] ঢো. বো. ২২

(4) 3.3575

(a) 2.3575

10.7

® 0.2357

উত্তর: 📵 3.3575

ব্যাখ্যা: ক্যাথোডে Ag নিম্নরূপে সঞ্চিত হয়:

 $Ag^+ + e^- \rightarrow Ag$

বিক্রিয়া অনুসারে,

1 × 96500 C বিদ্যুৎ চালনা করলে সিলভার সঞ্চিত হয় = 108 g

: 3000 C বিদ্যুৎ চালনা করলে সিলভার সঞ্চিত হয়

$$= \frac{108 \times 3000}{96500} g$$
$$= 3.3575 g$$

৩৪। গলিত অবস্থায় খাদ্য লবণে 5.0 amp মাত্রার বিদ্যুৎ 10 min ধরে চালনা করলে ক্যাথোডে কী পরিমাণ ধাতু জমা হবে? यि. वा. २२)

③ 0.52 g

③ 0.62 g

9 0.72 g

(1) 0.82 g

উত্তর: 📵 0.72 g

ব্যাখ্যা: গলিত খাদ্য লবণের তড়িৎ বিশ্লেষণে ক্যাথোডে সংঘটিত বিক্রিয়া:

 $Na^+ + e^-$

আমরা জানি.

 $23 \times 5 \times 10 \times 60$

= 0.715 g≈ 0.72 g

৩৫। এकरे माजात विमार अकरे नमग्न চानना कत्रल कान आग्रनि ক্যাখোডে বেশি জমা হবে? [চ. বো. ২৩]

⊕ Cu²⁺

(1) Fe3+

Ag⁺

Na⁺

উত্তরঃ 何 Ag⁺

ব্যাখ্যা: একই মাত্রার বিদ্যুৎ একই সময়ে চালনায় তথা সমপরিমাণ চার্জ

গ্রহণে ক্যাথোডে জমা হবে, $W = \frac{M}{eF} \times Q$

 Cu^{2+} এর ক্ষেত্রে, $W = \frac{63.5}{2} \times \frac{Q}{F}$

 Fe^{3+} এর ক্ষেত্রে, $W = \frac{55.85}{3} \times \frac{Q}{F}$

 Ag^+ এর ক্ষেত্রে, $W = \frac{108}{l} \times \frac{Q}{F}$

 Na^+ এর ক্ষেত্রে, $W = \frac{23}{I} \times \frac{Q}{F}$ । অতএব বলা যায়, Ag^+ এক্ষেত্রে বেশি জমা হবে।

৩৬। $PbSO_4$ দ্রবণে 5 F বিদ্যুৎ চালনা করলে তড়িংদ্বারে সঞ্চিত বা ব্যাখ্যা: $Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$ দ্রবীভূত লেডের পরিমাণ হবে- [Pb = 106.4] 2 F 1 mol সূতরাং, FeSO4 এর দ্রবণে 2.0 F বিদ্যুৎ চার্জ্ব প্রবাহিত করলে 1 **倒** 103.6 g ① 207.2 g mol আয়রন (Fe) জমা হবে। ₹ 266 g উত্তর: 🕲 266 g ব্যাখ্যা: Pb²⁺ + 2c⁻ → Pb ৪০। 2 F তড়িৎ প্রবাহে কত গ্রাম ফেরাস আয়ন চার্জমুক্ত হয়? ।দি. বো. ২৩। 2 F 1 mol বা 106.4 g (4) 28 **@** 56 2 F তড়িৎ চালনা করলে সঞ্চিত বা দ্রবীভূত Pb = 106.4 g (T) 81 (T) 112 $5 \text{ F তড়িৎ চালনা করলে সঞ্চিত বা দ্রবীভূত Pb = } \frac{106.4 \times 5}{2} \text{ g}$ উত্তর: 📵 56 ব্যাখ্যা: ক্যাথোডে সংঘটিত বিজারণ বিক্রিয়া: $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ 2 F 1 mol ৩৭। AgNO3 দ্রবণে 0.1 F তড়িৎ চালনা করলে ক্যাথোডে কত গ্রাম সুতরাং, 2 F তড়িং প্রবাহে 1 mol তথা, 55.85 g ≈ 56 g ফেরাস সিলভার জমা হবে? [য. বো. ২১] আয়ন চার্জমুক্ত হয়। ₹ 10.8 **3** 108 **1.08 (9)** 0.108 8১। 1 মোল Fe₂O₃ হতে 1 মোল লোহা পেতে কত পরিমাণ তড়িৎ উত্তর: @ 10.8 প্রয়োজন? [ম. বো. ২৩] ব্যাখা: Ag+ e- → Ag (1) 2 F (1) F 1 mol বা 108 g 1 3 F 1 F তिए॰ চালনা করলে ক্যাথোডে সঞ্চিত হয় = 108 g Ag উত্তর: (গ) 3 F ∴ 0.1 F তড়িৎ চালনা করলে ক্যাথোডে সঞ্চিত হয় = (108 × 0.1) g ব্যাখ্যা: Fe₂O₃ হতে আয়রন (Fe) উৎপন্ন হওয়ার সময়, = 10.8 g $Fe^{3+} + 3e^{-} \rightarrow Fe$ অর্থাৎ, একটি Fe³⁺ আয়নকে Fe ধাতুতে পরিণত করতে 3 মোল ৩৮। 1 F বিদ্যুৎ চালনা করলে নিচের কোন ধাতুর আয়নটি ক্যাথোডে ইলেকট্রন প্রয়োজন। সুতরাং, 1 মোল Fe₂O₃ হতে 1 মোল লোহা অধিক পরিমাণে সঞ্চিত হবে? [य. त्वा. २२; जनुक्रभ क्षद्राः व. त्वा. ১৭] (a) Zn (Fe) পেতে 3 mol ইলেকট্রন তথা 3 F তড়িৎ প্রয়োজন। T (9) Ca (F) A! উত্তর: 🚳 K ৪২় গলিত AICl3 এর মধ্যে কত ফ্যারাডে তড়িৎ প্রবাহিত করলে ব্যাখ্যা: Zn ধাতু ক্যাথোডে নিমুরূপে সঞ্চিত হয়: ক্যাথোডে 54 গ্রাম AI সঞ্চিত হবে? [ঢা. বো. ২২] $Zn^{2+} + 2e^- \rightarrow Zn$ **3** অর্থাৎ, 2 F বিদ্যুৎ চালনা করলে Zn সঞ্চিত হয় 1 mol বা 65.4 g ∴ 1 F বিদ্যুৎ চালনা করলে $Z_{\rm R}$ সঞ্চিত হয় = $\frac{65.4}{2}$ g = 32.7 g উত্তর: গে 6 ব্যাখ্যা: এখানে, অনুরূপভাবে Al এর ক্ষেত্রে, $n = \frac{W}{M} = \frac{54}{27} = 2 \text{ mol}$ $Al^{3+} + 3e^- \rightarrow Al$ ∴ 3 F विपूर ठालना कतल A/ সঞ্চিত হয় = 27 g $Al^{3+} + 3e^- \rightarrow Al$ $1~\mathrm{F}$ বিদ্যুৎ চালনা করলে $\mathrm{A}\mathit{l}$ সঞ্চিত হয় = $\frac{27\times1}{3}~\mathrm{g}=9~\mathrm{g}$ অর্থাৎ, 1 mol Al সঞ্চিত করতে চার্জ প্রবাহিত হয় = 3 F ∴ 2 mol Al সঞ্চিত করতে চার্জ প্রবাহিত হয় = 3 × 2 = 6 F Ca এর ক্লেত্রে, $Ca^{2+} + 2e^{-} \rightarrow Ca$ 80। AICI3 দ্রবর্ণে 1.0 F বিদ্যুৎ চার্জ প্রবাহিত করলে সঞ্চিত AI এর ∴ 2 F বিদ্যুৎ চালনা করলে Ca সঞ্চিত হয় = 40 g পরিমাণ-চি. বো. ২২ 1 F বিদ্যুৎ চালনা করলে Ca সঞ্চিত হয় $= \frac{40}{2} \text{ g} = 20 \text{ g}$ (4) 3 mol $\mathfrak{T} \frac{1}{2} \operatorname{mol}$ $\mathfrak{g} \frac{1}{3} \operatorname{mol}$ K এর ক্বেত্রে. $K^+ + e^- \rightarrow K$ উত্তর: 🕲 🗓 mol ∴ 1 F विमार চानना कतरन K अधिक इस = 39.1 g ব্যাখ্যা: AICI3 দ্রবণের মধ্যে দিয়ে বিদ্যুৎ চালনা করলে ক্যাথোডে নিমুরূপে ৩৯। FeSO4 এর দ্রবণে 2.0 F বিদ্যুৎ চার্জ প্রবাহিত করলে কত মোল অ্যালুমিনিয়াম সঞ্চিত হয়: $Al^{3+} + 3e^- \rightarrow Al$ আয়রন জমা হবে? [ব. বো. ২৩] ∴ 3 F विमार ठार्ज প্রবাহিত করলে Al সঞ্চিত হয় = 1 mol 3 5.8 × 10⁻⁴ mol (1) 0.5 mol (1) mol ∴ 1 F বিদ্যুৎ চার্জ প্রবাহিত করলে Al সঞ্চিত হয় = $\frac{1}{3}$ mol উত্তর: 🕲 l mol

8b। 1 মোল কপারকে ক্যাথোডে জ্বমা করতে CuSO4 দ্রবর্ণের মধ্য দিয়ে ৪%। FeCl3 হতে 55.85 g Fe জমা করতে কী পরিমাণ বিদ্যুৎ লাগবে? কত ফ্যারাডে বিদ্যুৎ চালনা করতে হবে? াদি. বো. ২২ 3 5 F @ 3 F ③ 1 F @ 2 F 旬 2 F (1) IF 何 3 F (9) 4 F 振研: ③ 3 F উন্তন: @ 2 F ব্যাখটো: FeC/3 এর মধ্যে তড়িৎ চালনা করলে Fe নিমুক্তবে ক্যাথোচে অমা হয়: ব্যাখ্যা: সংশ্লিষ্ট বিক্রিয়াটি– $Fe^{34} + 3e \rightarrow Fe$ $Cu^{2*} + 2e^{-} \rightarrow Cu$ বিক্রিদ্যা অনুসারে, 2 F 1 মোল 1 mol Fe তথা 55.85 g Fe জমা হতে 3 F বিদ্যুৎ লাগবে। এখানে, 1 মোল কপার ক্যাথোডে জমা করতে দুই মোল ইলেকট্রন (2e⁻) গ্রহণ করে, এজন্য দুই ফ্যারাডে (2 F) বিদ্যুৎ চালনা করতে #M । 2 mol A/ ক্যাপোচে জমা করতে কী পরিমাণ বিদ্যুৎ প্রয়োজন? হবে। [দি. বো. ২২] 3 1.5 F @ 2.0 F ৫০। এক মোল Al₂O₃ হতে এক মোল অ্যালুমিনিয়াম পেতে কত পরিমাণ 9 3.0 F (9) 6.0 F তড়িৎ প্রয়োজন? কু . বো. ১৯) **किंदनः** कि 6.0 F @ 1 F @ 1.5 F ৰামখ্যা: Al নিমুরূপে ক্যাথোড ভড়িৎদ্বারে সঞ্চিত হয়, 9 3 F (1) 5 F AJ^{3} + 3e $\rightarrow AI$ উন্তর: (গ) 3 F विकिद्या जनुमात, ব্যাখ্যা: Al₂O₃ হতে অ্যালুমিনিরাম উৎপন্ন করার সময়: 1 mol A/ সঞ্চিত হতে বিদ্যুৎ প্রয়োজন = 3 F $Al^{3+} + 3e^- \rightarrow Al$... 2 mol A/ সদ্বিত হতে বিদ্যুৎ প্রয়োজন = (3 × 2) = 6 F সুতরাৎ, 1 মোল Al ধাতু পেতে ইলেকট্রন প্রয়োজন 3 মোল 1 মোল ইলেকট্রন = 96500 C = 1 F **與此」 ध्वकि** विरयाखी थाजून नवरनन छनीत प्रवरन 1.0 F তড়িৎ চার্জ ∴ 3 মোল ইলেকট্রন = 3 F প্রবাহিত করলে 31.75 g ধাতু ক্যাথোডে সঞ্চিত হয়। ধাতৃটির পারামাণবিক ডর কড? ৫১। A^+ , B^{2+} , C^{3+} আয়নের দ্রবণে পৃথকভাবে $1~\mathrm{F}$ বিদ্যুৎ চালনা করলে-@ 63.50 (a) 31.75 [ম. বো. ২১] ③ 3.175 × 10² ® 95.25 (i) 1 mol A চার্জমুক্ত হবে डिटवः (ब) 63.50 ব্যাখ্যা: $W = \frac{MIt}{cF}$ [Q = It = 1 F = 96500 C] (ii) ½ mol B ক্যাথোডে জমা হবে $\Rightarrow 31.75 = \frac{M \times 96500}{2 \times 96500}$ (iii) $\frac{1}{3}$ mol C^{3+} দ্রবণ থেকে তড়িৎদ্বারে জমা হবে নিচের কোনটি সঠিক? M = 63.5@ i, ii (1) i, iii ① ii, iii ध प। 1 27 g A/ खया २८७ की शतियान विमु ९ श्वराजन? (i, ii & iii [সি. বো. ২১] (建) 27 F উত্তর: (ছ) i, ii ও iii **③** 13.5 F 3 F ব্যাখ্যা: A^+ আয়নের দ্রবর্ণে বিদ্যুৎ চালনা করলে নিমুরূপে A^+ আয়ন (9) 1 F **自らた (河) 3 F** চার্জযুক্ত হবে. $A^+ + e^- \rightarrow A$ বা্যব্যা: A/ এর দ্রবণের মধ্যে ডড়িৎ চালনা করলে ক্যাথোডে A/ নিমুরূপে खना द्याः 1 mol 1 F Af^{3} + $3c^{-} \rightarrow$ ∴ 1 mol A⁺ চার্জমুক্ত হতে প্রয়োজন 1 F বিদ্যুৎ। A/ l mol 제 27 g অনুরূপভাবে, B²⁺ আয়নের দ্রবণের ক্ষেত্রে B ধাতু ক্যাথোডে জমা হয়। $B^{2+} + 2e^- \rightarrow B$.. 27 g A/ जमा २८७ 3 F পतिमान विमार थाताजन। 2 F 1 mol 2 F বিদ্যুৎ চালনা করলে B সঞ্চিত হয় = 1 mol 8क्ष । नगायवाट 1 mol H2 गांग উৎপन्न ट्र कि পतियांग विद्युर প্রয়োজন? [চ. বো. ১১] ∴ 1 F বিদ্যুৎ চালনা করলে B সঞ্চিত হয় = ½ mol 例 IF 3 2 F C3+ দ্রবণের ক্ষেত্রে, @ 3 F 3 4 F **छिछतः** (वे) 2 F $C^{3+} + 3e^- \rightarrow C$ नप्राभणः न्याप्पाएं H2 गान উৎপन्न ररा-3 F 1 mol 3 F বিদ্যুৎ চালনা করলে C^{3+} দ্রবণ থেকে তড়িৎদ্বারে জমা হয় = 1 mol $2H^* + 2e^- \rightarrow H_2$ ন্মার্পাৎ, I mol H2 অণু উৎপন্ন হতে 2 mol e প্রয়োজন ∴ 1 F বিদ্যুৎ চালনা করলে C³+ দ্রবণ থেকে তড়িৎদারে জমা হয় $1 \text{ mol } e^- = 96500 \text{ C} = 1 \text{ F}$ $=\frac{1}{3}$ mol \therefore 2 mol e = 2 F

৫২। 1 মোল Ag ক্যাথোডে সঞ্চিত করতে AgNO3 দ্রবলের কত ফ্যারাডে | ব্যাখ্যা: ক্যাথোডে সবসময় বিজারণ হয় বা e গৃহীত হয়। (খ) নং এ K তড়িৎ চালনা করতে হবে? একটি e গ্রহণ করছে, এটি বিজারণ বিক্রিয়া। তাই (খ) এর [ম. বো. ২২] (3) 1 F @ 2 F বিক্রিয়াটি ক্যাথোডে হওয়া সম্ভব। 1 3 F (1) 4 F উত্তর: 📵 1 F ৫৭। তড়িৎ রাসায়নিক কোষে-কু. বো. ২৩ ব্যাখ্যা: AgNO3 দ্রবণে তড়িৎ চালনা করলে ক্যাথোডে Ag জমা হবে। (i) রাসায়নিক শক্তি তড়িৎ শক্তিতে পরিণত হয় $Ag^+ + e^- \longrightarrow Ag$ (ii) অ্যানোড ধনাত্মক হয় 1 mol Ag ক্যাথোডে সঞ্চিত হতে 1 mol ইলেক্ট্রন বা 1 F চার্জ (iii) অ্যানোড হতে মুক্ত ইলেকট্রন বর্তনীতে প্রবাহিত হয় লাগবে। নিচের কোনটি সঠিক (1) i, ii (1) ii, iii তড়িৎ বিশ্লেষ্য কোষ, তড়িৎ রাসায়নিক কোষ (1) i, ii, iii (1) i, iii উত্তর: 📵 i, iii তে। কোনটির জারণ বিভব সবচেয়ে কম? [রা. বো. ২৩] ব্যাখ্যা: তড়িৎ বিশ্লেষ্য কোষে অ্যানোড ধনাত্মক। আর তড়িৎ রাসায়নিক ক্ত কপার ৰ) গোন্ড কোষে অ্যানোড ঋণাত্মক। (प) निथिग्राभ হাইড্রোজেন উত্তর: 📵 গোল্ড ৫৮। তড়িৎ রাসায়নিক কোষে-ব্যাখ্যা: সক্রিয়তার ক্রম: Li > K > Sr > Ca > Na > Mg > Al > Zn > मि. त्वा. २२) Cr > Fe > Cd > Co > Ni > Sn > Pb > H > Cu > Hg > Ag(i) ক্যাথোড থেকে অ্যানোডে বিদ্যুৎ প্রবাহিত হয় (ii) বিদ্যুৎ শক্তি রাসায়নিক শক্তিতে পরিণত হয় ধাতুসমূহের সক্রিয়তা সিরিজ থেকে যে ধাতুর অবস্থান যত নিচে (iii) অ্যানোডে জারণ ঘটে তাদের জারণ বিভব তত কম। Cu, Au, H ও Li এর মধ্য Au এর নিচের কোনটি সঠিক অবস্থান সবচেয়ে নিচে। তাই Au এর জারণ বিভব সবচেয়ে কম। (8) i Gii (1) ii v iii 1 i g iii (1) i, ii v iii ৫৪। সবচেয়ে শক্তিশালী বিজারক নিচের কোনটি? [চ. বো. ২২; কু. বো. ১৬] উত্তর: 🔊 i ও iii (4) Li (1) A/ ব্যাখ্যা: তড়িৎ রাসায়নিক কোষে রাসায়নিক শক্তিকে তড়িৎ শক্তিতে রূপান্তর (V) Zn 1 Fe করা হয়। অ্যানোডে জারণ হয় এবং ক্যাথোডে বিজারণ হয়। তড়িৎ উত্তর: 🐵 Li ক্যাথোড থেকে অ্যানোডের দিকে প্রবাহিত হয় ও e আনোড হতে ব্যাখ্যা: ধাতুর সক্রিয়তা সিরিজ অনুসারে যেসব ধাতু উপরের দিকে অবস্থান করে তারা শক্তিশালী বিজারক কারণ এদের ইলেকট্রন ত্যাগের ক্যাথোডে প্রবাহিত হয়। প্রবণতা বেশি। বিজারকের সক্রিয়তার ক্রম: Li > K > Ca > Na > Mg > Al > ৫৯। তড়িৎ বিশ্লেষণের মাধ্যমে উৎপাদন করা যায়-(রা. বো. ২২) Zn > Fe > Sn > Pb > H > Cu > Hg > Ag > Pt > Au(i) Al (ii) Na ৫৫। তড়িৎ বিশ্লেষণ প্রক্রিয়ায় ক্যাথোডে কোন ধরনের বিক্রিয়া ঘটে? (iii) Zn [রা. বো. ২১] নিচের কোনটি সঠিক? ক) বিজারণ (খ) জারণ 3 i, ii (1) i, iii ন্য জারণ বিজারণ থি অপসারণ বিক্রিয়া (1) ii, iii (1) i, ii, iii উত্তর: 🖚 বিজারণ উত্তর: ত্ব i, ii, iii ব্যাখ্যা: তড়িৎ বিশ্লেষ্য ও তড়িৎ রাসায়নিক কোষ উভয়ের ক্ষেত্রেই. ব্যাখ্যা: তড়িৎ বিশ্লেষণের কিছু ব্যবহার নিচে উল্লেখ করা হল। ক্যাথোড → বিজারণ ১. ডাউন পদ্ধতিতে গলিত NaCl থেকে সোডিয়াম ধাতু নিষ্কাশন। আনোড -> জারণ ২. মারকারি ক্যাথোড সেলে NaCl এর তড়িৎ বিশ্লেষণে কস্টিক তড়িৎ বিশ্লেষণ প্রক্রিয়ায় ক্যাথোডে ধাতব আয়ন ইলেকট্রন গ্রহণ সোডা (NaOH), H2, ক্লোরিন উৎপাদন। করে। আর ইলেকট্রন গ্রহণ মানেই বিজারণ। সূতরাং, ক্যাথোডে NaCl এর জলীয় দ্রবণের তিছৎ বিশ্লেষণে সোডিয়াম ক্লোরেট বিজারণ ঘটবে। (NaC/O) উৎপাদন। 8. গলিত CaCl2 ও MgCl2 এর তড়িৎ বিশ্লেষণে Ca ও Mg ধাতু ৫৬। তড়িৎ বিশ্লেষণ কোষের ক্যাথোডে সংঘটিত হওয়া সম্ভব-9 Na \rightarrow Na⁺ + e⁻ $\mathfrak{T} K^{\dagger} + e^{-} \rightarrow K$ ৫. অ্যালুমিনা বা বক্সাইট (Al_2O_3) থেকে অ্যালুমিনিয়াম ধাতু খে কোনটিই নয় निकाशन। উত্তর: **③** K⁺ + e⁻ → K জिश्क नालरक्ष थिरक जिश्क थाकु निकासन।

t.me/admission stuffs

ভড়িৎ রাসায়ান > ACS, FRB Compact Suggestion Book ৬০। কোনটিতে বিদ্যুৎ শক্তি উৎপন্ন হয় না? [দামিলিড. বো. ১৮] ৬৫। তড়িৎ বিশ্লেষণে কোনটি আগে চার্জমুক্ত হবে? [য. বো. ২১] Pt²⁺ তড়িৎ বিশ্লেষ্য কোষ প্র লেড সঞ্চয়ক কোব ③ Cu²⁺ 何 Cd2+ (1) Mn2+ লিখিয়াম আয়ন ব্যাটারি গ্যালভানিক কোষ উত্তর: 📵 Pt²+ উত্তর: 🚳 তড়িৎ বিশ্লেষ্য কোষ ব্যাখ্যাঃ তড়িৎ রাসায়নিক সারিতে যেসব আয়নের অবস্থান নিচের দিকে ব্যাখ্যা: তড়িৎ বিশ্লেষ্য কোষে কোনো তড়িৎ বিশ্লেষ্য পদার্থের জলীয় দ্রবণে তাদের চার্জমুক্ত হওয়ার প্রবর্ণতা অপেক্ষাকৃত উপরের দিকের আয়নের তড়িৎ প্রবাহ চালনা করে তড়িৎ বিশ্লেঘ্যের আয়নগুলোকে জারণ-থেকে বেশি। বিজারণ বিক্রিয়ার মাধ্যমে নতুন পদার্থে পরিণত করা হয়। অর্থাৎ, এ প্রদত্ত চারটি আয়নের তড়িৎ রাসায়নিক সারিতে চার্জমুক্ত হওয়ার ক্রম: কোষে তড়িৎ শক্তিকে রাসায়নিক শক্তিতে রূপান্তর করা হয়। $Mn^{2+} < Cd^{2+} < Cu^{2+} < Pt^{2+}$ এখানে, Pt²⁺ এর অবস্থান সবার শেষে তাই এটি আগে চার্জমুক্ত ৬১। তড়িৎ বিশ্লেষণ কালে কোন আয়নটি প্রথমে চার্জমুক্ত হবে? কু. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২১] হবে। 3 Br 3 NO. 9 OHT ③ CΓ ৬৬। কোন আয়নটি আগে চার্জমুক্ত হবে? মি. বো. ২১) উত্তর: 📵 OH-⊕ Cu²⁺ (1) Fe2+ ব্যাখ্যা: তড়িৎ রাসায়নিক সারির নিচের দিকে আয়নসমূহের চার্জমুক্ত হওয়ার Na⁺ ¬ Ag[†] প্রবণতা ক্রমান্বরে বাড়ে। উত্তর: 🕲 Ag⁺ অ্যানারনসমূহের চার্জমুক্ত হওয়ার ক্রম: ব্যাখ্যাঃ তড়িৎ রাসায়নিক সারিতে যেসব আয়নের অবস্থান নিচের দিকে $NO_3^- < SO_4^{2-} < CI^- < Br^- < \Gamma^- < OH^-$ তাদের চার্জমুক্ত হওয়ার প্রবণতা অপেক্ষাকৃত উপরের দিকের আয়নের থেকে বেশি। ৬২। তড়িৎ বিশ্লেষণ কালে কোনটি দ্রবণ থেকে আগে চার্জমুক্ত হবে? এদস্ত চারটি আয়নের তড়িৎ রাসায়নিক সারিতে চার্জমুক্ত হওয়ার [সি. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২১; ব. বো. ১৯; সি. বো. ১৭] ⊗ Sn²⁺ (₹) Cu²⁺ $Na^+ < Fe^{2+} < Cu^{2+} < Ag^+$ (9) Au3+ ⁽¹⁾ Ag[†] এখানে, Ag+ এর অবস্থান সবার শেষে তাই এটি আগে চার্জমুক্ত উত্তর: 🖲 Au³⁺ ব্যাখ্যা: তড়িৎ রাসায়নিক সারির নিচের দিকে আয়নসমূহের চার্জমুক্ত হওয়ার প্রবণতা ক্রমান্বরে বাড়ে। ৬৭। তড়িৎ রাসায়নিক সিরিজে Cu ধাতুর অবস্থান– [य. त्वा. ১৯] ক্যাটারনসমূহের চার্জমুক্ত হওয়ার ক্রম: (i) Fe এর উপরে $K^+ < Ca^{2+} < Na^+ < Mg^{2+} < Al^{3+} < Mn^{2+} < Zn^{2+} < Fe^{2+} <$ @AdmissionStuffs (ii) Ag এর উপরে $Sn^{2+} < Pb^{2+} < H^+ < Cu^{2+} < Ag^+ < Au^{3+}$ (iii) H এর निচে নিচের কোনটি সঠিক? ৬৩। কোন আয়নটি ক্যাথোডে সবার আগে চার্জমুক্ত হবে? ঢা. বো. ২২ i v ii (ii e iii Ni²⁺ (3) Cu2+ Ti viii (1) i, ii s iii (1) Zn2+ (1) Nat উত্তর: 🕲 ii ও iii উন্তর: (ব) Cu²⁺ ব্যাখ্যাঃ ধাতুর সক্রিয়তার ক্রম নিম্নুরূপঃ ব্যাখ্যা: তড়িৎ রাসারনিক সারিতে উপর থেকে নিচের দিকে আয়নসমূহের Li > K > Sr > Ca > Na > Mg > Al > Zn > Cr > Fe > Cdচার্জমুক্ত হওয়ায় প্রবণতা বৃদ্ধি পায়। > Co > Ni > Sn > Pb > H > Cu > Hg > Ag > Pt > Au তড়িৎ রাসায়নিক সারিতে চার্জমুক্ত হওয়ার ক্রম: $Na^{+} < Zn^{2+} < Ni^{2+} < Cu^{2+}$ ৬৮। কোন মৌলটি এসিড থেকে হাইড্রোজেন প্রতিস্থাপন করতে পারবে? [সি. বো. ২৩] ৬৪। তড়িৎ বিশ্লেষণে কোনটি আগে চার্জমুক্ত হবে? ।ম. বো. ২২; य. বো. ১৬) Ni Bi ⊕ Cu²⁺ (1) H 1 Hg (1) Pt Pb²⁺ Na⁺ উত্তর: 🚳 Ni উত্তর: 📵 Cu²⁺ ব্যাখ্যা: প্রদত্ত মৌলগুলোর সক্রিয়তা সিরিজে ক্রম: ব্যাখ্যা: তড়িৎ রাসায়নিক সারিতে যেসব আয়নের অবস্থান নিচের দিকে Ni > Bi > Hg > Ptতাদের চার্জমুক্ত হওয়ায় প্রবণতা অপেক্ষাকৃত উপরের দিকের আয়নের মৌল চারটির মধ্যে নিকেল (Ni) তুলনামূলক সক্রিয় ধাতু হওয়ায় থেকে বেশি। এবং সক্রিয়তার সিরিজে অপর তিনটি মৌল অপেক্ষা উপরে অবস্থান প্রদন্ত চারটি আয়নের তড়িৎ রাসায়নিক সারিতে চার্জমুক্ত হওয়ার ক্রম: করায় এটি এসিড থেকে খুব সহজেই হাইড্রোজেন প্রতিস্থাপন করতে $Na^{+} < Pb^{2+} < H^{+} < Cu^{2+}$ পারে।

100	- 	Da manur Dolara							
৬৯।	সক্রিয়তা সিরিজে কোর্না		हि. त्वा. ५१)	1 48 1	প্রবণ সেতুতে নিচের		বণ ব্যবহার করা যায়: ২২: অনুরূপ প্রশ্ন: ব. বো		
	Pb Ag				NaCI	(त्रा. ८५।.		. ২২; 14. (41. 24)	
টাত্তর-	® Ca	(d) Ca			⊕ NaCi ⊕ KMnO₄				
	ে প্রদত্ত মৌলগুলোর সত্রি	राजा त्रितिरक्ष क्राः		টেবন-	® KNO₃		₩ K ₂ CO ₃		
יט יט	Ca > Pb > Cu > Ag					ত্ত লবণ সের	Fred VCIATV	NO. বা	
	cu i i i cu i i i			ব্যাখ্যা: তড়িৎ কোষে ব্যবহৃত লবণ সেতু হলো- KCI বা KNO3 বা NH4NO3 বা Na2SO4 এর দ্রবণ ভর্তি উল্টানো U-আকৃতির কাঁচনল।					
901	নিচের কোনটি লঘু H ₂ S	O ₄ থেকে হাইড্রোজেন বিমুক্ত	করতে পারে?		NH ₄ NO ₃ 41 Na ₂ S	004 লম মবন	लाल लन्धात्मा D-वान	1031 410-141 1	
		•	[ম. বো. ২৩]						
	⊕ Pb	Hg		961	লবণ সেতুর কাজ হ			চি. বো. ২১	
	⊕ Cu	® Ca			(i) অর্ধকোষদ্বয়ের ম				
উত্তর: ® Ca				(ii) তরল সংযোগ বিভব দূর করা					
্যাখ্যাঃ প্রদত্ত মৌলণ্ডলোর সক্রিয়তা সিরিজের ক্রমঃ					(iii) তড়িৎ নিরপেক্ষ	চ্তা বজা য় রা	খা		
		> Pb > Cu > Hg			নিচের কোনটি সঠিব	7			
		লসিয়াম (Ca) খুব সক্রিয় ধ			⊕ i		(1) i, ii		
		ড্রোজেন অপেক্ষা বেশ উপরে			① ii, iii		(1) i, ii, iii		
		কে খুব সহজেই হাইড্রোজেন	বিমুক্ত করতে	উত্তর:	(1) i, ii, iii				
	পারে।				ব্যাখ্যাঃ লবণ সেতুর কাজঃ				
	$Ca + H_2SO_4 \rightarrow CaSO_4 + H_2(g)$			১. লবণ সেতু দুটি অর্ধকোষের মধ্যে সংযোগ স্থাপনের ক্ষেত্রে					
	কোন মৌলটি হাইড্রোক্লোরিক এসিড থেকে হাইড্রোজেন প্রতিস্থাপন				গুরুত্বপূর্ণ ভূমিব	Š			
۱ د.		ক্লারিক এসিড থেকে হাইড্রো					সংযোগ স্থাপন ক	র একটি পর্ণাহ	
	করতে পারে না?		मि. ता. २२।		কোষ গঠন করে		गरनान श्राम क	a are gir	
	⊕ Fe	⊚ Co				7		TENT TIME	
	⑨ Sn	® Pt			ACCORDING TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO		্য তড়িৎ নিরপেক্ষতা		
	® Pt						া তড়িৎদ্বারে অতিরি	ক্ত তাড়ৎ আবা-	
ग्राच्या	: সক্রিয়তার ক্রম: Li > K > Sr > Ca > Na > Mg > Al > Zn > Cr > Fe > Cd > Co > Ni > Sn > Pb > H > Cu > Hg > Ag				জমা হতে পারে				
	Cr > Fe > Cd > Co > Pt > Au	> N ₁ > S _n > P _b > H > C	u > Hg > Ag	-	৫. সার্বক্ষণিক তড়ি	হুৎ প্ৰবাহ বজ	ায় রাখতে সহায়তা ক	রে।	
	সূতরাং, প্রদত্ত অপশনে কেবলমাত্র Pt সক্রিয়তা সিরিজে H এর নিচে			-	ION				
	সুতরাং, এগত ব শাংল কেবংশার পি পার্রুর্বা শার্রের প্র শার্র অবস্থিত। তাই Pt, HCl থেকে H প্রতিস্থাপন করতে পারবে না।			9७।	লবণ সেতুতে উপযু	ক্ত তড়িৎ বি	প্রয্য পদার্থের কোনগু	লো ব্যবহৃত হয়ে	
	जराइंग गरा म, मट	र ८५८५ ११ चाठ्डा । । क्राइट	11364 -111		থাকে?			চি. বো. ১৭	
25.1	কোন মৌলটি HC/ এচি	নিড থেকে H কে প্রতিস্থাপন ক	বদ্ধে প্রাবেহ			NH₄Cl		Na ₂ SO ₄	
1	CTI-1 CAI-IIO IICI AI-	10 6464 11 64 41051 14 4	[কু. বো. ২১]			Na ₂ ,CO ₃	® KCl, NH₄Cl	,NaNO ₃	
. (⊕ Cu	⊗ Sn	T		⊕ KCl, KNO₃,	NH ₄ Cl			
	19 Hg	(9) Ag		7935	A STATE OF THE PARTY OF THE PAR		বিশ্লেষ্য পদার্থসমূহ:	KCI, KNO	
ভর:	③ Sn				NH ₄ NO ₃ , Na ₂ SO				
		: Li > K > Sr > Ca > Na	> Mg > Al >		11141103, 114201	04			
1600 1750	14	> Co > Ni > Sn > Pb >		991	ব্রাইনের তড়িৎ বিঞ্চে	विषय करान है	ी दिल्ला ठाउ	[সি. বো. ২২	
	> Ag > Pt > Au			1771		ר ויטאירי ויףג	V Martin Calabia Calabia Calabia	ાગ. ત્યા. ૨૨	
	Sn সক্রিয়তা সিরিজে I	🛾 এর উপরে অবস্থিত। তাই :	Sn, HCl থেকে		NaCI NaC		® NaHCO ₃		
	H প্রতিস্থাপন করতে পা	রবে।			® NaOH		® NaClO		
				a rundife.	① NaOH	72	_		
101	সাধারণ তাপমাত্রায় H ₂	O থেকে H ₂ প্রতিস্থাপন করতে	চ পারে–	ব্যাখ্য			মাত্রা উচ্চ হওয়ায় ৫		
	[দি. বো. ১৯]				আগে ইলেকট্রন ত্য	াগ করে অ্যা	নাডে চার্জমুক্ত হয় এ	বং ক্লোরিন গ্যা	
	⊕ Ca	Mg			হিসেবে নিৰ্গত হয়।				
		® Pb			NaCl → Na	++ CF; 2C	$l^ 2e^- = Cl_2$ অ্যা	নোডে	
	⊕ Ca	6					1 ⁺ + 2e ⁻ = H ₂ ক্যাত		
য়াখ্যাঃ ধাতুর সক্রিয়তার ক্রম নিম্নর্নপঃ				সূতরাং, সোডিয়াম ক্লোরাইডের জলীয় দ্রবণকে তড়িৎ বিশ্লেষণ করণে					
	Li > K > Sr > Ca > Na > Mg > Al > Zn > Cr > Fe > Cd > $Co > ni > Sn > Pb > H > Cu > Hg > Ag > Pt > Au$				the state of the s		ACTION OF THE PROPERTY OF THE PARTY.		
					ক্যাথোডে হাইড্রোজেন গ্যাস, অ্যানোডে ক্লোরিন গ্যাস উৎপন্ন হয় এব দ্রবণে ক্রমাগত সঞ্চিত সোডিয়াম ও হাইড্রোক্সিল আয়নের সংযোগ				
	প্রশ্নে উল্লিখিত মৌলসমূহের মধ্যে Ca অধিক সক্রিয়। তাই Ca							মায়নের সংযোগ	
	সাধারণ তাপমাত্রায় H₂C) থেকে H ₂ প্রতিস্থাপন করতে	পারে।		সোডিয়াম হাইড্রোর	নাইড উৎপন্ন	र् ।		
Rho	mbus Publications								

t.me/admission_stuffs

তডিৎ রসায়ন ➤ ACS, FRB Compact Suggestion Book eb । খাদ্য লবণের জলীয় দ্রবণকে তড়িৎ বিশ্লেষণ করলে ক্যাথোডে কোন ব্যাখ্যাঃ জারণ-বিজারণ অর্থকোষ চেনার সহজ উপায় হলো এখানে একটি অবস্থান্তর ধাতুর দুটি ভিন্ন জারণ অবস্থা থাকবে এবং একটি নিদ্রিয় গ্যাসটি মুক্ত হয়? [দি. বো. ২১] ধাত থাকবে। যেমন-3 N2 ⊕ O₂ Pt, $Fe^{2+}(aq)/Fe^{3+}(aq)$ ⊕ Cl₂ (1) H₂ Au, Sn²⁺(aq)/Sn⁴⁺(aq) উত্তর: 🕲 H₂ ৮৩। নিচের কোনটি জারণ-বিজারণ অর্ধকোষ? १ठ । NaCl এর জলীয় দ্রবণের তড়িং বিশ্লেষণে উৎপন্ন হয়- (রা. বো. ২১) [য. বো. ২১; অনুরূপ প্রশ্ন: দি. বো. ২১] (i) NaOH ⊕ Pt, Cl₂/Cl⁻ (1) Hg, Hg₂SO₄/SO₄ (ii) Cl₂ Au, Sn²⁺/Sn⁴⁺ ^(□) Ni/Ni²⁺ (iii) H₂ উত্তর: গ্র Au, Sn²⁺/Sn⁴⁺ নিচের কোনটি সঠিক? (1) i, iii (i, ii ৮৪। নিচের কোন তডিৎদ্বার জারণ অর্ধকোষ বোঝায়? (1) i, ii, iii 1i, iii কু. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২২] উত্তর: 🕲 i, ii, iii ② Zn/Zn²⁺ ⁽⁹⁾ Cu²⁺/Cu (1) H+/H2,Pt ৮০। HNO3 এর জলীয় দ্রবণে বিদ্যুৎ চালনা করলে অ্যানোডে উৎপন্ন হয়-উত্তর: <a>থ Zn/Zn²+ [চ. বো. ২৩] ব্যাখ্যাঃ জারণ = ইলেকট্রন ত্যাগ (i) H₂O $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$ (জারণ) (ii) O₂ বিক্রিয়াটি অর্ধকোষ রূপে প্রকাশ করলে– Zn/Zn²⁺ (iii) NO₂ Cu^{2+}/Cu , Zn^{2+}/Zn , Cr^{3+}/Cr হলো ক্যাথোড তড়িৎদ্বার। Zn/Zn^{2+} নিচের কোনটি সঠিক? এ জারণ সংখ্যা বৃদ্ধি পাওয়ায় এটি অ্যানোড তড়িৎদ্বার। ফলে এতে (3) i, ii (1) i, iii জারণ ঘটবে। @ ii, iii (i, ii, iii উত্তর: 🗐 ii, iii ৮৫। Pt, H_2/H^+ এর সাথে কোনটি ক্যাথোড হিসেবে ব্যবহৃত হবে? ব্যাখ্যা: HNO3 এর জলীয় দ্রবণে বিদ্যুৎ চালনা করলে নিমুরূপ জারণ-সি. বো. ২২ বিজারণ বিক্রিয়া সংঘটিত হয়: ⊕ Au³+/Au ³ Mg²⁺/Mg ক্যাথোডে হাইড্রোজেন আয়ন (H^{+}) বিজারিত হয়ে H_{2} গ্যাস উৎপন্ন T Sn²⁺/Sn (1) Al3+/Al করে। উত্তর: 📵 Au³⁺/Au ব্যাখ্যাঃ সক্রিয়তা সিরিজে যেসব মৌলের অবস্থান হাইড্রোজেনের নিচে তারা $2H^+ + 2e^- \rightarrow H_2(g)$ ক্যাথোড এবং যাদের অবস্থান হাইড্রোজেনের উপরে তারা অ্যানোড অ্যানোডে নাইট্রেট আয়ন (NO3) জারিত হয়ে অক্সিজেন গ্যাস (O2) ও নাইট্রোজেন ডাইঅক্সাইড (মূলত, প্রথমে NO তৈরি হয়, যা হওয়ার প্রবণতা দেখায়। যেহেতু Au³+/Au ছাড়া বাকিগুলো H এর উপরে অবস্থান করে, সুতরাং Au³+/Au ক্যাথোড হিসেবে ব্যবহৃত অক্সিজেনের সাথে বিক্রিয়া করে NO2 তে পরিণত হয়) উৎপন্ন করে। श्व। $2NO_3 - 2e^- \rightarrow NO_2 + O_2$ ৮৬। অর্ধকোষগুলোর মধ্যে কোনটি অ্যানোড হিসাবে ক্রিয়া করবে? কোষ বিভব ও তডিৎদ্বার [চ. বো. ২১; অনুরূপ প্রশ্ন: রা. বো. ১৭] 3 Zn/Zn²⁺ Mg/Mg²⁺ ৮১। Pt, H2/H+(aq) কোন ধরনের অর্ধকোষ? (9) Fe/Fe²⁺ (9) Cu/Cu²⁺ [কু. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২১; চা. বো. ১৯] ক্ত গ্যাস থ জারণ ব্যাখ্যাঃ কোন অর্ধকোষ অ্যানোড হিসাবে ক্রিয়া করবে তা অপর অর্ধকোষের প্রাত্ত-ধাতব আয়ন খি জারণ-বিজারণ উপর নির্ভর করে। অপশনের সব কোষের পক্নেই অ্যানোড হিসাবে উত্তর: 🚳 গ্যাস ক্রিয়া করা সম্ভব, কিন্তু সক্রিয়তা সিরিজে Mg সবার উপর ও এর ব্যাখ্যা: গ্যাস অর্ধকোষ: নিদ্রিয় ধাতুর (Pt) তারকে H_2 বা $\mathrm{C} l_2$ গ্যাসের জারণ বিভব সবচেয়ে বেশি হওয়ায় এটি সর্বাধিকবার অ্যানোড যৌগের দ্রবণে ডুবিয়ে রেখে 25°C ও 1 atm চাপে ঐ গ্যাসটিকে ঐ হিসেবে ক্রিয়া করবে। দ্রবর্ণে বুদবুদ আকারে চালনা করা হয়। যেমন: Pt, H2/H+ এবং Pt, Cl2/CI এ ধরনের অর্ধকোষ। ৮৭। Na.Hg/Na⁺ অর্ধকোষটি কোন ধরনের? [সি. বো. ২১] 📵 ধাতু-ধাতুর আয়ন ৮২। কোনটি জারণ-বিজারণ অর্ধকোষ? খ) গ্যাস-অর্ধকোষ [ম. বো. ২৩] জারণ-বিজারণ অর্ধকোষ ♠ Pt, Cl₂/Cl⁻ ③ Ag, AgCI/CI ঘ) ধাতু অ্যামালগাম-ধাতুর আয়ন (1) Pt, Fe2+/Fe3+ 1 Na.Hg/Na+ উত্তর: ত্ব ধাতু অ্যামালগাম-ধাতুর আয়ন উত্তর: থ Pt, Fe²⁺/Fe³⁺

ব্যাখ্যা: ধাতু-অ্যামালগাম ও ধাতুর আয়ন অর্ধকোষ: অধিক সক্রিয় ধাতু ও ব্যাখ্যা: সক্রিয়তা সিরিজে যেসব মৌলের অবস্থান হাইড্রোজেনের উপরে Hg এর মিশ্রণ দারা তৈরি ধাতু-আমালগাম দণ্ডকে ঐ ধাতুর লবণের দ্রবণে ডুবিয়ে এরূপ অর্ধকোষ তৈরি করা হয়। অ্যামালগাম ব্যবহার করায় ধাতুটির জারণ দ্বারা ধাতব আয়নে রূপান্তর নিয়ন্ত্রিত হয়।

৮৮। $A(s)/A^{2+}(+0.44 \text{ V})$ অ্যানোড হলে কোনটি এর সাথে ক্যাথোড হিসেবে কাজ করবে? [ম. বো. ২১]

 $\textcircled{9} \text{ B}^{2+}/\text{B} (-0.28 \text{ V})$

যেমন: Na.Hg(s)/Na+(aq) অর্থকোষ।

 $M^{2+}/M (-2.36 V)$

® C²⁺/C (− 1.66 V)

উত্তর: 📵 B²⁺/B (- 0.28 V)

ব্যাখ্যা: A/A²⁺ অ্যানোড হলে A এর চেয়ে কম জারণ বিভব বিশিষ্ট কোনো কোষকে সংযোগ দিতে হবে যাতে ঐ কোষটি ক্যাথোড হয়। অপশনে প্রদত্ত কোষগুলোর জারণ বিভব-

B/B²⁺ (+ 0.28 V)

M/M²⁺ (+ 2.36 V)

 C/C^{2+} (+ 0.87 V)

 C/C^{2+} (+ 1.66 V)

একমাত্র B/B²⁺ এর জারণ বিভব (+ 0.28 V), A/A²⁺ এর জারণ বিভব (+ 0.44 V) থেকে কম। তাই A/A²⁺ অ্যানোড হলে B²⁺/B কে ক্যাথোড হিসাবে ব্যবহার করা যাবে।

৮৯। কোন অর্ধকোষের সাথে প্রমাণ হাইদ্রোজেন তড়িৎদার ক্যাংখাড হিসেবে কাজ করে? কু. বো. ১৯)

A Ag(s)/Ag⁺(aq)

 \mathfrak{G} Cu(s)/Cu²⁺(aq)

(aq) Au(s)/Au3+(aq)

উত্তর: @ Zn(s)/Zn²⁺(aq)

ব্যাখ্যা: Zn হাইড্রোজেনের চেয়ে বেশি সক্রিয় তাই Zn এর সাথে হাইড্রোজেন তড়িৎদ্বার ক্যাথোড হিসেবে কাজ করে। Ag, Cu, Au প্রত্যেকেই হাইড্রোজেন এর চেয়ে কম সক্রিয়। সেক্ষেত্রে হাইড্রোজেন তডিৎদ্বার অ্যানোড হিসেবে কাজ করবে।

৯০। Fe/Fe²⁺ অ্যানোড হলে, নিচের কোনটি ক্যাথোড হিসেবে ব্যবহার করা যাবে? [मि. वा. ১৯]

Tn/Zn²⁺

(1) Al/Al3+

(1) Au/Au³⁺

উত্তর: 🕲 Au/Au³⁺

ব্যাখ্যা: ধাতুর সক্রিয়তা সিরিজে যে ধাতুর অবস্থান উপরে অর্থাৎ, অধিক সক্রিয় তা অ্যানোড ও যে ধাতুর অবস্থান নিচে অর্থাৎ, কম সক্রিয় তা ক্যাথোড হয়। সক্রিয়তা সিরিজে Mg, Al, Zn এর অবস্থান Fe এর উপরে অর্থাৎ, তারা Fe হতে অধিক সক্রিয়। অপরদিকে Au এর অবস্থান Fe এর নিচে অর্থাৎ, Au, Fe হতে কম সক্রিয়। তাই Fe/Fe²⁺ অ্যানোড হলে, Au/Au³⁺ ক্যাথোড হবে।

১১। Pt, $H_2/H^+(E^0=0.0V)$ এর সাথে ক্যাথোড হিসেবে ব্যবহৃত হবে কোনটি? [চ. বো. ১৭]

3 Zn²⁺/Zn

 $\textcircled{4} \text{Mg}^{2+}/\text{Mg}$

⊕ Cu²+/Cu

[®] Fe²⁺/Fe

উত্তর: গ্র Cu²⁺/Cu

Rhombus Publications

...... ACS, ➤ Chemistry 2nd Paper Chapter-4 তাদের অ্যানোড হওয়ার প্রবণতা নিচের মৌলগুলোর থেকে বেশি। এখানে, Cu হাইড্রোজেনের নিচে অবস্থিত হওয়ায় এটি ক্যাথোড হিসেবে কাজ করবে।

৯২। প্রমাণ হাইড্রোজেন তড়িৎদ্বারের বিভবের মান কত?

[য. বো. ২২; অনুরূপ প্রশ্ন: দি. বো. ২২]

@ 0.0 V

(1) - 1.34 V

1.00 V

(9) + 1.76 V

উত্তর: 🚳 0.0 V

ব্যাখ্যা: প্রমাণ হাইড্রোজেন তড়িৎদ্বারের বেলায় বিশুদ্ধ ${
m H}_2$ গ্যাসকে প্রমাণ অবস্থায় যেমন 1 atm চাপে 25°C তাপমাত্রায় 1 M H⁺ আয়নের দ্রবণে ডুবানো নিদ্রিয় ধাতু গ্লাটিনাম পাতের সংস্পর্শে চালনা করা হয়। এর তড়িৎদ্বার বিভব 0.0 V ধরা হয়।

৯৩। কোষ বিক্রিয়া: $H_2 + Cu^{2+} \longrightarrow 2H^+ + Cu$; উক্ত কোষের অ্যানোডের বিক্রিয়া কোনটি? [য. বো. ২২]

 $\textcircled{9} 2H^+ + 2e^- \rightarrow H_2$

1 Cu \rightarrow Cu²⁺ + 2e⁻

① $H_2 \rightarrow 2H^+ + 2e^-$

ব্যাখ্যা: যেহেতু অ্যানোডে ইলেকট্রন বর্জন হয়,

তাই অ্যানোড কোষ বিক্রিয়া হবে:

 $H_2 \rightarrow 2H^+ + 2e^-$ (জারণ)

 $58 + Z_{\rm D}/Z_{\rm D}^{2+}({
m E}^0 = +~0.76~{
m V})$ অ্যানোড হলে নিচের কোনটি ক্যাথোড হিসাবে ব্যবহার করা যাবে? বি. বো. ২২; অনুরূপ প্রশ্ন: ব. বো. ২১]

9 Co/Co²⁺ (E⁰ = + 0.28 V)

 $Mg/Mg^{2+} (E^0 = + 2.36 \text{ V})$

(a) Al/Al^{3+} (E⁰ = + 1.166 V) উত্তর: 📵 Co/Co²⁺ (E⁰ = + 0.28 V)

ব্যাখ্যা: অপশনে Zn এর জারণ বিভব + 0.76 V থেকে কম জারণ বিভব বিশিষ্ট মৌল একমাত্র Co ($E^0 = + 0.28 \text{ V}$)। তাই Z_n/Z_n^{2+} অ্যানোড হলে Co/Co²⁺ কে ক্যাথোডরূপে ব্যবহার করা যাবে।

 δC | H₂(g) + Cu²⁺(aq) → 2H⁺(aq) + Cu(s); E_{cell}⁰ = 0.34 V | উদ্দীপকের কোষ বিক্রিয়াটিতে অ্যানোডের জারণ বিক্রিয়া কোনটি?

7 $Cu^{2+} + 2e^{-} \rightarrow Cu$

q Cu \rightarrow Cu²⁺ + 2e⁻

 \P H₂ → 2H⁺ + 2e⁻

7 $2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2$

উত্তর: ﴿ ਜੇ H₂ → 2H⁺ + 2e⁻

ব্যাখ্যা: H2 ও Cu এর মধ্যে H2 এর জারণ বিভব Cu এর জারণ বিভব থেকে বেশি। তাই উদ্দীপকের কোষে H_2 অ্যানোড এবং Cu ক্যাথোড হিসেবে ক্রিয়া করবে।

অ্যানোড কোষ বিক্রিয়া: $H_2 - 2e^- \rightarrow 2H^+$

ক্যাথোড কোষ বিক্রিয়া: $Cu^{2+} + 2e^- \rightarrow Cu$

সমগ্র কোষ বিক্রিয়া: $H_2 + Cu^{2+} \rightarrow 2H^+ + Cu$

ত্তড়িৎ রসায়ন > ১৫১/ FRB Compact Suggestion Book২৫১ ১০১। সেকেন্ডারি নির্দেশক তড়িৎদার হলো-নিচের উদ্দীপকটি লক্ষ্য কর এবং ৯৬ ও ৯৭ নং প্রশ্নের উত্তর দাও: (i) Pt, H₂(1 atm)/H⁺(1 M) একটি কোষের কোষ বিক্রিয়া হচ্ছে (ii) Ag(s), AgCl(s)/HCl(aq) $Sn + I_2 \rightarrow Sn^{2+} + 2\Gamma$ ৯৬। কোষটির অ্যানোডে সংঘটিত বিক্রিয়া-(iii) Hg, Hg₂Cl₂(s)/KCl (aq) কু. বো. ২১] 8 Sn \rightarrow Sn²⁺ + 2e⁻ নিচের কোনটি সঠিক? \mathfrak{S} $\operatorname{Sn}^{2+} + 2e^{-} \to \operatorname{Sn}$ (1) i, ii (ii, iii উত্তর: (ৰ) Sn → Sn2+ + 2c 1, iii (1) i, ii, iii ব্যাখ্যা: Sn + l2 -> Sn2+ + 2I-উত্তর: ﴿ ii, iii যেহেতু Sn, 2টি ইলেকট্রন ত্যাগ করে Sn^{2+} তে পরিণত হয়। ব্যাখ্যা: ■ Pt, H₂(1 atm)/H⁺(1 M) বা প্রমাণ হাইড্রোজেন তড়িৎদ্বার/ সূতরাং, Sn বিজারক। মখ্য নির্দেশক তডিৎদ্বার। অ্যানোডে জারণ অর্ধবিক্রিয়া: $Sn \rightarrow Sn^{2+} + 2e^{-}$ ■ Ag(s), AgCl(s)/KCl(aq) বা অ্যামালগাম/তড়িংদ্ধার সেকেভারি নির্দেশক তড়িৎদার। ৯৭। কোষটির কোষ ডায়াগ্রাম হচ্ছে-কু. বো. ২১ ■ Hg(I), Hg₂Cl₂(s)/KCl(aq) বা ক্যালোমেল ভড়িৎদ্বার/ Pt, 2I⁻||Sn²⁺/Sn (1) Sn/Sn²⁺||I₂/2I⁻, Pt 1 Sn/Sn²⁺||2I⁻/I₂ Pt, I₂/2Γ||Sn²+/Sn সেকেন্ডারি নির্দেশক তড়িৎদ্বার। **উত্তরঃ ③** Sn/Sn²⁺||I₂/2Γ, Pt ব্যাখ্যা: প্রদত্ত কোষটির ক্ষেত্রে, ১০২। প্রাইমারি নির্দেশক তড়িৎদ্বার কোনটি? বি. বো. ১৭] অ্যানোডে জারণ অর্ধবিক্রিয়া: $Sn - 2e^- \rightarrow Sn^{2+}$ ক্যালোমেল তড়িৎদার ক্যাথোডে বিজারণ অর্ধবিক্রিয়া: $I_2 + 2e^- \rightarrow 2I^-$ হাইড্রোজেন তড়িৎদার সূতরাং, কোষ ডায়াগ্রাম হবে: Sn/Sn²⁺||I₂/21⁻,Pt গ্র সিলভার-সিলভার ক্রোরাইড তডিৎদ্বার ত্বি প্লাটিনাম তড়িৎদ্বার ৯৮। Zn-এর প্রমাণ জারণ বিভব কত? মি. বো. ২২ উত্তর: 📵 হাইড্রোজেন তড়িৎদার (1) + 0.76 V (1) + 0.34 V 何 - 0.34 V ব্যাখ্যা: প্রাইমারি নির্দেশক তড়িৎদার: হাইড্রোজেন তড়িৎদার। উত্তর: @ + 0.76 V সেকেভারি নির্দেশক তড়িৎদ্বার: ক্যালোমেল তড়িৎদ্বার, সিলভার-ব্যাখা: Zn - 2e - → Zn2+ সিলভার ক্রোরাইড ভড়িৎদার, কুইনহাইড্রোন ভড়িৎদার। এ ক্ষেত্রে জিংক এর জারণ বিভব, $E_{Zn/Zn^{2+}}^0 = +0.76 \text{ V}$ এখানে, - 0.34 V হলো Cu এর জারণ বিভব। চি. বো. ১৯] ১০৩। ক্যালোমেলে কোন ধাতু থাকে? ক্ত তামা ৯৯। Li, Na, Zn ও Cu এর প্রমাণ জারণ বিভব যথাক্রমে + 3.041 V, থ দস্তা + 2.71 V, + 0.76 V ও - 0.34 V হলে তড়িং বিশ্লেষণের সময় গ) নিকেল (ছ) পারদ কোন আয়নটি সর্বপ্রথম চার্জমুক্ত হবে। [ज. त्वा. २১] উত্তর: 📵 পারদ **③** Zn²⁺ ⊕ Cu²⁺ ব্যাখ্যা: ক্যালোমেল বা মারকিউরাস ক্লোরাইডের সংকেত Hg₂Cl₂, যার 1 Nat (1) Li মধ্যে পারদ থাকে। উত্তর: 🚳 Cu²⁺ ব্যাখ্যা: ১০৪। ক্যালোমেল তড়িৎদ্বারে কোনটি ব্যবহৃত হয়? [সি. বো. ২৩] মৌল বিজারণ বিভব ⊕ Hg₂Cl₂ (1) HgCl Li -3.04 V ⁽¹⁾ AgCl (1) NH₄Cl -2.71 V Na -0.76 V উত্তর: 🚳 Hg₂Cl₂ Zn + 0.34 V Cu ব্যাখ্যা: প্রমাণ ক্যালোমেল তড়িৎদ্বারের পাশে একটি সরু নলসহ একটি Cu এর বিজারণ বিভব সবচেয়ে বেশি। ফলে এটি সবার আগে চওড়া নলে কিছু পরিমাণ পারদ নিয়ে তার উপরে কঠিন মারকিউরাস ইলেকট্রন গ্রহণ করে চার্জযুক্ত হবে। কোরাইড (Hg2Cl2) লবণ বা ক্যালোমেল নেয়া হয়। ক্যালোমেল তড়িৎদ্বার: Pt, Hg/Hg2Cl2(s)/KCl(aq) ১০০। নির্দেশক তড়িৎদ্বার কত প্রকার? [य. त्वा. २১] ক্ত এক ৰ দুই ১০৫। ক্যালোমেল কোনটি? [চ. বো. ১৭; অনুরূপ প্রশ্ন: কু. বো. ১৭] নে তিন (ব) পাঁচ → HgCl₂ ⁽³⁾ Hg₂Cl₂ উত্তর: 📵 দুই ব্যাখ্যা: নির্দেশক তড়িৎদ্বার দু'প্রকার। যথা: 1 HgF2 THg2l2 উত্তর: ﴿ Hg₂C/₂ ১. মুখ্য বা প্রাইমারি নির্দেশক তড়িৎদ্বার

Rhombus Publications

ব্যাখ্যাঃ ক্যালোমেল বা মারকিউরাস ক্লোরাইডের সংকেত $\mathrm{Hg}_2\mathrm{C}l_2$ ।

২. গৌণ বা সেকেন্ডারি নির্দেশক তড়িৎদার

১০৬। তড়িৎ রাসায়নিক কোষের e.m.f =? চি. বো. ২৩] (i) $E^0_{Anode(ox)} + E^0_{Cathode(Red)}$ (iii) $E^0_{Cathode(Red)} - E^0_{Anode(Red)}$ (iii) $E^0_{Anode(ox)} - E^0_{Cathode(ox)}$ নিচের কোনটি সঠিক? 1, ii (1) i, iii (9) ii, iii (1) i, ii, iii উত্তর: 🕲 i, ii, iii ব্যাখ্যা: $E_{cell}^0 = E_{Anode(Ox)}^0 + E_{Cathode(Red)}^0$ আবার, $E_{Anode(Ox)} = -E_{Anode(Red)}$ $E_{Cathode(Red)} = -E_{Cathode(Ox)}$ $99 + Pt, \frac{1}{2}H_2(g)/H^+(aq) \parallel Cu^{2+}(aq)/Cu(s)$ $\mathbf{E}_{C_{n}^{2+}/C_{n}}^{0} = +0.34 \text{ V}$ কোষ্টির জন্য EMF এর মান কোন্টি? [ঢা. বো. ২৩] @ 0.00 V 3 + 0.34 V 9 - 0.34 V (9) + 0.17 V উত্তর: 🕲 + 0.34 V ব্যাখ্যা: $E_{cell}^0 = E_{H_2/H}^0 + E_{Cu^{2+}/Cu}^0$ = 0.34 V১০৮। $\mathbf{E}^0_{\mathrm{Zn/Zn}^{2+}}=+~0.76~\mathrm{V}$ এবং $\mathbf{E}^0_{\mathrm{Ag/Ag}^+}=-~0.799~\mathrm{V}$ তড়িৎবার সমন্বয়ে গঠিত কোষের e.m.f কত ভোল্ট? 3 1.459 **1.559** (9) 1.669 (T) 2.559 উত্তর: 🕲 1.559 ব্যাখ্যা: $E_{cell}^0 = E_{Zn/Zn^{2+}}^0 + E_{Ag^+/Ag}^0$ = (0.76 + 0.799) V = 1.559 V১০৯। দস্তার পাত্রে FeSO4 দ্রবণ রাখলে সৃষ্ট কোষের কোষ বিভব হবে- $[\mathbf{E}_{\mathbf{Z}n^{2+}/\mathbf{Z}n}^{0} = -0.76 \text{ V}; \mathbf{E}_{\mathbf{F}e^{2+}/\mathbf{F}e}^{0} = -0.44 \text{ V}]$ [চ. বো. ২৩] 到 -1.20 V 9 + 0.32 V (9) + 1.20 V উত্তর: 🗐 + 0.32 V ব্যাখ্যা: দস্তার পাত্রে FeSO4 দ্রবণ রাখলে দস্তার পাত্রটি (Zn) অ্যানোড হিসেবে ক্রিয়া করবে। $E_{coll}^{0} = E_{Zn/Zn^{2+}}^{0} + E_{Fe^{2+}/Fe}^{0} = (0.76 - 0.44) \text{ V}$ ১১০। জিংক ও সিলভার তড়িংদ্বারের বিজারণ বিভবের মান যথাক্রমে – 0.76 V ও + 0.80 V। এই তড়িৎদ্বার দ্বারা তৈরি কোষের মোট বিভব কত? মি. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২২; রা. বো. ২১] → 0.04 V (4) + 0.04 V 9 + 1.56 V

..... ACS, > Chemistry 2nd Paper Chapter-4

নিচের উদ্দীপকটি পড় এবং ১১১ ও ১১২ নং প্রশ্নের উত্তর দাও: A ধাতুর ক্ষেত্রে $E_{A/A^{2+}}^0 = +0.88 \text{ V}$

B ধাতুর ক্ষেত্রে $E_{B/B^{2+}}^0 = -0.35 \text{ V}$

১১১। উদ্দীপকের তড়িৎদারদম দারা গঠিত কোমের জন্য-[য. বো. ২৩]

(i)
$$E_{cell}^0 = E_{A/A^{2+}}^0 + E_{B/B^{2+}}^0$$

(ii)
$$\mathbf{E}_{\text{cell}}^{0} = \mathbf{E}_{\text{A/A}^{2+}}^{0} + \mathbf{E}_{\text{B}^{2+}/\text{E}}^{0}$$

(i)
$$E_{cell}^{0} = E_{A/A}^{0}^{2+} + E_{B/B}^{0}^{2+}$$

(ii) $E_{cell}^{0} = E_{A/A}^{0}^{2+} + E_{B^{2+}/A}^{0}$
(iii) $E_{cell}^{0} = E_{B^{2+}/B}^{0} - E_{A^{2+}/A}^{0}$

নিচের কোনটি সঠিক?

(1) i, iii

(1) i, ii, iii

ব্যাখ্যা: $E_{NA^{2+}}^0 > E_{B/B^{2+}}^0$ হওয়ায় A ধাতু অ্যানোড তড়িংদার এবং B ধাতু ক্যাথোড তড়িৎদ্বার হিসেবে ক্রিয়া করবে।

$$egin{align*} E_{ ext{cell}}^0 &= E_{\Lambda/\Lambda}^{0}^{2+} + E_{B^{2+}/B}^{0} \ &= E_{B^{2+}/B}^{0} - E_{\Lambda^{2+}/\Lambda}^{0} \ &= E_{\Lambda/\Lambda}^{0}^{2+} - E_{B/B^{2+}}^{0} \ & \end{aligned}$$
 অর্থাৎ, (i) সঠিক নয়।

১১২। তডিৎদ্বারদ্বয় দ্বারা গঠিত কোষের ক্ষেত্রে প্রযোজ্য হবে-

- A ধাতু ক্যাথোড হিসেবে ব্যবহৃত হয়
- A ধাতু B অপেক্ষা অধিক সক্রিয়
- ্র কোষটির ডায়াগ্রাম হবে B/B²⁺||A²⁺/A
- থি কোষটির বিভব 0.53 V

উত্তর: 📵 A ধাতু B অপেক্ষা অধিক সক্রিয়

ব্যাখ্যা: ধাতুর সক্রিয়তা ধাতুর জারণ বিভব দ্বারা নির্ণয় করা হয়। যে ধাতুর জারণ বিভব যত বেশি, সেটি তত বেশি সক্রিয়।

 $E^0_{A/A^{2+}} > E^0_{B/B^{2+}}$ তথা A ধাতু এর জারণ বিভব B অপেক্ষা বেশি হওয়ার, A ধাতু B অপেক্ষা অধিক সক্রিয়। কোষটির ডায়াগ্রাম হবে A/A2+||B2+/B

- ¬ 1.56 V

উত্তর: 📵 + 1.56 V

ব্যাখ্যা: দেওয়া আছে, $E^0_{Zn^{2+}/Zn} = -0.76 \text{ V}$

$$E_{Ag^{+}/Ag}^{0} = 0.80 \text{ V}$$
 $E_{cell}^{0} = E_{Zn/Zn^{2+}}^{0} + E_{Ag^{+}/Ag}^{0} = (0.76 + 0.80) \text{ V}$
 $= 1.56 \text{ V}$

Rhombus Publications

নিচের উদ্দীপকটি পড় এবং ১১৩ ও ১১৪ নং প্রশ্নের উত্তর দাও:

$$A(s) + BSO_4(aq) \longrightarrow ASO_4(aq) + B(s)$$

 $E_{A^{2+}/A}^0 = -0.76 \text{ V}; E_{B^{2+}/B}^0 = +0.44 \text{ V}$

১১৩। উদ্দীপকের কোষটির কোষ বিভব হলো-

(1) + 0.42 V

(1) + 1.20 V

উত্তর: 🕲 + 1.20 V

ব্যাখ্যা:
$$E_{cell}^0 = E_{A/A^{2+}}^0 + E_{B^{2+}/B}^0$$

= $(0.76 + 0.44) \text{ V}$
= 1.20 V $E_{A/A^{2+}}^0 = -0.76 \text{ V}$

১১৪। উদ্দীপকের বিক্রিয়ার তথ্যানুযায়ী-

দি. বো. ২৩

[দি. বো. ২৩]

- (i) 'B' পাত্রে ASO4 রাখা যাবে
- (ii) 'A' পাত্রে BSO4 রাখা যাবে
- (iii) ক্যাথোডে \mathbf{B}^{2+} আয়ন \mathbf{A}^{2+} আয়নের আগে চার্জমুক্ত হবে

নিচের কোনটি সঠিক?

(i, ii

- (1) i, iii
- ① ii, iii
- (1) i, ii, iii

উত্তরঃ (ৰ) i, iii

ত্তিৎ রসায়ন ➤ ACS, FRB Compact Suggestion Book

ঢা. বো. ২১: অনুরূপ প্রশ্ন: সমিগিত বো. ১৮

খ্যাখ্যা: $E_{B^{2}/B}^{0} > E_{A^{2}/A}^{0}$ তথা B এর বিজারণ বিভব A অপেক্ষা বেশি ১১৮। উদ্দীপকের বিক্রিয়ার জন্য সঠিক তথ্য-হওয়ায় A ধাতু অ্যানোড তড়িৎদ্বার এবং B ধাতু ক্যাথোড তড়িৎদ্বার হিসেবে ক্রিয়া করবে।

- (i) Y পাত্रে X2+ দ্রবণ রাখা যাবে
- A थां क्र क्यात्नाफ दिस्मित्व क्रियां मीन विधाय 'A' शाद्व BSO4 রাখা যাবে না। কিন্তু 'B'-পাত্রে ASO4 রাখা যাবে।
- (ii) X পাত्र्य Y2+ দ্রবণ রাখা যাবে (iii) কোষ বিক্রিয়া সতঃস্কর্ত হবে

নিচের কোনটি সঠিক?

ব্যাখ্যা: (i)Y পাত্রে X²⁺ দ্রবণ রাখা হলে:

পাত্রে X²⁺ দ্রবণ রাখা যাবে।

 $E_{\text{cell}}^{0} = E_{X/X^{2+}}^{0} + E_{Y^{2+}/Y}^{0}$ = (0.62 + 0.20) V

(ii) X পাত্রে Y²⁺ দ্রবণ রাখা হলে,

■ B এর বিজারণ বিভব বেশি হওয়ায় B^{2+} আয়ন A^{2+} আয়নের

(1) ii, iii (1) i, ii, iii

- আগে চার্জমুক্ত হয়ে ক্যাথোডে জমা হবে।
- 1, iii উত্তর: 📵 i, iii

(1) i, ii

 E_{coll}^0 (- ve) হওয়ায় পাত্রে স্বতঃস্কৃর্ত বিক্রিয়া ঘটবে না। তাই, Y

যেহেত্ E cell (+ ve) সুতরাং, পাত্রে স্বত:ক্ষূর্ত বিক্রিয়া ঘটবে। ফলে

নিচের উদ্দীপকটি লক্ষ কর এবং ১১৯ ও ১২০ নং প্রশ্নের উত্তর দাও:

Pt, $H_2(g)$ (1 atm)/HCl (1 M) || AgNO₃ (1M)/Ag(s);

পাত্র ক্ষয়প্রাপ্ত হবে। তাই X পাত্রে Y²⁺ দ্রবণ রাখা যাবে না।

(iii) উদ্দীপকের বিক্রিয়ার, $E_{cell}^0 = + 0.82 \text{ V}$

.: $\vec{E}_{call}^0 > 0$, কোষ বিক্রিয়া স্বতঃস্কূর্ত হবে।

25°C তাপমাত্রায়, E_{AP/Ap} = - 0.80 V

নিচের উদ্দীপকটি পড় এবং ১১৫ ও ১১৬ নং প্রশ্নের উত্তর দাও: $Pt, H_2(g)(1atm, 25^{\circ}C)/H_2SO_4(aq)||CuSO_4(aq)/Cu(s)|$

$$E_{coll}^{0'} = E_{Y/Y^{2^{4}}}^{0} + E_{X^{2^{4}}/X}^{0}$$

$$= -0.20 - 0.62$$

$$= -0.82 \text{ V}$$

এখানে,

$$E_{Y^{2+}/Y}^0 = 0.20 \text{ V}$$

 $\therefore E_{Y/Y^{2+}}^0 = -0.20 \text{ V}$
 $E_{X^{2+}/X}^0 = -0.62 \text{ V}$

 $E_{Cn/Cn^{2*}}^{0} = -0.34 \text{ V}$ ১১৫। কোষটির প্রমাণ e.m.f কত?

[সি. বো. ২৩]

→ 0.34 V

- (1) + 0.34 V
- 例 1.10 V

(9) + 1.10 V

উত্তর: 🕲 + 0.34 V

ব্যাখা: E_{cell} = E_{H2/H}, + E_{Cu²⁺/Cu} = (0 + 0.34) V = 0.34 V

১১৬। M/M²⁺||N⁺/N, E⁰_{M/M²⁺} = 0.76 volt এবং

 $\mathbf{E}_{N/N^+}^0 = -0.4 \text{ volt}$ । প্রদত্ত কোষটির e.m.f কত volt? বি. বো. ২২

- + 1.16
- **(4)** + 0.36
- (9) 0.36
- (₹) -1.16

উত্তর: 📵 + 1.16

ব্যাখ্যা: $E^0_{NN^+} < E^0_{MM^{2+}}$ হওয়ায় M অ্যানোডে তড়িৎদার এবং N ক্যাখোড তডিৎদার। এক্ষেত্রে-

নিচের উদ্দীপকটি পড় এবং ১১৭ ও ১১৮ নং প্রশ্নের উত্তর দাও:

 $X(s) + Y^{2+}(aq) \rightleftharpoons X^{2+}(aq) + Y(s)$

 $E_{ccll}^0 = E_{M/M^{2+}}^0 + E_{N+N}^0$ = (0.76 + 0.4) V

= 1.16 V

● - 0.80 V

(₹) - 0.40 V

⑦ 0.00 V

(9) + 0.80 V

উত্তর: 🕲 + 0.80 V

ব্যাখ্যা: $E_{\text{cell}}^0 = E_{\text{anode(ox)}}^0 + E_{\text{cathode(red)}}^0$ = $E_{\text{H}_2/\text{H}^+}^0 + E_{\text{Ag}^+/\text{Ag}}^0$ = 0 + 0.80= +0.80 V

১১৯। উদ্দীপকের কোষটির e.m.f কত?

১২০। উদ্দীপকের কোষে-

[য. বো. ২১]

[য. বো. ২১]

 $\mathbf{E}_{\mathbf{Y}^{2+}/\mathbf{Y}}^{0} = 0.20 \text{ V}$

 $\mathbf{E}_{\mathbf{X}^{2+}/\mathbf{X}}^{0} = -0.62 \text{ V}$

১১৭। উদ্দীপকের কোষটির কোষ বিভব কত?

[ঢা. বো. ২১]

- ⊕ + 0.82 V
- ⁽³⁾ − 0.82 V
- 9 + 0.42 V
- (1) 0.42 V

উত্তর: 📵 + 0.82 V

ব্যাখ্যা: অ্যানোডে বিক্রিয়া: X(s) – 2e⁻ → X²⁺(aq); E⁰_{X/X²⁺} = 0.62 V ক্যাথোডে বিক্রিয়া: $Y^{2+}(aq) + 2e^- \rightarrow Y(s)$; $E^0_{Y^{2+}/V} = 0.2 \text{ V}$ আমরা জানি,

$$\begin{split} \mathbf{E}_{coll}^{0} &= \mathbf{E}_{anodc(ox)}^{0} + \mathbf{E}_{cathode(red)}^{0} \\ &= \mathbf{E}_{X/X}^{0}^{2+} + \mathbf{E}_{Y}^{0}^{2+}/Y} \\ &= (0.62 + 0.20) \, \mathrm{V} \\ &= + 0.82 \, \mathrm{V} \end{split}$$

- (i) লবণ সেতু আছে
 - (ii) ক্যাথোডের বিজারণ বিভব + 0.80 V
 - (iii) অ্যানোড প্রাইমারি নির্দেশক তড়িংদ্বার
 - নিচের কোনটি সঠিক?
 - @i gii (iii & i (F)
 - ரு ii v iii
- (T) i, ii v iii

উত্তর: 📵 i, ii ও iii

ব্যাখ্যা: দুটি অর্ধকোষকে একটি লবণসেতু দিয়ে সংযুক্ত করা হয় যা দুটি খাড়া লাইন (||) দিয়ে বোঝানো হয়।

(i) Ag ক্যাথোড হিসাবে বিজারণ বিক্রিয়া দেয়:

$$Ag^+ + e^- \rightarrow Ag$$

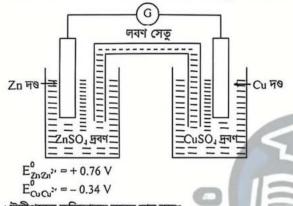
- \therefore ক্যাখোডের বিজারণ বিভব, $E_{Ag^*/Ag}^0 = + 0.80 \text{ V}$
- (ii) যেহেতু উদ্দীপকের অ্যানোড তড়িংঘারটি একটি হাইড্রোজেন তড়িৎদার সূতরাং, এটি প্রাইমারি নির্দেশক তড়িৎদার।

[\$ CUL 99]

१३८ मध्यापं व्यवसास भिरमाक त्यापन स्प्राप्त स्प्राप्त Su(s)/Su2 (ag)/H (ag)/H;(g) (1 atm, Pt) क्षार, ह_{ं किल} = = 0.14 V

@ - 14 V

3 -007 V


(1) + 0 07 V

(V) + 0 14 V

費明: (♥ + 0.14 V

सामाः EME = E morring + E considered = E = + E = 1. 11 -0.14+0= 0.14 V

নিচের চিন্রটি লচ্চ্য কর এবং ১২২ ও ১২৩ নং প্রশ্নের উত্তর দাও:

১২২। উদ্দীপকের তড়িচ্চালক বলের মান কত্য

রা. বো. ১৯; অনুরূপ গ্রপ্নঃ স্থিনিত বো. ১৮:

→ 1.10 V

@ + 0.42 V

9 - 1.10 V

 $\bigcirc -0.42 \text{ V}$

উত্তর: 🚳 + 1.10 V

ব্যাখ্যা: অ্যানোডে জারণ: Zn – 2e → Zn2 +

ক্যাথোডে বিজারণ: Cu2+ + 2e → Cu

$$E_{cell}^{0} = E_{anodc(ox)}^{0} + E_{cothodc(red)}^{0}$$

$$= E_{Zn/Zn^{2}}^{0} + E_{Cu^{2}/Cu}^{0}$$

$$= (0.76 + 0.34) \text{ V}$$

১২৩। প্রদন্ত কোষের ক্ষেত্রে প্রযোজ্য হবে-

(রা. বো. ১৯)

- (i) Zn দও অ্যানোড হিসেবে ত্রিন্মা করে
- (ii) Cu ধাতু Zn এর চেয়ে অধিক সক্রিয়
- (iii) কোষটি Zn/Zn²⁺||Cu²⁺/Cu

নিচের কোনটি সঠিক?

(a) j v ji

(III B i (P)

g ii e iii

(i, ii v iii

উত্তর: (ব) j ও iii

ব্যাখ্যা: উদ্দীপক থেকে দেখা যায়, Zn এর জারণ বিভব Cu এর জারণ বিভব অপেক্ষা বেশি। সুতরাং, কোষটিতে-

- Zn দও অ্যানোড হিসেবে কাজ করবে ।
- Zn ধাতু Cu এর চেয়ে অধিক সক্রিয়।
- য়েহেতু Zn আানোড ও Cu ক্যাথোড হিসেবে কাজ করে সেহেতু, কোষটি- Zn/Zn²⁺||Cu²⁺/Cu

Rhombus Publications

...... ACS/ > Chomistry 2nd Paper Chapter -1

 $Zn(s) + FeSO_4(aq) \rightarrow ZnSO_4(aq) + Fe(s)$

मिएम स्मीभवाहि मच्या क्या अवर ३२८ व ३२८ मर अस्मित क्षम माळः

 $Zn(s)/Zn^{2}(aq) = +0.76V;$

Fc/Fe1'(aq) = + 0.44 V

১২৪। উদ্দীপকে বর্ণিত সেণটিম কোষ নিভয কতা

(अधिभिक्त, जा. ১५)

3 -- 0.42 V

1.20 V

1 + 0 32 V

(9) + 1.20 V

উবদ: 🕣 + 0.32 V

बाबा E = = E + E + E + F + F -0.32 V

১২৫ I **७**मी शक्ता निकिनात सम्म मिक उथा घला-

[সম্প্রিদিক্ত, বো. ১৮]

- (1) जाग्रनम शाय्य चिएक मुगन ताथा गाय
 - (II) खिएक शास्त्र जारातरनत मुनन ताथा गास्त
 - (iii) কোষ বিত্রিনাা স্বতঃস্কুর্ত হবে

নিচের কোনটি সঠিক?

@ieii

Tii e ii @

mi e iii

(i, ii s iii

উভর: ① i ও iii

वाभाः Eo = E ZivZiv + E Fo 2 /Fo = 0.76 + (-0.44)

যেহেতু, Ecal > 0, সেহেতু বিক্রিনাটি স্বতঃস্কৃত হবে। সুতরাৎ, ঞিংক পাত্রে আয়রনের দ্রবণ রাখা যাবে না।

🔲 निচের উদীপকটি লক্ষ্য কর এবং ১২৬ ও ১২৭ নং প্রশ্নের উত্তর দাও:

M/M2*||N*/N

 $E_{NN}^{0} = 0.76 \text{ Volt, } E_{NN}^{0} = -0.4 \text{ Volt}$

১২৬। কোষটির c.m.f. কতা

M. সো. ১৭J

@ - 1.16 Volt

◀ - 0.36 Volt

(1) + 0.36 Volt

@ + 1.16 Volt

উভর: (व) + 1.16 Volt

ব্যাখ্যা: কোৰটির o.m.f = E onode(ox) + E cathode(red)

- ENNI + EN'N

= 0.76 + 0.4

-+1.16 Volt

১২৭। কোষটিতে 'M' ধাতু-

াগি. নো. ২৩া

- (I) বিজারিত হয়
- (II) অ্যানোড হিসেবে কাজ করে
- (III) N এর চেয়ে অধিক সত্রিনা

নিচের কোনটি সঠিক?

ii e i

iii e i @

(ii v ii (f)

ii vii, i

উত্তর: 📵 ii ও iii

ব্যাখ্যা: $E_{NN'}^0$ অপেক্ষা $E_{MM^2}^0$, বড় হওয়ায়, M ধাতুর জারণ ক্ষমতা বেশি অর্থাৎ, এটি বেশি সক্রিয়। তাই M ধাতুর জারণ হবে এবং এটি অ্যানোড হিসেবে কান্ধ করবে।

ভড়িৎ রসায়ন > ১৫১, FRB Compact Suggestion Book

.... ২৫৫

🔲 নিচের উদ্দীপকটি লক্ষ্য কর এবং ১২৮ ও ১২৯ নং প্রশ্নের উত্তর দাও:

$$Cl_2(g) + 2e^- \rightarrow 2C\Gamma(aq); E^0 = +1.36 \text{ Volt}$$

 $Cu^{2+} + 2e^- \rightarrow Cu(s); E^0 = +0.34 \text{ Volt}$

১২৮। উদ্দীপকের কোষটির \mathbf{E}_{cell}^0 কত \mathbf{Volt} ?

[ব. বো. ১৭]

$$9 - 1.02$$

উত্তর: @ + 1.02

ব্যাখ্যা: Cu + Cl₂ → Cu²⁺ + 2Cl

$$E_{cell}^{0} = E_{anode(ox)}^{0} + E_{cathode(red)}^{0}$$

$$= E_{Cu/Cu^{2+}}^{0} + E_{Cl_{2}/Cl^{-}}^{0}$$

$$= -0.34 + 1.36$$

$$= 1.02 \text{ V}$$

১২৯। উদ্দীপকের কোষটির সঠিক কোষ সংকেত কোনটি?

বি. বো. ১৭

- a Cu(s)/Cu⁺(aq)||Cl₂(g)/2Cl⁻(aq)
- \P Pt(s),Cu(s)/Cu²⁺(aq)||Cl₂(g)/2C Γ (aq),Pt(s)
- \mathfrak{T} Cu(s)/Cu²⁺(aq)||Cl₂(g)/2Cl⁻(aq),Pt(s)

উত্তর: গ্র Cu(s)/Cu²⁺(aq)||Cl₂(g)/2C\(\infty\)(aq),Pt(s)

ব্যাখ্যা: উদ্দীপকের কোষটিতে অ্যানোডে Cu এর জারণ এবং ক্যাথোডে Cl_2 এর বিজারণ ঘটবে। কারণ, Cl_2 এর প্রমাণ বিজারণ বিভব Cu এর থেকে বেশি।

কোষ বিক্রিয়া: $Cu + Cl_2 \rightarrow Cu^{2+} + 2C\Gamma$

∴ কোষটির সঠিক কোষ সংকেত-

 $Cu(s)/Cu^{2+}(aq)\|CI_2(g)/2CI^-(aq),Pt(s)$

১৩০। $Ni(s) + 2Ag^{+}(aq) \xrightarrow{2e^{-}} Ni^{2+}(aq) + 2Ag(s)$; বিক্রিয়াটিতে—
[ঢা. বো. ২১]

- (i) Ni জারিত হয়
- (ii) Ag জারিত হয়
- (iii) বিক্রিয়াটি একটি রিডক্স বিক্রিয়া

নিচের কোনটি সঠিক?

ⓓ i, ii

- ③ ii, iii
- 1, iii
- (1) i, ii, iii

উত্তর: প i, iii

ব্যাখ্যা: Ni(s) + 2Ag+(aq) - 2e- Ni2+(aq) + 2Ag(s)

এখানে, Ni দুইটি ইলেকট্রন দান করে Ni²⁺ এ পরিণত হয়েছে। তাই এটি জারণ বিক্রিয়া। সূতরাং, Ni জারিত হয়েছে।

 ${
m Ag}^+$ একটি ইলেকট্রন গ্রহণ করে ${
m Ag}$ এ পরিণত হয়েছে। তাই এটি

বিজারণ বিক্রিয়া। সুতরাং, Ag বিজারিত হয়েছে।

জারণ ও বিজারণ উভয়ই ঘটেছে; তাই এটি রিডক্স বিক্রিয়া।

১৩১। তড়িৎদ্বার বিভব নির্ভর করে-

वि. (वा. २১)

- (i) ধাতব দণ্ডের প্রকৃতির উপর
- (ii) তড়িৎ বিশ্লেষ্যের ঘনমাত্রার উপর
- (iii) দ্রবণের তাপমাত্রার উপর

নিচের কোনটি সঠিক?

- ⓓ i, ii
- (1) ii, iii
- (1) i, iii
- (1) i, ii, iii

উত্তর: 🕲 i, ii, iii

ব্যাখ্যা: তড়িৎদ্বার বিভবের মান-(i) দ্রবণের তাপমাত্রা, (ii) ধাতব বা অধাতব তড়িৎদ্বার ও দ্রবণে ঐ ধাতব বা অধাতব আয়নের প্রকৃতি ও (iii) দ্রবণে ঐ ধাতব বা অধাতব আয়নের ঘনমাত্রার উপর নির্ভর করে।

নার্নস্ট সমীকরণ

১৩২। নিচের কোনটি গ্যালভানিক সেল,

Zn(s)/Zn²⁺(aq)||Ag⁺(aq)/Ag(s) এর বিভব বাড়ায়? বি. বো. ২৩|

- ⊕ [Zn²+] বৃদ্ধি ও [Ag⁺] ব্রাস
- (ব) [Zn²⁺] বৃদ্ধি
- (Zn²⁺) বৃদ্ধি ও [Ag⁺] বৃদ্ধি
- [Ag[†]] বৃদ্ধি
- উত্তর: খি [Ag⁺] বৃদ্ধি

ব্যাখ্যাঃ নার্নস্টের সমীকরণ অনুযায়ী, প্রদত্ত গ্যালভানিক সেল হতে পাই-

$$E_{cell} = E_{cell}^{0} - \frac{RT}{eF} / n \frac{[Zn^{2+}]}{[Ag^{+}]}$$

এখানে, যদি $[Zn^{2^+}] > [Ag^+]$, তাহলে $ln \frac{[Zn^{2^+}]}{[Ag^+]} > 0$

অর্থাৎ, Ecol এর মান কমে।

আবার, $[Ag^+] > [Zn^{2+}]$ হলে, $ln \frac{[Zn^{2+}]}{[Ag^+]} < 0$ হয় তথা E_{cell} এর মান বাডে।

সুতরাং, প্রদত্ত গ্যালভানিক সেলে Ag^{+} এর ঘনমাত্রা বাড়ালে কোষ বিভব (E_{cell}) এর মান বৃদ্ধি পাবে।

১৩৩। $A^{n^+}(aq) + B(s) \rightarrow A(s) + B^{n^+}(aq)$ এই কোষ বিক্রিয়ার আলোকে নার্নস্ট সমীকরণ কোনটি? [v] . [v]

$$\textcircled{3} \ E_{cell} = E_{cell}^{0} - \frac{RT}{nF} \ln \frac{[A^{n+}]}{[B^{n+}]}$$

$$\textcircled{3} \ E_{\text{cell}} = E_{\text{cell}}^0 - \frac{RT}{nF} \ln \frac{[B^{n+}]}{[A^{n+}]}$$

$$\Re E_{coll} = E_{coll}^0 - \frac{2.303 \text{ RT}}{F} \log \frac{[A^{n+}]}{[B^{n+}]}$$

(a)
$$E_{coll} = E_{coll}^0 - \frac{2.303 \text{ RT}}{F} \log \frac{[B^{n+}]}{[A^{n+}]}$$

উত্তর: (ব) $E_{cell} = E_{cell}^0 - \frac{RT}{nF} / n \frac{[B^{n+}]}{[A^{n+}]}$

ব্যাখ্যা: $A^{n+}(aq) + B(s) \rightarrow A(s) + B^{n+}(aq)$

এই কোষ বিক্রিয়ার জন্য নার্নস্ট সমীকরণটি নিম্নর্নপঃ

$$E_{cell} = E_{cell}^0 - \frac{RT}{nF} \ln \frac{[B^{n+}]}{[A^{n+}]}$$

..... ACS, ➤ Chemistry 2nd Paper Chapter-4 নিজেকে যাচাই করো ১। Na.Hg/Na⁺ অর্ধকোষটি কোন ধরনের? ১২। কোনটিতে বিদ্যুৎ শক্তি উৎপন্ন হয় না? ক) তডিৎ বিশ্লেষ্য কোষ ৰ) লেড সঞ্চয়ক কোষ 📵 ধাতু-ধাতুর আয়ন (ৰ) গ্যাস-অর্ধকোষ লিথিয়াম আয়ন ব্যাটারি বি গ্যালভানিক কোষ নি) জারণ-বিজারণ অর্ধকোষ ত্বি ধাতু অ্যামালগাম-ধাতুর আয়ন ১৩। তড়িৎ বিশ্লেষণ কালে কোন আয়নটি প্রথমে চার্জমুক্ত হবে? ২। নিচের কোনটি গ্যালভানিক সেল, (क) Br OH⁻ (1) NO. (9) C[Zn(s)/Zn²⁺(aq)||Ag⁺(aq)/Ag(s) এর বিভব বাড়ায়? ১৪। লবণ সেতৃতে উপযুক্ত তড়িৎ বিশ্লেষ্য পদার্থের কোনগুলো ব্যবহৃত হয়ে থাকে? ඉ [Zn²+] বৃদ্ধি ও [Ag+] বৃদ্ধি

ඉ [Ag+] বৃদ্ধি [®] KCI, NH₄CI, Na₂,CO₃ ® KCI, NH4CI, NaNO3 ৩। $A^{n+}(aq) + B(s) \rightarrow A(s) + B^{n+}(aq)$ এই কোষ বিক্রিয়ার ১৫। প্রাইমারি নির্দেশক তড়িৎদ্বার কোনটি? আলোকে নার্নস্ট সমীকরণ কোনটি? (র) হাইড্রোজেন তড়িৎদ্বার ক্যালোমেল তড়িৎদার $\textcircled{$ } E_{cell} = E_{cell}^{0} - \frac{RT}{nF} \ln \frac{[A^{n+}]}{[B^{n+}]}$ পিলভার-সিলভার ক্লোরাইড তড়িৎদ্বার ত্বি প্লাটিনাম তড়িৎদ্বার নিচের উদ্দীপকটি পড় এবং ১৬ ও ১৭ নং প্রশ্নের উত্তর দাও: $E_{cell} = E_{cell}^0 - \frac{RT}{nF} / n \frac{[B^{n+1}]}{[A^{n+1}]}$ $X(s) + Y^{2+}(aq) \Rightarrow X^{2+}(aq) + Y(s)$ $E_{X^{2+}/X}^{0} = -0.62 \text{ V}$ $E_{Y^{2+}/Y}^{0} = 0.20 \text{ V}$ $\Re E_{cell} = E_{cell}^0 - \frac{2.303 \text{ RT}}{F} \log \frac{[A^{n+1}]}{[B^{n+1}]}$ ১৬। উদ্দীপকের কোষটির কোষ বিভব কত? ⊕ + 0.82 V ⊕ - 0.82 V ⊕ + 0.42 V ⊕ - 0.42 V (1) $E_{cell} = E_{cell}^0 - \frac{2.303 \text{ RT}}{F} \log \frac{[B^{n+1}]}{[A^{n+1}]}$ ১৭। উদ্দীপকের বিক্রিয়ার জন্য সঠিক তথ্য-(i) Y পাতে X^{2+} দূবণ রাখা যাবে (ii) X পাতে Y^{2+} দূবণ রাখা যাবে 8। ক্যাথোডে 1 mol H2 গ্যাস উৎপন্ন হতে কি পরিমাণ বিদ্যুৎ প্রয়োজন? (iii) কোষ বিক্রিয়া স্বতঃস্কর্ত হবে @ 2 F 1 3 F (1) 4 F নিচের কোনটি সঠিক? (4) 1 F e। এক মোল Al_2O_3 হতে এক মোল অ্যালুমিনিয়াম পেতে কত পরিমাণ (3) i, ii (1) ii, iii 1, iii (1) i, ii, iii তড়িৎ প্রয়োজন? নিচের উদ্দীপকটি লক্ষ্য কর এবং ১৮ নং প্রশ্নের উত্তর দাও: 例 3 F (1.5 F @ 1 F $Cl_2(g) + 2e^- \rightarrow 2C\Gamma(aq); E^0 = +1.36 \text{ Volt}$ $Cu^{2+} + 2e^{-} \rightarrow Cu(s); E^{0} = +0.34 \text{ Volt}$ ৬। ফ্যারাডের সূত্র প্রযোজ্য- Σ । উদ্দীপকের কোষটির \mathbf{E}_{Cell}^0 কত \mathbf{Volt} ? (i) ইলেকট্রনের চার্জ গণনায় (ii) ধাতুর পরিমাণ নির্ণয়ে (iii) তড়িৎ বিশ্লেষ্য পরিবাহীর ক্ষেত্রে 9 - 1.02(9) - 1.7১৯। নিচের কোনটি বিদ্যুৎ সুপরিবাহী নয়? নিচের কোনটি সঠিক? 📉 🕲 কার্বন ক্ত কপার গে) সিলভার (ছ) অ্যালুমিনিয়াম (4) i, ii (1) i, iii ২০। কোনটি ভড়িৎবিশ্লেষ্য পরিবাহী? ৭। ব্রাইনের তড়িৎ বিশ্লেষণ করলে কী উৎপন্ন হয়? ® NaCl ® NaHCO₃ ® NaOH ® NaCIO ২১। CGS পদ্ধতিতে মোলার পরিবাহিতার একক কী? ৮। Li, Na, Zn ও Cu এর প্রমাণ জারণ বিভব যথাক্রমে + 3.041 V. ⊕ Ohm⁻¹.cm² (g. eqv)⁻¹ (3) Ohm-1.cm-2 mol-1 2.71 V, + 0.76 V ও - 0.34 V হলে তড়িৎ বিশ্লেষণের সময় কোন 1 Ohm-1 mol-1 (1) Ohm-1.cm2 mol-1 আয়নটি সর্বপ্রথম চার্জমুক্ত হবে। ২২। FeCl3 এ Fe এর তড়িৎ রাসায়নিক তুল্যাঙ্ক কত? Fe = 55.85 ♠ Cu²⁺ (1) Zn2+ 1 Na+ ② 2.89 × 10⁻⁴ ৯। 1 মোল Ag ক্যাথোডে সঞ্চিত করতে AgNO3 দ্রবণের কভ ফ্যারাডে ¶ 1.93 × 10⁻³ ® 2.89 × 10⁻³ তড়িৎ চালনা করতে হবে? ২৩। গলিত অ্যালুমিনার মধ্য দিয়ে 30 অ্যাম্পিয়ার বিদ্যুৎ 90 মিনিট যাবৎ প্রবাহিত করলে ক্যাথোডে কত গ্রাম ধাতু জমা হবে? @ 2 F (9) 3 F (9) 4 F (a) 7.27 ১০। কোনটির জারণ বিভব সবচেয়ে কম? **(4)** 15.10 (9) 21.82 (T) 45.32 ২৪। 10 g NiCl2 দ্রবর্ণে 10 A বিদ্যুৎ প্রবাহিত করলে সবটুকু ধাতু ক্ক কপার গ্ৰ হাইড্ৰোজেন খ্ৰ লিথিয়াম (ৰ) গোল্ড ক্যাথোডে সঞ্চিত হয়। এক্ষেত্রে কত সময়ের প্রয়োজন হবে? ১১। তড়িৎ রাসায়নিক কোষে-[Ni = 58.69](i) ক্যাথোড থেকে অ্যানোডে বিদ্যুৎ প্রবাহিত হয় (ii) বিদ্যুৎ শক্তি রাসায়নিক শক্তিতে পরিণত হয় ২৫। সিলভার নাইট্রেট দ্রবণের মধ্যে দিয়ে 160 mA বিদ্যুৎ 40 min ধরে (iii) অ্যানোডে জারণ ঘটে চালনা করলে ক্যাথোডে কতটি সিলভার পরমাণু জমা হবে? নিচের কোনটি সঠিক ② 2.396 × 10²¹ 市 (1) 6.023 × 10²³ (1) Ti vi T গ্ৰ 6.505 × 10²⁵ টি (1) 2.584 × 10²³ (1) (1) ii v iii (1) i viii (i, ii G iii উত্তরপত্র (1) (1) 9 **(**1) 8 0 (1) ٩ 1 **(4)** 2 **@** 30 (3) **③** 12 (9) (4) (A) 1 (1) (3) 78 (1) 16 19 20 ২০ 25 ২৩ 28 20 **(4)**


অভাবনীয় সাফল্য

এইচএসসি পরীক্ষার চূড়ান্ত প্রস্তুতির জন্য আমাদের বইসমূহ

t.me/admission_stuffs