



# এক নজরে আমাদের বই

- পুরো সিলেবাসকে নিখুঁতভাবে বিশ্লেষণ করে আমরা বেছে নিয়েছি গুরুত্বপূর্ণ সৃজনশীল ও বহুনির্বাচনি প্রশ্লমালা যা একজন HSC পরীক্ষার্থীকে স্বল্প সময়ে সম্পূর্ণ সিলেবাস আয়ত্ত করতে সাহায্য করবে।
- প্রতিটি সৃজনশীল প্রশ্নের উত্তর আমাদের কন্টেন্ট টিম কর্তৃক এমনভাবে প্রস্তুত করা হয়েছে যেন একজন শিক্ষার্থী পরীক্ষায় সর্বোচ্চ নম্বর অর্জন করতে পারে।
- MCQ প্রশ্নের জন্য প্রয়োজনীয় ব্যাখ্যা প্রদান করা হয়েছে। পর্যাপ্ত Shortcut Technique দেখানো হয়েছে যেন পরীক্ষায় দ্রুত উত্তর করতে পারো।

# कींजात वरेंिं जध्ययन कवत्व?

বোর্ড পরীক্ষার জন্য কোনো অধ্যায়ের চূড়ান্ত প্রস্তুতির অংশ হিসেবে ওই অধ্যায়ের সকল সৃজনশীল এবং বহুনির্বাচনী প্রশ্ন পড়ে ফেল। প্রশ্নগুলো এমন ভাবে বাছাই করা হয়েছে যে এতে তোমার খুব দ্রুত একটি কার্যকর এবং পূর্ণাঙ্গ প্রস্তুতি হয়ে যাবে।



# PDF Credit - Admission Stuffs বুচুবায়

মোঃ নাজমুস সাকিব

Chemistry 17, DU

সঞ্জয় চক্রবর্তী

ME10, BUET

हिस्सल वर्ष्रुया

EEE17, BUET

মোঃ সুজাউল ইসলাম

NAME14, BUET

মোঃ মাসুদ মিয়া

MME'16, BUET

জয়নাল আবেদীন

MME16, BUET

মোঃ রিফাত আহমেদ

Che18, BUET

হাবিব উল্লাহ খান

IPE'18, BUET

মোঃ তাশফিকুর রহমান

AE'22, BUTEX

মোঃ মুবিন আল নাহিয়ান

ME'22, BUET

মোঃ ফয়সাল রহমান

EEE'22, BUET

ফারিহা কামাল

CE'22, MIST



প্রিয় HSC পরীক্ষার্থীবৃন্দ,

··STUFFS··

কয়েকমাস পরেই তোমরা জীবনের একটি খুবই গুরুত্বপূর্ণ পরীক্ষায় অংশগ্রহণ করতে যাচ্ছ। তোমাদের মনে প্রস্ন আসতে পারে বাজারের এত বইয়ের সমাহারের মাঝে আমাদের বইটি আলাদা কী গুরুত্ব বহন করছে? আমাদের বইয়ের বিশেষত্বই বা কী?

একজন HSC পরীক্ষার্থীর জন্য পরীক্ষার আগের কয়েকটি মাস খুবই গুরুত্বপূর্ণ। এ সময় বিশাল সিলেবাসকে একদম গুছিয়ে পড়তে হয় অন্যথায় হাবুড়ুবু খেতে হয়। এ ব্যাপারটি মাথায় রেখে আমরা তোমাদের জন্য নিয়ে এসেছি কম্প্যান্ট সাজেশন বুক। আমাদের কন্টেন্ট টিম রীতিমতো গবেষণা করে একেকটি অধ্যায়ের জন্য সীমিত পরিমাণে এমনভাবে সৃজনশীল এবং বহুনির্বাচনি প্রশ্ন বাছাই করেছে যা তোমাদের প্রত্যেকটি অধ্যায়ের সকল উপিক দ্রুত কভার করতে সাহায্য করবে। আমরা আশাবাদী যে আমাদের এই বইগুলো তোমাদের প্রস্তুতিকে অন্য মাত্রায় নিয়ে যাবে।

তোমাদের ভবিষ্যৎ জীবনের প্রতি অনেক শুভকামনা।

# অনুপ্রেরণা ও সহযোগিতায়

অভি দত্ত তুষার মঈবুল হাসান

# श्रकागता

রম্বস পাবলিকেশন্স মিরপুর ডিওএইচএস, ঢাকা - ১২১৬

প্রথম প্রকাশ

प्रस्थापताय

: ডিসেম্বর, ২০২৪

: মোঃ সুজাউল ইসলাম

বর্ণবিন্যাস

: বিজয় কুমার

स्ववत वाला

আব্দুর রাজ্জাক

আব্দুর রহমান

প্রচ্ছদ

: তারিকুজ্জামান

মৃদ্রব ও বাধাই : রম্বস পাবলিকেশন্স

গ্রাফিক্স

: তারিকুজ্জামান

रेकवात আহম্মেদ रेউंगा

মূল্য

८६०.००(हात्रमा प्रकाम) होका

অঙ্গসজ্জা

: মো: জাকির হোসেন

ADMISSION ··STUFFS··

# উৎসর্গ

পরম করুণাময় সৃষ্টিকর্তা যিনি আমাদের সৃষ্টি করেছেন এবং মা–বাবা কে যাদের কন্যাণে আমরা পৃথিবীর আনো দেখতে পেরেছি।

# অধ্যায়ভিত্তিক বোর্ডে আসা সৃজনশীল প্রশ্নাবলির বিশ্লেষণ

#### 89 क्र 89 83 प्रवंत्याहे 8 20 RA 8 % 8 2 ъ प्रग्नस्ति । त्यार् 9 N N N a 9 N D प्तिताष्ट्रभूव त्वार्ष्ट N N 9 N 9 a D N 😩 नग्रासद् प्रिप्तेसक কুমিলা বোড 9 9 N 9 N N a 0 प्रिल्मे वार्ड 0 N 9 9 N N 89 FODDIP OFFICIENT यात्मात्र त्यार्ड 8 N 0 a N वदिगाल (वार्ष्ट ອ 9 N N N a a 0 0 ३ वाप्राधायक वक्षय 8 છાવ્યવ મદાદ્યવુર લગ્ન **ठ**डेशाभ त्वार् N N 9 9 N a व्राष्ट्रमाही त्वार्ष्ट N N 9 9 N N D D (S) **ह्यास्ट ज**हायत वार 9 N N 9 N N B D 80 DO 9 20 20 ğ 8 2020 2020 2020 2022 2022 区区 মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন व्राआय्रतिक भव्रिवर्छत কর্মমুখী রসায়ন छपज्ञ व्रआय्रत क्रमाध

**PDF Credit - Admission Stuffs** 

# সূচিপত্ৰ

| বিষয়                                        | পৃষ্ঠা           |
|----------------------------------------------|------------------|
| গুণগত রসায়ন                                 | 60               |
| মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন    | 68               |
| वाप्राय्विक प्रविवर्णन ADMISSION             | ৯৯               |
| कर्मभूथी तुप्रायुव ::STUFFS :: DMISSION STUF | 58Q<br><b>FS</b> |



# PDF CREDIT



টেলিগ্রামে আমাদের সাথে যুক্ত হোন









# গুণগত রসায়ন



# Qualitative Chemistry

#### Brand Onevenions Analysis

#### मुझ्लमीम क्ष

| পার্ড<br>সাদ | आसा | त्रमप्रमानिह | রায়েশানী | क्रिका | वटनाव | प्रक्षाप | र्तदेशम | 500 | GANDAK |
|--------------|-----|--------------|-----------|--------|-------|----------|---------|-----|--------|
| क्ष्यक       | *   | 9            | 8         | 9      | ٥     | 8        | 8       | 4   | 8      |
| *= **        | 0   |              | 8         | 6      | \$    | 8        | 8       | 2   | 8      |

#### त्रस्मिर्नाएनि ध्राप्त

| নোর্ছ<br>সাদ্য | un | वसम्बद्धा | রায়শাইা | <b>क्रिक्</b> रा | নপেত | प्रवाप | বরিশাদা | Steals | भिभाष्ट्रतः |
|----------------|----|-----------|----------|------------------|------|--------|---------|--------|-------------|
| Acris          | 9  | 8-        | 9        | 8                | 9    | 9      | 9       | b      | e           |
| भटक्ष          | 9  | e         | 9        | 8                | 91   | 9      | Br      | e      | 9           |

# র্কাই অব্যান্তের ডক্লডুসূর্দ বারাণা ও সূত্রাবনি

# वामाजळ्यार्ड, जाव अनः जावार्मिया नमानिमा

वनामा.

ni = करूपान नामा। (वागान त्यावानीया नामा।)

h = अण्डत क्षत्त

m = ইচানটোলত ভব

v = n रम नमाश्रप देखनावितर जम

r=n एम नन्त्रन्थात नामार्भ

🛛 भिक्त नामाण नुवाः

 $\square$  ছিক্রাদির ভরঃটার্ল  $\lambda = \frac{b}{p} = \frac{b}{nw}$  [ध्रातम, p = nw]

$$\therefore 2 \times \frac{1}{p}$$

র্মনাহ, স্কাদ নর্ম স্থ <u>।।</u>

बिरिएबननाएकि धनि। छत्राए। नीएिः

$$\Delta u \times \Delta p \ge \frac{h}{4\pi}$$

## < 0201 × 111 <=

এদানে,

ឋার = অনস্থানের অনিশ্বদায়া

∆p = ভ্রতেণের অনিণ্ডরায়া

Au = তেতার অনি: স্বায়া

nn = नापात स्त

া শ্রেডিভারের ভরঙ্গ স্বর্ধানরগ্রহ

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} + \frac{8\pi^2 nv}{h^2} \times (E - V) \psi = 0$$

वाराम,

up = देखानार्विजन एनक्न निकृष्टि ना काश्रमन

m = ইটাদাট্রাসর ভর

lh = প্রাক্তর গ্রাপনা

E = বঁতানট্রিতার গোর্ট শক্তি



V = विमाधिक (x, y; z) जाजा निन्तुट इंटानांद्वेजन द्विचिनिक

🗆 ०वटन ग्राभा खाउगाः

देखनामित बागान, 
$$e=-1.602\times 10^{-19}$$
  $C=-4.8\times 10^{-10}$  euu देखनामित छ,  $m=9.11\times 10^{-10}$  kg =  $9.11\times 10^{-10}$  g निर्धालित छ,  $m_h=1.675\times 10^{-17}$  kg =  $1.675\times 10^{-20}$  g धारित छ,  $m_h=1.673\times 10^{-17}$  kg =  $1.673\times 10^{-24}$  g आफ्रत क्ष्मक,  $h=6.626\times 10^{-14}$  J s =  $6.626\times 10^{-17}$  erg s भूगाशालत दमनालाणाण,  $e_0=8.854\times 10^{-13}$   $C^2$   $N^{-1}$   $m^{-2}$  लात नामार्भ,  $a_0=0.53$  Å =  $0.53\times 10^{-10}$  m

# হাইড্রোজেন পরমাণুর ব্যাস = $10^{-8}$ cm $/ 10^{-10}$ m / 1 Å / 0.1 nm নিউক্লিয়াসের ব্যাস = $10^{-12} - 10^{-13}$ cm = $10^{-14} - 10^{-15}$ m

$$=10^{-5}-10^{-6} \text{ nm}$$
 $=\frac{$ ইলেকট্রনের চার্জ} $=-1.76\times10^{8} \text{ C/g}=-1.76\times10^{11} \text{ C/kg}$ 

#### ☐ Important Conversion:

1 amu = 
$$1.6605 \times 10^{-27}$$
 kg =  $1.6605 \times 10^{-24}$  g  
1 emu =  $3 \times 10^{10}$  esu

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 J = 0.24 cal$$

$$1 \text{ cal} = 4.2 \text{ J}$$

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

$$1 \text{ MeV} = 1.6 \times 10^{-13} \text{ J}$$

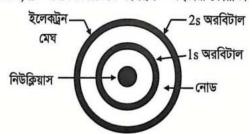
$$1 \text{ erg} = 10^{-7} \text{ J}$$

$$erg \xrightarrow{\div 10^7} J \xrightarrow{\div 1.6 \times 10^{-19}} eV$$

#### কক্ষপথের ব্যাসার্ধ, ইলেকট্রনের বেগ, এবং ইলেকট্রনের শক্তি সংক্রোন্ত:

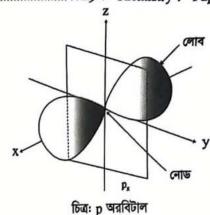
| রাশি                                    | Simplified form                                                   | CGS এককে সূত্র                                    | SI এককে সূত্ৰ                            |
|-----------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|------------------------------------------|
| কক্ষপথের<br>ব্যাসার্ধ (r <sub>n</sub> ) | $\left(0.53 \times \frac{n^2}{Z}\right) \mathring{A}$             | $\frac{h^2}{4\pi^2 me^2} \times \frac{n^2}{Z}$    | $\frac{n^2h^2\epsilon_0}{Z\pi me^2}$     |
| ইলেকট্রনের<br>বেগ (v <sub>n</sub> )     | $\left(2.18 \times 10^6 \times \frac{Z}{n}\right) \text{ms}^{-1}$ | $\frac{2\pi e^2}{h} \times \frac{Z}{n}$           | $\frac{Ze^2}{2nh\epsilon_0}$             |
| ইলেকট্রনের<br>শক্তি (E <sub>n</sub> )   | $\left(-2.18 \times 10^{-18} \times \frac{Z^2}{n^2}\right)$ J     | $-\frac{2\pi^2 me^4}{h^2} \times \frac{Z^2}{n^2}$ | $-\frac{Z^2me^4}{8n^2h^2\epsilon_0{}^2}$ |
|                                         | $= \left(-13.6 \times \frac{Z^2}{n^2}\right) \text{eV}$           | 5                                                 | TU                                       |

# কোয়ান্টাম সংখ্যা, অরবিট ও অরবিটাল


- অরবিটাল ও ইলেকট্রন ধারণ ক্ষমতা সংক্রান্ত সূত্রাবলিঃ
  - যেকোনো শক্তিস্তরে সর্বাধিক অরবিটাল সংখ্যা = n²
  - ightharpoonup যেকোনো শক্তিস্তরে সর্বাধিক ইলেকট্রন সংখ্যা =  $2n^2$
  - ➤ যেকোনো উপশক্তিস্তরে সর্বাধিক অরবিটাল সংখ্যা = (2l+1)
  - ➤ যেকোনো উপশক্তিস্তরে সর্বাধিক ইলেকট্রন ধারণ ক্ষমতা = 2(2l+1)

# 🛘 নোড সম্পর্কিত তথ্য:

যেকোনো অরবিটালে,


- ightharpoonup অক্ষীয় বা Radial নোডের সংখ্যা = n-l-1
- ➤ কৌণিক (Angular) নোডের সংখ্যা = l
- ➤ মোট নোডের সংখ্যা = n 1

যেখানে, n = প্রধান কোয়ান্টাম সংখ্যা; l = সহকারী কোয়ান্টাম সংখ্যা



চিত্র: 1s ও 2s অরবিটাল

#### ACS, ➤ Chemistry 1st Paper Chapter-2



#### উপশক্তিন্তর সম্পর্কিত তথ্য:

| উপশক্তিস্তর        | আকৃতি                     | অরবিটাল                                                                                             | লোডান্স<br>প্লেন (n) | লোব সংখ্যা |
|--------------------|---------------------------|-----------------------------------------------------------------------------------------------------|----------------------|------------|
| s<br>(sharp)       | গোলকের<br>ন্যায়          | 1টি                                                                                                 | 0                    | 1          |
| p<br>(principal)   | ডাম্বেলের<br>ন্যায়       | 3 fb $p_x (m = 0)$ $p_y (m = +1)$ $p_z (m = -1)$                                                    | 1                    | 2          |
| d (diffused)       | ডাবল<br>ডামেলের<br>ন্যায় | 5 fb $d_{xy} (m = -2)$ $d_{yz} (m = -1)$ $d_{z^2} (m = 0)$ $d_{zx} (m = +1)$ $d_{x^2-y^2} (m = +2)$ | 2                    | 4          |
| f<br>(fundamental) | Complex                   | 7िं                                                                                                 | 3                    | 7          |

# ইলেক্ট্রন বিন্যাস ও এর নীতিসমূহ

# পর্যায় সারণিতে কিছু মৌলের ব্যতিক্রমী ইলেকট্রন বিন্যাস:

| মৌল    | সম্ভাব্য                                              | প্রকৃত                                                 |
|--------|-------------------------------------------------------|--------------------------------------------------------|
| Cr(24) | [Ar] 3d <sup>4</sup> 4s <sup>2</sup>                  | [Ar] 3d <sup>5</sup> 4s <sup>1</sup>                   |
| Cu(29) | [Ar] 3d <sup>9</sup> 4s <sup>2</sup>                  | [Ar] 3d <sup>10</sup> 4s <sup>1</sup>                  |
| Mo(42) | [Kr] 4d <sup>4</sup> 5s <sup>2</sup>                  | [Kr] 4d <sup>5</sup> 5s <sup>1</sup>                   |
| Pd(46) | [Kr] 4d <sup>8</sup> 5s <sup>2</sup>                  | [Kr] 4d <sup>10</sup> 5s <sup>0</sup>                  |
| Ag(47) | [Kr] 4d <sup>9</sup> 5s <sup>2</sup>                  | [Kr] 4d <sup>10</sup> 5s <sup>1</sup>                  |
| La(57) | [Xe] 4f <sup>l</sup> 5d <sup>0</sup> 6s <sup>2</sup>  | [Xe] 5d <sup>1</sup> 6s <sup>2</sup>                   |
| Au(79) | [Xe] 4f <sup>14</sup> 5d <sup>9</sup> 6s <sup>2</sup> | [Xe] 4f <sup>14</sup> 5d <sup>10</sup> 6s <sup>1</sup> |

ত্থপাত রসায়ন > ACS, FRB Compact Suggestion Book.....

□ ম্যাডিল্যান্দের নীতি (Madelung's Rule):
যদি দুই বা ততোধিক শক্তিব্বরের (n + l) এর মান একই হয়, তবে
সেক্ষেত্রে যে শক্তিব্বরের n এর মান নিমু ঐ শক্তিব্বরের শক্তি নিমু হবে
এবং ইলেকট্রন প্রথমে সেখানেই প্রবেশ করবে।

# পরমাণু ও পরমাণুর মৌলিক কণিকাসমূহ

#### কৃষিকার প্রকারভেদ:

| কণিকা              | <b>উ</b> मास्त्रप                                                                            |  |  |
|--------------------|----------------------------------------------------------------------------------------------|--|--|
| স্থায়ী মূল কণিকা  | ইলেক্ট্রন, প্রোটন ও নিউট্রন                                                                  |  |  |
| অস্থায়ী মূল কণিকা | পাইওন, মিউওন, নিউট্রিনো, অ্যান্টি নিউট্রিনো,<br>মেসন, পজিট্রন, গ্র্যান্ডিট্রন ইত্যানি        |  |  |
| কম্পোজিট কণিকা     | ডিউটেরন কণা $\binom{2}{1}H^+$ বা $\binom{2}{1}D^-$ );<br>আলফা কণিকা $\binom{4}{2}He^{2^+}$ ) |  |  |

#### পরমাণুর ছায়ী মৌলিক কণিকা সমৃহের বৈশিষ্ট্যः

| মৌলিক<br>কণিকার | প্রোট<br>তুল- |       | প্রকৃত ভর                   | প্ৰকৃত চাৰ্জ                                                    |
|-----------------|---------------|-------|-----------------------------|-----------------------------------------------------------------|
| নাম ও প্রতীক    | ভর            | চার্জ |                             |                                                                 |
| শ্রোটন (p)      | 1             | + 1   | 1.673 × 10 <sup>-24</sup> g | + 1.6 × 10 <sup>-19</sup> C<br>41,+ 4.8 × 10 <sup>-10</sup> esu |
| নিউট্রন (n)     | 1             | 0     | 1.675 × 10 <sup>-24</sup> g | ALOPII                                                          |
| ইলেক্ট্রন (e)   | 1 1837        | - 1   | 9.11 ×10 <sup>-28</sup> g   | – 1.6 × 10 <sup>-19</sup> C<br>বা,– 4.8 × 10 <sup>-10</sup> esu |

্রালের একটি পরমাণুর গড় ভর =  $\left(\frac{aM_1 + bM_2 + cM_3}{100}\right)$  amu যেখানে,  $M_1$ ,  $M_2$  ও  $M_3$  পারমাণবিক ভর বিশিষ্ট আইসোটোপের আপেন্দিক প্রাচুর্য যথাক্রমে a%, b% ও c% ।

#### আইলো-পরমাণু, মৌলের তেজক্রিয়তা

#### আইসোটোপ, আইসোটোন, আইসোবার:

|                         | আইসোটোপ                                                                               | আইসোটোন                                                       | আইসোবার                  |
|-------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------|
| শ্ৰোটন সংখ্যা           | সমান                                                                                  | ভিন্ন                                                         | ভিন্ন                    |
| নিউট্রন সংখ্যা          | ভিন্ন                                                                                 | সমান                                                          | ভিন্ন                    |
| ভর সংখ্যা               | ভিন্ন                                                                                 | ভিন্ন                                                         | সমান                     |
| পর্যায় সারণিতে অবস্থান | একই                                                                                   | ভিন্ন                                                         | ভিন্ন                    |
| মৌলের পরমাণু            | একই                                                                                   | ভিন্ন                                                         | ভিন্ন                    |
| ভৌত ও রাসায়নিক ধর্ম    | ভৌত ধর্ম ভিন্ন<br>রাসায়নিক ধর্ম অভিন্ন                                               | ভিন্ন                                                         | ভিন্ন                    |
| উদাহরণ                  | <sup>1</sup> <sub>1</sub> H, <sup>2</sup> <sub>1</sub> H, <sup>3</sup> <sub>1</sub> H | <sup>30</sup> <sub>14</sub> Si, <sup>31</sup> <sub>15</sub> P | 64<br>29 Cu, 64<br>29 Zn |

- আইসোমার: পরমাণুর নিউট্টনাসের প্রেমাণ্ডিক সাব্যা ও ভর সাব্যা পরস্পর সমান কিন্তু তাদের অভ্যন্তরীদ গঠন ও তেলক্সির বর্মের মাঝা বৈসাদৃশ্য রয়েছে। ফেফা: CH₁ – O – CH₁ ও CH₁CH₂OH
- আইনেইদেইটিনিক: পরমাপুর বা আয়নের বা অপুর বা মুলকের ইদেইটান সংখ্যা সমান : বেমন: №, ৩ CO
- আইসোকার: দুই বা ততেরিক অনুর মধ্যে সমসংখ্যক পরমানু পাতে
   এবং প্রতিটি অনুতে ইলেকট্রন সংখ্যা একই হয়। কেন্দ্র: Cl<sub>2</sub> ও FeO
- মাইসোভায়াকার: মৌলের পরমাপুর নিউক্রিয়াসে নিউক্র ও প্রেক্তিন সংখ্যার পার্থক্য সমান হয় ৷ ফেন্ফ: "ৣK. "ৄF

#### ঘালকা (α), বিটা (β) ও গামা (γ) রশ্বির কুলামূলক পার্কক;

| বৈশিষ্ট্য              | a-37                            | BAR                     | १-विन                |
|------------------------|---------------------------------|-------------------------|----------------------|
| <sup>®</sup> পরিচন্ত্র | হিলিয়ান পরমানুর<br>নিউক্তিয়াল | ইলেক্ট্রন কন্ত<br>প্রবহ | তড়িং সুক্তীর<br>তরঙ |
| প্রতীক                 | 4He2-                           | 0<br>-1                 | 3                    |
| আপেঞ্চিক চার্ছ         | +2                              | -1                      | 0                    |
| আপেহ্নিক ভর            | 4 ५५५                           | 0                       | 0                    |
| তেন্ন ক্ষতা            | ो कर शर                         | 1000 হব                 | 10000 কর             |

## **उ**डिश इसकीय वर्गानि

#### দুশ্যমান আলোর বিভিন্ন ধ্যনের ভরকনৈর্ছঃ

| 2 | 71- | दर्भ  | <b>उदार्शनर्थ</b> |
|---|-----|-------|-------------------|
| v | বে  | বেছনি | 380 nm - 424 mm   |
| I | ন   | নীৰ   | 424 nm - 450 nm   |
| В | আ   | বসমনী | 450 mm - 500 mm   |
| G | স   | সবৃহ  | 500 nm - 575 nm   |
| Y | र   | হলুদ  | 575 nm – 590 nm   |
| o | ङ   | কম্পা | 590 nm - 647 nm   |
| R | লা  | ব্যব  | 647 nm - 780 nm   |

#### তড়িং চুম্বনীয় বর্ণালির ওরুতুপূর্ণ বিভিন্ন অঞ্চলের তরকলৈর্য্য ও আনের ব্যবহার:

| তড়িং চুম্কীর<br>বিকিরণ অঞ্চল | তরঙ্গদৈর্ঘ্য পরিসর | क्रकृर्ण रास्त                                                                                |
|-------------------------------|--------------------|-----------------------------------------------------------------------------------------------|
| রেভিও ধয়েত                   | 10 km – 1 mm       | রেভিঙ-টিনির সিগনান,<br>MRI যত্ত্ব ও লুর সমূত্র<br>চলাচলে জহাজের সিগনান<br>হিসেবে ব্যবহৃত হয়। |
| মাইক্রেওয়েত                  | 1 mm - 1 m         | Wi-Fi, মোবাইব জেন<br>সিগনলে ও মাইত্রেন ওতেনে<br>ব্যবহৃত হয়।                                  |

# . ACS, > Chemistry 1st Paper Chapter-2

| তড়িৎ চুম্বকীয়<br>বিকিরণ অঞ্চল | তরঙ্গদৈর্ঘ্য পরিসর | গুরুত্বপূর্ণ ব্যবহার                                                                                   |  |
|---------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|--|
| অবলোহিত<br>(IR)                 | 1 mm – 780 nm      | রিমোট কন্ট্রোল, সেন্সর<br>পালস, অপটিক্যাল ফাইবার<br>মাধ্যমে যোগাযোগ ও<br>ফিজিওথেরাপিতে ব্যবহৃত<br>হয়। |  |
| দৃশ্যমান                        | 780 nm – 380 nm    | সালোকসংশ্লেষণ ও বিশ্লেষণী<br>রসায়নে পদার্থের পরিমাণ<br>নির্ণয়ে ব্যবহৃত হয়।                          |  |
| অতিবেণ্ডনি<br>(UV)              | 380 nm – 10 nm     | জাল টাকা ও জাল পাসপোর্ট<br>শনাক্তকরণে ব্যবহৃত হয়।                                                     |  |
| Х-гау                           | 10 nm – 0.01 nm    | চিকিৎসা বিজ্ঞানে দেহের এ<br>অভ্যন্তরের প্রতিচ্ছবি তোলার<br>কাজে, ক্যাসার চিকিৎসায়<br>ব্যবহৃত হয়।     |  |
| গামা (γ) ray                    | < 0.01 nm          | খাদ্যশস্য সংরক্ষণে,<br>খাদ্যশস্যে অণুজীব ধ্বংস<br>করতে ও ক্যাসার এর<br>চিকিৎসায় ব্যবস্থত হয়।         |  |

 $\triangleright E \propto \upsilon \propto \frac{1}{\lambda} \propto \bar{\upsilon}$ 

অর্থাৎ, কম্পাঙ্ক ↑ তরঙ্গদৈর্ঘ্য ↓ তরঙ্গসংখ্যা ↑ ইলেকট্রনের শক্তি

# হাইড্রোজেন বর্ণালি

হাইড্রোজেন বর্ণালির সিরিজ:

| সিরিজ     | n <sub>1</sub> | n <sub>2</sub> | বর্ণালির অঞ্চল |
|-----------|----------------|----------------|----------------|
| লাইমেন    | 1              | 2, 3, 4,       | অতিবেগুনি (UV) |
| বামার     | 2              | 3, 4, 5,       | দৃশ্যমান       |
| প্যাশ্চেন | 3              | 4, 5, 6,       | অবলোহিত (IR)   |
| ব্রাকেট   | 4              | 5, 6, 7,       | অবলোহিত (IR)   |
| ফান্ড     | 5              | 6, 7, 8,       | অবলোহিত (IR)   |
| হামফ্রিস  | 6              | 7, 8, 9,       | অবলোহিত (IR)   |

রিডবার্গ সমীকরণ:

$$\overline{\upsilon} = \frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \times Z^2$$

 $R_{\rm H} =$ রিডবার্গ ধ্রুবক = 1.09678 ×  $10^7 \, {\rm m}^{-1}$ 

 $= 1.09678 \times 10^{5} \text{ cm}^{-1}$ 

 $= 1.09678 \times 10^{-2} \text{ nm}^{-1}$ 

n<sub>1</sub> = যে কক্ষপথে ইলেকট্রন নেমে আসে

 $n_2 =$ যে কক্ষপথ থেকে ইলেকট্রন আসে

 $\lambda =$ তরঙ্গদৈর্ঘ্য, Z =পারমাণবিক সংখ্যা

 $ightharpoonup \frac{1}{R_H} = 911 \text{ Å (প্রায়)}$  তরঙ্গদৈর্ঘ্য (λ) দীর্ঘতম বা শক্তি (Ε) সর্বনিমু হলে, n<sub>2</sub> = n<sub>1</sub> + 1 অর্থাৎ, n<sub>2</sub> এর মান ক্ষুদ্রতম হবে এবং বিকিরিত রশ্মির *তরঙ্গ সংখ্যা* 

(Ū) সর্বনিম্ন হবে।

তরঙ্গদৈর্ঘ্য (λ) ক্ষুদ্রতম বা শক্তি (Ε) সর্বাধিক হলে, n<sub>2</sub> = ∞ অর্থাৎ, n2 এর মান বৃহত্তম হবে এবং বিকিরিত রশ্মির তরঙ্গ সংখ্যা

(u) সর্বোচ্চ হবে।

▶ বামার সিরিজের ক্ষেত্রে n₁ = 2 এবং Z = 1 হলে তখন,  $n_2=3,\,4,\,5$  ও 6 যথাক্রমে  $H_\alpha,\,H_\beta,\,H_\gamma$  ও  $H_\delta$  রেখাগুলো নির্দেশ করে।

ইলেক্ট্রনের শক্তি বিকিরণের ফলে সৃষ্ট বর্ণালিতে সর্বাধিক রেখার সংখ্যা =  $\frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2}$ 

#### দ্রাব্যতা

দ্রাব্যতা = <u>গ্রামে প্রকাশিত দ্রবের ভর</u> × 100

$$\therefore S = \frac{m}{M - m} \times 100$$

m = দ্রবের ভর

M = দ্রবণের ভর

M – m = দ্রাবকের ভর

g/L এককে:

দ্রাব্যতা =  $\frac{\underline{g}(\text{বর ভর (g)})}{\underline{g}$ বণের আয়তন (L)

মোলার ঘনমাত্রা / মোলারিটি / mol L<sup>-1</sup>/ M এককে:

দ্রাব্যতা = দ্রবের ভর (g) দ্রাব্যতা = দ্রবণের আয়তন (L) × দ্রবের আণবিক ভর

ধরি, T<sub>1</sub>°C তাপমাত্রায় দ্রবের দ্রাব্যতা = x g/100 g H<sub>2</sub>O এবং  $T_2$ °C তাপমাত্রায় দ্রবের দ্রাব্যতা = y g/100 g  $H_2O$  ।  $T_1$ °C তাপমাত্রায় M g সম্পৃক্ত দ্রবণকে T2°C তাপমাত্রায় নিয়ে গেলে  $\Delta m$  g দ্রব দ্রবণ থেকে বেরিয়ে আসে অথবা  $\Delta m$  g দ্রব যোগ করে দ্রবণকে সম্পৃক্ত করতে হলে,

$$\Delta m = \frac{|x-y|}{100+x} \times$$
 দ্রবণের পরিমাণ

যেখানে, x = আদি দ্রাব্যতা; y = শেষ দ্রাব্যতা

দ্রাব্যতা সম্পর্কিত হেনরির সূত্র:

$$S = K_H \times P$$

S = দ্রাব্যতা

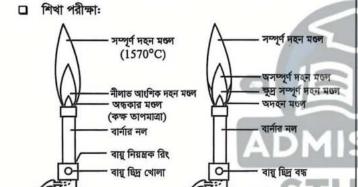
K<sub>H</sub> = হেনরির ধ্রুবক

## দ্রাব্যতা গুণফল, দ্রাব্যতার ওপর সম-আয়ন

আয়নিক গুণফল (K<sub>ip</sub>) ও দ্রাব্যতা গুণফলের (K<sub>sp</sub>) সম্পর্ক:

 $K_{ip} < K_{sp}$ ; দ্ৰবণটি অসম্পৃক্ত।

 $K_{ip}=K_{sp};$  দ্রবণটি সম্পৃক্ত।


 $K_{ip} > K_{sp}$ ; দ্রবণটি অতিপৃক্ত। দ্রবণ থেকে দ্রব অধঃক্ষিপ্ত হবে।

- 😕 দুটি তড়িৎ বিশ্লেযোর মিশ্র দ্রবণে সম-আয়ন প্রভাবের ফলে মৃদু 🔲 আয়ন শনাক্তকরণে প্রয়োজনীয় বিকারক ও অধঃক্ষেপের বর্ণ: তড়িৎ বিশ্লেষ্যের দ্রাব্যতা হ্রাস পায়। কিন্তু জটিল আয়ন সৃষ্টি হলে মৃদু তড়িৎ বিশ্লেষ্যের দ্রাব্যতা বৃদ্ধি পায়।
- आग्रानिक योग यथन जन्नदान कात्ना निगां अत नाय निग्रां क्यां निग्रां अति निग्रां का न বন্ধনের মাধ্যমে ধাতব ক্যাটায়নের সাথে বন্ধন গঠন করে তখন জটিল আয়ন সৃষ্টি হওয়ায় যৌগের দ্রাব্যতা বিস্ময়করভাবে বৃদ্ধি পায়। উদাহরণ:

AgCl জ্বলীয় দ্রবণে অদ্রবণীয় হলেও অতিরিক্ত NH3 দ্রবণে এটি জটিল আয়ন গঠন করে অতিমাত্রায় দ্রবণীয় হয়।

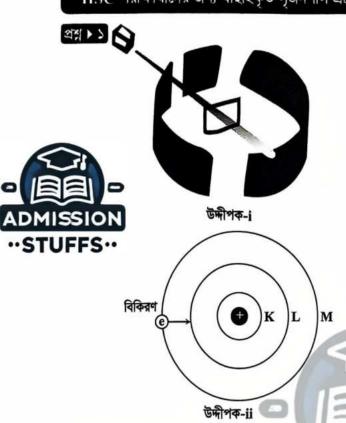
$$AgCI(s) = Ag^{\dagger}(aq) + C\Gamma(aq)$$
  
(অদ্রবণীয়)

#### শিখা পরীক্ষা, আয়ন শনাক্তকরণ



চিত্র: জারণ শিখাযুক্ত বুনসেন বার্নার

চিত্র: বিজারণ শিখাযুক্ত বুনসেন বার্নার


#### শিখা পরীক্ষায় প্রদর্শিত বর্ণ:

| ধাতৃ/ধাতব আয়ন      | বৰ্ণ                    | ব্ৰ-গ্লাস/কোবাল্ট কাঁচে বৰ্ণ |
|---------------------|-------------------------|------------------------------|
| Li/Li <sup>+</sup>  | উজ্জ্বল লাল             | 3. <del>-</del>              |
| Na/Na <sup>+</sup>  | সোনালী হলুদ             | বৰ্ণহীন                      |
| K/K <sup>+</sup>    | হালকা বেগুনি            | গোলাপী লাল                   |
| Rb/Rb <sup>+</sup>  | লালচে বেগুনি            | _                            |
| Cs/Cs <sup>+</sup>  | নীল                     | -                            |
| Ba/Ba <sup>2+</sup> | কাঁচা আপেলের মত<br>সবুজ | নীলাভ সবুজ                   |
| Ca/Ca <sup>2+</sup> | ইটের ন্যায় লাল         | হালকা সবুজ                   |
| Sr/Sr <sup>2+</sup> | টকটকে লাল               | ,—,:                         |
| Ra/Ra <sup>2+</sup> | লাল                     | _                            |
| Cu/Cu <sup>2+</sup> | নীলাভ সবুজ              | বৰ্ণহীন                      |

শিখা পরীক্ষায় বর্ণ দেয় না  $\rightarrow$  Be<sup>2+</sup>, Mg<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Af<sup>3+</sup>

| नाय                             | विकातरकत नाम                                                                                      | অধ্যক্তেপের বর্ণ                 |
|---------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|
| Aβ۰                             | (i) NH₄OH                                                                                         | সাদা জেনির মতো                   |
| AP.                             | (ii) NaOH                                                                                         | সাদা                             |
| Zn²+                            | (i) পটাশিয়াম ফেরোসায়ানাইড<br>K4[Fe(CN)6]                                                        | সাদা                             |
|                                 | (ii) NH₄OH                                                                                        |                                  |
| Ca <sup>2+</sup>                | (i) অ্যামোনিয়াম অক্সালেট<br>(NH <sub>4</sub> )₂C₂O <sub>4</sub>                                  | সাদা                             |
|                                 | (ii) NH₄OH                                                                                        |                                  |
| Na <sup>*</sup>                 | পটাশিয়াম পাইরো অ্যান্টিমোন্টে<br>(K <sub>2</sub> H <sub>2</sub> Sb <sub>2</sub> O <sub>7</sub> ) | সাদা                             |
| Cu <sup>2+</sup>                | (i) পটাশিয়াম ফেরোসায়ানাইড<br>K₄[Fe(CN) <sub>6</sub> ]                                           | লালচে বাদামি                     |
|                                 | (ii) NH₄OH                                                                                        | গাঢ় নীল (দ্রবণ)                 |
| NH                              | সেলার দ্রবণ<br>(NaOH/KOH + K₂[HgI₄])                                                              | বাদামি                           |
| 317                             | (i) NH₄OH                                                                                         | সবৃজ                             |
|                                 | (ii) পটাশিয়াম ফেরিসায়ানাইত<br>K <sub>3</sub> [Fe(CN) <sub>6</sub> ]                             | গাড় নীল                         |
| Fe <sup>2+</sup>                | (iii) পটাশিয়াম কেরোসায়ানাইড<br>K₄[Fe(CN) <sub>6</sub> ]                                         | হালকা নীল                        |
|                                 | (iv) জ্যামোনিরাম থারোসারাসেট<br>(NH₄SCN)                                                          | বৰ্ণহীন দ্ৰবৰ<br>(অধ্যক্ষেপ নাই) |
|                                 | (i) NH₄OH                                                                                         | বাদামি                           |
|                                 | (ii) পটাশিয়াম ফেরিসায়ানাইড<br>K₃[Fe(CN)₄]                                                       | বাদামি                           |
| Fe <sup>3+</sup>                | (iii) পটাশিয়াম কেরোসায়ানাইড<br>K₄[Fe(CN)₀]                                                      | गाड़ गीज                         |
|                                 | (iv) অ্যামোনিয়াম থায়োসায়াসেট<br>(NH₄SCN)                                                       | রক লাল                           |
| NO <sub>3</sub>                 | সদ্য প্রস্তুত FeSO₄, গাঢ় H₂SO₄                                                                   | বাদামি কলয়<br>(রিং এর মতো)      |
| СГ                              | AgNO <sub>3</sub>                                                                                 | সাদা                             |
| SO <sub>4</sub> <sup>2-</sup> , | Ba(NO <sub>3</sub> ) <sub>2</sub>                                                                 | সাদা                             |

HSC পরীক্ষার্থীদের জন্য বাছাইকৃত সূজনশীল প্রশ্নোত্তর



(ক) বর্ণালি কাকে বলে?

[চ. বো. ২২; ম. বো. ২২; সম্মিলিত বো. ১৮]

(খ) উদাহরণসহ পলির বর্জন নীতি ব্যাখ্যা কর।

[সি. বো. ২৩; দি. বো. ২২; সম্মিলিত বো. ১৮; সি. বো. ১৭]

(গ) i নং উদ্দীপকের সাহায্যে প্রস্তাবিত পরমাণু মডেলটি বর্ণনা কর।

[ম. বো. ২৩]

(घ) i এবং ii মডেলের মধ্যে কোনটি অধিকতর উপযোগী বলে মনে কর— বিশ্লেষণ কর।

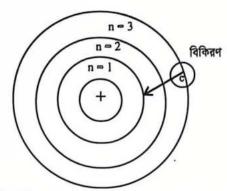
উত্তর:

- ক পরমাণুর উত্তেজিত অবস্থায় ইলেকট্রন শক্তি শোষণ করে উচ্চতর শক্তিস্তরে গমন করে এবং শক্তি বিকিরণ করে নিম্নুতর শক্তিস্তরে ফিরে আসে। ভিন্ন ভিন্ন তরঙ্গদৈর্ঘ্যের একাধিক বর্ণের শোষিত বা বিকিরিত আলোক রশ্যির এই সমাহারকেই বর্ণালি বলে।
- থ পলির বর্জন নীতি অনুসারে, একই পরমাণুতে যেকোনো দুইটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনো সমান হতে পারে না। যেমন: He এর যোজ্যতাস্তরের দুইটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যা মান-

১ম ইলেকট্রনের জন্য,  $n=1,\ l=0$   $m=0,\ s=+\frac{1}{2}$  ২য় ইলেকট্রনের জন্য,  $n=1,\ l=0$   $m=0,\ s=-\frac{1}{2}$  অর্থাৎ, একই পরমাণুর ২টি ইলেকট্রনের কক্ষপথের আকার (n), আকৃতি (l) এবং কৌণিক অবস্থান (m) একই হতে পারে কিন্তু তাদের স্পিন (নিজ অক্ষের উপর ঘূর্ণনের দিক) বিপরীতমুখী হয়।

- ন ক্রিন্স নিং এর প্রস্তাবিত পরমাণু মডেলটি হলো রাদারক্রেক্রের্জ্ব পরমাণু মডেল। নিচে মডেলটি বর্ণনা করা হলো–
  - একটি নিউক্লিয়াস ও নিউক্লিয়াসের বাইরে সতত দুর্শায়য়য়য় ইলেকট্রনসমূহ নিয়ে পরমাণু গঠিত।
  - নউক্লিয়াস হল ধনাত্মক চার্জবিশিষ্ট ভারী অংশ যেখানে পরমাণুর ক্রে
    সমস্ত ভর কেন্দ্রীভূত থাকে।
  - । নিউক্লিয়াসে ধনাত্মক আধানযুক্ত প্রোটন আর নিউক্লিয়াসের বাইস্রে
    থাকে সমসংখ্যক ঝণাত্মক আধানযুক্ত ইলেকট্রন। এজন্য পরফ্রা
    চার্জ নিরপেক্ষ হয়।
  - ৪। সৌরজগতে সূর্যের চারদিকে ঘৃর্ণায়মান গ্রহের ন্যায় ইলেকট্রনজনে এর কেন্দ্রস্থ নিউক্লিয়াসের চারদিকে নিজ নিজ কক্ষপথে সভত ঘৃর্ণায়মান থাকে। ধনাতাক চার্জবিশিষ্ট নিউক্লিয়াস ও ঋণাতাক চার্জবিশিষ্ট ইলেকট্রনসমূহের পারস্পরিক স্থির তড়িৎ আকর্ষণজ্ঞানিত কেন্দ্রমুখী বল ও আবর্তনশীল ইলেকট্রনের কেন্দ্রবিমুখী বল পরস্পর সমান হয় যা পরমাণুর গঠনকে স্থিতিশীল করে।
- প্রদত্ত (i) ও (ii) পরমাণু মডেল দুইটি হলো যথাক্রমে রাদারফোর্ড ও বোরের পরমাণু মডেল। উক্ত মডেলদ্বয়ের মধ্যে বোরের পরমাণু মডেল অধিকতর উপযোগী।

রাদারফোর্ডের পরমাণু মডেল অনুসারে, পরমাণুতে নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রনগুলো চারপাশে বৃত্তাকার পথে ঘুরতে থাকে যেমনভাবে সূর্যকে কেন্দ্র করে গ্রহগুলো ঘুরতে থাকে। কিন্তু, ম্যাক্সওরেলের তত্ত্বানুসারে কোনো চার্জযুক্ত কণা বৃত্তাকার পথে ঘুরতে থাকলে এটি ক্রমাগত শক্তি বিকিরণ করে এবং এর আবর্তন চক্রটিও ধীরে ধীরে কমতে থাকে। এভাবে ঘূর্ণায়মান ইলেকট্রন একসময় নিউক্লিয়াসে পতিত হবে এবং পরমাণু অন্তিত্ব সংকটে পড়বে। অর্থাৎ রাদারফোর্ডের মডেল পরমাণুর স্থায়িত্ব ব্যাখ্যা করতে ব্যর্থ হয়েছে। এছাড়াও রাদারফোর্ডের মডেল পরমাণুর বর্ণালী রেখা সৃষ্টি সম্পর্কে কোনো ব্যাখ্যা দিতে পারে না। এই মডেল আবর্তনশীল ইলেকট্রনের কক্ষপথের আকার আকৃতি সম্পর্কেও কোনো ধারণা দিতে পারে না।


অপরদিকে, বোরের পরমাণু মডেল অনুযায়ী পরমাণুর স্থায়িত্ব ব্যাখ্যা করা যায়। এই মডেল অনুসারে কোনো নির্দিষ্ট স্থির কক্ষপথে আবর্তন করার সময় কোনো ইলেকট্রন কর্তৃক শক্তি নির্গত বা শোষিত হয় না। বোর পরমাণু মডেল H বা H সদৃশ এক ইলেকট্রনবিশিষ্ট আয়ন যেমন—He<sup>+</sup>, Li<sup>2+</sup>, Be<sup>3+</sup> এর বর্ণালী ব্যাখ্যা করতে পারে। বোর পরমাণু মডেল অনুযায়ী পরমাণু উচ্চ শক্তিস্তর হতে শক্তি বিকিরণ করে নিম্ন শক্তিস্তরে আসার সময় বিকিরণ বর্ণালী প্রদর্শন করে। এই মডেল অনুসারে বিভিন্ন শক্তিস্তরে আবর্তনকারী ইলেকট্রনের শক্তির পরিমাণ নির্ণয় সম্ভব হয়েছে।

সুতরাং উপরিউক্ত আলোচনা হতে প্রতীয়মান হয় যে, উদ্দীপকের উক্ত মডেলদ্বয়ের মধ্যে বোর পরমাণু মডেল অধিকতর উপযোগী।

গুণপুত রসায়ন > ACS, FRB Compact Suggestion Book.....

#### 2141 > 5

দৃশ্যকল্প-১: A মৌলের ইলেবটোন বিন্যাস = [Ar] 3d<sup>5</sup> 4s<sup>1</sup> দৃশ্যকল্প-২:



- (ক) অরবিটাল কী? [সি. বো. ২৬৷ ব. বো. ২৩৷ ম. বো. ২৩৷ ডা. বো. ২১৷ বা. বো. ২১৷ সি. বো. ২১৷ ম. বো. ২১৷ দি. বো. ২১৷ সি. বো. ১৯৷ ম. বো. ১৭৷ ব. বো. ১৯৷ ডা. বো. ১৭৷ বা. বো.১৭৷ কৃ. বো. ১৭৷
- (খ) ভাল পাসপোর্ট শনাক্তকরণে UV-রশ্মি ব্যবহার করা হয় কেন? ব্যাখ্যা কর। [য. মো. ২২) ক্. মো. ১৯। ব. মো. ১৭।
- (গ) দৃশ্যকয়-১ এর A মৌলের d ইলেকট্রনসমূহের ওধুমাত্র একটি কোয়ান্টাম
  সংখ্যায় ভিয়তা থাকে-ব্যাখ্যা কর।
   াদি. বো. ২০ অব্রল বল্লঃ যা. বো. ২৩
- (प) দৃশ্যকল্প-২ এ পরমাণুর স্থায়িত্ব ব্যাখ্যায় উদ্দীপক্ষের মটেলটি রাদারফোটের পরমাণু মডেলের চেয়ে অধিক ফলপ্রসূ-ব্যাখ্যা কর। দি লে ২০ সমাধান:

ক নিউক্লিয়াসের চারদিকে যে এলাকায় আবর্ডনশীল ও নির্দিষ্ট শক্তিযুক্ত ইলেকট্রেন মেঘের অবস্থানের সম্ভাবনা 90 – 95% থাকে, সে এলাকাকে অরবিটাল বলে।

ভাল পাসপোর্ট খনাভকরণে UV রশ্মির 230 nm হতে 375 nm তরদ দৈর্ঘ্যের রশ্মি অপটিক্যাল সেন্সর হিসেবে আসল-নকল ব্যাংক নোট ডিটেক্টার যদ্রে ব্যবহার করা হয়। প্রকৃত পক্ষে ব্যাংক নোট বা পাসপোর্টে Security device হিসাবে অপটিক্যাল সেন্সর ফসকোরাস নামক যে রাসায়নিক উপাদান ব্যবহার করা হয় তা UV রশ্মির নির্দিষ্ট কম্পান্তের কোটন ঘারা সক্রিনা হয়ে ইলেকট্রনগুলো উচ্চতর শক্তিপ্তরের উত্তেজিত ইলেকট্রনগুলো খুব দ্রুত শক্তি বিকিরণ করে পূর্বের সৃদ্ধিত অবস্থায় ফেরত আসে। এ বিকিরিত আলো দৃশ্যমান হওয়ায় একে প্রতিপ্রভা (Fluorescence) বলে। এই প্রতিপ্রভা দের্ঘেই আমরা আসল-নকল পাসপোর্ট চিনতে পারি কেননা নকল পাসপোর্টে এই প্রতিপ্রভা পাওয়া যায় না।

ব A মৌলের ইলেকট্রন বিন্যাস নিয়ৣরপঃ

A = [Ar] 3d<sup>5</sup> 4s<sup>1</sup>। এখানে d উপশক্তিবরে বিদ্যামান ইলেকট্রন সংখ্যা 5টি। হুভের নীতি অনুবারী, সমশক্তিসম্পন্ন অরবিটালতলোতে ইলেকট্রন এমনভাবে প্রবেশ করে যেন তারা সর্বোচ্চ অনুগা অবস্থার থাকতে পারে এবং অনুগা ইলেকট্রনসমূহের স্পিন একইমুখী হবে। তাই, d উপশক্তিস্তরে ইলেন্ট্রানদমূহ নিম্নোক্তভাবে হুডের নীডি অনুযায়ী বিনাস্ত হয়ঃ

A प्योज्नत d अतिविधेल अत वैज्नविद्धित्मत खमा त्कासाम्प्राम সংখ্যात मान निद्धः त्रभात्मा वज्नाः

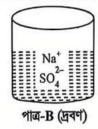
| প্রধান কোরান্টাম<br>সংখ্যা, n | সহকারী<br>কোয়াশীম<br>সংখ্যা, I | ম্যাগনেটিক<br>কোৱান্টাম<br>সংখ্যা, m | िल्ला (काग्रामीय<br>नश्चा, इ |
|-------------------------------|---------------------------------|--------------------------------------|------------------------------|
|                               |                                 | -2                                   | + 1/2                        |
|                               |                                 | -1                                   | + 1/2                        |
| 3                             | 2                               | 0                                    | + 1/2                        |
|                               |                                 | +1                                   | + 1/2                        |
| 4                             |                                 | + 2                                  | + 1/2                        |

দেখা যার যে, সব কোরান্টাম সংখ্যার মান একই হলেও ম্যাগনেটিক কোরান্টাম সংখ্যার মান ভিন্ন।

ব্রি উদ্দীপকে বিভিন্ন শক্তিন্তর ও ইলেবট্রনের ধাপান্তর দেখানো হয়েছে যা বোর পরমাণু মডেলকে নির্দেশ করে।

পরমাণুর স্থায়িত্ব ব্যাখ্যায় বোর পরমাণু মডেল রাদারকোর্ড পরমাণু মডেলের চেরে উৎকৃষ্ট। রাদারকোর্ডের পরমাণুর মডেল অনুসারে ধনাত্মক নিউক্রিয়াস এবং স্কণাত্মক চার্জবিশিষ্ট ইলেক্ট্রনসমূহের পারস্পরিক স্থির বৈদ্যুতিক আকর্ষণভানিত কেন্দ্রমুখী বল এবং আবর্ডনশীল ইলেক্ট্রনের কেন্দ্রবিমুখী বল পরস্পর সমান যা পরমাণুর স্থায়িত্বের জন্য দায়ী।

কিম্ব ম্যাক্সওরেলের ডক্লানুসারে কোনো চার্চাযুক্ত কণা বৃত্তাকার পথে ঘুরতে থাকলে এটি ক্রমাণত শক্তির বিকিরণ করে এবং এর আবর্তন চক্রের মানও কমতে থাকে। এভাবে ঘূর্ণারমান ইলেকট্রন একসময় নিউক্লিরালে পভিত হবে এবং পরমাণুর অন্তিত্ব সংকটে পড়বে। কিম্ব বাস্তবে তা ঘটে না। পক্ষান্তরে, বোর পরমাণু মডেল অনুসারে কোনো নির্দিষ্ট শক্তিন্তরে ইলেকট্রন আবর্তনকালে শক্তির শোষণ বা বিকিরণ ঘটে না। তথুমাত্র উচ্চতর শক্তিন্তর হতে নিম্ন শক্তিরে ইলেকট্রন থাপান্তরের সময় শক্তির বিকিরণ ঘটে। তাই আবর্তনশীল ইলেকট্রনের ক্রমাণত বিকিরণ সম্ভব না হওয়ায় পরমাণুর স্থায়ীত্ব বাস্তবিক অর্থে লাভ করে। যা ঘারা রাদারকোর্ত মডেলের উত্থাপিত ক্রটি দূর হয়। কলে, বোর পরমাণু মডেল অনুসারে পরমাণুর স্থায়িত্ব ব্যাখ্যা করা অধিক যুক্তিযুক্ত হয় যা রাদারকোর্ডেরের পরমাণুর স্থায়িত্ব ব্যাখ্যা করা অধিক যুক্তিযুক্ত হয় যা রাদারকোর্ডেরে পরমাণু মডেলে অনুপস্থিত।


তাই বলা যার, পরমাণুর স্থারিত্ব ব্যাখ্যার উন্দীপকের মডেলটি রাদারফোর্ডের পরমাণু মডেলের চেরে অধিক ফলপ্রসূ।

L DI CICCIT MAINISSION STA

প্রশা > ৩ দৃশ্যকল্প-১:

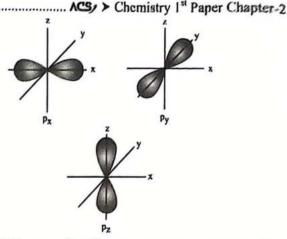
| উপশক্তিন্তর | সহকারী কোরান্টাম সংখ্যা (1) | हिंचकीग्न काद्यानीय<br>अर्था (m) |
|-------------|-----------------------------|----------------------------------|
| A           | 0                           | 0                                |
| В           | 1                           | - 1, 0, + 1                      |
| С           | 2                           | -2, -1, 0, +1, +2                |

দৃশ্যকল্প-২:

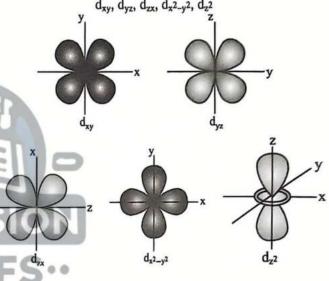


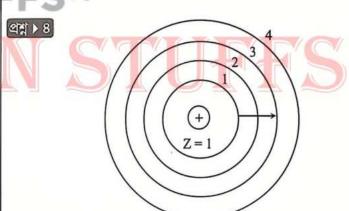
- (ক) আউফবাউ নীতিটি লিখ। [কু. বো. ২২; য. বো. ২১; ব. বো. ১৯; রা. বো. ১৭]
- (খ) 2d অরবিটাল সম্ভব নয় কেন? ব্যাখ্যা কর।

[কু. বো. ২২; ম. বো. ২২; রা. বো. ২১; সি. বো. ২১; ম. বো. ১৯; কু. বো. ১৭]


- (গ) দৃশ্যকল্প-২ এর B পাত্রের অশ্লীয় মূলকের শনাক্তকারী পরীক্ষা লিখ। (কু. রো. ২৬; চ. রো. ২১)

সমাধান:


- ক পরমাণুতে বিদ্যমান ইলেকট্রনগুলো প্রথমে সর্বনিম্ন শক্তি সম্পন্ন অরবিটাল পূর্ণ করবে এবং পরে ক্রমান্বয়ে উচ্চতর শক্তিসম্পন্ন অরবিটাল পূর্ণ করে। একে আউফবাউ নীতি বলে।
- প্রধান শক্তিন্তর 2 হলে তার অরবিটাল হিসেবে 2d সম্ভব নয়। কেননা আমরা জানি, প্রধান কোয়ান্টাম সংখ্যা n হলে তার সহকারী কোয়ান্টাম সংখ্যার মান হতে পারে 0 থেকে (n-1) পর্যন্ত । অর্থাৎ, n এর মান 2 হলে; l এর মান 0 এবং 1 হতে পারে। l=0 হলে তাকে s অরবিটাল এবং l=1 হলে p অরবিটাল বলা হয়। d অরবিটাল হওয়ার জন্য সহকারী কোয়ান্টাম সংখ্যার মান 2 হওয়া প্রয়োজন যা ২য় শক্তিন্তরের জন্য সম্ভব নয়। অর্থাৎ ২য় শক্তিন্তরের 2s ও 2p সম্ভব হলেও 2d অরবিটাল সম্ভব নয়।
- গ্র উদ্দীপকের B পাত্রে উপস্থিত অস্ত্রীয় মূলকটি  $SO_4^{2-}$ ।  $SO_4^{2-}$  আয়ন শনাক্তকরণ: টেস্টটিউবে 1-2 ml দ্রবণ নিয়ে এতে কয়েক ফোঁটা বেরিয়াম নাইট্রেট  $[Ba(NO_3)_2]$  দ্রবণ যোগ করা হয়। এতে দ্রবণে  $BaSO_4$  এর সাদা অধঃক্ষেপ পড়বে। এ সাদা অধঃক্ষেপ যদি লঘু HCl এ অদ্রবণীয় হয় তাহলে  $SO_4^{2-}$  মূলকের উপস্থিতি নিশ্চিত হওয়া যাবে।


BaSO<sub>4</sub>(s) + HCl (aq) → অদ্রবণীয়

ঘ উদ্দীপকের B উপশক্তিস্তরের সহকারী কোয়ান্টাম সংখ্যার মান l=1। অতএব, এটি হল p উপশক্তিস্তর। এতে বিদ্যমান অরবিটালগুলো হলো  $p_x$ ,  $p_y$  ও  $p_z$ । এদের আকৃতি নিম্নরূপঃ



আবার, উদ্দীপকের c উপশক্তিস্তরের । এর মান 2। অতএব এটি d উপশক্তিস্তর। এতে বিদ্যমান অরবিটালগুলো হল—





(ক) নেসলার বিকারক কাকে বলে?

[চ. বো. ২২; রা. বো. ১৭]

(খ) IR রশ্মির ব্যবহার লেখ।

[পি. বো. ২২, ১৯]

- (গ) উদ্দীপকের ইলেক্ট্রনটি স্থানান্তরের জন্য শোষিত শক্তির পরিমাণ হিসাব
  কর।
   [য়. বো. ২৩; জনুরূপ প্রশ্ন: য়. বো. ২২; চ. বো. ২১]
- ডিদ্দীপকের ইলেকট্রনটির জন্য ৩য় কক্ষপথের তরঙ্গদৈর্ঘ্য ৪র্থ কক্ষপথের তরঙ্গদৈর্ঘ্য অপেক্ষা কম না বেশি তা গাণিতিকভাবে বিশ্লেষণ কর।

[য. বো. ২৩]

সমাধানঃ

কে নেসলার বিকারক হলো পটাসিয়াম টেট্রাআয়োডো মারকিউরেট  $K_2[HgI_4]$  এবং KOH অথবা NaOH এর ক্ষারীয় দ্রবণ।

#### Rhombus Publications

গুণগত রসায়ন > ACS/ FRB Compact Suggestion Book.....

- য IR বা Infra-red (অবলোহিত) রশার বহুমুখী ব্যবহার রয়েছে। Near-IR (780 – 2500 nm) মাংস পেশীর জমাট বাধা, অস্থি হতে বিচ্ছিন্ন হওয়া ও মাংস পেশীর ব্যাথা নিরাময়ে ব্যাবহৃত হয়। এটি দারা রক্তে হিমোগ্রোবিন কি পরিমাণ  $O_2$  শোষণ করছে তার পরিমাণ পরিমাপ করা যায়। Middle-IR (2500 – 5000 nm) ব্যবহার করে জৈবযৌগটির কার্যকরীমূলক শনাক্ত করা যায়। Far-IR (5000 -10000 nm) দেহের তাপমাত্রা বাড়িয়ে আরাম অনুভূতি প্রদান করে। Far-IR ক্যান্সার কোষের বৃদ্ধিকে প্রতিহত করে। এছাড়া রিউমেটিক অ্যার্থারাইটিস বাতরোগ, চর্মরোগ আঘাতজনিত কারণে পেশীতে ব্যাথা, মচকানো প্রভৃতিক্ষেত্রে খুবই কার্যকর।
- প্র আমরা জানি, ইলেকট্রনের শক্তি,  $E_n = -\frac{2\pi^2 me^4}{h^2} \times \frac{Z^2}{n^2}$ ১ম কক্ষপথে ইলেকট্রনের শক্তি

$$E_1 = -2.18 \times 10^{-18} \times \frac{Z^2}{n_1^2}$$

$$= -2.18 \times 10^{-18} \times \frac{1^2}{1^2}$$

$$= -2.18 \times 10^{-18} \text{ J}$$

৩য় কক্ষপথে ইলেকট্রনের শক্তি,

$$E_3 = -2.18 \times 10^{-18} \times \frac{Z^2}{n_3^2}$$

$$= -2.18 \times 10^{-18} \times \frac{1^2}{3^2}$$

$$= -2.42 \times 10^{-19} \text{ J}$$
∴ শোষিত শক্তি,  $\Delta E = E_3 - E_1$ 

 $= -2.42 \times 10^{-19} - (-2.18 \times 10^{-18})$  $= 1.938 \times 10^{-18} \text{ J (Ans.)}$ 

ঘ 'গ' থেকে পাই,

উদ্দীপকের ৩য় কক্ষপথের শক্তি =  $-2.42 \times 10^{-19} \text{ J}$ 

আমরা জানি,  $E = \frac{nc}{\lambda}$ 

$$\Rightarrow \lambda_3 = \frac{\text{hc}}{\text{E}_3} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{2.42 \times 10^{-19}}$$
$$= 8.21 \times 10^{-7} \text{ m}$$

আবার, ৪র্থ কক্ষপথের শক্তি,

$$E_4 = -2.18 \times 10^{-18} \times \frac{Z^2}{n_4^2}$$

$$= -2.18 \times 10^{-18} \times \frac{1^2}{4^2}$$

$$= -1.36 \times 10^{-19} \text{ J}$$

$$\therefore \lambda_4 = \frac{\text{hc}}{E_4}$$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{1.36 \times 10^{-19}}$$

 $= 1.46 \times 10^{-6} \text{ m}$  $\lambda_4 (1.46 \times 10^{-6} \text{m}) > \lambda_3 (8.21 \times 10^{-7} \text{m})$ 

অর্থাৎ, উদ্দীপকের ইলেকট্রনটির জন্য ৩য় কক্ষপথের তরঙ্গদৈর্ঘ্য ৪র্থ কক্ষপথের তরঙ্গদৈর্ঘ্য অপেক্ষা কম।

প্রা ▶ ৫ (i) H এর পারমাণবিক বর্ণালির প্যাকেন সিরিজ

(ii)  $X^{2+} \rightarrow (n-1) d^{10}$ ; n=4

(খ) সমআয়ন প্রভাবের ফলে দ্রাব্যতাক্রাস পায় কেনা

णि. ला. २२: बा. ला. ১১।

(ক) আইসোটোপ কাকে বলে?

কু. বো. ২৩; রা. বো. ২২, ১৯; সি. বো. ১৭; অনুত্রপ প্রস্ন: ঢা. বো. ২২/

- (গ) উদ্দীপক (i) অনুসারে কোনো রেখার তরঙ্গদৈর্ঘ্য 1875.62 nm হলে ইলেকট্রনটি কোন শক্তিন্তর হতে ধাপান্তরিত হলো? গাণিতিকভাবে ব্যাখ্যা কর। কু. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২১
- (ঘ) উদ্দীপক (ii) এর মৌলটির সর্বশেষ শক্তিস্তরের ইলেক্ট্রন বিন্যাস পলির বর্জন নীতি সমর্থন করে কিনা? বিশ্লেষণ কর।

কু, বো. ২৩; অনুরূপ প্রশ্ন: কু, বো. ২১; চ. বো. ২১)

সমাধান:

- ক যেসব পরমাণুর প্রোটন সংখ্যা একই কিন্তু ভর সংখ্যা ভিন্ন তাদেরকে পরস্পরের আইসোটোপ বলে।
- ব কোনো স্বল্প দ্রবণীয় লবণের সম্পৃক্ত দ্রবণে সমআয়নবিশিষ্ট কোনো তীব্র তড়িং বিশ্লেষ্য পদার্থ যোগ করলে স্বল্প দ্রবণীয় লবণটির দ্রাব্যতার হাস ঘটে। MA একটি স্বল্প দ্রবণীয় লবণ। এর সম্পৃক্ত জলীয় দ্রবণে সাম্যাবস্থা:

MA (অদ্ৰবণীয়) = M<sup>+</sup>(aq) + A<sup>-</sup>(aq)

∴ দ্রাব্যতা গুণফল, K<sub>sp</sub> = [M<sup>†</sup>] [A<sup>−</sup>]

MA লবণের সম্পৃক্ত দ্রবণে যদি সমআয়নবিশিষ্ট একটি তীব্র তড়িৎ বিশ্লেষ্য পদার্থ MX অথবা YA যোগ করা হয় তাহলে সেক্ষেত্রে দ্রবণে সমআয়ন  $M^{\dagger}$  অথবা  $A^{-}$  এর ঘনতের বৃদ্ধি ঘটবে। কিন্তু নির্দিষ্ট তাপমাত্রায় Ksp এর মান নির্দিষ্ট। কাজেই Ksp এর মান স্থির রাখার জন্য কিছু সংখ্যক সমআয়ন M<sup>+</sup> অথবা A<sup>-</sup> অপর আয়নের সাথে যুক্ত হয়ে অদ্রবণীয় MA উৎপন্ন করবে। এর ফলে MA এর দ্রাব্যতার হ্রাস ঘটবে।

গ প্যান্ডেন সিরিজ উৎপন্ন হওয়ায় এখানে উচ্চতর শক্তিন্তর হতে ৩য়

আমরা জানি,  $\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ 

$$\Rightarrow \frac{1}{1875.62 \times 10^{-9}} = 1.09678 \times 10^7 \times \left(\frac{1}{3^2} - \frac{1}{n_2^2}\right)$$

$$\Rightarrow 0.0486 = \left(\frac{1}{9} - \frac{1}{n_2^2}\right)$$

$$\Rightarrow \frac{1}{n_2^2} = 0.0625$$

 $\Rightarrow$  n<sub>2</sub><sup>2</sup> = 16



সুতরাং, ইলেকট্রনটি চতুর্থ শক্তিস্তর থেকে ধাপান্তরিত হয়েছে। (Ans.)

য উদ্দীপকের (ii) নং এর মৌলটি হলো Zn।  $_{30}$ Zn  $\rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$ পলির বর্জন নীতি অনুসারে, একই পরমাণুতে দুটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনো সমান হতে পারে না। কমপক্ষে যে কোনো একটির মান অসমান হয়।

ইলেক্ট্রনের চারটি কোয়ান্টাম সংখ্যার মান নিম্নরূপ

১ম ইলেকট্রনের জন্য, n = 4, l = 0, m = 0, s = +  $\frac{1}{2}$ 

২য় ইলেকট্রনের জন্য, n = 4, l = 0, m = 0, s = - ½

অর্থাৎ, প্রথম তিনটি কোয়ান্টাম সংখ্যা n, / ও m এর মান দুটি ইলেকট্রনের জন্য সমান হলেও চতুর্থ কোয়ান্টাম সংখ্যা অর্থাৎ স্পিন কোয়ান্টাম সংখ্যা এর মান ভিন্ন।

সুতরাং, মৌলটির সর্বশেষ শক্তিস্তরের ইলেকট্রনদ্বয় পলির বর্জন নীতি মেনে চলে।

| প্রশ ▶ ৬ | মৌল | পারমাণবিক সংখ্যা |
|----------|-----|------------------|
|          | х   | 17               |
|          | Y   | 26               |

এখানে, X ও Y মৌলের প্রতীকের প্রচলিত অর্থ বহন করে না

(ক) আলফা (α) কণা কাকে বলে?

(রা. বো. ২২; কু. বো. ২১; রা. বো. ১৯; চ. বো. ১৭; সি. বো. ১৭)

(খ) দ্রাব্যতার উপর তাপমাত্রার প্রভাব ব্যাখ্যা কর।

যি. বো. ২২; রা. বো. ১৭; অনুরূপ প্রশ্ন: ম. বো. ২১)

(গ) 'X' মৌলটির অ্যানায়নের শনাক্তকরণ পরীক্ষা সমীকরণসহ দেখাও।

চি. বো. ২৩; সি. বো. ২৩

- (ঘ) Y মৌলের জন্য 20-তম ও 26-তম ইলেকট্রন দুটি পলির বর্জন নীতি অনুসরণ করে কিনা? বিশ্লেষণ কর। বি. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২২। সমাধান:
- ক দ্বি-ধনাতাক আধানযুক্ত হিলিয়াম নিউক্লিয়াসকে  $\binom{7}{2} He^{2+}$  আলফা কণা বলা হয়।
- স্থা দ্রাব্যতার উপর তাপমাত্রার প্রভাব বিশেষভাবে পরিলক্ষিত হয়। সাধারণভাবে, দ্রবণের তাপমাত্রা বৃদ্ধির সাথে দ্রবের দ্রাব্যতাও বৃদ্ধি পায়। উচ্চ তাপমাত্রায় দ্রাবক ও দ্রব অণুর গতিশক্তি বৃদ্ধি পায়। ফলে অধিক পরিমাণ দ্রব দ্রাবকে দ্রবীভূত হয়। যেমন- KNO3, NaNO3, KI, Pb(NO₃)₂, AgNO₃ প্রভৃতি। এইসমস্ত যৌগের পানিতে বিয়োজন তাপহারী প্রক্রিয়া হওয়ায় তাপমাত্রা বৃদ্ধি করলে দ্রাব্যতা বৃদ্ধি পায়। অপরদিকে যেসকল দ্রবের পানিতে বিয়োজন তাপোৎপাদী তাদের ক্ষেত্রে তাপমাত্রা বৃদ্ধি করলে দ্রাব্যতা হ্রাস ঘটে। যেমন- Li<sub>2</sub>SO<sub>4</sub>, Ca(OH)2, NaOH প্রভৃতি।
- গ 'X' মৌলটির অ্যানায়ন হচ্ছে ক্লোরাইড আয়ন (Cl') CI আয়ন শনাক্তকরণ: একটি টেস্টটিউবে  $1-2 \, \mathrm{mL}$  দ্রবণ নিয়ে এতে কয়েক ফোঁটা সিলভার নাইট্রেট (AgNO3) দ্রবণ যোগ করা হয়। এতে AgCl এর সাদা অধঃক্ষেপ পড়ে। এই অধঃক্ষেপ লঘু HNO3 এসিডে অদ্রবণীয়, কিন্তু NH4OH দ্রবণে সহজেই দ্রবীভূত হয়।

 $AgCl(s) + HNO_3(aq) \rightarrow$  কোন বিক্রিয়া হয় না

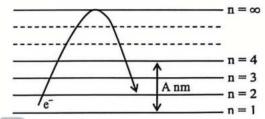
 $AgCl(s) + 2NH_4OH(aq) \rightarrow [Ag(NH_3)_2]Cl(aq) + 2H_2O(l)$ ডাই অ্যামিন Ag(I) ক্লোরাইড

এভাবে দ্রবণে ক্লোরাইড আয়ন (CI<sup>-</sup>) শনাক্ত করা যায়।

. ACS, > Chemistry 1st Paper Chapter-2 Zn এর সর্বশেষ শক্তিন্তর 4s এ দুইটি ইলেকট্রন রয়েছে। এই দুইটি 📅 উদ্দীপকের Y মৌলটি হলো আয়রন (Fe)। Fe এর **ইলেকট্রন বি**ন্যাস করলে দেখা যায়-

$$_{26}$$
Fe  $\rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6 
11 11 1 1$ 

পলির বর্জন নীতি অনুসারে, কোনো পরমাণুতে দুটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনো সমান হতে পারে না।


Fc-এর 20 তম ইলেকট্রনটি 4s অরবিটালে এবং 26 তম ইলেকট্রনটি 3d অরবিটালে রয়েছে।

20-তম ইলেকট্রনের জন্য, 
$$n=4,\,l=0,\,m=0,\,s=-rac{1}{2}$$

26-তম ইলেক্ট্রনের জন্য, 
$$n=3,\,l=2,\,m=-2,\,s=-\frac{1}{2}$$

দেখা যাচ্ছে যে, Fe এর 20 তম ও 26 তম ইলেকট্রনের জন্য চারটি কোয়ান্টাম সংখ্যার মান সমান নয়। তাই বলা যায়, ইলেকট্রন দুটি পলির বর্জন নীতি অনুসরণ করে চলে।





ক) তড়িৎ-চুম্বকীয় বিকিরণ কাকে বলে?

ঙ্গি. বো. ২২

(খ) Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> এর ক্ষেত্রে দ্রাব্যতা ও দ্রাব্যতা গুণফলের সম্পর্ক দেখাও।

সি. বো. ২২

(গ) A এর মান নির্ণয় কর।

সি. বো. ২২

- ডিজীপকে উল্লিখিত বর্ণালির তরন্থদৈর্ঘ্য নির্ণয়পূর্বক ব্যবহার আলোচনা াসি. বো. ২২; অনুরূপ প্রশ্ন: য. বো. ২২; চ. বো. ২২ সমাধান:
- ক্র তড়িৎ চুম্বকীয় বিকিরণ হলো এমন একটি শক্তি যা তড়িৎক্ষেত্র এবং চৌম্বকক্ষেত্রের পারস্পরিক ক্রিয়ার ফলে উৎপন্ন হয় এবং আলোর গতিতে মহাবিশ্বে ছড়িয়ে পড়ে।
- বা Al₂(SO₄)₃ পানিতে নিম্নরূপে বিয়োজিত হয়:

$$Al_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$$
 S 2S 3S মনে করি, উভয় আয়নের দ্রাব্যতা = S mol L<sup>-1</sup> সূতরাং দ্রাব্যতার গুণফল,  $K_{sp} = [Al^{3+}]^2 [SO_4^{2-}]^3$  =  $(2S)^2 (3S)^3$  =  $108S^5$ 

গ আমরা জানি,

$$n$$
 তম কক্ষপথের ব্যাসার্থ  $r_n=rac{h^2}{4\pi me^2} imesrac{n^2}{Z}$  
$$=0.5292 imes10^{-10} imesrac{n^2}{Z}$$

৪র্থ কক্ষপথের ব্যাসার্ধ,

$$r_4 = 0.5292 \times 10^{-10} \times \frac{4^2}{1}$$

$$= 8.47 \times 10^{-10} \text{ m}$$

= 0.847 nm

গুণগত রসায়ন > ACS/ FRB Compact Suggestion Book.....

১ম কক্ষপথের ব্যাসার্ধ,

$$r_1 = 0.5292 \times 10^{-10} \times \frac{1^2}{1}$$

 $= 0.5292 \times 10^{-10} \text{ m} = 0.05292 \text{ nm}$ 

= (0.847 - 0.05292) nm = 0.79 nm (Ans.)

च চিত্রানুযায়ী ইলেকট্রনটি n₂ = ∞ হতে n₁ = 2 কক্ষপথে আসে।

আমরা জানি, 
$$\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\Rightarrow \frac{1}{\lambda} = 1.09678 \times 10^7 \left( \frac{1}{2^2} - \frac{1}{\infty^2} \right)$$

 $\Rightarrow \lambda = 3.6470 \times 10^{-7} = 364.70 \text{ nm}$ 

এই তরঙ্গদৈর্ঘ্য (UV) অঞ্চলের তরঙ্গদৈর্ঘ্যের পরিসরে (10 – 380) nm বিদ্যমান। UV রশ্মির ব্যবহার নিম্নরূপ:

- ফটোইলেকট্রন স্পেকট্রোস্কোপিতে
- ২। অপটিক্যাল সেন্সররূপে জাল টাকা শনাক্তকরণে
- ৩। ঔষধের মান নিয়ন্ত্রণ ও শনাক্তকরণে
- 8 । UV-ID শনাক্তকরণে ও লেবেল ট্র্যাকিংরূপে
- ৫। গ্যাস্ট্রোএন্টোরোলজি থেরাপিতে
- ৬। জীবাণুনাশক হিসাবে
- ৭। প্রোটন বিশ্লেষণে
- ৮। কোষ কলার মেডিকেল ইমেজিং এর কাজে
- ১। চিকিৎসার ক্ষেত্রে চামড়ার উপর লাইটথেরাপিতে।

প্রম > ৮ নিচের হাইড্রোজেন মডেলটি লক্ষ্য করো:



- (ক) সম-আয়ন প্রভাব কাকে বলে?
- বি. বো. ২২৷ কু. বো. ২২৷
- (খ) 3d, 4p এবং 5s অরবিটাল তিনটির মধ্যে কোনটিতে ইলেকট্রন আগে প্রবেশ করবে এবং কেন? রা. বো. ২২; অনুরূপ প্রশ্ন: কু. বো. ২১]
- (গ) B শক্তিন্তরে ইলেকট্রন আপতনের জন্য সৃষ্ট রেখা বর্ণালির দীর্ঘতম তরঙ্গদৈর্ঘ্য নির্ণয় কর। বি. বো. ২৩
- ম ও C শজ্জিরের শক্তির পার্থক্য 1.93 × 10<sup>-18</sup> J হলে নির্গত আলোক রশ্মি দৃশ্যমান হবে কিনা? গাণিতিকভাবে বিশ্লেষণ কর। বি. বো. ২৩ সমাধান:
- ক কোনো স্বল্প দ্রবণীয় লবণের সম্পৃক্ত দ্রবণে সমআয়নবিশিষ্ট কোনো উব্র তড়িৎবিশ্লেষ্য পদার্থ যোগ করলে স্বল্প দ্রবণীয় লবণটির দ্রাব্যতা হ্রাস পাওয়াকে দ্রাব্যতার উপর সমআয়ন প্রভাব বলে।
- বা আউফবাউ নীতি অনুসারে, পরমাণুতে ইলেকট্রনগুলো এথমে নিম্ন শক্তিন্তর পূরণ করবে, এরপর ক্রমান্বয়ে উচ্চশক্তিন্তরে গমন করে। এই শক্তির মান (n+1) এর উপর নির্ভর করে। (n+1) এর মান যার কম হয়, ইলেকট্রন আগে ঐ অরবিটালে প্রবেশ করবে।

তিনটি অরবিটালের ক্ষেত্রে (n + 1) এর মান সমান হওয়ায় সেটিছে ध्यान गिठन्त्रतात्र मान कम, देलावर्रीन थ्रपाच प्रिटिस्ट थाराग कंतरत । সূতরাৎ, ইলেকট্রন প্রবেশের ক্রম। 3d > 4p > 56.

ল উদ্দীপকের B শক্তিস্তরের ক্ষেত্রে, n<sub>1</sub> – 2

B শक्तिस्रता देखानाप्रीम जाशञ्चात समा गृष्ट द्वाचा वर्गाणित स्तक्ष्याची দীর্ঘতম হবে যখন n2 - 3 হবে। এক্ষেত্রে সির্গত শক্তি ও কম্পাল্ল হবে

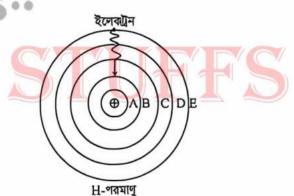
আমরা জানি, 
$$\frac{1}{\lambda} - R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\Rightarrow \frac{1}{\lambda} - 1.09678 \times 10^7 \times \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$

$$\Rightarrow \lambda = 6.565 \times 10^{-7} \text{ m}$$

 $\lambda = 656.5 \text{ nm (Ans.)}$ 

🚮 ইলেবট্টেনটি ৩য় শক্তিস্তর C থেকে ১ম শক্তিস্তর ∧-তে গমন করসে এদের মধ্যকার শক্তির পার্থক্য, △E - 1.93 × 10-12 J

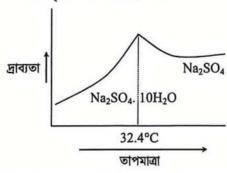

আমরা জানি, 
$$\Delta E = \frac{hc}{\lambda}$$

$$\therefore \lambda = \frac{hc}{\Delta E} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{6}}{1.93 \times 10^{-18}}$$

 $= 1.03 \times 10^{-7} \text{ m} = 103 \text{ nm}$ 

আমরা জানি, দৃশামান আলোর তরঙ্গদৈর্ঘার পরিসর (380 – 780) nm কিন্তু এখানে তরদদৈর্ঘ্য λ = 103 nm। তাই বলা যায়, ইলেকট্রেন ধাপাস্তরের ফলে নির্গত আলোকরশ্মি দৃশ্যমান হবে না।

211 > 10




- (ক) কোয়ায়্টাম সংখ্যা কাকে বলে?
- णि. ला. २०, २२। हे. ला. २३।
- (খ) গ্র্বার লবপের দ্রাব্যতার উপর তাপমাত্রা বৃদ্ধির প্রভাব ব্যাখ্যা ব্দর। णि. ला. २०। गि. ला. २३)

- (ग) काग्रान्धाम मरथाानमृद्दत मान दिरायत D मिन्छतात रेप्पक्यान मरथा নির্ণয় কর। णि. ता. २०: जन्यन वमा ह. ता. २०: हा. ता. २१ त्रा. त्या. २२, २)। मृ. त्या. २२। म. त्या. २२, २)। भि. त्या. २)।
- (ঘ) উদ্দীপকের ইলেক্ট্রনটির ধাপাস্তরে সৃষ্ট বর্ণাদির বর্ণ কীরূপ হবে? भाषिङिक्छारव विद्धापन क्त्र । । ण. ला. २०। जमुद्रम बङ्गा ह. ला. २०। ण. ला. २०। সমাধান:
- ক্স পরমাপুর ইলেকট্রনের আকার-আকৃতি কন্দপথের ত্রিমাত্রিক বিন্যান দিন্ত অক্ষের উপর पূর্ণন নির্দেশক যে চারটি রাশি আছে তাদেরকে কোয়ানীম नश्या वरन।

NCS/ ➤ Chemistry 1st Paper Chapter-2

ক্সবার লবণের সংকেত Na<sub>2</sub>SO<sub>4</sub>.10H<sub>2</sub>O যাতে 10 অণু কেলাস পানি থাকে। প্রাথমিকভাবে, তাপমাত্রা বৃদ্ধিতে গ্রুবার লবণের দ্রাব্যতা বৃদ্ধি পেতে থাকে। কিন্তু যখনই তাপমাত্রা 32.4°C অতিক্রম করে তখনই এটি নিরুদিত হয়ে Na<sub>2</sub>SO<sub>4</sub> এ পরিণত হয়। নিরুদিত Na<sub>2</sub>SO<sub>4</sub> এর দ্রাব্যতা তাপমাত্রা বৃদ্ধির সাথে সাথে হ্রাস পায়।



চিত্র: তাপমাত্রার সাথে গ্রবার লবণের দ্রাব্যতার ক্রম

গ্র উদ্দীপকের D শক্তিন্তর হলো ৪র্থ শক্তিন্তর।
কোয়ান্টাম সংখ্যাসমূহের মান নির্ণয়পূর্বক মোট ইলকট্রন সংখ্যা নিম্নে দেখানো হলোঃ

| প্রধান<br>কোয়ান্টাম<br>সংখ্যা, n | সহকারী<br>কোয়ান্টাম<br>সংখ্যা, I | চৌম্বকীয়<br>কোয়ান্টাম<br>সংখ্যা, m | উপন্তরে<br>অরবিটাল<br>সংখ্যা<br>(2l+1) | উপভৱে<br>ইলেকট্রন<br>সংখ্যা<br>2(2l+1) |
|-----------------------------------|-----------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|
|                                   | 0                                 | 0                                    | 1                                      | 2                                      |
|                                   | 1                                 | -1, 0, +1                            | • 3 5                                  | 6                                      |
| 4                                 | 2                                 | -2, -1,<br>0, +1, +2                 | 5/                                     | 10                                     |
|                                   | 3/_                               | -3, -2, -1, 0,<br>+1, +2, +3         | 7                                      | 14                                     |
|                                   |                                   |                                      | মোট ই                                  | লেকটন = 32                             |

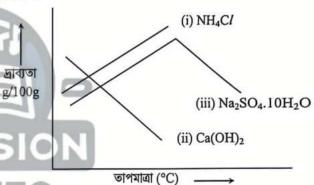
সুতরাং, D শক্তিস্তরে ইলেকট্রন সংখ্যা 32 টি।

ঘ আমরা জানি, 
$$\frac{1}{\lambda}=R_H\bigg(\frac{1}{n_1^2}-\frac{1}{n_2^2}\bigg)$$

$$\Rightarrow \frac{1}{\lambda} = 1.09678 \times 10^7 \times \left(\frac{1}{2^2} - \frac{1}{5^2}\right)$$

$$\Rightarrow \lambda = 4.3417 \times 10^{-7} \text{ m}$$

$$\therefore \lambda = 434.17 \text{ nm}$$


আমরা জানি, দৃশ্যমান আলোর তরঙ্গদৈর্ঘ্য (380 – 780) nm । দৃশ্যমান আলোর (425 – 450) nm অঞ্চল নীল বর্ণ প্রদর্শন করে। সূতরাং, ইলেকট্রনের ধাপান্তরে সৃষ্ট বর্ণালি দৃশ্যমান হবে এবং নীল বর্ণ প্রদর্শন করবে।

# অম ▶ ১০

দৃশ্যকল্প-১:

| মৌল | প্রধান<br>কোয়ান্টাম<br>সংখ্যা | সহকারী<br>কোয়ান্টাম<br>সংখ্যা | চৌম্বক<br>কোম্বান্টাম সংখ্যা | স্পিন কোয়ান্টাম সংখ্যা                                                                              |
|-----|--------------------------------|--------------------------------|------------------------------|------------------------------------------------------------------------------------------------------|
| A   | 3                              | 0                              | 0                            | + 1/2                                                                                                |
| В   | 3                              | 0, 1                           | 0, 0, + 1, - 1               | $+\frac{1}{2}, +\frac{1}{2}, +\frac{1}{2}, +\frac{1}{2},$ $-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}$ |
| С   | 2                              | 0, 1                           | 0, 0, +1, -1                 | $+\frac{1}{2},-\frac{1}{2}$                                                                          |

দৃশ্যকল্প-২:



(ক) জারণ শিখার সংজ্ঞা দাও।

[দি. বো. ১৯]

(খ) Cr(24) এর ইলেকট্রন বিন্যাস ব্যতিক্রমধর্মী কেন?

মি. বো. ২২, ২১; কু. বো. ১৭)

(গ) A, B ও C মৌল তিনটি কী কী এবং কেন?

[য. বো. ২১]

(ঘ) উদ্দীপকের যৌগগুলোর দ্রাব্যতার পরিবর্তনের ভিন্নতার কারণ ব্যাখ্যা কর। কি. বো. ২২

সমাধান:

- কু বুনসেন বার্নারের নলের মুখে অপেক্ষাকৃত ছোট যে শিখাটিতে প্রচুর পরিমাণে অক্সিজেন উপস্থিত থাকে তাকে জারণ শিখা বলে।
- থা Cr(24) এর ইলেকট্রন বিন্যাস ব্যতিক্রমধর্মী। কারণ, সাধারণ নিয়ম অনুযায়ী Cr এর বিন্যাস নিম্নরপ:

 $Cr(24) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$  কিন্তু, d অরবিটাল পূর্ণ বা অর্থপূর্ণ ( $d^{10}$ ,  $d^5$ ) অবস্থায় অধিক সৃস্থিত। তাই, সৃস্থিতি অর্জনের জন্য 4s অরবিটাল থেকে 1টি ইলেকট্রেন 3d তে প্রবেশ করে অর্থপূর্ণ হয়ে সৃস্থিতি প্রদর্শন করে এবং নিম্নরূপ ইলেকট্রন বিন্যাস দেখায়।

$$Cr(24) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$$

भूमवर्ष प्रमाप्त अस्ति।।।।। अस्ति र भूमारा अस्ति क्रम्म

क्रिके प्राधित र स्था

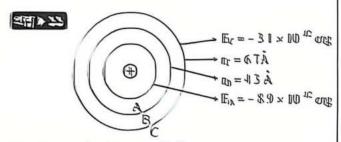
इ ० ए विभिन्न मिलिक मानस

| श्रीति | अस्पाः<br>(काम्याः<br>अस्पाः | प्राप्तमा ।<br>जाकियार<br>जाकियार | E समाप | क्षायाण<br>वायाणाए<br>वास्या | तिकारम्<br>विकास | मिताजी<br>इत्तवाजी |
|--------|------------------------------|-----------------------------------|--------|------------------------------|------------------|--------------------|
| À      | 4-5                          | 1-0                               | a.     | Ø                            | ħ                | 10                 |
| _      |                              | U+0                               | 0      | 0                            |                  | 7/2                |
| ц      | 日のころ                         | 0+1                               | JP.    | - F O + D                    | ו                | JP,                |
| -      | 1                            | 1+0                               | A      | Ø                            |                  | $\mathbb{N}_{5}$   |
| C      | U . I                        | 1-0                               | TP     | -1.000                       | 2                | We                 |

华丽在西西里岛山里"水"了了了。下,

म शामीह मीमांड मे

पह रह वह रहा = तामकी मिल्ला अर सि


US अधीष स्थापित पटि

C-28 रहान्यान विशान = US-25-

(उसी) मामनीमीठ गीमांड अ

किनास्का स्पेन किनीटिक कानावास वास्य समावास निर्माणिक स्वर्थ

क्रियारात्र राधारा वाम मयामा जागाता बीचा जार यापर । NALCII गोतिएउ स्वीकुए पत्राचा स्त्या नीक्या एउर बात पारीह विकि थणी काणमी विद्यास्त विक्रा । काणमी विद्याम काणमा याफ़ास्त मागाव्सा मागरम गिरक व्यानम सा जवीर करगील भागाण याइ। जोरे NALCI थप्र मायाज जागाचा गीता जाल गीत गाउर। व्यनगिएक व्यवित्व रूट रात्या यात. ८५/८०११५ थर मायाज व्यवमाच मुन्ति नाएए बट्य । CalONEr वातिएए मुनै।कुए बनाइन सम्बीर बागर युद्ध याम वर्षार अर विज्ञानन बक्तिनारि अभीर कारणाणी विकिना। वालालामें विक्रिताय क्याया चक्राया गावायमा गावानुनी रस अपर मपाण करा नाम। करें. Сमांभीर धर मचाक गाम । प्राप्त कामान विभाग विभा नाम क्यार उर्ध मार स्व । यह नाम स्व १ मार स्वापाय मार क्याटक बारक । अप्त जामाट्य पिट्याटर बस्मा बाम, शार्यमिकखाटर Nin SO., सामाया UD वानु राज्ञाना गानि पाजरमा८ 31°C खानामावामा विकि मिसिशिए DOLLSOL क निमाड एता। रूटन क्ष मायाणम करन निमर्कत लागा वामा ।



(क) यरिएक्नगार्टीम वनिक्साणा नुविधि नीत

(व्य) व्यान क्ताटा Kia वापारमा केनिर्मिक कीमात्य भागक करात्या

भिरा था *१७*% भिर खार *१७*०॥

- वाजाराक साम प्रतिवास सामाल ८ ७०० ४ कमाना संस्थान संस्थाना स्वाप्ति (८)
- (W) मिर्विक्षमात्र एवरक चंष्ट चृद्ध चारक वैस्तानीस्थित एका उपक्र चाएरव की १ -क्षीभावनम् वारमाहरू नामितिकासार्व विद्यासीस्थत एका उपक्र चाएरव की १

#HIMINB

- वार्य मुनस् क अरस्यम् कुरम्भः अभिवास्त भूमित्यः कुरम्भः स्मित्यः कुरम्भः अभिवास्त भूमित्यः कुरम्भः अभिवास्त भूमित्यः कुरम्भः अभिवास्त भूमित्यः विश्वापः विश्व

याति वासा वास्ता मुख स्थातिमान नारिस्याववार्षिस्यारम्पीय व्यवस्य राजा बातः वास्य प्रमुना कवास्य राजः व्यवस्य क्षेत्रशिक वर्षण विश्विक वर्षण विश्विक वर्षण विश्विक वर्षण

व्यापिट्याऽम्म वाम्यः व्याप्तिमाव वाम्यः व्यापिट्याःम् व्यापिट्याः वाम्यः व्याप्तिमाव वाम्यः वाम्यः

का उत्तर के का प्रतामितात मानि हिंद क - १ । ४ । ० <sup>२२</sup> काप्स का उत्तरभावा वेत्यामीलाम मानि हिंद क - १ । ४ । ० <sup>२२</sup> काप्स वाप्तमा बामि <u>के हिंद्र हिंद</u> - हिंद्र

गुष्णाः C व्यास्म A स्कनात्व रेत्यान्योतम् वानाग्रस्य वाष्ट्रं विविनाहरू

(.aav.) nn : 01 × 121 E thistiga

जिनीवानन B स्था दा करवात्व रेत्यन्तीरवस विस्पार

alinet C and out sharing sentitives algority 
$$= \frac{1 \times 9 \text{ for } 0.01 \times 10^{-10}}{1 \times 9 \text{ cov} \times 10^{-10}}$$

$$= \frac{1 \times 9 \text{ for } 0.01 \times 10^{-10}}{1 \times 9 \text{ cov} \times 10^{-10}}$$
alinet C and out sharing sentitives algorithm.

$$\therefore w_{i} = \frac{100 \times 100 \times 100^{14}}{2 \times 3.1416 \times 9.11 \times 100^{14}} \approx 3.00 \times 100^{14}$$

$$\Rightarrow w_{i} = 5.1852 \times 100^{2} \text{ am s}^{4}$$

वावीट मिछिन्नमाञ त्याटक चाढ मृत्य चार्य रहान्क्रोटनम ८५०। छाढ चावीटर मा मार्ट्यांन भारत । (१५०४८)

आस्त्रीयात्रीयम् अध्येतात्त्रा

প্রশ্ন > ১২ 25°C এবং 50°C তাপমাত্রায় AB3 এর দ্রাব্যতা যথাক্রমে 40 এবং 60. MB এর  $K_{sp} = 1.8 \times 10^{-10}$ 

(ক) দ্রাব্যতা বলতে কী বুঝায়?

[ब्रा. व्रा. २२, २५; मि. व्रा. २२; म. व्रा. ১५; मि. व्रा. ১५; क्. व्रा. ১५]

- (चं) বেরিলিয়াম এর ক্ষেত্রে হুভের নীতি প্রযোজ্য নয় কেন?
- (গ) 50°C তাপমাত্রার 100 g AB3 এর সম্পৃক্ত দ্রবণকে 25°C তাপমাত্রায় শীতল করলে কী পরিমাণ দ্রব কেলাসিত হবে?

রা. বো. ২৩; অনুরূপ প্রশ্ন: ম. বো. ২২

(ঘ) AB₃ এর উপস্থিতিতে MB এর দ্রাব্যতা পরিবর্তিত হয়-বিশ্লেষণ কর। রো. বো. ২৩; অনুরূপ প্রশ্ন: ম. বো. ২২]

সমাধান:

- ক কোনো নির্দিষ্ট তাপমাত্রায় 100 গ্রাম দ্রাবকে যত গ্রাম দ্রব দ্রবীভূত থেকে সম্পৃক্ত দ্রবণ উৎপন্ন করে থাকে তাকে ঐ দ্রাবকে ঐ দ্রবের দ্রাব্যতা বলে।
- য হণ্ডের নীতি অনুসারে, সমশক্তিসম্পন্ন বিভিন্ন অরবিটালে ইলেকট্রনগুলো এমনভাবে অবস্থান করবে যেন তারা সর্বাধিক সংখ্যক অযুগ্ম বা বিজোড় অবস্থায় থাকতে পারে। অযুগা ইলেকট্রনগুলোর স্পিন একই দিকে হয়।  $_4\text{Be} \longrightarrow 1\text{s}^2 2\text{s}^2$

বেরিলিয়ামের ৪টি ইলেকট্রন এই 1s ও 2s অরবিটালে প্রবেশ করে। s উপশক্তিস্তরে একাধিক অরবিটাল না থাকায় এতে বিজ্ঞোড় অবস্থায় ইলেকট্রন প্রবেশের সুযোগ নেই। অর্থাৎ হুন্ডের নীতি এক্ষেত্রে প্রযোজ্য হবে না।

গ 50°C তাপমাত্রায়,

$$S = \frac{100 \text{ m}}{M - m}$$

$$\Rightarrow 60 = \frac{100 \text{ m}}{100 - \text{m}}$$

$$\Rightarrow m = \frac{60 \times 100}{160} = 37.5 \text{ g}$$

∴ দ্রাবক M - m = 100 - 37.5 = 62.5 g

⇒ 25°C তাপমাত্রায়,

$$\Rightarrow$$
 S' =  $\frac{100 \text{ m}'}{\text{দাবক}}$ 

$$\Rightarrow 40 = \frac{100 \text{ m}'}{62.5}$$

$$\Rightarrow$$
 m' = 25 g

∴ দ্রব কেলাসিত হবে = (37.5 – 25) g

= 12.5 g (Ans.)

য সমআয়ন প্রভাবের ফলে AB₃ এর উপস্থিতিতে MB এর দ্রাব্যতা হ্রাস পাবে।

সমআয়ন বিশিষ্ট মৃদু তড়িং বিশ্লেষ্য দ্রবণে অন্য একটি সবল তড়িং বিশ্লেষ্য দ্রবণ যোগ করলে মৃদু তড়িৎ বিশ্লেষ্যের বিয়োজন মাত্রা, আয়নিত হওয়ার ক্ষমতা, দ্রবীভূত হওয়ার ক্ষমতা হ্রাস পায়।

এখানে, MB একটি মৃদু তড়িৎ বিশ্লেষ্য পদার্থ যা সম্প্রক্ত দ্রবণে আংশিকভাবে আয়নিত হয়।

 $MB \rightleftharpoons M^{+}(aq) + B^{-}(aq)$ 

Rhombus Publications

...... ACS, > Chemistry 1st Paper Chapter-2

 $MB \rightleftharpoons M^{+}(aq) + B^{-}(aq)$ 

 $AB_3 \to A^{3+}(aq) + 3B^{-}(aq)$ 

ফলে মিশ্র দ্রবণে B⁻ সমআয়নটির ঘনমাত্রা বৃদ্ধি পাবে। আমরা জানি, নির্দিষ্ট তাপমাত্রায়  $K_{sp}$  এর মান নির্দিষ্ট থাকে। তাই লা-শাতেলীয়ার নীতি অনুসারে  $K_{sp}$  নির্দিষ্ট রাখতে সাম্যাবস্থা বামে সরে যাবে ও কিছু পরিমাণ  $\mathbf{B}^-$  আয়ন  $\mathbf{M}^+$  আয়নের সাথে  $\mathbf{M}\mathbf{B}$  উৎপন্ন করবে। অর্থাৎ দ্রবণে MB এর বিয়োজন মাত্রা হ্রাস পায় এবং MB কঠিন আকারে অধঃক্ষিপ্ত হয় তথা দ্রাব্যতা হ্রাস পায়।

এবং AB3 একটি তীব্র তড়িং বিশ্লেষ্য। এতে MB যোগ করা হলে

প্রশ্ন > ১৩

| 25°C        | 25°C        |
|-------------|-------------|
| 60 mL       | 40 mL       |
| 0.4 M       | 0.2 M       |
| AM এর দ্রবণ | XB এর দ্রবণ |
|             |             |
| ১ম পাত্র    | ২য় পাত্র   |

 $25^{\circ}$ C তাপমাত্রায়  $AB_2$  এর  $K_{sp} = 1.84 \times 10^{-8}$ 

- (ক) হুন্ডের নিয়মটি লেখ। [ण. ता. २७; य. ता. २२; व. ता. २२; जि. ता. २১; त्रा. त्वा. ४४; य. त्वा. ४४; मि. त्वा. ४९।
- (খ) একটি মাত্র ইলেকট্রন থাকা সত্ত্বেও H এর পারমাণবিক বর্ণালিতে অনেকণ্ডলো রেখা সৃষ্টি হয় কেন? ব্যাখ্যা কর। [ঢা. বো. ২৩]
- (গ) উদ্দীপকের AB<sub>2</sub> যৌগের দ্রাব্যতা নির্ণয় কর। [ঢা, বো, ২৩]
- (ঘ) ১ম ও ২য় পাত্রের মিশ্রণে কোনো অধঃক্ষেপ পড়বে কিনা? গাণিতিকভাবে বিশ্রেষণ কর। ঢা. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২৩; দি. বো. ২২

সমাধানঃ

- ক্তি হুন্তের নীতিঃ সমশক্তিসম্পন্ন অরবিটালগুলোতে ইলেকট্রনগুলো এমনভাবে অবস্থান করবে যেন সর্বাধিক সংখ্যাক অযুগ্ম বা বিজ্ঞোড় অবস্থায় থাকতে পারে।
  - উচ্চ শক্তির প্রভাবে অসংখ্য H প্রমাণুর ইলেকট্রনসমূহ ভিন্ন ভিন্ন পরিমাণ শক্তি শোষণ করে এবং উত্তেজিত হয়ে বিভিন্ন উচ্চতর শক্তিস্তরে উন্নীত হয়। পরবর্তীতে শক্তির উৎসের অপসারণে ইলেকট্রনসমূহ বিভিন্ন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে ফিরে আসে এবং শক্তির বিকিরণ করে। বিকিরিত শক্তির মান অসম হওয়ায় উৎপন্ন তরঙ্গদৈর্ঘ্যের মান ভিন্ন হয় এবং অনেকগুলো বর্ণালি রেখার সৃষ্টি করে। এজন্য একটি মাত্র ইলেকট্রন থাকা সত্ত্বেও H এর পারমাণবিক বর্ণালিতে অনেকগুলো রেখা সৃষ্টি হয়।
- গ AB<sub>2</sub> যৌগ নিম্নরূপে আয়নিত হয়:

$$AB_2 \rightleftharpoons A^{2+} + 2B^-$$

 $S = 2S[AB_2$  এর দ্রাব্যতা =  $S \mod L^{-1}$ ]

∴ AB<sub>2</sub> এর দ্রাব্যতা গুণফল, K<sub>sp</sub> = [A<sup>2+</sup>] [B<sup>-</sup>]<sup>2</sup>

 $\Rightarrow K_{sp} = S \times (2S)^2$ 

 $\Rightarrow 1.84 \times 10^{-8} = 4S^3$ 

$$\Rightarrow S = \sqrt[3]{\frac{1.84 \times 10^{-8}}{4}}$$

 $\therefore$  S = 1.663 × 10<sup>-3</sup> mol L<sup>-1</sup> (Ans.)

ভাগত নাগালে > ACS/ FRB Compact Suggestion Book ......

১ঘ ও ২ন্ন পাতের দ্রবণ ফিশ্রণের ফলে উৎপন্ন ∧B₁ যৌগ নিম্নরূপে অন্যানিত হয়ঃ

$$AB_2 \rightleftharpoons A^{3'} + 2B^{-}$$

মিশ্রবে ∧<sup>2</sup>° আয়নের দনমানাঃ

$$V_1S_1 = VS_1'$$

$$\Rightarrow S_1' = \frac{V_1 S_1}{V} = \frac{60 \times 0.4}{(60 + 40)} = 0.24 \text{ M}$$

খিছাৰ B' আয়নের ঘনমাত্রা:

$$\Rightarrow$$
 S<sub>2</sub>' =  $\frac{V_2S_2}{V} = \frac{40 \times 0.2}{(60 + 40)} = 0.08 \text{ M}$ 

$$= 0.24 \times (0.08)^{2}$$

$$= 1.54 \times 10^{-3} \text{ mol}^3 \text{ L}^{-3}$$

व्ह्या जाव्ह,  $K_{\odot} = 1.84 \times 10^{-5} \text{ mol}^3 \text{ L}^{-3}$ 

সুত্যাং, মিশ্রণে AB, অবঃক্তিও হবে

#### अर्थ > ४० नृणक्छ->:

ছাইট্রোজেনের একটি ইনেবট্রন ঝের কব্দপথের ৫ম (A) শক্তির হতে ২য় শক্তিয়র (B) এবং অন্য একটি ইনেবট্রন ৩য় শক্তির (C) হতে ২য় শক্তিয়র (B) নেমে আসন। [R<sub>H</sub> = 109678 cm<sup>-1</sup>]

于小野子:

25°C ভাপমানা এবং 80°C ভাপমানার কোন দ্রবের দ্রাব্যতা ফ্রাক্রমে 30 এবং 55।

- (क) जात्रानिक ७५ रून की?
- वि. (स. ५९)
- (খ) 'জনুমাদা কিভাবে সৃটি হয়? থাখা কর।
- [E (XL ) 9]
- (প) C থেকে B তে নোসে আসা 1 mol ফোটদের শঙ্কির মান হিসেব কর।
- (ছ) 25°C ভাগমাত্রায় 1 kg সম্পৃষ্ঠ দ্রবশকে 80°C ভাগমাত্রায় উন্নীত ক্যায় দ্রবন জসম্পৃষ্ঠ হয়ে পড়বে? উন্ভিটি গানিতিকভাবে প্রমাণ কর।

#### স্যাখান:

- বোদো যৌচোর যেকোনো দ্রবংর (সম্পৃত বা অসম্পৃত) সাখাবস্থার উৎপাদ্র আয়ানের সহতাকে ব্যাচার আমার ঘনমান্রার সূচকে উন্লীত করে মোনার ঘনমান্রার বে গুনখন্দ পাওয়া যায় বাকে ঐ যৌগের আয়নিক গুনফন যদে।
- শোষিত রাশ্যার বিদানিত বিকিরাণকে অনুপ্রচা বলে। শক্তির উৎস অপসায়াপার পথও কিছু সমায় (কভেক সেকেচ থেকে কভেক ঘন্টা) উটেজিত অনু বা গরামানু হতে দৃশ্যামান আলোর বিকিরণ পাওয়া যায়। উটেজিত গরমানুর ইলেবাট্রনসমূহ উস্চ শক্তিক্তর হতে সরাসরি আনি শক্তিয়ার নোমে আসে না করাং মধ্যাবর্টী কোনো করে কিছুদ্দ অবস্থান করে এবং তা হতে ধীরে ধীরে প্রভাব বিদ্ধেরণ করে। যেমন CaS, BAS, MAS প্রদৃতি।
- না *ইটোবা*ট্রন ওয়া শচ্চিন্তার খোকে ২য়া শচ্চিন্তারে যান্ত্র। সূ*তর*াং 🛛 = 2 এবং

$$m_0 = 3$$

$$\frac{\mathbb{I}}{\lambda} = \mathbb{R}_{\text{III}} \left( \frac{1}{m_1} - \frac{1}{m_2} \right)$$

$$=10.9678\left(\frac{1}{2^2}-\frac{1}{3^2}\right)$$

$$\Rightarrow \lambda = 6.6 \times 10^{-5} \text{ cm}$$

আবার, 
$$\upsilon = \frac{c}{\lambda} = \frac{3 \times 10^{10}}{6.6 \times 10^{-5}}$$

$$=4.5 \times 10^{14} \, \text{s}^{-1}$$

একটি ফোটনের শক্তি, E = hu

$$= (6.626 \times 10^{-34} \times 4.5 \times 10^{14})$$

$$= 3 \times 10^{-19} \, \text{J}$$

$$= 3 \times 10^{-22} \text{ kJ}$$

.. এक प्रांन क्लिंग्लित गिळि

$$= (3 \times 10^{-22} \times 6.023 \times 10^{23}) \text{ kJ}$$

ত্ব সেওয়া আছে, 25°C তাপমাত্রার সম্পৃক্ত দ্রবণ M = 1 kg = 1000g তাহলে, 25°C তাপমাত্রার দ্রাব্যতা

$$S_1 = \frac{100 \text{ m}}{M - m}$$

$$\Rightarrow 30 = \frac{100 \text{ m}}{1000 - \text{m}}$$

⇒ 100 m = 30000 - 30 m

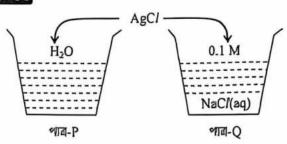
$$\Rightarrow$$
 130 m = 30000

$$m = 230.77 g$$

∴ দ্রাবকের ভর = M – m

$$=(1000-230.77)g$$

80°C তাপমাত্রায় দ্রাবাতা,


$$S_2 = \frac{100 \text{ m}'}{1000 - 230.77}$$

$$\Rightarrow 55 = \frac{100 \text{ m}'}{769.23}$$

m' = 423.08 g

80°C তাপদারার 423.08 g দ্রব দ্রবীভূত হতে পারবে যেখানে 25°C তাপদারার সর্বোচ্চ 230.77 g দ্রব দ্রবীভূত হতো। অভএব বলা বার 25°C থেকে 80°C এ উন্নীত করার দ্রবণটি অসম্পুক্ত হয়ে যাবে।

# 역회 **>** 20



P-পামে AgCI এর দ্রাব্যতা গুণফল 1.7 × 10-10

(क) अवविषे की?

- [ STL OTL 4/5 5. OTL 1/8]
- (४) NaCl ब्रज माराज 36 वनराज की वृक्ष? ांच ला. ३५ म. ला. ३५ म. ला. ३৯।
- (प) P शाव्य CI जाशानत चनमाता g/L थकरक निर्परा कत । पि. ता. २०।
- (ছ) উদ্দীপকের P ও Q পাত্রে AgCl এর দ্রাহাতার মানের পার্ধক্য হওয়ার সন্ধাব্যতা কারণসহ বিশ্লেষণ কর। দি. লা. ২০

Afromibus Publications

ਚਤਾਮਿਕ.

- ক পরমাণুতে নিউক্লিয়াসের চতুর্দিকে ইলেকট্রন পরিভ্রমণের জন্য নির্দিষ্ট শক্তি বিশিষ্ট কক্ষপথকে অরবিট বলে।
- কানো নির্দিষ্ট তাপমাত্রায়, নির্দিষ্ট পরিমাণ দ্রাবকে সর্বোচ্চ কত পরিমাণ দ্রব দ্রবীভূত হতে পারে তাকে সেই দ্রবের দ্রাব্যতা বলে। NaCl এর দ্রাব্যতা 36 বলতে বোঝায় যে, ঐ নির্দিষ্ট তাপমাত্রায় 100 g পানিতে সর্বোচ্চ 36 g NaCl দ্রবীভূত হতে পারে।
- গ P পাত্রে AgCl নিম্নোক্ত উপায়ে বিয়োজিত হয়:

$$AgCl = Ag^{+} + Cl^{-}$$

S S

S [ধরি, AgCl এ দ্রাব্যতা = S M]

∴ AgCl এর দ্রাব্যতা গুণফল, K<sub>sp</sub> = [Ag<sup>+</sup>] × [Cl<sup>-</sup>]

$$\Rightarrow 1.7 \times 10^{-10} = S \times S$$

$$\Rightarrow S^2 = 1.7 \times 10^{-10}$$

$$\therefore S = 1.3 \times 10^{-5} \text{ mol L}^{-1}$$

$$= \frac{1.3 \times 10^{-5} \times 35.5}{1} \text{ g L}^{-1}$$

$$= 4.615 \times 10^{-4} \text{ g L}^{-1} \text{ (Ans.)}$$

য 'গ' নং হতে প্রাপ্ত, AgCl এর দ্রাব্যতা 1.7 × 10<sup>-10</sup> mol L<sup>-1</sup>

Q পাত্রে, 
$$AgCl = Ag^+ + Cl^-$$

NaCl → Na++Cl

0.1 0.1 0.1

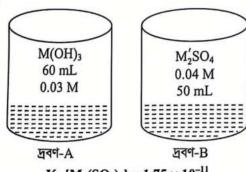
∴ মিশ্রণে [CI ] = (S' + 0.1) mol/L

 $\therefore$  Q পাত্রে AgCl-এর দ্রাব্যতা,  $K_{sp} = [Ag^{\dagger}] \times [Cl^{\top}]$ 

$$\Rightarrow K_{sp} = S' \times (S' + 0.1)$$

$$\Rightarrow 1.7 \times 10^{-10} = 0.10 \text{ S'} \quad [\because \text{S'} + 0.1 \approx 0.1]$$

$$S' = 1.7 \times 10^{-9} \,\mathrm{M}$$


(গ) হতে পাই S = 1.3 × 10<sup>-5</sup> M

সূতরাং, S > S'

Q পাত্রে তীব্র তড়িৎ বিশ্লেষ্য (NaCl) এর উপস্থিতির কারণে সমআয়ন প্রভাব দেখা যায় এবং AgCl এর দ্রাব্যতা হ্রাস পায়।

## 설치 ▶ >৬ (i) 29X

(ii)



 $K_{sp}[M_2(SO_4)_3] = 1.75 \times 10^{-11}$ 

(ক) নোড কাকে বলে?

- [সি. বো. ২১]
- (খ) অর্থপূর্ণ 'p' অরবিটাল অধিক স্থিতিশীল কেন?
- [চ. বো. ২১]

- ...... ACS, > Chemistry 1st Paper Chapter-2
- (গ) 'X' পরমাণুর ইলেকট্রন বিন্যাস আউফবাউ নীতির ব্যতিক্রম ব্যাখ্যা
  কর।
   মি. বো. ২৩; অনুরূপ প্রশ্ন: ঢা. বো. ২২; ব. বো. ২১।
- (ঘ) দ্রবণদ্বয় মিশ্রিত করলে দ্রবণে অধঃক্ষেপ পড়বে কিনা-গাণিতিকভাবে বিশ্লেষণ কর। চি. বো. ২১।

সমাধান

- ক দৃটি অরবিটালের মধ্যবর্তী যে এলাকায় ইলেকট্রন মেঘের অবস্থানের সম্ভাবনা প্রায় শূন্য সে এলাকাকে নোড বলে।
- হা হন্ডের নীতি অনুসারে, অর্ধপূর্ণ P অরবিটাল এর ক্ষেত্রে ইলেকট্রনগুলোর 
  তটি অরবিটালে সুষমভাবে বিন্যস্ত থাকে ও এক্ষেত্রে ইলেকট্রনগুলোর 
  ঘূর্ণনের দিক ও একই হয়। অর্থাৎ, P উপশক্তিস্তরে প্রতিসাম্যতা বজায় 
  থাকে ও কাঠামো সৃস্থিত হয় এবং ইলেকট্রন অপসারণে অধিক শক্তির 
  প্রয়োজন হয়।
- গ্র উদ্দীপকের X মৌলটির পারমাণবিক সংখ্যা 29। অর্থাৎ মৌলটি হল Cu।

 $_{29}$ Cu এর ইলেকট্রন বিন্যাস—  $1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,4s^1\,3d^{10}$  আউফবাউ নীতি অনুসারে 4s<3d। অর্থাৎ 4s অরবিটালটি ইলেকট্রন দ্বারা পূর্ণ করার পরে ইলেকট্রন 3d অরবিটালে প্রবেশ করবে। তদনুযায়ী  $[Ar]\,4s^2\,3d^9$  হওয়ার কথা।

কিন্তু অরবিটালসমূহের ক্ষেত্রে পূর্ণ ও অর্ধপূর্ণ অবস্থা তুলনামূলক স্থিতিশীল হয়ে থাকে। এজন্য Cu এর ক্ষেত্রে [Ar]  $4s^1$   $3d^{10}$  হয়ে থাকে যেখানে s অর্ধপূর্ণ ও d অরবিটালটি পূর্ণ আছে। যা তুলনামূলক স্থিতিশীল হয়ে থাকে কিন্তু আউফবাউ নীতির অনুসারে হয় নি।

আ M<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> দ্রবণে নিম্নরূপে আয়নিত হয়:

$$M_2(SO_4)_3 \rightleftharpoons 2M^{3+} + 3SO_4^{2-}$$

মিশ্রণে M³+ আয়নের ঘনমাত্রা:

$$V_1S_1 = VS_1'$$
 $\Rightarrow S_1' = \frac{V_1S_1}{V}$ 
 $= \frac{60 \times 0.03}{60 + 50}$ 
 $= 0.016 \text{ M}$ 
 $= \frac{60 \times 0.03}{60 + 50}$ 
 $= 110 \text{ mL}$ 

মিশ্রণের SO<sub>4</sub><sup>2-</sup> আয়নের ঘনমাত্রা:

$$V_2S_2 = VS_2'$$
 $\Rightarrow S_2' = \frac{V_2S_2}{V}$ 
 $= \frac{50 \times 0.04}{60 + 50}$ 
 $= 0.018 \, \mathrm{M}$ 
 $= 0.018 \, \mathrm{M}$ 
 $= 0.018 \, \mathrm{M}$ 

$$M_2(SO_4)_3 \Longrightarrow 2M^{3+} + 3SO_4^{2-}$$
  
 $\therefore K_{ip} = [M^{3+}]^2 [SO_4^{2-}]^3$   
 $= (0.016)^2 (0.018)^3$   
 $= 1.49 \times 10^{-9}$ 

দেয়া আছে,  $K_{sp} \left[ M_2 (SO_4)_3 \right] = 1.75 \times 10^{-11}$  যেহেডু,  $K_{ip} > K_{sp}$ 

∴ দ্রবণে M2(SO4)3 এর অধঃক্ষেপ পড়বে।

ভণগত রসায়ন > ACS, FRB Compact Suggestion Book.

ব্র > ১৭

| 50 mL 3.0 × 10 <sup>-3</sup> M      | 60 mL                 |
|-------------------------------------|-----------------------|
| M <sub>2</sub> N <sub>3</sub> দ্ৰবণ | PQ <sub>2</sub> দ্ৰবৰ |
| পাত্র-১                             | পায়-২                |

 $MO_3$  যৌগের দ্রাব্যতা তপফ্ল  $4.5 \times 10^{-8}$ 

(ক) পলির বর্জন নীতি লেখ।

[मि. त्वा. २२; इा. त्वा. २১; ह. त्वा. ১৯; वा. त्वा. ১٩; व. त्वा. ১٩; व. त्वा. ১٩)

(ব) CaCO, এর দ্রাব্যতা গুণফল 8.5 × 10-9 বদতে কী বোঝায়?

- (গ) পাত্র-১ এর দ্রবণটি সম্পৃক্ত হলে M<sub>2</sub>N<sub>3</sub> এর দ্রাব্যতা ওপফল হিসাব
- (घ) २नः शाळा विनामान मुवलंत्र घनमाञ्चा कमशक्क कळ राज ३ ७ २ नर পাত্রের দ্রবণদ্বয় একত্রে মিশ্রিত করলে MQ3 এর অধ্যক্ষেপ পঢ়বে? हिंदि स्ट २२)

সমাধান:

- হ্ব পলির বর্জন নীতি: একই পরমাণুতে যেকোনো দুইটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনও একই হতে পারে না।
- ব কোনো যৌগের সম্পৃক্ত দ্রবণের সাম্যাবস্থায় উৎপন্ন আয়নের সহগকে মোলার ঘনমাত্রার সূচকে উন্নীত করে মোলার ঘনমাত্রার যে ওপফল পাওয়া যায় তাকে দ্রাব্যতা গুণফল বলে। CaCO<sub>3</sub> এর দ্রাব্যতা গুণফল 8.5 × 10<sup>-9</sup> বলতে বোঝায়, CaCO<sub>3</sub> এর সম্পৃক্ত দ্রবর্ণের সাম্যাবস্থায় উৎপন্ন Ca<sup>2†</sup> ও CO <sup>2</sup> আয়নের সহগকে এদের মোলার ঘনমাত্রার সূচকে উন্নীত করে প্রাপ্ত মোলার ঘনমাত্রার গুণফল হবে 8.5 × 10<sup>-9</sup>।  $CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$

সূতরাং  $K_{sp} = [Ca^{2+}][CO_3^2] = 8.5 \times 10^{-9}$ 

গ পাত্র-১ এর M<sub>2</sub>N<sub>3</sub> দ্রবণ নিম্নরূপে আয়নিত হয়:

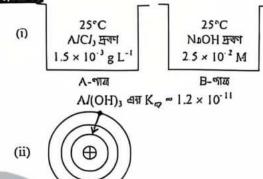
য সংঘটিত বিক্রিয়া:  $M_2N_3 + 3PQ_2 \rightarrow 2MQ_3 + 3PN$ ১ম পাত্রে,

$$M_2N_3 \Longrightarrow 2M^{3+} + 3N^{2-}$$
 $3 \times 10^{-3} \,\mathrm{M} = 6 \times 10^{-3} \,\mathrm{M}$ 
 $= 6 \times 10^{-3} \,\mathrm{M}$ 

মিশ্রণে  $[\mathrm{M}^{3+}] = \frac{6 \times 10^{-3} \times 50}{(50+60)} = 2.72 \times 10^{-3} \,\mathrm{M}$ 

২য় পাত্রে,

হয় পাতে,
$$PQ \Longrightarrow P^2 + 2Q^ x \qquad x \qquad 2x \, [4f\overline{a}, \, PQ_2 \, এর দ্রাব্যতা = x \, M]$$
মিশ্রণে  $[Q^-] = \frac{2x \times 60}{(50 + 60)} = 1.09x \, M$ 


উৎণল্ল ১(০) নিম্ম্বেলে আয়নিত হয়:

$$MQ_3 = M^{3^{-}} + 3Q^{-}$$
  
∴  $K_{\varphi} = [M^{3^{-}}][Q^{-}]^3$   
⇒ 4.5 × 10 <sup>8</sup> = 2.72 × 10 <sup>3</sup> × (1.09x)<sup>3</sup>

x = 0.023 M

:. পাত্র-২ এ PQ) দ্রাঘদের ঘদমাত্রা মুদদভর 0 023 M এর থেদি ছচ্চা भिद्यारा MO, अत अध्यादमा अकृत्य । (Ank)

교리 > 2구



(क) वारेएगाप्टीन कि?

[F. CII 74]

(ব) He° এর ক্ষেত্রে বোর তত্ত্ব প্রযোগ্য– ব্যাখ্যা করা।

Z CET 78]

- (গ) উন্দীপকের (ii) এর H পরমানুর ইলেবট্রনের বিকিরিত রশ্যির কম্পাঞ্চ य त्या. २२।
- (घ) डेमीशक (i) এর A ও B গাшের দ্রবণদ্যা মিল্রিড করলে মিল্র দ্রবণেয় প্রকৃতি কীরূপ হবে- গাণিতিকভাবে বিশ্লেষণ কর। E ला २२। সমাধান:
- যে সব পরমাণুর নিউট্রন সংখ্যা সমান হলেও পান্নমাণবিক সংখ্যা ও জন্ম সংখ্যা ভিন্ন থাকে তাদেৱকে আইসোটোন বলে।
- বার গরমাণু মতেলের অন্যতম সীমাবডতা হল এটি এঞাবিঞ্চ ইলেকট্রন বিশিষ্ট পরমাণু বা আয়নের বর্ণাদি ব্যাখ্যা করতে পারে या। একায়িক ইনেক্ট্রান বিশিষ্ট পরমাণু বা আয়দের কেত্রে বিকিন্নণ বণীশিতে সৃষ্ট বর্ণালি রেখার সংখ্যা এত বেশি ও বিচিন্দ্র হয় যে পরস্পর পুঘকযোগ্য থাকে না। Hc' একটি এক ইলেকট্রন বিশিষ্ট আন্নদ। ডাই এক্ষেত্রে বোর তত্তের সাহায্যে এর পারমাণ্যিক রোধা বর্ণাদির ব্যাখ্যা প্রদান করা যার। তাই Hc' এর ক্ষেত্রে বোর তন্ত্র প্রযোজ্য।
- বা উদীপকের ইলেবট্রানটি n2 = 3 হতে n1 = 1 এ স্থাদান্তনিত হয়।

আমরা জানি, 
$$\frac{1}{\lambda} = R_{II} \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\Rightarrow \frac{1}{\lambda} = 1.09678 \times 10^7 \left( \frac{1}{1^2} - \frac{1}{3^2} \right)$$

$$\therefore \lambda = 1.026 \times 10^{-7} \text{ m}$$
আবার,
$$c = f\lambda$$

$$f = \frac{c}{\lambda} = \frac{3 \times 10^{8}}{1.026 \times 10^{-7}} = 2.92 \times 10^{18} \text{ Hz}$$

∴ বিকিরিত রশাির কম্পায় = 2.92 × 10<sup>15</sup> Hz (Ans.)

য় সংঘটিত বিক্রিয়াঃ

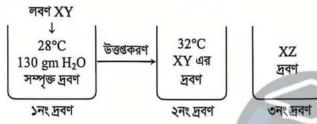
$$A/CI_3 + 3NaOH \rightarrow AI(OH)_3 + 3HCI$$

A ও B উভয় পাত্রের দ্রবণের আয়তন ≈। L (ধরি)

∴ মিশ্রদে  $[Al^{3+}] = \frac{1.12 \times 10^{-5} \times 1}{(1+1)} = 5.6 \times 10^{-6} \text{ M}$ 

মিশ্রণে 
$$[OH] = \frac{2.5 \times 10^{-2} \times 1}{(1+1)} = 1.25 \times 10^{-2} M$$

Al(OH)3 নিম্নোক্তভাবে বিয়োজিত হয়:


$$Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^-$$

.: আয়নিক গুণফল,

$$K_{ip} = [AI^{3+}] \times [OH^{-}]^3$$
  
=  $(5.6 \times 10^{-6}) \times (1.25 \times 10^{-2})^3$   
=  $1.09375 \times 10^{-11} < 1.2 \times 10^{-11} (K_{sp})$ 

যেহেতু  $K_{ip} < K_{sp}$ । সুতরাং দ্রবণটির অধঃক্ষেপ পড়বে না। অতএব, দ্রবণটি একটি অসম্পৃক্ত দ্রবণ।

#### **설취 ▶ 2**%



XZ এর  $K_{sp} = 4 \times 10^{-11} \text{ mol}^2 \text{ L}^{-2}$ 

[28°C এবং 32°C তাপমাত্রায় XY লবণটির দ্রাব্যতা যথাক্রমে 35 এবং 45]

- (ক) দ্রাব্যতা গুণফল কী?
- [पि. त्वा. २२; ज. त्वा. २১]
- (খ) হন্ডের নীতি অনুযায়ী ফসফরাসের ইলেকট্রন বিন্যাস ব্যাখ্যা কর। in. বো. ১৯]
- (গ) ২নং দ্রবণকে সম্পৃক্ত করতে কী পরিমাণ অতিরিক্ত দ্রব যোগ করতে হবে- গণনা কর। [ঢা. বো. ২১]
- (ঘ) 0.01 M XY দ্রবণ ৩নং দ্রবণে যোগ করা হলে XZ এর দ্রাব্যতার কোনো পরিবর্তন হবে কী? গাণিতিক যুক্তি দাও।

সমাধান:

- ক কোনো যৌগের সম্পৃক্ত দ্রবণের সাম্যাবস্থায় উৎপন্ন আয়নের সহগকে মোলার ঘনমাত্রার সূচকে উন্নীত করে মোলার ঘনমাত্রার যে গুণফল পাওয়া যায় তাকে দ্রাব্যতা গুণফল বলে।
- হ' হন্ডের নীতি অনুযায়ী সমশক্তিসম্পন্ন অরবিটালগুলোতে ইলেকট্রনসমূহ এমনভাবে অবস্থান করে যাতে তারা সর্বাধিক সংখ্যক অযুগ্ম অবস্থায় থাকতে পারে এবং এক্ষেত্রে ইলেকট্রনসমূহের স্পিন একই দিকে হয়।

P (ফসফরাস) এর 3p উপশক্তিস্তরে ইলেকট্রন হুন্ডের নীতি অনুযায়ী অযুগাভাবে একই স্পিনে প্রবেশ করে।

গ 28° C তাপমাত্রায় XY এর দ্রাব্যতা S = 35 আমরা জানি,

$$S = \frac{100 \text{ m}}{M - m}$$

$$\Rightarrow 35 = \frac{100 \text{ m}}{130}$$

দ্রবণের ভর = M দ্রবের ভর = m দ্রাবক, M – m = 130 g দ্রবের পরিবর্তিত ভর m'

$$\Rightarrow m = \frac{130 \times 35}{100} = 45.5 g$$

...... ACS, > Chemistry 1st Paper Chapter-2

32°C তাপমাত্রায়,

$$S' = \frac{100 \text{ m}'}{M-m}$$

$$\Rightarrow 45 = \frac{100 \text{ m}'}{130}$$

$$\Rightarrow m' = \frac{45 \times 130}{100}$$

$$= 58.5 g$$

∴ অতিরিক্ত যোগ করতে হবে (58.5 – 45.5) = 13 g

ঘ দ্রবণে XZ নিম্নরূপে আয়নিত অবস্থায় থাকে:

$$XZ(aq) = X^{+}(aq) + Z^{-}(aq)$$

S

S [XZ এর দ্রাব্যতা = S M]

XZ এর দ্রাব্যতা গুণফল,

$$K_{sp} = [X^+] \times [Z^-] = S^2$$

$$\Rightarrow$$
 S<sup>2</sup> = 4 × 10<sup>-11</sup>

 $\therefore$  S = 6.32 × 10<sup>-6</sup> mol L<sup>-1</sup>

আবার, 0.01 M XY দ্রবণ XZ দ্রবণে যোগ করা হলে উভয় যৌগ নিমুরূপে বিয়োজিত হবে-

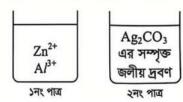
$$XZ(aq) = X^{+}(aq) + Z^{-}(aq)$$

$$XY(aq) \rightarrow X^{+}(aq) + Y^{-}(aq)$$

উপরোক্ত উভয় সমীকরণ মতে X<sup>+</sup> আয়ন হলো সমআয়ন।

এবং [Z] = S<sub>1</sub> mol L<sup>-1</sup>

মিশ্র দ্বেণে, 
$$K_{sp} = [X^{\dagger}][Z^{\dagger}]$$


$$\Rightarrow 4 \times 10^{-11} = (S_1 + 0.01) \times S_1$$

$$\Rightarrow 0.01S_1 = 4 \times 10^{-11} [:: (S_1 + 0.01) \approx 0.01]$$

$$S_1 = 4 \times 10^{-9} \text{ mol L}^{-1}$$

 $0.01 \mathrm{M} \ \mathrm{XY}$  দূবণে যোগ করলে  $\mathrm{XZ}$  এর দ্রাব্যতা  $6.32 \times 10^{-6} \ \mathrm{mol} \ \mathrm{L}^{-1}$ থেকে হাস পেয়ে  $4 \times 10^{-9} \, \mathrm{mol} \, \mathrm{L}^{-1}$  হবে সমআয়ন প্রভাবের কারণে ।

# **역취 ▶ २**0



 $Zn(OH)_2$ ,  $Al(OH)_3$  এবং  $Ag_2CO_3$  এর  $K_{sp}$  যথাক্রমে  $3.0 \times 10^{-17}$ , 3.0 × 10<sup>-34</sup> এবং 8.5 × 10<sup>-12</sup> ।

(ক) চৌম্বক কোয়ান্টাম সংখ্যা কী?

- কু. বো. ২১
- (খ)  $Fe^{2+}$  ও  $Co^{3+}$  পরস্পর আইসো ইলেক্ট্রনিক- ব্যাখ্যা কর। [দি. বো. ১১]
- [ঢা. বো. ২১]
- (ঘ) ১নং পাত্রের দ্রবণে NH₄Cl এর উপস্থিতিতে NH₄OH যোগ করা হলে কোন আয়নটি আগে অধঃক্ষিপ্ত হবে? বিশ্লেষণ কর। ঢো. বো. ২১ সমাধানঃ
- ক যে কোয়ান্টাম সংখ্যার সাহায্যে উপশক্তিস্তরের চৌম্বকক্ষেত্রজনিত ত্রিমাত্রিক দিক বিন্যাস সম্পর্কে জানা যায় তাকে চৌম্বক কোয়ান্টাম সংখ্যা বলে।

গুণগত রসায়ন > ACS/ FRB Compact Suggestion Book.....

- যে সকল আয়নের ইলেকট্রন সংখ্যা সমান তাদেরকে আইসো ইলেকট্রনিক বলে। Fe<sup>2+</sup> ও Co<sup>3+</sup> উভয়েরই 24টি ইলেকট্রন রয়েছে। অতএব, Fe<sup>2+</sup> ও Co<sup>3+</sup> পরস্পর আইসো ইলেকট্রনিক।
- র Ag<sub>2</sub>CO<sub>3</sub> এর বিয়োজনের সমীকরণটি হল:

$$Ag_2CO_3(s) = 2Ag^+(aq) + CO_3^{2-}(aq)$$

 $Ag_2CO_3$  এর দ্রাব্যতা গুণফল,  $K_{sp} = [Ag^{+}]^2 \times [CO_3^{2-}]$ 

$$\therefore K_{sp} = (2S)^2 \times S$$

$$\Rightarrow 4S^3 = 8.5 \times 10^{-12}$$

$$\Rightarrow S = \sqrt[3]{\frac{8.5 \times 10^{-12}}{4}}$$

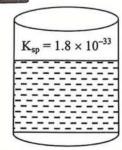
$$\therefore S = 1.28 \times 10^{-4} M$$

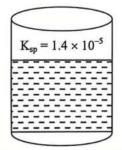
∴ 
$$[Ag^{+}] = 2S = (2 \times 1.28 \times 10^{-4}) = 2.57 \times 10^{-4} M$$
  
 $Ag^{+}$  আয়নের ঘনমাত্রা 2.57 ×  $10^{-4}$  M (Ans.)

য ১নং পাত্রের দ্রবণে NH₄Cl এর উপস্থিতিতে NH₄OH যোগ করলে তীব্র তড়িৎবিশ্লেষ্য NH4Cl বিয়োজিত হয়ে NH 4 ও Cl উৎপন্ন করে।

$$NH_4Cl(s) \rightarrow NH_4^+(aq) + Cl^-(aq)$$

দূর্বল তড়িৎ বিশ্লেষ্য NH<sub>4</sub>OH জলীয় দ্রবণে আংশিকভাবে বিয়োজিত হয়।


$$NH_4OH(aq) = NH_4^+(aq) + OH^-(aq)$$


তীব্র তড়িৎবিশ্লেষ্য NH₄Cl এর সমআয়ন NH ু এর প্রভাবে দুর্বল তড়িৎ বিশ্লেষ্য NH4OH এর বিয়োজন হ্রাস পায়।

Zn(OH)2 ও Al(OH)3 এর দ্রাব্যতার গুণফল যথাক্রমে 3 × 10<sup>-17</sup> ও 3 × 10<sup>-34</sup>। অর্থাৎ Zn(OH)₂ এর তুলনায় Al(OH)₃ এর দ্রাব্যতা গুণফল অনেক কম।

এজন্য NH4Cl এর সমআয়ন NH4+ এর প্রভাবে দুর্বল তড়িৎ বিশ্লেষ্য NHAOH এর বিয়োজন হ্রাস পাওয়ার পরে যে পরিমাণ OH থাকে তার সাথে  $Al^{3+}$  বিক্রিয়া করে  $Al(OH)_3$  গঠন করে যার আয়নিক গুণফল দ্রাব্যতা গুণফলকে অতিক্রম করে এবং অধঃক্ষিপ্ত হয়। অপরদিকে Zn(OH)2 এর দ্রাব্যতার গুণফল তুলনামূলক অনেক বেশি হওয়ায় OH এর সাথে বিক্রিয়ায় অধঃক্ষিপ্ত হতে পারে না।

#### **설립 ▶ ২**১





- (i) 25°C তাপমাত্রায় Al(OH)3 (ii) 25°C তাপমাত্রায় Ag<sub>2</sub>SO<sub>4</sub> এর সম্পৃক্ত দ্রবণ
- এর সম্পৃক্ত দ্রবণ
- (ক) বামার সিরিজ কাকে বলে?
- (খ) পটাসিয়ামের ১৯-তম ইলেকট্রনটি 3d-অরবিটালের পরিবর্তে 4s-অরবিটালে যায় কেন? [সম্মিলিত বো. ১৮]

- (গ) (i) नः प्रवरात्र नवपंपित काणियरात्र मनाककाती विकिया निर्प ।
- (ঘ) উদ্দীপকের কোন দ্রবটি পানিতে অধিকতর দ্রবণীয়, গাণিতিকভাবে বিশ্লেষণ কর। চি. বো. ২১|

সমাধানঃ

- ক উদ্দীপিত ইলেকট্রন শক্তি বিকিরণ করে উচ্চ শক্তিস্তর থেকে ২য় শক্তিস্তরে আগমনের ফলে প্রাপ্ত বর্ণালি কে বামার সিরিজ বলে।
- 🔯 আউফবাউ নীতি অনুসারে ইলেকট্রনসমূহ বিভিন্ন শক্তির উচ্চক্রম অনুযায়ী প্রবেশ করে। অরবিটালের শক্তির ক্রম n+l এর মানের সমানুপাতে নির্ধারিত হয়। 3d ও 4s এর জন্য n + / এর মান যথাক্রমে (3+2) = 5 ও (4+0) = 4 । অতএব 4s < 3d । এজন্য পটাসিয়ামের 19 তম ইলেক্ট্রেনটি 3d অরবিটালের পরিবর্তে 4s थ याग्र।  $_{19}K \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$
- গি (i) নং দ্রবণের লবণটি হল Al(OH)3 যার ক্যাটায়ন হল Al³+। একটি টেস্টটিউবে 1-2 mL মূল দ্রবণ নিয়ে এতে 1-2 ফোঁটা NaOHযোগ করি।

$$AI^{3+}(aq) + 3NaOH(I) \rightarrow AI(OH)_3 \downarrow + 3Na^+(aq)$$
  
(সাদা আঠালো জেলী)

এতে অতিরিক্ত NaOH দ্রবণ যোগ করলে সাদা আঠালো জেলী দ্ৰবীভূত হয়ে যায়।

Al(OH)<sub>3</sub> + NaOH → NaAl(OH)<sub>4</sub>

দ্রবণের মধ্যে কঠিন NH<sub>4</sub>Cl যোগ করে উত্তপ্ত করলে Al(OH)<sub>3</sub> এর সাদা জেলীর ন্যায় অধঃক্ষেপ পুনরায় ফিরে আসে।

NaA
$$l$$
(OH)<sub>4</sub> + NH<sub>4</sub>C $l$   $\stackrel{\text{SIP}}{\longrightarrow}$  A $l$ (OH)<sub>3</sub> $\downarrow$  + NaC $l$  + NH<sub>3</sub> + H<sub>2</sub>O (সাদা জেলী)

য (i) নং দ্রবণে Al(OH)3 এর বিয়োজন নিম্নরূপ:

$$AI(OH)_3 = AI^{3+} + 3OH^{-}$$

$$S_1$$
  $S_1$   $3S_1$ 

$$\Rightarrow 1.8 \times 10^{-33} = S_1 \times (3S_1)^3$$

$$\Rightarrow 1.8 \times 10^{-33} = 27S_1^4$$

$$S_1 = 2.86 \times 10^{-9} \text{ mol L}^{-1}$$

= 
$$(2.86 \times 10^{-9} \times 78) \text{ g L}^{-1}$$

$$= 2.23 \times 10^{-7} \text{ g L}^{-1}$$

(ii) নং দ্রবণে Ag<sub>2</sub>SO<sub>4</sub> এর বিয়োজন নিম্নরপ:

$$Ag_2SO_4 = 2Ag^+ + SO_4^2$$

$$\Rightarrow 1.4 \times 10^{-5} = (2S_2)^2 \times S_2$$

$$\Rightarrow 1.4 \times 10^{-5} = 4S_2^{-3}$$

$$\therefore S_2 = 1.5 \times 10^{-2} \text{ mol L}^{-1}$$

= 
$$(1.5 \times 10^{-2} \times 312) \text{ g L}^{-1}$$

$$= 4.68 \text{ g L}^{-1}$$

∵ S<sub>2</sub> > S<sub>1</sub> তাই Ag<sub>2</sub>SO<sub>4</sub> পানিতে অধিক দ্রবণীয়। (Ans.)

A  $I_3B$   $I_3B$   $I_4OH$   $I_4OH$ 

(ক) জিম্যান প্রভাব কী?

[ঢা. বো. ২১; ম. বো. ২১]

(খ) শিখা পরীক্ষায় গাঢ় HCI ব্যবহৃত হয় কেন?

[ঢা. বো. ১৯]

(গ) উদ্দীপকের A দ্রবণটিতে উদ্দীপকের বিকারক X থীরে থীরে যোগ করলে কী পরিবর্তন লক্ষ করবে তা সমীকরণসহ লেখ।

[দি. বো. ২২; অনুরূপ প্রশ্ন: ম. বো.২৩]

- (घ) দুটি ভিন্ন টেস্টটিউবে উদ্দীপকের B দ্রবণে ধীরে ধীরে বিকারক X ও Y
   যোগ করলে কী ঘটে? সমীকরণসহ লিখ।
   দি. বো. ২২।
   সমাধান:
- ক চুম্বক ক্ষেত্রের প্রভাবে বর্ণালি রেখাগুলো আরও সৃক্ষ রেখায় বিভক্ত হয়ে পড়াকে জিম্যান প্রভাব বলে।
- শিখা পরীক্ষায় গাঢ় HCl ব্যবহারে তা ধাতব লবণের সাথে বিক্রিয়ায় উদ্বায়ী ধাতব ক্লোরাইড গঠন করে। এই ক্লোরাইডগুলো সহজে বাঙ্গীভূত হয় এবং বৈশিষ্ট্যমূলক বর্ণ প্রদর্শন করে। এছাড়া বেশিরভাগ ধাতব লবণের সাথে HCl বিক্রিয়া করায় অধিক সংখ্যক ধাতুর শিখা পরীক্ষা করা যায়। একই সাথে অন্যান্য এসিডের তুলনায় HCl উদ্বায়ী ধাতব ক্লোরাইড গঠনে বেশি কার্যকর। এসব কারণে শিখা পরীক্ষার গাঢ় HCl ব্যবহৃত হয়।
- গ উদ্দীপক অনুযায়ী,

 $A^{2+} \rightarrow [Ar] 3d^9$ 

 $A \to [Ar] \ 3d^{10} \ 4s^1$  যা Cu এর ইলেকট্রন বিন্যাস। অতএব, A দ্রবণটিতে  $Cu^{2+}$  এর লবণ বিদ্যামান।  $Cu^{2+}$  এর দ্রবণে প্রথমে অল্প পরিমাণে ও পরে অধিক পরিমাণে  $NH_4OH$  দ্রবণ যোগ করা হয়। ফলে প্রথমে হালকা নীল অধঃক্ষেপ পড়ে। পরে অধিক  $NH_4OH$  দ্রবণ যোগে তা গাঢ় নীল দ্রবণে পরিণত হয়।

2CuSO<sub>4</sub> + 2NH<sub>4</sub>OH → CuSO<sub>4</sub>.Cu(OH)<sub>2</sub> + (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (হালকা নীল অধঃক্ষেপ)

CuSO<sub>4</sub>.Cu(OH)<sub>2</sub> + (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> + 6NH<sub>4</sub>OH

→ 2[Cu(NH<sub>3</sub>)<sub>4</sub>] SO<sub>4</sub> + 8H<sub>2</sub>O (গাঢ় নীল দ্রবণ)

ত্ব উদ্দীপকের B দ্রবর্ণটি হল 13 পারমাণবিক সংখ্যাবিশিষ্ট Al এর যা দ্রবণে  $Al^{3+}$  হিসেবে থাকে।

দুটি ভিন্ন টেস্টটিউবে  $AI^{3+}$  এর দ্রবণ নিয়ে একটি টেস্টটিউবে বিকারক X বা  $NH_4OH$  যোগ করলে সাদা জেলির মত অধ্যক্ষেপ পড়ে।

 $AI^{3+}(aq) + 3NH_4OH(aq) \rightarrow AI(OH)_3(s) + 3NH_4^{\dagger}(aq)$  আবার, অন্য টেস্টটিউবটিতে NaOH যোগ করলেও  $AI(OH)_3$  এর সাদা অধ্যক্ষেপ পড়ে এবং তাতে আরও NaOH যোগ করলে অধ্যক্ষেপ দ্রবীভূত হয়ে যায়।

 $Al^{3+}(aq) + NaOH(aq) \rightarrow Al(OH)_3(s) + Na^+(aq)$ (সাদা অধ্যক্ষেপ)

 $AI(OH)_3 + NaOH \rightarrow NaAIO_2 + 2H_2O$ (দ্রবণীয়)

......... ACS/ > Chemistry 1<sup>st</sup> Paper Chapter-2

# তরুত্বপূর্ণ জ্ঞানমূলক প্রশ্নোত্তর

১। পরমাণুর মূল কণিকা কাকে বলে?

উত্তরঃ যেসব অতি সৃক্ষ কণিকা দ্বারা পরমাণু গঠিত হয় তাদেরকে পরমাণুর মূল কণিকা বলে।

২। নিউক্লিয়াস কী?

উন্তর: নিউক্লিয়াস হল পরমাণুর কেন্দ্র যেখানে তার সম্পূর্ণ ভর ও ধনাত্মক চার্জ পুঞ্জীভূত থাকে।

৩। বোরের কৌণিক ভরবেগ বিষয়ক মতবাদটি কী?

উন্তর: কোনো নির্দিষ্ট শক্তিস্তরে ইলেকট্রনের কৌণিক ভরবেগ এর মান নির্দিষ্ট যা  $\frac{h}{2\pi}$  এর পূর্ণ সংখ্যার গুণিতক।

8। জিম্যান প্রভাব কী?

[ঢা. বো. ২১; ম. বো. ২১]

উত্তর: চুম্বক ক্ষেত্রের প্রভাবে বর্ণালি রেখাগুলো আরও সৃক্ষ রেখায় বিভক্ত হয়ে পড়াকে জিম্যান প্রভাব বলে।

৫। স্টার্ক প্রভাব কী?

উত্তর: অতি উচ্চ ক্ষমতাসম্পন্ন তড়িৎ ক্ষেত্রের প্রভাবে পারমাণবিক বর্ণালির প্রতিটি সৃক্ষ রেখা আরও সৃক্ষতর একাধিক রেখায় বিভক্ত হওয়াকে স্টার্ক প্রভাব বলে।

৬। কোয়ান্টাম তত্ত্ব কী?

উত্তরঃ কোনো বস্তু দ্বারা শক্তি বিকিরণ বা শোষণ প্রক্রিয়া নিরবচ্ছিন্সভাবে ঘটে না। শক্তির বিকিরণ বা শোষণ সর্বদা একটি নির্দিষ্ট পরিমাণ বা তার সরল গুণিতকের সমান হয়।

৭। তাইসোটোপ কাকে বলে?

[ঢা. বো. ২২; রা. বো. ১৯]

উত্তর: যেসব পরমাণুর প্রোটন সংখ্যা একই কিন্তু ভর সংখ্যা ভিন্ন তাদেরকে পরস্পরের আইসোটোপ বলে।

৮। আইসোটোন কি?

[সি. বো. ১৭]

উত্তরঃ যে সব পরমাণুর নিউট্রন সংখ্যা সমান হলেও পারমাণবিক সংখ্যা ও ভর সংখ্যা ভিন্ন থাকে তাদেরকে আইসোটোন বলে।

১। কোয়ান্টাম সংখ্যা কাকে বলে?

[চা. বো. ২৩, ২২; চ. বো. ২১]

উত্তর: পরমাণুর ইলেক্ট্রনের আকার-আকৃতি কক্ষপথের ত্রিমাত্রিক বিন্যাস নিজ অক্ষের উপর ঘূর্ণন নির্দেশক যে চারটি রাশি আছে এদের কোয়ান্টাম সংখ্যা বলে।

১০। প্রধান কোয়ান্টাম সংখ্যা কাকে বলে?

উত্তরঃ পরমাণুর অভ্যন্তরে কোন প্রধান শক্তিস্তরে কোনো ইলেকট্রনের কক্ষপথের আকার-আকৃতি ত্রিমাত্রিক বিন্যাস, নিজ অক্ষের উপর ঘূর্ণনের দিক (স্পিন) যে চারটি সংখ্যা দিয়ে প্রকাশ করা হয়, তাকে কোয়ান্টাম সংখ্যা বলে।

১১। চৌম্বক কোয়ান্টাম সংখ্যা কী?

[কু. বো. ২১]

উত্তর: যে কোয়ান্টাম সংখ্যার সাহায্যে উপশক্তিন্তরের চৌম্বকক্ষেত্রজনিত ত্রিমাত্রিক দিক বিন্যাস সম্পর্কে জানা যায় তাকে চৌম্বক কোয়ান্টাম সংখ্যা বলে।

১২। ঘূর্ণন কোয়ান্টাম সংখ্যা কাকে বলে?

উত্তর: ইলেক্ট্রনসমূহের নিজ নিজ অক্ষের উপর আবর্তনের দিক প্রকাশ করার জন্য যে কোয়ান্টাম সংখ্যা ব্যবহার করা হয় তাকে ঘূর্ণন কোয়ান্টাম সংখ্যা বলে।

ভণগত রসায়ন > ACS, FRB Compact Suggestion Book.....

১৩। জ্বাফি কীয

উতর: পরস্বাবৃতে নিউক্লিয়াসের চতুর্দিকে ইলেকট্রন পরিভ্রমণের জন্য নির্দিষ্ট শক্তি বিশিষ্ট কছণখকে অরবিট বলে।

১৪। व्यविकाम की? मि. ला. २०५ र ला. २२३ म. ला. २२१ ग. ला. २১। ता. ला. २১। नि. ह्या २५; घ. ह्या. २५; मि. त्वा. २५; नि. त्वा. ५४; प. त्वा. ५१; व. त्वा. ५४; **हा. (वा. ১१। जा. (वा.১१। कू. (वा. ১१)** 

উত্তর: নিউক্রিচাসের চারনিকে যে এলাকায় আবর্তনশীল ও নির্দিষ্ট শক্তিযুক্ত ইলেকট্রন হেল্বে জবস্থানের সম্ভাবনা 90 – 95% থাকে, সে এলাকার্কে জরবিটাল বলে।

১৫। নোভ কাকে বলে?

[সি. বো. ২১]

উচ্ব: দৃটি জরবিটালের মধ্যবতী যে এলাকায় ইলেকট্রন মেঘের অবস্থানের সম্ভাবনা গ্রার পূন্য সে এলাকাকে নোড বলে।

১৬। ইলেক্ট্রন বিন্যাস কাকে বলে?

উডব্রং কোনো পরমাণুর নির্দিষ্ট সংখ্যক ইলেকট্রেন ঐ পরমাণুর বিভিন্ন শক্তিরবৃত্তিত নির্দিষ্ট উপশক্তিস্তরের বিভিন্ন অরবিটালে নির্দিষ্ট নিয়মে সজ্জিত থাকে। এ সজ্জাকে পরমাণুর ইলেকট্রন বিন্যাস বলে।

১৭। Fe<sup>3+</sup> এর ইলেকট্রন বিন্যাস লিখা

ामि. वा. २)

ਚਰਤ: Fe<sup>3+</sup> = 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>5</sup>

১৮। অভিফবাউ নীতিটি লিখ। [কু. বো. ২২; ঘ. বো. ২১; ব. বো. ১৯; রা. বো. ১৭] উত্তরঃ পরমাণুতে বিদ্যমান ইলেকট্রনঙলো প্রথমে সর্বনিমু শক্তি সম্পর ব্দরবিটাল পূর্ণ করবে এবং পরে ক্রেমান্বয়ে উচ্চতর শক্তিসম্পন্ন ব্রবিটাল পূর্ব করে। একে আউফবাউ নীতি বলে।

১৯। হডের নির্মটি লেখ। চা. বো. ২৩; ষ. বো. ২২; ব. বো. ২২; সি. বো. ২১: त्रा. (वा. ১৯: च. (वा. ১৯: मि. (वा. ১৭)

উব্বর: সম শক্তিসস্পন্ন অরবিটালগুলোতে ইলেকট্রনগুলো এমনভাবে অবস্থান করে বাতে সর্বাধিক সংখ্যাক অধুগা বা বিজোড় অবস্থায় থাকতে পারে।

২০। পলির বর্জন নীতি লেখ।

ित. दा. २२; ब्रा. दा. २५; ह. दा. ১৯; ब्रा. दा. ১९; व. दा. ১९; व. दा. ১९ উত্তর: পলির বর্জন নীতি: একই পরমাণুতে যেকোনো দুইটি ইলেকট্রনের চারটি কোরান্টাম সংখ্যার মান কখনও একই হতে পারে না।

২)। হাইজেনবার্গের অনিক্ররতা সূত্রটি কী?

উত্তর: হাইজেনবার্গের অনিক্ষরতা নীতিটি হলো- পরমাণুতে ইলেকট্রনের ব্দবস্থান ও ভরবেগ উভয়েই একত্রে কখনো সঠিকভাবে নির্ণয় করা वाव ना।

২২। তড়িৎ-চুম্বকীয় বিকিরণ কাকে বলে?

[সি. বো. ২২]

উন্তর: তড়িং চুম্বকীয় বিকিরণ হলো এমন একটি শক্তি যা তড়িংক্ষেত্র এবং চৌবকক্ষেত্রের পারস্পরিক ক্রিয়ার ফলে উৎপন্ন হয় এবং আলোর গতিতে মহাবিশ্বে ছড়িয়ে পড়ে।

২৩। বর্ণালি কাকে বলে? [इ. वा. २२; य. वा. २२; मिपिनिड वा. ১৮] উন্তরঃ পরমাণুর উত্তেজিত অবস্থায় ইলেকট্রন শক্তি শোষণ করে উচ্চতর শক্তিন্তরে গমন করে এবং শক্তি বিকিরণ করে নিমুতর শক্তিন্তরে ফিরে আসে। ভিন্ন ভিন্ন তরঙ্গদৈর্ঘ্যের একাধিক বর্ণের শোধিত বা বিকিরিত ত্রালোক রশ্মির এই সমাহারকেই বর্ণালি বলে।

২৪। অবিচ্ছিন্ন বর্ণালি কী?

উন্তরঃ যে বর্ণালিতে একটি নির্দিষ্ট পাল্লার মধ্যে তরঙ্গদৈর্ঘ্যের অংশ বিদ্যমান থাকে তাকে অবিচ্ছিন্ন বর্ণালি বলে।

ারা, বো. ২২। চ. বো. ১৯। ২৫। লাইম্যান সিরিজ কীণ

উত্তর। উদ্দীবিত ইলেনটোন হাখন উচ্চে শক্সিলা কদ্মপর্য (n) = 2, 3, 4, 5, 6 .....) হতে শক্তি বিনিরণ করে সিমু শক্তির (DI = I) কক্পপ্রে দিরে আনে তখন বিকিন্ন বর্ণালির গ্রাপ্ত রেখাসমূহকে গাইম্যান সিনিদ্ধা বলে।

২৬। বামার সিরিজ কাকে বলে।

**উखतः** উদীপিত ইলেন্ট্রেন শক্তি বিনিরণ করে ট্রাচ্চ শক্তিন্তর গেনে ওয় শक्তिखत जागगरमन करन आश्व नवीनि दम नामान मितिस नर्म।

২৭। ফ্রিকুয়েলি কাকে বলে?

উন্তর৷ প্রতি একক সময়ে কোনো তরঙ্গ রশা দ্বারা অভিক্রান্ত দূরত্বের মধ্যে যতি পূর্ণ তরঙ্গ সৃষ্টি করে, ঐ তরঙ্গ সংখ্যাকে ফ্রিকুরেন্সি বলে।

২৮। দৃশ্যমান আলোর তরঙ্গ দৈর্ঘ্যের দীমা লিখা।

উত্তরঃ দৃশ্যমান আলোর তরল দৈর্ঘ্যের সীমা 380 - 780 nm।

২৯। অনুপ্রভা কী?

উত্তর: UV-রশাি পরমাণু কর্তৃক শােষিত হওয়া এবং পরবর্তীতে দীর্ঘ জরন্ত দৈর্ঘ্য বিশিষ্ট দৃশ্যমান রশ্মির নিঃসরণ ঘটাকে অনুপ্রভা বলে।

৩০। MRI এর পূর্ণরূপ কী?

উত্তর: MRI এর পূর্ণরূপ Magnetic Resonance Imaging।

৩১। সম্পুক্ত দ্রবর্ণ কাকে বলে?

উত্তর: কোনো নির্দিষ্ট তাপমাত্রায় কোনো দ্রাবকের মধ্যে সর্বোচ্চ যে পরিমাণ দ্রব দ্রবীভূত থাকতে পারে, সে পরিমাণ দ্রবই দ্রবীভূত থাকলে উক্ত দ্রবণকে সম্পুক্ত দ্রবণ বলে।

৩২। দ্রাব্যতা বলতে কী বুঝায়?

ता. त्वा. २२, २५। ति. त्वा. २२। ज. त्वा. ১५। ति. त्वा. ১५। त्रू. त्वा. ১५। উত্তরঃ কোনো নির্দিট্ট তাপমাত্রায় 100 গ্রাম দ্রাবকে যত গ্রাম দ্রব দ্রবীভূত থেকে সম্পুক্ত দ্রবণ উৎপন্ন করে তাকে ঐ দ্রাবকে ঐ দ্রবের দ্রাব্যতা বঙ্গে।

৩৩। সম-আয়ন প্রভাব কাকে বলে?

वि. वा. २२। क्. वा. २२।

উত্তর: কোনো স্বল্প দ্রবণীয় লবণের সম্পুক্ত দ্রবণে সমআয়নবিশিষ্ট কোলো তীব্র তড়িৎবিশ্লেষা পদার্থ যোগ করলে স্বন্ধ দ্রবণীয় লবণটির দ্রাব্যতা হ্রাস পাওয়াকে দ্রাব্যতার উপর সমআয়ন প্রভাব বলে।

৩৪। দ্রাব্যতা গুণফল কী?

[पि. त्वा. २२८ ण. त्वा. २১]

উত্তর: কোনো যৌগের সম্পৃক্ত দ্রবর্ণের সাম্যাবস্থায় উৎপন্ন আয়নের সহগকে মোলার ঘনমাত্রার সূচকে উন্নীত করে মোলার ঘনমাত্রার যে গুণফল পাওয়া যায় তাকে দ্রাব্যতা গুণফল বলে।

৩৫। আয়নিক গুণফল কী?

[य. त्वा. ১१]

উত্তর: কোনো যৌগের যেকোনো দ্রবণের (সম্পৃক্ত বা অসম্পৃক্ত) সাম্যাবস্থায় উৎপন্ন আয়নের সহগকে তাদের মোলার ঘনমাত্রার সূচকে উন্নীত করে মোলার ঘনমাত্রার যে গুণফল পাওয়া যায় তাকে ঐ যৌগের আয়নিক তণফল বলে।

৩৬। জারণ শিখার সংজ্ঞা দাও।

উত্তর: বুনসেন বার্নারের নলের মুখে অপেক্ষাকৃত ছোট যে শিখাটিতে প্রচুর পরিমাণে অক্সিজেন উপস্থিত থাকে তাকে জারণ শিখা বলে।

৩৭। সিজ্ঞ পরীক্ষা কী?

উত্তর: মজুদ দ্রবণ ব্যবহার করে বিভিন্ন রাসায়নিক বিক্রিয়ার মাধ্যমে লবণের আয়ন নিশ্চিতকরণ পরীক্ষাকে সিক্ত পরীক্ষা বলে।

৩৮। নেসলার বিকারক কাকে বলে?

উত্তর: নেসলার বিকারক হলো পটাসিয়াম টেট্রাআয়োডো মারকিউরেট 

Rhombus Publications

গুরুত্বপূর্ণ অনুধাবনমূলক প্রশ্নোন্তর

১। He<sup>+</sup> এর ক্ষেত্রে বোর ডত্ন প্রবোজ্য — ব্যাখ্যা কর। চি. বো. ১৭। উত্তর: বোর পরমাণু মডেলের অন্যতম সীমাবদ্ধতা হল এটি একাধিক ইলেকট্রন বিশিষ্ট পরমাণু বা আয়নের বর্ণালি ব্যাখ্যা করতে পারে না। একাধিক ইলেকট্রন বিশিষ্ট পরমাণু বা আয়নের ক্ষেত্রে বিকিরণ বর্ণালিতে সৃষ্ট বর্ণালি রেখার সংখ্যা এত বেশি ও বিচ্ছিন্ন হয় যে পরস্পর পৃথকযোগ্য থাকে না। He<sup>+</sup> একটি এক ইলেকট্রন বিশিষ্ট আয়ন। তাই এক্ষেত্রে বোর তত্ত্বের সাহায্যে এর পারমাণবিক রেখা বর্ণালির ব্যাখ্যা প্রদান করা যায়। তাই He<sup>+</sup> এর ক্ষেত্রে বোর তত্ত্ব

২। একটি মাত্র ইলেকট্রন থাকা সত্তেও H এর পারমাণবিক বর্ণালিতে অনেকগুলো রেখা সৃষ্টি হয় কেন? ব্যাখ্যা কর। ঢা. বো. ২৩। উত্তর: উচ্চ শক্তির প্রভাবে অসংখ্যা H পরমাণুর ইলেকট্রনসমূহ ভিন্ন ভিন্ন পরিমাণ শক্তি শোষণ করে এবং উন্তেজিত হয়ে বিভিন্ন উচ্চতর শক্তিত্তরে উন্নীত হয়। পরবর্তীতে শক্তির উৎসের অপসারণে ইলেকট্রনসমূহ বিভিন্ন উচ্চ শক্তিত্তর থেকে নিমু শক্তিস্তরে ফিরে আসে

এবং শক্তির বিকিরণ করে। বিকিরিত শক্তির মান অসম হওয়ায় উৎপন্ন তরঙ্গদৈর্ঘ্যের মান ভিন্ন হয় এবং অনেকগুলো বর্ণালি রেখার সৃষ্টি করে। এজন্য একটি মাত্র ইলেকট্রন থাকা সত্ত্বেও H এর পারমাণবিক বর্ণালিতে অনেকগুলো রেখা সৃষ্টি হয়।

ত। Fe<sup>2+</sup> ও Co<sup>3+</sup> পরস্পর আইসো ইলেকট্রনিক- ব্যাখ্যা কর। দি. বো. ১৯।
উত্তর: যে সকল আয়নের ইলেকট্রন সংখ্যা সমান তাদেরকে আইসো
ইলেকট্রনিক বলে। Fe<sup>2+</sup> ও Co<sup>3+</sup> উভরেরই 24টি ইলেকট্রন ররেছে।
অতএব, Fe<sup>2+</sup> ও Co<sup>3+</sup> পরস্পর আইসো ইলেকট্রনিক।

8। 2d অরবিটাল সম্ভব নয় কেন? ব্যাখ্যা কর।

কু বো. ২২ঃ ম. বো. ২২ঃ রা. বো. ২১; ম. বো. ২১; ম. বো. ২১; ম. বো. ১৯; কু. বো. ১৭] উন্তর: প্রধান শক্তিন্তর 2 হলে তার অরবিটাল হিসেবে 2d সম্ভব নর। কেননা আমরা জানি, প্রধান কোরান্টাম সংখ্যা n হলে তার সহকারী কোরান্টাম সংখ্যা মান হতে পারে 0 থেকে (n – 1) পর্যন্ত। অর্থাৎ, n এর মান 2 হলে; l এর মান 0 এবং 1 হতে পারে। l = 0 হলে তাকে s অরবিটাল এবং l = 1 হলে p অরবিটাল বলা হয়। d অরবিটাল হওয়ার জন্য সহকারী কোরান্টাম সংখ্যার মান 2 হওয়া প্রয়োজন যা ২য় শক্তিন্তরের জন্য সম্ভব নয়। অর্থাৎ ২য় শক্তিন্তরের 2s ও 2p সম্ভব হলেও 2d অরবিটাল সম্ভব নয়।

৫। 2p ও 3p অরবিটালের মধ্যকার তুলনা ব্যাখ্যা কর।

উত্তর: 2p ও 3p অরবিটালদ্বয়ের মধ্যে আকৃতিতে কোন পার্থক্য না থাকলেও এদের আকার, শক্তিমাত্রা ও নোড সংখ্যায় পার্থক্য রয়েছে। আকারের ক্রম:  $2p_x = 2p_y = 2p_z < 3p_x = 3p_y = 3p_z$  শক্তির ক্রম:  $2p_x = 2p_y = 2p_z < 3p_x = 3p_y = 3p_z$  নোড সংখ্যা: 2p অরবিটালে নোড সংখ্যা n-2=2-2=0

3p অরবিটালে নোড সংখ্যা n-2=3-2=1

७। 3f अत्रविंगिन अस्व किना? वाांशा कत्र।

বি. লো. ২৩; চ. লো. ২২; গা. লো. ২১; ব. লো. ২১; ভ. লো. ৯৯। উত্তর: 3f জরবিটাল সম্ভব নয়। n এর মান 3 হওয়াতে / এর মান হতে পড়ব্রে 0, 1, 2। / এর মান 0 হলে s, 1 হলে p, 2 হলে d অরবিটাল হল্প। গ অরবিটাল থাকার জন্য / হতে হবে 3 এবং এর জন্য n এবে মান কমপদে 4 হতে হবে।

৭। আউফবাউ নীতি ব্যাখ্যা কর।

便. 四. 33

উত্তর: আউফবাউ নীতি অনুসারে, ইলেকট্রনগুলো প্রথমে সর্বনিত্ন শক্তি সম্পন্ন উপশক্তিস্তরে প্রবেশ করে এবং ক্রমান্বয়ে উচ্চতর শক্তি সম্পন্ন উপশক্তিস্তরে প্রবেশ করে। (n+l) এর মান অনুসারে উপশক্তিস্তরগুলোর শক্তিমাত্রা নির্ধারিত হয়। (n+l) এর মান যে উপশক্তিস্তরে কম ইলেকট্রন প্রথমে সেই উপশক্তিস্তরে প্রবেশ করে। দৃটি উপশক্তিস্তরের (n+l) এর মান সমান হলে যেক্টেরে এর মান কম ইলেকট্রন সেই উপশক্তিস্তরে আগে প্রবেশ করে।

৮। 4d ও 4f এর কোনটিতে ইলেকট্রন আগে প্রবেশ করে ও কেন?

क्र ला. थ।

উত্তরঃ 4d ও 4f এর মধ্যে 4d উপশক্তির্রটিতে ইলেকট্রন আগে প্রবেশ করে।

(n + l) এর মান দ্বারা অরবিটালের শক্তিমাত্রা নির্বারণ করা হন্ন।

4d এর ক্লেত্রে (n+1) = 4+2=6

4f 四引 C中四 (n+1)=4+3=7

4d এর ক্ষেত্রে (n + l) এর মান 4f এর চেয়ে কম হওয়ার 4d তে ইলেকট্রন আগে প্রবেশ করে।

১। 3d, 4p এবং 5s অরবিটাল তিনটির মধ্যে কোনটিতে ইলেকট্রন আসে প্রবেশ করবে এবং কেন? রা. বো. ২২; অনুরূপ প্রশ্ন: কু. বো. ২১] উত্তর: আউফবাউ নীতি অনুসারে, প্রমাণুতে ইলেকট্রনগুলো প্রথমে নিম্ন শক্তির পূরণ করবে, এরপর ক্রমান্তরে উচ্চশক্তিররে গমন করে। এই শক্তির মান (n+l) এর উপর নির্ভর করে। (n+l) এর মান বার কম হয়, ইলেকট্রন আগে ঐ অরবিটালে প্রবেশ করবে।

3d এর ক্লেত্রে (n + l) = 3 + 2 = 5

4p এর ক্ষেত্রে (n + l) = 4 + 1 = 5

5s এর ক্বেএে (n+1) = 5 + 0 = 5

তিনটি অরবিটালের ক্ষেত্রে (n+1) এর মান সমান হওয়ায় বেটিতে প্রধান শক্তিস্তরের মান কম, ইলেকট্রন প্রথমে সেটিতে প্রবেশ করবে। সূতরাং, ইলেকট্রন প্রবেশের ক্রম: 3d > 4p > 5s.

১০। পটাসিয়ামের ১৯-তম ইলেকট্রনটি 3d-অরবিটালের পরিবর্তে 4s-অরবিটালে যায় কেন? সিম্মিলিভ বো. ১৮]

উন্তর: আউফবাউ নীতি অনুসারে ইলেকট্রনসমূহ বিভিন্ন শব্জির উচ্চক্রম অনুযায়ী প্রবেশ করে। অরবিটালের শব্জির ক্রম n+l এর মানের সমানুপাতে নির্বারিত হয়।  $3d \otimes 4s$  এর জন্য n+l এর মান যথাক্রমে (3+2)=5 ও (4+0)=4। অতএব 4s<3d।

এজন্য পটাসিয়ামের 19 তম ইলেকট্রনটি 3d অরবিটালের পরিবর্তে 4s এ যায়।

 $_{19}K \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ 

विश्व अन्तर्भ अन्तर्भ विकासियां विश्व अन्नर्सियां मा नित्त क्ष्म अन्तर्भियां अन्तर्भ विश्व अन्तर्भियाः अन्तर्भ विश्व अन्तर्भ विष्ठ अन्तर्भ विश्व अन्तर्भ विष्य अन्तर्भ

উদ্ভর। Rb এর 37 ক্তম ইলেন্সট্রনিটি 4d সর্নবিটালে না নিমে 56 সমরিটালে দায়। কারণ, অভিকরাউ নীজি অবুসারে, সামন্ত্রিকভাবে ইলেনট্রনসমূহ বিভিন্ন অববিটালে তাদের শক্তির উচ্চত্রন্ম অবুগারে প্রবেশ করে। কোন অরবিটালের শক্তি কক্ত ক্তা প্রধাদ কোয়ান্টাম সংখ্যা 'n' এবং সহকারী কোয়ান্টাম সংখ্যা 'l' এর মান থেকে হিসাব করা হয়। যে সরবিটালের জনা (n+1) এর মান কম সেটিই নিম্নাক্তির অরবিটাল এবং ইলেনট্রন তাডেই প্রথম প্রবেশ করে।

4d জনবিটালের জন্য, n = 4, l = 2 ∴ n + l = 4 + 2 = 6

5s জনবিটালের জন্য, n = 5, l = 0 ∴ n + l = 5 + 0 = 5

4d এব চেয়ে 5s এর শক্তি কম বলে ইলেকট্রন আগে 5s জরবিটালে

4d এর চেয়ে 5s এর শক্তি কম বলে ইলেকট্রন আগে 5s অরবিটার প্রবেশ করে।

১২। Cr(24) এর ইলেকট্রন বিন্যাস ব্যতিক্রমধর্মী কেন?

मि. ला. २२, २३। क्. ला. ३१)

উন্তর। Cr(24) এর ইলেবট্রন বিন্যাস ব্যতিক্রমধর্মী। কারণ, সাধারণ নিয়ম অনুযায়ী Cr এর বিন্যাস নিম্নরূপ।

 $Cr(24) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$ কিন্তু, d অরবিটাল পূর্ণ বা অর্ধপূর্ণ  $(d^{10}, d^5)$  অবস্থায় অধিক সৃস্থিত।
তাই, সৃস্থিতি অর্জনের জন্য 4s অরবিটাল থেকে 1টি ইলেবট্রেন 3d তে প্রবেশ করে অর্ধপূর্ণ হয়ে সৃস্থিতি প্রদর্শন করে এবং নিসুদ্ধপ ইলেবট্রন বিন্যাস দেখায়।

 $Cr(24) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$  তাই, Cr এর ইলেবট্রন বিন্যাস ব্যতিক্রমধর্মী।

১৩। কপারের সাধারণ ইলেকট্রন বিন্যাস ব্যতিক্রম দেখায় কেন?

[কু. বো. ১৯; সম্মিপিত বো. ১৮]

উত্তরঃ আউফবাউ নীতি অনুসারে, Cu এর ইপেকট্রন বিন্যাস হওয়ার কথা ছিল-

 $_{29}$ Cu  $\rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$ 

কিন্তু অপূর্ণ অরবিটালের তুলনায় পূর্ণ ও অর্ধপূর্ণ অরবিটাল অধিক স্থিতিশীল হয়। তাই 4s থেকে 1টি ইলেকট্রন 3d তে প্রবেশ করায় 3d অরবিটাল পূর্ণ হয় ও Cu স্থিতিশীলতা অর্জন করে।

 $_{29}$ Cu  $\rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$ 

১৪। বেরিপিয়াম এর ক্ষেত্রে হুভের নীতি প্রযোজ্য নয় কেন? । ঢা. বো. ২২। উত্তর: হুভের নীতি অনুসারে, সমশক্তিসম্পন্ন বিভিন্ন অরবিটালে ইলেকট্রনগুলো এমনভাবে অবস্থান করবে যেন তারা সর্বাধিক সংখ্যক অযুগা বা বিজ্ঞাড় অবস্থায় থাকতে পারে। অযুগা ইলেকট্রনগুলোর স্পিন একই দিকে হয়।

 $_4Be \longrightarrow 1s^2 2s^2$ 

নেরিটিয়ানের ৪টি ইলেন্ট্রেন এই 16 ও 26 অরথিটালে প্রদেশ ফরে। 6 উপশক্তিপ্রনে একাদিক স্বর্রাটাল না থাকায় এতে বিজ্ঞান্ত অবস্থায় ইলেন্ট্রেন প্রমেশের সূমোপ সেই। স্বর্গাৎ ছডের দীতি এক্ষেত্রে প্রমোদ্ধা দ্বনে না।

১৫। অর্থপূর্ণ 'p' অরথিটাল অধিক শ্বিভিশীল কেন?

উন্তর্ন। ঘ্রন্তর নীতি অনুসারে, অর্ধপূর্ণ P অরথিটাল এর ক্ষেত্রে ইলেনট্রেনগুলোর

তটি অরনিটালে সুমসভাবে বিনাপ্ত থাকে ও এন্ফেত্রে ইলেনট্রনগুলোর

ঘূর্ণদার দিক ও একই হর। অর্থাৎ, P উপশক্তিস্তরে প্রতিসামাতা বজার

থাকে ও কাঠামো সৃস্থিত হর এবং ইলেনট্রন অপসারণে অধিক শক্তিব

প্রয়োজন হয়।

১৬। ছড়ের নীতি অনুযায়ী ক্সকরাসের ইলেকট্রন বিন্যাস ব্যাখ্যা কর।

णि. व्या. ५४)

উত্তরঃ হুডের নীতি অনুযায়ী সমশক্তিসম্পদ্ধ অরবিটালন্তলোতে ইলেবট্র-নসমূহ এমনভাবে অবস্থান করে যাতে তারা সর্বাধিক সংখ্যক অবুগা অবস্থায় থাকতে পারে এবং এক্ষেত্রে ইলেবট্র-নসমূহের স্পিন একই দিকে হয়।

 $_{15}P \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^3$  11 1 1 1

P (কসকরাস) এর 3p উপশক্তিস্তরে ইপেবট্রন হুন্ডের নীতি অনুযায়ী অনুগাভাবে একই স্পিনে প্রবেশ করে।

১৭। উদাহরপসহ পশির বর্জন নীতি ব্যাখ্যা কর।

াপি. বো. ২৩: দি. বো. ২২: সম্মিণিত বো. ১৮: সি. বো. ১৭।
উত্তরঃ পলির বর্জন নীতি অনুসারে, একই পরমাণুতে যেকোনো দুইটি
ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনো সমান হতে পারে
না। যেমনঃ He এর যোজ্যতাস্তরের দুইটি ইলেকট্রনের চারটি
কোয়ান্টাম সংখ্যা মান—

১ম ইলেকট্রনের জন্য, n=1, l=0  $m=0, s=+rac{1}{2}$ 

২য় ইলেকট্রনের জন্য,  $n=1,\ l=0$   $m=0,\ s=-rac{1}{2}$ 

অর্থাৎ, একই পরমাণুর ২টি ইলেকট্রনের কক্ষপথের আকার (n), আকৃতি (l) এবং কৌণিক অবস্থান (m) একই হতে পারে কিন্তু তাদের স্পিন (নিজ অক্ষের উপর ঘূর্ণনের দিক) বিপরীতমুখী হয়।

১৮। He এর ইলেকট্রন বিন্যাস পলির বর্জন নীতি মেনে চলে— ব্যাখ্যা কর।

যি. বো. ২১

উত্তর: পলির বর্জন নীতি অনুযায়ী, একই পরমাণুতে যেকোনো দুটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনো এক হতে পারে না।  ${}_{2}{
m He} 
ightarrow 1{
m s}^{2}$ 

He এর ১ম ইলেকট্রন এর জন্য  $\, {\bf n}=1, \; l=0, \; \; {\bf m}=0, \; {\bf s}=+\frac{1}{2} \,$ 

২য় ইলেকট্রন এর জন্য  $n=1, l=0, m=0, s=-\frac{1}{2}$ 

অর্থাৎ এক্ষেত্রে ইলেকট্রনদ্বয়ের, n, l ও m এর মান সমান হলেও নিজ অক্ষের উপর দুর্গনের দিক বিপরীতমুখী হয়।

১৯। p উপত্তরে সর্বোচ্চ ছয়টি ইলেকট্রন থাকতে পারে– পলির বর্জন নীতি অনুযায়ী ব্যাখ্যা কর।

উন্তর: p উপস্তরের জন্য 1=1

m = -1, 0, +1

অর্থাৎ, p উপস্তরে তিনটি অরবিটাল বিদ্যমান। পলির বর্জন নীতি অনুসারে, একটি পারমাণবিক অরবিটালে সর্বাধিক দুটি ইলেকট্রন থাকতে পারে যদি তাদের ঘূর্ণন বিপরীতমুখী হয়।

∴ p উপস্তরে মোট ইলেকট্রন সংখ্যা = 3 × 2 = 6 টি

২০। Mg<sup>2+</sup> গঠিত হলেও Mg<sup>3+</sup> হয় না কেন?

উত্তর: 12Mg → 1s² 2s² 2p6 3s²

 $_{12}\text{Mg}^{2+} \rightarrow 1\text{s}^2 2\text{s}^2 2\text{p}^6$ 

Mg-এর সর্ববহিঃস্থ কক্ষপথের  $2\overline{b}$  ইলেকট্রন ত্যাগ করে নিকটতম নিষ্কিয় গ্যাস Ne এর ইলেকট্রন বিন্যাস অর্জন করে স্থিতিশীল হয়। আরও একটি ইলেকট্রন ত্যাগ করে  $Mg^{3+}$  গঠনে স্থিতিশীল কাঠামো বজায় থাকে না এবং এতে অতি উচ্চ মাত্রার আয়নিকরণ শক্তির প্রয়োজন যা অসম্ভব বলা যায়। এজন্য  $Mg^{3+}$  হয় না।

২১। 'অনুপ্রভা কিভাবে সৃষ্টি হয়? ব্যাখ্যা কর।

[य. व्हा. ५१]

উত্তর: শোষিত রশার বিলম্বিত বিকিরণকে অনুপ্রভা বলে। শক্তির উৎস অপসারণের পরও কিছু সময় (কয়েক সেকেন্ড থেকে কয়েক ঘন্টা) উত্তেজিত অণু বা পরমাণু হতে দৃশ্যমান আলোর বিকিরণ পাওয়া যায়। উত্তেজিত পরমাণুর ইলেকট্রনসমূহ উচ্চ শক্তিব্তর হতে সরাসরি আদি শক্তিব্তরে নেমে আসে না বরং মধ্যবর্তী কোনো স্তরে কিছুক্ষণ অবস্থান করে এবং তা হতে ধীরে ধীরে প্রভাব বিচ্ছুরণ করে। যেমন — CaS, BaS, MgS প্রভৃতি।

২২। জাল পাসপোর্ট শনাক্তকরণে UV-রশ্মি ব্যবহার করা হয় কেন? ব্যাখ্যা কর। যি. বো. ২২; কু. বো. ১৯; ব. বো. ১৭] উত্তর: জাল পাসপোর্ট শনাক্তকরণে UV রশ্মি অতি গুরুত্বপূর্ণ ভূমিকা পালন

রঃ জাল পাসপোর্ট শনাক্তকরণে UV রাশ্ম আত গুরুত্বপূণ ভূমকা পালন করে থাকে। সাধারণভাবে UV রশ্মির 230 nm হতে 375 nm তরঙ্গ দৈর্ঘ্যের রশ্মি অপটিক্যাল সেন্সর হিসাবে আসল-নকল ব্যাংক নোট ডিটেন্টর যদ্রে ব্যবহার করা হয়। প্রকৃত পক্ষে ব্যাংক নোট বা পাসপোর্টে Security device হিসাবে অপটিক্যাল সেন্সর ফসফোরাস নামক যে রাসায়নিক উপাদান ব্যবহার করা হয় তা UV রশ্মির নির্দিষ্ট কম্পাঙ্কের ফোটন দ্বারা সক্রিয় হয়ে ইলেকট্রনগুলো উচ্চতর শক্তিন্তরে কমল করে। এই উচ্চতর শক্তিন্তরের উত্তেজিত ইলেকট্রনগুলো খুব দ্রুত শক্তি বিকিরণ করে পূর্বের সৃস্থিত অবস্থায় ফেরত আসে। এ বিকিরিত আলো দৃশ্যমান হওয়ায় একে প্রতিপ্রভা (Fluorescence) বলে। এই প্রতিপ্রভা দেখেই আমরা আসল-নকল পাসপোর্ট চিনতে পারি কেননা নকল পাসপোর্টে এই প্রতিপ্রভা পাওয়া যায় না।

২৩। IR রশ্মির ব্যবহার লেখ।

[সি. বো. ২২, ১৯]

উত্তর: IR বা Infra-red (অবলোহিত) রশ্মির বহুমুখী ব্যবহার রয়েছে।
Near-IR (780 – 2500 nm) মাংস পেশীর জমাট বাধা, অস্থি হতে
বিচ্ছিন্ন হওয়া ও মাংস পেশীর ব্যাথ্যা নিরাময়ে ব্যাবহৃত হয়। এটি দ্বারা

নিজে হিমোগ্রোবিন কি পরিমাণ O₂ শোষিত করছে তার পরিমাণ পরিমাপ করা যায়। Middle-IR (2500 – 5000 nm) ব্যবহার করে জৈবযৌগটির কার্যকরীমূলক শনাক্ত করা যায়। Far-IR (5000 10000 nm) দেহের তাপমাত্রা বাড়িয়ে আরাম অনুভূতি প্রদান করে Far-IR ক্যান্সার কোষের বৃদ্ধিকে প্রতিহত করে। এছাড়া রিউমেটিক অ্যার্থারাইটিস বাতরোগ, চর্মরোগ আঘাতজনিত কারণে পেশীতে ব্যাঞ্খা মচকানো প্রভৃতিক্ষেত্রে খুবই কার্যকর।

২৪। NaCl এর দ্রাব্যতা 36 বলতে কী বুঝ? বি. বো. ২২; ম. বো. ২১; ঢা. বো. ১৯। উন্তর: কোনো নির্দিষ্ট তাপমাত্রায়, নির্দিষ্ট পরিমাণ দ্রাবকে সর্বোচ্চ কত পরিমাণ দ্রব দ্রবীভূত হতে পারে তাকে সেই দ্রবের দ্রাব্যতা বলে। NaCl এর দ্রাব্যতা 36 বলতে বোঝায় যে, ঐ নির্দিষ্ট তাপমাত্রায় 100 g পানিতে সর্বোচ্চ 36 g NaCl দ্রবীভূত হতে পারে।

২৫। দ্রাব্যতা গুণফল বলতে কি বোঝ?

[দি. বো. ১৭]

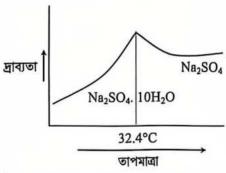
উন্তর: কোনো নির্দিষ্ট তাপমাত্রায় (যেমন 25°C) কোনো দ্রবণীয় তড়িং
বিশ্লেষ্য লবণের সম্পৃক্ত দ্রবণে এর উপাদান আয়নসমূহের মোলার
এককে ঘনমাত্রার গুণফলকে লবণটির দ্রাব্যতা গুণফল বলা হয়। তবে
লবণটির প্রতি অণু বিয়োজনে যে আয়নটি যত সংখ্যায় উৎপন্ন হয়, ঐ
আয়নের ঘনমাত্রাকে সে সংখ্যক ঘাতে উন্নীত করা হয়।

২৬। তাপমাত্রা বৃদ্ধিতে দ্রাব্যতা গুণফল বৃদ্ধি পায় কেন?

উত্তর: সাধারণত তাপমাত্রা বৃদ্ধিতে দ্রবের দ্রাব্যতা বৃদ্ধি পেয়ে থাকে।
উচ্চ তাপমাত্রায় অধিক পরিমাণে দ্রব দ্রাবকে দ্রবীভূত হয় এবং
দ্রবণের ঘনমাত্রা বৃদ্ধি পায়। দ্রাব্যতা গুণফল হল দ্রবের আয়নসমূহের
ঘনমাত্রার যথাযথ ঘাতের গুণফল। এজন্য তাপমাত্রা বৃদ্ধিতে দ্রবের
দ্রাব্যতা ও দ্রবণের আয়নসমূহে ঘনমাত্রা বৃদ্ধি পাওয়ায় দ্রাব্যতা গুণফলও
বৃদ্ধি পায়।

২৭। দ্রাব্যতার উপর তাপমাত্রার প্রভাব ব্যাখ্যা কর।

ায়. বো. ২২; রা. বো. ১৭; অনুরূপ প্রশ্ন: ম. বো. ২১। উত্তর: দ্রাব্যতার উপর তাপমাত্রার প্রভাব বিশেষভাবে পরিলক্ষিত হয়। সাধারণভাবে, দ্রবণের তাপমাত্রা বৃদ্ধির সাথে দ্রবের দ্রাব্যতাও বৃদ্ধি পায়। উচ্চ তাপমাত্রায় দ্রাবক ও দ্রব অণুর গতিশক্তি বৃদ্ধি পায়। ফলে অধিক পরিমাণ দ্রব দ্রাবকে দ্রবীভৃত হয়। যেমন− KNO3, NaNO3, KI, Pb(NO3)2, AgNO3 প্রভৃতি, এইসমস্ত যৌগের পানিতে বিয়োজন তাপহারী প্রক্রিয়া হওয়ায় তাপমাত্রা বৃদ্ধি করলে দ্রাব্যতা বৃদ্ধি পায়। অপরদিকে যেসকল দ্রবের পানিতে বিয়োজন তাপোৎপাদী তাদের ক্ষেত্রে তাপমাত্রা বৃদ্ধি করলে দ্রাব্যতা হ্রাস ঘটে। যেমন− Li2SO4, Ca(OH)2, NaOH প্রভৃতি।


২৮। গ্রুবার লবণের দ্রাব্যতার উপর তাপমাত্রা বৃদ্ধির প্রভাব ব্যাখ্যা কর।

ােতা. বা. ২৩; সি. বা. ২২

উন্তর: গ্রুবার লবণের সংকেত  $Na_2SO_4.10H_2O$  যাতে 10 অণু কেলাস পানি থাকে। প্রাথমিকভাবে, তাপমাত্রা বৃদ্ধিতে গ্রুবার লবণের দ্রাব্যতা বৃদ্ধি

গুণগত রসায়ন > ACS/ FRB Compact Suggestion Book......

পেতে থাকে। কিন্তু যখনই তাপমাত্রা  $32.4^{\circ}$ C অতিক্রম করে তথনই এটি নিরুদিত হয়ে  $Na_2SO_4$  এ পরিণত হয়। নিরুদিত  $Na_2SO_4$  এর দ্রাব্যতা তাপমাত্রা বৃদ্ধির সাথে সাথে হ্রাস পায়।



চিত্র: তাপমাত্রার সাথে গ্রবার লবণের দ্রাব্যতার ক্রম

২৯। CaCO3 এর দ্রাব্যতা শুণফল 8.5 × 10<sup>-9</sup> বলতে কী বোঝায়?

রা, বো, ২১

উন্তর: কোনো যৌগের সম্পৃক্ত দ্রবণের সাম্যাবস্থায় উৎপন্ন আয়নের সহগকে মোলার ঘনমাত্রার সূচকে উন্নীত করে মোলার ঘনমাত্রার যে গুণফল পাওয়া যায় তাকে দ্রাব্যতা গুণফল বলে।

 ${
m CaCO_3}$  এর দ্রাব্যতা গুণফল  $8.5 \times 10^{-9}$  বলতে বোঝার,  ${
m CaCO_3}$  এর সম্পৃক্ত দ্রবণের সাম্যাবস্থায় উৎপন্ন  ${
m Ca^{2+}}$  ও  ${
m CO_3^{2-}}$  আয়নের সহগকে এদের মোলার ঘনমাত্রার সূচকে উন্নীত করে প্রাপ্ত মোলার ঘনমাত্রার গুণফল হবে  $8.5 \times 10^{-9}$ ।

$$CaCO_3(s) \Longrightarrow Ca^{2+}(aq) + CO_3^{2-}(aq)$$
  
সূতরাং  $K_{sp} = [Ca^{2+}][CO_3^{2-}] = 8.5 \times 10^{-9}$ 

৩০।  $AI_2(SO_4)_3$  এর ক্ষেত্রে দ্রাব্যতা ও দ্রাব্যতা গুণফলের সম্পর্ক দেখাও। সি. বো. ২২)

উত্তর: Al2(SO4)3 পানিতে নিম্নরূপে বিয়োজিত হয়:

$$Al_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$$
  
S 2S 3S

মনে করি, উভয় আয়নের দ্রাব্যতা = S  $\operatorname{mol} L^{-1}$ সূতরাং দ্রাব্যতার গুণফল,  $K_{\operatorname{sp}} = [Al^{3+}]^2 [\operatorname{SO}_4^{2-}]^3$ =  $(2S)^2 (3S)^3$ =  $108S^5$ 

৩১। সমআয়ন প্রভাবের ফলে দ্রাব্যতাক্রাস পায় কেন?

ক্ বো. ২৩; রা. বো. ২২, ১৯; সি. বো. ১৭; অনুরূপ প্রশ্ন: ঢা. বো. ২২। উত্তর: কোনো স্বল্প দ্রবণীয় লবণের সম্পৃক্ত দ্রবণে সমআয়নবিশিষ্ট কোনো তীব্র তড়িৎ বিশ্লেষ্য পদার্থ যোগ করলে স্বল্প দ্রবণীয় লবণটির দ্রাব্যতার ক্রাস ঘটে। MA একটি স্বল্প দ্রবণীয় লবণ। এর সম্পৃক্ত জলীয় দ্রবণে সাম্যাবস্থা:

$$MA$$
 (অদ্রবণীয়)  $\Longrightarrow M^+(aq) + A^-(aq)$ 

∴ দ্রাব্যতার গুণফল, K<sub>sp</sub> = [M<sup>+</sup>] [A<sup>-</sup>]

MA লবণের সম্পৃক্ত দ্রবণে যদি সমআয়নবিশিষ্ট একটি তীব্র তড়িৎ বিশ্লেষ্য পদার্থ MX অথবা YA যোগ করা হয় তাহলে সেক্ষেত্রে দ্রবণে সমআয়ন  $M^+$  অথবা  $A^-$  এর ঘনত্বের বৃদ্ধি ঘটবে। কিন্তু নির্দিষ্ট

তাপমাত্রায়  $K_{op}$  এর মান নির্দিষ্ট। কাজেই  $K_{op}$  এর মান স্থির রাখার জন্য কিছু সংখ্যক সমআয়ন  $M^+$  অথবা  $A^-$  অপর আয়নের সাবে যুক্ত হয়ে অদ্রবণীয় MA উৎপন্ন করবে। এর ফলে MA এর দ্রাব্যতার হ্রাস ঘটবে।

৩২। ধাতব ক্লোরাইডের দ্রাব্যতা HCI দ্রবণে হ্রাস পায় কেন? । ঢা. বো. ২২। উত্তর: ধাতব ক্লোরাইডের দ্রাব্যতা HCI দ্রবণে হ্রাস পায় সমআয়ন প্রভাবের কারণে। ধাতব ক্লোরাইড ও HCI এর উভয়ের মাঝেই সমআয়ন CI বিদ্যমান। ফলে ধাতব ক্লোরাইড ও HCI এর জন্য CI এর ঘনমাত্রা অধিক বৃদ্ধি পায়। তাই, মিশ্রণে ধাতব ক্লোরাইডের দ্রাব্যতা গুণফলের মান স্থির রাখতে ধাতব ক্লোরাইডের দ্রাব্যতা হ্রাস পায়।

তও। শিখা পরীক্ষায় গাঢ় HC/ ব্যবহৃত হয় কেন? | ঢা. কো. ১৯|
উত্তর: শিখা পরীক্ষায় গাঢ় HC/ ব্যবহারে তা ধাতব লবণের সাথে বিক্রিয়ায়
উদ্বায়ী ধাতব ক্লোরাইড গঠন করে। এই ক্লোরাইডগুলো সহজে
বাষ্পীভূত হয় এবং বৈশিষ্ট্যমূলক বর্ণ প্রদর্শন করে। এছাড়া বেশিরভাগ
ধাতব লবণের সাথে HC/ বিক্রিয়া করায় অধিক সংখ্যক ধাতুর শিখা
পরীক্ষা করা যায়। একই সাথে অন্যান্য এসিডের তুলনায় HC/ উদ্বায়ী
ধাতব ক্লোরাইড গঠনে বেশি কার্যকর। এসব কারণে শিখা পরীক্ষার

৩৪। সিজ পরীক্ষাকে নিশ্চিত পরীক্ষা বলা হয় কেন?

উত্তর: সিক্ত পরীক্ষার মাধ্যমে আয়ন শনাক্তকরণে ভিন্ন ভিন্ন আয়নের ক্ষেত্রে বিভিন্ন যৌগের বিক্রিয়া ঘটিয়ে বিক্রিয়ায় উৎপন্ন অধঃক্ষেপের বর্ণ থেকে আয়ন শনাক্ত করা হয়ে থাকে। আবার একই আয়ন শনাক্তকরণে রয়েছে একাধিক পরীক্ষা পদ্ধতি। এজন্য এক্ষেত্রে ভুল হওয়ার সম্ভাবনা নেই বললেই বলে। তাই সিক্ত পরীক্ষাকে নিশ্চিত পরীক্ষা বলা হয়।

৩৫। কোন দ্রবণে Na<sup>+</sup> আয়নের উপস্থিতি কীভাবে শনাক্ত করবে?

রা. বো. ২১; দি. বো. ২১)

উত্তর: টেস্টটিউবে প্রস্তুত 1–2 ml জলীয় দ্রবণ নিয়ে সমপরিমাণ পটাসিয়াম পাইরোঅ্যান্টিমোনেট দ্রবণ যোগ করা হয় এবং টেস্টটিউবের ভেতরের গায়ে গ্রাস রড দিয়ে ঘর্ষণ করা হয়।

সাদা বর্ণের সৃক্ষ সোডিয়াম পাইরোঅ্যান্টিমোনেটের অধ্যক্ষেপ দেখা গেলে নমুনা লবণে  ${
m Na}^+$  আয়নের উপস্থিতি নিশ্চিত হওয়া যায়।

 $2NaCl(aq) + K_2H_2Sb_2O_7(aq) \rightarrow Na_2H_2Sb_2O_7(s) + 2KCl(aq)$  পটাসিয়াম পাইরো সোডিয়াম পাইরোঅ্যান্টিমোনেট সাদা অধsকেপ

৩৬। দ্রবণে  ${
m SO}_4^2$  আয়ন কীডাবে শনাক্ত করা যায়? বি. বো. ২১। উত্তর:  ${
m SO}_4^{2-}$  মূলকের উপস্থিতি নিশ্চিত হওয়ার জন্য টেস্টটিউবে 1–2 ml দ্রবণ নিয়ে এতে কয়েক ফোঁটা বেরিয়াম নাইট্রেট,  ${
m Ba(NO_3)_2}$  দ্রবণ যোগ করা হয়। এতে দ্রবণে  ${
m BaSO_4}$  এর সাদা অধঃক্ষেপ পড়বে। এ সাদা অধঃক্ষেপ যদি লঘু  ${
m HC}$ । এ অদ্রবণীয় হয় তাহলে  ${
m SO}_4^{2-}$  মূলকের উপস্থিতি নিশ্চিত হওয়া যাবে।

Rhombus Publications

HSC পরীক্ষার্থীদের জন্য বাছাইকত বহুনির্বাচনি প্রশ্নোত্তর

# পর্মাণু ও তার মৌলিক কণিকাসমূহ

১। কোন কণিকার স্থায়িত্ব সবচেয়ে কম?

[ঢা. বো ২৩]

- ক) ইলেকট্রন
- প্রি প্রোটন
- গ্ৰ নিউট্ৰন
- (ছ) মেসন

উত্তর: 🕲 মেসন

ব্যাখ্যা: ইলেকট্রন, প্রোটন ও নিউট্রন স্থায়ী মৌলিক কণিকা। মেসন, বোসন, পজিট্রন, নিউট্রিনো, অ্যান্টিনিউট্রিনো প্রভৃতি অস্থায়ী মৌলিক কণিকা। অস্থায়ী মৌলিক কণিকাগুলো সৃষ্টির পরপরই ধ্বংস হয় বা অন্য কণায় রূপান্তরিত হয়। যেমন মেসন অস্থায়ী মৌলিক কণিকা হওয়ায় এর স্থায়িত কম।

২। প্রোটনের প্রকৃত ভর কত?

[সি. বো ২৩]

- 3 1.60 × 10<sup>-24</sup> g
- ③  $1.66 \times 10^{-24}$  g
- 1.673 × 10<sup>-24</sup> g

উত্তর: 📵 1.673 × 10<sup>-24</sup> g

ব্যাখ্যাঃ

| কণা       | প্রতীক               | আবিদ্ধারক  | ভর                        | আপেক্ষিক<br>আধান | প্ৰকৃত আধান              |
|-----------|----------------------|------------|---------------------------|------------------|--------------------------|
| ইলেকট্রন  | e <sup>-</sup>       | থমসন       | 9.11×10 <sup>-28</sup> g  | -1               | -1.6×10 <sup>-19</sup> C |
| প্রোটন    | р                    | রাদারফোর্ড | 1.673×10 <sup>-24</sup> g | A+1              | 1.6×10 <sup>-19</sup> C  |
| নিউট্রন   | n                    | চ্যাডউইক   | 1.675×10 <sup>-24</sup> g | 0                | 0                        |
| পজিট্রন   | 0<br>1e <sup>+</sup> | এভারসন     | 9.109×10 <sup>-28</sup> g | +10              | 1.6×10 <sup>-19</sup> C  |
| নিউট্রিনো | υ                    | ফার্মি     | < m <sub>c</sub>          | 0                | 0                        |

<sup>35</sup>Cl ও <sup>37</sup>Cl প্রকৃতিতে 75% ও 25% হলে Cl এর পারমাণবিক ভর কত?

**(4)** 35

- **35.75**
- **1 35.25**
- **35.5**

উত্তর: (ছ) 35.5

ব্যাখ্যা: গড় পারমাণবিক ভর =  $\frac{(75 \times 35) + (25 \times 37)}{100}$  = 35.5

৪। ক্যান্সার চিকিৎসায় ব্যবহৃত হয় কোনটি?

[ঢা. বো ২৩]

(4) He

(1) Ne

(1) Ar

(T) Rn

উত্তর: 🕲 Rn

ব্যাখ্যা:

| আইসোটোপ                                                                         | ব্যবহার                                  |  |  |
|---------------------------------------------------------------------------------|------------------------------------------|--|--|
| Rn                                                                              | ক্যান্সার চিকিৎসায়                      |  |  |
| <sup>60</sup> Co                                                                | ক্যান্সার চিকিৎসায়, খাদ্য, বীজ সংরক্ষণে |  |  |
| <sup>131</sup> I                                                                | গলগন্ড রোগের চিকিৎসায়                   |  |  |
| <sup>14</sup> C, <sup>35</sup> S, <sup>32</sup> P নতুন জাত উদ্ধাবন ও জীবন রহস্য |                                          |  |  |
| <sup>230</sup> Ra                                                               | রাসায়নিক বিক্রিয়ার কৌশল নির্ধারণে      |  |  |

- ৫। তেজক্রিয়  $^{60}_{27}\mathrm{Co}$  এর সাহায্যে কোন রোগ নির্ণয় করা যায়?
  - Cancer
- (ঝ) টিউমার

...... ACS, > Chemistry 1st Paper Chapter-2

- প্রিক্তের টিউমার
- ® Radiology

উত্তর: 🚳 Cancer

ব্যাখ্যা: ক্যান্সার কোষের অনিয়ন্ত্রিত কোষ বিভাজন নিয়ন্ত্রণে <sup>60</sup>Co এক গলগন্ড রোগের চিকিৎসায় <sup>131</sup>I ব্যবহৃত হয়।

- ७। य সব পরমাণুর ভর সংখ্যা একই কিন্তু পারমাণবিক সংখ্যা ভিন্ন [ঢা. বো. ২১]
  - এদেরকে কী বলা হয়?
- অাইসোটোন
- অাইসোমার
- প্রাইসোবার
- 🕲 আইসোটোপ

উন্তর: (গ) আইসোবার

ব্যাখ্যা: আইসোটোপ: পারমাণবিক সংখ্যা বা প্রোটন সংখ্যা এক হলেও ভর সংখ্যা ভিন্ন। যেমন:  ${}_{6}^{12}\mathrm{C}$ ,  ${}_{6}^{13}\mathrm{C}$ ,  ${}_{6}^{14}\mathrm{C}$  পরস্পর আইসোটোপ। আইসোবার: ভর সংখ্যা এক হলেও প্রোটন সংখ্যা ভিন্ন। যেমন: ¾H ও <sup>3</sup>He পরস্পর আইসোবার।

আইসোটোন: নিউট্রন সংখ্যা এক হলেও প্রোটন ও ভর সংখ্যা ভিন্ন यमनः 1H ७ He।

আইসোইলেকট্রন: অণু, পরমাণু বা আয়নের ইলেকট্রন সংখ্যা সমান হলে তাদের আইসোইলেকট্রন বলে। যেমনঃ N³-, O²-, Ne, Si⁴+। আইসোস্টার: যেসব অণুতে মোট পরমাণু ও ইলেকট্রন সংখ্যা সমান তাদের আইসোস্টার বলে। যেমন: CO2, N2O।

৭। কোনটি আইসোটোন এর উদাহরণ?

মি. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২২; ম. বো. ২২; দি. বো. ২২১

- (1) 39 Ca, 40 Ca, 41 Ca

উত্তর: (খ) 36 S, 37 Cl, 39 K

ব্যাখ্যা:  $_{16}^{36}$ Si এ নিউট্রন সংখ্যা = ভরসংখ্যা – প্রোটন সংখ্যা = 36-16=20 $_{17}^{37}Cl$  এ নিউট্রন সংখ্যা = ভরসংখ্যা - প্রোটন সংখ্যা =37-17=20 $_{10}^{39}$ K এ নিউট্রন সংখ্যা = ভরসংখ্যা – প্রোটন সংখ্যা = 39-19=20যেহেতু এদের প্রত্যেকের নিউট্রন সংখ্যা সমান সূতরাং এরা পরস্পরের আইসোটোন।

৮। কোন সেটটির ইলেকট্রন সংখ্যা সমান?

[দি. বো. ২২]

- $\textcircled{9} \text{ Na}^+, \text{Mg}^{2+}, \text{A}l^{3+}, \text{C}l^- \qquad \textcircled{9} \text{ K}^+, \text{Ca}^{2+}, \text{Sc}^{3+}, \text{C}l^-$

উত্তর: (ম) K<sup>+</sup>, Ca<sup>2+</sup>, Sc<sup>3+</sup>, CI

ব্যাখ্যা: ঘ নং অপশনের ক্ষেত্রে ইলেকট্রন সংখ্যা:

- $K^+ = 19 1 = 18$
- $Ca^{2+} = 20 2 = 18$
- $Sc^{3+} = 21 3 = 18$
- $C\Gamma = 17 + 1 = 18$



母中で 田川田 > AEE FRE Compact Suggestion Hook.......

- क्षान पत्तचार वा आसामत्र मध्या बिमासीम, ध्विति । विविधिम मस्भा भवश्रामारि शिवा
  - **動** パイ
- @ "CI
- 13B7-
- @ 10K'

**自由 (10 K,** 

- बाभा। 10 K' आराजस, है जनारें म श्राम 10 1 = 18 ट्यापन मरणा - 19
  - নিউট্যব সংখ্যা 30 10 20
- ১०। निद्धास विक्तिग्रात मृगम्यास की घटन शाला?

$$^{17}_{13}\Lambda I + ^{4}_{1}\text{He} \rightarrow ^{30}_{16}\text{P} + ---$$

TH, D

উত্তরঃ 🕏 🦙

- ব্যাখ্যা: প্রোটন সংখ্যার পার্থক্য = (13 + 2) 15 = 0 ভর সংখ্যার পার্থক্য - (27 + 4) - 30 - I
  - ∴ সংকেভ In
  - $^{27}_{13}AI + ^{4}_{2}He \rightarrow ^{30}_{15}P + ^{1}_{0}n$
- ১১। निद्धत निष्क्रियात विक्रिया त्यत्क Q निर्पम कत
- @ 220 Ra
- উন্তরঃ 🚳 220 Rn
- ব্যাখ্যা: a (Ho2+) নিঃসরণে ভর 4 একক ও পারমাণ্যিক সংখ্যা 2 একক
  - দ্রাস পাবে এবং ৣβ মিঃসরণে পারমাণ্যিক সংখ্যা 1 একক বৃদ্ধি পাবে। স্বর্থাৎ

$$\begin{array}{c} ^{232}\text{Th} \xrightarrow{-\alpha} ^{220}\text{Rn} \xrightarrow{-\beta} ^{228} _{80}\text{No} \xrightarrow{-\beta} ^{228} _{00}\text{Th} \xrightarrow{-\alpha} ^{224} _{88}\text{Rn} \xrightarrow{-\alpha} ^{220} _{80}\text{Rn} \\ \text{(M)} \qquad \text{(N)} \qquad \text{(O)} \qquad \text{(P)} \qquad \text{(Q)} \\ \end{array}$$

- ১২। হাইদ্রোজেন বোমায় সংঘটিত বিক্রিয়ার নাম কী?
  - िक्नान विकित्रा
- (४) স্প্যालानन विकिन्ना
- কিউশান বিক্রিয়া
- ব্য ট্রালম্যটেশন বিক্রিয়া
- উखतः (१) यिष्टेशान विकिन्ना
  - ব্যাখ্যাঃ নিউক্রিয়ার ফিউনন এ
  - (i) খুদ্র নিউক্লিয়াস একবিত হয়ে অপেক্ষাকৃত ভারী নিউক্লিয়াস ভৈরি
  - (li) উচ্চ তাপমাত্রার প্রয়োজন হয়।
  - (iii) চেইন রিয়্যাকশন ঘটে না।
  - (iv) উৎপাদ ভেজঞ্জিয় নয়।

# माणामाना क्रांसिक माना विकास के साथ होता है जाना सिकार

- ५७। जीन चरान्म क्लोनिन
- ( PR, 99)
- क्या सामान के निवस है।
- त्या विभागान अध्यक्त
- (त) अभग्न भारका विस्ताल (त)
- MINITE PHAND KING (I)
- किन्द्रमः (म) सामास्रात्मार्क्ष भग्राम् स्वतन
- त्राभा। प्राणावरमार्र्सन भगमानु मरङ्गरम स्नाभान निरम्पेन मर्राभा भएजन बना स्त्र । ध नएजन अनुमात्री, भौनक्षभएक मार्थन शंबिभएन भूगीत्तवाम शास्त्र भारा भाषापुरक है।जागद्विमकामा भिर्फिक्साञ्रत गर्वाणिक चर्मासभाम ।
- 98। त्याम कमान जाराज्य नामान्यमं निष्ठतम शक्तिका ऋत्यम । जा. वरा.

(A) (B)

1 7

(A) X-134

किसा। कि a

- बाबा। Pb ब्रक ध नाचा टब्जिस्त Ra चटक निर्मंत्र e.(He<sup>1</sup>°) क्माग्र जागरस ज्ञामात्रद्रमार्च विक्रमण भन्नीकाछि कदान।
- 9C। a-रूणाज्ञ दिनिष्ठा द्यानिष्ठ
- 原、研、到 新期时 图形 发 研 公司
- এতে দুটি থোটন ও দুটি ইলেম্ট্রন স্বাছে
- 🛈 এটা পুৰ ধীনগতিসম্পন্ন ফণা
- 🗇 ऐस प्राञ्चन हार्सिङ कथा
- (ग) धन जनभध्या १
- উন্তন্ন। (ন) ইঘ্য ধদাব্বক চার্জিত কণা
- याथा। ०-कग रन He2 (थिनग्राम निङ्क्तिग्रान) या धमाञ्चक नाटर्स नार्सिक। একটি α-কপার ঢার্ডের পনিমাদ 2 × 1.6 × 10<sup>-10</sup> = 3.2 × 10<sup>-10</sup> C 1
- 96। व्हानि a स्वना

- ला अविष् विष्कृत र मुर्कित का मुर्कित विषक र महिला विषक विषक
- উন্তন্ন। 🕙 দুটি নিজ্যান ও দুটি প্রেটিন
- याभा। α कना घरमा बि-धनाञ्चक He निউक्तिग्रान / He²²
- ১৭। 

  व्यक्ति निक्रण निक्रण निक्रण निक्रम सामान्य सामान्य निक्रम स्वापि यानवान्न निक्रम स्वापि सानवान्न निक्रम स्वापित स् ক্রোন্সি? [H. Off. 85]
  - ® 3H623
- ন্য সর্পের পাড

উন্তর্গ 🛈 📶

ব্যাখ্যা: রাদারকোর্ডের পরীক্ষার ব্যবত্তত উপকর্মণঃ

- ১. লেভ ব্লকে রাখা ভেজক্রিয় Ra (রেভিয়াম) থেকে নির্গক c.-ফণা, না विभिग्नाम लत्रमानुत निष्कित्रगान (,He2)।
- থ, পাডলা সোনার পাড (0.0004 cm পুরু)।
- ৩, জিংক সাদকাইড (ZnS) আবরণযুক্ত পর্দা।

১৮। রাদারফোর্ডের আদফা কণা বিক্ষেপণ পরীক্ষার স্বর্ণপাতের পুরুত্ব কত। ব্যাখ্যা: ম্যাক্সগুরোলের তত্তানুসারে, কোন চার্চ্চযুক্ত কণা বৃত্তাব্যার পাঞ্চ রো. বো. ২২) ঘূর্ণনকালে ক্রমাণত শক্তি বিকিরণ করবে এবং কক্ষপথের ব্যাদা।€্রাদ ⊕ 0.000004 m <sup>我</sup> 0.0004 cm পেতে थोकरव। कल निष्ठित्रगारमत ठातिनक वृत्पारामान दैलानिकार 9 0.0004 mm ® 0.004 cm গতিশক্তিন হ্রাস ঘটবে এবং কক্ষপথের ব্যাসার্ধ কমতে কমাঙে উন্তর: 🕲 0.0004 cm একসময় নিউক্লিয়াসের মধ্যে এর পতন ঘটবে। ব্যাখ্যাঃ রাদারফোর্ডের আলফা কণা বিক্ষেপণ পরীক্ষায় ব্যবহৃত স্বর্ণপাতের ২৪। কোন পরমাণু মডেল কক্ষপথ সম্পর্কে ধারণা দেয়? THE OIL AND পুরুতু ছিল .0004 cm বা .004 mm। যেহেতু, 1 cm = 10 mm। ক্ত রাদারফোর্ড থমদন প্র ডাল্টন **ভি বোর** ১৯। রাদারফোর্ডের নিউক্লিয়াস আবিষ্কার পরীক্ষায় ১৯% আলফা (a) কণা উত্তর: 🕲 বোর চি. বো. ২২) স্বর্ণপাত ভেদ করে সোজা চলে যায় কেন? ব্যাখ্যা: কৌণিক ভরবেগ,  $L = mvr = \frac{nh}{2\pi} = \frac{3h}{2\pi} \ [\because n = 3]$  পরমাণুর কেন্দ্র ধনাত্মক চার্জযুক্ত বলে আলফা কণার গতিশক্তি বেশি বলে আলফা কণার প্রতিফলিত হওয়ার ক্ষমতা কম ২৫। বোর মডেল নিচের কোন মৌল বা আয়নের বর্ণালি ব্যাখ্যা বক্ততে ত্ব পরমাণুর অধিকাংশ স্থানই ফাঁকা [b. ता. २०; जनुद्रम क्षम: व. ता. २०; b. ता. २२, २३; म. ता. ४३| উত্তর: 🕲 পরমাণুর অধিকাংশ স্থানই ফাঁকা He (1) H ব্যাখ্যা: পরমাণুর অধিকাংশ স্থানই ফাঁকা হওয়ায় প্রায় ৭9% lpha কণা স্বর্ণপাত <sup>®</sup> H

<sup>†</sup> (9) Be3+ ভেদ করে সোজা চলে যায়। পরমাণুর কেন্দ্রের ভারী, ধনাত্মক উত্তর: 🕲 Be<sup>3+</sup> আধানযুক্ত নিউক্লিয়াসের আয়তন পরমাণুর আয়তনের 0.01% এর ব্যাখ্যাঃ বোর পরমাণু মডেল এক ইলেকট্রন বিশিষ্ট পরমাণু বা আয়ন (যেমনঃ চেয়েও কম। H, He<sup>+</sup>, Li<sup>2+</sup>, Be<sup>3+</sup>) এর বর্ণালি ব্যাখ্যা করতে পারলেও একাধিক ইলেকট্রন বিশিষ্ট পরমাণুর বর্ণালি ব্যাখ্যা করতে পারে না। ২০। রাদারফোর্ড তার পরীক্ষায় কোন পদার্থের প্রলেপযুক্ত পর্দা ব্যবহার করেন? वि. वा. २२) ২৬। বোর পরমাণু মডেল ব্যাখ্যা করতে পারে-জিংক সলফাইট জিংক সালফেট (i) পরমাণুর তড়িৎ নিরপেক্ষতা জিংক সালফাইড ত্বি জিংক ফসফেট (ii) পারমাণবিক বর্ণাল উত্তর: গ্র জিংক সালফাইড (iii) কক্ষপথের আকার নিচের কোনটি সঠিক? বি. বে. ২২ ২১। নিচের কোনটি অনুপ্রভা সৃষ্টিকারী পদার্থ? (7) i vii (4) ii (9) iii ZnS (B) i, ii (S) iii প i ও iii 1 CaS <sup>®</sup> K₂S উত্তর: 🕲 ii ও iii উত্তর: 🚳 ZnS ব্যাখ্যা: রাদারফোর্ড a কণা বিক্ষেপণ পরীক্ষায় ZnS ব্যবহার করেন। কারণ ২৭। পরমাণুর তৃতীয় কক্ষপথের একটি ইলেকট্রনের জন্য কৌদিক এটি অনুপ্রভা সৃষ্টিকারী পদার্থ এবং এর মাধ্যমে α-কণার দিক ভরবেগের মান নির্ণয়ের সমীকরণ কোনটি? রা. বো. ২৩; সি. বো. ২০ পরিবর্তন বুঝা যায়। ২২। "পরমাণুর নিউক্লিয়াস ধনাত্মক আধানযুক্ত"- কোন বিজ্ঞানী প্রমাণ  $mvr = \frac{3h}{2\pi}$  $\mathfrak{T}$  mvr =  $\frac{3h}{\pi}$ করেন? [রা. বো. ২১] 🕸 রাদারফোর্ড (ঝ) বোর উত্তর: (গ)  $mvr = \frac{3h}{2\pi}$ গ্য ডি-ব্রগলি ছি জে. জে. থমসন উত্তর: 📵 রাদারফোর্ড ব্যাখ্যাঃ আমরা জানি, কৌণিক ভরবেগ,  $L=mvr=rac{nh}{2\pi}$ ব্যাখ্যা: রাদারফোর্ডের পরমাণু মডেল থেকে পরমাণুর কেন্দ্রে নিউক্লিয়াসের উপস্থিতি, পরমাণুর আধান নিরপেক্ষতা, পরমাণুতে ইলেকট্রনের  $\therefore \text{ mvr} = \frac{3h}{2\pi} \text{ [n = 3]}$ অবস্থান, পরমাণুর ত্রিমাত্রিক গঠন সম্পর্কে ধারণা পাওয়া যায়। ২৩। কোন বিজ্ঞানীর মতে আবর্তনশীল ইলেক্সন ক্রমাগত শক্তি বিকিরণ ২৮। প্লাঙ্কের ধ্রুবকের মান কত? কু. বো. ২২ করে?  $\odot$  6.23 × 10<sup>23</sup> Js 3 6.23 × 10<sup>-23</sup> Js বি. বো. ২২] ক হাইজেন বার্গ আইনস্টাইন  $\mathfrak{G}$  6.624 × 10<sup>34</sup> Js  $\bigcirc$  6.626 × 10<sup>-34</sup> Js প্যাক্ত প্লাংক ত্বি ম্যাক্সওয়েল উত্তর: 🕲 6.626 × 10<sup>-34</sup> Js

ব্যাখ্যা: প্লাঙ্কের ধ্রুবক h = 6.626 × 10<sup>-34</sup> Js বা 6.626 × 10<sup>-27</sup> ergs।

উত্তর: 🕲 ম্যাক্সওয়েল

merket anithe o was iller Coulding Silfaceur o book .....

司 KOTI > 改口段 開便

वार । त्याप्रसम तथा राजनीतम जोतिक जाता कका (द था ४० व. था. ४)

क्रमाः छ म

स्तामा:  $\sqrt{B} = 1s^2 2s^2 2p^4$ , वाष्ट्रधार n = 2

रुक्रीनिम क्वारवनर, ग्वारन = 
$$\frac{\pi h}{2\pi} = \frac{2h}{2\pi} = \frac{h}{\pi}$$

व्य∆ n 🖭 भागात्रात्र छर्च कष्णात्मा साञार्ष 7.5 × 10<sup>-10</sup> m कृत्म, वे कृत्य वेत्रमम्भीनीान गिष्टियंग कृष्ण

पिरमक्तिस्म का = 9.1 × 10<sup>-51</sup> kg

্ৰ কো. ২খ

- -211 201 × 102 LP @
- § 5 9482 × 10<sup>5</sup> ms<sup>-1</sup>
- 6 1905 × 105 ms-1
- ⊙ 7.4805 × 105 ms

**老班**: ① 6 1815 × 10<sup>5</sup> ms<sup>-1</sup>

म्बाग्याः  $\pi = \frac{\pi i h}{D \pi n \pi}$ 

$$= \frac{4 \times 6.016 \times 10^{-94}}{2\pi \times 3.1416 \times 9.11 \times 10^{-51} \times 7.5 \times 10^{-10}}$$

$$\pi = 6.18 \times 10^{5} \text{ ms}^{-1}$$

প্রাথ বামা পনামানুতে একটি যোন ইলেনট্রন চতুর্ঘ শক্তিবারে একটি পূর্ণ প্রাথর্চন করাতে করাটি পূর্ণ ভ্যাদ সৃটি করাবে? ক্লি. বো. ১৬

**3** 2

**3** 

@ 4

**®** 5

中国 洲田田

न्त्যাখ্যা: যে কোলো শভিন্তরে পূর্ণ আবর্তনে ভরদ সংখ্যার মান ঐ শভিস্তরের প্রথান কোয়ান্টাম সংখ্যার মানের সমান। বোর ভত্তমতে: 2π = 2λ
∴ ৪র্ব শভিন্তরে একটি পূর্ণ আবর্তনে ৪টি পূর্ণ তরদ সৃটি করবে।

তে । এার্নটি ইচ্দেন্ট্রন ১ম কক্ষপথ থেকে ২য় কক্ষপথে গমন করায়, ২য় কক্ষপায়ে ইদ্দেন্ট্রনটির বেগ (১১) কত হবে।

I) মা কঞ্চপথে ইদেবটালের বেগ, vil

- $\textcircled{v}_1 = 2v_1$
- $v_2 = v_1$
- $v_2 = v_1 \times \frac{1}{4}$

উভা ত্র  $v_2 = v_1 \times \frac{1}{2}$ 

স্থাপানি । । তথা কক্ষাব্যথ ইন্সেন্ট্রিনের বেশ, v, → v, > 1 n

্ ২ন্ন ককপথে ইলেন্দ্রাসের সেন, v, = v, × 1/2

08। খোল স্যানার্যের মাদ কত?

- **3.18 × 10<sup>-18</sup> m**
- ③ 3.0 × 10<sup>5</sup> m

**電** 5.292 × 10<sup>-11</sup> m

খাখ্যা বোল খাগার্ধ, a<sub>0</sub> = 0.5292 Å

৩৫। শ্রথম ডিদটি বোর কক্ষণধের ব্যাসার্ধের অনুপাত হলো-

- ⓑ 1:2:3
- 1:4:7
- 1:4:9
- 1:8:28

উজা: 1:4:9

ব্যাখ্যাঃ আমরা জানি, r, ∝ n²

$$r_1: r_2: r_3 = 1^2: 2^2: 3^2 = 1:4:9$$

# কোয়ান্টাম সংখ্যা, অরবিট ও অররিটাল

৩৬। পরমাণুতে অরবিটালের ধারণা পাওয়া যায় কোন উৎস থেকে?

গি. **না. ২২**৷ **গ. না. ২**১|

- 📵 বোর মতেল
- ব্য রাদারফোর্ড মডেল
- ৰ কোয়ান্টাম তত্ত্ব
- ব্য আউফবাউ নীতি

উন্তর: 🕦 কোয়ান্টাম তত্ত্ব

ব্যাখ্যা: শ্রোভিন্ধারের তরদ সমীকরণ এবং এর সমাধানের উপর ভিত্তি করে কোন্নান্টাম ম্যাকানিক্স প্রতিষ্ঠিত। তরদ সমীকরণের সমাধান হতে একটি পরমাণুর ইলেকট্রনের শেল বা অরবিট, সাব-শেল এবং অরবিটালের ধারণা নিয়ে আসা হয়।

৩৭। কোনো পরমাণুর চতুর্থ শক্তিস্তরে কতটি উপশক্তিস্তর থাকে? (ঢা. বো. ২২)

**3** 2

@ 3

4

**®** 5

উত্তর: ① 4

ব্যাখ্যা: চতুর্থ শক্তিম্বর, n = 4 হলে I = 0, 1, 2, 3

সুতরাং  $\mathbf{n}=4$  হলে 4টি উপশক্তিন্তর পাওয়া যাবে।

৩৮। f উপশক্তিন্তরের জন্য / এর মান কত? । ঢা. রো. ২২; জনুরূপ প্রশ্ন: ব. রো. ২১)

@ 2

**(4)** 3

- **1** 4
- **9** 5

উজর: 📵 3

ব্যাখা: /=0 → s

 $l=1 \rightarrow r$ 

 $l=2 \rightarrow 6$ 

 $l=3\rightarrow 1$ 

| 193 | 1 | n | টেপ <b>শ</b> তি | स्थातत | फ्ला- |
|-----|---|---|-----------------|--------|-------|

- (i) l = 1
- (ii) m = -1, 0, +1
- (iii) অরবিটাল সংখ্যা 2

নিচের কোনটি সঠিক?

[ম. বো. ২২, ২১; সম্মিলিত বো. ১৮; কু. বো. ১৬]

- a i e ii
- (li & ii (
- ரு i v iii
- ( i, ii G iii

উন্তর: 📵 i ও ii

ব্যাখ্যা: m অরবিটাল সংখ্যা নির্দেশ করে থাকে। সুতরাং এখানে অরবিটাল সংখ্যা হবে ৩টি।

### ৪০। কোনটি আকৃতি প্রকাশ করে?

[ঢা. বো. ২১]

- প্রধান কোয়ান্টাম সংখ্যা
- কৌম্বক কোয়ান্টাম সংখ্যা
- প্রত্যারী কোয়ান্টাম সংখ্যা
- (ছ) ঘূর্ণন কোয়ান্টাম সংখ্যা

### 8১। 3d অরবিটালের জন্য সহকারী কোয়ান্টাম সংখ্যার মান কত?

[দি. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২২]

● 0

@ 1

**1** 2

₹ 3

উত্তর: গু 2

ব্যাখ্যা: 3d অরবিটালে n = 3,

1 = 2.

m = -2, -1, 0, 1, 2

## ৪২। পরমাণুর উপশক্তিস্তরে ইলেকট্রন ধারণ ক্ষমতা নির্ণয়ের সূত্র কোনটি?

চি. বো. ২৩; ব. বো. ২২, ১৫; রা. বো. ১৭; কু. বো. ১৭, ১৬)

- **③** 2n²
- 3 21+1
- $\mathfrak{G}$  2(l+1)
- (T) 2(2l+1)

উত্তর: 🕲 2(21+1)

ব্যাখ্যা: পরমাণুর উপশক্তিস্তরে অরবিটাল সংখ্যা 21 + 1 এবং প্রতি অরবিটালে ইলেকট্রন থাকে 2টি করে। সুতরাং পরমাণুর উপশক্তিস্তরে ইলেকট্রন ধারণ ক্ষমতা 2(21 + 1)।

#### ৪৩। ৪র্থ শক্তিস্তরে মোট অরবিটাল সংখ্যা কয়টি?

[চ. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২১, ১৯]

**3** 4

- **3** 9
- **16**
- **32**

উত্তর: গু 16

ব্যাখ্যা: ৪র্থ শক্তিস্তরে মোট অরবিটাল সংখ্যা  $= n^2 = 4^2 = 16$ টি

#### 88। পরমাণুর ৩য় শক্তিস্তরের জন্য 'm' এর মান কতটি? সি. বো. ২৩)

**3** 

**3** 4

**9** 6

(F) 9

উত্তর: 📵 9

#### Rhombus Publications

#### ব্যাখ্যাঃ

| প্রধান কোয়ান্টাম<br>সংখ্যা, n | সহকারী<br>কোয়ান্টাম<br>সংখ্যা, / | क्रीषक काग्रान्ठीय<br>সংখ্যা, m | অরবিটাল<br>সংখ্যা |
|--------------------------------|-----------------------------------|---------------------------------|-------------------|
|                                | 0                                 | 0                               | 1                 |
| 3                              | 1                                 | -1,0,+1                         | 3                 |
|                                | 2                                 | -2, -1, 0, +1, +2               | 5                 |

...... ACS, > Chemistry 1<sup>st</sup> Paper Chapter-2

মোট = 9টি

# 8৫। কোয়ান্টাম সংখ্যার মান n = 4 এবং l = 3 হলে জরবিটালটি হবে[রা. বো. ২২; জনুরূপ প্রশ্ন: দি. বো. ২১; য. বো. ২২, ১৯]

4s

(4) 4p

1 4d

(1) 4f

উত্তর: 🕲 4f

### ৪৬। চৌম্বক কোয়ান্টাম সংখ্যা দ্বারা কী পাওয়া যায়?

[য, বো. ২২; অনুরূপ প্রশ্ন: ব. বো. ২১]

- 📵 প্রধান শক্তিন্তর
- উপশক্তিন্তর
- গু অরবিটাল
- ত্ব ইলেকট্রনের ঘূর্ণনের দিক
- উত্তরঃ 🕦 অরবিটাল
- ৪৭। 3d অরবিটালের জন্য m এর মান কোন সেট হবে?

[ম. বো. ২২

- **®** 0
- $\mathfrak{T}$  -2, -1, 0, +1, +2
- $\mathfrak{V} 3, -2, -1, 0, +1, +2, +3$
- উত্তরঃ ক্ত 2, 1, 0, + 1, + 2

ব্যাখা: 3d এর ক্ষেত্রে: n = 3

1=2

d উপশক্তিন্তর হওয়ায়,

m = -2, -1, 0, +1, +2

### ৪৮। কোন অরবিটালটি সম্ভব? (ঢা. বো. ২১; অনুরূপ প্রশ্ন: দি. বো. ২১; ঢা. বো. ১৭)

- ③ 3f
- 1 2d

(1) lp

উত্তর: 🕸 5s

## ব্যাখ্যা: n এর যেকোনো মানের জন্য সহকারী কোয়ান্টাম সংখ্যা l এর মান 0

থেকে (n – 1) পর্যন্ত হতে পারে।

n = 5 হলে, l = 0, 1, 2, 3, 4

 $\mathit{l}=0$  বা, s অরবিটাল উপস্থিত। তাই  $\mathit{5s}$  অরবিটাল সম্ভব।

n = 3 হলে, l = 0, 1, 2

 $\mathit{l}=3$  বা,  $\mathit{f}$  অরবিটাল নেই। তাই  $3\mathit{f}$  অরবিটাল সম্ভব নয়।

n = 2 হলে, l = 0, 1

l = 2 বা, d অরবিটাল নেই। তাই 2d অরবিটাল সম্ভব নয়।

n=1 হলে, l=0

 $\emph{l}=1$  বা,  $\emph{p}$  অরবিটাল নেই। তাই  $\emph{1}\emph{p}$  অরবিটাল সম্ভব নয়।

## t.me/admission\_stuffs

গুণগত রসায়ন > ACS/ FRB Compact Suggestion Book.....

85। यनि চুपकीय काम्रान्धम সংখ্যা m এবং সহকারী কোম্নান্টাম সংখ্যা I ব্যাখ্যা।  $_{28}$ Ni  $\rightarrow 18^2$   $28^2$   $2p^6$   $38^2$   $3p^6$   $3d^8$   $48^2$ 

হয় তবে-

$$m = 2l^2 + 1$$

$$m = 2 + 1$$

$$\mathfrak{G} I = \frac{m-1}{2}$$

উত্তর:  $\P$   $I = \frac{m-1}{2}$ 

ব্যাখ্যা: আমরা জানি, m = 21 + 1

$$\Rightarrow 2l = m - 1$$

$$\Rightarrow I = \frac{m-1}{2}$$

৫০। একটি ns অরবিটালে কত সংখ্যক পর্ব বা নোড থাকতে পারে-

- ক n সংখ্যক
- অ (m+1) সংখ্যক
- থ (n − 1) সংখ্যক

উন্তর: 🕲 (n-1) সংখ্যক

ব্যাখ্যা: যেকোনো অরবিটালে,

- ➤ অক্ষীয় (Radial) নোডের সংখ্যা = n l 1
- ➤ কৌণিক (Angular) নোডের সংখ্যা = !
- ➤ মোট নোডের সংখ্যা = n 1

যেখানে,  $\mathbf{n} = \mathbf{a}$ ধান কোয়ান্টাম সংখ্যা;  $\mathbf{l} = \mathbf{x}$ হকারী কোয়ান্টাম সংখ্যা

৫১। 28Ni এর কতগুলো ইলেকট্রনের ক্ষেত্রে (n + l) = 4 হয়− (এখানে, l = 1কু. বো. ২৩)

**3** 4

**3** 5

**1** 6

**(9)** 7

উত্তর: 🗿 6

এখানে, n+1=4

$$\Rightarrow$$
 n +  $l$  = 4 [:  $l$  = 1]

n = 3 ও l = 1 হলে 3p অরবিটাল বোঝায়।

3p অরবিটালে 6টি ইলেকট্রন আছে।

৫২। একটি np অরবিটালে কতটি নোড থাকতে পারে?

- ক n সংখ্যক
- (ৰ) n 1 সংখ্যক

উত্তর: 🕦 n – 2 সংখ্যক

তে। 4f অরবিটালের (n + l) এর মান কত?

[রা. বো. ২১]

**3** 4

(A) 6

**1 9 7** 

® 11

উত্তর: 🕦 7

ব্যাখা: 4f এর ক্ষেত্রে, n = 4, l = 3

$$n+l=4+3=7$$

৫৪।  $_{28}$ Ni-এর কতন্তলো ইলেকট্রনের ক্লেত্রে (n+I)=4 হয়? [n]. বা. ১৯]

3

**3** 6

**1** 7

**8** P

উত্তর: 🕲 8

- 3s এর জন্য (n + 1) = 3 + 0 = 3
- 3p धात जन्म (n+1)=3+1=4
- 3d এর জন্য (n + 1) = 3 + 2 = 5
- 4s धन्न अना (n + l) = 4 + 0 = 4
- ∴ 48 4 3p 4 (n+1) = 4 दम

এখানে, 4s এ ইলেকট্রন আছে 2টি এবং 3p এ ইলেকট্রন আছে 6টি

∴ 28Ni এর 8টি ইলেকট্রন এর ক্ষেত্রে (n + l) = 4 হর।

१८८। Cr अत्रमापुत्र गर्वविदृश्च खत्त्रत्र दैलकित्वित्नत्र बन्ए काग्रान्धीम नरुधात्र সেট কোনটি? वा. ला. २०: व्यनुकल बन्धः म. ला. २०: प्रि. ला. २२।

- (3) n = 4, l = 0, m = 0,  $s = -\frac{1}{2}$
- (a) n = 3, l = 0, m = 0,  $s = -\frac{1}{2}$
- (1) n = 3, l = 2, m = -2,  $s = -\frac{1}{2}$
- $\mathfrak{D}$  n = 4, l = 2, m = 2, s =  $-\frac{1}{2}$
- উত্তর: 🚳 n = 4, l = 0, m = 0, s =  $-\frac{1}{2}$

वाचाः 24Cr → 1s² 2s² 2p6 3s² 3p6 3d5 4s1

এখানে, Cr পরমাণুর সর্ববহিঃস্থ স্তরের ইলেকট্রনটি চতুর্ব শক্তিস্তরের s উপশক্তিস্তরে অবস্থিত।

4s¹ এর ক্ষেত্রে: n = 4, l = 0, m = 0, s = + 1/2

 কোনো ইলেকট্রনের জন্য কোয়ান্টাম সংখ্যার কোন সেটটি গ্রহণযোগ্য? কু. বো. ২১; অনুরূপ প্রশ্ন: চ. বো. ২১]

- $^{\odot}$   $(1, 1, 1, +\frac{1}{2})$

উত্তর:  $\mathfrak{G}\left(4,2,-1,-\frac{1}{2}\right)$ 

৫৭। क्यानिनियात्मत्र সर्वविश्वश्च खत्रत्र ইलिक्द्वेनषरप्रत्र काग्रान्धाम मश्शात्र সেট কোনটি? কু. বো. ২৩; চা. বো. ১৭; অনুরূপ প্রশ্ন: চ. বো. ১১)

- (3) n = 4, l = 0, m = 0,  $s = +\frac{1}{2}$ ,  $-\frac{1}{2}$
- (3) n = 3, l = 1, m = 0,  $s = +\frac{1}{2}$ ,  $+\frac{1}{2}$
- $\mathfrak{I}$  n = 4, l = 1, m = 0,  $s = +\frac{1}{2}, -\frac{1}{2}$
- (1) n = 4, l = 2, m = 0,  $s = +\frac{1}{2}$ ,  $-\frac{1}{2}$

উত্তর: 📵 n = 4, l = 0, m = 0, s =  $+\frac{1}{2}$ ,  $-\frac{1}{2}$ 

वाधाः 20Ca → 1s2 2s2 2p6 3s2 3p6 4s2

সর্ববহিঃস্থ ইলেকট্রন্দয় 4s অরবিটালে অর্থাৎ ৪টি কোয়ান্টাম সংখ্যা:

$$n = 4$$
,  $l = 0$ ,  $m = 0$ ,  $s = +\frac{1}{2}$ ,  $-\frac{1}{2}$ 

৫৮। নিচের কোন কোয়ান্টাম সংখ্যার সেটটি গ্রহণযোগ্য?

n = 1, l = 0, m = 0

 $\mathfrak{T}$  n = 2, l = 1, m = -2

 $\mathfrak{T}$  n = 3, l = 1, m = +2

(9) n = 3, l = 2, m = -3

উন্তর: 📵 n = 1, l = 0, m = 0

৫৯। কোয়ান্টাম সংখ্যার মানের কোন সেটটি অবান্তব?

[সি. বো. ২২]

 $\mathfrak{F}$  3, 2, -2,  $+\frac{1}{2}$ 

 $\textcircled{4}, 0, 0, +\frac{1}{2}$ 

 $\mathfrak{G}$  3, 2, -3, + $\frac{1}{2}$ 

(3) 5, 3, 0,  $-\frac{1}{2}$ 

উত্তর: গ্র 3, 2, – 3, +  $\frac{1}{2}$ 

ব্যাখ্যা: n = 3 হলে 1 = 0, 1, 2 এবং m = -2, -1, 0, +1, +2 | ব্যাখ্যা: 3d -> (n+1) = 3 +2 = 7 হতে পারে।

সুতরাং n = 3 হলো m = - 3 সম্ভব নয়।

## ইলেক্ট্রন বিন্যাস ও এর নীতিসমূহ

৬০। ভিন্ন ভিন্ন শক্তির উপশক্তিস্তরে ইলেকট্রনগুলো প্রবেশের ক্ষেত্রে কোন নীতি অনুসরণ করে? বি, বো, ২৩

অাউফবাউ নীতি

থে) হুডের নীতি

পাউলির বর্জন নীতি

ত্ব হাইজেনবার্গের অনিশ্চয়তা নীতি

উন্তর: 🖚 আউফবাউ নীতি

ব্যাখা: আউফবাউ নীতি অনুসারে, পরমাণুতে বিদ্যমান ইলেকট্রনগুলো প্রথমে সর্বনিমু শক্তিসম্পন্ন অরবিটাল পূর্ণ করবে এবং পরে ক্রমান্বয়ে উচ্চতর শক্তিসম্পন্ন অরবিটাল পূর্ণ করবে।

সমশক্তিসম্পন্ন অরবিটাল এ ইলেকট্রন প্রবেশের ধারা হুভের নীতি অনুসরণ করে থাকে।

আর পলির বর্জন নীতি প্রয়োগে পরমাণুতে বিভিন্ন উপশক্তিস্তরে সর্বোচ্চ ধারণকৃত ইলেকট্রন সংখ্যা নির্ণয় করা যায়।

৬১। ইলেকট্রন ঘারা পূর্ণ হওয়ার জন্য অরবিটালের কোন ক্রমটি সঠিক? [ঢা. বো. ২৩]

4s > 3p > 4p > 5s

4s > 3d > 4p > 5s

 $\P$  4s > 3d > 5p > 4d

 $\P$  5s > 4p > 5p > 4d

উত্তর: 📵 4s > 3d > 4p > 5s

ব্যাখ্যা: আউফবাউ নীতি অনুসরণ করে ইলেকট্রন উপশক্তিস্তরে প্রবেশ করে। সেক্ষেত্রে n + l এর মান কম সেই অরবিটালে ইলেকট্রন প্রথমে প্রবেশ করে কখনও n + / এর মান সমান হলে যেক্ষেত্রে n এর মান কম ইলেকট্রন সেটিতে প্রথমে প্রবেশ করে।

এখানে, 4s এ (n + 1) = 4 + 0 = 4

 $3d \cdot (n+1) = 3+2=5$ 

 $4p \cdot 4(n+1) = 4+1=5$ 

 $5s \cdot 4(n+1) = 5 + 0 = 5$ 

অর্থাৎ, ইলেকট্রন প্রবেশের ক্রম হবে 4s > 3d > 4p > 5s।

৬২। নিচের কোনটি আউফবাউ নীতির বিকল্প রূপ?

[ঢা. বো. ২৩]

থ 21+1 নিয়ম

গ n + 1 নিয়ম

② 2(2l+1) নিয়য়

উত্তর: 🗐 n + l নিয়ম

Rhombus Publications

দি. বো. ২৩। ৬৩। Cu এর ২৯ তম ইলেকট্রনটি কোন অরবিটালে প্রবেশ করে? কু. বো. ২৩।

(4) 3s

(4) 4s

@ 3d

(T) 4p

উন্তর: 🔊 3d

ব্যাখ্যা: 29Cu → 1s2 2s2 2p6 3s2 3p6 4s1 3d10

অতএব, Cu এর ২৯তম ইলেকট্রনটি 3d অরবিটালে প্রবেশ করে।

৬৪। উচ্চ শক্তির অরবিটাল নিচের কোনটি?

[b. বো. ২৩]

③ 3d

(4) 4f

1 5p

(9) 6s

উন্তর: 📵 4f

 $4f \rightarrow (n+1) = 4+3=7$ 

 $5p \rightarrow (n+1) = 5+1=6$ 

 $6s \rightarrow (n+1) = 6+0=6$ 

(n+1) এর মান সমান হলে যেক্ষেত্রে n বড় সেই অরবিটালটি উচ্চ শক্তির।

3d অরবিটালের পরে কোনটিতে ইলেকট্রন প্রবেশ করবে?

কু. বো. ২২; অনুরূপ গ্রন্থ: দি. বো. ২২)

(4) 4d (1) 5s

① 4s উত্তর: 📵 4p

ব্যাখ্যা: আউফবাউ নীতি অনুসারে, যে শক্তিস্তরে (n + 1) এর মান কম হবে সে শতিস্তরে আগে ইলেকট্রন প্রবেশ করবে। আবার যেক্ষেত্রে  $(\mathbf{n}+I)$ এর মান বিভিন্ন শক্তিস্তরের ক্ষেত্রে একই হবে সেক্ষেত্রে যে শক্তিস্তরে n

মান ক্ষুদ্রতর ইলেকট্রন সে অরবিটালে আগে প্রবেশ করবে।

3d = n + l = 3 + 2 = 5

4p = n + l = 4 + 1 = 5

4d = n + 1 = 4 + 2 = 6

4s = n + l = 4 + 0 = 4

5s = n + l = 5 + 0 = 5সুতরাং ইলেকট্রন প্রবেশের ক্রম: 4s > 3d > 4p > 5s > 4d

[ঢা. বো. ২১]

৬৬। কোনটিতে ইলেকট্রন আগে প্রবেশ করবে?

3 6p

(4) 5d (T) 7s

(1) 4f উন্তর: গ্র 4f

ব্যাখ্যা: আউফবাউ নীতি অনুযায়ী, (n + l) এর মান সমান হলে যার n এর মান কম সে অরবিটালে ইলেকট্রন আগে প্রবেশ করে।

4f এর ক্ষেত্রে (n + l) = 4 + 3 = 7

5d এর ক্ষেত্রে (n + 1) = 5 + 2 = 7

6p এর ক্ষেত্রে (n + l) = 6 + 1 = 7

7s এর ক্ষেত্রে (n + l) = 7 + 0 = 7

প্রতিটি অরবিটালে (n+1) এর মান সমান হলেও 4f অরবিটালে n এর মান সবচেয়ে কম। তাই 4f অরবিটালে ইলেকট্রন আর্গে প্রবেশ করে।

| क्रवाव      | জ রুসাম্মন > ACS/ FRB Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oct Suggestion Book                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 9 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---|
| 69          | ছজেন শীক্তি কোনটির ক্ষেত্রে গ্রহে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | गहरा नग्ना हि तम् २०६ स. तम् २०       | 921                     | থায়োসাদফেউ (S <sub>2</sub> O;) আয়া                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | न अर्थणां व्याकन देणचाँचन मस्चा कळ?   |   |
|             | <b>⊗</b> s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>⑨</b> p                            |                         | ® 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊚ 30                                  |   |
|             | <b>⊘</b> d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>⊚</b> f                            |                         | © 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊚ 34                                  |   |
| <b>BESS</b> | ≈ 🗑 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | <b>উ</b> ठक             | ⊕ 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7.                                  |   |
| ব্যাঘ       | A STATE OF THE PARTY OF THE PAR | व विक्ति व्यासिपाला कमा धासाका        |                         | to ve in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. 41                                 |   |
|             | s উপশক্তিভরের একটি মাত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | অরবিটাল ধাকার তা চ্তের দীবি           | वाषा                    | $I: S(16) = 1s^2 2s^2 2p^6 3s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( <sup>7</sup> 3p <sup>*</sup> )      |   |
|             | গ্রদর্শনে অক্ষ ।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Old                                   |   |
| Shr I       | নিচের কোন নীতি অনসাত্রে অধ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | গ্য ইলেকট্রনসমূহের স্পিন একইমুর্ঘ     |                         | $O(8) = 1s^2 \left[ 2s^2 2p^4 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |   |
|             | হবে?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [T. (T. 20                            |                         | 6億                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |   |
|             | <ul><li>পদির বর্জন দীতি</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ব্য হুতের দীতি                        |                         | .: সর্বমোট যোজন ইলেকট্রন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | । नरषा = ((6 × 2) + (6 × 3) + 2)      |   |
|             | <ul><li>আউফবাউ নীতি</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ফাষানের নীতি                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 32 借                                |   |
| উভর         | : ব্য হুতের নীতি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |
| ব্যাখ       | া: হুডের নীতি: সমশক্তিসম্পন্ন বি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | তিন্ন অরবিটালে ইলেকট্রনওলো এমন        | 109                     | HSO ুমূলকের মধ্যে ইলেক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ট্রদের সংখ্যা কডটি।                   |   |
|             | ভাবে অবস্থান করবে যেন তারা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | সবাধিক অধুগা বা বিজোড় অবস্থা         | [                       | ⊚ 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | € 49                                  |   |
|             | ধাকতে পারে। এসব অযুগা ইলে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | কট্রনের স্পিন একইমুখী হবে।            |                         | <b>1</b> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⊚ 51                                  |   |
| (%) I       | ক্রোমিয়াম পরমাণতে অবগা ইলে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | কট্রনের সংখ্যা কত্য ।চা. বো. ২২, ১৯   | উভর                     | · <b>①</b> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |   |
|             | € 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₹ 6                                   | of the latest terms and | া: HSO. মূলকে ইলেকট্রন সং                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | খো = (1 + 16 + 4 × 8 + 1)             |   |
|             | <b>®</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ® 3                                   |                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 50                                  |   |
| উত্তর       | : 		 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ 11=                                 | 16                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 50                                  |   |
| ব্যাখ       | ্যা: Cr এর ইলেক্ট্রন বিন্যাসঃ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 -5                                  |   |
|             | $Cr = [Ar]$ $3d^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4s <sup>1</sup>                       |                         | তার্নির ট্রবনায় বনা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | লি, হাইড্রোজেন বর্ণালি                |   |
|             | Cr = [Ar] 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 1 5                                | 981                     | কোন শঙিস্তরে ইলেকট্রন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | স্থানান্তরের জন্য হাইত্রোজেনের UV     | 7 |
|             | হুভের নীতি অনুযায়ী ইলেকট্রন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | বিন্যাস হতে দেখা যায় যে, Cr এয়      |                         | বর্ণালি রেখা পাওয়া যায়-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [घ. त्य. २०                           |   |
|             | ইলেকট্রন বিন্যাসে বিজোড় e⁻ সং                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                         | <b>③</b> 7 → 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\textcircled{6}  6 \rightarrow 3$    |   |
| -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ··ST                                  | IJF                     | (1) 5 → 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ® 4 → 3                               |   |
| 901         | Care Maria and the contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | র সর্বোচ্চ কয়টি কোরান্টাম সংখ্যার    | উত্তরঃ                  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 . / -                               |   |
| 7           | মান একই হতে পারে?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | াকৃ. বো. ১৯)                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9নি (UV) বৰ্ণালি ব্ৰেৰা পাণ্ডয়া যায় |   |
| 3           | <ul><li>⑤ 1</li><li>⑨ 3</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 2                                   |                         | S TOTAL TOTA | শঙ্কিত্তরে ইলেকট্রনের আগমনে লাইম্যান  |   |
| উত্তর       | (f) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94                                    | 11                      | সিরিজ পাওয়া যায়।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | এর সর্বোচ্চ 3টি কোয়ান্টাম সংখ্যার    |                         | 1-113-4 110-31 413-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |   |
| 0, 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | বর্জন নীতি অনুসারে এটি জানা যায়      | 1                       | कार्केसप्रास्त्रच्या श्रुवशास्त्र वर्धावि                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | নর কোন সিরিজটি অতিবেগুনি অঞ্চে        | * |
|             | 11 -17 (00 110a) 1101-1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dold allo and allo all il illi        | ושר                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | i |
|             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J                                     |                         | রেখা দেখায়?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | দি. বো. ২৩; চা. বো. ২২; ম. বো. ২১)    |   |
|             | একটি অরবিটালের বিপরীত স্পি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | নের 2টি ইলেকট্রন এর ক্ষেত্রে n, l     |                         | <ul><li>বামার</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ৰ প্যান্চেন                           |   |
|             | m এর মান একই, কিন্তু স্পিন ৫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | काग्रान्टोय সংখ্যाর মান ভিন্ন यथाक्रट |                         | ূ ব্রাকেট                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul><li>ভাইমেন</li></ul>              |   |
|             | $+\frac{1}{2},-\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | উত্তর                   | 📵 লাইমেন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |   |
|             | 2' 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |
| ا دو        | Fe <sup>2+</sup> আয়নে d অরবিটালে ইলেব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | মট্রন সংখ্যা কয়টি? (চ. বো. ১৭        | 961                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ত আলোকের তরদদৈর্ঘ্য কত্য বি. বে. ২৩   | l |
|             | <b>③</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | € 6                                   |                         | <b>③</b> 10 − 380 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>③</b> 230 − 375 nm                 |   |
|             | <b>1</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ₹ 4                                   | _                       | ⑨ 10 – 230 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>③</b> 200 − 370 nm                 |   |
| উত্তরঃ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                         | 3 230 − 375 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 724.00 A C 2004                       | 3 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | I STINK                 | T. I IT / THAT THE PARTY I A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                   | 1 |
| ব্যাখ্যা    | Fe(26) $\rightarrow 1s^2 2s^2 2p^6 3s^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                     | שוש                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nm – 400 nm হলেও প্ৰকৃত পক্ষে 230     |   |
| ব্যাখ্যা    | : Fe(26) → 1s² 2s² 2p° 3s² 3<br>Fe²+ → 1s² 2s² 2p6 3s² 3p6<br>∴ Fe²+ এর d অরবিটালে 6টি ই                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3d <sup>6</sup> 4s <sup>0</sup>       | สมสภ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | র্ঘ্যের UV রশ্মি অপটিক্যাল সেন্সরক্র  |   |

...... ACS, > Chemistry 1st Paper Chapter-2 ৭৭। জাল টাকা বা পাসপোর্ট শনাক্তকরণে কোনটি ব্যবহৃত হয়? 🛭 রা. বো. ২৬; 🕽 ৮৩। দৃশ্যমান আলোর তরঙ্গদৈর্ঘ্য কত? 🖟 বো. ২১; চ. বো. ২১; দি. বো. ১৫] অনুরূপ প্রশ্ন: কু. বো. ২৩, ১৬; ঢা. বো. ১৭; চ. বো. ১৭, ১৫; ম. বো. ১৬) থ IR রশ্যি **③** (380 − 700) nm প্র γ-রশ্মি (ম) X-রশ্মি (9) (700 - 900) nm উত্তর: 📵 UV রশ্মি (900 - 1300) nm উত্তর: ﴿ (380 – 700) nm ৭৮। আপতিত রশ্মি  $\stackrel{{
m UV}}{\longrightarrow}$  আসল টাকা ightarrow বিকিরিত রশ্মি। বিকিরিত রশ্মির তরঙ্গদৈর্ঘ্য কোনটি? ৮৪। বামার সিরিজের ২য় লাইনের ক্ষেত্রে n-এর মান কত? यि. ब्बा. २३ মি. বো. ২৩; অনুরূপ প্রস্না: ব. বো. ২২) (A) 3 ⊕ 10 – 380 nm (4) 380 - 780 nm (4) 2 (1)  $10^6 - 10^9 \text{ nm}$  $\mathfrak{I}$  780 –  $10^6$  nm (旬 5 **1** 4 উত্তর: 📵 380 – 780 nm উত্তর: 🕦 4 ব্যাখ্যা: আসল ব্যাংক নোট ও পাসপোর্টে ব্যবহৃত বিশেষ ধরনের কালির ব্যাখ্যা: বামার সিরিজের ক্ষেত্রে n<sub>1</sub> = 2; উপর UV রশ্মি আপতিত হলে তা নির্দিষ্ট বর্ণের দৃশ্যমান আলো  $n_2 = n_1 +$ লাইন নাম্বার  $= n_1 + 2 = 2 + 2 = 4$ বিকিরিত করে। দৃশ্যমান আলোর তরঙ্গদৈর্ঘ্য 380 – 780 nm। ৮৫। লাল রশ্মির তরঙ্গ দৈর্ঘ্য 7000 Å হলে এর তরঙ্গ সংখ্যা কত? [সি. বো. ১৭] ৭৯। কোনটি দৃশ্যমান বর্ণালি? কু. বো. ২৩] 3 1.428 × 10<sup>-3</sup>nm (4)  $14.28 \times 10^3 \text{ cm}^{-1}$  লাইম্যান সিরিজ বামার সিরিজ  $\mathfrak{G}$  1.428 ×  $10^{-3}$  m<sup>-1</sup> (9) 14.28 × 10<sup>-3</sup> nm গ) প্যাশ্চেন সিরিজ ঘ্ ব্রাকেট সিরিজ উত্তর: 📵 14.28 × 10<sup>3</sup> cm<sup>-1</sup> উত্তর: (ব) বামার সিরিজ  $\begin{array}{c|cccc}
7 \times 10^{-7} & \lambda = 7000 \text{ Å} \\
= 1.4286 \times 10^6 \text{ m}^{-1} & = 7 \times 10^{-7} \text{ m} \\
= 14.28 \times 10^3 \text{ cm}^{-1}
\end{array}$ ব্যাখ্যা: তরঙ্গ সংখ্যা,  $\overline{\upsilon} = \frac{1}{\lambda} = \frac{1}{7 \times 10^{-7}}$ ৮০। বর্ণালি বিকিরণের ক্ষেত্রে কোন সিরিজ ব্যতিক্রম? ্য. বো. ২৩) ক্ট ব্রাকেট (ৰ) প্যাশ্চেন গ) বামার (ছ) হামফ্রিস উত্তর: 🔊 বামার ৮৬। প্যান্ডেন সিরিজের ক্ষেত্রে নিমু শক্তিস্তরের মান কত? ব্যাখ্যা: শুধুমাত্র বামার সিরিজে দৃশ্যমান অঞ্চলে বর্ণালি পাওয়া যায়। ব্রাকেট [কু. বো. ২২; অনুরূপ প্রশ্ন: ঢা. বো. ২১] প্যাশ্চেন, হামফ্রিস সিরিজে অবলোহিত (IR) অঞ্চলে বর্ণালি পাওয়া **9** 5 **(4)** যায়। লাইমেন সিরিজে অতিবেগুনী অঞ্চলে বর্ণালি পাওয়া যায়। উত্তর: পা 3 ৮১। কোন বিকিরিত রশার তর<del>ঙ্গ</del>দৈর্ঘ্য সবচেয়ে বেশি? রো. বো. ২৩; জনুরূপ প্রশ্ন: সি. বো. ২৩] ৮৭। অসীম দূরত্বের শক্তিন্তর হতে একটি ইলেকট্র<mark>ন চতুর্থ শক্তিন্ত</mark>রে মহাজাগতিক রশ্মি X-ray স্থানাম্ভরিত হলে বিকিরিত রশ্মিটি কোন সিরিজভুক্ত? রো. বো. ২৩ প) UV-রশ্যি (1) Visible ray ক) লাইমেন (থ) বামার উত্তর: 🕲 Visible ray ত্ব ব্রাকেট গ্ৰ ফুনড ব্যাখ্যা: তরঙ্গদৈর্ঘ্যের উর্ধ্বঃক্রম অনুসারে সাজালে, উত্তর: খি ব্রাকেট মহাজাগতিক রশ্মি < গামা রশ্মি < এক্সরে রশ্মি < অতিবেগুনি রশ্মি < দৃশ্যমান রশ্মি < অবলোহিত রশ্মি < মাইক্রোওয়েভ রশ্মি < বেতার রশ্মি ৮৮। ব্রাকেট সিরিজের ক্ষেত্রে n<sub>2</sub> এর মান কত? চি. বো. ২থ (a) 2 (A) 3 ৮২। কোন বর্ণের আলোর শক্তি বেশি? [দি. বো. ২২; অনুরূপ প্রশ্ন: ঢা. বো. ১৯] **1** 4 **9** 5 क नान ক্ষিলা উত্তর: 🕲 5 (ছ) নীল গ্ৰ বেগুনি ব্যাখ্যা: ব্রাকেট সিরিজের ক্ষেত্রে n<sub>1</sub> = 4; n<sub>2</sub> = 5, 6, 7..... উত্তর: 🕅 বেগুনি ব্যাখ্যা:  $E = \frac{hc}{\lambda}$ ৮৯। ব্রাকেট সিরিজ কোন অঞ্চলের পারমাণবিক বর্ণালি সৃষ্টি করে? মি. বো. ২৩; অনুরূপ প্রশ্ন: য. বো. ২১ অর্থাৎ,  $E \propto \frac{1}{\lambda}$ 

হওয়ায় এর শক্তি সর্বাধিক হয়।

এজন্য বেগুনি আলোর তরঙ্গদৈর্ঘ্য (380 – 425 nm) সবচেয়ে কম

## t.me/admission\_stuffs

ক অতিবেগুনি

উত্তর: ﴿ অবলোহিত

পাইক্রোওয়েভ

অবলোহিত

ত্ব দৃশ্যমান

গুণাত রসায়ন > ACS/ FRB Compact Suggestion Blook.....

- X-ray
- (1) IR
- MRI
- (9) UV

উত্তর: 📵 IR

 क्रामात्र व्याकास काय मनाक्रकत्रप भवीन्नात्र कान त्रिमा वानवात नता र्य्र? TAL OIL HU

@ UV

X-ray

1 IR

(9) MW

উব্তর: গ IR

७२। ट्रिक्ट खोला कार्वन ७ श्रृंदेखात्म्यन मनाकक्ताल वात्रकृष्ठ स्त्र लगनिष्ठः ब्रा. व्या ७स

- NMR
- @ MRI

1 IR

(9) UV

উত্তর: 🔊 IR

৯৩। রেখা বর্ণালির মাধ্যমে-

- ক্সিলক শনাক্ত করা বায়
- জাল টাকা শনাক্ত করা যায়
- শেল শনাক্ত করা যায়
- ছি রোগ নির্ণয় করা যায়

উত্তর: 🕅 মৌল শনাক্ত করা যায়

৯৪। রিডবার্গ ধ্রুবক (R<sub>H</sub>) এর মান কত?

- 3 1.09678 × 10<sup>-2</sup> m<sup>-1</sup>
- 1.09678 × 10<sup>5</sup> m<sup>-1</sup>
- 1.09678 × 10<sup>6</sup> m<sup>-1</sup>
- (9) 1.09678  $\times$  10<sup>7</sup> m<sup>-1</sup>

উত্তর: 🕲 1.09678 × 10<sup>7</sup> m<sup>-1</sup>

৯৫। H-পরমাণুর বর্ণালির বামার সিরিজের সর্বনিল্ল তরঙ্গ সংখ্যার বিকিরিত রশ্যি কোনটি? मि. वा. २२।

- $\oplus \frac{3R_{H}}{4}$
- $\Im \frac{5R_{\rm H}}{36}$
- $\mathfrak{g} \frac{8R_H}{\alpha}$

উত্তর: ৰ  $\frac{5R_H}{36}$ 

ব্যাখ্যা: বামার সিরিজে  $n_1 = 2$  হতে  $n_2 = 3$  তে ইলেকট্রন গেলে তথন শক্তি সর্বনিম্ন হয় ফলে তরঙ্গদৈর্ঘ্য সর্বোচ্চ হয় আর তরঙ্গ সংখ্যা সর্বনিম্ন

হবে কেননা  $\bar{\upsilon} = \frac{1}{\lambda}$ 

আমরা জানি,

$$\bar{\upsilon} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = R_H \left( \frac{1}{2^2} - \frac{1}{3^2} \right)$$
$$= R_H \times \left( \frac{1}{4} - \frac{1}{9} \right) = \frac{5R_H}{36}$$

৯০। চিকিৎসা বিজ্ঞানে কিজিওপেরাপিতে কোনটি ব্যবহার করা হয়। হি. ল. २०॥ । ১৬৬। বাইফ্রোফেন পরমাণুর বর্গাদিফে প্যায়ন্ডন দির্দ্ধিফের জন্য সর্ফোক্ত স্তবাস্টিনর্দ্য কন্তপ্ত | PHE ONE 7345|

- 1 144R#

<del>एका</del>ः क् <u>144</u> 7रिम

नाभाः यामता वानि।

ਰਗਸ਼ ਸਰਗਾ  $\bar{o} = \mathbb{R}_{H} \left( \frac{\mathbb{I}}{\Pi} - \frac{\mathbb{I}}{\Pi} \right)$ 

भारतन नितिष्पता टाग्यः 📭 🗆 । स्वाम्धेनमी नर्जीस्क वर्णा 🐠 = 🕸 वता ।

$$\therefore \frac{1}{\lambda} = \Re_{\text{FF}} \left( \frac{1}{3^3} - \frac{1}{4^3} \right) = \frac{7}{1444} \Re_{\text{FF}}$$

$$\therefore \lambda = \frac{144}{7R_{HS}}$$

FE OIL JOH

णि. जा. २७५ मि. जा. २७।

৯৭। Wi-Fi रू जान बागजत रुद्धि हुननी। निननमा नानएक पाछ

क्षा जाट अक्षी

- 🕏 मार्वेद्यमाश्रदाङ
- न विस्त्र स्पान
- त) पनाणादिष्ठ
- গে অভিচার্যন

उंस्तः की गावैदकाष्ट्रताष्ट्र

**८५। कान तिमापित निक मर्ना**भिक्त

京 01年 2149

- ক্তি গামা
- न विषय स्पान
- त धनावादिक
- वि मार्नेएकाष्ट्रपाक

উक्तः कि गामा

वााथाः त विभाव ज्वन्नेक्राजीन मान जिम जात कन्नाक जिम बनद का बिम्ब मिं तिम ।

আৰাৱ, E তে o ত <u>1</u>

উপর্বৃক্ত तिभावकात मका गामा विभाग उत्तम केरकात मान महाएका क्य, कम्भाक नवळता तिर्म । ठाउँ गामा तिर्मात निक मनीपिक ।

১৯। निक्त्र कान निष्ठिनानि NIVIR निकार

原加州

- 3 16O
- 3 CC
- 12S
- H', @

**উखतः** ७ ¦H

ব্যাখা: পানিতে যে হাইফ্রোজেন পরমানু (¹H) গাডেন সেটি NIUL সত্রিনা পরমাণু কারণ এ নিউক্রিয়ালে একটি অফুচা প্রোটন ( H) আজে। এর একমুগী স্পিনিংকে প্রশামিত করার মাত আরা এনটি প্রোটন (মাণীন্দ যুগল) সেই। তাই H পরমান একটি ক্ষুদ্র চুবক বিসেবে কাচ্চ করে।

...... ACS > Chemistry 1st Paper Chapter-2

#### ১00 | MRI कि?

- কৌমকীয় অবলোহিত রশ্যি
- কৌমকীয় অনুরণন প্রতিচ্ছবিকরণ
- গ্র নিউক্লিয়ার চৌম্বকীয় অনুকরণ
- টোমকীয় রেডিও প্রতিচ্ছবিকরণ
- উত্তর: 📵 চৌম্বকীয় অনুরণন প্রতিচ্ছবিকরণ

### দ্রাব্যতা ও দ্রাব্যতা গুণফল

১০১। কোন যৌগ পানিতে দ্রবীভূত হওয়ার শর্ত কি?

- ল্যাটিস এনথালপি > হাইড্রেশন এনথালপি
- হাইড্রেশন এনখালপি > ল্যাটিস এনখালপি
- ন্য হাইড্রেশন এনথালপি = ল্যাটিস এনথালপি
- গঠন এনথালপি > বিয়োজন এনথালপি

উত্তর: 🕲 হাইড্রেশন এনথালপি > ল্যাটিস এনথালপি

ব্যাখ্যা: অ্যানায়ন ও ক্যাটায়ন মিলিত হয়ে এক মোল কঠিন আয়নিক কেলাস তৈরিতে যে পরিমাণ শক্তি নির্গত হয় তাকে ল্যাটিস এনখালপি বলে। আর আয়নিক যৌগের কেলাস পানিতে দ্রবীভূত করার ক্ষেত্রে যে পরিমাণ শক্তি নির্গত হয় তাকে হাইড্রেশন এনথালপি বলে। যৌগের উত্তর: <a>থ</a> 4S³ পানিতে দ্রাব্যতার ক্ষেত্রে হাইড্রেশন এনথালপিকে অবশ্যই ল্যাটিস ব্যাখ্যা:  $AX_2 \Rightarrow A^{2+} + 2X^{-}$ এনথালপি অপেক্ষা বেশি হতে হয়।

১০২। 25° সে. তাপমাত্রায় 150 গ্রাম সম্পুক্ত দ্রবণে 50 গ্রাম দ্রব দ্রবীভূত থাকলে ঐ দ্রবের দ্রাব্যতা কত?

(त्रा. त्वा. २२, ४४; य. त्वा. २२; जनुत्रभ क्षमः य. त्वा. २५; इ. त्वा. २५; म. त्वा. २५)

- **100**
- @ 75
- **(9)** 50

(T) 25

উত্তর: প্র 50

100 m ব্যাখ্যা: আমরা জানি, দ্রাব্যতা, S = M-m

$$= \frac{100 \times 50}{150 - 50}$$
$$= 50$$

১০৩।দ্রাব্যতা গুণফল নিচের কোন ক্ষেত্রে প্রয়োজ্য? [मि. वा. २२; मि. वा. २১]

- অধিক দ্রবণীয় আয়নিক যৌগ
- অধিক দ্রবণীয় সমযোজী যৌগ
- গে) স্বল্প দ্রবণীয় আয়নিক যৌগ
- ষ্প্র দ্রবণীয় সমযোজী যৌগ

উত্তর: গ্র স্বল্প দ্রবণীয় আয়নিক যৌগ

১০৪। X2Y3 লবণের দ্রাব্যতার গুণফলের একক-

ঢা. বো. ১৯; অনুরূপ প্রশ্ন: য. বো. ১৯]

- mol⁵ L⁻⁵
- mol<sup>-5</sup> L<sup>-5</sup>
- 1 mol5 L5
- mol⁻⁵ L⁵

উত্তর: 📵 mol<sup>5</sup> L<sup>-5</sup>

Rhombus Publications

বি. বো. ১৭ ব্যাখ্যা: X<sub>2</sub>Y<sub>3</sub> = 2X<sup>3+</sup> + 3Y<sup>2-</sup>

 $X_2Y_3$  এর দ্রাব্যতা = S mol L<sup>-1</sup>

$$=(2S)^2(3S)^3=108S^5$$

S এর একক mol L-I

108S5 এর একক (mol L-1)5 = mol5 L-5

১০৫। ম্যাগনেশিয়াম ফসফেট এর দ্রাব্যতা গুণাক্ক কোনটি?

- $(\$) [Mg^{2+}] \times [PO_4^3]^2$
- $\P$   $[Mg^{2+}]^3 \times [PO_4^3]$

কু. বো. ১১

- $\P$   $[Mg^{2+}]^3 \times [PO_4^3]^2$

উম্বর: 📵 [Mg<sup>2+</sup>]<sup>3</sup> × [PO<sub>4</sub><sup>3-</sup>]<sup>2</sup>

ব্যাখ্যা: Mg3(PO4)2 এর বিয়োজন নিম্নরূপ:

$$Mg_3(PO_4)_2 = 3Mg^{2+} + 2PO_4^{3-}$$

$$K_{sp} = [Mg^{2+}]^3 [PO_4^3]^2$$

১০৬। AX2 এর দ্রাব্যতা S হলে দ্রাব্যতা গুণফল কত হবে? [ঢা. বো. ২৩]

(4) S<sup>2</sup>

- (4) 4S3
- @ 27S4
- ® 108S5

দ্রাব্যতা গুণফল, K<sub>sp</sub> = [A<sup>2+</sup>] [X<sup>-</sup>]<sup>2</sup>

$$= S \times (2S)^2$$

$$= S \times 4S^2 = 4S^3$$

১০৭। Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> এর দ্রাব্যতা S হলে, দ্রাব্যতা গুণফল হলো–

চি. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২১; ব. বো. ২১, ১৬)

- @ 36S5
- 例 54S<sup>5</sup>
- উন্তর: (ঘ) 108S⁵

(108S5

वाचाः Cu3(PO4)2 = 3Cu2+ + 2PO4

$$K_{sp} = [Cu^{2+}]^3 \times [PO_4^{3-}]^2$$
$$= (3S)^3 \times (2S)^2$$
$$= 278^3 \times 48^2$$

$$= 27S^3 \times 4S^2$$

 $= 108S^5$ 

১০৮। $A_2B_3$  যৌগের দ্রাব্যতা S ও দ্রাব্যতা গুণফল  $\mathbf{K}_{\mathsf{sp}}$  এর মধ্যে সঠিক সম্পর্ক কোনটি? বি. বো. ২২; অনুরূপ প্রশ্ন: ঢা. বো. ১৭

- $\Re K_{sp} = 36S^5$
- $\Re K_{sp} = 6S^5$
- $\Re$   $K_{sn} = 6S^2$

ব্যাখ্যা: A2B3 এর বিয়োজন নিমুরূপ:

$$A_2B_3 \implies 2A^{3+} + 3B^{2-}$$

আমরা জানি, 
$$K_{sp} = [A^{3+}]^2 [B^2]^3$$

$$=(2S)^2 \times (3S)^3 = 108S^5$$

ন্ত্রণগত রসায়ন > ACS, FRB Compact Suggestion Book.....

১০৯। CaF2-এর সম্পৃক্ত জ্লীয় দ্রবণে ফ্লোরাইড আয়নের ঘনমাত্রা 0.00655 | ১১২। সিলভার ক্লোরাইডের দ্রাব্যতা প্রতি লিটার জ্লীয় দ্রবণে 0.0015 প্রাম

#### $g L^{-1}$ হলে $CaF_2$ এর দ্রাব্যতা শুণফল কত হবে?

টা. বো. ২১

$$\textcircled{3}$$
 3.7 × 10<sup>-13</sup>

$$3.048 \times 10^{-10}$$

$$3.048 \times 10^{-10}$$

উব্ব: (২) 2.048 × 10-11

ব্যাখ্যা: CaF<sub>2</sub> == Ca<sup>2+</sup>(aq) + 2F<sup>-</sup>(aq)

$$[F] = 0.00655 \text{ g L}^{-1}$$

$$=\frac{0.00655}{19} \text{ mol } L^{-1}$$

$$= 3.447 \times 10^{-4} \text{ mol L}^{-1}$$

$$F = 2S = 3.447 \times 10^{-4} \text{ mol L}^{-1}$$

$$\Rightarrow$$
 S = 1.724 × 10<sup>-4</sup> mol L<sup>-1</sup>

$$K_{sp} = [Ca^{2+}] \times [F^-]^2$$

$$= S \times (2S)^2 = 4S^3$$

$$=4 \times (1.724 \times 10^{-4})^3$$

$$= 2.048 \times 10^{-11}$$

#### হলে দ্রাব্যতা গুণফল কত?

চি. বো. ২২

$$1.1 \times 10^{-12}$$

$$\mathfrak{P}$$
 2.1 ×  $10^{-13}$ 

উম্বর: 🕸 1.1 × 10<sup>-10</sup>

ব্যাখ্যা: AgC/-এর দ্রাব্যতা = 0.0015 g L<sup>-1</sup>

$$=\frac{0.0015}{143.5}$$
 mol L<sup>-1</sup>

$$= 1.045 \times 10^{-5} \text{ mol L}^{-1}$$

জলীয় দ্রবণে AgCl এর সাম্যাবস্থা হলো:

$$AgCl \rightarrow Ag^{+} + Cl^{-}$$

$$\Rightarrow S^2 = (1.045 \times 10^{-5})^2$$
$$= 1.10 \times 10^{-10}$$

১১৩। XY যৌগের দ্রাব্যতার ক্ষেত্রে কোনটি সঠিক?

मि. त्वा. २२]

$$\odot$$
  $K_{sp} = \sqrt{S}$ 

$$\Im S = \sqrt{K_{sp}}$$

$$( \mathbf{V} ) \mathbf{K}_{sp} = \mathbf{S}$$

১১০। 
$${f LM_2}$$
 এর দ্রাব্যতা  $0.0003~{
m mol~L^{-1}}$  হলে এর দ্রাব্যতা গুণফল কত?  ${f V}$  উত্তর:  ${f Q}$   ${f S}=\sqrt{{f K}_{
m sp}}$ 

রা. বো. ২৩; অনুরূপ প্রশ্ন: য. বো. ২৩; সম্মিদিত বো. ১৮) ব্যাখ্যা:  $XY = X^+ + Y$ 

$$\therefore K_{sp} = S^2$$

$$\therefore S = \sqrt{K_{sn}}$$



উত্তর: (ব) 1.08 × 10<sup>-10</sup> mol<sup>3</sup> L<sup>-3</sup>

ব্যাখ্যা: জলীয় দ্রবণে LM2 এর সাম্যাবস্থা হলো:

4 1.08 × 10<sup>-11</sup> mol<sup>3</sup> L<sup>-3</sup>

(9)  $9.0 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$ 

$$LM_2 \rightarrow L^{2+} + 2M^-$$

১১১। AIF3 এর দ্রাব্যতা 0.0002 mol/L হলে দ্রাব্যতা গুণফল কত?

$$= S \times (2S)^2$$

$$=4S^{3}$$

$$= 4 \times (0.0003)^3$$

$$= 1.08 \times 10^{-10} \text{ mol}^3 \text{ L}^{-3}$$

(4) 4.3 × 10<sup>-14</sup>

 $\textcircled{9} 4.3 \times 10^{-13}$ 

রা. বো. ২২; য. বো. ২২)

(4)  $1.08 \times 10^{-10} \text{ mol}^3 \text{ L}^{-3}$ 

(a)  $9.0 \times 10^{-7} \text{ mol}^2 \text{ L}^{-2}$ 

১১৪। 25°C তাপমাত্রায় Ca(OH)₂ এর দ্রাব্যতা শুণফল 4.42 × 10<sup>-5</sup>

## হলে Ca(OH)2 এর দ্রাব্যতা কত?

$$\odot$$
 1.111 × 10<sup>-2</sup> M

$$3 2.23 \times 10^{-2} \text{ M}$$

$$\bigcirc$$
 2.806 × 10<sup>-2</sup> M

উত্তর: (খ) 2.23 × 10<sup>-2</sup> M

∴ Ca(OH)₂ এর দ্রাব্যতা গুণফল, K<sub>sp</sub> = [Ca<sup>2+</sup>] [OH]²

$$= S \times (2S)^2$$

$$\therefore 4S^3 = 4.42 \times 10^{-5}$$

$$\Rightarrow S = \sqrt[3]{\frac{4.42 \times 10^{-3}}{4}}$$

$$S = 2.23 \times 10^{-2} \text{ M}$$

ব্যাখ্যা: AIF3 = AI3+ + 3F-

 $\textcircled{3}.4 \times 10^{-14}$ 

 $\mathfrak{I}$  3.4 × 10<sup>-13</sup>

উত্তর: (খ) 4.3 × 10<sup>-14</sup>

$$\therefore K_{sp} = \lceil Al^{3+} \rceil \lceil F^{-} \rceil^{3}$$

$$= (S) (3S)^3 = 27S^4$$

$$= 27 \times (0.0002)^4$$
$$= 4.3 \times 10^{-14}$$

১১৫। অ্যালুমিনিয়াম হাইড্রোক্সাইডের দ্রাব্যতার গুণফল  $3.7 imes 10^{-15}$  হলে

## এর দ্রাব্যতা কত?

[য. বো. ২৩]

$$\textcircled{3}$$
 4.28 × 10<sup>-3</sup> g L<sup>-1</sup>

$$\textcircled{3}$$
 4.42 × 10<sup>-3</sup> g L<sup>-1</sup>

6.24 
$$\times$$
 10<sup>-3</sup> g L<sup>-1</sup>

बाधाः Al(OH)3 = Al<sup>3+</sup> + 3OH

S

∴  $AI(OH)_3$  এর দ্রাব্যতা গুণফল,  $K_{sp} = [AI^{3+}][OH]^3$ =  $S \times (3S)^3$ 

$$\therefore 27S^4 = 3.7 \times 10^{-15}$$

$$\Rightarrow S = \sqrt[4]{\frac{3.7 \times 10^{-15}}{27}}$$

$$\therefore S = 1.082 \times 10^{-4} \text{ mol L}^{-1}$$

$$= 1.082 \times 10^{-4} \times 78 \text{ g L}^{-1}$$

$$= 8.44 \times 10^{-3} \text{ g L}^{-1}$$

১১৬।  $25^{\circ}$ C তাপমাত্রার  $Ag_2CrO_4$  এর দ্রাব্যতা গুণফলের মান  $1.1 \times 10^{-12}$  হলে  $Ag^+$  আয়নের ঘনমাত্রা mol  $L^{-1}$  এককে কত হবে?

চি. বো. ২৩; অনুরূপ গ্রন্ন: দি. বো. ২৩)

ব্যাখ্যা:  $Ag_2CrO_4 = 2Ag^+ + CrO_4^{2-}$ 

S

$$Ag_2CrO_4$$
 এর দ্রাব্যতা শুণফল,  $K_{sp} = [Ag^+]^2 [CrO_4^{2-}]$ 

$$= (2S)^2 \times S$$

$$= 4S^3$$

$$\therefore 4S^3 = 1.1 \times 10^{-12}$$



$$\therefore$$
 S = 6.5 × 10<sup>-5</sup> mol L<sup>-1</sup>

∴ Ag<sup>+</sup> আয়নের ঘনমাত্রা = (2 × 6.5 × 10<sup>-5</sup>) mol L<sup>-1</sup>

$$= 1.3 \times 10^{-4} \text{ mol L}^{-1}$$

### ১১৭। AB3 যৌগের দ্রাব্যতা তণফল 1.7 × $10^{-12}$ হলে এর দ্রাব্যতা কত?

[য. বো. ২১]

$$\textcircled{9} \ 2.5 \times 10^{-7} \ \text{mol L}^{-1}$$

बार्चा:  $AB_3(s) = A^{3+}(aq) + 3B^{-}(aq)$ 

দ্রাব্যতা গুণাঙ্ক, K<sub>sp</sub> = [A<sup>3+</sup>] [B<sup>-</sup>]<sup>3</sup>

$$= S \times (3S)^3 = 27S^4$$

$$\therefore 27S^4 = K_{sp}$$

$$\Rightarrow S^4 = \frac{1.7 \times 10^{-12}}{27} \ [\because \ K_{sp} = 1.7 \times 10^{-12}]$$

$$\therefore S = 5 \times 10^{-4} \text{ mol } L^{-1}$$

..... ACS, > Chemistry 1st Paper Chapter-2

## ১১৮। AI<sub>2</sub>(SO<sub>4</sub>)3 এর দ্রাব্যতা খণফল 1.5 × 10<sup>-5</sup> হলে এর সম্পৃক্ত দ্রবন্ধে

SO42- এর ঘনমাত্রা কত?

[F. CAT. 35]

$$\odot$$
 2.25 × 10<sup>-2</sup>

$$3.5 \times 10^{-2}$$

① 
$$12.75 \times 10^{-2}$$

$$K_{sp} = [Al^{3+}]^2 [SO_4^{2-}]^3 = (2S)^2.(3S)^3 = 108S^5$$

$$108S^5 = 1.5 \times 10^{-5}$$

$$\Rightarrow$$
 S = 4.25 × 10<sup>-2</sup> mol/L

∴ দ্রবণে 
$$SO_4^{2-}$$
 এর ঘনমাত্রা =  $(3 \times 4.25 \times 10^{-2})$  M  
=  $12.75 \times 10^{-2}$  M

#### ১১৯। নিচের কোন সেটটিতে সম-আয়ন প্রভাব বিদ্যমানঃ

রো. বো. ২২

- <sup>®</sup> H₂S, HCI
- 1 C2H6, HC/
- (1) NaCl, C<sub>6</sub>H<sub>5</sub>Cl
- উন্তর: 🕲 H<sub>2</sub>S, HCl

### শিখা পরীক্ষা, আয়ন শনাক্তকরণ

### ১২০। নিচের কোন ধাতু শিখা পরীক্ষায় হলুদাভ সবুজ বর্ণ দেখায়? াত্য. বো. ১১

- (a) Ca
- Ba

- 1 Na
- ® K
- উত্তর: 🕲 Ba

ব্যাখ্যা: শিখা পরীক্ষায় মৌলের বর্ণ:

| মৌল | । वर्ष       | মৌল    | वर्ष                     |
|-----|--------------|--------|--------------------------|
| Li  | উজ্জ্বল লাল  | Be, Mg | বর্ণ প্রদর্শন করে না     |
| Na  | সোনালী হলুদ  | Ca     | ইটের ন্যায় লাল          |
| K   | বেখনী        | Sr     | টকটকে লাল                |
| Rb  | লালচে বেশুনী | Ba     | কাঁচা আপেলের ন্যায় সবুজ |
| Cs  | नीन          | Ra     | मान                      |

### ১২১। শিখা পরীক্ষায় কোন আয়নের বর্ণ কোবান্ট কাঁচ দিয়ে হালকা সবুজ দেখা যায়? [সি. বো. ১৭]

- Tu<sup>2+</sup>
- Fe<sup>2+</sup>
- ① Zn2+
- ® Ca<sup>2+</sup>

উন্তর: ত্ত Ca<sup>2+</sup>

### ১২২। কোনটি শিখা পরীক্ষা দেয় না?

[ঢা. বো. ২১]

- Na
- Be

① K

(9) Ca

উন্তর: 📵 Be

ग्राখाः Na —→ সোনালী হলুদ

 $K \longrightarrow$  বেগুনী

Ca → ইটের न्যाग्र नान বর্ণ দেখায়

ভণগত রসায়ন > ACS, FRB Compact Suggestion Book..... ১২৩।কোনটি অভিরিক্ত NH, দ্রবণে দ্রবণীয়া সি. বো. ১৯। ১২৮। Cu<sup>2+</sup> শনাক্তকরণে ব্যবহৃত হয়-(₹) Cu2+ (1) Fe3+ (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (9) Zn2+ (F) Ca2+ ( Ca2+ 1 KOH +  $K_2[Hgl_4]$ উন্তর: 🕏 Cu²+ উত্তর: (1) K4Fe(CN)6 ১২৪। সোডিয়াম আয়ন শনাক্তকরণে ব্যবহৃত হয় কোনটি? ১২৯। কোনটি নেসলার বিকারক? [मि. त्वा. २२: कृ. त्वा. ১৭] [চ. বো. ২৩; কু. বো. ২৩; অনুরূপ গ্রন্থ: ম. বো. ২১; সম্মিলিত বো. ১৮] ৰু Zn-Hg ও গাঢ় HC/ CuSO<sub>4</sub> + 2NaOH পি K2HgI4 ও KOH দ্রবণ (1) [Ag(NH<sub>1</sub>)<sub>2</sub>]OH (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub> ® K2Hg L4 উত্তর: 🗇 K2HgI4 ও KOH দ্রবণ উভর: (श K2H2Sb2O2 ব্যাখ্যা:  $2Na^{\dagger}(aq) + K_2H_2Sb_2O_7 \rightarrow Na_2H_2Sb_2O_7 \downarrow + 2K^{\dagger}(aq)$ ১৩০। নিচের কোনটি রক্তের ন্যায় লাল দ্রবণের সংকেত? [ग. त्वा. २১] সাদা মিহি দানাদার Fe(CNS)<sub>3</sub> Fe(CNS)<sub>2</sub> ১২৫।কোনটি শনাক্তকরণে পটাশিয়াম টেট্রাআয়োডো মারকিউরেট (II) ⊕ NH₄CNS ® KCNS যৌগ ও NaOH মিশ্রণ ব্যবহৃত হয়? উন্তর: 📵 Fe(CNS)1 বি. বো. ২৩; চ. বো. ২২; রা. বো. ১৯; দি. বো. ১৯; অনুরূপ প্রশ্ন: সি. বো. ২৩) ১৩১। লবণের দ্রবণ + Ba(NO<sub>3</sub>)<sub>2</sub> → 'B' HCl 'C' + CO<sub>2</sub> + H<sub>2</sub>O অ্যামোনিয়াম আয়ন ক্যালসিয়াম আয়ন গ্র ক্লোরাইড আয়ন ফরাস আয়ন B একটি সাদা অধঃক্ষেপা মি. বো. ২৩ উত্তর: 😵 অ্যামোনিয়াম আয়ন BaSO4 (1) BaCl2 ব্যাখ্যা: NH₄ (অ্যামোনিয়াম আয়ন) শনাক্তকরণে K₂[HgI₄] বা, পটাশিয়াম (9) NaCl BaCO<sub>3</sub> ট্ট্রোআয়োডো মারকিউরেট (II) ব্যবহৃত হয়। উত্তর: (ব) BaCl<sub>2</sub> ১২৬। K4[Fe(CN)6] দ্রবণ ঘারা কোন ক্যাটায়নের নিন্চিত পরীকা করা याशाः CO (aq) + Ba(NO3)2(aq) → BaCO3(s) 'R' र्य? य. (वा. २२, २১) সাদা অধঃক্ষেপ NH.  $BaCO_3(s) + 2HCl(aq) \rightarrow BaCl_2(aq) + CO_2(g) + H_2O(l)$ n Na+ (F) A13+ উন্তর: 🕸 Cu<sup>2+</sup> ব্যাখ্যা:  $2\text{CuSO}_4(\text{aq}) + \text{K}_4[\text{Fe})\text{CN}_6](\text{aq}) \rightarrow \text{Cu}_2[\text{Fe}(\text{CN})_6] \downarrow$ ১৩২।কোনটি শনাক্তকরণে বেরিয়াম নাইট্রেট ব্যবহার করা হয়? লালচে বাদামী [রা. বো. ২১: অনুরূপ গ্রন্ন: ব. বো. ২১] + 2K2SO4(aq) (1) Ca2+ ১২৭। কোন বিকারক দিয়ে Cu2+ এবং Fe2+ উভয় আয়ন শনাক্ত করা যায়? (1) CI (1) SO<sub>4</sub><sup>2</sup> বি. বো. ২২ উন্তর: 🖲 SO4-ক) নেসলার দ্রবণ अण्यात्मानिया प्रवि ব্যাখ্যা:  $SO_4^{2-}(aq) + Ba(NO_3)_2(aq) \rightarrow BaSO_4(s) \downarrow + 2NO_3^{-}(aq)$ গ্রে সিলভার নাইট্রেট দ্রবণ ৩ H2S দ্ৰবণ সাদা অধঃক্ষেপ উত্তর: (ব) অ্যামোনিয়া দ্রবণ ব্যাখ্যা: 2CuSO<sub>4</sub>(aq) + 2NH<sub>4</sub>OH(aq) →  $CuSO_4.Cu(OH)_2(s)$  +  $(NH_4)_2SO_4(aq)$  ১০০ IA +  $Ba(NO_3)_2$  → সাদা অধ্যক্ষেপ  $\xrightarrow{HCI}$  অদ্রবণীয়; 'A' হালকা নীল বর্ণের অধঃক্ষেপ যৌগে নিচের কোন মূলকটি বিদ্যমান? কু. বো. ২১]  $CuSO_4.Cu(OH)_2 + (NH_4)_2SO_4 + 6NH_4OH \rightarrow$ ⊕ CO<sub>1</sub><sup>2</sup> (1) CT  $2[Cu(NH_3)_4]SO_4(aq) + 8H_2O(l)$ 1 NH ® SO<sub>4</sub> -গাঢ় নীল বৰ্ণ উন্তর: (ছ) SO<sub>4</sub> অতএব, Cu2+ অতিরিক্ত NH3 দ্রবণে দ্রবণীয় ব্যাখ্যা:  $SO_4^2$ (aq) + Ba(NO<sub>3</sub>)<sub>2</sub>(aq)  $\rightarrow$  BaSO<sub>4</sub>(s)  $\downarrow$  + 2NO<sub>3</sub>(aq) আবার, FeSO<sub>4</sub>(aq) + 2NH<sub>4</sub>OH(aq) → সাদা অধঃক্ষেপ  $Fe(OH)_2(s) + (NH_4)_2SO_4(aq)$ BaSO₄(s) + HCl(aq) → অদ্রবণীয় সবুজ অধঃক্ষেপ

t.me/admission\_stuffs

...... ACS, > Chemistry 1st Paper Chapter-

#### নিজেকে যাচাই করো

| 11 | <ul> <li>কোনটি শনাক্তকরণে পটাশিয়াম টেট্রাআয়োছো মারকিউরেট (</li> </ul> | II) योग |
|----|-------------------------------------------------------------------------|---------|
|    | ও NaOH मिद्यंग राज्यक रग्न?                                             |         |

- 📵 অ্যামোনিয়াম আয়ন
- ক্যালসিয়াম আয়ন
- গ) কোরাইড আয়ন
- (ছ) ফেরাস আয়ন
- ২। কোন বিকারক দিয়ে Cu2+ এবং Fe2+ উভয় আয়ন শনাক্ত করা যায়?
  - কি নেসলার দ্রবণ
- आद्यानिया प्रवं
- পিলভার নাইট্রেট দ্রবণ
- (দ) H2S দ্রবণ
- ৩। H পরমাণুর ৪র্থ কক্ষপথের ব্যাসার্থ 7.5 × 10<sup>-10</sup> m হলে, ঐ কক্ষে ইলেকট্রনটির গতিবেগ কত?

### ইলেকট্রনের ভর = $9.1 \times 10^{-31} \text{ kg}$

- 3 4.5982 × 105 ms 1
- 3 5.9482 × 10<sup>5</sup> ms<sup>-1</sup>
- $\bigcirc$  6.1805 × 10<sup>5</sup> ms<sup>-1</sup>
- $\P$  7.4805 × 10<sup>5</sup> ms<sup>-1</sup>
- ৪। বোর পরমাণুতে একটি বোর ইলেকট্রন চতুর্থ শক্তিস্তরে একটি পূর্ণ আবর্তন করতে কয়টি পূর্ণ তরঙ্গ সৃষ্টি করবে?
  - 2

(4) 3

4

- (T) 5
- ৫। প্রথম তিনটি বোর কক্ষপথের ব্যাসার্ধের অনুপাত হলো-
  - 3 1:2:3
- 3 1:4:7
- 1:4:9
- ® 1:8:28
- ৬। পরমাণুতে অরবিটালের ধারণা পাওয়া যায় কোন উৎস থেকে?
  - ক বোর মডেল
- ৰ রাদারফোর্ড মডেল
- গ্ কোয়ান্টাম তত্ত্ব
- ত্ব আউফবাউ নীতি
- पि इसकीय काग्रान्ताम मर्था m व्यवर महकात्री काग्रान्ताम मर्था। । इस छत्व-

- ৮। একটি ns অরবিটালে কত সংখ্যক পর্ব বা নোড থাকতে পারে-
  - ক n সংখ্যক
- ৰ (m + 1) সংখ্যক
- 1 2n² সংখ্যক
- ি (n − 1) সংখ্যক
- ৯। ক্যালসিয়ামের সর্ববহিঃছ্ ভরের ইলেকট্রন্বয়ের কোয়ান্টাম সংখ্যার সেট কোনটি?
  - (4) n = 4, l = 0, m = 0,  $s = +\frac{1}{2}$ ,  $-\frac{1}{2}$
  - (1) n = 3, l = 1, m = 0,  $s = +\frac{1}{2}$ ,  $+\frac{1}{2}$
  - (1) n = 4, l = 1, m = 0,  $s = +\frac{1}{2}$ ,  $-\frac{1}{2}$
  - (1) n = 4, l = 2, m = 0,  $s = +\frac{1}{2}$ ,  $-\frac{1}{2}$
- ১০। ক্রোমিয়াম পরমাণুতে অযুগা ইলেকট্রনের সংখ্যা কত?
- **3** 6
- (V) 3
- ১১। निद्भत्र निউक्रियात्र विकिया त्थरक Q निर्गय कत्र।

- ১২। বোর পরমাণু মডেল ব্যাখ্যা করতে পারে-
  - (i) পরমাণুর তড়িৎ নিরপেক্ষতা
  - (ii) পারমাণবিক বর্ণালি
  - (iii) কক্ষপথের আকার
  - নিচের কোনটি সঠিক?
  - (4) i (5)
- (1) ii v iii
- (1) i S iii
- ( i, ii e iii
- ১৩। হাইড্রোজেন পরমাণুর বর্ণালির কোন সিরিজটি অতিবে<del>ত</del>নি অঞ্চলে রেখা দেখার?
  - ক) বামার
- প্যাকেন
- ৰ) ব্ৰাকেট
- হি) লাইমেন

- ১৪। রেখা বর্ণানির মাধ্যমে–
  - কৃ মৃলক শনাক্ত করা যায়
- জাল টাকা শনাক্ত করা যায়
- ণ্) মৌল শনাক্ত করা যায়
- ছি রোগ নির্ণয় করা যায়
- ১৫। Wi-Fi তে কোন অঞ্চলের তড়িৎ চুম্বকীয় বিকিরণ ব্যবদ্ধত হয়?
  - মাইক্রোওয়েভ 

     রেডিও ওয়েভ
     ব্যবলাহিত 

     অতিবেশুনি
- ১৬। কোন যৌগ পানিতে দ্রবীভৃত হওয়ার শর্ত কি?
  - ল্যাটিস এনথালপি > হাইড্রেশন এনথালপি
  - হাইড্রেশন এনথালপি > ল্যাটিস এনথালপি
  - হাইড্রেশন এনথালপি = ল্যাটিস এনথালপি
  - ত্ত্ব গঠন এনথালপি > বিয়োজন এনথালপি
- ১৭। দ্রাব্যতা গুণফল নিচের কোন ক্ষেত্রে প্রয়োজ্য?
  - অধিক দ্রবণীয় আয়নিক যৌগ
     অধিক দ্রবণীয় সমযোজী যৌগ
  - গ্র স্বল্প দ্রবণীয় আয়নিক যৌগ
- বি) বল্প দ্রবণীয় সমযোজী যৌগ
- ১৮। আপতিত রশ্যি UV আসল টাকা → বিকিরিত রশ্মি। বিকিরিত রশ্মির
  - তরঙ্গদৈর্ঘ্য কোনটি?
    - ⊕ 10 380 nm
- 380 − 780 nm
- 1 780 10<sup>6</sup> nm
- $\odot 10^6 10^9 \text{ nm}$
- ১৯। বামার সিরিজের ২য় লাইনের ক্ষেত্রে n-এর মান কত?
- ₹ 3
- 4
- ২০। লাল রশ্মির তরঙ্গ দৈর্ঘ্য 7000 Å হলে এর তরঙ্গ সংখ্যা কত?
  - $3 \cdot 1.428 \times 10^{-3} \text{nm}$
- 4 14.28 × 10<sup>3</sup> cm<sup>-1</sup>
- 1.428 × 10<sup>-3</sup>m<sup>-1</sup>
- (14.28 × 10<sup>-3</sup> nm
- ২১। ব্রাকেট সিরিজ কোন অঞ্চলের পারমাণবিক বর্ণালি সৃষ্টি করে?
  - ক্ক অতিবেগুনি
- অবলোহিত
- থ দৃশ্যমান
- ২২।  ${
  m CaF_{2}}$ -এর সম্পৃক্ত জ্পীয় দ্রবণে ফ্লোরাইড আয়নের ঘনমাত্রা  $0.00655~{
  m g}$ L-1 হলে CaF2 এর দ্রাব্যতা গুণফল কত হবে?
  - $3.7 \times 10^{-13}$
- $\textcircled{3} 2.048 \times 10^{-10}$
- (1)  $3.7 \times 10^{-12}$
- $(\overline{4})$  2.048  $\times$  10<sup>-11</sup>
- ২৩। নিচের কোন ধাতু শিখা পরীক্ষায় হলুদাভ সবুজ বর্ণ দেখায়? Ca
  - 3 Ba
- ® K
- ২৪। কোনটি নেসলার বিকারক?
- অ Zn-Hg ও গাঢ় HCI K₂HgI₄ ও KOH দ্রব

   A

   S

   K

   S

   K

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

   S

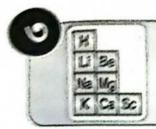
   S

   S

   S

   S

   S


   S

   S

   S

   S
- CuSO<sub>4</sub> + 2NaOH <sup>®</sup> [Ag(NH<sub>3</sub>)<sub>2</sub>]OH
- ২৫। XY যৌগের দ্রাব্যতার ক্ষেত্রে কোনটি সঠিক?
  - $K_{sp} = \sqrt{S}$
- $\mathfrak{P} S = \sqrt{K_{sp}}$
- $( \mathbf{g} ) \mathbf{K}_{sp} = \mathbf{S}$

| উত | বরণ | াত্র | 3  | <b>3</b> | 2  | (1)      | 0  | 9   | 8  | 1 | e  | 9 | 4  | 1 | ٩  | 1   | 6  | (1) | 8  | <b>3</b> | 20 | • | 77 | <b>3</b> | 25 | <b>④</b> |
|----|-----|------|----|----------|----|----------|----|-----|----|---|----|---|----|---|----|-----|----|-----|----|----------|----|---|----|----------|----|----------|
| 30 |     | Ø    | 28 | 9        | 50 | <b>®</b> | 36 | (1) | 39 | 1 | 26 | ঞ | 79 | 1 | 20 | (1) | 23 | •   | २२ | (1)      | 20 | • | 28 | 1        | 20 | •        |



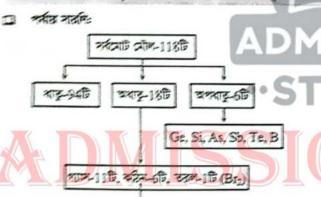
# মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন

Periodic Properties and Bonding in Elements



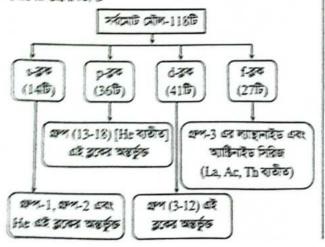
#### **Board Questions Analysis**

#### महामनीम श्रद


| লার্ছ  | ভাৰা | वसम्बन्धाः | রাজশাহী | কৃমিয়া | ব্যশার | চট্টয়াৰ | বরিশাল | নিলেট | দিনা <del>জপু</del> র |
|--------|------|------------|---------|---------|--------|----------|--------|-------|-----------------------|
| भ्यम्ब | 9    | 2          | 9       | 9       | 8      | 0        | ર      | 9     | 2                     |
| २०२२   | 2,   | 2          | 9       | 2       | 2      | 0        | ર      | 9     | 9                     |

#### यहाँ नेद्राप्तन हुन

| সার<br>সার | गना | ম্ব্রমনসিহে | রাজশাহী | কৃমিলা | যশের | <b>इंग्रे</b> शम | বরিশাল | সিজেট | দিনাজপুর |
|------------|-----|-------------|---------|--------|------|------------------|--------|-------|----------|
| २८२७       | 9   | 9           | 7       | 30     | jy.  | 6                | 6      | 9     | >        |
| 2022       | r   | 3           | 9       | 33     | 8    | 30               | 9      | 9     | ъ        |


এই অধ্যাত্তর গুরুতুপূর্ণ ধারণা ও সূতাবলি

প্রার সরনি, পর্যার সরনিতে মৌতের অবস্থান



C. P. S. Se. L. At

🗅 সোঁজের প্রদিনিভাগঃ



🛘 নৌলবনুহের কর্ণ সম্পর্ক:

| 13 TO 1 | 1(IA)  | 2(IIA) | 13(IIIA) | 14(IVA) |
|---------|--------|--------|----------|---------|
| 2       | Li(3)  | Be(4)  | B(5)     | C(6)    |
| 3       | Na(11) | Mg(12) | AJ(13)   | Si(14)  |

ইলেক্ট্রন বিন্যাদের সাহাত্যে পর্যায় সারদিতে মৌলের অবস্থান নির্পয়ঃ
পর্যায় নির্পয়ঃ

মৌলের ইলেকট্রন বিন্যাসে সর্বোচ্চ শক্তিত্তরের মান হলো পর্যায় সংখ্যা।

- (i) ১-রক নৌলতদোর ক্ষেত্রে গ্রুপসংখ্যা = সর্ববহিঃছ শক্তিব্রের (ns<sup>1-2</sup>) ইলেক্ট্রন সংখ্যা।
- (ii) p-ব্লক মৌলভলোর ক্ষেত্রে গ্রন্থ সংখ্যা =  $10 + সর্ববহিঃ স্থ স্থিতি ক্রেরে ইলেকট্রন সংখ্যা (<math>ns^2 + np^{1-6}$ )
- (iii) d-ব্লক মৌলভলোর ক্ষেত্রে গ্রুপ সংখ্যা =  $(n-1) d^{1-10} + ns^{1-2}$  উপত্তরের ইলেকট্রন সংখ্যা
- (iv) f-ব্লক মৌলগুলোর ক্ষেত্রে ফ্রপ সংখ্যা = 3। কারণ f-ব্লক মৌলসমূহ পর্যায় সার্যদির 3 নং ক্রপে অবস্থান করে।

#### 🛘 গ্রুপ ও তাদের বিশেষ নাম:

| 27 | যৌল                    | নাম                     |
|----|------------------------|-------------------------|
| 1  | Li, Na, K, Rb, Cs, Fr  | হ্নার ধাতৃ              |
| 2  | Be, Mg, Ca, Sr, Ba, Ra | সুংকার ধাতু             |
| 11 | Cu, Ag, Au             | মুদ্রা ধাতৃ             |
| 15 | N, P, As, Sb, Bi       | নিকটোজেন                |
| 16 | O, S, Se, Te           | চ্যালকোজেন              |
| 17 | F, Cl, Br, I           | হ্যালোজেন               |
| 18 | He, Ne, Ar, Kr, Xe, Rn | নি <b>দ্রি</b> য় গ্যাস |

গ্রুপের রোমান নাম:

1: IA 3: IIIB 18: VIIIA বা শূন্য গ্রুপ

2: IIA 4: IVB 8, 9, 10: VIIIB

13: IIIA 5: VB

14: IVA 6: VIB

15: VA 7: VIIB

16: VIA 11: IB

17: VIIA 12: IIB

#### s-ব্লক মৌল

- s-ব্লক মৌলের বৈশিষ্ট্য:
  - ➢ সাধারণ ইলেক্ট্রন বিন্যাস: ns¹-²
  - সম্বর্ভুক্ত মৌল:

Group-1: H, Li, Na, K, Rb, Cs, Fr → (ক্ষার ধাতু)

Group-2: Be, Mg, Ca, Sr, Ba, Ra → (মৃৎক্ষার ধাতু)

Group-18: He

- 🕨 নিম্ন গলনাঙ্ক ও স্ফুটনাঙ্ক বিশিষ্ট।
- ➤ ns¹-ব্লক মৌলগুলোর ইলেকট্রন বিন্যাসে বিজোড় ইলেকট্রন বর্তমান থাকায় এরা প্যারাম্যাগনেটিক।
- ➤ মৌলগুলোর ক্যাটায়নে কোনো বিজ্ঞোড় ইলেকট্রন না থাকায় এরা ডায়াম্যাগনেটিক ও বর্ণহীন হয়ে থাকে।
- 🕨 এরা তীব্র তড়িৎ ধনাতাক মৌল। তীব্র বিজারক রূপে ক্রিয়া করে।
- বুনসেন শিখায় বৈশিষ্ট্যপূর্ণ বর্ণ সৃষ্টি করে। (Be ও Mg ব্যতীত)
- দ্রাব্যতার ক্রম:
  - হাইছোক্সাইড: ফাজানের নীতি অনুযায়ী,

Group-1 → LiOH < NaOH < KOH < RbOH

🍃 जानाकारे नत्त्र

Group-2 → BeSO<sub>4</sub> > MgSO<sub>4</sub> > CaSO<sub>4</sub> > SrSO<sub>4</sub> > BaSO<sub>4</sub> (অনুবণীয়)

কার্বনেট লবণ:

 $Group-2 \rightarrow BeCO_3 > MgCO_3 > CaCO_3 > SrCO_3$  গ্রুপ-2 এর সালফেট ও কার্বনেট লবণের দ্রাবতার ক্রম ফাজানের নীতির ব্যতিক্রম। হাইড্রেশন শক্তি ল্যাটিস শক্তি থেকে কম হওয়ায় দ্রাব্যতাহ্রাস পায়।

বিজারণ ধর্ম:

Group-1 এর ক্ষেত্রে উপর থেকে নিচের দিকে হাইড্রেশন শক্তি হ্রাস পায়, তাই বিজারণ ধর্ম বৃদ্ধি পায়।

Na < K < Rb < Cs < Li [Li ব্যতিক্রম]

বিয়োজন তাপমাত্রা বা তাপীয় স্থিতি ও বিয়োজন স্থিতি ক্রম:

BeCO<sub>3</sub> < MgCO<sub>3</sub> < CaCO<sub>3</sub> < SrCO<sub>3</sub>

বিয়োজন ক্রম:

BeCO<sub>3</sub> > MgCO<sub>3</sub> > CaCO<sub>3</sub> > SrCO<sub>3</sub>

হাইড্রাইডের স্থায়িতঃ

LiH > NaH > KH > RbH > CsH

### p-ব্লক মৌল

- p-ব্লক মৌলের বৈশিষ্ট্য:
  - ➢ সাধারণ ইলেকট্রন বিন্যাস: ns² np¹-6
  - > s-ব্লক ও p-ব্লকের মৌলসমূহকে আদর্শ বা প্রতিনিধি মৌল বজা হয়।

...... ACS, > Chemistry 1st Paper Chapter-3

- ▶ p-ব্লকের বেশিরভাগই অধাতৃ।
- একই পর্যায়ে বাম থেকে ডানদিকে p-ব্লক মৌলসমূহের বিজ্ঞারণ ক্ষমতা ক্রমশ হ্রাস পায়। কিন্তু একই গ্রুপের ওপর থেকে নিচে মৌলসমূহের বিজ্ঞারণ ক্ষমতা বৃদ্ধি পায়।
- একই পর্যায়ে বাম থেকে ডানদিকে p-ব্লকের মৌলসমূহের জারণ ক্ষমতা ক্রমশ বৃদ্ধি পায় ও কিয়্ত একই গ্রুপের ওপর থেকে নিচে মৌলসমূহের জারণ ক্ষমতা হ্রাস পায়।
- হাইড্রাসিড এর শক্তির ক্রমঃ

HI(aq) > HBr(aq) > HCl(aq) > HF(aq)


আভঃহ্যালোজেন যৌগঃ

হ্যালোজেনসমূহ নিজেদের মধ্যে যুক্ত হয়ে যে যৌগ গঠন করে তাকে আন্তঃহ্যালোজেন যৌগ বলা হয়। যেমনঃ

- (i)  $I_2 + 5F_2 \rightarrow 2IF_5$  (আয়োডিন পেন্টা ফ্লোরাইড)
- (ii)  $Cl_2 + 3F_2 \rightarrow 2CIF_3$  (ক্লোরিন ট্রাই ফ্লোরাইড)
- ক্ল্যাথরেট যৌগ:

কৃতগুলো বিশেষ ধরনের অজৈব যৌগ আছে যাদের কেলাস জালকের ফাঁকের মধ্যে নিদ্ধিয় গ্যাস অবরুদ্ধ অবস্থায় থাকে। এদেরকে ক্ল্যাথরেট যৌগ বলে। Ar, Kr, Xe কুইনলের সাথে ক্ল্যাথরেট যৌগ গঠন করে। কিন্তু আকার ছোট হওয়ায় He, Ne কোনো ক্ল্যাথরেট যৌগ গঠন করে না। যেমনঃ

আর্গন ক্ল্যাথরেট: Ar(C<sub>6</sub>H<sub>6</sub>O<sub>2</sub>)<sub>3</sub>



### মৌলের অক্সাইড ও জলীয় দ্রবণ

| অক্সাইড                | উদাহরণ                                                                                                                                                                                                                                |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| অম্লীয় অক্সাইড        | CO <sub>2</sub> , SO <sub>2</sub> , P <sub>2</sub> O <sub>5</sub> , SO <sub>3</sub> , NO <sub>2</sub> , N <sub>2</sub> O <sub>5</sub>                                                                                                 |
| ক্ষারীয় অক্সাইড       | Na <sub>2</sub> O, K <sub>2</sub> O, CaO, MgO, CuO, FeO                                                                                                                                                                               |
| নিরপেক্ষ অক্সাইড       | CO, N <sub>2</sub> O, NO, H <sub>2</sub> O                                                                                                                                                                                            |
| উভধর্মী অক্সাইড        | ZnO, Al <sub>2</sub> O <sub>3</sub> , SnO <sub>2</sub> , PbO, PbO <sub>2</sub> , B <sub>2</sub> O <sub>3</sub>                                                                                                                        |
| যুগ্ম বা মিশ্ৰ অক্সাইড | Fe <sub>3</sub> O <sub>4</sub> (FeO ও Fe <sub>2</sub> O <sub>3</sub> এর মিশ্রণ), Pb <sub>2</sub> O <sub>3</sub><br>(PbO ও PbO <sub>2</sub> এর মিশ্রণ), Mn <sub>2</sub> O <sub>4</sub> (2MnO<br>ও MnO <sub>2</sub> এর মিশ্রণ) ইত্যাদি। |
| পার-অক্সাইড            | Na <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> O <sub>2</sub> , BaO <sub>2</sub>                                                                                                                                                     |
| সুপার-অক্সাইড          | KO <sub>2</sub> , NaO <sub>2</sub>                                                                                                                                                                                                    |

➤ অধাতৃর অক্সাইড অস্লধর্মী হয় এবং ধাতৃর অক্সাইড ক্ষারধর্মী হয়।

व्याजनक अस्तिहरू भर्म व जापाविष्यक नम्मण ➤ ACS) FRB Compact Suggestion Beats.....

#### 910

#### व-इक व्याज

- ➣ সাধারণ ইতেশকট্রন বিন্যাসঃ (n 1) d¹-¹⁰ ns¹-²
- এক্তক নৌলসমূহ উচ্চ গলনান্ধনিশিষ্ট ভারী পাস্ক। রূসের দলকু পুন নেশি হয়। প্রসের ঘধ্যে Sc(21) এর ঘলকু সনচেয়ে কয়। Ir(77) প্রর দলকু সর্বাধিক।
- প্রায় সব সৌলেই পরিবর্ডনশীল জারণ অবস্থা দেখা যায়। ব্যক্তিক্রেয়। Group-12 এর Zn ও Cd এর স্থির মোজনী 2 হলেও Hg এর যোজনী 1 এবং 2 হয়।
- কৌমক ধর্ম:
  - প্যারাম্যাগনেটিক: বাহ্যিক টৌমকক্ষেত্র দ্বারা আকৃষ্ট হয়। অয়ৄয় d-ইলেকার্ট্রন বিদ্যামান। য়েমন: T³', V³', Cr¹', Mn²', Fe²', Fe³', Co²', Ni²', Cu²'
  - কেরোম্যাগনেটিকः
     বাহ্যিক চৌম্কন্দের দারা অধিক আকৃষ্ট হয়। বেমনः Fe, Co, Ni
  - ভায়াম্যাগনেটিক: বাহ্যিক চৌমকন্দেত্র দারা অধিক আকৃষ্ট হয় না বরং মৃদু বিকর্ষিত হয়। বেমন: Sc³+, Ti⁴+, Zn²+

### অবস্থান্তর মৌল

- অবস্থান্তর মৌলসমূহের বৈশিষ্ট্য:
  - (i) পরিবর্তনশীল জারণ মান প্রদর্শন করে থাকে
  - (ii) রঙিন যৌগ গঠন করে
  - (iii) জটিল যৌগ গঠন করে
  - (iv) প্রভাবকরূপে ক্রিয়া করে
  - (v) शात्राष्ट्रपकीय धर्म धर्मन करता।
- - মূলত d-ব্লক মৌলের ডিজেনারেট (c<sub>g</sub>) ও নন-ডিজেনারেট (t<sub>2g</sub>) অরবিটালের শক্তির পার্থক্যের কারণে বর্ণ দেখা যায়।

#### f-ব্লক মৌল

- 1-ব্রক মৌলসমূহের বৈশিষ্ট্য:
  - িব্রক মৌলসমূহ পর্যায় সারিদির 3 নং গ্রুপে অবস্থান করে।
  - ▶ f-ব্লক মৌল 27ि।
  - পর্যায় সারাণির পর্যায়-6 এর La(57) থেকে পরবর্তী Lu(71) পর্যন্ত 15টি মৌলকে একত্রে ল্যায়্থানাইড সিরিজ বা বিরল মৃত্তিকা মৌল বলা হয়। Ac(89) থেকে পরবর্তী Lr(103) পর্যন্ত 15টি মৌলকে একত্রে অ্যায়্ডিনাইড সিরিজ বলা হয়। ল্যায়্থানাইড ও অ্যায়্ডিনাইড সিরিজ এর মোট মৌল সংখ্যা = 30টি।
  - প্যান্থানাইড সিরিজের ১৫টি মৌলের মধ্যে La(57) ও অ্যান্টিনাইড সিরিজের ১৫টি মৌলের মধ্যে Ac(89), Th(90) d-ব্লক মৌল।
  - जिल्ला अस्ति ।

     जिल्ला अस्ति ।

- "ऋहरक्वश्रास्त्र औषः जानन न्हिन् भौजित ज्याज्य दृष्टिन धाजान । दर्छ । उँ देखनापि निगान शाला, चाजनाता धान्यनसास्त्र औन नखा ।
  - সোন: Ce(58) = [Xe] 4f <sup>1</sup> Sd <sup>1</sup> 6s<sup>2</sup> এর Ce<sup>3</sup> বারনে 4f <sup>2</sup> ইলেনট্রন গাকে।

### वीकात नर्याद्यवृत्त धर्म

| भर्माग्रवृत्त धर्म | পৰ্মানো<br>(ৰাম পেকে ডালে) | ফুপে (উপর<br>দেকে নিচে) |  |  |
|--------------------|----------------------------|-------------------------|--|--|
| পরমাণুর আকার       | ত্রাস পার                  | বৃদ্ধি পায়             |  |  |
| আয়ণিকরণ শক্তি     | वृक्षि शारा                | হ্রাস পার               |  |  |
| ইলেকট্রন আসন্তি    | বৃদ্ধি পার                 | ত্রান পার               |  |  |
| তড়িৎ স্বণাডাকতা   | বৃদ্ধি পায়                | ্রাস পার<br>ব্রাস পার   |  |  |
| ভারণ ক্ষমতা        | বৃদ্ধি পায়                |                         |  |  |
| বিজ্ঞারণ ক্ষমতা    | হ্রাস পার                  | বৃদ্ধি পায়             |  |  |
| ধাতব ধর্ম          | হ্রাস পায়                 | বৃদ্ধি পায়             |  |  |
| অধাতব ধর্ম         | বৃদ্ধি পায়                | হ্রাস পায়              |  |  |

ইলেকট্রন বিন্যাস ও চার্জ ঘনতের কারণে কিছু ব্যতিক্রম লক্ষ্য করা যায়।

### পারমাণবিক ব্যাসার্ধ

- পারমাণবিক ব্যাসার্ধ ৪ ধরনের । यथाः
  - (i) সমযোজী ব্যাসার্ধ (ii) ধাতব ব্যাসার্ধ (iii) ভ্যানডার ওয়ালস ব্যাসার্ধ (iv) আয়নিক ব্যাসার্ধ
- ব্যাসার্ধের ক্রম:

ভ্যানভার ওয়ালস ব্যাসার্ধ > ধাতব ব্যাসার্ধ > সমযোজী ব্যাসার্ধ

- পারমাণবিক ব্যাসার্ধ সম্পর্কিত তথ্য:
  - ক্যাটায়নের আকার মূল পরমাণুর আকারের চেয়ে ছোট হয়।

 $Li > Li^{\dagger}$ ;  $Na > Na^{\dagger}$ 

ত্যানায়নের আকার মৃল পরমাণুর আকারের চেয়ে বড় হয়।

F < F : Cl < Cl

একই পর্যায়ে isoelectronic ক্যাটায়নের আকার এদের চার্জ সংখ্যা বৃদ্ধির সাথে সাথে হ্রাস পায়; কিন্ত isoelectronic অ্যানায়নের আকার এদের চার্জ সংখ্যা বৃদ্ধির সাথে সাথে বৃদ্ধি পায়।

 $N^{3-} > O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$ 

একই ধাতৃর বিভিন্ন ক্যাটায়নের আকার এদের চার্জ সংখ্যা বৃদ্ধির
 সাথে সাথে হ্রাস পায়।

 $Fe^{2+} > Fe^{3+}$ ;  $Mn^{2+} > Mn^{4+} > Mn^{7+}$ 

#### আয়নিকরণ শক্তি

- আয়নিকরণ শক্তি (I.E) এর মান সব সময় ধনাত্মক হয়।
- ➢ Group-2 ও 13 এবং 15 ও 16 এর মৌলসমূহে আয়নিকরণ শক্তির ক্রমের ব্যতিক্রম বিদ্যমান।

১ম আয়নিকরণ শক্তি ক্রমঃ

হ্যালোজেনের তড়িৎ ঋণাত্মকতার ক্রম:

দিতীয় পর্যায়ের মৌলসমৃহের আয়নিকরণ শক্তির ক্রম:

F > Cl > Br > I

- Group-17 এর মৌলগুলোর তড়িৎ ঝণাত্মকতা সবচেয়ে বেশি।

...... ACS, > Chemistry 1st Paper Chapter-3

- Li < B < Be < C < O < N < F < Ne তৃতীয় পর্যায়ের মৌলসমূহের আয়নিকরণ শক্তির ক্রমঃ
- Group-1 এর মৌলগুলোর তড়িৎ ধনাত্মকতা সবচেয়ে বেশি।

২য় আয়নিকরণ শক্তি ক্রমঃ

পর্যায় সারণির সবচেয়ে তড়িৎ ঋণাতাক মৌল F(9) পর্যায় সারণির সবচেয়ে তড়িৎ ধনাত্মক মৌল Fr(87)

Mg < Al < Si < P < Naवक्ट भोलात क्काव.

সংকর অরবিটালে তড়িৎ ঋণাত্মকতার ক্রম: sp > sp² > sp³

১ম আয়নিকরণ শক্তি < ২য় আয়নিকরণ শক্তি < ৩য় আয়নিকরণ শক্তি

Na < Al < Mg < Si < S < P < Cl < Ar

## त्रामाय्रनिक वक्षन, वक्षन मध्या निर्पग्र

উপশক্তিত্তর ভিত্তিক আয়নিকরণ শক্তির ক্রম: পূর্ণ উপশক্তিন্তর > অর্ধপূর্ণ উপশক্তিন্তর > আংশিকপূর্ণ উপশক্তিন্তর

রাসায়নিক বন্ধনের প্রকারভেদ: 

- নিদ্রিয় গ্যাসের আয়নিকরণ শক্তি সবচেয়ে বেশি।
- तामाग्रनिक वन्तन २ श्वकात । यथाः

আয়নিকরণ বিভব একটি তাপহারী প্রক্রিয়া।

তার আয়নিকরণ শক্তি বেশি।

(i) সবল রাসায়নিক বন্ধন (ii) দুর্বল রাসায়নিক বন্ধন

- সবল রাসায়নিক বন্ধন ৪ প্রকার । যথা: (i) আয়নিক বন্ধন
- ➤ অরবিটালঙলোর আয়নিকরণ শক্তি: s > p > d > f

- (ii) সমযোজী বন্ধন
- ধাতুর আয়নিকরণ শক্তি কম এবং অধাতুর আয়নিকরণ শক্তি বেশি হয়।
- (iii) সন্নিবেশ বন্ধন
- সম ইলেকট্রন বিশিষ্ট আয়নের ক্ষেত্রে যার প্রোটন সংখ্যা বেশি
- (iv) ধাতব বন্ধন

- $Ne(10) < Na^{+}(11) < Mg^{2+}(12)$
- দুর্বল রাসায়নিক বন্ধন ৩ প্রকার। যথা:
- আয়নিকরণ শক্তি যত বেশি হয় মৌলের অক্সাইড তত অমুধর্মী হয়। আয়নিকরণ শক্তি যত কম হয় মৌলের অক্সাইড তত
- (i) H-bond
- মৌলের আয়নিকরণ শক্তির মান যত কম হবে মৌলটির বিজারণ ক্ষমতা তত বেশি হবে অর্থাৎ ঐ মৌলটি প্রবল বিজারক হবে। Group-1 এর ক্ষেত্রে, Cs > Rb > K > Na > Li
- (ii) ভ্যান্ডার ওয়ালস বন্ধন (iii) লন্ডন বা বিস্তারণ বল

ইলেকট্রন আসক্তি 🔺

- ধনাত্মক ও শূন্য ইলেকট্রন আসক্তি (E<sub>ca</sub>) এর মান ঋণাত্মক, হতে পারে।

| যৌগ                                                 | যৌগে বিদ্যমান<br>বন্ধনের প্রকার                                       | যৌগে বিদ্যমান<br>বন্ধনসমূহ                        | মোট বন্ধন<br>সংখ্যা |  |
|-----------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|---------------------|--|
| NH₄C <i>i</i>                                       | সন্নিবেশ বন্ধন,<br>NH <sub>4</sub> Cl 3 সমযোজী বন্ধন,<br>আয়নিক বন্ধন |                                                   | 5টি                 |  |
| [Cu(NH <sub>3</sub> ) <sub>4</sub> ]Cl <sub>2</sub> | 3                                                                     | সন্নিবেশ বন্ধন,<br>সমযোজী বন্ধন,<br>আয়নিক বন্ধন  | 18টি                |  |
| H <sub>2</sub> SO <sub>4</sub>                      | _ 2                                                                   | সন্নিবেশ বন্ধন,<br>সমযোজী বন্ধন                   | 80                  |  |
| CuSO <sub>4</sub> .5H <sub>2</sub> O                | 4                                                                     | সন্নিবেশ বন্ধন,<br>সমযোজী বন্ধন,<br>আয়নিক বন্ধন, | 23টি                |  |

- হ্যালোজেনের ইলেকট্রন আসন্তির ক্রম: Cl > F > Br > I
- s-ব্লকের ধাতুর পরমাণুর ইলেকট্রন আসক্তির মান কম হয় (IA ক্রুপের মৌলে) অথবা প্রায় শূন্য হয় (IIA ক্রুপের মৌলে)। > निक्रिय गारित्र मध्य He এর ইলেকট্রন আসন্তি শূন্য কিন্তু Ne, Ar,
- Kr. Xe ইত্যাদির ইলেকট্রন আসক্তির মান ধনাত্মক। হ্যালোজেনের ইলেকট্রন আসক্তির মান সবচেয়ে বেশি।
- ১ম ইলেকট্রন আসক্তি → (-)ve অর্থাৎ তাপোৎপাদী ২য় ইলেকট্রন আসক্তি → (+)ve অর্থাৎ তাপহারী
- ধাতুর ইলেকট্রন আসক্তি কম কিন্তু অধাতুর ইলেকট্রন আসক্তি বেশি।
- আয়নিক বন্ধন:

H<sub>3</sub>O<sup>+</sup>

তড়িৎ ঋণাত্মকতা

- ধাত + অধাত আয়নিক বন্ধন
- ৩রুতুপূর্ণ কিছু মৌলের তড়িং ঋণাত্মকতার মান (পাউলিং স্কেল মতে): মৌল তড়িৎ ঋণাত্মকতা
- তড়িৎ ঋণাত্মকতার পার্থক্য বেশি হলে আয়নিক বন্ধন শক্তিশালী হয়।

H-বন্ধন সন্লিবেশ বন্ধন,

সমযোজী বন্ধন

30

- F 4.0 0 3.5 N, CI 3.0 Br 2.8 I,S,C 2.5 P 2.19
- ৩টি ধাতু (Sn, Hg, Pb) আয়নিক বন্ধন গঠন করে না।

2

- আয়নিক যৌগের বৈশিষ্ট্য:
  - (i) आग्रनिक वक्षन भक्तिभानी। अत्र गननाह ७ क्कृप्रेनाह উচ्চ।
  - (ii) পোলার দ্রাবকে দ্রবণীয় কিন্তু অপোলার দ্রাবকে (CC14, বেনজিন, কেরোসিন) দ্রবীভূত হয় না। (like dissolves like)
  - (iii) বিগলিত অবস্থায়ও দ্রবণে তড়িৎ পরিবহন করে।

#### Rhombus Publications

H

2.1

- সমযোজী বন্ধনঃ
  - > অধাত + অধাত → সমযোজী বন্ধन
  - ৢ একক বন্ধন (১ জোড়া ইলেকট্রন শেয়ার) → সম্পৃক্ত সময়োজী

    দ্বি-বন্ধন (২ জোড়া ইলেকট্রন শেয়ার) → অসম্পৃক্ত সময়োজী

    ক্রি-বন্ধন (৩ জোড়া ইলেকট্রন শেয়ার) → অসম্পৃক্ত সময়োজী
- সমযোজী যৌগের বৈশিষ্ট্য:
  - (i) নিমু গলনাম ও স্ফুটনাংক বিশিষ্ট।
  - (ii) অপোলার দ্রাবকে দ্রবণীয়।
  - (iii) বিগলিত অবস্থায়ও দ্রবণে তড়িৎ পরিবহন করে না।
  - (iv) সাধারণ অবস্থায় কঠিন, তরল ও গ্যাসীয়।
  - (v) সমাণুতা ধর্ম দেখায়।

### অরবিটাল অধিক্রমণ (σ ও π বন্ধন)

সিগমা বন্ধন (σ) ও পাই বন্ধন (π) এর বৈশিষ্ট্য:

|       | সিগমা বন্ধন (ত)                                                                |       | পাই বন্ধন (π)                                                           |
|-------|--------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------|
| (i)   | মুক্ত ঘূর্ণন সম্ভব                                                             | (i)   | মুক্ত ঘূর্ণন সম্ভব নয়                                                  |
| (ii)  | দৃটি সংকরিত অরবিটালের<br>সামনাসামনি অধিক্রমণের ফলে<br>সিগমা বন্ধন (ত) গঠিত হয় | (ii)  | দুটি অসংকরিত অরবিটালের<br>পাশাপাশি অধিক্রমণের ফলে<br>পাই বন্ধন গঠিত হয় |
| (iii) | কম সক্রিয়                                                                     | (iii) | অধিক সক্রিয়                                                            |
| (iv)  | সিগমা বন্ধন শক্তিশালী                                                          | (iv)  | পাই বন্ধন সিগমা বন্ধন<br>থেকে দুৰ্বল                                    |
| (v)   | অণুর জ্যামিতিক গঠনে ভূমিকা<br>আছে                                              | (v)   | অণুর জ্যামিতিক গঠনে<br>ভূমিকা নেই                                       |

$$p-p < s-p < s-s$$

- 🔲 সিগমা বন্ধন (σ) ও পাই বন্ধন (π) সংখ্যা নির্ণয়:
  - > সকল একক বন্ধন সিগমা বন্ধন। যেমন: CH4
  - ightarrow দ্বি-বন্ধন ightarrow 1টি  $\sigma$  + 1টি  $\pi$  বন্ধন। যেমন:  $CH_2 = CH_2$
  - ightarrow ত্রি-বন্ধন ightarrow 1টি  $\sigma$  + 2টি  $\pi$  বন্ধন। যেমনः  $CH \equiv CH$

### অরবিটাল সংকরণ (Hybridization)

- সূত্রাবলিঃ
  - ightharpoonup হাইব্রিড অরবিটাল সংখ্যা,  $X = \frac{1}{2} [V + M C + A]$

V = যোজ্যতাস্তরে ইলেকট্রন সংখ্যা

M = একযোজী পরমাণুর সংখ্যা

C = ক্যাটায়নের চার্জ

A = অ্যানায়নের চার্জ

- হাইব্রিড অরবিটাল সংখ্যা = σ bond সংখ্যা + নিঃসঙ্গ ইলেকট্রন জোড়
- ➣ জটিল যৌগের ক্ষেত্রে তার সন্নিবেশ সংখ্যাই তার হাইবিড অরবিটাল সংখ্যা।

» निश्नम द्यानमहिन (मास मस्प्रा ≈ X – M – B

X = ब्रिडिफ अविग्रिन সংখ্যा

M = এकर्गाञ्जी পরমাপুর সংখ্যা

B = बिर्माजी श्रामागुत्र नक्ष्या

> VSEPR theory:

/p - /p विकर्षण > /p - bp निकर्षण > bp - bp निकर्षण

कर्पाकि इक्कुर्ल्थ (गौरगंत मरकतम उ वक्तम कान:

| বৌশ                                                                                                          | সংকরণ                          | বন্ধন কোল           |
|--------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|
| BeCl <sub>2</sub> , CO <sub>2</sub> , C <sub>2</sub> H <sub>2</sub>                                          | sp                             | 180°                |
| BF <sub>3</sub> , BC <i>l</i> <sub>3</sub> , C <sub>2</sub> H <sub>4</sub>                                   | яр <sup>Z</sup>                | 120°                |
| SO <sub>2</sub>                                                                                              | sp <sup>2</sup>                | 1190                |
| CH <sub>4</sub> , BH <sub>4</sub> , NH <sub>4</sub> , CCl <sub>4</sub> , BF <sub>4</sub> , POCl <sub>3</sub> | sp <sup>3</sup>                | 1 <del>09</del> .5° |
| NH <sub>3</sub>                                                                                              | sp³                            | 107°                |
| H <sub>2</sub> O                                                                                             | sp <sup>3</sup>                | 104.50              |
| PH <sub>3</sub>                                                                                              | sp <sup>3</sup>                | 940                 |
| H <sub>2</sub> S                                                                                             | sp <sup>3</sup>                | 92°                 |
| PCl <sub>5</sub>                                                                                             | sp <sup>3</sup> d              | 90°, 120°           |
| C/F <sub>3</sub>                                                                                             | sp <sup>3</sup> d              | 87.5°               |
| XeF <sub>2</sub>                                                                                             | sp <sup>3</sup> d              | 180°                |
| SF <sub>6</sub> , SeF <sub>6</sub>                                                                           | $sp^3d^2$                      | 90°                 |
| BrF <sub>5</sub>                                                                                             | $sp^3d^2$                      | < 90°               |
| XeF <sub>4</sub>                                                                                             | $sp^3d^2$                      | 90°                 |
| IF <sub>7</sub>                                                                                              | sp <sup>3</sup> d <sup>3</sup> | 72°, 90°            |

কয়েকটি ছটিল আয়নের সংকরণ, জ্যামিতিক গঠন ও চৌম্বক ধর্ম:

| জটিল আয়ন                                          | সন্নিবেশ<br>সংখ্যা | সংকরণ                          | জ্যামিতিক<br>গঠন               | চৌৰক ধৰ্ম                 |
|----------------------------------------------------|--------------------|--------------------------------|--------------------------------|---------------------------|
| [Ag(NH <sub>3</sub> ) <sub>2</sub> ] <sup>+</sup>  | 2                  | sp                             | সরলবৈশ্বিক                     | ডারাচৌ <del>দ</del> কীর   |
| [CuCl <sub>2</sub> ]                               | 2                  | sp                             | সরলরৈখিক                       | ভায়াচৌম্বকীর             |
| [CoCl <sub>4</sub> ] <sup>2-</sup>                 | 4                  | sp <sup>3</sup>                | চতুস্তলকীয়                    | প্যারাচৌম্বকীয়           |
| Ni(CO) <sub>4</sub>                                | 4                  | sp <sup>3</sup>                | চতুস্তলকীয়                    | ভায়াচৌমকীয়              |
| [Cu(NH <sub>3</sub> ) <sub>4</sub> ] <sup>2+</sup> | 4                  | sp <sup>2</sup> d              | সমতলীয়<br>বর্গাকার            | প্যারাচৌম্বকীর            |
| [Ni(CN) <sub>4</sub> ] <sup>2-</sup>               | 4                  | dsp <sup>2</sup>               | সমতলীয়<br>বর্গাকার            | ভারাচৌ <del>স্ব</del> কীর |
| Fe(CO) <sub>5</sub>                                | 5                  | dsp <sup>3</sup>               | ত্রিকোণাকার<br>দ্বি-পিরামিডীয় | ভায়াচৌদকীর               |
| [Ni(CN) <sub>5</sub> ] <sup>3-</sup>               | 5                  | dsp <sup>3</sup>               | চতুর্জ্জাকার<br>পিরামিডীয়     | ভায়াচৌ <del>দকী</del> র  |
| [Fe(CN) <sub>6</sub> ] <sup>3-</sup>               | 6                  | d <sup>2</sup> sp <sup>3</sup> | অষ্টতলকীয়                     | প্যারাচৌম্বকীয়           |
| [Fe(CN) <sub>6</sub> ] <sup>4-</sup>               | 6                  | d <sup>2</sup> sp <sup>3</sup> | অষ্টতলকীয়                     | ভায়াচৌমকীয়              |
| [Cr(NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup> | 6                  | d <sup>2</sup> sp <sup>3</sup> | অষ্টতলকীয়                     | প্যারাচৌম্বকীয়           |
| [FeF <sub>6</sub> ] <sup>3-</sup>                  | 6                  | $sp^3d^2$                      | অষ্টতলকীয়                     | প্যারাচৌমকীয়             |

### পোলারায়ন (আয়নিক যৌগের সমযোজী বৈশিষ্ট্য)

#### 

ক্যাটায়ন ও অ্যানায়নের চার্জ ঘনত যত বেশি হয়, পোলারায়ন তত বেশি হবে।

চার্জের পরিমাণ চার্জ ঘনত্ব = <u>পরমাণুর আকার</u>

- (ii) ক্যাটায়নের আকার যত ছোট হয় এবং অ্যানায়নের আকার যত বড় হয় পোলারায়ন তত বেশি ঘটে।
- (iii) যেসব ক্যাটায়নের ইলেকট্রন বিন্যাসে  $ns^2 np^6 (n-1) d^{1-10}$ ইলেকট্রন বিন্যাস থাকে, সে সব ক্ষেত্রে ns² np6 এর তুলনায় ज्यानाय्रत्नत विकृष्टि वा পোनात्रायन विन माजाय घटि ।
- > পোলারায়ন ↑ সমযোজী বৈশিষ্ট্য ↑ আয়নিক বৈশিষ্ট্য ↓
- আয়निक বৈশিষ্ট্য ↑ গলনায় ও স্কুটনায় ↑ পানিতে দ্রবণীয়তা ↑
- পোলারায়ন ↑ বর্ণের গাঢ়ত্ব ↑ যেমন: AgI হলুদ কিন্তু AgCl সাদা বর্ণের হয়।
- সিলভার হ্যালাইডের দ্রাব্যতাঃ

AgF > AgCl > AgBr > AgI

ফাজানের নীতির ব্যতিক্রম:

Group-1 এর ক্লোরাইড লবণের গলনান্ধ ক্রম:

NaCl > KCl > RbCl > CsCl > LiCl

Group-2 এর সালফেট লবণের দ্রাব্যতা ক্রম:

BeSO<sub>4</sub> > MgSO<sub>4</sub> > CaSO<sub>4</sub> > SrSO<sub>4</sub> > BaSO<sub>4</sub>

### পোলারিটি (সমযোজী যৌগের আয়নিক বৈশিষ্ট্য)

#### পোলার যৌগ:

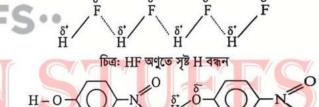
- 2টি পরমাণুর মধ্যে তড়িং ঋণাত্মকতার পার্থক্য (0.5 1.9) এর মধ্যে থাকলে তারা পোলার এবং তড়িৎ ঋণাত্মকতার পার্থক্য (0 – 0.4) হলে তারা অপোলার সমযোজী।
- ➤ যদি H → N/O/X(X = F, Cl, Br, I) এর সাথে যুক্ত থাকে তাহলে ঐ যৌগগুলো পোলার যৌগ হয়। যেমন: NH3, H2O, HCI, CH₃OH ইত্যাদি।

#### পোলারিটি:

- সমযোজী যৌগের সংশ্লিষ্ট দুই পরমাণুর তড়িৎ ঋণাত্মকতার অধিক পার্থক্যের কারণে (সাধারণত 0.5 – 1.9) অণুর দুই প্রান্তে চার্জের বা মেরুর সৃষ্টি হয়, উভয় মেরুকে একত্রে ডাইপোল বলে। সমযোজী যৌগে ডাইপোল সৃষ্টির এ ধর্মকে পোলারিটি বলে।
- তড়িৎ ঝণাত্মকতার পার্থক্য ↑ পোলারিটি ↑ আয়নিক বৈশিষ্ট্য ↑
- পাউলিং স্কেল অনুসারে কিছু মৌলের তড়িৎ ঋণাত্মকতা:

| মৌল   | তড়িৎ ঋণাত্মকতা |
|-------|-----------------|
| F     | 4.0             |
| 0     | 3.5             |
| N, Cl | 3.0             |
| Br    | 2.8             |
| I,S,C | 2.5             |
| P     | 2.19            |
| Н     | 2.1             |

তড়িৎ ঋণাত্মকতার পার্থক্য এবং যৌগের প্রকৃতি:


| তড়িৎ ঋণাত্মকতার পার্থক্য | যৌগের প্রকৃতি  |  |
|---------------------------|----------------|--|
| > 1.9                     | আয়নিক         |  |
| 0.5 – 1.9                 | পোলার সমযোজী   |  |
| < 0.5                     | অপোলার সমযোজী  |  |
| 0                         | বিশুদ্ধ সমযোজী |  |

#### হাইড্রোজেন বন্ধন, ভ্যানডার ওয়ালস বন্ধন

#### H-বন্ধন:

- > অধিক তড়িং ঋণাতাক পরমাণু F, O, N এর সাথে যুক্ত H পরমাণুর মধ্যবর্তী বন্ধন অধিকতর পোলার হয়। এরূপ দৃটি পোলার অণুর মধ্যে ধনাত্মক প্রান্ত ও ঝণাত্মক প্রান্তে এক দুর্বল বন্ধন সৃষ্টি হয়। এরূপ বন্ধনকে H বন্ধন বলা হয়।
- ▶ H-বন্ধন এর শক্তিমাত্রা প্রায় 10 40 kJ mol<sup>-1</sup> হয়।
- দুৰ্বল বন্ধন
- তড়িৎ ঋণাত্মকতার পার্থক্য 🕇 H-বন্ধন এর শক্তিমাত্রা 🕇
- H-বন্ধনের শক্তিক্রমঃ

- H-বন্ধন দুই প্রকার।
- (i) আন্তঃআণবিক H বন্ধন (ii) অন্তঃআণবিক H বন্ধন আন্তঃআণবিক H-বন্ধনঃ



প্যারা-নাইট্রোফেনল (আন্তঃআণবিক H-বন্ধন)

অন্তঃআণবিক H-বন্ধন:

$$\begin{array}{c|c}
 & \delta^{+} & 0 \\
 & N & \delta^{-} \\
 & O - H
\end{array}$$

অর্থো-নাইট্রোফেনল (অন্তঃআণবিক H-বন্ধন)

- যৌগে H-বন্ধন বিদ্যমান থাকলে যৌগের গলনাল্ক ও ক্ষুটনাল্ক বৃদ্ধি
- ▶ 1টি পানির অণুতে সর্বোচ্চ H-বন্ধন থাকতে পারে = 4টি
- বন্ধনের শক্তিমাত্রা: ভ্যানডার ওয়ালস বন্ধন < H-বন্ধন < সমযোজী বন্ধন < আয়নিক বন্ধন

अरसे सरमेग्रहरूप राजनाप विजय र निकार है जिस के निकार के प्रेम के निकार के प्रेम के निकार के अरसे कि

88

## ৪৫/০ পরীকার্বানের ভনা খার্চাইকৃত মৃভননীন প্রয়োভর

#### 6433

| <b>ভৌ</b> লা | वस्वितिम् म्हतस्य हिलाम् विनामः | n 2克斯 |
|--------------|---------------------------------|-------|
| D            | 288                             |       |
| E            | (m + 10)5 <sup>2</sup>          | 3     |
| F            | (m ÷ 10/5° ma <sup>(1)</sup> )  |       |

[এখান্ড, D. E. ও F. কোলো বৌলের প্রাচনিক প্রস্তীক দায়ী

্কা ভালভার ভালভার বাকর্থণ কর করে বরের

伊山原流从河西30分河。

(বা) অগ্রিজেনের দিন্তীর ইনোকট্রন আগতির মান ক্যান্ত্রক কেনং ক্রেগ্রা কর। নি. কে. ২৩

(মা) 'E' কবছান্তর ধাকু নয় কেনঃ কাথা কর i

(語, 例, 20)

(ছ) DCO3 ও ECO3 ওর মধ্যে কোনটি অধিক ভাগে বিয়োচ্ছিত হয়।
ভান বো, ২৬ সনুবৰ্গ গ্রাচ্ছ হ বো, ২৬ বা, বে, ২১।

य्याप्राधः

সমযোনী অপুসমূহের যতে অহায়ী ভাইগোলসমূহের গালস্পারিক আত্তঃআশবিক আকর্ষণ ফলকে জালভার ওল্লান্য আকর্ষণ কর বলা।

- ইলেকট্রন আগভির সংজ্ঞানুসারে, গ্যাসীর অবহার কোনো মৌলের এক যোল মিনিয়ের একক খণাজুক আরন এক মোল ইলেকট্রন গ্রহণ করে এক মোল দি-খণাজুক জারনে পরিণত হওরার জন্য রে পরিমান শক্তির পরিবর্তন হয়, ভাকে ঐ মৌলের ছিন্তীয় ইলেকট্রন জারাকি করে। জারিরজনের কেন্ত্রে প্রথমবার ইলেকট্রন প্রহণের সমর গণাজুক কণাজ্বক (O) আরনটি পরবন্তীতে ইলেকট্রন গ্রহণের সমর গণাজুক চার্জবিশিট্ট ইলেকট্রনকে বিকর্ষণ করে। আবার, প্রথম ইলেকট্রন গ্রহণের পর অবিজ্ঞানের ছিতীয় শক্তিরে সাভটি ইলেকট্রন থাকায় অধিক ইলেকট্রন ঘনত্বের কারণে পরবর্ত্তী ইলেকট্রন আসার সময় ইলেকট্রন ইলেকট্রন বিকর্ষণজনিত বাধা পার। তাই খিতীয় ইলেকট্রন আসজির ক্লেক্সে বাহির থেকে শক্তি প্রয়োগ করার প্রয়োজন গড়ে। ফলে বিক্রিরাটি ভাপহারী হয় এবং অব্রিজনের ছিতীয় ইলেকট্রন আসজির মান ধনাজ্বক হয়ে ধাকে।
- ক্র উদ্দীপক অনুসারে F মৌলটির সর্ববহিঃস্থ স্তরের ইলেকট্রন বিন্যাস  $4s^2 \ 3d^{10}$ । সাধারণত কোনো মৌলের ইলেকট্রন বিন্যাসে সর্বশেষ ইলেকট্রন d-অরবিটালে প্রবেশ করলে, তাদেরকে d-ব্রক মৌল বলে। আবার, কোনো d-ব্রক মৌলের সুস্থিত আয়নের ইলেকট্রন বিন্যাসে d-অরবিটাল আংশিকভাবে পূর্ণ (d<sup>1-9</sup>) থাকলে, তাদেরকে অবস্থান্ডর মৌল বলে। Zn এর ইলেকট্রন বিন্যাস হতে পাই,

 $Zn(30) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$  এটি একটি d-ব্লক মৌল। কিন্তু Zn গুধুমাত্র  $Zn^{2+}$  আয়ন গঠন করতে পারে, যার ইলেকট্রন বিন্যাসে d-ব্লক পূর্ণ থাকে।

 $Zn^{2\tau}(30) \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ 

যেহেতু,  $Z_n$  এর সুস্থিত আয়ন  $Z_n^{2+}$  এর d-অরবিটাল সম্পূর্ণরূপে পূর্ণ তাই  $Z_n$ , d-ব্লক মৌল হলেও অবস্থান্তর মৌল নয়।

ঘ উদ্দীপক অনুসারে D ও E মৌলদ্বয়ের ইলেক্ট্রন বিন্যাস যথাক্রমে,

 $D \rightarrow 1s^2 2s^2 2p^6 3s^2$ 

 $E \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ 

AGO SQUEE LAMBLE VIECOV & CARAD :

প্রতির দ্বার্থিক। প্রতান রেও ডিব্রু ক্রান্থিক ছার পরে বিভেন্তর প্রতান দ্বার্থিক। প্রতান রেও ডিব্রু ক্রান্থিক ছার পরে বিভেন্তর সাধারণত ব্যোক্তি বিভিন্ন

जास्टिक स्वीतिक क्ष्मास्त्रको रिजीमिक्क (काळ क्षमानिक स्वीतिक जानुस्त्रत् कामेश्वरत्य प्रस्तर एक पृद्ध स्ट्य प्रजी एक (क्ष्म रह् प्रातीवक कर्युं क जामाधारस्य कर रहेव (भामास्त्रस एक) क्ष्म रहेक्किर क्रमस्त्रके रिजीमिक कृति करा

ইন্দ্যীপাকের কৌনজনের কর্মনার করিক বারণে বিমান্ত্রীত হয়। কিয়া CaCO; এর কুলনার আরু : ছবল MgCO; এর কৌনটো MgCO, এর কুলনার করিক করে। করি CaCO;

| <b>०</b> वं | যোগতভাজনের ইনেকটিন বিদ্যাস |
|-------------|----------------------------|
| 0           | (n - 1)d* ns²              |

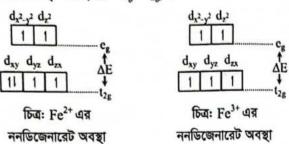
বিধান্ত Q মৌকোর প্রচলিত প্রজীক নম এবং n = 4]

(খ) H<sub>2</sub>O একটি পোলার থৌগ কেনা বাাধাা কর।

য়ে, বা, ২৬। দি, বেং, ২১; দলুরণ প্রশ্ন হ বো, ১৯। দু, বো, ১৭।
সাক্রের 🔘 শ্রৌখানি রঙ্গির যৌগ গঠের করে ক্রিয়া–মঞ্জিনর বিল্পার্য

- (ग) উদ্দীপকের Q মৌগটি রম্ভিন যৌগ গঠন করে কিলা—য়ঙিলহ বিশ্রেধণ
  কর।
   । ধ্ব, বহু ২২।

সমাধান:


- ক্ষ সমযোজী যৌগের অপুতে দুইটি পরমাপুর মধ্যে শেয়ারকৃত বন্ধন ইলেকট্রেন যুগলকে কোনো পরমাপুর দিক্ষের দিকে আকর্ষণ করার ক্ষমতাকে ঐ পরমাপুর তড়িং স্বপাত্তকতা বলে।
- কোনো সমযোজী যৌগের অণুতে দুইটি পরমাণুর তড়িং স্বাণাত্মকতার পার্থক্য ( $\Delta E_N$ ) 0.5 1.9 এর মধ্যে হলে, পরমাণুররে ডাইপোল সৃষ্টি হয়। ফলে অণুটি পোলার অণু হয় এবং সমযোজী যৌগে আয়নিক বৈশিষ্ট্য প্রকাশ পায়।

 $H_2O$  এর ক্ষেত্রে H ও O এর তড়িং ঋণাজ্যকতা যথাক্রমে 2.1 ও 3.5 । ফলে তড়িং ঋণাজ্যকতার পার্থক্য,  $\Delta E_N = (3.5-2.1) = 1.4$  হয় ।

অর্থাৎ,  $H_2O$  থৌগে H ও O এর ভড়িৎ ঋণাত্মকতার পার্থক্য অধিক হওয়ায়  $H_2O$  একটি পোলার যৌগ।

া উদ্দীপক অনুসারে Q মৌলটির যোগাতান্তরের ইলেকট্রন বিন্যাস  $3d^6 4s^2$ , যা Fe নির্দেশ করে। Fe একটি অবস্থান্তর ধাড় এবং Fe এর সৃস্থিত আয়নঘয় Fe<sup>2+</sup> ও Fe<sup>3+</sup> এর ইলেকট্রন বিন্যাস যথাক্রমে,

ষাভাবিক অবস্থায়  $Fe^{2+}$  ও  $Fe^{3+}$  আয়নের পাঁচটি 3d অরবিটাল  $3d_{xy}$ ,  $3d_{yz}$ ,  $3d_{xz}$ ,  $3d_{x^2-y^2}$  এবং  $3d_{z^2}$  সমশক্তিসম্পন্ন অর্থাৎ ডিজেনারেট অবস্থায় থাকে। কিন্তু জটিল যৌগ গঠনকালে লিগ্যান্ডের মুক্তজোড় অরবিটাল আয়নদ্বয়ের কাছাকাছি এলে, d অরবিটালগুলোর মধ্যে জক্ষ বরাবর থাকা  $3d_{x^2-y^2}$  ও  $3d_{z^2}$  অরবিটালদ্বয় অধিক বিকর্ষিত হয়ে উচ্চতর শক্তি প্রাপ্ত হয় অর্থাৎ ননডিজেনারেট অবস্থায় থাকে। ফলে ক্রিস্টাল ফিন্ড মতবাদ অনুসারে দুই সেট অরবিটালের মধ্যে শক্তির পার্থক্যের সৃষ্টি হয় ( $\Delta E = e_g - t_{zg}$ )।



তাই আয়নছয়ের জলীয় দ্রবণে আলো আপতিত হলে, d-অরবিটালের বিজোড় ইলেকট্রন ঐ আলো শোষণ করে উচ্চতর  $(3d_{x^2-y^2}, 3d_{z^2})$  এ উন্নীত হয় এবং আলোর অবশিষ্ট তরঙ্গ আয়নদ্বয় দ্বারা শোষিত বর্ণের সম্পূরক বর্ণ হয়। অর্থাৎ, Fe রঙিন যৌগ গঠন করে।

উদ্দীপকের Q মৌলটি Fe হওয়ায়  $[Q(CN)_6]^{3-}$  এবং  $[Q(CN)_6]^{4-}$  যৌগছয় যথাক্রমে  $[Fe(CN)_6]^{3-}$  এবং  $[Fe(CN)_6]^{4-}$  হবে। মৌগছয়ে Fe এর জারণ সংখ্য নির্ণয় করে পাই,  $Fe^{2+}$  আয়ন  $[Fe(CN)_6]^{4-}$  এবং  $Fe^{3+}$  আয়নটি  $[Fe(CN)_6]^{3-}$  গঠন করে।

[Fe(CN)<sub>6</sub>]⁴ এর গঠন:

 $Fe^{2+}$  এর ইলেকট্রন বিন্যাস করে পাই,



অর্থাৎ দুইটি d, একটি s ও তিনটি p অরবিটাল নিয়ে  $d^2sp^3$  সংকর অরবিটাল গঠিত হয়। জটিল আয়নটিতে কোনো বিজোড় ইলেবট্রন না থাকায় এটি কোনো বাহ্যিক চৌম্বকক্ষেত্র দ্বারা আকর্ষিত হয় না। অর্থাৎ, এটি ডায়াম্যাগনেটিক।

[Fe(CN)6]3- এর গঠন:

Fe3+ এর ইলেকট্রন বিন্যাস করে পাই,

| প্রশ্ন ▶ ৩ | মৌল | যোজ্যতান্তরের ইলেকট্রন বিন্যাস  | n अत यान |
|------------|-----|---------------------------------|----------|
|            | Q   | ns² np²                         |          |
|            | M   | ns <sup>2</sup> np <sup>3</sup> | 2        |
|            | D   | $(n+1)s^2(n+1)p^3$              |          |

[এখানে Q, M ও D মৌলের প্রচলিত প্রতীক নয়]

(ক) পোলারায়ন কাকে বলে?

[রা. বো. ২৩; কু. বো. ২৩; ব. বো. ২৩; চ. বো. ২২; ম. বো. ২১; চা. বো. ১৯]

(খ) Na<sup>+</sup> গঠিত হলেও Na<sup>++</sup> গঠিত হয় না কেন? [ঢা. বো. ২৩; রা. বো. ১৯]

(গ) QH4 মৌগের জ্যামিতিক আকৃতি সংকরণের মাধ্যমে ব্যাখ্যা কর ।
 [ঢা. বো. ২৩; ব. বো. ২২; সম্পিণত বো. ১৮; অনুরূপ প্রশ্ন: চ. বো. ২৩;
 ম. বো. ২২; দি. বো. ২১]

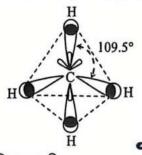
(ঘ) M ও D মৌলছয়ের হাইড্রাইডের বন্ধন কোণের ভিন্নতার কারদ বিশ্লেষণ কর। ঢা. বো. ২৩; কু. বো. ২২; ব. বো. ২১)

সমাধান:

আয়নিক যৌগে ক্যাটায়ন কর্তৃক অ্যানায়নের ইলেকট্রন মেঘের উপর আকর্ষণের কারণে অ্যানায়নের মেঘের বিকৃতি হওয়ার ঘটনাকে পোলারায়ন বলে।

Na থেকে Na<sup>+</sup> গঠিত হলেও Na<sup>++</sup> গঠিত হয় না। কারণ Na এর ইলেকট্রন বিন্যাস হতে পাই,

 $Na(11) \rightarrow 1s^2 2s^2 2p^6 3s^1$ 


অর্থাৎ  $N_a$  এর শেষ কক্ষপথে একটি মাত্র ইলেকট্রন থাকে, যা ত্যাগ করে  $N_a^+$  এ পরিণত হয়। ফলে নিদ্ধিয় গ্যাস  $N_e$  এর মত ইলেকট্রন বিন্যাস অর্জন করে  $[N_e(10) \to 1s^2 \ 2s^2 \ 2p^6]$ । তাই  $N_a^+$  এর ইলেকট্রন বিন্যাসে অষ্টক পূর্ণ থাকে এবং এটি অধিক স্থিতিশীলতা অর্জন করে। কিন্তু এই স্থিতিশীল অবস্থা থেকে আরেকটি ইলেকট্রন ত্যাগ করে  $N_a^{++}$  এ পরিণত হতে অনেক বেশি পরিমাণ শক্তির প্রয়োজন হয়। একারণে  $N_a^+$  সহজে গঠিত হলেও,  $N_a^{++}$  গঠন করা সম্ভব নয়।

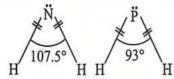
। जिम्मी जिम्मी जिम्मी प्रत्माणि व्यामाणि व्यामि विकास प्रत्म  $QH_4$  योगिणि व्यामि प्रत्म  $QH_4$  योगिणि व्यामि प्रत्मि प्रत्मि प्रत्माप् कार्यत्म विन्यामि करत भार्षे,  $C(6) = 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^0$  मिन्स जिम्मी प्रत्मि प्रति प्रत

 ${
m CH_4}$  যৌগে কোনো  $\pi$ -বন্ধন না থাকায়, কার্বনের যোজ্যতাস্তরের একটি 2s ও তিনটি 2p এর চারটি বিজোড় ইলেকট্রনবিশিষ্ট অরবিটাল সংকরিত হয়ে চারটি সমশক্তিসম্পন্ন  $sp^3$  সংকর অরবিটাল গঠন করে। এই সমশক্তিসম্পন্ন সংকর অরবিটালসমূহ পরবর্তীতে চারটি H এর  $1s^1$  অরবিটালের সাথে মুখোমুখি অধিক্রমণে  ${
m CH_4}$  গঠন করে।  ${
m CH_4}$  এর জ্যামিতিক গঠন নিম্নে দেখানো হলো:

মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ১৫১/ FRB Compact Suggestion Book.....

88




জ্যামিতিক আকৃতি: চতুস্তলকীয় বন্ধন কোণ: 109.5° ADMISSION

উদ্দীপকের M ও D মৌলদ্বর যথাক্রমে নাইট্রোজেন (N) ও ফসফরাস
(P) ইওয়ায় মৌলগুলোর হাইদ্রাইডগুলো যথাক্রমে NH3 ও PH3।
উভয় যৌগের গঠনে কোনো π-বন্ধন না থাকায়, N ও P এর
সর্ববহিঃস্তরের একটি s ও তিনটি p অরবিটালের সংকরায়নে sp³
অরবিটাল সৃষ্টি হয়। ফলে অণুদ্বয়ের আকৃতি চতুস্তলকীয় হওয়ার কথা।

$$N(7) \rightarrow 1s^2 \underbrace{2s^2 2p_x^1 2p_y^1 2p_z^1}_{sp^3}$$

$$P(15) \to 1s^2 2s^2 2p^6 \underbrace{3s^2 3p_x^1 3p_y^1 3p_z^1}_{sp^3}$$

কিন্তু যৌগছয়ের কেন্দ্রীয় পরমাণু N ও P এ একটি মুক্তজাড় ইলেক্ট্রন থাকায় মুক্তজোড়-বন্ধনজোড় (Ip — bp) বিকর্ষণে আকৃতির বিকৃতি ঘটে এবং ত্রিকোণীয় পিরামিড আকৃতির লাভ করে। ফলে H-N-H এবং H-P-H এর বন্ধন কোণ  $109.5^\circ$  অপেক্ষা কমে যায়। তাছাড়া, N এর আকার P অপেক্ষা ছোট হওয়ায় N এর তড়িৎ ঋণাত্মকতা অধিক হয়। ফলে N-H বন্ধনের বন্ধনজোড় ইলেক্ট্রন N এর দিকে P-H এর তুলনায় অধিক সরে আসে। এতে  $NH_3$  এ পাশাপাশি N-H বন্ধনের বন্ধনজোড় ইলেক্ট্রনের মধ্যে বিকর্ষণ বেশি হয়। তাই  $NH_3$  যৌগে বন্ধন কোণের মান ( $107.5^\circ$ )  $PH_3$  এর তুলনায় ( $93^\circ$ ) বড় হয়।



প্রেল্ ▶ 8 A = ......(n – 1)d<sup>x</sup> ns<sup>1</sup>; যেখালে, x ≠ 0

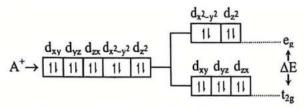
(ক) হাইড্রোজেন বন্ধন কাকে বলে?

[य. व्या. २७, २२; त्रा. व्या. २२, ১৯; कृ. व्या. २२, २১, ১৯; व. व्या. २১; ह. व्या. ১৯]

(ব) NaCl এর চেয়ে MgCl2 এর গলনাঙ্কের মান কম কেন?

[त्रा. त्वा. २७; जनुक्रभ क्षद्मः त्रि. त्वा. २७; च. त्वा. २२; पि. त्वा. २२; घ. त्वा. २४; च. त्वा. २४; च. त्वा. २४; च. त्वा. २४; च. त्वा. २४;

- (গ) উদ্দীপকের উল্লিখিত x এর সম্ভাব্য মান যুক্তিসহ উল্লেখ কর। ারা. বো. ২৩।


সমাধানঃ

- হাইড্রোজেনের সাথে উচ্চ তড়িৎ ঝণাত্মক মৌলের সমযোজী বন্ধনে H-প্রান্তে আংশিক ধনাত্মক ও অপর মৌলে আংশিক ঝণাত্মক চার্জ সৃষ্টি হয়ে ডাইপোল সৃষ্টি করে। একাধিক ডাইপোলের মধ্যে আকর্ষণের ফলে সৃষ্ট বন্ধনকে হাইড্রোজেন বন্ধন বলে।
- যে যৌগ যত বেশি আয়নিক তার গলনাস্ক তত বেশি। NaCl ও  $MgCl_2$  যৌগে ক্যাটায়নের জারণ সংখ্যা যথাক্রমে + 1 ও + 2 এবং  $Mg^{2+}$  এর আকার  $Na^+$  অপেক্ষা ছোট। ফাজানের নীতি অনুসারে ক্যাটায়নের আকার ছোট ও চার্জ বেশি হলে ঐ ক্যাটায়ন কর্তৃক আ্যানায়নের পোলারায়ন বেশি হয়। ফলে আয়নিক যৌগে সমযোজী বৈশিষ্ট্য বৃদ্ধি পায়। যেহেতু  $Na^+$  এর তুলনায়  $Mg^{2+}$  এর আকার ছোট ও চার্জ সংখ্যা বেশি, তাই  $MgCl_2$  এ অধিক সমযোজী ধর্ম প্রকাশ পাবে। সূতরাং NaCl এর তুলনায়  $MgCl_2$  এর গলনাস্ক কম হবে।
- জ্বীপক থেকে পাই, A মৌলটির ইলেকট্রন বিন্যাস ....(n − 1)d<sup>x</sup> ns<sup>1</sup> যেখানে x ≠ 0, যা একটি d ব্লকভুক্ত মৌলকে নির্দেশ করে।
  ইলেকট্রন বিন্যাসের আউফবাউ নীতি অনুসারে ইলেকট্রনগুলো অরবিটালে প্রবেশের সময় নিম্নশক্তির অরবিটালগুলো আগে পূর্ণ করে।
  এখন (n −1) এর তুলনার ns এর শক্তি কম হওয়ার ns এর ইলেকট্রন
  1টি না হয়ে 2টি হওয়ার কথা ছিল।
  যেহেতু কোন অরবিটাল পরিপূর্ণ বা অর্ধপূর্ণ থাকলে অধিক স্থিতিশীলতা লাভ করে। তাই d কে অধিক স্থিতিশীল করার জন্য ns থেকে একটি ইলেকট্রন (n − 1)d তে স্থানান্তরিত হয়। সেক্ষেত্রে A মৌলটির সম্ভাব্য ইলেকট্রন বিন্যাস হয় ....(n − 1)d<sup>5</sup> ns<sup>1</sup> বা ....(n − 1)d<sup>10</sup> ns<sup>1</sup>
  স্বতরাং A মৌলটির ইলেকট্রন বিন্যাসে স্থিতিশীলতার জন্য x এর
- উদ্দীপকের  $A^+$  আয়নটি ডায়াচৌম্বকীয় হতে হলে d অরবিটালটি ইলেকট্রন দ্বারা পরিপূর্ণ হতে হবে। সেক্ষেত্রে d অরবিটালে কোনো অযুগা ইলেকট্রন না থাকায়, ACI রঙিন যৌগ গঠন করতে পারবে না। সেক্ষেত্রে  $A^+$  এর ইলেকট্রন বিন্যাস হবে,

সম্ভাব্য মান 5 বা 10।

$$A^+ = ....(n-1) d^{10} ns^0$$

সাধারণভাবে আয়নের d উপশক্তিন্তরের 5টি d অরবিটাল: সমশক্তিবিশিষ্ট অর্থাৎ ডিজেনারেট অবস্থায় থাকে । কিন্তু যৌগ গঠনকালে লিগ্যান্ডের মুক্তজোড় অরবিটাল আয়নটির কাছাকাছি এলে, d অরবিটালগুলোর মধ্যে অক্ষ বরাবর থাকা  $d_{x^2-y^2}$  ও  $d_{z^2}$  অধিক বিকর্ষিত হয়ে উচ্চতর শক্তি প্রাপ্ত হয় অর্থাৎ অরবিটালগুলো নন ডিজেনারেট অবস্থায় থাকে । ফলে উৎপন্ন দুই সেট d অরবিটাল  $e_g$  এবং  $t_{2g}$  সৃষ্টি হয় । তাদের শক্তির পার্থক্য ( $\Delta E = e_g - t_{2g}$ ) যদি দৃশ্যমান আলোর তরঙ্গদর্ঘ্যের সীমার মধ্যে পড়ে, তবে d অরবিটালের বিজোড় ইলেকট্রন ঐ আলো শোষণ করে রঙিন যৌগ গঠন করে ।



চিত্র:  $\mathbf{A}^{+}$  আয়নটির ডিজেনারেট-ননডিজেনারেট অবস্থা

এখন, A<sup>+</sup> আয়নের d অরবিটালে কোনো অযুগা ইলেকট্রন না থাকায়, কোনো ইলেকট্রন শক্তি শোষণ করে ধাপান্তরিত হয় না এবং রঙিন যৌগ গঠনের সুযোগ পায় না। সুতরাং, A<sup>+</sup> আয়নটি ডায়াটৌম্বকীয় হলেও ACI যৌগটি রঙিন হয় না।

#### প্রশ **৮** ৫

| व्यपि 🛶 | 1 | 13 | 15 | 16 | 17 |
|---------|---|----|----|----|----|
| ১ম      | A |    |    |    |    |
| ২য়     |   | X  | Y  | D  | В  |

ব্যবহৃত প্রতীকগুলো মৌলের প্রকৃত প্রতীক নয়।

(ক) ইলেকট্রন আসজি কাকে বলে?

[य. त्वा. २७; कू. त्वा. २२, २५; त्रा. त्वा. २५; व. त्वा. २५; मि. त्वा. २১]

- (খ) Mg এর ইলেকট্রন আসজির মান ধনাত্মক কেন?
  - রো. বো. ২৩)
- (গ) AB অপেক্ষা A2D এর ফুটনাংক বেশি কেন?

রা. বো. ২৩; ব. বো. ২৩; ঢা. বো. ২২]

(ঘ) উদ্দীপকের 'X' ও 'Y' এর সংকরণে ভিন্নতা বিদ্যমান–ব্যাখ্যা কর।

[রা. বো. ২৩]

#### সমাধান:

- গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল বিচ্ছিন্ন প্রমাণুর প্রতিটি সর্ববহিঃস্থ শক্তিস্তরে একটি করে মোট এক মোল ইলেকট্রন গ্রহণ করে এক মোল একক ঋণাত্মক চার্জযুক্ত আয়নে পরিণত হতে যে পরিমাণ শক্তি ত্যাগ করে, তাকে ঐ মৌলের ইলেকট্রন আসক্তি বলে।
- সাধারণত কোন মৌলের ইলেকট্রন বিন্যাসে অরবিটাল অর্ধপূর্ণ বা পরিপূর্ণ থাকলে অধিকতর স্থিতিশীল হয়।  $Mg \text{ এর ইলেকট্রন বিন্যাস: } Mg(12) \rightarrow 1s^2 2s^2 2p^6 3s^2$

সুতরাং, Mg এর বহিঃস্থ শক্তিন্তরে 3s অরবিটাল ইলেকট্রন দ্বারা পূর্ণ থাকায় এটা অধিকতর স্থিতিশীল। তাই নতুন ইলেকট্রন গ্রহণ করলে Mg এর ঐ স্থিতিশীল ইলেকট্রন বিন্যাস বিনম্ভ হয়। ফলে নতুন ইলেকট্রন সংযোগকালে বাহির থেকে শক্তি প্রয়োগের প্রয়োজন পড়ে অর্থাৎ, ইলেকট্রন আসক্তির মান ধনাত্মক হয়।

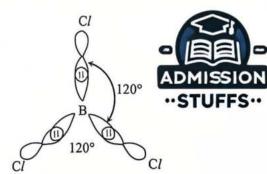
গ উদ্দীপকের A, B ও D মৌলসমূহ যথাক্রমে হাইড্রোজেন (H), ফ্রোরিন (F) ও অক্সিজেন (O)। সুতরাং, AB ও  $A_2D$  যৌগদ্বর যথাক্রমে HF ও  $H_2O$ । এখন, উভর যৌগে হাইড্রোজেন বন্ধন বিদ্যমান থাকলেও HF অণুর ক্ষেত্রে, F পরমাণুর আকার খুব ছোট ও এটি উচ্চ তড়িং খণাত্মক মৌল। ফলে HF অণুর F পরমাণু খুব সহজে H-বন্ধন গঠন

করে। সাধারণত, HF এর গাঢ় জলীয় দ্রবণে দৃটি HF অপু দৃঢ় হাইড্রোজেন বন্ধনের মধ্যেমে যুক্ত হয়ে ডাইমার অপু  $H_2F_2$  হিসেবে অবস্থান করে।

চিত্র: HF অণুর মধ্যে H-বন্ধন

অপরদিকে,  $H_2O$  অণুতে H অপেক্ষা O এর তড়িৎ ঋণাত্মকতা বেশি হওয়ায়, কঠিন বরফ ও তরল পানির অণুর আংশিক ধনাত্মক H পরমাণু আন্তঃআণবিক H বন্ধন গঠন করে বৃহদাকার  $(H_2O)_n$  অণু গঠন করে

$$\overset{\delta^{+}}{H} \overset{\delta^{-}}{\underset{H}{\overset{\delta^{+}}{\longrightarrow}}} \overset{\delta^{+}}{H} \overset{\delta^{-}}{\underset{H}{\overset{\delta^{+}}{\longrightarrow}}} \overset{\delta^{+}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^{+}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^{+}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^{-}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^{-}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^{+}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^{+}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^{+}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^{-}}{\underset{H}{\overset{\delta^{-}}{\longrightarrow}}} \overset{\delta^$$


চিত্র: H2O অণুর মধ্যে H বন্ধন

সাধারণ একটি পানির অণু অপর 4টি পানির অণুর সাথে H বন্ধনে আবদ্ধ থাকায় পানিকে অধিক তাপ প্রয়োগ করে ঐসব H বন্ধন ভাঙতে হয়। ফলে পানির স্ফুটনাঙ্ক  $100^{\circ}$ C হয়। কিন্তু HF অণুসমূহ একক H বন্ধন দ্বারা আবদ্ধ থাকায় ঐ H বন্ধন ভাঙতে অল্প তাপশক্তি ব্যয় হয়। ফলে HF এর স্ফুটনাঙ্ক  $19.5^{\circ}$ C হয়। তাই AB অপেক্ষা  $A_2D$  এর স্ফুটনাঙ্ক বেশি।

ত্ব উদ্দীপকের X, Y, A ও B মৌলগুলো যথাক্রমে বোরন (B), নাইট্রোজেন (N), হাইড্রোজেন (H) ও ক্লোরিন (Cl)। সুতরাং উদ্দীপকের YA<sub>3</sub> ও XB<sub>3</sub> যৌগদ্বয় যথাক্রমে BCl<sub>3</sub> ও NH<sub>3</sub>। এখন, BCl<sub>3</sub> এর কেন্দ্রীয় মৌলের ইলেক্ট্রন বিন্যাস থেকে:

$$B^*(5) \rightarrow 1s^2 2s^1 2p_x^1 2p_y^1 2p_z^0$$

যৌগটিতে কোন  $\pi$ -বন্ধন না থাকায় একটি  $s \in 2$ টি p এর বিজোড় ইলেকট্রনবিশিষ্ট অরবিটালের সংকরায়নে উৎপন্ন সমশক্তিসস্পন্ন তিনটি  $sp^2$  সংকর অরবিটালের সাথে Cl এর  $3p_z^1$  এর অধিক্রমণে B-Cl সমযোজী বন্ধন সৃষ্টি হয়, যেখানে প্রতিটি বন্ধনের মধ্যে বন্ধন কোণ  $120^\circ$ ।



আবার, NH3 এর কেন্দ্রীয় পরমাণুর ইলেক্ট্রন বিন্যাস করে:

B (7)  $\rightarrow$  1s<sup>2</sup> 2s<sup>2</sup> 2p<sub>x</sub><sup>1</sup> 2p<sub>y</sub><sup>1</sup> 2p<sub>z</sub><sup>1</sup>

অনুরূপভাবে N এর শেষ কক্ষপথের 1টি s ও 3টি p এর সংকরায়নে সমশক্তিসম্পন্ন চারটি sp³ হাইব্রিড অরবিটাল তৈরি হয়। যেখানে একটি সংকর অরবিটাল মুক্তজোড় ইলেকট্রন বিশিষ্ট এবং বাকিগুলোতে অযুগ্ন ইলেকট্রন বিদ্যামান। তিনটি বিজোড় ইলেকট্রন বিশিষ্ট সংকর অরবিটাল তিনটি H এর 1s¹ এর সাথে অধিক্রমণের ফলে N — H বন্ধন তৈরি

क्याका भूगा, चठव्यामातानस्य सहात कवर व्यक्ता क्रमावस्त्राम् स्थामास्य भवार। पामामार व्यक्ति मार्गाम संप्रमाण स्थाना निर्मा वर्गामान । (क) - 1900 निकासिम नाम जमा विभाग नाम (100757 मार वाप 'जिलागगरम्बर तेमागिर्यस्था अनुस्थाना नामार स्थात



सामारा विकास के माना है से हैं से सामारिक विकास किलामा किलामार



|     | ज्यां)रेट | न्यामाय अस्तार भागाय नेमपार |                    |
|-----|-----------|-----------------------------|--------------------|
| _   | 727.      | mř′e(ர்¹                    | <b>व्याग्रह्मा</b> |
|     | 型.        | करं क्यू                    | (E) = II           |
| 1.1 | 72        | (कि ÷ प्रध्ने (कि + प्रक्रि |                    |

वायक्र प्रविध्य प्रमुख स्वापिद्द काञ्चलक्षेत्र प्रमुखान

नव्या व्यापात मार्गार व्याप्य न्याना

在我况不不知而不知 如 如 那 不 ान्तर मीणाज्यन्त्राम् सायाम सर्वामक जन्तामि जन्ता

माला स्थ म्हाताहर का भी

- क्या) चार्रे का मेर अस्वाताक कामण कामण कर है ज स्थे
- गया। द्वाराप्त वार्ष निर्माण्य का न निष्य स्थात वार्ष विद्यालय का जना ना।।पा वमा। 在 本 如 山 不 死 如 刀 面 和 原 面 和

न्यागागारः



नाम नांद रवाधकर क्रमाव यज्ञात



अधारी, जींग्रन्ड उनामाण धार, न्या जीम नवामा अधि। नवरामार्मि क सामि, वार्यान्य क्रमांवन वार गाम ।

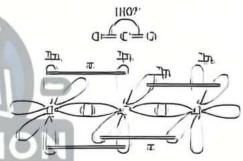
नामियान्त विधिवनाम कर्नेक मानायान देशनीन क्यांच विनामा जनामानाक मधीत, जीतल क्यों रूपायक । उद गरू व्यानामापान भागमञ्जूषित नार नार विभागनाम क्षेत्र गा। विभागमान क्ष्म नितास क त्यास ताम महि वासीमिक विभाग काणीर त्याहर मीजापिट नाम हैन मापन्द गर्ध नाम दिखा (म बापम बनाह वण्याः कड नामाने निर्मात का व



व्यापाइ ४४ छ १. वय आशाया इताय इंपालांग प्रियाम प्रदे और € यों येग, अप जीतार भारतक C o O । बचक्त या, व्याप्त ا بدرای ۱۱۱عی

्राप्तां वक रञ्जीय न्यानि C वय आध्याम् = म (८/ + ७६ − C + ५०)

$$=\frac{11}{2}(4+0-0+0)$$


= 🛚 (प्राम्याम्य)

祖 中国广亚门斯 班 顶

वस्तातामध्य हा

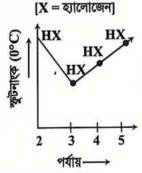
णाण जार जरूनी नर्पप्रीयिक नार्रिय हुए होरे साम्प्रकारीन्य्यत नाम ,पार-पार 1100. कार्यक कार्याक कार्याकार मी क मीम स्थाप्तिकारणा जाणः गामुजातः वालिक्रणण

नीर्ने (1) भार पुर, कारिंगियाचा नामार ८ क्या द्वा घढेंचांक कारिंगियाच सुरामिर वर्गाकाराम और मिया गालि व € का कार्यनीं उठ्छ, ब मून, कारिकील्याताम अग्रास और वा वण मून, कारिकीयाना भागपानि सक निया पाय स्तर स्तर निर्म निया होते होते। स्वाप स्वापिक व पर्यवापायिक कारीम क वर्गायण्य थार कारणीं त्याम वार ।आर्य करार (1) थक्क व्यापितं उता नगम्नीग्रास्ताव ।



म जा भार स अंक मन्त्रभार म जा माज नीतांक र वा माज माज वा भार र वास्त्र स अंक माज माज माज स्थाप TUL & KUL OH'M THE THE THE THE WILL & SICE I CHUT जीतान्त कार्तीत नवागम्ब अविक गीना क्ष वर्ताविका वाक्यम है क्ष कार्विद्याल गाउँ गाउँ गानिस 🔾 भव्रामभुर विधान वैज्ञानसील गुम्न मित्राण्य न्यान गर्रान क्राउट कार जींगानि शानिएए क्रामीस बस । आ शतामपुर गरिहन् मीना अने वर्गार्केमा गाँकार गाँनिएक आहार मुनिकुळ वरार आ अह वरीम मन्यान्त्रा पछि कार मीना क्षेत्रानिविधा भनित विप्रापन था। गुगन फा क्र गाम मिल्लाम क्रम गर्मन क्राप्त ।

मुटे मिद्रारामा करतमा व्यक्त गापास बेंद्रमार्कीन वाक्ये रखाएर शनिया वमा O - H नान मिन वा विचायित वा क मि विच्या क्या । धन गाए। ४५ - ८४ सरुव एउएम ८४ वार्षि मुद्दे द्या । अएव ४५ - ८४ अस प्रवा श्च - Oच कान्त्र विख्य वा । यानाया क्रमागया SICIL था। इकि Sh - CA । स्टब्स् वास्ति अंति स्टास्त स्वीत स्टब्स् स्टास्त स्टास


SHOW + THEO -+ SINORIN + THICK

Altumbus Aublications

অপরদিকে ২য় পর্যায়ভুক্ত C পরমাণুতে কোনো d-অরবিটাল না থাকায়
এর অষ্টক সম্প্রসারণ সম্ভব নয়। তাই পানির অণু CCl<sub>4</sub> এর C
পরমাণুর সাথে সন্নিবেশ বন্ধন গঠন করতে পারে না। ফলে CCl<sub>4</sub> আর্দ্র বিশ্লেষিত হয় না।

 $CCl_4 + H_2O \rightarrow$  কোনো বিক্রিয়া ঘটে না।

প্রশ্ন ▶ ৭ বিভিন্ন পর্যায়ের হ্যালোজেনসমূহের হাইড্রাইড বনাম তাদের কুটনাংকের একটি লেখচিত্র নিচে দেখানো হলোঃ



- (ক) আভঃআণবিক হাইড্রোজেন বন্ধন কী?
- কু. বো. ২৩; ব. বো. ২২)
- (খ) পাই বন্ধন মূলত সমযোজী বন্ধন ব্যাখ্যা কর। [কু. বো. ২৩; রা. বো. ২২]
- (গ) উদ্দীপকের হাইড্রাইডগুলোর জলীয় দ্রবণে প্রোটন উৎপত্ন করার প্রবণতা
   ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের লেখচিত্রটির প্রকৃতি বিশ্লেষণ কর। ক্রি. বো. ২৩; রা. বো. ২২। সমাধান:
- ক একই বা ভিন্ন যৌগের একাধিক অণুর মধ্যে যে হাইড্রোজেন বন্ধন গঠিত হয়, তাকে আন্তঃআণবিক হাইড্রোজেন বন্ধন বলে।
- দৃটি পরমাণুর দুটি পারমাণবিক অরবিটালের অযুণ্ম ইলেকট্রন একই

  অক্ষ বরাবর পাশাপাশি অধিক্রমণের ফলে যে সমযোজী বন্ধনের সৃষ্টি

  হয় তাকে পাই (π) বন্ধন বলা হয়। দুটি পরমাণুর মধ্যে সিগমা বন্ধন

  গঠনের পর যদি উভয় পরমাণুর দুটি সমান্তরাল p-অরবিটাল থাকে তবে

  তাদের পার্শ্ব অধিক্রমণের মাধ্যমে পাই (π) বন্ধন গঠিত হয়। এক্ষেত্রে

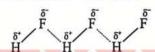
  পরমাণুয়য় নিজেদের মধ্যে ইলেকট্রন শেয়ারের মাধ্যমে বন্ধন গঠন করে

  যা সমযোজী বন্ধনের বৈশিষ্ট্যের অনুরূপ। একারণে পাই (π) বন্ধন

  একটি সমযোজী বন্ধন।
- গ্রী উদ্দীপকের HX দ্বারা প্রদর্শিত হ্যালোজেনসমূহের হাইড্রাইডগুলো
  যথাক্রমে HF, HCl, HBr, HI। এদেরকে হাইড্রাসিডও বলা হয়।
  এরা সবাই অম্প্রমীতা প্রদর্শন করে অর্থাৎ জলীয় দ্রবণে প্রোটন উৎপন্ন
  করতে পারে। তবে হাইড্রাসিডগুলোর জলীয় দ্রবণে প্রোটন উৎপাদন
  ক্ষমতা সমান নয়। জলীয় দ্রবণে HX নিম্নরূপে বিয়োজিত হয়।

$$HX + H_2O \rightarrow H_3O^+ + X^-$$

জলীয় দ্রবণে হাইড্রাসিডগুলোর প্রোটন উৎপন্ন করার প্রবণতা নির্ভর করে অণুস্থিত অ্যানায়নের আকারের উপর। অ্যানায়নের আকার বৃদ্ধির সাথে বন্ধন ইলেকট্রন জোড়ের উপর নিউক্লিয়াসের আকর্ষণ হ্রাস পেতে পাকে। ফলে বন্ধন এর শক্তিমাত্রা প্রায় এবং সহজে ভেঙ্গে দি $_{
m D}$  পাকে। ফলে বন্ধন এর শক্তিমাত্রা প্রায় এবং সহজে ভেঙ্গে দি $_{
m D}$   $_{
m H}^+$  উৎপন্ন করে। এখানে অ্যানায়নের আকার বৃদ্ধির ক্রেম  $_{
m F}^- < C_I _{
m B}$   $_{
m F}^- < _{
m I}^-$ । এজন্য হাইড্রাসিডগুলোর জলীয় দ্রবপে প্রোটন উৎপন্ন করার প্রবণতা বৃদ্ধির ক্রম:  $_{
m H}^- > _{
m H}^- > _{$ 


আবার, এসিডের বিয়োজন ধ্রুবকের মান বৃদ্ধির সাথে এসিডের ঠারত বৃদ্ধি পায়।

| এসিড           | HF                      | HC/                 | HBr                 | HI                   |
|----------------|-------------------------|---------------------|---------------------|----------------------|
| K <sub>a</sub> | 5.62 × 10 <sup>-4</sup> | $2.5 \times 10^{7}$ | $3.2 \times 10^{3}$ | 1 × 10 <sup>10</sup> |

পরিশেষে বলা যায়, উদ্দীপকের হাইড্রাইডগুলোর জলীয় দ্রবণে প্রোটন উৎপন্ন করার প্রবণতার ক্রম হবে: HI > HBr > HCI > HF

উদ্দীপকের লেখচিত্র দ্বারা হ্যালোজেনসমূহের হাইড্রাইডের স্ফুটনান্তের
 ক্রম দেয়া হয়েছে। লেখচিত্র হতে হাইড্রাসিডগুলোর স্ফুটনাঙ্কের ক্রম
 পাওয়া যায় নিমুরূপ

সাধারণভাবে, কোনো গ্রুপের উপর হতে নিচে গেলে হ্যালোজেনগুলোর পারমাণবিক আকার বৃদ্ধি পায় এবং সাথে সাথে স্ফুটনাঙ্কও বৃদ্ধি পায়র কথা। কারণ গ্রুপের উপর হতে নিচে গেলে আণবিক ভর বৃদ্ধি পায়র সাথে ডাইপোল-ডাইপোল আকর্ষণ বল (লভন বল) বৃদ্ধি পায় এবং স্ফুটনাঙ্ক বৃদ্ধি পায়। কিন্তু এখানে HF এর স্ফুটনাঙ্ক সর্বোচ্চ হয়। এর কারণ হিসাবে বলা যায়, HF অণুর হাইড্রোজেন বন্ধন গঠন করায় প্রবণতা। HF অণুতে H ও F এর তড়িং ঝণাত্মকতার পার্থক্য অধিক হওয়ায়, এয়া পোলার সমযোজী যৌগ হিসাবে আচরণ করে এবং দুইটি HF অণু পাশাপাশি H-বন্ধন দায়া আবদ্ধ থাকে।



উৎপন্ন H বন্ধনের কারণে তাদের মধ্যকার আন্তঃআণবিক আকর্ষণ বল ভাঙ্গতে অধিক শক্তির প্রয়োজন হয়। ফলে HF এর স্ফুটনাঙ্ক HI, HB; এর HCl হতে বেশি হয়।

সুতরাং বলা যায়, H বন্ধনের কারণে উপরিউক্ত যৌগসমূহের স্ফুটনাঙ্কের। ক্রমে পার্থক্য দেখা যায়।

| 216 | N  | 1 |
|-----|----|---|
|     | 24 | v |

| æॉपि →<br>পर्याग्र ↓ | 1 | 15 | 16 |
|----------------------|---|----|----|
| ১ম                   | Q |    |    |
| ২য়                  |   | P  |    |
| ৩য়                  |   |    | R  |

- (ক) অরবিটাল সংকরণ কী?
- মি. বো. ২৩; ঢা. বো. ২২; দি. বো. ১৭
- (খ) সোডিয়ামের দ্বিতীয় আয়নিকরণ শক্তি বেশি কেন?
- কু. বো. ২৩
- (গঁ) উদ্দীপকের R মৌলটি ছয়টি বন্ধন গঠন করতে পারে- ব্যাখ্যা কর।
- (ঘ)  $PQ_4^{\dagger}$  ও  $Q_2R$  এর বন্ধন কোণ একই হবে কিনা? বিশ্লেষণ কর।

**কু.** বো. ২৩

কু. বো. ২০

STILLER OF STREET OF STREET AND STREET OF STREET OF STREET OF STREET OF STREET

मञ्जाभामः

निकित्रभागान ज्याजा श्वापात जानाम स्वान निन्ति निकित ক্ষর্মাদীটাদাপার্চ্ছ পরাস্পত্রের সাজে জিমিড জ্যা সমাশক্তিসভান অধিক श्चिमिक्नीभा फरानिप्राम त्राप्टित क्षातिगाएक स्थानिप्रिमच्यपुटात गलागम त्रा वहिंदिविधिविद्यामाय नामा स्त्रा ।

अंभव जात छेउलमारिन जिनग्राप क्टरू प्रमा गांज,

ध्यतः अर्परत्नामः भावित्रक्षरता जान्त्रपणाति वाचापि केरकताप्तिम भारतः या विधित्रिपान श्राजा पूर्तपामाद्र ज्ञानर्मिछ छता । छोष्ट्रै ताय् हेट्जनाप्लेम प्रथमातम बद्ध Ma আদ্রাসে পরিণচ বাদ্যুচে কম শচিন্ত প্রাস্তাায়ান।

निस्त्र 11/18° अन्त हेटलनामिन निमाण निक्रिय शताण निराद्वान कानुमान । 11/10° इक्तमाधारत आमर्जान मारता। धाँडै Ma' इटफ देखनाप्रिय वाभागातान मनाटफ ज्वाता क्रिक्त अप्राधिम । क्षातावरम ३५a कव २व बाउमितन्त्रम महि নেশি।

$$Ma(g) \rightarrow Ma'(g) + e^{-}; (JE_1 = +496 \text{ kJ mod}^{-1})$$
  
 $Ma''(g) \rightarrow Ma''(g) + e^{-}; (JE_2 = +4562 \text{ kJ mod}^{-1})$ 

छिंगी नाजाना एक नर्गाज छ 16 मार क्रान्त्रज 'R' ज्योगिषि दरमा S.

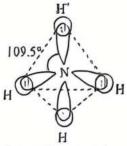
$$668 \rightarrow 10^{2} 25^{2} 2p^{6} 35^{2} 3p_{3}^{2} 3p_{5}^{1} 3p_{5}^{1}$$

🛇 এর ইন্সেনাট্রন নিদ্যান হতে সেগা নার, এর সর্বনহিন্তর শতিস্করে এটি जिज्जाह हैजनाप्रेंग निष्णभाग। अत्यस्य S धव जाननी 2। छैत्वनिष फ्लाइप्रा S(16) भव 3p, दर्फ भवाषि वेजनामिन संगत 3d, वननिर्माल त्रामान नम्रता ।

 $S^{\circ}(16) = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p_{1}^{3} 3p_{1}^{3} 3p_{2}^{3} 3d_{2}^{3}$ এতেজনা S এর সর্ববহিত্তর শক্তিতরে 4টি বিজ্ঞাড় ইন্সেবাট্টন বিদ্যমান ন্যুল এর নোভার্নী 4। প্রাধিক উর্বেভিত অবস্থান্ত ৫ এর ३६ অরবিটাল ब्ट्र अभि वेजनार्येन 3d, पर्तनिर्वाण भाग करत।

 $S^{e}(16) = 1s^{2} 2s^{2} 2p^{6} 3s^{1} 3p_{x}^{1} 3p_{x}^{1} 3d_{p_{x}}^{1} 3d_{p_{y}}^{1} 3d_{p_{y}}^{1}$ धाटमच्या S धव नर्ननिर्देश भिक्टित ६ फि निष्ठा वेदनवर्धीन विमाभाग। वातीर कत जावानी है। एटि ८ कर बहे ६० तिखाए देखतापन ६०

ব্যাল গঠন বরতে পরে।


🚮 িদ্যাপান দানুনারী P, Q ও R মোদকর বদাকেনে 7N, 1H ও 16S। षानी। PQ o Ozk तीशस्त्र नशाक्त NH o H2S. NH of नमान ज्याप जापाज 109.5° जापाज H28 धव नमान ज्याप 92°। ग्रेपार् यात्र जान्द्रीय जींग N दत्र गलनायन

$$= \frac{1}{2} (V + M - C + A)$$
$$= \frac{1}{2} (5 + 4 - 1 + 10)$$

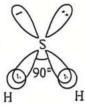
= 4 (ap³ সক্ষোৱান)

চ্ছিনটি ap' হুইব্রিড ত্মরানিটান্সের সাথে ৩টি H এর Is অরবিটান্সের শ্বাদোমেদি অধিত্রেতাণ হয় এবং অবাদিটি sp³ হাইব্রিড অরবিটাণটির সাবে IHI° निमाला नामाजाधी नमान गठन करता।

क्रमार्भिक्टा त्याजा मुख्याए देळ्यप्रिय या याक्ता काम त्याप 109.5° ७ एस्थनकीय धाकस्ति एउ।



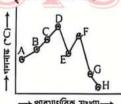



টিক্র: NH ু স্বানাদের গঠন অনাদিকে H<sub>2</sub>S এর বেন্দ্রীয় পরমাণু S এর সংকরায়ন

$$= \frac{1}{2} (V + M - C + A)$$

$$=\frac{1}{2}(6+2-0+0)$$

= 4 (pp¹ সকেরাক্তন)


দুইটি ap<sup>1</sup> হাইব্রিড ষরবিটাল H এর Is অরবিটালের সাথে মুখোমুখি অধিক্রমদে H<sub>2</sub>S গঠন করে ও অবশিষ্ট <sub>BD</sub>3 হাইব্রিড অনাবিটাদাবমে দুইটি মুক্তভোড় ইলেবট্রন থাকে। VSEPR তত্তানুযায়ী Ip-Ip>Ip– bp > bp – bp বিকর্মণের ফলে H₂S এর বন্ধন কোণ 109.5° लाल हान (भारा 90° स्ता।



िवः H,S এत गर्रन

অতএব NH, ও H2S এর বন্ধন কোণ এক হবে না

ব্র্য়া ১৯ পর্যার সারদির তৃতীয় পর্যারের জন্য



(ক) সিগমা বদ্ধন কাকে বদে?

[চ. বে৷ ২০; ঢা. বে৷ ২২; সন্মিদিত বে৷ ১৮; চা. বে৷ ১৭]

- (র্থ) মিটেন অপেক্ষা মিথানলের স্কুটনাংক বেশি কেনঃ ব্যাখ্যা কর। (য. বো. ২০)
- (গ) F অপেন্দা E এর আয়নিকরণ শক্তি বেশি কেন? ব্যাখ্যা কর।

त्वा. २७; वृ. त्वा. २०, २১, ১৯; नि. त्वा. २२; चनुकण क्षत्तः त्रि. त्वा. २७;

দি. বো. ২১; **চ. বো. ১৯**]

(ঘ) উদ্দীপকের ব্রেখাটির C, D, E, F ও G বিন্দুর ক্রম পরিবর্তনের কারণ বিশ্লেষণ কর।

সমাধান:

ক একই বা ভিন্ন মৌলের দুটি পারমাণবিক অরবিটাল একই অব্দ বরাবর মুখোমুখি অধিক্রমণের মাধ্যমে আণবিক অরবিটাল গঠন করে যে সমযোজী বন্ধন সৃষ্টি হয় তাকে সিগমা বন্ধন বলে।

¢8 .....

মিথানল (CH<sub>3</sub> – OH) এ পোলারিটি বিদ্যামান। – OH এর O এবং H এর মধ্যে অধিক তড়িং ঋণাত্মকতার পার্থক্য থাকায় O ও H প্রান্তে যথাক্রমে আংশিক তড়িং ঋণাত্মকতা ও আংশিক তড়িং ধনাত্মকতার উদ্ভব হয়। ফলে পাশাপাশি দুটি মিথানল এর মধ্যে হাইড্রোজেন বন্ধন সৃষ্টি হয়। এতে করে CH<sub>3</sub>OH অণুসমূহ পরস্পরকে আকৃষ্ট করে সংঘবদ্ধ অবস্থায় থাকে এবং CH<sub>3</sub>OH অণুসমূহকে পরস্পর থেকে বিচ্ছিন্ন করতে অধিক তাপশক্তির প্রয়োজন হয়। অন্যদিকে CH<sub>4</sub> এ C এর সাথে চারটি H সমযোজী বন্ধনে যুক্ত থাকে এবং কম তাপমাত্রায় এর ভৌত অবস্থা হয় গ্যাসীয়। অতএব বলা যায়, H বন্ধনের উপস্থিতির জন্য মিথানল (CH<sub>3</sub>OH) এর ক্ষুটনান্ধ CH<sub>4</sub> অপেক্ষা বেশি হয়।

গ্র উদ্দীপকের লেখচিত্র অনুযায়ী E ও F মৌলদ্বয় যথাক্রমে ফসফরাস (P) ও সালফার (S)।

ফসফরাসের আয়নিকরণ শক্তি সালফারের চেয়ে বেশি হয়। পর্যায়ভিত্তিক সম্পর্ক অনুসারে, একই পর্যায়ের বাম থেকে ডানে প্রোটন সংখ্যা বৃদ্ধির সাথে শক্তিস্তর না বাড়ায় আয়নিকরণ শক্তির মান বৃদ্ধি পায়। সে অনুযায়ী সালফার এর আয়নিকরণ শক্তি ফসফরাসের চেয়ে বেশি হওয়ার কথা। কিন্তু,

$$\begin{array}{c}
3p^{3} \\
1sP \rightarrow 1s^{2} 2s^{2} 2p^{6} 3s^{2} \boxed{1} \boxed{1} \boxed{1} \\
3p^{4} \\
16S \rightarrow 1s^{2} 2s^{2} 2p^{6} 3s^{2} \boxed{1} \boxed{1} \boxed{1}
\end{array}$$

ইলেকট্রন বিন্যাস হতে দেখা যায়, P এর 3p অরবিটাল টি অর্থপূর্ণ। মৌল সমূহের অসম্পূর্ণ অরবিটালের তুলনায় পূর্ণ ও অর্থপূর্ণ অরবিটালের তুলনায় পূর্ণ ও অর্থপূর্ণ অরবিটালসমূহ অধিক স্থিতিশীল হওয়ায় এদের থেকে ইলেকট্রন অপসারণে অধিকতর শক্তির প্রয়োজন হয় এবং সাধারণ পর্যায়ভিত্তিক সম্পর্কের ব্যতিক্রম দেখা যায়। এজন্য P ও S এর মধ্যে সাধারণ নির্মান্যায়ী S এর আয়নিকরণ শক্তি P এর তুলনায় বেশি হওয়ায় কথা থাকলেও P এর আয়নিকরণ শক্তি S এর চেয়ে বেশি হয়।

$$P(g) \longrightarrow P^{+}(g) + e \qquad \Delta H = +1012 \text{ kJ mol}^{-1}$$
  
 $1 \text{ mol} \qquad 1 \text{ mol} \qquad 1 \text{ mol}$   
 $S(g) \longrightarrow S^{+}(g) + e \qquad \Delta H = +1000 \text{ kJ mol}^{-1}$   
 $1 \text{ mol} \qquad 1 \text{ mol} \qquad 1 \text{ mol}$ 

উদ্দীপকের লেখচিত্রটিতে পর্যায় সারণির ৩য় পর্যায়ের মৌলসমূহের পারমাণবিক সংখ্যা বৃদ্ধির সাথে গলনাঙ্কের পরিবর্তন দেখানো হয়েছে। উদ্দীপক অনুসারে C, D, E, F ও G মৌলগুলো যথাক্রমে Al, Si, P, S ও Cl। লেখচিত্রানুসারে পর্যায় সারণীতে একই পর্যায়ে বাম হতে ডানে মৌলসমূহের গলনাঙ্ক ও ক্ষুটনাঙ্কের থেকে কোনো সরলরৈখিক ধারাবাহিকতা লক্ষ করা যায় না।

AI এর কেলাসে  $AI^{3+}$  আয়ন ও তিনটি মুক্ত ইলেকট্রন বিদ্যমান। মুক্ত ইলেকট্রনের উপর এদের আকর্ষণ বল অধিক। এই কারণে এদের ধাতব বন্ধনের দৃঢ়তা এর পূর্ববর্তী মোলসমূহের  $N_a$  এবং  $M_g$  অপেক্ষা বেশি। AI এর পরবর্তী মৌল Si এর গলনান্ধ অনেক বেশি যা ৩য় পর্যায়ের সর্বোচ্চ। সিলিকনের কেলাসে অসংখ্য Si-Si বন্ধন ব্রিমাত্রিক জাল গঠন করে যা ভাঙ্গতে অনেক শক্তির প্রয়োজন হয়। Si এর পরবর্তী মৌল P এর গলনান্ধ Si অপেক্ষা কম। ফসফরাস (P) এর

P. অণু বিশুদ্ধ সমযোজী প্রকৃতির। বিভিন্ন অণুর মধ্যে দুর্বল ভ্যানভার ওয়ালস শক্তি আন্তঃআণবিক বল হিসাবে বিদ্যমান। তাই ফসফরাস এর গলনাঙ্ক অনেক কম। সালফারের অণুতে 4টি সালফার পরমাণু সমযোজী বন্ধনে আবদ্ধ থাকে। বন্ধনসংখ্যা বেশি হওয়ায় এর গলনাঙ্ক ফসফরাস অপেক্ষা বেশি। ফসফরাসের পরবর্তী মৌল ক্লোরিন একিছি দি-পারমাণবিক গ্যাস। Cl₂ অণু অপোলার এবং বিশুদ্ধ সমযোজী। Cl অণুর মধ্যে দুর্বল ভ্যানভারওয়ালস শক্তি আন্তঃআণবিক শক্তি হিসেরে বর্তমান। তাই এর গলনাঙ্ক খুবই কম। সুতরাং, উদ্দীপকের রেখাটিছে অবস্থিত মৌলসমূহের গলনাঙ্কে কোনো ধারাবাহিক ক্রম রক্ষা করে না।

| প্রম ▶ ১০ | ट्यांनि → भर्याञ्ज ↓ | 1 | 15 | 17 |
|-----------|----------------------|---|----|----|
|           | 1                    | х |    |    |
|           | 2                    |   | Y  | K  |
|           | 3                    |   | Z  | L  |

(ক) রাসায়নিক বন্ধন কাকে বলে?

বি. বো. ২৩, ২১

(খ) O2 অণুটি অপোলার কেন?

বি. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ১১

(গ) ZX3 যৌগ অপেক্ষা YX3 যৌগটি অধিক ক্ষারীয়-ব্যাখ্যা কর।

[য. বো. ২৩]

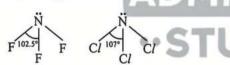
(া) YK<sub>3</sub> ও YL<sub>3</sub> যৌগ দুটির সংকরণ ও বন্ধন কোণ একই হবে কি?
 বিশ্লেষণ কর।
 যি. বো. ২৩; অনুরূপ প্রশ্ন: य. বো. ২২।

সমাধানঃ

- ক পরমাণ্র যোজ্যতা স্তরের ইলেকট্রন আদান প্রদান বা শেয়ারের মাধ্যমে
  নিকটস্থ নিস্ক্রিয় গ্যাসের ন্যায় স্থিতিশীল ইলেকট্রন বিন্যাস অজর্ন করে
  বন্ধনের মাধ্যমে পরস্পরের সাথে যুক্ত হয়ে অণু গঠন করাকে
  রাসায়নিক বন্ধন বলে।
- সমযোজী বন্ধনে আবদ্ধ প্রমাণ্দ্বরের তড়িং ঋণাত্মকতার পাথর্ক্য 0.5-1.7 হলে যৌগটি পোলার হয়।  $O_2$  অণুটি বিশুদ্ধ সমযোজী প্রকৃতির। এটি একই মৌলের দুটি প্রমাণ্র দ্বারা গঠিত হওয়ায় কোন তড়িং ঋণাত্মকতার পার্থক্য থাকে না। বন্ধন ইলেকট্রনদ্বয়কে সমানভাবে শেয়ার করে O = O দ্বি-বন্ধনের মাধ্যমে অণু গঠন করে। এজন্য  $O_2$  অণুটি অপোলার।
- ১ম পর্যায়ের গ্রুপ-1 এর 'X' মৌলটি হলো H, ২য় পর্যায়ের গ্রুপ-15 এর 'Y' মৌলটি হলো N এবং ৩য় পর্যায়ের গ্রুপ-15 এর 'Z' মৌলটি হলো P.

অর্থাৎ,  $ZX_3$  যৌগটি হলো  $PH_3$  ও  $YX_3$  যৌগটি হলো  $NH_3$ । যৌগদ্বয়ের মধ্যে  $PH_3$  এর তুলনার  $NH_3$  অধিক ক্ষারীয়। কোনো যৌগের ক্ষারধর্মীতা এর কেন্দ্রীয় পরমাণ্টির প্রোটন গ্রহণ বা ইলেকট্রন প্রদানের ক্ষমতার উপর নির্ভরশীল।

 $PH_3$  যৌগে P এর তড়িং ঋণাত্মকতা 2.1 এবং  $NH_3$  যৌগে N এর তড়িং ঋণাত্মকতা 3.0। অতএব,  $PH_3$  যৌগে P-H বন্ধনে ইলেক্ট্রেন মেঘের বিন্যাস যেভাবে থাকে  $NH_3$  যৌগে N-H বন্ধনে N এর অধিক তড়িং ঋণাত্মকতার কারণে ইলেক্ট্রন মেঘের ঘনত্ব N এর দিকে অধিক আকৃষ্ট হয়। আবার, N ও N এর পারমাণবিক ব্যাসার্থ যথাক্রমে


0.11 nm ও 0.075 nm. তুলনামূলক ছোট আকারের হওয়ায় P এর চেয়ে N এর বন্ধন ইলেকট্রন মেঘ ও নিঃসঙ্গ ইলেকট্রন মেঘের নিট ঘনতু অধিক থাকে।

অর্থাৎ, ফসফিন (PH3) এর P এর তুলনায় অ্যামোনিয়া (NH3) এর N এর প্রোটন গ্রহণ বা ইলেকট্রন প্রদানের ক্ষমতা অধিক। ফলশ্রুতিতে,

PH₃ এর তুলনায় NH₃ অধিক ক্ষারীয় হয়ে থাকে।

যা উদ্দীপকের K ও L মৌলদ্বয় গ্রুপ-17 এর ২য় ও ৩য় পর্যায়ের অন্তৰ্গত। অৰ্থাৎ, মৌলদ্বয় হলো F ও Cl।

সুতরাং, YK3 ও YL3 যৌগদ্বয় যথাক্রমে NF3 ও NCl3। উভয় যৌগেরই কেন্দ্রীয় পরমাণু N, sp<sup>3</sup> সংকরিত হলেও যৌগদ্বয়ের বন্ধন কোণের মানে ভিন্নতা বিদ্যমান। NF3 যৌগে N ও F এর মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য অধিক হওয়ায় N – F বন্ধনের ইলেকট্রন যুগলকে F নিজের দিকে অধিক আকর্ষণ করে। অপরদিকে, NCl3 যৌগে N ও CI উভয়েরই তড়িৎ ঋণাত্মকতার মান 3.0। এজন্য তড়িৎ ঋণাত্মকতার পার্থক্য শূন্য হওয়ায় N – Cl বন্ধনের ইলেকট্রন যুগল উভয় পরমাণুর মাঝামাঝি অবস্থান করে। ফলশ্রুতিতে bp – bp বিকর্ষণের মাত্রা NF3 এর তুলনায় NCl3 যৌগে বেশি হয়ে থাকে। এখানে, উভয় যৌগই sp³ সংকরিত এবং দুটি যৌগেই একটি করে মুক্তজোড় ইলেকট্রন রয়েছে। VSEPR তত্তানুযায়ী, প্রথমত মুক্তজোড় ইলেকট্রন থাকায় যৌগদ্বয়ের বন্ধন কোণ সাধারণ sp³ সংকরিত যৌগের বন্ধন কোণ (109.5°) অপেক্ষা কম হয়। দ্বিতীয়ত, NCI3 যৌগে bp - bp বিকর্ষণের মাত্রা NF3 এর চেয়ে বেশি হওয়ায় NCl3 যৌগে বন্ধণ কোণ 107° হলেও NF3 যৌগে বন্ধন কোণ হয় 102.5°



চিত্র: NF3 ও NCl3 এর গঠন

পরিশেষে বলা যায়, NF3 ও NCl3 যৌগে সংকরণ একই হলেও বন্ধন কোণ ভিন্ন।

#### প্রশু ▶ ১১

| প্রতীক | ইলেকট্রন বিন্যাস    | n এর মান |
|--------|---------------------|----------|
| A      | $(n-1)d^6 ns^2$     | 4        |
| В      | $(n-1)d^{10} ns^2$  | 4        |
| С      | ns² np <sup>6</sup> | 3        |

[A, B ও C মৌলের প্রকৃত প্রতীক নয়]

(ক) পাই বন্ধন কাকে বলে?

[য. বো. ২৩; ম. বো. ২৩; কু. বো. ১৯]

(খ) CO2 অণু সরলরৈথিক কেন?

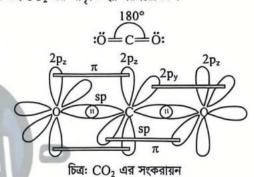
[সি. বো. ২৩]

(গ) A এর হ্যালাইড প্যারাচুম্বকীয় কিন্তু B এর হ্যালাইড নয় কেন? ব্যাখ্যা [য. বো. ২৩]

(घ) A, B ও C এর অক্সাইডসমূহের অম্ল ও ক্ষারক ধর্ম বিশ্লেষণ কর।

যি. বো. ২৩]

#### সমাধান:


ক সমযোজী বন্ধনে আবদ্ধ দৃটি পরমাণুর দৃটি পারমাণবিক অরবিটালের একই অক্ষ বরাবর পাশাপাশি অধিক্রমণে যে বন্ধন গঠিত হয়, তাকে পাই বন্ধন বলে।

আ CO₂ এর কেন্দ্রীয় পরমাণু C এর ইলেকট্রন বিন্যাস,

$$_{6}C \rightarrow 1s^{2} 2s^{2} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{0}$$

$$_{6}$$
C\* → 1s<sup>2</sup> 2s<sup>1</sup> 2p<sub>x</sub> 2p<sub>y</sub> 2p<sub>z</sub> 2p<sub>z</sub> 2p<sub>y</sub> 2p<sub>z</sub> 2p<sub>z</sub>

সমশক্তিসম্পন্ন ২টি sp হাইব্রিড অরবিটাল পাওয়া যায় যারা পরস্পর  $180^\circ$  কোণে অবস্থান করে এবং  $2p_y$  ও  $2p_z$  অরবিটাল অসংকরিত অবস্থায় থাকে। দুটি O এর 2p, অরবিটালের সাথে C এর sp হাইব্রিড অরবিটালের মুখোমুখি অধিক্রমণে ২টি সিগমা বন্ধন এবং C এর অসংকরিত 2py ও 2pz অরবিটালের সাথে ২টি O এর 2pz অরবিটালের পাশাপাশি অধিক্রমণে π-বন্ধন গঠিত হয়ে CO2 অণু গঠন করে। এই CO2 এর আকৃতি হয় সরলরৈথিক।



্রা উদ্দীপকের A ও B মৌলদ্বয়ের ইলেকট্রন বিন্যাস যথাক্রমে 3d<sup>6</sup> 4s² ও 3d<sup>10</sup> 4s<sup>2</sup>। অর্থাৎ, মৌলছয় যথাক্রমে Fe ও Zn। Fe এর দুটি হাালাইড  $FeCl_2$  ও  $FeCl_3$  এবং Zn এর হ্যালাইডিট হলো  $ZnCl_2$ . কোনো যৌগের কেন্দ্রীয় মৌলটির ইলেকট্রন বিন্যাসে অযুগ্ম ইলেকট্রন সংখ্যা বৃদ্ধির সাথে সাথে যৌগটির প্যারাম্যাগনেটিক ধর্ম বাড়তে থাকে এবং যৌগটি বাহ্যিক চৌম্বকক্ষেত্র দ্বারা আরও বেশি পরিমাণে আকর্ষিত

FeCl<sub>2</sub> ও FeCl<sub>3</sub> এর Fe<sup>2+</sup> ও Fe<sup>3+</sup> এর ইলেকট্রন বিন্যাস থেকে দেখা যায়,

 $Fe^{2+}$  ও  $Fe^{3+}$  আয়নে যথাক্রমে 4টি ও 5টি করে অযুগা ইলেকট্রন বিদ্যমান। একারণে Fe এর হ্যালাইডদ্বয় প্যারাচুম্বকীয় হয়। আবার  $FeCl_3$  এর প্যারাচুম্বকত্ব  $FeCl_2$  এর তুলনায় বেশি হবে কেননা  $Fe^{3+}$ এর অযুগা ইলেকট্রন সংখ্যা Fe2+ এর চেয়ে বেশি।

আবার,  $ZnCl_2$  যৌগে  $Zn^{2+}$  এর ইলেকট্রন বিন্যাস থেকে দেখা যায়,

এখানে কোনো অযুগ্ম ইলেকট্রন না থাকায় ZnCl2 প্যারাচুম্বকত্ব প্রদর্শন করতে পারে না।

পরিশেষে বলা যায়, Fe এর হ্যালাইডদ্বয় প্যারাচুম্বকীয় হলেও Zn এর হ্যালাইড প্যারাচুম্বকীয় নয় বরং এটি ডায়াচুম্বকীয়।

৫৬......ঘ 'গ' হতে পাই, A ও B মৌলদ্বয় যথাক্রমে Fe ও Zn। C এর ব

ইলেকট্রন বিন্যাস  $3s^2$   $3p^6$  অর্থাৎ মৌলটি হবে Cl। Fe এর অক্সাইডদ্বয় FeO এবং  $Fe_2O_3$  ক্ষারধর্মী। Zn এর অক্সাইড ZnOউভধর্মী এবং Cl এর অক্সাইড  $Cl_2O_7$  অস্লধর্মীতা প্রদর্শন করে।

FeO ও  $Fe_2O_3$  উভয়েই এসিডের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে। তাই এরা ক্ষারধর্মী অক্সাইড।

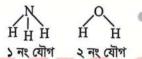
$$FeO + H_2SO_4 \longrightarrow FeSO_4 + H_2O$$

 $Fe_2O_3 + 3H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + 3H_2O$ 

ZnO এসিড ও ক্ষার উভয়ের সাথে বিক্রিয়ায় লবণ ও পানি উৎপন্ন করে। তাই এটি উভধর্মী অক্সাইড।

$$ZnO + H_2SO_4 \longrightarrow ZnSO_4 + H_2O$$

 $ZnO + NaOH \longrightarrow NaZnO_2 + H_2O$ 


 $Cl_2O_7$  ক্ষারের সাথে বিক্রিয়ায় লবণ ও পানি উৎপন্ন করে। অতএব এটি একটি অস্ত্রধর্মী অক্সাইড।

 $Cl_2O_7 + 2NaOH \longrightarrow 2NaClO_4 + H_2O$ 

### প্রশ্ন > ১২ দৃশ্যকল্প-১:

| ঞ্চপ → | 15 | 16 |
|--------|----|----|
| 1      |    |    |
| 2      |    | Y  |
| 3      | -  | Z  |

[এখানে, Y ও Z কোনো মৌলের প্রচলিত প্রতীক নয়] দৃশ্যকল্প-২:



(ক) d-ব্লক মৌল কী?

- ঢো. বো. ২২
- (খ) SnO একটি উভধর্মী অক্সাইড কেন?

[সি. বো. ২৩]

(গ) দৃশ্যকঙ্গ-১ এর Y এবং Z এর হাইড্রাইডের ভৌত অবস্থা ভিন্ন-উত্তরের পক্ষে যুক্তি দাও। দি. বো. ২২; য. বো. ২২; ঢা. বো. ২১;

> চ. বো. ২১; সি. বো. ২১; রা. বো. ১৯; অনুরূপ প্রশ্ন: সি. বো. ২২। । ১ নং ও ২ নং যৌগের বন্ধন কোণের ভিন্নতার কারণ

(घ) দৃশ্যকয়-২ এর ১ নং ও ২ নং যৌগের বন্ধন কোণের ভিন্নতার কারণ
 বিশ্লেষণ কর।
 চি. বো. ২৩; সি. বো. ২৩; দি. বো. ২৬, ২১;
 কু. বো. ২২, ২১, ১৯; ঢা. বো. ২১, য. বো. ২১; সম্মিলিত বো. ১৮]

সমাধান:

- ক যেসব মৌলের ইলেকট্রন বিন্যাসে সর্বশেষ ইলেকট্রনটি d-অরবিটালে প্রবেশ করে, তাদেরকে d-ব্লক মৌল বলে।
- যে সকল ধাতু বা অধাতুর অক্সাইড অস্ত্র ও ক্ষার উভয়ের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে তাদের উভধর্মী অক্সাইড বলে। SnO উভধর্মী অক্সাইডরূপে পৃথকভাবে NaOH ও HCl এর সাথে বিক্রিয়া করে প্রতি ক্ষেত্রে লবণ ও পানি উৎপন্ন করে।

SnO ক্ষারকরপে: SnO + 2HC $l \rightarrow$  SnC $l_2$  + H $_2$ O

SnO অম্ররূপে: SnO + 2NaOH  $\rightarrow$  Na<sub>2</sub>SnO<sub>2</sub> + H<sub>2</sub>O

সুতরাং SnO একটি উভধর্মী অক্সাইড।

..... ACS, > Chemistry 1st Paper Chapter-3

দৃশ্যকল্প-১ এর Y হলো ২য় পর্যায়ে 16 নং গ্রুপের মৌল যা O (অক্সিজেন) নির্দেশ করে। অপরদিকে Z হলো ৩য় পর্যায়ের 16 নং গ্রুপের মৌল যা S (সালফার) নির্দেশ করে। সূতরাং, Y ও Z এর হাইড্রাইডদ্বয় যথাক্রমে  $H_2O$  এবং  $H_2S$ । কক্ষ তাপমাত্রায়  $H_2O$  তরল হলেও  $H_2S$  গ্যাসীয় ভৌত অবস্থায় থাকে। এদের ভৌত অবস্থায় ভিন্নতার মূল কারণ হলো  $H_2O$  অণুর H বন্ধন গঠন করার ক্ষমতা যা  $H_2S$  অণু গঠন করতে পারে না।

আমরা জানি, H এর সাথে অন্য কোনো উচ্চ তড়িৎ ঋণাত্মক পরমাণু যেমন— F, O, N এর সৃষ্ট বন্ধনকে H বন্ধন বলে।  $H_2O$  অণুতে H এর সাথে যুক্ত O এর তড়িৎ ঋণাত্মকতার পার্থক্য হলো (3.5-2.1) বা 1.4 যা 0.5 এর চেয়ে বড়। আমরা জানি, সমযোজী যৌগে তড়িৎ ঋণাত্মকতার পার্থক্য >0.5 হলে, যৌগটি পোলারিটি প্রদর্শন করে।



চিত্র: H<sub>2</sub>O অণুতে পোলারিটি ধর্ম

 $H_2O$  অণুতে H প্রান্তে আংশিক তড়িৎ ধনাত্মকতা ও O প্রান্তে আংশিক তড়িৎ ঋণাত্মকতা সৃষ্টি হয়। ফলশ্রুতিতে একটি  $H_2O$  অণুর O এর সাথে পার্শ্ববর্তী অন্য  $H_2O$  অণুর O একটি দুর্বল আকর্ষণ বল দ্বারা আবদ্ধ থাকে যা O বন্ধন নামে পরিচিত। পানির অণুগুলো O বন্ধন দ্বারা আবদ্ধ থাকায় এর স্কুটনাঙ্ক উচ্চ (O0°C) যার ফলে স্বাভাবিক তাপমাত্রায় পানি তরল থাকে।

চিত্র: H2O অণুর মধ্যকার H বন্ধন

অপরদিকে  $H_2S$  অণুতে অবস্থিত H ও S এর তড়িং ঋণাত্মকতার পার্থক্য (2.5-2.1) বা 0.4 যা 0.5 হতে কম হওয়ায় এটি একটি অপোলার সমযোজী যৌগ। আর অপোলার যৌগে আংশিক ধনাত্মক ও ঋণাত্মক প্রান্ত না থাকায় এরা H বন্ধন গঠনে অক্ষম হয়ে থাকে। ফলে  $H_2S$  এর ক্ষ্টনান্ক  $-60^{\circ}C$  যা স্বাভাবিক তাপমাত্রায় গ্যাসীয় অবস্থায় থাকে।

য দৃশ্যকল্প-২ এর ১ নং যৌগটি হলো  $\ddot{N}H_3$  এবং ১ নং যৌগটি হলো  $H_2\ddot{O}$ । উভয়েরই সংকরায়ন  ${\rm sp}^3$  হলেও তাদের বন্ধন কোণের মাঝে ভিন্নতা রয়েছে।

 $\ddot{N}H_3$  এর কেন্দ্রীয় পরমাণু N এর বহিঞ্জরের অরবিটাল  $sp^3$  সংকরিত থাকে। সাধারণভাবে,  $sp^3$  সংকরিত অরবিটালের আকৃতি চতুস্তলকীয়

হয় এবং বন্ধন কোণ  $109.5^\circ$  হবার কথা। কিন্তু  $\ddot{N}H_3$  অণুতে বন্ধন কোণ  $107^\circ$ ।

$$_7N \rightarrow 1s^2$$
  $2s^2$   $2p^3$   $1$   $1$   $1$   $1$   $1$   $sp^3$  সংকরিত

স্মোটনার পর্যায়াবৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ACS) FRB Company Bayagantina Book.....

दिनो । अर P', Q° वनार १४° स्थिनी नगांगितान नामान वर्णयानगिञ्छ ६४ ि करत देंग्यनसीन चाएए। IPAQ वानार IB क्षामिक क्षामिक नागा (क) शाजभापिक त्यामार्श तम्मक नक्सर ाण आ भा

(व) क्राविग त्रनाालेका एक्ति नेपाछक जीक-नार्या कर ।

恒丽和角丽歌云丽加田可似处积那切别 ना।पो। नना। हि. जा पठा पा जा प्राप्त मामित स्मान व्या

(च) एकीशाजन न्यापिकागनागृह वाजा नृष्टि व्यावाधिक नातप्रतत नावाजाानी নৈশিটোর ব্রাঘ নিয়োগণ কর। पि. जा अव म जा अर व्यक्ति स्था म जा 40. 44: ह. जा 41: हा जा ४० न जा २० ही जा ५: ही जा ह्या नवाशानः

😎 व्याप्प श्वामापुत्र निर्धितिपाप्तित व्यन्त । १ वन गर्ननिरिग्तः वैप्रधीन गणत मरावर्धी पृत्रकृटक शाननायनिक नामनार्थ नगर वहा ।

🚰 व्यापना छानि, नपाठगाधी जींकान मुक्ति हिल्ला बनापानुन प्रकार स्पातनुम्ह देखान् वृत्रमारक चान्नर्पन ननान यापाराएक राहिए नभावाकवा नाम । काला पर्वात्वव वाम स्टाउ साल लाल देखलाति e व्यक्ति नारवा। वृद्धि পার কিন্তু শক্তিকর একই পাকে বিখারা নিটিক্রিয়ার আকর্মণ বৃদ্ধি পানা शावसामितिक व्याकाव छाति इटठ शास्त्र । सार्वे स्वराजना मर्मास्यस्य नाम बर्स्स তানে সেচে ভড়িৎ খণাান্তকতাও বৃদ্ধি পাত্র। ঘানান, কোনো এনসোত্র উপৰ दতে निक्त পানমানৰিক বান্ধান বৃদ্ধি পদ্ম কৰাং তাড়িং বাণান্তকথাও ভ্রান পার। পর্যার সাদাদিতে F এর বরদ্বাদ ২র পর্যানের কথাসেনে ভালে वर्षार 17 नर करभव र छताव विकि नर्वारभक्ता त्विम चिक्रिर संभाख्यकता धनर्भन करा वबर वन टाज़िर वंभायकवान मान 4।

লো উনীপত অনুবারী P', Q' ববাং R' ব্যাটায়ানটি তিনটি যথাক্রেনে No.', Mg2- वर AF- । युटनार व्योगिन दिननि दएना Na, Mg वत्तर AJ। গ্যাসীয় অবস্থায় কোনো সৌলেৰ এক মোন নিমিত্র পরমানু স্যাতক একটি করে ইলেবট্রন সন্তিরে একে গ্যাসীর বিচ্ছিল এক মোন একক ধনাত্রক আরনে পরিণত করতে কে পরিমান শক্তির প্রারোধন বর লাকে ঐ সৌদোর আবুনিকরণ শক্তি বলে। Na, Mg, Al মৌল তিনটি একই পর্যাদের মৌল। একই পর্যাদের বাম হতে তানে গেলে প্রোটন সংখ্যা বাড়ে কিন্তু শক্তির একই খাকে বিদানা निউक्रिंडात व्याकर्रन दृष्टि शाद्य बन्धर शाद्यमानिदिक सामिनार्थ कट्य । सम्प्रन যোজ্যতান্তর হতে এক মোল ইলেকট্রন সরাতে বেশি পরিমাণ শক্তির थरग़ष्मन रग्न वर वाडिनक्वन भक्ति दुष्ति शावा। जाई जाूवानुमात আর্রনিকরণ বিভবের ক্রম হওরা উচিত ছিল Na < Mg < Al। কিন্তু এখানে Mg এবং Al এর জারনিক বিডবের মানোর মাখ্যে ব্যাডিক্রম

$$Mg(12) \rightarrow 1s^2 2s^1 2p^6 3s^2$$
  
 $AJ(13) \rightarrow 1s^1 2s^1 2p^6 3s^2 3p_1^3$ 

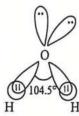

লক্ষা করা হার।

ইলেকট্রন বিন্যাস হতে দেখা যায়, Mg এর যোগ্যান্ডান্ডব্রের s অরবিট্যাল পূর্ণ আছে যা অধিক স্থিতিশীলতা সেখায়। এই অধিকতর স্থিতিশীল অরবিটাল হতে ইলেবট্রন অপসায়দে অধিক শক্তির প্রয়োজন হয়। ष्पुत्रमित्क Al अत्र देरानतक्वेग विनाम हरठ प्राथा साम्र, अध যোচ্যতান্তরে 3P, অরবিটালে একটি অযুগা ইলেবট্রন বিদ্যামান যা সহজেই দান করে দেয়া যায় ও অপেক্ষাকৃত কমশক্তি শোঘন করে। অতএব, উদ্দীপকের মৌল তিনটির আয়নিকরণ শক্তির ক্রম হবে: Na < Al < Mg

Rhombus Publications

N পরামাণুর sp³ দকেরিত অবনিটালের ভিনটির প্রচলেরটিডে একটি করে অফুদ্র ইলেবট্রন এবং একটিতে মুভজ্যাড় ইমেবট্রন অবস্থান করে। VSEPR (Valence shell Electron Pair Republican) च्छि बित वनुमाख, मुक्टण्याए (Ip)-वश्वगण्याए (bp) विवर्षम >

বক্ষনাজ্যেড় (bp) – বন্ধনজ্যেড় (bp) বিকর্মণ। ভাই Ñ H, (গ) উদ্দীপত্যের প্রীপদানুদ্রে আন্তাদিকরণ নিচের নীচ্চারে পরিনর্ডিচ স্বর্চাৎ ष्प्रभूत पाकृठि ठङ्खनकींग्र ना रता वित्कामी शितामितींग रत वनार IH − N − H বন্ধন কোণের মান 109.5° হতে ন্রাস পোতা 107° ব্যা থাকে।




চিত্ৰ: NH3 অণু গঠন ও বন্ধন

অপব্রদিকে H<sub>2</sub>Ö অণুর কেন্দ্রীয় পরমাণ্ O এর বহিচ্নতের অরবিটালও sp³ সংকরিত থাকে। কিম্ব H₂Ö অণুর আকার V আকৃতির এবং বরুন কোণ 104.5° হয়।

BO → 
$$1s^2$$
  $2s^2$   $2p^4$   $11$   $2p^1$   $2p^2$   $2p^1$   $2p^2$   $2p$ 

এখানে sp³ সংকরিত অরবিটালের দুটিতে একটি করে অরুগা ইলেকট্রন এবং অপর দুটিতে দুইটি মুক্তজোড় ইলেকট্রন অবস্থান করে। বেহেতু, VSEPR থিওরি অনুসারে, মুক্তজোড় (lp)-মুক্তজোড় (lp) বিকর্বণ > মুক্তজোড় (lp)-বন্ধনজোড় (bp) > বন্ধনজোড় (bp)-বন্ধনজোড় (bp)। তাই H₂Ö অণুতে উপস্থিত দুইটি নিঃসঙ্গ ইলেবট্রন জোড় অধিক মাত্রায় পরস্পরকে বিকর্ষণ করে দরে সরিয়ে দেয় এবং বন্ধনজোড় ইলেকট্রন কাছাকাছি অবস্থান করে। ফলে H2Ö অণুতে H - O - H বন্ধন কোণের মান 109.5° হতে হ্রাস পেরে 104.5° হয়ে থাকে এবং আকৃতি V আকারের হয়।



সূতরাৎ, NH3 ও HÖ অণুষয়ের মাঝে মুক্তজোড় ইলেকট্রনের পার্থক্যের কারণে এদের বন্ধন কোণের ভিন্নতা পরিলক্ষিত হয়।

৫৮..... ত উদ্দীপকের ক্যাটায়নসমূহ হলো Na<sup>+</sup>, Mg<sup>2+</sup> এবং Al<sup>3+</sup> যারা প্রত্যেক

তয় পর্যায়ের মৌল। উজ ক্যাটায়নসমূহ দ্বারা সৃষ্ট লবণসমূহ হলো NaCl, MgCl<sub>2</sub> এবং AlCl<sub>3</sub> যারা প্রত্যেকে আয়নিক যৌগ। আয়নিক যৌগের সমযোজী বৈশিষ্ট্য ব্যাখ্যায় ফাজানের নীতি অনুযায়ী, সম অ্যানায়নযুক্ত আয়নিক যৌগে ক্যাটায়নের আকার যত ছোট হবে এবং চার্জ যত বাড়বে পোলারায়নের মাত্রা তত বাড়বে এবং আয়নিক যৌগে সমযোজী বৈশিষ্ট্য প্রাধান্য পাবে। এখানে ৩য় পর্যায়ের মৌলগুলার মধ্যে বাম হতে ডানে গেলে আকার ছোট হয় এবং চার্জ বাড়ে। উদ্দীপকের লবণসমূহের আকারের ক্রমঃ

$$Na^{+} > Mg^{2^{+}} > Al^{3^{+}}$$
 আকার কমছে এবং চার্জ বাড়ছে

এখানে,  $AJ^{3+}$  এর আকার সবচেয়ে ছোট এবং চার্জ সবচেয়ে বেশি। তাই এর পোলারায়নও বেশি এবং সমযোজী বৈশিষ্ট্য ও বেশি। সুতরাং উদ্দীপকের আয়নসমূহের সমযোজী বৈশিষ্ট্যের ক্রম:

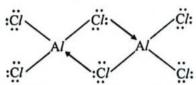
 $A/Cl_3 > MgCl_2 > NaCl$ 

### 의치 > 78

| গ্ৰহণ → | 1  | 14 | 17   |
|---------|----|----|------|
| 1       | A  |    | 4    |
| 2       |    | E  | X    |
| 3       | -  | D  | Y    |
| 4       |    |    | Z    |
| 5       | A. | DI | _ w= |

(ক) পোলার যৌগ কী?

[ব. বো. ২২; চ. বো. ২১]


- (খ) AICI3 ডাইমার গঠন করে-ব্যাখ্যা কর। ম. বো. ২৩; কু. বো. ২২; ঢা. বো. ১৯)
- (গ) উদ্দীপকের X, Y, Z, W মৌলগুলোর তড়িৎ ঋণাত্মকতার ক্রমের সাথে ইলেকট্রন আসন্ডির ক্রম ব্যতিক্রম-বিশ্রেষণ কর।

[চ. বো. ১৯; অনুরূপ প্রশ্ন: য. বো. ১৯]

(ছ)  $E_2A_2$  ও  $E_2A_4$  যৌগ দৃটির বন্ধন কোণের ভিন্নতার কারণ কেন্দ্রীয় পরমাণুর সংকরায়নের মাধ্যমে বিশ্লেষণ কর। বি. বো. ২৩

সমাধান:

- সমযোজী যৌগের পরমাণুসমূহে তড়িৎ ঋণাত্মকতার পার্থক্যের জন্য এদের সমযোজী বন্ধনের এক প্রান্তে আংশিক ধনাত্মক এবং অপর প্রান্তে আংশিক ঋণাত্মক মেরুর সৃষ্টি হলে তাকে পোলার যৌগ বলে।
- AICI<sub>3</sub> একটি আয়নিক যৌগ হলেও অধিক পোলারায়নের ফলে এটি সমযোজী বৈশিষ্ট্য লাভ করে এবং CI<sup>-</sup> আয়নের ইলেকট্রন ঘনতৃ AI পরমাণু ও CI পরমাণুর মাঝখানে অবস্থান নেয়।



চিত্র: AICI3 এর ডাইমার গঠন

AICI3 এর যোজ্যতান্তরে 3 জোড়া বন্ধনজোড় ইলেকট্রন বিদ্যমান যা অষ্টক অসম্পূর্ণ অবস্থায় থাকে।

 $_{13}Al \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1$ 

..... ACS, > Chemistry 1st Paper Chapter-3

 $_{10}AI' \rightarrow 1s^{2} 2s^{2} 2p^{6} 3s^{1} 3p_{x}^{1} 3p_{y}^{1} 3p_{z}^{0} 3d^{0}$ 

ইলেকট্রন বিন্যাস হতে দেখা যায়, AI পরমাণুতে শূন্য d অরবিটাল বিদ্যমান। তাই অষ্টক পুরণের জন্য AICl<sub>3</sub> অণুর AI পার্শ্ববর্তী CI পরমাণুর মুক্তজোড় ইলেকট্রন গ্রহন করে সন্নিবেশ সমযোজী বন্ধন দ্বারা ডাইমার অণু গঠন করতে পারে।

গ্রন্ধীপকের X, Y, Z, W মৌলগুলো হলো F, Cl, Br, I। মৌলগুলোর সবাই ফ্রন্স-17 নং ক্রন্সপের অন্তর্গত এবং মৌলগুলোর তড়িং খণাত্মকতার ক্রমের সাথে ইলেকট্রন আসক্তির ক্রমে ভিন্নতা রয়েছে। আমরা জানি, সমযোজী যৌগের অণুতে বন্ধনে আবন্ধ পরমাণুদ্বয়ের মধ্যে শেয়ারকৃত ইলেকট্রন যুগলকে আকর্ষণ করার ক্রমতাকে তড়িং খণাত্মকতা বলে। পরমাণুর আকার যত ছোট হয় নিউক্রিয়াস কর্তৃক বন্ধনে আবন্ধ ইলেকট্রনযুগলকে আকর্ষণ করার ক্রমতা তত বৃদ্ধি পায় এবং তড়িৎ খণাত্মকতা তত বাড়ে। কোনো ক্রন্সপের উপর হতে নীচ বরাবর পরমাণুর আকার বৃদ্ধি পায় বলে তড়িৎ খণাত্মকতাও হাস পায়। উদ্দীপকের মৌলসমূহের আকারের ক্রম- F > Cl > Br > I

সূতরা, তড়িং ঋণাত্মকতার ক্রম- F > Cl > Br > I

অপরদিকে গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল পরমাণু এক
মোল ইলেকট্রন গ্রহণ করে এক মোল একক ঋণাত্মক আধানযুক্ত

আয়নে পরিণত হলে নির্গত শক্তিকে ইলেকট্রন আসক্তি বলে।

সাধারণভাবে, পরমাণুর আকার যত বৃদ্ধি পায় ইলেকট্রন আসক্তির মান তত কমে। 17 নং গ্রুণপের অন্তর্গত মৌলসমূহের মধ্যে F (ফ্রারিন) এর আকার সবচেয়ে ছোট। F এর শক্তিন্তর সংখ্যা মাত্র দুইটি এবং সর্বশেষ শক্তিন্তর তথা ২য় শক্তিন্তরে 7টি e বিদ্যমান। অপরদিকে Cl (ক্রোরিন) এর শক্তিন্তর সংখ্যা তিনটি এবং এখানেও সর্বশেষ ৩য় শক্তিন্তরে 7টি e রয়েছে। F এর আকার তুলনামূলক ছোট হওয়ায় এবং এতে 7টি ইলেকট্রন থাকায় ইলেকট্রন মেঘের ঘনতৃ তুলনামূলকভাবে অধিক হয়। এমতাবস্থায়, আগমনকারী ইলেকট্রনের উপর ইলেকট্রনীয় বিকর্ষণ বলের প্রভাব বেশি হয়। অন্যদিকে Cl এর আকার তুলনামূলক বড় হওয়ায় এবং ইলেকট্রন ঘনতৃ কম থাকায়, সহজেই নতুন ইলেকট্রনকে জায়গা দিতে পারে। ফলে গ্রুণ-17 এর মৌলসমূহের মধ্যে Cl এর ইলেকট্রন আসক্তি F এর চেয়ে বেশি হয় এবং স্বাভাবিক নিয়মের ব্যতিক্রম পরিলক্ষিত হয়। গ্রুণ-17 এর মৌলসমূহের ইলেকট্রন আসক্তির ক্রম-

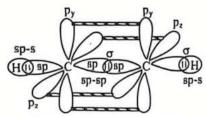
Cl > F > Br > I

সূতরাং বলা যায়, গ্রুপ-17 এর মৌলসমূহের মধ্যে তড়িৎ ঋণাত্মকতার ক্রমের সাথে ইলেকট্রন আসক্তির ক্রম ব্যতিক্রম।

উদ্দীপকের E মৌলটি কার্বন (C) এবং A মৌলটি হাইড্রোজেন (H)।  $E_2A_2$  এবং  $E_2A_4$  যৌগটি যথাক্রমে  $C_2H_2$  (ইথাইন) এবং  $C_2H_4$ (ইথিন)। উভয় যৌগের কেন্দ্রীয় পরমাণু C এর সংকরায়ন ভিন্ন যার

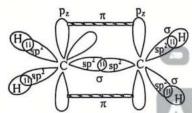
ফলে এদের বন্ধন কোণেও ভিন্নতা দেখা যায়।

কার্বনের ইলেকট্রন বিন্যাস হতে দেখা যায়-


 $_{6}C = 1s^{2} 2s^{2} 2p^{2}$ 

 $_{6}C^{*} = 1s^{2} 2s^{1} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{1}$ 

ইথাইন  $(C_2H_2)$  এর কেন্দ্রীয় মৌল C এর বহিঃস্থ শক্তিন্তরের একটি s ও একটি p মিলে দুইটি sp সংকরিত অরবিটাল তৈরি করে। তাই সংকরিত অরবিটাল দ্বারা একটি C-C এবং একটি C-H সিগমা বন্ধন গঠনের পর দুটি করে অবশিষ্ট অসংকরিত p অরবিটাল

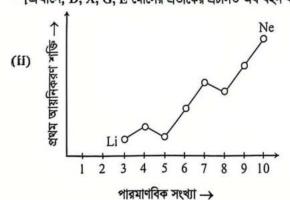

নৌলের পর্যায়ানৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ১৫১/ FRB Compact Suggestion Book......................

 $(2p_1^t)$  এবং  $2p_2^t)$  পাশাপাশি অধিক্রমণ করে দুইটি  $\pi$  বন্ধন গঠন করে। সমাধানः এরেপে গঠিত sp সংকর অরবিটালের আকার সরলরৈখিক এবং বন্ধন কৌপ 180° হয়।



চিত্র: ইথাইন অণুর অরবিটাল গঠন

অপরদিকে, ইথিন ( $C_2H_4$ ) যৌগের কেন্দ্রীয় পরমাণু C এর  ${
m sp}^2$ नाध्कताग घटि । C এत विश्रस्ततत এकि s ও 2ि p अतिविगन भिला 3টি sp<sup>2</sup> সংকরিত অরবিটাল গঠন করে। তাই সংকর অরবিটাল দ্বারা একটি C – C এবং দুইটি C – H সিগমা বন্ধন গটিত হয়। ফলে প্রতিটি কার্বন পরমাণুর সমতলে একটি অসংকরিত  $2p_2^1$  অরবিটাল লদ্বভাবে থাকে যার পাশাপাশি অধিক্রমনে একটি π বন্ধন গঠিত হয়। এরূপে গঠিত  ${
m sp}^2$  সংকরিত অরবিটাল ত্রিভুজাকার হয় এবং বন্ধন কোণ 120°।




চিত্র: ইথিন অণুর অরবিটাল গঠন

| 44 > 76 (I | ) |
|------------|---|
|------------|---|

| মৌল | ইল্টোন বিন্যাস                        |
|-----|---------------------------------------|
| D   | 1s <sup>1</sup>                       |
| X   | He [2s <sup>2</sup> 2p <sup>4</sup> ] |
| G   | He [2s <sup>2</sup> 2p <sup>5</sup> ] |
| E   | Ne [3s1]                              |

[এখানে, D, X, G, E মৌলের প্রতীকের প্রচলিত অর্থ বহন করে না]



- (क) প্রতিনিধিত্বকারী মৌল বলতে কী বৃঝ?
- वि. त्वा. २२; य. त्वा. ১१]
- (খ) কার্বন ডাই-অক্সবিড অপোলার কেন?
- [ঢা. বো. ২২]
- (গ) শুদীপক (I) এর  $E_2X$  এবং EG যৌগ দুটির মধ্যে কোনটি অধিক সমযোগ্ডী? বিশ্লেষণ কর। [ব. বো. ২৩; অনুরূপ প্রশ্ন: य. বো. ১৯; ব. বো. ১৯]
- (च) धिमीशक (ii) अत्र त्रशिष्टि जामर्ग शर्याग्रवृष्ठ धर्म क्षेमर्गन कत्त्र ना-

- ক পর্যায় সারণির s ও p ব্লক মৌলসমূহ যাদের ইলেকট্রন বিন্যাসে স্বাভাবিক নিয়মের ব্যতিক্রম পরিলক্ষিত হয় না তাদের প্রতিনিধিত্বকারী মৌল বলে।
- 🛐 কার্বন ডাই-অক্সাইডে অবস্থিত C ও O এর তড়িৎ ঋণাত্মকতার পার্থক্য (3.5 - 2.1) বা 1.4। স্বাভাবিকভাবে সমযোজী যৌগে দুইটি পরমাণুর ভড়িৎ ঋণাত্মকতার পার্থক্য 0.5 এর চেয়ে বড় হলেই সেটি একটি পোनात সমযোজी यৌগ হয়ে থাকে। किন্ত CO2 অণুতে তড়িৎ ঋণাত্মকতার পার্থক্য থাকা সত্ত্বেও এটি অপোলার। CO2 এর আকৃতি সরলরৈথিক হওয়ায় এর C = O বন্ধন দুইটির ডাইপোল মোমেন্ট এর মান সমান ও বিপরীতমুখী হওয়ায় তারা পরস্পারকে প্রশমিত করে দেয়। ফলে CO2 এর ডাইপোল মোমেন্টের মান শূন্য হয়। তাই, এটি একটি অপোলার যৌগ।

ক্র উদ্দীপকের- E, X, G মৌলগুলো যথাক্রমে Na, O এবং F।

সুতরাং, F2X ও EG যথাক্রমে Na2O এবং NaF। উদ্দীপকের যৌগদ্বয় আয়নিক যৌগ। আয়নিক যৌগের সমযোজী বৈশিষ্ট্যের ব্যাখ্যায় ফাজানের নীতি অনুসারে সমক্যাটায়নযুক্ত যৌগে অ্যানায়নের আকার যতো বড় হয় এবং চার্জ যত বেশি হয় পোলারায়ন তত বেশি হয়। যৌগের পোলারায়ন যত বেশি হয় আয়নিক যৌগের সমযোজী বৈশিষ্ট্য তত বেশি হয়।

এখানে Na2O এবং NaF এর অ্যানায়নের আকারের ক্রম- $0^2 > F$ 

এখানে O<sup>2-</sup> এর আকার F<sup>-</sup> এর চেয়ে বড় এবং চার্জও বেশি তাই Na2O এর পোলারায়ন বেশি হবে। অর্থাৎ, Na<sup>+</sup> ক্যাটায়ন কর্তৃক O<sup>2-</sup> এর ইলেকট্রন মেঘের বিকৃতিও বেশি ঘটে।

সুতরাং Na2O এবং NaF যৌগদ্বয়ের মধ্যে Na2O অধিক সমযোজী।

ঘ উদ্দীপকের (ii) এর লেখচিত্রে পর্যায় সারণির ২য় পর্যায়ের মৌলসমূহের আয়নিকরণ শক্তির ক্রম দেখানো হয়েছে।

আমরা জানি, গ্যাসীয় অবস্থায় কোন মৌলের এক মোল প্রমাণু হতে একটি করে ইলেকট্রন সরিয়ে এক মোল একক ধনাত্মক আধানযুক্ত আয়নে পরিণত করতে প্রয়োজনীয় শক্তিকে আয়নিকরণ শক্তি বলে। সাধারণভাবে পর্যায় সারণির বাম হতে ডানে প্রোটন সংখ্যা বাড়তে থাকে কিন্তু শক্তিস্তরের কোনো পরিবর্তন হয় না। তাই নিউক্লিয়ার আকর্ষণ বৃদ্ধি পায় এবং আয়নিকরণ শক্তি বাড়ে। সুতরাং ২য় পর্যায়ের মৌলগুলোর আয়নিকরণ শক্তির ক্রম হওয়া উচিত:

Li < Be < B < C < N < O < F < Ne

কিন্তু লেখচিত্র অনুসারে Be এর আয়নিকরণ শক্তি B অপেক্ষা বেশি যা আদর্শ পর্যায়বৃত্ত ধর্মের ব্যতিক্রম। ইলেকট্রন বিন্যাস হতে দেখা যায়-

 $_4\text{Be} \rightarrow 1\text{s}^2\,2\text{s}^2$  $_5B \rightarrow 1s^2 2s^2 2p^1$ 

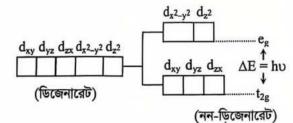
এখানে Be এর যোজ্যতান্তরের s অরবিটাল পূর্ণ হওয়ায় এটি অধিক স্থিতিশীলতা অর্জন করে। এরূপ অবস্থায় Be এর বহিঃস্থ শক্তিস্তর হতে 1টি ইলেকট্রন সরাতে অধিক শক্তির প্রয়োজন হয়। অপরদিকে B এর বহিঃস্তরের 2p অরবিটালে 1টি ইলেকট্রন আছে যা সহজেই দান করে দিতে পারে। এজন্য Be এর আয়নিকরণ শক্তি B হতে বেশি হয়ে থাকে।

আবার, ২য় পর্যায়ের মৌলগুলোর মধ্যে N ও O এর আয়নিকরন শক্তির ক্রমে ভিন্নতা পরিলক্ষিত হয়। পর্যায় সারণীতে O এর অবস্থান N এর ডানে হওয়ার কারণে O এর আয়নিকরণ শক্তি N অপেক্ষা বেশি হওয়ার কথা। কিন্তু বাস্তবে তা হয় না। ইলেকট্রন বিন্যাস হতে দেখা

$$_{7}N \rightarrow 1s^{2} 2s^{2} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{1}$$
 $_{8}O \rightarrow 1s^{2} 2s^{2} 2p_{x}^{2} 2p_{y}^{1} 2p_{z}^{1}$ 

এখানে, N এর 2p অর্রবিটাল অর্ধপূর্ণ যা ইলেকট্রন বিন্যাসকে অধিক স্থিতিশীলতা দান করে। অপরদিকে O এর 2p অরবিটালে 4টি ইলেকট্রন আছে যা অর্ধপূর্ণ অবস্থা হতে কম স্থিতিশীল হওয়ায় N এর আয়নিকরণ শক্তি O অপেক্ষা বেশি।

অতএব, ২য় পর্যায়ের মৌলসমূহের আয়নিকরণ শক্তির ক্রম— Li < B < Be < C < O < N < F < Ne যা আদর্শ পর্যায়বৃত্ত ধর্ম প্রদর্শন করে না।


(ক) চ্যালকোজেন কাকে বলে?

চি. বো. ২২

- (খ) অবস্থান্তর ধাতু রঙিন যৌগ গঠন করে কেন? ব্যাখ্যা কর। াল. বো. ২২
- (গ) উদ্দীপকের ডট (......) চিহ্নিত বন্ধন যৌগের দ্রাব্যতাকে কীভাবে প্রভাবিত করে? ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের ডট (.....) চিহ্নিত বন্ধনটি একটি আভঃআণবিক আকর্ষণ বল− বিশ্লেষণ কর।

#### সমাধান:

- ক পর্যায় সারণির গ্রুপ-16 এর মৌলসমূহের (O, S, Se, Te ইত্যাদি) অধিকাংশ ধাতু প্রকৃতিতে ধাতব অক্সাইড ও ধাতব সালফাইড আকরিকরূপে থাকায় এদেরকে চ্যালকোজেন বলা হয়।
- আবস্থান্তর ধাতু ও তাদের আয়নে অপূর্ণ d-অরবিটাল থাকে বলে এদের জটিল যৌগসমূহ রঙিন বর্ণ প্রদর্শন করে। সাধারণ অবস্থায় অবস্থান্তর ধাতুর পরমাণুতে পাঁচটি d-অরবিটাল সমশক্তিসম্পন্ন থাকে যাকে ডি-জেনারেট অবস্থা বলে। কিন্তু জটিল যৌগ গঠনকালে যখনই লিগ্যান্ড আসে তখন লিগ্যান্ডের অরবিটাল ও ধাতুর অরবিটালের মাঝে ক্রিস্টাল ফিল্ড প্রভাবের কারণে d-অরবিটালের শক্তির পার্থক্য সৃষ্টি হয় যাকে নন-ডিজেনারেট অবস্থা বলে।



এখানে  $t_{2g}$  ও  $e_g$  শক্তিস্তরদ্বয়ের মাঝে শক্তির পার্থক্য খুবই কম হওয়ায়, দৃশ্যমান আলোর শক্তি শোষণ করে ইলেকট্রন  $t_{2g}$  হতে  $e_g$  স্তরে গমন করতে পারে। দৃশ্যমান অঞ্চলের যে তরঙ্গদৈর্ঘ্যের আলো শোষিত হয়, তার সম্পূরক আলো প্রতিফলিত করে এবং আমরা যৌগটি ঐ বর্ণের হিসেবে দেখতে পাই।

...... ACS, > Chemistry 1st Paper Chapter-3

গী উদ্দীপকের ডট (......) চিহ্নিত বন্ধনটি হলো হাইড্রোজেন বন্ধন। রাসায়নিক যৌগের দ্রাব্যতার উপর H-বন্ধনের গুরুত্বপূর্ণ প্রভাব রয়েছে। সাধারণত, পোলার দ্রব পোলার দ্রাবক এবং অপোলার দ্রব অপোলার দ্রাবকে দ্রবীভূত থাকে। পানি একটি পোলার সমযোজী যৌগ হওয়ায়, অপোলার সমযোজী যৌগসমূহ পানিতে অদ্রবলীয়। কিন্তু, কিছু বিশেষ সমযোজী যৌগ পানির অণুর সাথে হাইড্রোজেন বন্ধন গঠন করে পানিতে দ্রবীভূত হয়। অ্যালকোহল (R – OH), কার্বোক্সিলিক এসিড (R – COOH), গ্লুকোজ, চিনি ইত্যাদি সমযোজী যৌগসমূহ তাদের – OH গ্রুপ দ্বারা পানির সাথে হাইড্রোজেন বন্ধন গঠন করে দ্রবীভূত হয়।

উদ্দীপকের ডট (......) চিহ্নিত বন্ধনটি হলো হাইড্রোজেন বন্ধন। হাইড্রোজেন পরমাণুর নিউক্লিয়াসে একটি মাত্র প্রোটন থাকার অন্যান্য অধাতু অপেক্ষা হাইড্রোজেনের তড়িৎ ঋণাত্মকতা অনেক কম (2.1)। তাই যখন একটি হাইড্রোজেন পরমাণু অধিক তড়িৎ ঋণাত্মক মৌল যেমন, ফ্লোরিন (তড়িৎ ঋণাত্মকতা 4), অক্সিজেন (তড়িৎ ঋণাত্মকতা 3.5), নাইট্রোজেন (তড়িৎ ঋণাত্মকতা 3) এর সাথে যুক্ত হয়ে সমযোজী বন্ধন সৃষ্টি করে এখন পোলারিটি বা ডাইপোলের সৃষ্টি হয়। এতাবে তড়িৎ ঋণাত্মকতার পার্থক্যের কারণে সৃষ্টি পোলার অণুসমূহ যখন পরস্পরের নিকটে আসে তখন আংশিক ধনাত্মক হাইড্রোজেন প্রান্ত অপর অণুর আংশিক ঋণাত্মক প্রান্তের দিকে আকৃষ্ট হয়ে একটি দুর্বল বন্ধন গঠন করে। এই দুর্বল আকর্ষণ বলই হাইড্রোজেন বন্ধন। আন্তঃআণবিক আকর্ষণ বলের প্রকৃতি হল স্থির বৈদ্যুতিক আকর্ষণ বল।

আন্তঃআণবিক আকর্ষণ বলের প্রকৃতি হল স্থির বৈদ্যুতিক আকর্ষণ বল।

H বন্ধনেও ধনাত্মক H ও ঋণাত্মক (F, O, N) পরমাণুর মধ্যে
স্থিরবৈদ্যুতিক আকর্ষণ বল কাজ করে। তাই বলা যায়, H বন্ধন একটি

চিত্ৰ: HF অণুতে H বন্ধন

প্রমা ১১৭ পর্যায় সারণির ৪র্ধ পর্যায়ের দুটি মৌল 'A' ও 'B' এর বহিঃগুরের ইলেক্ট্রন বিন্যাস নিমুন্ধপঃ

 $\mathbf{A} = (\mathbf{n} - 1) \ \mathbf{d}^{10} \mathbf{n} \mathbf{s}^1$ 

 $B = (n - 1)d^{1}ns^{2}$ (ক) p-ব্লক মৌল কাকে বলে?

[সি. বো. ২৩]

(খ) MgCl<sub>3</sub> যৌগ গঠন সম্ভব কী? ব্যাখ্যা কর।

[কু. বো. ২২]

- (গ) উদ্দীপকের 'A' মৌল দ্বারা গঠিত একটি জটিল যৌগের গঠন ব্যাখ্যা কর। সি. বো. ২৩
- (घ) উদ্দীপকের 'A' মৌলটি রঙিন যৌগ গঠন করলেও 'B' মৌলটি গঠন করে না কেন? বিশ্লেষণ কর।

[সি. বো. ২৩; অনুরূপ প্রশ্ন: ম. বো. ২৩; সি. বো. ২২; ঢা. বো. ১৯]

সমাধান:

ক যেসকল মৌলের ইলেকট্রন বিন্যাসে সর্বশেষ ইলেকট্রন p-অরবিটালে প্রবেশ করে, তাদেরকে p-ব্লক মৌল বলে।

that to well than the confirmation when the on over the Hall Stall William were on ser मान्यभूत वर्गात्र क्षेत्रका प्रकार भाग । भाग । भाग । । । । । । KAN 167 is businesters केल्प कर्म रिता क्षेत्र केलिक्स कर काम रिता । यह वाम क्रिकेटका 100/11/11/11 unganin, say ka bush anda di sipana na uji ara 41846 1147 क्रिके क्षेत्रम भी बावकार जा। क्षेत्रम अनु क्षिक्तिकार क्षेत्रम, क्षेत्र promisely is withought body to adding incomes was the which and the but were work out thy significant that the side of the hield township adding his halderight port rightief 🚧 रूक्तानुस्थ है। १८५८ मान १ व । १ व इस स्थान १५४ मान भीन । १५४ MA SAMILA WE SHIPE SAME BOOK INK HA HAD BEEFE Maddilling WHICH & WART ING UN 12 SOMETHY ATTER PS 1.28 the himmer Shows that he Af Anishan in a x, be rea don when you as owner part to a na chan when the fathering bearing a making in highly there was a lay the of the syptomet of कराया करता है और भी भी भाग करता है की देश सीहर महिल tally the wife from the at much our hoders och विदेश क्षेत्रीति क्षेत्रीति । १-१४ - ११४ विभिन्नांत्रीति विदेशने विशेष विद्या विद्या HI INSTANCE IPER १५०का संस्थानमें तेह, तेव अन्य तेत्र स्पर्नेत्राम विभागीत रहते । DAN ABARTER LAND MATER & MERRIT INTO BUTTER TO was the wine who rody is by mother and the rich en indistribute the total all a Who thought the fire the feet the septe 44 July 2 149 11 कर्मात । तो भर अल्लाकरात्र हो है। है। है एक है। askerine window with all of a runn retain who make employed about with a side or all where they were BROOKS (\$111) PHYROL PRIVED BROOK GROOK GROOK SOLA WA MANGE HOME HIS KING AN PHYS THAT BUT THE PENNE PHINE the distant with upon (4) (Altribit to But myon commercials (11) Million (1) by ( 1) there notices were sure who was 4. M. m. (A) Frither the 4 to the authorities articlation as is in me J 5011 MAIN. (SE Hidithall many whom on treates edicie) the course was the course have advanced asserted in 🖼 इक्षित्राक्ष है। एसेन्सी बाज करून ए था। एक छ इस्की वाल invinte whence build direct showing all ALGERTAL PRAISE 🔯 ( n/s) i sid fi Piliph wapan namuni mez emaen sens to a train to the transportation. 16th 1 18 19 14 48 48 48 Ad identified the electric interest of their appropriate the above more that I trippe bloomen trouper test and he had not not not god: 11d ld ly hd by ha no the Year are ran winter ACOLUMN SOLUMO CATO SIZO PORCHOR ROPE, (COCIE,COSE) मागानाम कापान काक पाना ताब, ( में नावास व सर्वनाम क्षितिहरू होते ।।विन सामनामय धार्म । वन ते संबर्धनाम बोर्च । (मानका य होती, तार्व महित्व मार्थितक राक्ष्म, एउट मान्यास्त्व माहत्र की स्थित विकेश रेक्ट्रिकामा स्थापना । सर्वाचिता स्थापना पूर्व स्थाप कर्मा भारत थ है कि साम रहिए हैं। है है है है है के सहस्रक स्वयं है है है है

phomesos publications

and wind all it man from the

अने महिल्ला के के हैं। जन महिल्ला के द्वार अहिला की महिला की महिला की है।

ব্য উদ্দীপকের C মৌলটি হলো কপার (Cu)। কপার সালফেট যৌগটি 🔁 আমরা জানি, পরমাণু যৌগ গঠন করার সময় এর সর্বশেষ কক্ষপপ্তে হচ্ছে একটি লবণ।

আমরা জানি, যে সকল লবণ দুর্বল ক্ষারক ও তীব্র অদ্র হতে উৎপন্ন হয় তারা অদ্রধর্মী লবণ হয় এবং জলীয় দ্রবণে অর্দ্রে বিশ্লেষিত হয়ে অদ্লীয় দ্রবণ তৈরি করে। CuSO₄ লবণটি মূলত দুর্বল ক্ষারক Cu(OH)₂ এবং সবল এসিড H2SO4 এর প্রশমন বিক্রিয়ায় উৎপন্ন হয়।

$$Cu(OH)_2$$
 +  $H_2SO_4$   $\longrightarrow$   $CuSO_4$  +  $2H_2O$  দুর্বল ক্ষার তীব্র এসিড অস্লধর্মী লবণ

উৎপন্ন অস্ত্রধর্মী লবণটি জলীয় দ্রবণে প্রথমে আয়নিত হয়। পরে Cu²+ আয়ন পানির সাথে বিক্রিয়া করে Cu(OH)2 এবং হাইড্রোনিয়াম আয়ন (H₃O<sup>+</sup>) উৎপন্ন করে।

$$CuSO_4 \longrightarrow Cu^{2+} + SO_4^{2-}$$

$$Cu^{2+} + 4H_2O \rightleftharpoons Cu(OH)_2 + 2H_3O^+$$

দ্রবণে H<sub>3</sub>O<sup>+</sup> এর উপস্থিতি একে অশ্লীয় করে এবং দ্রবণে pH এর মান 7 এর চেয়ে কম হয়।

ঘ উদ্দীপকের B ৪র্থ পর্যায়ের গ্রুপ-2 এর অন্তর্গত। অর্থাৎ এটি হল Ca আর D ৪র্থ পর্যায়ের গ্রুপ-12 এর অন্তর্গত, তথা Zn। এদের অক্সাইড যথাক্ৰমে CaO ও ZnO.

CaO ক্ষারধর্মী। এটি পানির সাথে বিক্রিয়া করে Ca(OH)2 উৎপন্ন করে।  $CaO + H_2O \rightarrow Ca(OH)_2$ 

এবং HCI এর সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে।

$$CaO + HCl \rightarrow CaCl_2 + H_2O$$

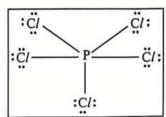
ZnO উভধর্মী অক্সাইড যা এসিড ও ক্ষারক উভয়ের সাথেই বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে।

$$ZnO + HCl \longrightarrow ZnCl_2 + H_2O$$

$$2\pi O + NaOH \longrightarrow Na_2Z\pi O_2 + H_2O$$
এসিড ক্ষার লবণ পানি

의 ► >>

| মৌল | শেষ কক্ষপথের ইলেকট্রন বিন্যাস   |       |  |
|-----|---------------------------------|-------|--|
| A   | ns² np¹                         | n = 2 |  |
| В   | ns <sup>2</sup> np <sup>5</sup> | n = 2 |  |
| С   | ns <sup>2</sup> np <sup>3</sup> | n = 3 |  |
| D   | ns² np⁵                         | n = 3 |  |


A, B, C ও D মৌলের প্রচলিত প্রতীক নয়।

- (ক) আয়নিকরণ শক্তি কাকে বলে? [রা. বো. ২১; চ. বো. ২১; সম্মিলিভ বো. ১৮]
- (খ) PC15 একটি **অষ্টক সম্প্রসারণ যৌগ**−ব্যাখ্যা কর।
- (গ) উদ্দীপকের B ও D মৌলের ইলেকট্রন আসক্তির তুলনামূলক ব্যাখ্যা [ह. त्वा. २२; व. त्वा. २२, २১; म. त्वा. २२; हा. त्वा. २১]
- (ঘ) AB বায়ন ও CD3 যৌগের মধ্যেকার সংকরণ একই হলেও বন্ধন কোণের ভিন্নতা রয়েছে– যুক্তিসহ আলোচনা কর। চি. বো. ২২ সমাধানঃ
- ক গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল বিচ্ছিন্ন পরমাণু থেকে একটি করে ইলেকট্রন সরিয়ে একে গ্যাসীয় বিচ্ছিন্ন এক মোল একক ধনাত্মক আয়নে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন হয়, তাকে সেই মৌলের আয়নিকরণ শক্তি বা আয়নিকরণ বিভব বলা হয়।

৪টি ইলেকট্রন পূর্ণ করে সৃস্থিতি অর্জনের নিয়মকে অষ্টক তত্ন বলে।

$$_{15}P \rightarrow 1s^{2} 2s^{2} 2p^{6} 3s^{2} 2p^{3}$$
 $_{15}P^{*} \rightarrow 1s^{2} 2s^{2} 2p^{6} 3s^{1} 3p_{x}^{1} 3p_{y}^{1} 3p_{z}^{1} 3d_{xy}^{1}$ 
 $_{sp}^{3}d$ 

P (ফসফরাস) উত্তেজিত অবস্থায় এর বহিঃস্থ স্তরের 1টি s, 3টি p এবং 1টি d অরবিটাল সংকরিত হয়ে পাঁচটি সংকরিত  ${
m sp}^3 d$  অরবিটাল গঠন করে যার প্রত্যেকটিতে 1টি করে অযুগ্ম ইলেকট্রন বিদ্যমান। তাই P পাঁচটি ক্লোরিন (Cl) পরমাণুর  $3p_z^1$  অরবিটালের সাথে অধিক্রমণ করে PCl₅ অণু গঠন করতে পারে।



এখানে, PCl₅ অণুর P এর যোজ্যতাস্তরে 10িট ইলেকট্রন রয়েছে যাকে অষ্ট্রক সম্প্রসারণ বলা হয়ে থাকে। সুতরাং, PCl<sub>5</sub> একটি অষ্ট্রক সম্প্রসারণ যৌগ।

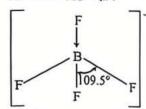
নি উদ্দীপকের B ও D মৌলদ্বয় যথাক্রমে ফ্লোরিন (F) এবং ক্লোরিন (CI) যাদের ইলেকট্রন আসভিতে সাধারণ নিয়মের ব্যতিক্রম পরিলক্ষিত

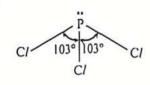
গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল পরমাণু এক মোল ইলেকট্রন গ্রহণ করে এক মোল একক ঋণাত্মক আধানযুক্ত আয়নে পরিণত করলে নির্গত শক্তিকে ইলেকট্রন আসক্তি বলে।

সাধারণভাবে, পরমাণুর আকার যত বৃদ্ধি পায় ইলেকট্রন আসক্তির মান তত কমে। 17 নং গ্রুপের অন্তর্গত মৌলসমূহের মধ্যে F (ফ্লোরিন) এর আকার সবচেয়ে ছোট। F এর শক্তিস্তর সংখ্যা মাত্র দুইটি এবং সর্বশেষ শঙ্ক্তির তথা ২র শঙ্ক্তিরে 7টি e विদ্যমান। অপরদিকে Cl (ক্লোরিন) এর শক্তিন্তর সংখ্যা তিনটি এবং এখানেও সর্বশেষ ৩য় শক্তিস্তরে 7টি e রয়েছে। F এর আকার তুলনামূলক ছোট হওয়ায় এবং এতে 7টি ইলেকট্রন থাকায় ইলেকট্রন মেঘের ঘনত্ব তুলনামূলকভাবে অধিক হয়। এমতাবস্থায়, আগমনকারী ইলেকট্রনের উপর ইলেকট্রনীয় বিকর্ষণ বলের প্রভাব বেশি হয়। অন্যদিকে Cl এর আকার তুলনামূলক বড় হওয়ায় এবং ইলেকট্রন ঘনত্ব কম থাকায়, সহজেই নতুন ইলেকট্রনকে জায়গা দিতে পারে। ফলে গ্রুপ-17 এর মৌলসমূহের মধ্যে Cl এর ইলেকট্রন আসক্তি F এর চেয়ে বেশি হয় এবং স্বাভাবিক নিয়মের ব্যতিক্রম পরিলক্ষিত হয়।

 $\overline{\mathbf{q}}$  উদ্দীপকের  $AB_4^-$  হলো  $BF_4^-$  এবং  $CD_3$  হলো  $PCl_3$ ।

$$\mathrm{BF}_{4}^{-}$$
 এর সংকরায়ন =  $\frac{1}{2}\left[\mathrm{V}+\mathrm{M}-\mathrm{C}+\mathrm{A}\right]$ 


$$=\frac{1}{2}[3+4-0+1]=4$$
; sp<sup>3</sup> সংকরারণ


$$PCl_3$$
 এর সংকরায়ণ =  $\frac{1}{2}[5+3]=4$ ;  $sp^3$  সংকরায়ণ

শৌলের পর্যায়নৃত ধর্ম ও রাসায়নিক ব্যান > ACS/ FRB Compact Suggestion Book......

54P

এখানে উভয়ের সংকরায়ণ একই হলেও বদ্ধন কোল ভিন্ন। সাধারণভাবে,  $6p^3$  সংকরায়ণ বদ্ধন কোণের আকার চড়ুজ্জলকীয় হয়ে থাকে এবং বদ্ধন কোণে  $109.5^\circ$  হয়।  $BF_3$ , এর কেন্দ্রীয় লবমাণু B এ কোনো মুক্ত ইলেবট্রন থাকে না। ফলে এর আকৃতি চড়ুজলকীয় হয় এবং বদ্ধন কোণ  $109.5^\circ$  হয়ে থাকে। অপরাদিকে  $PCI_3$  এর কেন্দ্রীয় পরমাণু P এর একটি মুক্তজোড় ইলেবট্রন বিদামান থাকায় এবং VSEPR থিওরি অনুসারে মুক্তজোড় (Ip)-বদ্ধনভোড় (Ip) বিকর্মণ ২ বদ্ধনজোড় (Ip)-বদ্ধনজোড় (Ip)-বদ্ধনজোড় (Ip) বিকর্মণ হওয়ায় Ip এণুডে আকৃতি বিকৃতি ঘটে এবং এর আকার ত্রিকোণীয় পিরামিডীয় হয় এবং বদ্ধন কোণ  $Io3^\circ$  হয়।





व. व्या. २२, ১৯

চিত্র: BF ব এবং PC/3 এর আকৃতি এবং বদ্ধন কোণ।

#### 전파 > ২0

| মৌল | ইলেবট্রন বিন্যাস                     | n-এর মান |
|-----|--------------------------------------|----------|
| Q   | ns²                                  | 2        |
| х   | ns¹                                  | 3        |
| Y   | (n-1)d <sup>10</sup> ns <sup>1</sup> | 4 =      |

[Q, X ও Y কোনো মৌলের প্রচলিত প্রতীক নয়]

- (ক) ন্দার ধাড় কাকে বলে?
- (খ) স্যান্থানাইড সংকোচনের কারণ কী বৃথিয়ে লেখ।
- (हा) फिलिशक जनमार्क ४०१ % ४०१ लोक्स
- (গ) উদ্দীপক অনুসারে XCI ও YCI যৌগদয়ের কোনটির পানিতে দ্রবণীয়তা বেশি? ব্যাখ্যা কর।
- ্ঘ) সাধারণ তাপমাত্রায় C1₂ এর সাথে Q এর যৌগ গঠন আলোচনা কর।

#### नगापानः

- প্রত্থার প্রতিব মৌলসমূহ অভান্ত সক্রিয় হওয়ায় এরা পানির সদে সরাসরি বিক্রিয়া করে তীব্র ক্ষার গঠন করে, এজন্য এদেরকে ক্ষার ধাতৃ বলে।
- ডিপশজিন্তরে ইলেবট্রনের ঘনত্ব জন্য উপশজিন্তরগুলোর তুলনায় কম থাকার এর আবরণী প্রভাব সবচেরে কম (s > p > d > 1)। ল্যাস্থানাইড মৌলগুলোর 41 উপশজিন্তরের ইলেবট্রনগুলোর আবরণী ক্ষমতা অপেক্ষাকৃতভাবে কম হওয়ার কারণে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে নিউক্রিয়াস কর্তৃক সর্ববহিঃস্থ স্তরের ইলেবট্রনগুলোর ওপর আকর্ষণ বল বৃদ্ধি পার। ফলে মৌলের পারমাণবিক ব্যাসার্ধের সংকোচন ঘটে। একে ল্যাস্থানাইড সংকোচন বলে।
- শ্রী উদ্দীপকের X ও Y মৌলের ইলেবট্রন বিন্যাস অনুযায়ী, মৌলদ্বয় যথাক্রমে Na ও Cu কে নির্দেশ করে। সুভরাং XCl ও YCl যৌগদ্বয় যথাক্রমে NaCl ও CuCl। পানি পোলার দ্রাবক হওয়ায়, যৌগ যভ বেশি আয়নিক, পানিভে ভার দ্রাব্যভা তত বেশি। এখন NaCl ও CuCl উভরেই আয়নিক যৌগ হলেও ক্যাটায়ন কর্তৃক পোলারায়নের ভিন্নভার কারণে পানিতে দ্রাব্যভার ক্ষেত্রে পার্থক্য পরিল্ফিড হয়। কারণ ফাযানের নীভি অনুযায়ী ক্যাটায়নের শভিন্তরের ব ও 1 উপক্ষে ইলেকট্রনের উপিছ্ভি যৌগে

काणिसम मज्जून आभागाएन एभजाशाधम भाजिस दमा। प्रतं आधिम प्रांता ममदमाश्री दिनिष्ठा अभाग गाउ। Na' मान गाजिखाउ र व र व्यविधित प्रत्माधीं पादम मा। किस Cu' ज ियति मिर्छ दे व र वालिकाल र विज्ञानिक पादम मा। किस Cu' ज विश्व मान प्रांता प्रदेश मान प्रांता Cu' ज दिन्यति प्रांता प्रांता प्रदेश स्वांता प्रांता प्रांता प्रदेश स्वांता प्रांता प्रांता व वर्ष प्रांता व वर्य वर्ष व वर्ष वर्ष प्रांता व वर्ष वर्य वर्ष वर्ष वर्ष वर्य वर्ष वर्य

সূতনাং NaCl ও CuCl এম সংগ্র NaCl এন স্বামনিক সৈশিষ্ট্র বেশি হওয়ায় তা পাণিতে অনিক দ্রবর্ণীয়।

উদ্দীপক অনুসারে Q মৌগটিন ধোজাতাওনের ইন্সেন্ট্রের নিধ্যাগ 2a<sup>1</sup>,
 यা Be নির্দেশ করে। সাধানশ ভাপসাতার বিভ-এর সাড়ে Cl<sub>4</sub> এট
 বিজিয়ার BoCl<sub>3</sub> পাওরা দার।

এখন BoC/3 এর কেন্দ্রীয় পরমান্ Do এর উর্যোপিন্ধ অধ্যান্ত ও CI এর ইলেনটোন বিন্যাস করে পাইঃ

$$Bc^{\bullet}(4) \rightarrow 1s^{2} 2s^{1} 2p^{1} 2p^{0} 2p^{0}$$

$$CI(17) \rightarrow 15^{2} 25^{2} 2p^{6} 36^{2} 3p^{2} 3p^{4} 3p^{5}$$

সূতরাং, Be এর শেষ কক্ষপথের ।তি s o ।টি p অব্যা ইলোরট্রাস বিশিষ্ট অরবিটালের সংকরায়সে বৃষ্টি সমশ্চি সম্পন্ন ap অর্নিটাল সৃষ্টি হয়।

এখন Be এর দুইটি বিজ্ঞাড় ইলোনট্রন রিশিষ্ট sp সংগ্রম অন্পিটাল, Cl এর অযুগা ইলোনট্রনবিশিষ্ট 3p, এন সাথে অধিক্রমনোন গলে একজোড়া Be — Cl সমযোগী বন্ধন গঠন করে। গলে সৌনটি সরলরৈখিক আকৃতি লাভ করে যেখালে বুটি Bo – Cl নন্ধপের মধ্যে বন্ধন কোণ 180°।



BcC/2 अत गठना



| 연합 > ২১ (I) | মৌগ |                 |     | ২য় আয়সিনরণ<br>বিভব klasoΓ¹ |
|-------------|-----|-----------------|-----|------------------------------|
|             | Q   | ns <sup>t</sup> | 496 | 4362                         |
|             | R   | ns <sup>1</sup> | 738 | 1450                         |

n = 3

(II) AX মৌগের ক্যাটারন সেসলার দ্রবণে বাদামী অধ্যক্ষেপ সেরা এবং আানারন, সিলভার নাইট্রেট দ্রবণে সাদা অধ্যক্ষেপ সেরা যা লযু HNO, এসিডে দ্রবণীয়।

(क) भिगाास काटक वटग?

- चि. जा. Sbi म. जा. Sbl
- (च) शामि छत्रण क्म-वााचाां कता।
- 16. AI. D.D. F. OII. 2)
- (গ) উদ্দীপক (II) এর AX নৌগে বিভিন্ন ধরসের বন্ধদের উপস্থিতি মৃগ্যান্ত্রস কর।
- (घ) উদীপক (I) এর মৌগ দূটির ১য় ভায়নিকরণ বিভবের মাসের সামে ২য় ভায়নিকরণ বিভবের মানের বাভিক্রমধর্মীভার কারণ বিশ্লেমণ কর।

[VI. OII. 9.3]

সমাধান:

- ক জটিল আয়ন বা জটিল যৌগ গঠনকালে নিঃসঙ্গ ইলেকট্রন যুগল প্রদানকারী ঋণাত্মক আয়ন বা যৌগ অণুকে লিগ্যান্ড বলে।
- পানিতে H ও O এর মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য  $\Delta E_N=3.5-2.1=1.4$  হওয়ায় O-H বন্ধনের শেয়ারকৃত ইলেকট্রন অক্সিজেনের দিকে বেশি সরে যায়। ফলে O এ আংশিক ঋণাত্মক ও H এ আংশিক ধনাত্মক চার্জ সৃষ্টির মাধ্যমে  $H_2O$  এর অণুতে ডাইপোল সৃষ্টি হয়। পাশাপাশি দুইটি পানির অণুতে O ও H এর মধ্যে হাইড্রোজেন বন্ধন সৃষ্টি হয়।

এভাবে পাশাপাশি অণুর মধ্যে হাইড্রোজেন বন্ধনের এর মধ্যে হাইড্রোজেন আণবিক গুচ্ছ গঠন করে, যা বিচ্ছিন্ন করতে H বন্ধনগুলো ভাঙতে হয়, যার জন্য প্রচুর তাপশক্তির প্রয়োজন হয়। তাই পানির ক্ষুটনাঙ্ক পর্যায় সারণির কাছাকাছি মৌলের হাইড্রাইডের তুলনায় অনেক বেশি হয়। ফলে পানি তরল অবস্থায় পাওয়া যায়।

গ্র উদ্দীপকের AX যৌগটি NH<sub>4</sub>Cl কারণ যৌগটির ক্যাটায়ন NH ুর্ব নেসলার দ্রবণে বাদামী অধঃক্ষেপ দেয় এবং অ্যানায়ন Cl সিলভার নাইট্রেট দ্রবণে সাদা অধঃক্ষেপ দেয়।

 $NH_4CI$  এ সমযোজী, সন্নিবেশ সমযোজী ও আয়নিক বন্ধন উপস্থিত। এখন,  $NH_4CI$  এর গঠন থেকে পাই:

$$\begin{bmatrix} H \\ | \\ N - N : \longrightarrow H^{+} \end{bmatrix} C \Gamma$$

চিত্র: NH₄Cl এর গঠন 🌑 🌑

অর্থাৎ, যৌগটিতে  $\operatorname{NH}_4^+$  ও  $\operatorname{Cl}^-$  এর মধ্যে একটি আয়নিক বন্ধন,  $\operatorname{NH}_4^+$  তে তিনটি  $\operatorname{N} - \operatorname{H}$  সমযোজী বন্ধন এবং একটি  $\operatorname{N} \to \operatorname{H}^+$  সন্নিবেশ সমযোজী বন্ধন বিদ্যমান। সুতরাং  $\operatorname{NH}_4\operatorname{Cl}$  যৌগে আয়নিক, সমযোজী এবং সন্নিবেশ সমযোজী বন্ধন উপস্থিত।

ঘ উদ্দীপকের Q ও R মৌলদ্বর যথাক্রমে Na ও Mg। এদের ইলেকট্রন বিন্যাস নিম্নরপঃ

Na (11) 
$$\rightarrow$$
 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup>

$$Mg(12) \rightarrow 1s^2 2s^2 2p^6 3s^2$$

সূতরাং Mg এর সর্ববহিঃস্থ শক্তিস্তরে 3s অরবিটালটি পরিপূর্ণ থাকায় তা Na এর 3s এর চেয়ে অধিক স্থিতিশীল। তাছাড়া Mg এ প্রোটন সংখ্যা বেশি হওয়ায় যোজ্যতা স্তরের ইলেকট্রনের উপর Na এর তুলনায় আকর্ষণ বেশি থাকে। ফলে একটি ইলেকট্রন সরাতে Na এর তুলনায় Mg এ বেশি শক্তির প্রয়োজন হয়। তাই Mg এর প্রথম আয়নিকরণ শক্তি Na এর তুলনায় বেশি।

আবার, ২য় আয়নিকরণ শক্তির ক্ষেত্রে  $Na^+$  ও  $Mg^+$  এর ইলেকট্রন বিন্যাস করে পাই:

$$Na^+ \rightarrow 1s^2 2s^2 2p^6$$

$$Mg^+ \rightarrow 1s^2 2s^2 2p^6 3s^1$$

উভয় মৌলের জন্যই প্রথম আয়নিকরণ শক্তির চেয়ে দ্বিতীয় আয়নিকরণ শক্তি বেশি কারণ একটি ইলেকট্রন ত্যাগের পর আরেকটি ইলেকট্রন সরাতে নিউক্লিয়াসের ধনাত্মক চার্জজনিত আকর্ষণ বলের বিপরীতে অধিক শক্তি প্রয়োগ প্রয়োজন হয়। াছাড়া Na এর দ্বিতীয় আয়নিকরণ শক্তি Mg এর তুলনায় অনেক বেশি হয়। কারণ Na একটি ইলেকট্রন ত্যাগ করে Na<sup>+</sup> এ পরিণত হয় যার ইলেকট্রন বিন্যাস নিদ্ধিয় গ্যাস Ne এর অনুরূপ। ফলে স্থিতিশীল অবস্থা থেকে ইলেকট্রন সরাতে অনেক বেশি শক্তির প্রয়োজন হয়। অপরদিকে Mg<sup>+</sup> এর 3s অরবিটাল থেকে একটি বিজ্ঞোড় ইলেকট্রন ত্যাগের সরাতে অপেক্ষাকৃত কম শক্তির প্রয়োজন কারণ ঐ ইলেকট্রন ত্যাগের মাধ্যমে উৎপন্ন Mg<sup>2+</sup> আয়ন অধিকতর স্থিতিশীল Ne এর ইলেকট্রন বিন্যাস অর্জন করে। তাই মৌলদ্বয়ের প্রথম ও দ্বিতীয় আয়নিকরদ বিভবের মানের মধ্যে ব্যক্তিক্রমধর্মীতা দেখা যায়।

### 설치 ▶ ২২ (i) [Ag(NH<sub>3</sub>)<sub>2</sub>]Cl

(ii)

| (II)<br>धम्ल →<br>প্रयाग्न ↓ | 11 | 17 |
|------------------------------|----|----|
| 1                            |    |    |
| 2                            |    | P  |
| 3                            |    | Q  |
| 4                            | M  | R  |

ক) মৌলের পর্যায়বৃত্ত ধর্ম কী?

বি. বো. ২১; ঢা. বো. ১৭

(খ) নাইট্রোজেনের ১ম আয়নিকরণ বিভব অক্সিজেনের ১ম আয়নিকরণ বিভব অপেক্ষা বেশি কেন?

মি. বো. ২২; য. বো. ২১; দি. বো. ১৭; অনুরূপ প্রশ্ন: ম. বো. ২৩

- (গঁ) উদ্দীপক (i) এর যৌগে কত প্রকারের বন্ধন আছে ব্যাখ্যা কর। [য. বো. ২১]
- ্ঘি) উদ্দীপকের P, Q ও R এর হাইড্রাসিডের তীব্রতার ক্রম বিশ্লেষণ কর। [ম. বো. ২১; অনুরূপ প্রশ্ল: ব. বো. ২১; দি. বো. ১৯|

সমাধানঃ

- ক পর্যায় সারণিতে মৌলসমূহের পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে যেসব ভৌত ও রাসায়নিক ধর্ম ধারাবাহিকভাবে পরিবর্তিত হয় তাদের পর্যায়বৃত্ত ধর্ম বলে।
- সাধারণত পর্যায় সারণির বাম থেকে ডানে গেলে মৌলগুলোর আকার হ্রাস পায়, ফলে আয়নিকরণ বিভব বৃদ্ধি পায়। সেক্ষেত্রে O এর আকার N এর তুলনায় ছোট হওয়ায় প্রথম আয়নিকরণ বিভব O এর বেশি হওয়ার কথা। কিন্তু উভয় পরমাণুর ইলেকট্রন বিন্যাস থেকে পাই:

$$N(7) \rightarrow 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$$

$$O(8) \rightarrow 1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$$

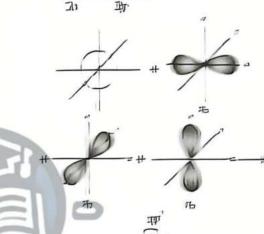
N এর সর্ব বহিঃস্থ শক্তিস্তরে 2p উপশক্তিস্তর অর্ধপূর্ণ হওয়ায় এটি O এর  $2p^4$  এর তুলনায় অধিকতর স্থিতিশীল। ফলে একটি ইলেকট্রন সরাতে O এর তুলনায় N এ অধিক শক্তির প্রয়োজন হয়। তাই নাইট্রোজেনের ১ম আয়নিকরণ বিভব অক্সিজেনের ১ম আয়নিকরণ বিভব অপেক্ষা বেশি।

ক উদ্দীপকের [Ag(NH<sub>3</sub>)<sub>2</sub>]Cl এর গঠন নিম্নুরূপ:

$$\begin{bmatrix} H & H \\ | & | \\ H - N : \rightarrow Ag \leftarrow : N - H \\ | & | \\ H & H \end{bmatrix}^{+} C\Gamma$$

TOTTOMER OF THE COMMISSION OF THE PROPERTY OF

मार ने अस्ति मार्च्यक वार्योगोतः । ११


- 1/ ० - ।।। - । - ०। ।।। - इन्होंच नामम नाम जुक् ववणामि जन्म राजा

-- 5 - D - II - D) II = #IIIIIITAN: DIE नाप मन्यापाया = अ

अह नामध्यात या या भिरम्भिष


班原加加加





पार्थ मार्क वीवक व्यापीय्की मनाकिनाव्य वीवार वालेक नाम राति वाच जीगाई लि खरीन्य भाव साम

W ब्ह का विकार स्प्रियामक अपास म बह La कर्नियामक म्प्रक स्कि स्वक विकाय माजवरोह



निक्य स्थान क निक्य व्यान

श्वासिट बलाइ "र सात एका ज्यापीत वाप्रोह्माह 'पा रक्ती अप काण वाजः मोदानि व्या - वा < व्या - वा विष्ट्यां ारक माराभ सीकाए यसियोगमी कावागावणो यावायपुर

कि सिर्माण्ड जीना मिनकि स्टाब गाल्या CIEL असे क HaO I नाग्रकार मुनाचन निप्रमानुगुख व्यानात सन व्यानात सनक्ष अनत चएशगढ नर प्रयामात न्तर्गर न्त्रीहर हा। व्यान व्यापान मुनि नवामन्त्रः चिद्धिः न्रथावृत्यचता नार्याना (४६००) ०० वता व्यनि चयन जीमिकिक आवात जीमा नवा नाग ।

Athornbus Huttlications

व्यवस्था मेंनिसीम्ब सिक्त साव विश्वधासिवि कार्या का जाता द्वा मिन्न प्रमाणकिया वात स्थित सावाहिक साव कार्या विषय है विषय स्थापन सामान मार्गा प्राप्ति ए मा नामार्ग नामा नाम ए वह मार्गामा काला मात्र भी तात का मेर्स वार मेर्स वार मेर्स वार मात्र का मात्र का मात्र का मात्र का मात्र का मात्र का मात्र प्राच्याक मामसिक कि व्याव्यावत मामः भीवार व व्याव्यावा जामाना जामार जामिर हत जान मीपापार न्यार जी।

क्रिकाराम् । ए हाम चीवावा वहावचात्र । ए व से सवाव कामा विभागत यावाताह स्सि ह । अस वह भागताताह आहर पार भाग व्यक्ति ऋह जनेता जाति विश्व त्यरमेवाविद भीत, प्रकार प्राप्ति क्षाताले क्षाताल, स्पीत व्यवस्था

नाम मान माना माना मान मान स्थान कि माना माना माना नाम नाम निर्मा भाराम = । । । । । निर्मा निर्मा निर्मा साम निर्माण सेसे नगर जा जात जात नगर से गण सामिश्व के जिल्लाए जाह यात वाह सिवस आतीवार वाण नाम्हरातिक

क्या मिण करनामा विषे प्राच्या प्राची व्याप्त मानि ासिक्षर =: आणे वासे, तार गणि :- गणि आधार के अंगार प्र अधिया अपूर्व अपूर्व के अपूर्व स्था अपूर्व स्थापित अपूर्व स्थापित अपूर्व स्थापित अपूर्व े जात गीर येगाए जात गाह सिपाए

। सर्-१८१४ - १स्पस गण तराजुरी नाराजनो धारणार. वणान्यः वांगन्त्राचारा चेत्रपर वातः भागात्वाच्या व्यापान्यः व्यापान्यः तामाम कार नाम जामानाय भागमान समान कर गाए से व्या नवर राज मांग ना भाग ना मांग नवा नवा नवा अर्थराज्यः द्वादाः स्थातः आतः आपदः भागवान विभावित सम्मानतः गण राजार्क जीवन निर्मा शायर । । । । । । । । ।

| 計出: - | 計口! - 日日 ママ

सिवा जातिक का के विका के किया के विकार नाम कर नाज्यक जाताय जाताच्या करें न रख।

न्त्र-) नामावाना जात्वा ।

師而以

ा कर प्राप्त स्थान जाता जीकार जीवा जीवा

मि जा ग्य

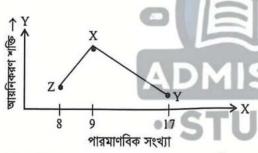
भाग प्राप्ति, अधिक जानामान कोन नामान मा । मा जा भार जा थाः 

। साम उन्य तत्पात्र काल कामुल जीवारे वर्गा तार अवन स्थाप ।

tt .TT 26

न्गार्वादा

मानियर मिए अग्रात्याच्य ज्या सारिक क मानायस आर्थ मीर जामात राष्ट्र यह होते हात हात विकास विकास मातार 心叩班


उत्तरमान स्ट्रीय वर्गाय का मा तथा है जा जाति मानान वि नामिक स्ट्रोप क्योंक याताल सामित है। है। है। क भारतिक करिया है जिल्ले हैं के स्वाहर के स्वाहर करिया है के स्वाहर करिया है यक्षेत्र क्या उभाव जीमग्रहरू श्रीव नरशत होतेसुर कारर नाम । व्यापाम मिक्स्पामा अगरवत् अगर्याम अगरवन लिखा करत जा।। यह समित उपनीक बाह्य राजाह बीजा प्रभाव राजाह राजाह नार याहर इसिन् जागरे जाय साम कार्य नाय नाय 河面的 多面 计不可证

এখন, CH4 এ কার্বন ও হাইড্রোজেনের তড়িং ঋণাত্মকতার পার্থক্য  $\Delta E_N = 2.5 - 2.1 = 0.3$  হওয়ায়, C - H বন্ধনের শেয়ারকৃত ইলেক্ট্রনজোড়কে কার্বন নিজের দিকে খুব বেশি টানতে পারে না, ফলে পোলারিটি সৃষ্টি হয় না।

অপরদিকে, NH3 ও H2O তে তড়িৎ ঋণাত্মকতার পার্থক্য যথাক্রমে  $\Delta E_N = 3.0 - 2.1 = 0.9$  এবং  $\Delta E_N = 3.5 - 2.1 = 1.4$  হওয়ায় N H এবং O − H বন্ধনে পোলারিটির সৃষ্টি হয়। ফলে উভয়ই পোলার যৌগ হিসেবে কাজ করে।

যেহেতু পানি দ্রাবক হিসেবে অধিক পরিচিত এবং ডাইপোল বিশিষ্ট জৈব ও অজৈব উভয় দ্রবকে দ্রবীভূত করে। সুতরাং H<sub>2</sub>O কে দ্রাবক হিসেবে চিন্তা করলে NH3 তে N – H বন্ধনে ডাইপোল থাকায় তা H<sub>2</sub>O এর ধনাত্মক প্রান্তের সাথে যৌগের ঋণাত্মক এবং ঋণাত্মক প্রান্তের সাথে যৌগের ধনাত্মক প্রান্তের সংযোগে পানিতে দ্রবীভূত হবে। किन्न CH₄ এর C – H বন্ধনে এ ধরনের ডাইপোল না থাকায় তা  ${
m H_2O}$  তে দ্রবীভূত হতে পারে না। সুতরাং  ${
m H_2O}$  কে দ্রাবক বিবেচনা করলে NH3 যৌগটি CH4 অপেক্ষা অধিক দ্রবণীয়।

প্রশ ▶ ২8



(ক) s-ব্লক মৌল কাকে বলে?

[দি. বো. ১৯]

(४) NH₄<sup>+</sup> आय़त्नित्र मित्रित्म वक्षन गांथा कत ।

[ব. বো. ২১]

(গ)  $H_2Z + H^+ \rightarrow A$ 

A এর বন্ধনগুলির অরবিটাল গঠন আলোচনা কর।

[সি. বো. ১৯]

(ঘ) পারমাণবিক সংখ্যার সাথে উদ্দীপকের মৌলগুলোর আয়নিকরণ শক্তির পরিবর্তন যুক্তিসহকারে ব্যাখ্যা করো। [সি. বো. ১৯]

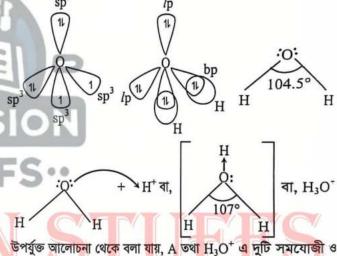
সমাধান:

- ক যে সকল মৌলের সর্বশেষ ইলেকট্রন s-অরবিটালে প্রবেশ করে তাদেরকে s-ব্লক মৌল বলে।
- বুটি পরমাণুর মধ্যে সমযোজী বন্ধন গঠনে প্রয়োজনীয় ইলেকট্রনদ্বয় যদি একটি মাত্র পরমাণু সরবরাহ করে এবং অপর পরমাণুটি কোন ইলেকট্রন সরবরাহ না করে তা সরবরাহকারী পরমাণুর সাথে সমানভাবে শেয়ার করে বন্ধন গঠন করে তাকে সন্নিবেশ সমযোজী বন্ধন বলা হয়।

 $\mathrm{NH_4}^+$  এর ক্ষেত্রে  $\mathrm{NH_3}$  মুক্তজোড় ইলেকট্রন যুগল শেয়ার করে এবং  $H^{\dagger}$  আয়ন কোন ইলেকট্রন যোগান না দিয়েও লিগ্যান্ডের সাথে সমানভাবে ইলেকট্রন শেয়ার করে সন্নিবেশ বন্ধন গঠন করে।

$$\ddot{N}H_3 + H^+ \text{ all, } H \longrightarrow H^+ \longrightarrow \begin{bmatrix} H \\ H \longrightarrow N \\ H \end{bmatrix} \longrightarrow H$$

..... ACS, > Chemistry 1st Paper Chapter-3


বা,

ব্য উদ্দীপক অনুযায়ী Z মৌলটি অক্সিজেন।

 $H_2O + H^+ \longrightarrow H_3O^+$ 

অর্থাৎ, A হলো হাইড্রোনিয়াম আয়ন H₃O⁺।

 ${
m H_2O}$  এর কেন্দ্রীয় পরমাণু অক্সিজেন (O)  ${
m sp}^3$  সংকরায়িত হওয়ায় চারটি sp³ হাইব্রিড অরবিটাল বিদ্যমান। H এর 1s অরবিটালের সাধে অধিক্রমণে দুটি O – H বন্ধন গঠিত হয় ও 2টি মুক্তজোড় ইলেকট্রন থাকে। অর্থাৎ H2O লিগ্যান্ড হিসেবে কাজ করতে পারে। H2O তার একটি মুক্তজোড় ইলেকট্রন  $H^+$  এর সাথে সমভাবে শেরার করে সন্নিবেশ সমযোজী বন্ধন গঠন করে যেখানে H<sup>+</sup> কোন ইলেকট্রনের যোগান না দিয়েই বন্ধনে অংশগ্রহণ করে এবং স্থিতিশীলতা অর্জন করে।



একটি সন্নিবেশ সমযোজী বন্ধন বিদ্যমান।

একই পর্যায়ে পারমাণবিক সংখ্যা বৃদ্ধির সাথে আয়নিকরণ শক্তি বৃদ্ধি পায় ও একই গ্রুপে পারমাণবিক সংখ্যা বৃদ্ধির সাথে আয়নিকরণ শক্তি হ্রাস পায়।

গ্যাসীয় অবস্থায় কোন মৌলের এক মোল বিচ্ছিন্ন পরমাণু হতে একটি করে ইলেকট্রন সরিয়ে একে গ্যাসীয় বিচ্ছিন্ন এক মোল একক ধনাত্মক আধানযুক্ত আয়নে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন তাকে আয়নিকরণ শক্তি বলে।

উদ্দীপকের Z, X ও Y মৌলত্রয় যথাক্রমে O, F ও Cl।

O ও F ২য় পর্যায়ের ও Cl ৩য় পর্যায়ের গ্রুপ 17 এর অন্তর্গত। একই পর্যায়ের বাম থেকে ডানে পারমাণবিক সংখ্যা বৃদ্ধির সাথে শক্তিস্তর সংখ্যা এক থাকলেও ইলেকট্রন সংখ্যা ও নিউক্লিয়াসে প্রোটন সংখ্যার বৃদ্ধি ঘটে। যার ফলে বহিঃস্তরের ইলেকট্রনের উপর নিউক্লিয়াসের আকর্ষণ বৃদ্ধি পায় এবং মৌলের পারমাণবিক ব্যাসার্ধহ্রাস পায়। এতে করে ইলেকট্রন সরিয়ে ধনাত্মক আয়নে রূপান্তরে অধিক শক্তির প্রয়োজন হয়। এজন্য O ও F এর মধ্যে F এর আয়নিকরণ শক্তি O এর তুলনায় অধিক।

মৌজের পর্যামন্ত ধর্ম ও রাসামনিক বন্ধন > ACS/ FRB Compact Suggestion Book.....

69

আথান, একই প্রুপে উপর থেকে নিচে পারমাণবিক সংখ্যা বৃদ্ধির সাথে পরমাণুর আকার বৃদ্ধি পায় এবং আয়নিকরণ শক্তিন হ্রাস ঘটে। এটি গ্রুপডিত্তিক সম্পর্ক। এলন্য F ও Cl যারা গ্রুপ-17 এর অন্তর্গত এর মধ্যে F এর আয়দিকরণ শক্তি C/ অপেন্দা বেশি হয়ে থাকে। একইভাবে Cl এর পারমাণবিক আকার O অপেদা বড় হওয়ায় Cl এর আয়দিকরণ শক্তি O অপেক্ষা কম। অতএব, মৌপত্রয়ের আম্ননিকরণ শক্তির ক্রম হবে।

F > O > C/

#### 35 1 €

| প্রতীকী মৌল | याणनी मालात ইलावप्रेन विनाम |       |
|-------------|-----------------------------|-------|
| Q           | ns² np³                     | 1     |
| X           | $(n+1)s^{2}(n+1)p^{3}$      | n = 2 |
| ٨           | $(n+1)s^{2}(n+1)p^{5}$      |       |

(ক) উভধর্মী অক্সাইড কাকে বলে?

াা. বো. ২৩

- (ব) হাইজ্রোজেন বদ্দন ও সমযোজী বদ্দনের মধ্যে পার্থক্য লিখ। াসি. মো. ১৯1
- (গ) উদ্দীপকের X অপেক্ষা A সৌলের অক্সাইড তীব্র অমুধর্মী হবে–ব্যাখ্যা मि. त्या. २७]
- (ঘ) QAs এবং XAs যৌগ গঠনের সম্ভাব্যতা যুক্তিসহ আলোচনা কর। मि. त्या. २०।

সমাধান:

- যে সকল অক্সাইড এসিড ও ক্ষারক উভয়ের সদেই বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে তাদেরকে উভধর্মী অক্সাইড বলে। যেমন: ZnO, Al<sub>2</sub>O<sub>3</sub>, SnO<sub>2</sub>, PbO<sub>2</sub> ইত্যাদি।
- সমযোজী এবং হাইড্রোজেন বন্ধনের মধ্যকার পার্থক্য নিম্নরূপ:
  - (i) দুটি একই অথবা ভিন্ন পরমাণুর মধ্যে ইলেকট্রন শেয়ার করার মাধ্যমে সমযোজী বন্ধন গঠিত হয়। হাইড্রোজেন পরমাণু বিশিষ্ট দুটি পোলার অণুর মধ্যে আংশিক তড়িৎ ধনাতাক H প্রান্ত ও আংশিক তড়িৎ ঋণাতাক প্রান্তের মধ্যকার স্থির তড়িৎ আকর্ষণ বল দারা হাইড্রোজেন বন্ধন গঠিত।
  - (ii) সমযোজী বন্ধন অপেক্ষাকৃত শক্তিশালী, হাইড্ৰোজেন বন্ধন দুৰ্বল
  - (iii) সমযোজী বন্ধনের শক্তিমাত্রা 150 1100 KJ/mol. হাইড্রোজেন বন্ধনের শক্তিমাত্রা 10 - 40 KJ/mol.
- ত্রী উদ্দীপকের x মৌলটির যোজন শেলের ইলেকট্রন বিন্যাস  $3s^2 3p^3$ অর্থাৎ মৌলটি হল P এবং A এর যোজন শেলের ইলেকট্রন বিন্যাস 3s2 3p5 অর্থাৎ মৌলটি হল C/।

P ও C/ এর অক্সাইডবর যথাক্রমে P₄O₁০ ও Cl₂O<sub>7</sub>। ফসফরাস পেন্টা অক্সাইড সাধারণ অবস্থায় মিহি দানাদার, বর্ণহীন, কঠিন, পানিপ্রাহী পদার্থ। পানির সাথে বিক্রিয়ায় এটি দুর্বল অস্ত্র ফসফরিক এসিড (H₃PO₄) উৎপন্ন করে।

 $P_4O_{10}(s) + H_2O(I) \rightarrow H_3PO_4(aq)$ 

क्नारतत সাথে विकियाय नवन ७ शानि উৎপन्न करत थाक ।

 $P_4O_{10}(s) + NaOH(aq) \rightarrow Na_2HPO_4(aq) + H_2O(I)$ 

অপর দিকে, Cl2O7 একটি শক্তিশালী অমুধর্মী অক্সাইড। পানির সাথে বিক্রিয়ায় পারক্লোরিক এসিড (HC/O4) নামক তীব্র এসিড উৎপন্ন করে।

 $CI_2O_7 + H_2O \rightarrow HCIO_4$ 

আবার, ক্ষারের সাথে বিক্রিয়ায় লবণ ও পানি পাওয়া যায়।

 $Cl_2O_7 + NaOH \rightarrow NaClO_4 + H_2O$ 

अर्पार् अमावेसमा छन्टावे गावभागे । समावेसभग्नातम भन्न कार्रात गणनीय अनरे भगीरा नाम प्लाटन छाटन द्योणभगूटरम भाउन भर्म मूल गाम ७ जभाजन वर्ग नृष्मि नाम । जान अभाषान भर्म मुक्तिन आएन प्रमाष्ट्रम अमाविषमगुरवत अञ्चनभीं छा । कमानदा नाष्ट्रक शादन । बक्कम हुट्छा । उ Cl₂O₁ धरा भएषा Cl₂O₁ कीच अन्नवार्गिका छाभनेन करता।

पा अमीनकात Q वत व्याणम म्हणन हेक्निग्रीम निभाम 26 20 अमीह गৌनिष रन नावेखीरजन (N)। म घटक, X ♦ A गोजिक्स भगाकिटा P 0 C/1

অতএন, QA, ৩ XA, মৌগৰ্ব্য হল NCI, ৩ PCI, । এসের মধ্যে PCI, গঠিত ঘলেও NCI, গঠিত ব্যা না।

गाधातम अवशारा P o N केलटान विश्वस्त रूपि जनुमा केलानापुन त्रतारकः। উভয়েই sp3 হাইত্রিড অরথিটাল গঠনের দাখানে CI क्र 3p, অরবিটালের সাথে অধিক্রমণে PCI, ও NCI, গঠন ফরক্তে পারে। তবে উত্তেজিত অবস্থায়,

 $_{15}P \rightarrow 1s^2 2s^2 2p^6 3s^1 3p_3 3p_4 3d_{eq}^1 3d_{eq}^0 3d_{eq}^0 3d_{eq}^0 3d_{eq}^0$ একটি 3s, ডিনটি 3p ও একটি 3d অরবিটাল পাঁচটি pp'd হাইখ্রিছ অরবিটাল তৈরি করে ও Cl এব 3p, অরবিটালের সাসে মূগোমৃদি অধিক্রমণে অষ্টক সম্প্রসারণের মাধ্যমে PCI, গঠন করে।

অপর দিকে, N এর বহিঃস্থ ২য়া শক্তিস্তরে কোন ফাঁকা d জার্নিটাল মা থাকায় উত্তেজিত অবস্থায়ও এর অমুদা ইলেকট্রন সংখ্যা বৃদ্ধি গাওয়ার कान भूत्यान थाक ना ववर अष्ठेक मञ्जुणावन व घटि मा। विधाना NCI3 গঠিত হতে পারে না।

পরিশেষে, PCI, গঠিত হলেও NCI, গঠন অসম্ভব।

# थन > ३७

| ्राम्य →   | 1 | 13 | 16 | 17 |
|------------|---|----|----|----|
| <b>)</b> म | A |    |    |    |
| > श्र      |   | E  | В  |    |
| ৩য়        |   |    | D  | С  |

এখানে, A, B, C ও D প্রচলিত প্রভীক নয়।

- (ক) বিরুপ মৃত্তিকা ধাতু বলতে কী বুঝ?
- H. ORL DO
- (थ) পোলারিটি ও পোলারায়নের মধ্যে পার্থক্য কী?

- (ग) উद्मीभरकत EC, योगिणित खाणीय प्रवण अञ्जीय-वर्गना करा। । ए. त्या. १२। (प) A2B এবং A2D योगंचरप्रत्र वक्षन कारणत्र मान छिन्न द्वांत कात्रण विद्धायन कता। णि. ला. २० जा. ला. २० जू. ला. २०।

সমাধান:

- 🐼 Sc(21), Y(39) ও 15টি ল্যান্থানাইডসকে প্রকৃতিতে ঘুবই কম পরিমাপে পাওয়া যায়। এজন্য এদেরকে বিরল মৃত্তিকা ধাতৃ বলা হয়।
- शि (शांगातिणि ७ (शांगाताग्रास्त्र यथाकात शार्थका निम्नुत्त्रणः)
  - (i) সমযোজী বন্ধলে পরমাণুদ্বয়ের মধ্যে অধিক ভড়িৎ ঋণাজ্বফভার পার্থক্যের দরুণ আংশিক ডড়িৎ ঋণাডাক ও আংশিক ডড়িৎ ধনাত্মক প্রান্ত সৃষ্টি হওয়াকে পোলারিটি বলে। आय़निक योर्ग काणियान कर्ज़क आानाग्रत्नत देरणविप्रेन प्यरपत বিকৃত হওয়াকে পোলারায়ন বলে।
  - (ii) পোनातिि সমযোজী यৌগে जारानिक বৈশিষ্টোর বৃদ্ধি ও সমযোজী বৈশিষ্ট্যের হ্রাস ঘটায়।
  - পোলারায়নের ফলে আয়নিক যৌগে সমযোজী বৈশিষ্ট্যের বৃদ্ধি ঘট্ট। (iii) পোলারিটি গলনাম্ব ও স্ফুটনাম্বকে বৃদ্ধি করে।

পোলারায়ন যৌগের গলনাঙ্ক ও স্কুটনান্ধকে হ্রাস করে।

জ্ব উদ্দীপকের E ও C মৌলদ্বয় যথাক্রমে AI ও CI।

 $EC_3$  অর্থাৎ  $AlCl_3$  এর জলীয় দ্রবণের প্রকৃতি অশ্লীয় হয়ে থাকে।  $AlCl_3$  জলীয় দ্রবণে  $H_2O$  এর সাথে সন্নিবেশ সমযোজী বন্ধন গঠনের মাধ্যমে  $\left[Al(H_2O)_6\right]^{3+}$  ক্যাটায়ন তৈরি করে। ফলে পানির অণুস্থ O-H বন্ধন দুর্বল হয়ে পড়ে এবং প্রোটন  $(H^+)$  মুক্ত হয়।

AICI3 ও পানির বিক্রিয়ায় AI(OH)3 ও HCI পাওয়া যায়।

 $A/C/_3 + H_2O \rightarrow A/(OH)_3 + HC/$ 

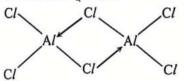
ক্যাটায়নিক আর্দ্র বিশ্লেষণটি ঘটে নিম্নরূপে,  $Al^{3+} + H_2O \rightarrow Al(OH)_3 + H^+$ 

পর ফলে দ্রবর্ণের pH কমে যায় ও দ্রবর্ণটি অস্ত্রীয় হয়।

উদ্দীপকের A, B ও D মৌলত্রয় যথাক্রমে H, O ও S। সুতরাং A2B এবং A2D যৌগদ্বয় যথাক্রমে H2O ও H2S। এদের বন্ধন কোণের মান ভিন্ন হয়ে থাকে যদিও উভয়েই sp³ সংকরায়িত। H2O ও H2S উভয়ের মধ্যেই মুক্তজোড় ইলেক্ট্রনের উপস্থিতির জন্য বন্ধন কোণ 109.5° অপেক্ষা ছোট হয়। H2O তে H – O – H বন্ধন কোণের মান 104.5° ও H2S এ H – S – H বন্ধন কোণের মান 92°। O এর তড়িং ঋণাত্মকতা 3.5 অপরদিকে S এর তড়িং ঋণাত্মকতা 2.5। অধিক তড়িং ঋণাত্মক O এর আকর্ষণে O – H বন্ধনের বন্ধন ইলেক্ট্রন জোড় H – S বন্ধনের বন্ধন ইলেক্ট্রন জোড় সপেক্ষা কেন্দ্রীয় পরমাণুর দিকে অধিক স্থানান্তরিত হয়। ফলে O – H বন্ধনদ্বয়ের মধ্যে তুলনামূলক বেশি বিকর্ষণ হয় এবং দুটি H – S বন্ধন অপেক্ষা দুটি O – H বন্ধন বেশি দূরে সরে যায়।

:O: H 104.5° H H 92° H চিত্র: H<sub>2</sub>O ও H<sub>2</sub>S এর মধ্যের বন্ধন কোণ

 $A = [Ne] 3s^2 3p^1$  $D = [Ne] 3s^2 3p^5$ 


- (ক) আয়নিক বন্ধন কাকে বলে?
- ্যি. বো. ২২
- (थ) प्यात्मानिया वकि वनम निगां न्याथा कत ।

কর।

- [ম. বো. ২৩; সি. বো. ১৯; রা. বো. ১৭] (গ') নিম্ন তাপমাত্রায় AD₃ এর আণবিক ভর বিগুণ হয়− ব্যাখ্যা কর।।দি. বো. ২১]
- ্ঘ) মৌলগুলোর অক্সাইডের প্রকৃতি বিক্রিয়ার মাধ্যমে ব্যাখ্যা কর। দি. বো. ২১। সমাধান:
- ক ইলেকট্রন আদান-প্রদানে সৃষ্ট ক্যাটায়ন ও অ্যানায়ন এর মধ্যে স্থির তড়িৎ আকর্ষণ বলের কারণে যে বন্ধন গঠিত হয় তাকে আয়নিক বন্ধন বলে।
- যেসব পরমাণু, মূলক বা যৌগ সন্নিবেশ সমযোজী বন্ধন গঠনকালে ইলেকট্রন জোড় শেয়ার করে তাদেরকে লিগ্যান্ড বলা হয়। লিগ্যান্ড ঋণাত্মক চার্জে চার্জিত অথবা চার্জ নিরপেক্ষ হয়ে থাকে।  $\ddot{N}H_3$  তে একটি মুক্তজোড় ইলেকট্রন থাকার জটিল আয়ন যেমন:  $[Cu(NH_3)_4]^{2+}$  গঠনে সন্নিবেশ সমযোজী বন্ধন গঠনে অংশ নেয় তথা লিগ্যান্ড হিসেবে কাজ করে।  $\ddot{N}H_3$  চার্জ নিরপেক্ষ ও লিগ্যান্ড হিসেবে কাজ করায় একে প্রশম লিগ্যান্ড বলা হয়।
- গ উদ্দীপকের A ও B মৌলদ্বর যথাক্রমে Al ও Cl। অর্থাৎ  $AD_3$  যৌগটি হল  $AlCl_3$ । নিম্ন তাপমাত্রার  $AlCl_3$  এর আণবিক ভর দ্বিগুণ হয়ে থাকে।  ${}_{13}Al \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^0 3p_z^0$   ${}_{13}Al^* \rightarrow 1s^2 2s^2 2p^6 3s^1 3p_x^1 3p_y^1 3p_z^0$

...... ACS, > Chemistry 1st Paper Chapter-3

একটি 3s ও ২টি 3p অরবিটাল মিলিত হয়ে তিনটি  $sp^2$  হাইবিড অরবিটাল তৈরি করে এবং তিনটি CI এর  $3p_x$  অরবিটালের সাবে অধিক্রমণে  $AICI_3$  গঠন করে যেখানে অষ্টক সংকোচন অবস্থায় থাকে AI এর সর্বশেষ স্তরে ফাঁকা d অরবিটাল থাকায় এই ফাঁকা d অরবিটালে CI এর মুক্তজোড়  $e^-$  শেয়ারের মাধ্যমে সন্নিবেশ সমযোঞ্জী বন্ধন গঠন করে এবং অষ্টক পূরণ হয়।



চিত্র: AICl3 এর ডাইমার

এভাবে AlCl<sub>3</sub> এর ডাইমার গঠিত হয়। এই ডাইমার গঠনের ফলেই AlCl<sub>3</sub> এর আণবিক ভর দ্বিগুণ হয়ে যায়।

মৌলদ্বয় যথাক্রমে Al ও Cl এদের অক্সাইডসমূহ হল  $Al_2O_3$  এবং  $Cl_2O_7$ ।

 ${
m A}I_2{
m O}_3$  একটি উভধর্মী অক্সাইড। এটি অস্ত্র ও ক্ষারক উভয়ের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে।

 $Al_2O_3 + HCl \longrightarrow AlCl_3 + H_2O$ 

ক্ষারক এসিড লবণ পানি

এবং  $Al_2O_3 + NaOH \longrightarrow NaAlO_2 + H_2O$ 

এসিড ক্ষারক লবণ পার্

 $Cl_2O_7$  একটি অস্ত্রধর্মী অক্সাইড। এটি পানির সাথে বিক্রিয়া করে শক্তিশালী অস্ত্র  $HClO_4$  উৎপন্ন করে যা ক্ষারের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে।

HClO<sub>4</sub> + NaOH → NaClO<sub>4</sub> + H<sub>2</sub>O

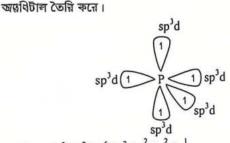
অতএব বলা যায়,  $\mathrm{A}l_2\mathrm{O}_3$  উভধর্মী হলেও  $\mathrm{C}l_2\mathrm{O}_7$  অস্লধর্মী অক্সাইড।

설취 ▶ ২৮ (i)

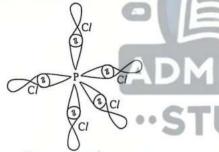
 $A(H_2O)$   $C(H_2Se)$   $B(H_2S)$ 

- (ii) Z হলো পর্যায় সারণির 3 নং পর্যায়ের ও 15 নং গ্রুপের মৌল।
- (ক) মৃৎক্ষার ধাতু কাকে বলে? রা. বো. ২৩
- (খ) সংকর অরবিটাল পাই বন্ধন গঠন করে না কেন? দি. বো. ২৩, ১৯
- (গ) উদ্দীপক (ii) এর ZCI₅ যৌগের কেন্দ্রীয় পরমাণুর হাইব্রিডাইজেশন ব্যাখ্যা কর। বি. বো. ২১
- (ঘ) উদ্দীপক (i) এর A, B, C ও D যৌগের স্ফুটনাঙ্কের ক্রমের কারণ ব্যাখ্যা কর। [কু. বো. ২১; অনুরূপ সি. বো. ২১]

সমাধান:


- ক পর্যায় সারণির গ্রুপ-2 ধাতুর অক্সাইড ও হাইড্রোক্সাইডসমূহ ক্ষারীয় এবং যৌগগুলো ভূ-তুকে পাওয়া যাওয়ায় ধাতুগুলোকে মৃৎক্ষার ধাতু বলে।
- পাই বন্ধন গঠনের জন্য অরবিটালসমূহ পাশাপাশি অধিক্রমণ করে থাকে। এজন্য সবসময় অরবিটালসমূহকে প্রথমে গঠিত সিগমা বন্ধনের সাথে লম্বালম্বিভাবে থাকতে হয়। সংকর অরবিটালসমূহ এ ধরনের অবস্থানে থাকে না এবং সবসময় সামনাসামনি বা মুখোমুখি অধিক্রমণ করে সিগমা বন্ধন গঠন করে থাকে, পাশাপাশি বা আংশিক অধিক্রমণ করতে পারে না। এজন্য সংকর অরবিটাল π বন্ধন গঠন করে না।

आह्मारा পর্যায়নৃত ধর্ম ও নাসায়দিক নকন > ACS. FRB Compact Suggestion Book.....


WA

জ্ঞাদিপকে Z শোলিটি হল P মা ৩য় পর্যায়ের গ্রুপ-15 এর সম্ভর্গত। ৫০িঃ তথা PCI, এর ফেন্দ্রীয় পরমাণু P এর হাইব্রিডাইজেশন

$$= \frac{1}{2} (V + M - C + \Lambda)$$
$$= \frac{1}{2} (5 + 5 - 0 + 0) = 5$$



 $_{17}CI \rightarrow 1\,\mathrm{s}^2\,2\,\mathrm{s}^2\,2\,\mathrm{p}^6\,3\,\mathrm{s}^2\,3\,\mathrm{p}_x^2\,3\,\mathrm{p}_y^2\,3\,\mathrm{p}_z^1$  পাঁচটি CI এর  $3\,\mathrm{p}_z$  অরবিটালের সাথে  $\mathrm{sp}^3\mathrm{d}$  হাইবিড অরবিটালের সাথে  $\mathrm{sp}^3\mathrm{d}$  হাইবিড অরবিটালের সাথে  $\mathrm{sp}^3\mathrm{d}$  হাইবিড অরবিটালের



চিত্র: PCI5 এর গঠন

সাধারণত একই গ্রুপের নিচ থেকে উপরের দিকে হাইড্রাইডসমূহের মোলার তর হ্রাসের সাথে গলনান্ধ ও ক্ষুটনান্ধ হ্রাস পেতে থাকে। এমনটা লক্ষ করা যার  $H_2Te$ ,  $H_2Se$  ও  $H_2S$  এর ক্ষেত্রে। সে অনুযারী  $H_2O$  এর ক্ষুটনান্ধ  $H_2S$  এর চেয়ে কম হওয়ার কথা থাকলেও প্রকৃতপক্ষে তা  $H_2S$  এর ক্ষুটনান্ধের চেয়ে অনেক বেশি। এর কারণ হল  $H_2O$  তে হাইড্রোজেন বন্ধনের উপস্থিতি।  $H_2O$  এর O-H বন্ধনে O ও H এর তড়িং খণাত্মকতার পার্থক্য অধিক হওয়া আংশিক তড়িং খণাত্মকতা ও আংশিক তড়িং ধনাত্মকতা অর্থাং পোলারিটির উদ্ভব ঘটে।

চিবে: পানিব অগতে H বন্ধ

পাশাপাশি দুটি  $H_2O$  এর একটি H পাশের  $H_2O$  এর O এর সাথে হা'ইছোভোল বন্ধন গঠন করে। কিন্তু  $H_2S$  এর মধ্যে H বন্ধন সৃষ্টি হয় লা। এদ্রান্য  $H_2O$  এর ক্ষুটনাঙ্ক সাধারণ ধারার ব্যতিক্রম হয়ে অনেক বেশি অর্থাৎ  $100^{\circ}C$  হয় যেখানে  $H_2S$  এর ক্ষুটনাঙ্ক -  $60.7^{\circ}C$ ।

#### जसफू १५ छा। याग वाद्यां हत

১। ६-त्रक भौन काटक वटन?

THE SE SHI

উদ্ভর। যে সকল মৌলের সর্বনেষ ইন্সেরাট্রন চ-ক্ষরবিটালে প্রত্রেণ করে তাদেরকে ৪-ব্লক মৌল বলে।

২। স্মার ধাড় কাকে বলে?

A DE HE DAI

উন্তর। ঞাপ-। এর ধাতব যৌগসমূহ অভ্যন্ত সন্সিনা হওরান্য এনা পানির সচ্চে সরাসরি বিক্রিয়া করে তীব্র ক্ষার গঠন করে, এডান্য এসেরকে ক্সার পাড়ু বলে।

৩। মৃৎক্ষার ধাতু কাকে বলে?

नार जार भरी

উত্তর: পর্যায় সারণির গ্রুপ-2 ধাতুর অক্সাইড ও হাইদ্রোরাইডসমূহ ক্যারীদা এবং যৌগগুলো ভ্-তুকে পাওয়া যাওয়ার ধাতুগুলোকে সৃৎক্ষার মাতু বলে।

8। ল্যান্থানাইড কি?

15. OTL 341

উত্তর: পর্যায় সারণির ৬৮ পর্যায়ের ল্যান্থানাম (37La) থেকে লুটেসিরাছ (71Lu) পর্যন্ত ১৫টি মৌলকে একত্রে ল্যান্থানাইত বলা হয়।

৫। আঞ্জিনয়েডস কী?

উত্তর: পর্যায় সারণির ৭ম পর্যায়ের অ্যাকটিনিয়াম (🙉 Ac) থেকে লরেনসিয়াম (103 Lr) পর্যন্ত ১৫টি মৌলকে একত্রে অ্যান্টিনয়েডস বলে।

৬। ডিজেনারেট অবস্থা কাকে বলে?

উত্তর: অবস্থান্তর ধাতুর মুক্ত একক পরমাণুতে পাঁচটি d অরবিটাল সমশক্তিত্তরে থাকে, একে ডিজেনারেট অবস্থা বলা হয়।

৭। আধুনিক পর্যায় সূত্রের সংজ্ঞা দাও।

চিবো ১৭

উত্তরঃ আধুনিক পর্যায় সূত্রটি হলো, মৌলসমূহের ভৌত ও রাসায়নিক ধর্মাবলি এদের পারমাণবিক সংখ্যা বৃদ্ধির সাথে পর্যায়ক্রমে আবর্তিত হয়।

৮। প্রতিনিধিত্বকারী মৌল বলতে কী বুঝ? বি. বো. ২২; য. বো. ১৭। উত্তরঃ পর্যায় সারণির s ও p ব্লক মৌলসমূহ যাদের ইলেকট্রন বিন্যাসে স্বাভাবিক নিয়মের ব্যতিক্রম পরিলক্ষিত হয় না তাদের প্রতিনিধিত্বকারী

৯। p-ব্লক মৌল কাকে বলে?

মৌল বলে।

[সি. বো. ২৩]

উত্তরঃ যেসকল মৌলের ইলেকট্রন বিন্যাসে সর্বশেষ ইলেকট্রন p-অরবিটালে প্রবেশ করে, তাদেরকে p-ব্লক মৌল বলে।

১০। চ্যালকোজেন কাকে বলে?

চি. বো. ২২

উত্তরঃ পর্যায় সারণির ঞ্চপ-16 এর মৌলসমূহের (O, S, Se, Te ইত্যাদি) অধিকাংশ ধাতু প্রকৃতিতে ধাতব অক্সাইড ও ধাতব সালফাইড আকরিকরূপে থাকায় এদেরকে চ্যালকোজেন বলা হয়।

১১। d-ব্লক মৌল কী?

ােল. বাে. ২২

উত্তরঃ যেসব মৌলের ইলেকট্রন বিন্যাসে সর্বশেষ ইলেকট্রনটি d-অরবিটালে প্রবেশ করে, তাদেরকে d-ব্লক মৌল বলে।

১২। অবস্থান্তর মৌল কাকে বলে?

কু. বো. ২৩; य. বো. ২৩; দি. বো. ২৩; ব. বো. ২৩, ১৭; চ. বো. ২১) উত্তর: যেসব d ব্লক মৌলের কোনো স্থিতিশীল আয়নে অসম্পূর্ণ d অরবিটাল থাকে তাদের অবস্থান্তর মৌল বলে।

১৩। বিরল মৃত্তিকা ধাতু বলতে কী বুঝ?

[ম. বো. ২৩]

উন্তর: Sc(21), Y(39) ও 15টি ল্যান্থানাইডসকে প্রকৃতিতে খুবই কম পরিমাণে পাওয়া যায়। এজন্য এদেরকে বিরল মৃত্তিকা ধাতু বলা হয়।

১৪। মৌলের পর্যায়বৃত্ত ধর্ম কী?

[ব. বো. ২১; ঢা. বো. ১৭]

উন্তর: পর্যায় সারণিতে মৌলসমূহের পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে যেসব ভৌত ও রাসায়নিক ধর্ম ধারাবাহিকভাবে পরিবর্তিত হয় তাদের পর্যায়বৃত্ত ধর্ম বলে।

১৫। পারমাণবিক ব্যাসার্ধ কাকে বলে?

[ঢা. বো. ২২]

উত্তর: কোনো পরমাণুর নিউক্লিয়াসের কেন্দ্র ও এর সর্ববহিঃস্থ ইলেকট্রন স্তরের মধ্যবর্তী দূরতুকে পারমাণবিক ব্যাসার্ধ বলা হয়।

১৬। আয়নিকরণ শক্তি কাকে বলে? [রা. বো. ২১; চ. বো. ২১; সন্দিলিত বো. ১৮] উত্তর: গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল বিচ্ছিন্ন পরমাণু থেকে একটি করে ইলেকট্রন সরিয়ে একে গ্যাসীয় বিচ্ছিন্ন এক মোল একক ধনাত্মক আয়নে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন হয়, তাকে সেই মৌলের আয়নিকরণ শক্তি বা আয়নিকরণ বিভব বলা হয়।

#### ১৭। ইলেকট্রন আসক্তি কাকে বলে?

থি. বো. ২৩; কু. বো. ২২, ২১; রা. বো. ২১; ব. বো. ২১; দি. বো. ২১।
উত্তর: গ্যাসীর অবস্থার কোনো মৌলের এক মোল বিচ্ছিন্ন পরমাণুর প্রতিটি
সর্ববহিঃস্থ শক্তিন্তরে একটি করে মোট এক মোল ইলেকট্রন গ্রহণ করে
এক মোল একক ঋণাত্মক চার্জযুক্ত আয়নে পরিণত হতে যে পরিমাণ
শক্তি ত্যাগ করে, তাকে ঐ মৌলের ইলেক্ট্রন আসক্তি বলে।

১৮। তড়িং ঋণাত্মকতা কাকে বলে? [ঢা. বো. ২৩, ১৯; ম. বো. ২৩, ২২; ব. বো. ২৩, ১৯, ১৭; দি. বো. ২২; রা. বো. ২২; চ. বো. ২২; কু. বো. ১৯) উত্তর: সমযোজী যৌগের অণুতে দুইটি পরমাণুর মধ্যে শেরারকৃত বন্ধন ইলেকট্রন যুগলকে কোনো পরমাণুর নিজের দিকে আকর্ষণ করার ক্ষমতাকে ঐ পরমাণুর তড়িং ঋণাত্মকতা বলে।

১৯। রাসায়নিক বন্ধন কাকে বলে?

উত্তর: পরমাণুর যোজ্যতা স্তরের ইলেকট্রন আদান প্রদান বা শেরারের মাধ্যমে

নিকটস্থ নিক্রিয় গ্যাসের ন্যায় স্থিতিশীল ইলেকট্রন বিন্যাস অজর্ম করে

বন্ধনের মাধ্যমে পরস্পরের সাথে যুক্ত হয়ে অণু গঠন করাকে

রাসায়নিক বন্ধন বলে।

২০। **আ**য়নিক বন্ধন কাকে বলে? 
টে. বো. ২২ উন্তর: ইলেকট্রেন আদান-প্রদানে সৃষ্ট ক্যাটায়ন ও অ্যানায়ন এর মধ্যে স্থির তড়িৎ আকর্ষণ বলের কারণে যে বন্ধন গঠিত হয় তাকে আয়নিক বন্ধন বলে।

২১। অধিক্রমণ কাকে বলে? দি. বো. ২২ উত্তর: বন্ধন গঠনের সময় দুটি পরমাণুর বহিঃস্থ অরবিটালের মুখোমুখি বা

পাশাপাশি উপরিপাতন হওয়ার ঘটনাকে অধিক্রমণ বলে।

#### ২২। সিগমা বন্ধন কাকে বলে?

চি. বো. ২৩; ঢা. বো. ২২; সম্মিলিত বো. ১৮; ঢা. বো. ১৭। উত্তর: একই বা ভিন্ন মৌলের দূটি পারমাণবিক অরবিটাল একই অক্ষ বরাবর মুখোমুখি অধিক্রমণের মাধ্যমে আণবিক অরবিটাল গঠন করে যে সমযোজী বন্ধন সৃষ্টি হয় তাকে সিগমা বন্ধন বলে।

Rhombus Publications

...... ACS, > Chemistry 1st Paper Chapter-3

২৩। পাই বন্ধন কাকে বলে?

যি. বো. ২৩; ম. বো. ২৩; কু. বো. ১৯)

উত্তর: সমযোজী বন্ধনে আবদ্ধ দৃটি পরমাণুর দৃটি পারমাণবিক অরবিটালের একই অক্ষ বরাবর পাশাপাশি অধিক্রমণে যে বন্ধন গঠিত হয়, তাকে পাই বন্ধন বলে।

২৪। অরবিটাল সংকরণ কী?

মি. বো. ২৩; চা. বো. ২২; দি. বো. ১৭]

উত্তর: বিক্রিয়াকালে কোনো পরমাণুর যোজ্যতা স্তরের বিভিন্ন শক্তির অরবিটালসমূহ পরস্পরের সাথে মিশ্রিত হয়ে সমশক্তিসম্পন্ন অধিক স্থিতিশীল অরবিটাল সৃষ্টির প্রক্রিয়াকে অরবিটালসমূহের সংকরণ বা হাইবিডাইজ্রেশন বলা হয়।

২৫। sp² সংকরণ কাকে বলে?

[पि. व्हा. २३]

উন্তর: কোনো পরমাণুর যোজ্যতা স্তরের একটি s অরবিটাল ও দুটি p অরবিটালের মধ্যে সংমিশ্রণে তিনটি সমশক্তির অরবিটাল সৃষ্টির প্রক্রিয়াকে  ${
m sp}^2$  সংকরণ বলা হয়।

২৬। লিগ্যান্ড কাকে বলে?

क्. वा. ১५; य. वा. ১১]

উত্তর: জটিল আয়ন বা জটিল যৌগ গঠনকালে নিঃসঙ্গ ইলেকট্রন যুগল প্রদানকারী ঋণাত্মক আয়ন বা যৌগ অণুকে লিগ্যান্ত বলে।

২৭। সন্নিবেশ বন্ধন কাকে বলে?

উত্তর: অণু গঠনের সময় দুটি পরমাণু এক জোড়া ইলেকট্রন শেয়ার করে, কিন্তু শেয়ারকৃত ইলেকট্রন জোড়া যদি একটি পরমাণু থেকে আসে এবং অপর পরমাণু ইলেকট্রন সরবরাহ না করেই শেয়ারে অংশগ্রহণ করে তবে গঠিত বন্ধনকে সন্নিবেশ বন্ধন বলে।

২৮। পোলারায়ন কাকে বলে?

রা. বো. ২৩; কু. বো. ২৩; ব. বো. ২৩; চ. বো. ২২; ম. বো. ২১; ঢা. বো. ১৯। উত্তর: আয়নিক যৌগে ক্যাটায়ন কর্তৃক অ্যানায়নের ইলেক্ট্রন মেঘের উপর আকর্বণের কারণে অ্যানায়নের মেঘের বিকৃতি হওয়ার ঘটনাকে পোলারায়ন বলে।

২৯। পোলার যৌগ কী?

वि. (वा. २२; ह. (वा. २১)

উত্তর: সমযোজী যৌগের পরমাণুসমূহে তড়িং ঋণাত্মকতার পার্থক্যের জন্য এদের সমযোজী বন্ধনের এক প্রান্তে আংশিক ধনাত্মক এবং অপর প্রান্তে আংশিক ঋণাত্মক মেরুর সৃষ্টি হলে তাকে পোলার যৌগ বলে।

৩০। ডাইপোল কাকে বলে?

উন্তর: সমবোজী বৌগের অণুতে পরমাণুসমূহের মধ্যে যদি তড়িৎ ঋণাত্মকতার পার্থক্য থাকে তবে দুটি পরমাণুর শেয়ারকৃত ইলেকট্রনের অসমবন্টনের ফলে দুটি আংশিক চার্জযুক্ত প্রান্ত সৃষ্টি হয়। এ জাতীয় অণুকে ডাইপোল বলে।

৩১। ডাইপোল মোমেন্ট কী?

উত্তরঃ কোনো যৌগের ডাইপোলের যেকোনো প্রান্তের আর্থশিক তড়িৎ চার্জ ও ডাইপোলম্বয়ের মধ্যকার দূরতৃ এর গুণফলকে মাত্রিকভাবে ঐ যৌগের ডাইপোল মোমেন্ট বলা হয়।

৩২। কেলাস শক্তি বা ল্যাটিস এনথালপি কী?

উত্তর: ক্যাটায়ন ও অ্যানায়ন স্থির তড়িৎ আকর্ষণ বল দ্বারা আকৃষ্ট হয়ে আয়নিক বন্ধন গঠনকালে যে পরিমাণ শক্তি নির্গত হয় তাকে ল্যাটিস এনথালপি বলা হয়। cultura नार्यायमुख पर्य ७ सामासिक यहम > ACS, FRB Compact Suggestion Book

०७ । स्थाषााप्त्रय मीविपि मिर्च ।

BL CV. X

টার্রাচ আর্য়নিক বৌশে পোদ্যারায়ানের মাদ্রা ক্যাঁটায়ন ও আনায়নের চার্র, স্মাধ্যার ও ইন্দের্বট্রান বিন্যাসের উপর নির্বর করে। একে ফাঞ্চানের নীতি যান্যা দ্যা।

एस । क्वानिक धामिए व धार्मिक मराके निष ।

मि ला अ

উন্তব্তঃ ফ্রেব্রিক প্রনিতের গাঠনিক সংকেতঃ H – O – CI

৩৫। জটিল আয়ন কাকে বলে?

টিশুর: অবকাতর ধাতুর পরমাণু বা আয়নের খালি অরবিটালের সাথে অপর কোনো নিয়েক ইলেকট্রন যুক্ত আয়ন বা অণু সন্নিবেশ বন্ধন দ্বারা যুক্ত হয়ে যে জটিল কাঠামোর আয়ন গঠন করে, তাকে জটিল আয়ন বলে।

৩৬। [CoCl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>] \* আয়নটির IUPAC নাম লিখ। (য. রো. ১৭) উন্তর: [CoCl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>] \* আয়নটির IUPAC নাম টেট্রাঅ্যামিন ডাইক্লোরো কোবান্ট (III) আয়ন।

৩৭। ভ্যানডার ওয়ালস আকর্ষণ বল কাকে বলে?

[ज. त्वा. २७; मि. त्वा. २७; ज. त्वा. ১৯; मि. त्वा. ১٩]

উত্তর: সমযোজী অণুসমূহের মধ্যে অস্থায়ী ডাইপোলসমূহের পারস্পরিক আন্তঃআণবিক আকর্ষণ বলকে ভ্যানভার ওয়ালস আকর্ষণ বল বলে।

৩৮। হাইড্রোজেন বন্ধন কাকে বলে?

ষি. বো. ২০, ২২; রা. বো. ২২, ১৯; কু. বো. ২২, ২১, ১৯; ব. বো. ২১; চ. বো. ১৯। উন্তর: হাইড্রোজেনের সাথে উচ্চ তড়িৎ ঝণাত্মক মৌলের সমযোজী বদ্ধনে H-প্রান্তে আংশিক ধনাত্মক ও অপর মৌলে আংশিক ঝণাত্মক চার্জ সৃষ্টি হয়ে ডাইপোল সৃষ্টি করে। ফলে একাধিক ডাইপোলের মধ্যে আকর্ষণের ফলে সৃষ্ট বন্ধনকে হাইড্রোজেন বন্ধন বলে।

৩৯। আন্তঃআণবিক হাইড্রোজেন বন্ধন কী? কু. নো. ২৩; ব. নো. ২২। উত্তর: একই বা ভিন্ন যৌগের একাধিক অণুর মধ্যে যে হাইড্রোজেন বন্ধন গঠিত হয়, তাকে আন্তঃআণবিক হাইড্রোজেন বন্ধন বলে।

৪০। উভধর্মী অক্সাইড কাকে বলে?

রা. বো. ২৩]

উন্তর: যে সকল অক্সাইড এসিড ও ক্ষারক উভয়ের সঙ্গেই বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে তাদেরকে উভধর্মী অক্সাইড বলে। যেমন: ZnO, Al<sub>2</sub>O<sub>3</sub>, SnO<sub>2</sub>, PbO<sub>2</sub> ইত্যাদি।

৪১। সাব-অক্সাইড কী?

উত্তর: যে সকল অক্সাইডে O এর পরিমাণ মৌলদ্বয়ের সাধারণ জারণ মানের আনুপাতিক হারের চেয়ে কম থাকে তাদেরকে সাব-অক্সাইড বলে।

৪২। ডিলোকালাইজেশন বলতে কি বোঝায়?

উন্তর: আপবিক কাঠামোর স্থিতিশীলতা রক্ষার্থে দৃটি পরমাণুর মধ্যে ইলেকট্রন মেঘ পুঞ্জীভূত না থেকে তা সমানভাবে ব্যাপৃত হয়ে সঞ্চালনক্ষম সুষম ইলেকট্রন ঘনত্ব সৃষ্টির প্রক্রিয়াকে ইলেকট্রনের ডিলোকালাইজেশন বলে।

৪৩। মুক্তজোড় ইলেকট্রন কাকে বলে?

উন্তরঃ অণুর কেন্দ্রীয় পরমাণুর যোজ্যতাস্তরে যে ইলেক্ট্রন যুগল বন্ধন গঠনে ব্যবহৃত হয় না তাদের মুক্তজোড় ইলেক্ট্রন বলে।

### वरुष्ट्रभून वानुभारनप्रमाम शासाखन

67

১। Na 'गीठ रूपन Na' 'गीठ रूप मा जिल्ला । ।।। এए ३०० मः अर ३०। ইएन जीन दिगांग एट अर ।।।

Nh(11) -> 1s2 2s2 2p6 3s1

জর্জার Na এব শেষ ফজন্মের একটি ফারে ইন্সেকট্রন থাকে, যা যায়াপ করে Na' a পরিণত হয়। ফার্চা নির্ক্রিয় থাাস No এর ফার্চা ইন্সেকট্রন করে [No(10)  $\rightarrow$  1s² 2s² 2p²]। তাই Na' aফা ইন্সেকট্রন বিনানে আটক পূর্ণ থাকে এবং এটি অধিক দ্বিতিশীলখা অর্জন করে। কিন্তু এই হিতিশীল অবহা খেকে আয়েকটি ইন্সেকট্রন তাগা করে Na'' এ পরিণত হতে অনেক বেশি পরিফান শতিমা প্রয়োজন হয়। একারণে Na' সহজে গঠিত হালেও, Na' গঠন করা সন্তব নয়।

 $Mg(12) \rightarrow 1s^2 2s^3 2p^6 3s^3$ 

এটি নিকটস্থ নিট্রনা গ্যাস নিয়ানের কাঠামো অর্ধনের জন্য দুটি ইলেকট্রন দানের প্রবদতা দেখায়। ফলে ক্রোরিন (CI) এর সাথে বিক্রিয়ায় Mg দুটি ইলেকট্রন দান করে MgCI গঠন করে স্থিতিশীদন্তা অর্জন করে।

 $Mg^{2+} \rightarrow 1s^2 2s^2 2p^6$ 

এমতাবস্থায়, Mg এর সর্বশেষ কক্ষপথ ৪টি ইলেক্স্রান নারা পূর্ণ গাতে। তাই আরও 1টি ইলেক্ট্রন দান করলে এটি স্থিতিশীলতা হারায়। তাই Mg পরমাণু MgC/3 গঠন করে না।

৩। Fe<sup>1+</sup> এবং Fe<sup>1+</sup> আয়নের মধ্যে কোনটি বেশি সুস্থিত? ব্যাখ্যা কর। চি. নো. ২০; ল. নে. ২১; ল্য. নো. ২১।

উত্তর: Fe এর পারমাণবিক সংখ্যা 26।

Fe এর ইলেক্ট্রন বিন্যাস-

 $Fe(26) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8$  $Fe^{2+}$  এ 2টি ইলেকট্রন কমে যায়।

∴ Fe<sup>2+</sup>(26) → 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>6</sup>
আবার, Fe<sup>3+</sup> এ 3টি ইলেকট্রন কমে যায়।

:.  $Fe^{3+}(26) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$ 

d অরবিটাল সর্বোচ্চ  $10^{10}$  ইলেকট্রন ধারণ করতে পারে।  $Fe^{2^+}$  এবং  $Fe^{3^+}$  এর কোনোটির ক্ষেত্রে d অরবিটাল পূর্ণ হয় না। পুরোপুরি পূর্ণ না হলেও  $Fe^{3^+}$  এর ক্ষেত্রে সেটি অর্ধপূর্ণ থাকে। তাই নির্দ্রিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জন করতে না পারলেও অর্ধপূর্ণ d অরবিটালের জন্য  $Fe^{2^+}$  অপেক্ষা  $Fe^{3^+}$  বেশি স্থিতিশীল।

৪। অবস্থান্তর ধাতু রঙিন বৌগ গঠন করে কেন? ব্যাখ্যা কর। । । । । বা. ২২। উত্তর: অবস্থান্তর ধাতু ও তাদের আয়নে অপূর্ণ d-অরবিটাল থাকে বলে এদের জটিল যৌগসমূহ রঙিন বর্ণ প্রদর্শন করে। সাধারণ অবস্থায় অবস্থান্তর ধাতুর পরমাণতে পাঁচটি d-অরবিটাল সমশক্তিসম্পন্ন থাকে যাকে ডিজনারেট অবস্থা বলে। কিন্তু জটিল যৌগ গঠনকালে যখনই লিগ্যান্ত আসে তখন লিগ্যান্তর অরবিটাল ও ধাতুর অরবিটালের মাঝে ক্রিস্টাল ফিল্ড প্রভাবের কারণে d-অরবিটালের শক্তির পার্থক্য সৃষ্টি হয় যাকে নন-ডিজেনারেট অবস্থা বলে।

Rhombus Publications

# t.me/admission\_stuffs

dx2.y2 dz2  $d_{xy} d_{yz} d_{zx} d_{x} d_{x} d_{z}$  $\Delta E = h \upsilon$ (ডিজেনারেট

(নন-ডিজেনারেট

এখানে t<sub>2g</sub> ও eg শক্তিস্তরদ্বয়ের মাঝে শক্তির পার্থক্য খুবই কম হওয়ায়, দৃশ্যমান আলোর শক্তি শোষণ করে ইলেকট্রন t<sub>2g</sub> হতে e<sub>g</sub> স্তরে গমন করতে পারে। দৃশ্যমান অঞ্চলের যে তরঙ্গদৈর্ঘ্যের আলো শোষিত হয়, তার সম্পূরক আলো প্রতিফলিত করে এবং আমরা যৌগটি ঐ বর্ণের হিসেবে দেখতে পাই।

#### ৫। Zn কে অবস্থান্তর ধাতু বলা হয় না কেন?

वि. वा. २२; य. वा. ১৯; कृ. वा. ১৭; जनूक्र य. वा. २२; व. वा. ১৯] উত্তর: d-ব্লকের যেসব মৌলের কোনো সৃস্থিত আয়নের d অরবিটাল আংশিকভাবে পূর্ণ (d<sup>1-9</sup>) ইলেকট্রন বিন্যাস থাকে তাদেরকে অবস্থান্তর মৌল বলে।

Zn এর সৃস্থিত আয়নের ইলেকট্রন বিন্যাস-

 $Zn^{2+} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ 

 $Z_n$  d ব্লক মৌল হলেও,  $Z_n$  এর সুস্থিত আয়ন  $Z_n^{2+}$  এর 3dঅরবিটাল ইলেকট্রন দ্বারা পূর্ণ। কিন্তু অবস্থান্তর ধাতুর সংজ্ঞানুসারে, d অরবিটাল আংশিকভাবে পূর্ণ থাকতে হবে। তাই Zn কে অবস্থান্তর ধাতৃ ১১। 'N' ও 'O' পরমাণুর মধ্যে কোনটির আকার ছোট−ব্যাখ্যা কর। বলা হয় না।

 ७। Zn এর চৌম্বক ধর্ম নেই-ব্যাখ্যা কর। [চ. বো. ২২; অনুরূপ চ. বো. ১৯] উত্তর: যেসব পদার্থ বাহ্যিক চৌম্বকক্ষেত্র দ্বারা আকৃষ্ট হয় না, বরং স্বল্প মাত্রায় বিকর্ষিত হয়, তাদেরকে ডায়াম্যাগনেটিক পদার্থ বলা হয়। পরমাণু, অণু বা আয়নে বিজোড় ইলেকট্রন বিদ্যমান থাকলে তা চৌম্বকক্ষেত্র দ্বারা আকর্ষিত হয়, আর বিজোড় ইলেকট্রন না থাকলে মূলত তার চৌম্বক ধর্ম থাকে না।

 $Zn \rightarrow [Ar] 3d^{10} 4s^2$  $Zn^{2+} \rightarrow [Ar] 3d^{10}$ 

 $Z_n$  পরমাণু এবং  $Z_n^{2+}$  আয়নে কোনো বিজোড় ইলেক্ট্রন বিদ্যমান নেই। এজন্য এটি চৌম্বকক্ষেত্র দ্বারা আকর্ষিত হয় না, ফলে Zn এর কোনো চৌম্বক ধর্ম নেই।

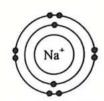
৭। Fe অবস্থান্তর মৌল কেন? বি. বো. ১৯; অনুরূপ দি. বো. ২২; সম্মিলিত বো. ১৮) উত্তর: d-ব্লকের মৌলের কোনো সুস্থিত আয়নের d অরবিটাল আংশিকভাবে (d<sup>1-9</sup>) ইলেকট্রন দ্বারা পূর্ণ থাকলে, তাদেরকে অবস্থান্তর মৌল বলে।

Fe এর ইলেকট্রন বিন্যাস-

 $Fe \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$ 

Fe এর সুস্থিত আয়ন-

 $Fe^{2+} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ 


 $\mathrm{Fe}^{2+}$  আয়নের  $\mathrm{d}$  অরবিটালে  $\mathrm{6}$ টি ইলেকট্রন আছে। অর্থাৎ  $\mathrm{d}$  অরবিটাল আংশিকভাবে পূর্ণ। তাই Fe কে অবস্থান্তর মৌল বলা হয়।

৮। ল্যান্থানাইড সংকোচনের কারণ কী বুঝিয়ে লেখ। [সি. বো. ২২] উত্তর: f উপশক্তিস্তরে ইলেকট্রনের ঘনত্ব অন্য উপশক্তিস্তরগুলোর তুলনা কম थाकां ्र এর আবরণী প্রভাব সবচেয়ে কম (s > p > d > f)। ল্যান্থানাইড মৌলগুলোর 4f উপশক্তিস্তরের ইলেকট্রনগুলোর আবরণী ক্ষমতা অপেক্ষাকৃতভাবে কম হওয়ার কারণে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে নিউক্লিয়াস কর্তৃক সর্ববহিঃস্থ স্তরের ইলেকট্রনগুলোর ওপর আকর্ষণ বল বৃদ্ধি পায়। ফলে মৌলের পারমাণবিক ব্যাসার্ধের সংকোচন ঘটে। একে ল্যান্থানাইড সংকোচন বলে।

.......... ACS, > Chemistry 1st Paper Chapter-3

৯। Na ও Na<sup>+</sup> এর কোনটির আকার বড় এবং কেন? (কু. বো. ২১; সি. বো. ২১) উত্তর: Na ও Na<sup>†</sup> এর মধ্যে Na এর আকার বড়। ইলেকট্রন বিন্যাস হতে-

$$Na \rightarrow 1s^2 2s^2 2p^6 3s^1$$
  
 $Na^+ \rightarrow 1s^2 2s^2 2p^6$ 



Na এর সর্বশেষ শক্তিন্তর হলো ৩য় শক্তিন্তর। কিন্তু Na একটি ইলেকট্রন ত্যাগ করে  $Na^+$  আয়ন গঠন করলে  $Na^+$  এর সর্বশেষ \*ाक्टिस राजा २ हा भक्टिस । विषय Na विषय विषय भिक्ष प्राप्त Na विषय विषय भिक्ष विषय भिक्ष विषय विषय भिक्ष भिक्य भिक्ष भिक्ष भिक्ष भिक्य भिक्य भिक्य भिक्य भिक्य भिक्ष भिक्य भिक्य भिक्य भिक्य भिक्य भि আকারের চেয়ে বড।

১০।  $O^{2-}$  অপেক্ষা  $N^{3-}$  এর আকার বড় কেন? [ম. বো. ২১] উত্তর:  ${
m O}^{2-}$  এবং  ${
m N}^{3-}$  উভয় আয়নেই সমসংখ্যক ইলেকট্রন আছে। উভয় আয়নে সমসংখ্যক ইলেকট্রন থাকলেও  $O^2$  আয়নে প্রোটন সংখ্যা  $N^{3-}$ এর প্রোটন সংখ্যার চেয়ে বেশি। প্রোটন সংখ্যা বেশি হওয়ায়  $O^{2-}$  এর নিউক্লিয়াস ইলেকট্রনগুলোকে তুলনামূলক বেশি আকর্ষণ করে। ফলে  $N^{3-}$  এর আকার  $O^{2-}$  অপেক্ষা বড়। অর্থাৎ  $N^{3-} > O^{2-}$ ।

ভিত্তর: N ও O পরমাণুর মধ্যে O এর আকার ছোট। N ও O দুইটি মৌলই দ্বিতীয় পর্যায়ে অবস্থান করছে।

আমরা জানি, পর্যায় সারণির একটা পর্যায়ের বাম হতে যত ডান দিকে যাওয়া হয় মৌলের আকার তত হ্রাস পেতে থাকে। একই পর্যায়ের বাম थिक ये जात्न यो अय़। इय़ भारत्रभागितिक मः श्रा विक्रित मार्थ मार्थ নিউক্লিয়াসের ধনাত্মক চার্জও বৃদ্ধি পেতে থাকে। ফরে বহিঃস্থ শক্তিন্তরকে নিউক্লিয়াস বেশি বলে আকর্ষণ করে। ফলে ব্যাসার্থ ক্রমান্বয়ে হ্রাস পেতে থাকে। তাই N এর চেয়ে O এর আকার ছোট।

১২। সোডিয়ামের দ্বিতীয় আয়নিকরণ শক্তি বেশি কেন? উত্তর: Na এর ইলেকটন বিন্যাস হতে দেখা যায়,

কু. বো. ২৩

 $Na(11) = 1s^2 2s^2 2p^6 3s^1$ 

এর সর্বশেষ শক্তিন্তরে কেবলমাত্র একটি ইলেকট্রন থাকে যা নিউক্লিয়াস দ্বারা দুর্বলভাবে আকর্ষিত হয়। তাই এই ইলেকট্রন অপসারণ করে Na<sup>+</sup> আয়নে পরিণত করতে কম শক্তির প্রয়োজন।

কিন্তু  $Na^+$  এর ইলেকট্রন বিন্যাস নিষ্ক্রিয় গ্যাস নিয়নের অনুরূপ।  $Na^+$ এর কক্ষপথের ১০টি ইলেকট্রনকে নিউক্লিয়াসে থাকা ১১টি প্রোটন প্রবলভাবে আকর্ষণ করে। তাই Na<sup>+</sup> হতে ইলেকট্রন অপসারণ করতে অনেক বেশি শক্তির প্রয়োজন। একারণে Na এর ২য় আয়নিকরণ শক্তি বেশি।

$$Na(g) \rightarrow Na^{+}(g) + e^{-}; (IE_1 = +496 \text{ kJ mol}^{-1})$$
  
 $Na^{+}(g) \rightarrow Na^{++}(g) + e^{-}; (IE_2 = +4562 \text{ kJ mol}^{-1})$ 

১৩। নাইট্রোজেনের ১ম আয়নিকরণ বিভব অক্সিজেনের ১ম আয়নিকরণ বিভব অপেক্ষা বেশি কেন?

মি. বো. ২২; ম. বো. ২১; দি. বো. ১৭; অনুরূপ প্রশ্ন: ম. বো. ২৩) উত্তরঃ সাধারণত পর্যায় সারণির বাম থেকে ডানে গেলে মৌলগুলোর আকার হ্রাস পায়, ফলে আয়নীকরণ বিভব বৃদ্ধি পায়। সেক্ষেত্রে O এর আকার N এর তুলনায় ছোট হওয়ায় প্রথম আয়নিকরণ বিভব O এর বেশি হওয়ার কথা। কিন্তু উভয় পরমাণুর ইলেকট্রন বিন্যাস থেকে পাই:

外(ま) => 182 282 2p/ 2p/ 2p/

 $O(8) \Rightarrow 18^3 28^3 2p'_1 2p'_2 2p'_6$ N এর সর্ব বহিঃশ্ব শঞ্জিরে 2p উপশঞ্জির অর্থপূর্ণ হওয়ায় এটি ()

खिन 2p<sup>3</sup> खत जुननाश अधिकजत श्विजिमीन। मरन धकि शैरननिप्रेन ন্দর্নাতে O এর ভুলনায় N এ অধিক শক্তির প্ররোজন হয়। তাই लाइह्याटकात्मर ४म ष्यायनिकत्तप विज्ञ जिन्नात्म ४म ष्यायनिकत्तप বিভব অপেঞ্চা বেশি।

#### ১৪ a Be ও B এর মধ্যে কার আয়নিকরণ শক্তি বেশি ও কেনা

ता, ता. २३। ह, ता. २३।

উক্তর প্যাসীয় অবস্থায় কোনো মৌলের এক মোল বিচ্ছিন্ন পরমাণু থেকে এক্টি করে ইলেকট্রেন সন্নিয়ে একে গ্যাসীয় বিচ্চিন্ন এক মোল একক ধলাজ্মক আয়নে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন হয়, ডাকে সেই মৌলের আয়নিকরণ শঞ্জি বা বিভব বলা হয়।

Be → 1s2 2s2

 $B \rightarrow 1s^2 2s^3 2p^1$ 

Be এর আয়নিকরণ শণ্ডি B এর চেয়ে বেশি।

Be এর সর্বশেষ শজিশুরে কোনো বিজ্ঞাড় ইলেক্ট্রন নাই। তাই এর শেষ শক্তিন্তর থেকে ইলেকট্রন অপসারণ করতে বেশি শক্তি প্রয়োজন। কিন্তু B এর সর্বশেষ শজিন্তরে ১টি বিজ্ঞাড় ইলেকট্রন থাকে বলে এ ইলেক্ট্রন অপসারণ করা তুলনামূলক সহজ। এজন্য Be ও B এর মংধ্য Be এর আয়নিকরণ শক্তি B এর চেয়ে বেশি।

১৫ ঃ অব্রিজেনের ঘিতীয় ইলেকট্রন আসজির মান ধনাত্মক কেন? ব্যাখ্যা কর। া ভা. বো. ২৩

উক্তর: ইলেকট্রন আসজির সংজ্ঞানুসারে, গ্যাসীয় অবস্থায় কোনো সৌলের এক মোল বিচিন্ন একক খাণাতাক আয়ন এক মোল ইলেকট্রন গ্রহণ করে এক মোল দ্বি-ঋণাতাক আয়নে পরিণত হওয়ার জন্য যে পরিমাণ শজ্জির পরিবর্তন হয়, তাকে ঐ মৌলের দিতীয় ইলেক্ট্রন আসজি বলে। অব্রিজেনের ক্ষেত্রে প্রথমবার ইলেকট্রন গ্রহণের পরে গঠিত একক খণাতাক (OT) আয়নটি পরবর্তীতে ইলেকট্রন গ্রহণের সময় ঋণাত্রক চাৰ্জবিশিষ্ট ইলেকট্রনকে বিকর্ষণ করে। আবার, প্রথম ইলেকট্রন গ্রহণের পর অক্সিজেনের দ্বিতীয় শক্তিস্তরে সাতটি ইলেকট্রন থাকায় অধিক ইলেকট্রন ঘনতের কারণে পরবর্তী ইলেকট্রন আসার সময় ইলেকট্রন-ইলেকট্রন বিকর্ষণজনিত বাধা পায়। তাই দ্বিতীয় ইলেকট্রন আসজির ক্ষেত্রে বাহির থেকে শক্তি প্রয়োগ করার প্রয়োজন পড়ে। ফলে বিক্রিয়াটি তাপহারী হয় এবং অক্সিজেনের দ্বিতীয় ইলেকট্রন আসজির মান ধনাত্মক হয়ে থাকে।

১৬। Mg এর ইলেকট্রন আসজির মান ধনাত্মক কেন? [রা. বো. ২৩] উক্তর: সাধারণত কোন মৌলের ইলেকট্রন বিন্যাসে অরবিটাল অর্ধপূর্ণ বা পরিপূর্ণ থাকলে অধিকতর স্থিতিশীল হয়।

Mg এর ইলেকট্রন বিন্যাস: Mg(12)  $\rightarrow$  1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> সুতরাং, Mg এর বহিঃস্থ শজিস্তরে 3s অরবিটাল ইলেকট্রন দ্বারা পূর্ণ থাকায় এটা অধিকতর স্থিতিশীল। তাই নতুন ইলেকট্রন গ্রহণ করলে Mg এর ঐ श्रिजिभीन ইলেকট্রন বিন্যাস বিনষ্ট হয়। ফলে নতুন ইলেকট্রন সংযোগকালে বাহির থেকে শক্তি প্রয়োগের প্রয়োজন পড়ে অর্থাৎ, ইলেকট্রন আসজির মান ধনাত্মক হয়।

১৭। O & S अत्र भत्या कागरित है जिनस्रोम जानिक दिनि धवर किनश नि. ता. २३। উদ্বরা অক্সিজেন (O) এর পারমাণবিক সংখ্যা ৪ এবং সালফার (S) এর भात्रगाणनिक मर्भाग 16।

 $O(8) \rightarrow 1s^2 2s^2 2p^4$ 

 $S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^4$ 

षाज्याच, O धाचर S धात्र धम् श मर्शा 16 धावर शर्यात्र यशाक्तरम 2 धावर 3। এकि अन्दर्भन छिनन एएक घरछा निर्क्त याखग्रा याग्र, देरणकर्द्धन আস্তিন মান ততো হ্রাস পেতে পাকে। কেননা, মৌল যত বড় হয়, নিউক্লিয়াদের আকর্যণ বয়িঃশ্ব ইলেকট্রনের উপর ততো কমতে থাকে। যেহেডু S এর আকার O এর থেকে বড়, সেহেডু O এর ইলেকট্রন আসজি S অপেক্ষা বেশি হয়।

#### ১৮। ফ্রোরিন সর্বাপেক্ষা তড়িৎ ঋণাত্মক মৌল-ব্যাখ্যা কর।

[কু. বো. ২৩। গি. বো. ২৩। ম. বো. ২৩। ঢা. বো. ২২, ২১; রা. বো. ২১, ১৯] উত্তর: আমরা জানি, সমযোজী যৌগের দুটি ভিন্ন পরমাণুর মধ্যে শেয়ারকৃত ইলেনট্রন যুগলকে আকর্ষণ করার ক্ষমতাকে তড়িৎ ঝণাতাকতা বলে। कारना भर्यारात्र वाम रएं जारन शिल देलकर्द्धन ७ क्षांप्रेन मश्या वृद्धि পায় কিন্তু শক্তিন্তর একই থাকে বিধায় নিউক্লিয়ার আকর্ষণ বৃদ্ধি পায় পারমাণবিক আকার ছোট হতে থাকে। তাই কোনো পর্যায়ের বাম হতে ডানে গেলে তড়িং ঋণাতাকতাও বৃদ্ধি পায়। আবার, কোনো গ্রুপের উপর হতে নিচে পারমাণবিক আকার বৃদ্ধি পায় এবং তড়িৎ ঝণাত্মকতাও হ্রাস পায়। পর্যায় সারণিতে F এর অবস্থান ২য় পর্যায়ের সবচেয়ে ডানে অর্থাৎ 17 নং গ্রুপের হওয়ায় এটি সর্বাপেক্ষা বেশি তড়িৎ ঝণাতাকতা প্রদর্শন করে এবং এর তড়িৎ ঋণাত্মকতার মান 4।

#### ১৯। H2O একটি পোলার যৌগ কেন? ব্যাখ্যা কর।

িঢ়া. বো. ২৩; দি. বো. ২১; অনুরূপ প্রশ্ন: ব. বো. ১৯; কু. বো. ১৭] উত্তর: কোনো সমযোজী যৌগের অণুতে দুইটি পরমাণুর তড়িং ঋণাত্মকতার পার্থক্য ( $\Delta E_N$ ) 0.5-1.9 এর মধ্যে হলে, পরমাণুদ্বয়ে ডাইপোল সৃষ্টি रय़। करन जपुरि পোनात जपु रय़ अवर সমযোজी यৌগে जाय़निक বৈশিষ্ট্য প্রকাশ পায়।

H₂O এর ক্ষেত্রে H ও O এর তড়িং ঝণাতাকতা যথাক্রমে 2.1 ও 3.5 ৷ ফলে তড়িৎ ধনাত্মকতার পার্থক্য, ΔE<sub>N</sub> = (3.5 − 2.1) = 1.4 হয় ৷ অর্থাৎ, H2O যৌগে H ও O এর তড়িং ঝণাতাকতার পার্থকা অধিক হওয়ায় H2O একটি পোলার যৌগ।

২০। PH3 অপেক্ষা NH3 অধিক ক্ষারধর্মী; এর কারণ ব্যাখ্যা কর। যি. বো. ২২১ উত্তর: NH3 এর ক্ষারধর্মিতা PH3 অপেক্ষা অধিক হয়। প্রথমত, PH3 অণুতে P পরমাণুর তড়িং ঝণাতাকতার চেয়ে NH3 অণুর N এর তড়িং ঋণাত্মকতার মান বেশি। অধিক তড়িৎ ঋণাত্মকতার কারণে P - H এর বন্ধনের তুলনায় N-H এর বন্ধনের ইলেকট্রন মেঘের ঘনতু Nপরমাণুর দিকে অধিক আকৃষ্ট হয়। আবার, P এর পারমাণবিক ব্যাসার্ধের তুলনায় N এর পারমাণবিক ব্যাসার্ধ ছোট হওয়ায় উক্ত বন্ধন ইলেকট্রন মেঘ ও নিঃসঙ্গ ইলেকট্রন মেঘের নিট ঘনত N পরমাণুতে তুলনামূলক বেশি থাকে। এ কারণে NH3 কর্তৃক ইলেকট্রন দান বা প্রোটন গ্রহণের প্রবণতা  $PH_1$  এর তুলনায় বেশি হয়। তাই  $PH_3$  এর তুলনায় NH3 অধিক ক্ষারধর্মী হয়।

২১। AICI3 ডাইমার গঠন করে-ব্যাখ্যা কর। মি. বো. ২৩; কু. বো. ২২; ঢা. বো. ১৯) উত্তর: AICl3 একটি আয়নিক যৌগ হলেও অধিক পোলারায়নের ফলে এটি সমযোজী বৈশিষ্ট্য লাভ করে এবং CI আয়নের ইলেকট্রন ঘনত্ব Al পরমাণু ও Cl পরমাণুর মাঝখানে অবস্থান নেয়।

চিত্র: A/Cl3 এর ডাইমার গঠন

AICl<sub>3</sub> এর যোজ্যতাস্তরে 3 জোড়া বন্ধনজোড় ইলেকট্রন বিদ্যমান যা অষ্টক অসম্পূর্ণ অবস্থায় থাকে।

 $_{13}Al \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^1$ 

 $_{13}AI' \rightarrow 1s^2 2s^2 2p^6 3s^1 3p_x^1 3p_y^1 3p_y^1 3d^0$ 

ইলেকট্রন বিন্যাস হতে দেখা যায়, Al পরমাণুতে শূন্য d অরবিটাল বিদ্যমান। তাই অষ্টক পুরণের জন্য AlCl<sub>3</sub> অণুর Al পার্শ্ববর্তী Cl পরমাণুর মুক্তজ্ঞোড় ইলেকট্রন গ্রহন করে সন্নিবেশ সমযোজী বন্ধন দ্বারা ডাইমার অণু গঠন করতে পারে।

২২। CO2 গ্যাস, কিন্ত SiO2 কঠিন কেন?

রা, বো, ১৭]

উন্তর: স্বাভাবিক অবস্থার  $CO_2$  গ্যাস কিন্তু  $SiO_2$  কঠিন। মূলত,  $CO_2$  একটি একক অপূ।  $CO_2$  অপুতে একটি কার্বন দুটি অক্সিজেন এর সাথে দুই জোভা ইলেকট্রন শেয়ার করে দ্বিক্ষন দারা যুক্ত থাকে।

$$O = C = 0$$

 ${
m CO_2}$  অণুসমূহের মাঝে কেবল দুর্বল ভ্যানডার ওয়ালস বল কার্যকর থাকে। তাই সাধারণ তাপমাত্রায়  ${
m CO_2}$  গ্যাস। আবার, সিলিকন ডাই ব্রব্রাইড ( ${
m SiO_2}$ ) হলো একটি পলিমার যৌগ।  ${
m SiO_2}$  পলিমার গঠনে প্রতিটি  ${
m Si}$  পরমাণু চারটি  ${
m O}$  পরমাণুর সাথে এবং একটি  ${
m O}$  পরমাণু দুটি  ${
m Si}$  পরমাণুর সাথে যুক্ত হয়ে পলিমার শিকল ( ${
m SiO_2}$ ) $_{\rm II}$  গঠন করে। তাই  ${
m SiO_2}$  কঠিন পদার্থ।

২৩। MgO অপেক্ষা Na2O অধিক ক্ষারীয় কেন ব্যাখ্যা কর। বি. বো. ১৭) উন্তর: যে যৌল যত বেশি ধাতব প্রকৃতির তার অক্সাইড তত বেশি ক্ষারীয় হয়। Mg এর তুলনায় Na এর ধাতব ধর্ম বেশি। সাধারণত, পর্যায় সারণির বাম থেকে যত ডানে যাওয়া হয়, মৌলের ধাতব ধর্ম তত হাস পেতে থাকে। আবার Mg এর তুলনায় Na অধিক সক্রিয়। সর্বোপরি, Na এর ধাতব ধর্ম Mg এর চেয়ে অধিক বলে MgO অপেক্ষা Na2O অধিক ক্ষারীয়।

২৪।  $Al_2O_3$  একটি উভধর্মী অক্সাইড-ব্যাখ্যা কর। (সম্মিলিত. বো. ১৮) উত্তর: যে অক্সাইড এসিড ও ক্ষার উভয়ের সাথে বিক্রিয়া করে লবণ ও পানি তৈরি করে, তাকে উভধর্মী অক্সাইড বলে।  $Al_2O_3$  একটি উভধর্মী অক্সাইড।

Al<sub>2</sub>O<sub>3</sub> धत क्मात थर्सत व्ययाणः

 $AI_2O_3 + 6HCI \rightarrow 2AICI_3 + 3H_2O$ 

Al2O3 এর অম্বর্ধর্মের প্রমাণ:

A/<sub>2</sub>O<sub>3</sub> + 2NaOH → 2NaA/O<sub>2</sub> + H<sub>2</sub>O সোডিয়াম

**অ্যালুমিনেট** 

২৫। SnO একটি উভধর্মী অক্সাইড কেন?

[সি. বো. ২৩]

উন্তর: যে সকল ধাতু বা অধাতুর অক্সাইড অস্ত্র ও ক্ষার উভয়ের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে তাদের উভবর্মী অক্সাইড বলে। SnO উভধর্মী অক্সাইডরূপে পৃথকভাবে NaOH ও HCl এর সাথে বিক্রিয়া করে প্রতি ক্ষেত্রে লবণ ও পানি উৎপন্ন করে।

SnO ফারকরূপে: SnO + 2HC $l \rightarrow$  SnC $l_2$  + H $_2$ O

SnO অমুরূপে: SnO + 2NaOH  $\rightarrow$  Na<sub>2</sub>SnO<sub>2</sub> + H<sub>2</sub>O

সুতরাং SnO একটি উভধর্মী অক্সাইড।

Rhombus Publications

২৬। কার্বন ডাই-অক্সাইড অপোলার কেন? [ঢা. বো. ২২] উত্তর: কার্বন ডাই-অক্সাইড অবস্থিত C ও O এর তড়িৎ ঋণাত্মকতার পার্থক্য (3.5 – 2.1) বা 1.4 । স্বাভাবিকভাবে সমযোজী যৌগে দুইটি প্রমাণন

........ ACS, > Chemistry 1st Paper Chapter-3

রঃ কাবন ভাহ-অপ্সাহত অবাস্থত C ও O এর তাড়ৎ ঝণাপ্সকতার পাথক্য (3.5 – 2.1) বা 1.4। স্বাভাবিকভাবে সমযোজী যৌগে দুইটি পরমাণুর তড়িৎ ঋণাত্মকতার পার্থক্য 0.5 এর চেয়ে বড় হলেই সেটি একটি পোলার সমযোজী যৌগ হয়ে থাকে। কিন্তু CO2 অণুতে তড়িৎ ঋণাত্মকতার পার্থক্য থাকা সত্ত্বেও এটি অপোলার। CO2 এর আকৃতি সরলরৈখিক হওয়ায় এর C = O বন্ধন দুইটির ভাইপোল মোমেন্ট এর মান সমান ও বিপরীতমুখী হওয়ায় তায়া পরস্পরকে প্রশমিত করে দেয়। ফলে CO2 এর ভাইপোল মোমেন্টের মান শূন্য হয়। তাই, এটি একটি অপোলার যৌগ।

$$\overset{\delta}{O} = \overset{\delta}{C} = \overset{\delta}{O}$$

২৭। সংকর অরবিটাল পাই বন্ধন গঠন করে না কেন? দি. বো. ২৩, ১৯।
উত্তরঃ পাই বন্ধন গঠনের জন্য অরবিটালসমূহ পাশাপাশি অধিক্রমণ করে
থাকে। এজন্য সবসময় অরবিটালসমূহকে প্রথমে গঠিত সিগমা বন্ধনের
সাথে লম্বালম্বিভাবে থাকতে হয়। সংকর অরবিটালসমূহ এ ধরনের
অবস্থানে থাকে না এবং সবসময় সামনাসামনি বা মুখোমুখি অধিক্রমণ
করে সিগমা বন্ধন গঠন করে থাকে, পাশাপাশি বা আংশিক অধিক্রমণ
করতে পারে না। এজন্য সংকর অরবিটাল  $\pi$  বন্ধন গঠন করে না।

২৮। পাই বন্ধন মূলত সমযোজী বন্ধন ব্যাখ্যা কর। কু. বো. ২৩; রা. বো. ২২। উত্তর: দুটি পরমাণুর দুটি পারমাণবিক অরবিটালের অযুগা ইলেকট্রন একই অক্ষ বরাবর পাশাপাশি অধিক্রমণের ফলে যে সমযোজী বন্ধনের সৃষ্টি হয় তাকে পাই (π) বন্ধন বলা হয়। দুটি পরমাণুর মধ্যে সিগমা বন্ধন গঠনের পর যদি উভয় পরমাণুর দুটি সমান্তরাল p-অরবিটাল থাকে তবে তাদের পার্শ্ব অধিক্রমণের মাধ্যমে পাই (π) বন্ধন গঠিত হয়। এক্ষেত্রে পরমাণুয় নিজেদের মধ্যে ইলেকট্রন শেয়ারের মাধ্যমে বন্ধন গঠন করে যা সমযোজী বন্ধনের বৈশিষ্ট্যের অনুরূপ। একারণে পাই (π) বন্ধন একটি সমযোজী বন্ধনে।

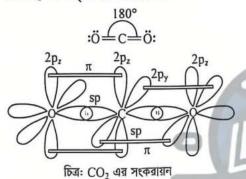
১৯। s-অরবিটাল পাই বন্ধন গঠনে অংশ নেয় না কেন? [চ. বো. ১৯]
উত্তর: দুটি অরবিটালের পাশাপাশি অধিক্রমণের মাধ্যমে সমযোজী বন্ধন
গঠিত হলে তাকে পাই বন্ধন বলে। s অরবিটালের আকৃতি গোলাকৃতি
হওয়ায় s অরবিটালে কেবল মুখোমুখি অধিক্রমণ সম্ভব। পাশাপাশি
অধিক্রমণ সম্ভব নয়। এ কারণে s অরবিটাল শুধু সিগমা বন্ধনে অংশ
নেয়, পাই বন্ধন গঠনে অংশ নেয় না।

৩০।  ${
m O}_2$  এর অণুতে সিগমা বন্ধন এবং পাই বন্ধন উভয়ই দেখা যায়—ব্যাখ্যা কর। [চ. বো. ২১; সি. বো. ১৭]

উত্তর: দুটি অরবিটালের সামনাসামনি অধিক্রমণে সিগমা বন্ধন এবং পাশাপাশি অধিক্রমণে পাই বন্ধন সৃষ্টি হয়।  $O_2$  অণু গঠনে একটি সিগমা বন্ধন ও একটি পাই বন্ধন সৃষ্টি হয়। অক্সিজেনের ইলেকট্রেন বিন্যাস:

 $_8O \rightarrow 1s^2 2s^1 2p_x^2 2p_y^1 2p_z^1$ 

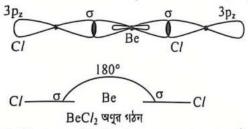
দুটি অক্সিজেন পরমাণুর প্রত্যেকের যোজ্যতা স্তরে দুটি করে অর্ধপূর্ণ  $2p_y^1$  ও  $2p_y^2$  অরবিটাল আছে। প্রথমে  $2p_y^1-2p_y^1$  সামনাসামনি অধিক্রমণ করে সিগমা বন্ধন গঠন করে। সিগমা বন্ধন গঠনের সময় প্রত্যেক পরমাণুর  $2p_z^1$  অরবিটাল পরস্পর সমান্তরালভাবে থাকে। পরে  $2p_z^1-2p_z^1$  পাশাপাশি অধিক্রমণ করে পাই বন্ধন গঠন করে। তাই বলা যায়,  $O_2$  অণুতে সিগমা ও পাই উভয় বন্ধনই দেখা যায়।


৩**১। CO1 অণু সরদরে**षিক কেন?

াসি. বো. ২০

ন্টব্রনঃ CO₂ এর কেন্দ্রীয় পরমাণু C এর ইলেকট্রন বিন্যাস,

$${}_{\circ}C \to 1s^{2} 2s^{2} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{0}$$


সমশন্ডিসম্পন্ন ২টি sp হাইব্রিড অরবিটাল পাওয়া যায় যারা পরম্পর  $180^\circ$  কোণে অবস্থান করে এবং  $2p_y$  ও  $2p_z$  অরবিটাল অসংকরিত অবস্থায় থাকে। দৃটি O এর  $2p_y$  অরবিটালের সাথে C এর sp হাইব্রিড অববিটালের মুখোমুখি অধিক্রমণে ২টি সিগমা বন্ধন এবং C এর অসংকরিত  $2p_y$  ও  $2p_z$  অরবিটালের সাথে ২টি O এর  $2p_z$  অববিটালের পাশাপাশি অধিক্রমণে  $\pi$ -বন্ধন গঠিত হয়ে  $CO_2$  অণু গঠন করে। এই  $CO_2$  এর আকৃতি হয় সরলরৈখিক।

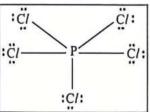


ও২। BeCl<sub>2</sub> এর আকৃতি সরলরৈষিক কেন? াসি নে. ২১, ১৭; নি. বো. ২১। উচ্ছব্র: বেবিলিয়াম ক্রোরাইড (BeCl<sub>2</sub>) সরলরৈষিক কারণ BeCl<sub>2</sub> এর কেন্দ্রীয় পরমাণু Be এর sp সংকরায়ণ ঘটে। Be এর ইলেকট্রন বিন্যাস থেকে পাই,

$$Be(4) \rightarrow 1s^2 2s^2$$

Be $^* 
ightarrow 1s^2 2s^1 2p_x^1 2p_y^0 2p_x^0$  [উত্তেজিত অবস্থায়]
উত্তেজিত অবস্থায় Be এর দৃটি বিজোড় ইলেকট্রন থাকে । উৎপদ্ম দৃটি সংকর অরবিটালে একটি করে ইলেকট্রন থাকে এবং এই দৃটি সংকর অরবিটাল CI পরমাণুর ইলেকট্রন বিন্যাসের  $(1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^2 3p_x^1)$  এক ইলেকট্রনবিশিষ্ট  $3p_x^1$  অরবিটালের সাথে অধিক্রমণ প্রেক্রিনার দৃটি Be – CI বন্ধন সৃষ্টি করে । ফলে Be $CI_2$  অণু গঠিত হয় ।




 ${
m BeCl_2}$  এ sp সংকরণ হওয়ায় বন্ধন কোণ  $180^\circ$  অর্থাৎ  ${
m BeCl_2}$  অণুর আকৃতি সরলরৈখিক।

৩০। PCI5 একটি অষ্টক সম্প্রসারণ যৌগ—ব্যাখ্যা কর। বি. বো. ২২১ । টিভর: আমরা জানি, পরমাণু যৌগ গঠন করার সময় এর সর্বশেষ কক্ষপথে প্রটি ইলেকট্রন পূর্ণ করে সৃস্থিতি অর্জনের নিরমকে অষ্টক তত্ত্ব বলে।

15P → 15² 25² 2p⁴ 3s² 2p³

$$_{15}P^{\bullet} \rightarrow 1s^{2} 2s^{2} 2p^{6} 3\underline{s}^{1} 3p_{x}^{1} 3p_{y}^{1} 3p_{z}^{1} 3d_{x}^{1}$$

P উব্রেজিত অবস্থায় এর বহিঃস্থ স্তরের  $10^5$  s,  $30^5$  p এবং  $10^5$  d অরবিটাল সংকরিত হয়ে পাঁচটি সংকরিত  $\mathrm{sp}^3$ d অরবিটাল গঠন করে যার প্রত্যেকটিতে  $10^5$  করে অযুগা ইলেকট্রন বিদ্যামান 1 তাই  $10^5$  পাঁচটি ক্লোরিন  $10^5$  পরমাণুর  $10^5$  অরবিটালের সাথে অধিক্রমণ করে  $10^5$  অণু গঠন করতে পারে  $10^5$ 



এখানে,  $PCI_5$  অণুর P এর যোজ্যতাস্তরে 10টি ইলেকট্রন রয়েছে যাকে অষ্টক সম্প্রসারণ বলা হয়ে থাকে। সূতরাং,  $PCI_5$  একটি অষ্টক সম্প্রসারণ যৌগ।

ত ৪।  $O_2$  অণুটি অপোলার কেন? [ব. রো. ২৩; অনুরপ প্রশ্ন: দি. রো. ১৯] উত্তর: সমযোজী বদ্ধনে আবদ্ধ পরমাণুদ্ধরের তড়িৎ ঝণাআকতার পাথক্য 0.5-1.7 হলে যৌগটি পোলার হয়।  $O_2$  অণুটি বিশুদ্ধ সমযোজী প্রকৃতির। এটি একই মৌলের দুটি পরমাণুর দ্বারা গঠিত হওয়ায় কোন তড়িং ঝণাআকতার পার্থক্য থাকে না। বদ্ধন ইলেকট্রনম্বরকে সমানভাবে শেয়ার করে O=O দ্বি-বদ্ধনের মাধ্যমে অণু গঠন করে। এজন্য  $O_2$  অণুটি অপোলার।

তে। পোলারিটি ও পোলারায়নের মধ্যে পার্থক্য কী? দি. বো. ১৯। উত্তর: পোলারিটি ও পোলারায়নের মধ্যকার পার্থক্য নিমুরূপ:

- (i) সমযোজী বন্ধনে পরমাণুর্য়ের মধ্যে অধিক তড়িং ঋণাত্মকতার পার্থক্যের দরুণ আংশিক তড়িং ঋণাত্মক ও আংশিক তড়িং ধনাত্মক প্রান্ত সৃষ্টি হওয়াকে পোলারিটি বলে।

  আয়ানিক স্টোগে কাট্যায়ন কর্মক আনায়বের ইলেকটন মেন্ত্রের

  স্বান্তিক স্টোগে কাট্যায়ন কর্মক স্বান্তিক্যান বিশ্বনিক স্টান্তিক স্থানিক স্টান্তিক স্থানিক স্থ
  - আয়নিক যৌগে ক্যাটায়ন কর্তৃক আ্যানায়নের ইলেকট্রন মেঘের বিকৃত হওয়াকে পোলারায়ন বলে।
- (ii) পোলারিটি সমযোজী যৌগে আয়নিক বৈশিষ্ট্যের বৃদ্ধি ও সমযোজী বৈশিষ্ট্যের হ্রাস ঘটায়।
   পোলারায়নের ফলে আয়নিক যৌগে সমযোজী বৈশিষ্ট্যের বৃদ্ধি
  ঘটে।
- (iii) পোলারিটি গলনাম্ব ও স্কুটনাম্বকে বৃদ্ধি করে।পোলারায়ন যৌগের গলনায় ও স্কুটনাম্বকে হাস করে।

৩৬। HCl একটি সমযোজী যৌগ হলেও পানিতে দ্রবদীয় কেন? ারা. বো. ২২। উত্তর: HCl যৌগে H (হাইড্রোজেন) এবং Cl (ক্লোরিন) উভয়ই অধাতু। এরা ইলেকট্রন শেয়ারের মাধ্যমে যৌগ গঠন করে। তাই এরা সমযোজী। এরা সমযোজী যৌগ গঠন করলেও এদের তড়িং ঝণাত্মকতার পার্থক্য হয় (3.2 – 2.2) বা, 1। যদি কোনো সমযোজী যৌগের তড়িং ঝণাত্মকতার পার্থক্য ০.5 অপেক্ষা বড় কিন্তু 1.9 এর সমান বা ছোট হয়, তবে সেই সমযোজী যৌগটি পোলার হয়। যেহেতু HCl এর তড়িং ঝণাত্মকতার পার্থক্য 1, তাই এটি একটি পোলার সমযোজী যৌগ । এজন্য HCl সমযোজী যৌগ হলেও পানিতে দ্রবণীয়।

ত্ব। HF ও H<sub>2</sub>O এর মধ্যে HF অধিক পোলার কেন? [সি. বো. ২১] উত্তর: সমযোজী যৌগের সংশ্লিষ্ট দুই পরমাণুর তড়িং ঋণাত্মকতার পার্থক্য থাকলে অধিক তড়িং ঋণাত্মক পরমাণু বন্ধনের ইলেকট্রেন জোড় নিজের দিকে বেশি আকর্ষণ করে। ফলে পোলারিটির সৃষ্টি হয়। তড়িং ঋণাত্মকতার পার্থক্য যত বেশি হয়, পোলারিটির মাত্রা তত বেশি হয়। H<sub>2</sub>O যৌগে O ও H এর তড়িং ঋণাত্মকতার পার্থক্য (3.5 – 2.1) = 1.4 এবং HF যৌগে H ও F এর তড়িং ঋণাত্মকতার পার্থক্য (4 – 2.1) = 1.9 যা H<sub>2</sub>O এর চেয়ে বেশি। তাই H<sub>2</sub>O এর চেয়ে HF অধিক পোলার।

তি । অ্যানায়ন দ্বারা ক্যাটায়নের পোলারায়ন হয় না কেন? দি. বো. ১৭ । উত্তর: যখন কোনো ক্যাটায়ন একটি অ্যানায়নের খুব নিকটে আসে, তখন ক্যাটায়নের নিউক্লিয়াস অ্যানায়নের ইলেকট্রন মেঘকে নিজের দিকে আকর্ষণ করে। একই সাথে ক্যাটায়নের দিকে সরে আসে। একে বিকর্ষণের ফলে ইলেকট্রন মেঘ ক্যাটায়নের দিকে সরে আসে। একে ক্যাটায়ন দ্বারা আনায়নের বিকৃতি বা পোলায়ায়ন বলা হয়। মূলত অ্যানায়ন দ্বারা ক্যাটায়নের পোলায়য়ন হয় না। ক্যাটায়নে ইলেকট্রন সংখ্যা প্রোটন সংখ্যা অপেক্ষা কম থাকায় ইলেকট্রনগুলো দৃঢভাবে সংযুক্ত থাকে। ফলে আনায়নের নিউক্লিয়াস দ্বারা ক্যাটায়নের হলেকট্রনগুলোর কোনো রকম বিকৃতি সম্ভব হয় না বলে অ্যানায়ন দ্বারা ক্যাটায়নের পোলায়ায়ন হয় না।

৩৯। NaCl এর চেরে MgCl<sub>2</sub> এর গলনাঙ্কের মান কম কেন? রা. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২৩; য. বো. ২২; দি. বো. ২২; চ. বো. ২১; ব. বো. ১৯; সম্মিলিত বো. ১৮]

উত্তর: যে যৌগ যত বেশি আয়নিক তার গলনাদ্ধ তত বেশি। NaCl ও  $MgCl_2$  যৌগে ক্যাটায়নের জারণ সংখ্যা যথাক্রমে + 1 ও + 2 এবং  $Mg^{2+}$  এর আকার  $Na^+$  অপেক্ষা ছোট। ফাজানের নীতি অনুসারে ক্যাটায়নের আকার ছোট ও চার্জ বেশি হলে ঐ ক্যাটায়ন কর্তৃক অ্যানায়নের পোলারায়ন বেশি হয়। ফলে আয়নিক যৌগে সমযোজী বৈশিষ্ট্য বৃদ্ধি পায়। যেহেত্  $Na^+$  এর তুলনায়  $Mg^{2+}$  এর আকার ছোট ও চার্জ সংখ্যা বেশি, তাই  $MgCl_2$  এ অধিক সমযোজী ধর্ম প্রকাশ পাবে। সূতরাং NaCl এর তুলনায়  $MgCl_2$  এর গলনাদ্ধ কম হবে।

#### ৪০। ${ m A}I{ m F}_3$ আয়নিক প্রকৃতির হলেও ${ m A}I{ m C}I_3$ সমযোজী কেন?

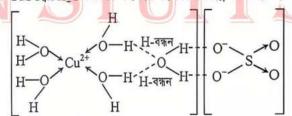
রা. বো. ২৩; জনুরূপ প্রশ্ন: ঢা. বো. ২২)

উত্তর: AICI3 যৌগের পোলারায়ন AIF3 হতে বেশি হওয়ায় AICI3 সমযোজী ও AIF3 আয়নিক প্রকৃতির হয়ে থাকে।
ক্যাটায়নের নিউক্লিয়াস কর্তৃক অ্যানায়নের ইলেকট্রন মেঘের বিকৃতিকে পোলারায়ন বলা হয়। ফাজানের নীতি অনুযায়ী, যৌগে অ্যানায়নের আকার বৃদ্ধির সাথে সাথে পোলারায়ন বৃদ্ধি পায়। পোলারায়ন বৃদ্ধি পেলে যৌগের সমযোজী বৈশিষ্ট্যও বৃদ্ধি পায়। AIF3 ও AICI3 যৌগদ্বয়ের মধ্যে উভয় আয়নের চার্জ সমান কিন্তু CI আয়নের আকার F আয়নের তুলনায় বড়। তাই AICI3 যৌগের পোলায়ায়ন বেশি ঘটে এবং এর সমযোজী বৈশিষ্ট্য অধিক হয়।

#### 8১। AgF পানিতে দ্রবণীয় কিন্তু AgI পানিতে অদ্রবণীয়-ব্যাখ্যা কর।

মি. বো. ২২

উত্তর: আয়নিক যৌগসমূহ পোলার দ্রাবক পানিতে দ্রবণীয়। কিন্তু সমযোজী যৌগ পানিতে সাধারণত কম দ্রবণীয় বা অদ্রবণীয় হয়। আয়নিক যৌগে অ্যানায়নের আকার বৃদ্ধির সাথে পোলারায়িত হওয়ার প্রবণতা বৃদ্ধি শায়। আর পোলারায়ন বেশি হলে যৌগের সমযোজী ধর্ম বৃদ্ধি পায়। আর পোলারায়ন বেশি হলে যৌগের সমযোজী ধর্ম বৃদ্ধি পায়। এবং যৌগটি পানিতে অনুবণীয় হয়। AgF যৌগে F আয়নের আকার AgI যৌগের I আয়নের আকারের তুলনায় অনেক ছোট। ফলে Æৣয় এ আয়ায়ায়নের পোলারায়ন কম ঘটে এবং AgI যৌগে অয়ায়য়লয়ের পোলারায়ন কম ঘটে এবং AgI যৌগে অয়ায়য়য়লয়ের পোলারায়ন বেশি ঘটে। এর ফলে AgF এর আয়নিক বৈশিষ্ট্য অধিক থাকে এবং AgI এর সমযোজী বৈশিষ্ট্য অধিক থাকে। তাই Æৣয় পানিতে দ্রবণীয় হলেও AgI পানিতে অনুবণীয়।


8২। CaCl<sub>2</sub> ও AlCl<sub>3</sub> এর মধ্যে কোনটি পানিতে অধিক দ্রবণীয় এবং কেন? [ব. বো. ২১; দি. বো. ১৭]

উত্তর:  $CaCl_2$  এবং  $AICl_3$  এর মধ্যে  $CaCl_2$  পানিতে অধিক দ্রবলীর। সাধারণত আয়নিক যৌগ পানিতে দ্রবনীয় হয় এবং আয়নিক যৌগের সমযোজী ধর্ম বৃদ্ধি পেলে পানিতে দ্রবনীয়তা হ্রাস পায়। আমরা জ্ঞানি, ক্যাটায়নসমূহের ধনাত্মক চার্জ বৃদ্ধি পাওয়ার সাথে সাথে পোলারায়িত হওয়ার প্রবণতা বৃদ্ধি পায়। যৌগদ্বয়ে  $Ca^{2+}$  এবং  $AI^{3+}$  আয়নের মধ্যে AI এর ধনাত্মক চার্জ Ca এর ধনাত্মক চার্জ অপেক্ষা বেশি। কলে  $AI^{3+}$  আয়নের পোলারায়ন  $Ca^{2+}$  অপেক্ষা বেশি হয় এবং  $CaCl_2$  এর তুলনায়  $AICl_3$  অধিক সমযোজী বৈশিষ্টাসম্পন্ন হয়। তাই,  $AICl_3$  এর তুলনায়  $CaCl_2$  পানিতে অধিক দ্রবণীয়।

#### ৪৩। অ্যামোনিয়া একটি প্রশম লিগ্যান্ড-ব্যাখ্যা কর।

াম. বো. ২৩; দি. বো. ১৯; রা. বো. ১৭। উজ্জর: যেসব পরমাণু, মূলক বা যৌগ সন্নিবেশ সমযোজী বন্ধন গঠনকালে ইলেকট্রন জোড় শেয়ার করে তাদেরকে লিগ্যান্ড বলা হয়। লিগ্যান্ড ঝণাতাুক চার্জে চার্জিত অথবা চার্জ নিরপেক্ষ হয়ে থাকে।  $\overline{N}H_3$  তে একটি মুক্তজোড় ইলেকট্রন থাকায় জটিল আয়ন যেমন:  $[Cu(NH_3)_4]^{2+}$  গঠনে সন্নিবেশ সমযোজী বন্ধন গঠনে অংশ নেয় তথা লিগ্যান্ড হিসেবে কাজ করে।  $\overline{N}H_3$  চার্জ নিরপেক্ষ ও লিগ্যান্ড হিসেবে কাজ করায় একে প্রশম লিগ্যান্ড বলা হয়।

88।  $CuSO_4.5H_2O$  যৌগের মধ্যকার বন্ধনগুলো দেখাও। চি. বো. ২২ উত্তর:  $CuSO_4.5H_2O$  যৌগের মধ্যকার বন্ধনগুলো নিম্নে দেখানো হলো:



চিত্র: তুঁতের অণুর বন্ধন কাঠামো

এতে O-H ও S-O এর মোট 12টি সমযোজী বন্ধন,  $[Cu(H_2O)_4]^{2\tau}$  ও S $O_4^{2\tau}$  এর মাঝে আয়নিক বন্ধন,  $Cu^{2\tau}$  আয়নের সাথে 4টি  $H_2O$  অণুর ও S এর সাথে দূটি O এর মোট 6টি সন্নিবেশ বন্ধন এবং  $O\cdots$ H এর মধ্যে 4টি H বন্ধন বিদ্যমান।

8৫। NH4<sup>+</sup> আরনের সন্নিবেশ বন্ধন ব্যাখ্যা কর। বি. বো. ২১ উত্তর: দুটি পরমাণুর মধ্যে সমযোজী বন্ধন গঠনে প্রয়োজনীয় ইলেকট্রনদ্বর যদি একটি মাত্র পরমাণু সরবরাহ করে এবং অপর পরমাণুটি কোন ইলেকট্রন সরবরাহ না করে তা সরবরাহকারী পরমাণুর সাথে সমানভাবে শেয়ার করে বন্ধন গঠন করে তাকে সন্নিবেশ সমযোজী বন্ধন বলা হয়।

 $NH_4^+$  এর ক্ষেত্রে  $NH_3$  মুক্তজোড় ইলেকট্রন যুগল শেয়ার করে এবং  $m H^{1}$  আয়ন কোন ইলেকট্রন যোগান না দিয়েও লিগ্যান্ডের সাথে সমানভাবে ইলেকট্রন শেয়ার করে সন্নিবেশ বন্ধন গঠন করে।

$$\vec{N}H_3 + H^+ \vec{a}\vec{l}, H \vec{l} + H^+ \rightarrow \begin{bmatrix} H \\ H - N \cdot H \end{bmatrix}^+ \vec{a}\vec{l}$$

$$\vec{N}H_3 + H^+ \vec{a}\vec{l}, H \vec{l} + H^+ \rightarrow \begin{bmatrix} H \\ H - N \cdot H \end{bmatrix}^+ \vec{a}\vec{l}$$

৪৬ ৷ সন্নিবেশ সংখ্যা কাকে বলে? ব্যাখ্যা কর।

উত্তরঃ সমযোজী বা জটিল যৌগে কেন্দ্রীয় পরমাণু বা আয়নের সাথে যে সংখ্যক লিগ্যান্ড যুক্ত থাকে তার সংখ্যাকে সন্নিবেশ সংখ্যা বলে। বেমন- [Fe(CN)<sub>6</sub>]<sup>4</sup> জটিল আয়নে Fe<sup>2+</sup> আয়ন ছয়টি CN<sup>-</sup> লিগ্যান্ডের সাথে যুক্ত বলে এর সন্নিবেশ সংখ্যা ছয়।

৪৭। সাধারণ তাপমাত্রায়  $\mathbf{F_2}$  গ্যাস কিন্তু  $\mathbf{I_2}$  কঠিন–ব্যাখ্যা কর।

বি. বো. ২১; অনুরূপ য. বো. ২৩)

উব্দর: F ও I দূটিই গ্রুপ-17 এর মৌল। সাধারণ তাপমাত্রায় গ্রুপ-17 এর মৌলগুলো দ্বিপরমাণুক অবস্থায় থাকে। মূলত হ্যালোজেন বা ঞ্চপ-17 মৌলসমূহের ভৌত অবস্থা এদের আণবিক ভরের ওপর নির্ভর করে।  $\mathbf{F}_2$  থেকে শুরু করে  $\mathbf{I}_2$  পর্যন্ত ক্রমশ আণবিক ভর বৃদ্ধি পায়। আণবিক ভর বৃদ্ধি পাওয়ার সাথে সাথে ভ্যানডার ওয়ালস আকর্ষণ বল বৃদ্ধি পার। ভ্যানডার ওয়ালস আকর্ষণ বল বৃদ্ধির ক্রম- $F_2 < Cl_2 < Br_2 < I_2$ । এজন্য সাধারণ তাপমাত্রায়  $F_2$  গ্যাস হলেও I2 কঠিন।

৪৮। হাইড্রোজেন বন্ধন ও সমযোজী বন্ধনের মধ্যে পার্থক্য লিখ। সি. বো. ১৯] উত্তর: সমযোজী এবং হাইড্রোজেন বন্ধনের মধ্যকার পার্থক্য নিমুরূপ:

- (i) দুটি একই অথবা ভিন্ন পরমাণুর মধ্যে ইলেকট্রন শেয়ার করার মাধ্যমে সমবোজী বন্ধন গঠিত হয়। হাইড্রোজেন পরমাণু বিশিষ্ট দুটি পোলার অণুর মধ্যে আংশিক তড়িৎ ধনাত্মক H প্রান্ত ও আংশিক তড়িৎ ঋণাত্মক প্রান্তের মধ্যকার স্থির তড়িৎ আকর্ষণ বল দ্বারা হাইড্রোজেন বন্ধন গঠিত।
  - (ii) সমবোজী বন্ধন অপেক্ষাকৃত শক্তিশালী, হাইড্রোজেন বন্ধন দুর্বল প্রকৃতির।
  - (iii) সমবোজী বন্ধনের শক্তি মাত্রা 150 1100 KJ/mol. হাইড্রোজেন বন্ধনের শক্তিমাত্রা 10 – 40 KJ/mol.

৪৯। মিথেন অপেক্ষা মিথানলের স্ফুটনাংক বেশি কেন? ব্যাখ্যা কর। বি. বো. ২৩) উ**ন্তর: মিথানল** (CH₃ – OH) এ পোলারিটি বিদ্যামান। – OH এর O এবং H এর মধ্যে অধিক তড়িৎ ঋণাত্মকতার পার্থক্য থাকায় O ও H প্রান্তে যথাক্রমে আংশিক তড়িৎ ঋণাত্মকতা ও আংশিক তড়িৎ ধনাত্মকতার 👺 इद रग्न । करन পाশाপाশि पृष्टि मिथानन এর মধ্যে হাইড্রোজেন বন্ধন সৃষ্টি হয়। এতে করে CH3OH অণুসমূহ পরস্পরকে আকৃষ্ট করে विक्रिस् कतरा अधिक जानभक्ति क्षायाञ्चन रयः। अन्यानिक CH4 व C এর সাথে চারটি H সমযোজী বদ্ধনে যুক্ত থাকে এবং কম তাপমাত্রার এর ভৌত অবস্থা হয় গ্যাসীয়। অতএব বলা যায়, H বন্ধনের উপস্থিতির জন্য মিথানল (CH₃OH) এর স্ফুটনাঙ্ক CH₄ অপেক্ষা বেশি হয়।

৫০। পানি তরল কেন-ব্যাখ্যা কর।

[ह. वा. २२: व. वा. २১]

উত্তর: পানিতে H ও O এর মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য △E× = 3.5 − 2.1 = 1.4 হওয়ায় O − H বন্ধনের শেয়ারকৃত ইলেকট্রন অক্সিজেনের দিকে বেশি সরে যায়। ফলে O এ আংশিক ঝণাত্মক ও H এ আংশিক ধনাত্মক চার্জ সৃষ্টির মাধ্যমে  $\mathrm{H}_2\mathrm{O}$  এর অণুতে ডাইপোল সৃষ্টি হয়। পাশাপাশি দুইটি পানির অণুতে O ও H বন্ধন সৃষ্টি হয়।

এভাবে পাশাপাশি অণুর মধ্যে হাইড্রোজেন বন্ধনের এর মধ্যে হাইড্রোজেন আণবিক গুচ্ছ গঠন করে, যা বিচ্ছিন্ন করতে H বন্ধনগুলো ভাঙতে হয়, যার জন্য প্রচুর তাপশক্তির প্রয়োজন হয়। তাই পানির স্ফুটনাঙ্ক পর্যায় সারণির কাছাকাছি মৌলের হাইড্রাইডের তুলনায় অনেক বেশি হয়। ফলে পানি তরল অবস্থায় পাওয়া যায়।

৫১। পানি একটি উৎকৃষ্ট দ্রাবক কেন? ব্যাখ্যা কর। উত্তরঃ পানির অণুতে O এবং H এর মধ্যে অধিক তড়িৎ ঝণাত্মকতার পার্থক্যের ফলে O এবং H প্রান্তে যথাক্রমে আংশিক তড়িৎ ঝণাত্মকতা ও আংশিক তড়িৎ ধনাত্মকতার উদ্ভব হয় তথা পোলারিটি বিদ্যমান। এর ফলে অন্য পোলার যৌগসমূহকে পানি সহজে দ্রবীভূত করতে পারে। এছাড়া মিথান্যাল, ইথানল, ইথানয়িক এসিডসহ বিভিন্ন জৈব যৌগের যাদের পোলারিটি রয়েছে তারাও পানিতে দ্রবীভূত হয়ে থাকে।

জৈব ও অজৈব উভয় ধরনের যৌগকে দ্রবীভূত করতে পারে বলে

পানিকে উৎকৃষ্ট দ্রাবক বলা হয়।

৫২। সাধারণ তাপমাত্রায় H2O তরল কিন্তু H2S গ্যাস-ব্যাখ্যা কর।

[দি. বো. ২৩; চ. বো. ২৩; ম. বো. ২২; ঢা. বো. ১৭]

উত্তর: সাধারণ তাপমাত্রায়  $m H_2O$  হলো পোলার কিন্তু  $m H_2S$  অপোলার। m O ও H এর তড়িং ঝণাতাকতার পার্থক্য বেশি থাকায় H<sub>2</sub>O অণুতে পোলারিটি বিদ্যমান। আবার, H2O অণুতে H এর সাথে যুক্ত O পরমাণু অতিশয় তড়িং ঝণাতাক এবং আকারে সালফার (S) পরমাণু অপেক্ষা ছোট হওয়ায়  $H_2O$  অণুতে হাইড্রোজেন বন্ধনের সৃষ্টি হয়। কিন্তু  $H_2S$  অপোলার হওয়ায়  $H_2S$  অণুতে কোনো H বন্ধনের সৃষ্টি হয় না। H বন্ধন উপস্থিত থাকার ফলে H<sub>2</sub>O অণুসমূহ পরস্পরকে আকৃষ্ট করে সংবদ্ধ বা গুচ্ছ আকারে থাকায় H<sub>2</sub>O তরল অবস্থা প্রাপ্ত হয়। এ কারণে সাধারণ তাপমাত্রায়  $H_2O$  তরল হলেও  $H_2S$  গ্যাসীয়।

৫৩।  $H_2S$  অপেক্ষা  $H_2O$  এর স্ফুটনাঙ্ক উচ্চ কেন? উত্তর:  $H_2S$  অপেক্যা  $H_2O$  এর ক্টেনাঙ্ক বেশি। আমরা জানি  $H_2O$  পোলার হলেও  $H_2S$  অপেলার।  $H_2O$  পোলার সমযোজী যৌগ হওয়ায়  $H_2O$ তে H वक्षन मृष्टि रय। किन्छ H₂S অপোनात रु७ग्राग्र H₂S यৌগে H वक्षन সৃष्टि रग्न ना। भृगज H वक्षन थाकात करन H₂O এत कूंपेनाक H2S এর চেয়ে বেশি হয় কারণ অতিরিক্ত এই H বন্ধনটি ভাঙতে বেশি শক্তির প্রয়োজন হবে।

...... ACS, > Chemistry 1st Paper Chapter-3 ব্যাখ্যা: Cl এর ইলেক্ট্রন বিন্যাস HSC পরীক্ষার্থীদের জন্য বাছাইকৃত বহুনির্বাচনি প্রশ্নোত্তর  $_{17}Cl \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$ যেহেতু CI এর সর্বশেষ ইলেকট্রনটি 3p অরবিটালে প্রবেশ করে ব্লক মৌলসমূহ ও এদের ধর্মাবলি সেহেতু এটি একটি p-ব্লক মৌল। পর্যায় সারণির জনক কে? [সি. বো. ১৭] ক লাথার মেয়ার (ঝ) মেন্ডেলিফ ৮। f-ব্লক মৌলগুলোকে কী বলা হয়? यि. जा. अल ণ) মোসলে (ছ) রাদারফোর্ড 📵 মুদ্রা ধাতু অবস্থান্তর ধাতু উত্তর: 🕲 মেডেলিফ (ছ) আন্তঃঅবস্থান্তর মৌল উত্তর: 📵 আন্তঃঅবস্থান্তর মৌল কোন মৌল জোড়া পর্যায় সারণির একই পর্যায়ভুক্ত? [ঢা. বো., দি. বো. ২৩] ব্যাখ্যা: মূদ্রা ধাতু: (n – 1)d<sup>10</sup> 4s<sup>1–2</sup> Ti, Na (1) Mn, Fe যেমন- Cu, Ag, Au Ar, Rn ( Al, Ga অবস্থান্তর ধাতু: (n – 1)d<sup>1-9</sup> ns<sup>1-2</sup> উত্তর: 🕲 Mn, Fe যেমন- Ti, V, Cr, Fe, Ni ইত্যাদি ব্যাখ্যা: Mn(25) → 1s² 2s² 2p6 3s² 3p6 3d5 4s²; প্র্যায়-4 মৃৎক্ষার ধাতু: ns²  $Fe(26) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$ ; পर्याय-4 যেমন- Be, Mg, Ca, Sr, Ba আন্তঃঅবস্থান্তর মৌল: (n-2)  $f^{l-13}$ ৩। পর্যায় সার্রণিতে Cu এর অবস্থান কোন শ্রেণিতে? [সি. বো. ২২] যেমন- U, Pa, Nd ইত্যাদি 10 (a) 13 (T) 12 (A) 11 ৯। s-ব্লক মৌলের সংখ্যা কতটি? পি. বো. ২৩; ম. বো. ২১; ঢা. বো. ১৬, ১৫) উত্তর: প্র 11 **1** 7 (4) 12 ব্যাখ্যা: কপারের ইলেকট্রন বিন্যাস নিম্নরপ: **14 (9)** 16  $Cu(29) \rightarrow [Ar] 3d^{10} 4s^{1}$ উত্তর: প্র 14 গ্রুপ নম্বর = (10 + 1) = 11 ব্যাখ্যা: গ্রুপ 1 ও 2 এর যথাক্রমে 7টি ও 6টি এবং গ্রুপ 18 এর He s-ব্রুক 8। P<sub>4</sub>O<sub>10</sub> একটি অশ্লীয় অক্সাইড। এর কেন্দ্রীয় মৌলটির পর্যায় এর অন্তর্ভুক্ত। অর্থাৎ এতে মোট 14টি মৌল রয়েছে। সারণিতে অবস্থান-১০। নিচের কোন নিষ্ক্রিয় গ্যাসটি p-ব্লক মৌল নয়? বি. বো. ১৭ कि विठीय পर्यास्त्रत 14 नः क्रांप्प अ कृठीय पर्यास्त्रत 15 नः क्रांप्प He (1) Ne উত্তর: 📵 তৃতীয় পর্যায়ের 15 নং গ্রুপে = ① Ar ® Kr ব্যাখ্যা: কেন্দ্রীয় মোলটি হলো ফসফরাস (P)। উত্তর: 🚳 He  $P(15) \rightarrow [Ne]3s^2 3p^3$ ব্যাখ্যা: He 18 নং গ্রুপে থাকলেও এটি s-ব্লক মৌল কেননা এর সর্বশেষ যেহেতু n এর সর্বোচ্চ মান 3। সুতরাং মৌলটি তৃতীয় পর্যায়ে ইলেক্ট্রনটি s অরবিটালে যায়। অবস্থিত। যেহেতু s ও p অরবিটালে 5টি ইলেকট্রন প্রবেশ করে  $_{2}\text{He} \longrightarrow 1\text{s}^{2}$ সূতরাং গ্রুপ নম্বর = (10 + 5) = 15 ১১। পর্যায় সারণিতে f-ব্লক মৌলের সংখ্যা কতটি? বি. বো. ১১ ৫। p-ব্লক মৌলের সংখ্যা কয়টি? [চ. বো. ২৩; রা. বো. ২৩] 3 27 **(4)** 30 (4) **3** 27 **@** 36 (T) 41 **(9)** 36 (T) 41 উত্তর: 📵 27 উত্তর: 🕅 36 ব্যাখ্যা: সিরিয়াম (58Ce) থেকে লুটেসিয়াম, (71Lu) পর্যন্ত 14টি ও ব্যাখ্যা: s-ব্লক মৌল 14টি ; d-ব্লক মৌল 41টি ; p-ব্লক মৌল 36টি, f-ব্লক 27টি প্রোটেকটিনিয়াম, (19Pa) থেকে লরেন্সিয়াম, (103Lr) পর্যন্ত 13টি মোট 27টি মৌল f ব্লক এর অন্তর্ভুক্ত। পর্যায় সারণিতে কোন ব্লকে অধাতুর সংখ্যা বেশি? রো. বো. ২৩] ⊕ S (4) p णि. বো. ২৩; চ. বো. ২৩; ম. বো. ২১। নিচের কোনটি মৃৎক্ষার মৌল? 例 d (T) f উত্তর: 🕲 p Ca (1) Na 何 Si (V) P ব্যাখ্যা: s ও d ব্লকে ধাতুর সংখ্যা বেশি। p-ব্লকে অধাতু সর্বোচ্চ। উত্তর: 📵 Ca ९। C!(17) কোন ব্লকের মৌল? [ম. বো. ২১] ব্যাখ্যা: গ্রুপ-২ এর মৌলসমূহকে মৃৎক্ষার ধাতু বলা হয়। 奪 s-ব্লক **থ** p-ব্লক  $Ca(20) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ ;  $4s^2$ ; গু d-ব্লক খ f-ব্লক উত্তর: 📵 p-ব্লক সুতরাং, ক্যালসিয়াম (Ca) একটি মৃৎক্ষার মৌল।

### t.me/admission\_stuffs

Cu' - [Ar] 3d10 -> d अश्विष्ठाम पूर्व। ১৩। छानाटकाट्यान ध्रुष कानि।? (রা. বো. ২২। চ. বো. ২১, ১৯। চা. বো. ১৬। অনুরুণ সি. বো. ২১)  $Co^{2}$  → [ $\Lambda r$ ]  $3d^{7}$  → d অরবিটাল আংশিক পূর্ণ তাই রঙিদ ® 16 (4) 15 যৌগ প্রদর্শন করে। @ 14 11 (1) 01 @ 研罗图 ১৮। রন্তিন যৌগ কোনটি? मा. ला., प. ला. २२) ব্যাখা। পোলোনিয়াম (Po) ও निভান্নমোনিয়াম (Lv) এ দুটি মৌল ব্যতীত @ TiCL (MnO) व्यां मात्तिष्ठ 16 क्षरभत्न जनागग भौग- जिल्लान (O), मानकात 1 ScC/ ® ZnSO₁ (S), ट्याप्निसाम (Sc), टॅप्नुत्तिसाम (Tc) व हाराणि ट्यॉपटक উত্তর: ﴿ MnO₂ এক্সিডভাবে চ্যালকোনেন বলে। ব্যাখ্যা: যৌগওলোর কেন্দ্রীয় পরমাণুর ইলেকট্রন বিন্যাস নিমুরূপ:  $Ti(22) \rightarrow [Ar]3d^2 4s^2 : Ti^{4+} \rightarrow [Ar]3d^0 4s^0$ 🕽 । পর্যায় সার্যদির কোন শ্রেদির মৌলসমূহ মুদ্রাধাত নামে পরিচিতা  $Sc(21) \rightarrow [Ar] 3d^{1} 4s^{2}; Sc^{3} \rightarrow [Ar] 3d^{0} 4s^{0}$ पि. ला. २२  $Mn(25) \rightarrow [Ar] 3d^5 4s^7; Mn^{2'} \rightarrow [Ar] 3d^5$ (1) (D) 12  $Zn(30) \rightarrow [Ar] 3d^{10} 4s^2; Zn^{2^*} \rightarrow [Ar] 3d^{10}$ @ 16 (T) 17 श्रिणिगीन अवश्राम Mn এর d অরবিটালে 5টি ইলেকট্রন অর্থাৎ क्रह्मः @ 11 ইলেক্ট্রনীয় কাঠামো অসম্পূর্ণ থাকায় এটি অবস্থান্তর সৌল। অবস্থান্তর স্থাখা: ধ্রুণ ।। এর Cu, Ag, Au কে মুদ্রা ধাতু বলে। প্রাচীনকালে এগুলো মৌলওলোর শক্তিন্তরের পার্থক্য থাকায় নির্দিষ্ট বর্ণের আলো থাতৰ মূদা হিসেবে লেনদেনে ব্যবহৃত হতো। প্রতিফলিত করে বলে বন্ধিন যৌগ গঠিত হয়। ৯৫। নিচের কোনটি অভিজাত গ্যাস? वि. (वा. २১) ১৯। কোনটি অবস্থান্তর মৌল? বি বো. ২৩ (1) H, @ N2 3 Zn @ Cu ( Xc 1 F 1 Sc ® K क्तवाः (१) Xo উত্তর: বি Cu साचाः পর্যায় সার্লির ১৮ নং গ্রুপ এর মৌলসমূহকে (He, Ne, Ar, Kr, वाशोः भर्यात नातनिराज रामकन d-व्रक स्मोनममृरदत मृष्ट्रिज आग्ररन d Xc. Rn) নিছিয় গ্যাস বা নোবেল গ্যাস বলে। এদের অভিজাত অরবিটাল ইলেকট্রন দ্বারা আংশিকভাবে পূর্ণ থাকে কিন্তু কখনই শূন্য গ্যাসও বলা হয়। বা পরিপূর্ণ হয় না, তাদেরকে অবস্থান্তর মৌল বলে। Cu(29) → 1s2 2s2 2p6 3s2 3p6 3d10 4s1; প্रयाय-4 धन्प-IB ১৬। কোনটির মধ্যে কর্ণ সম্পর্ক রয়েছে? কপারের সৃষ্থিত আয়নের (Cu²') ইলেকট্রন বিন্যাস করলে দেখা যায়, Mg, Ca 1 Na, K @ P, S 1 B, Si সর্বশেষ কক্ষপথের মৌল d অরবিটাল অপূর্ণ (3d°) থাকে। ਚੋਚੜ: ① B, Si ব্যাখা: পর্যায় সার্নার বিতীয় পর্যায়ভুক্ত বিভিন্ন গ্রুপের মৌলসমূহের কিছু ২০। নিচের কোন মৌলটি ব্যতিক্রমী ইলেকট্রন বিন্যাস দেখায়? পর্যায়বৃত্ত ধর্ম একই গ্রুপভূক মৌলের চেয়ে পরবর্তী তৃতীয় পর্যায়ভূক ब्रि. ला., ए ला. २२) তাদের ডানদিকের মৌলের সাথে অর্থাৎ, কোণাকৃণিভাবে অবস্থিত 3 Zn 1 Fe মৌলের ধর্মের সাথে অধিকতর মিল দেখা যায়। এ দূটি পর্যায়ের মধ্যে (9) Cu Pb Pb কোণাকুণি অবস্থানের দুটি মৌলের ধর্মের সাদৃশ্যকে মৌলের কর্ণ উন্তর: ① Cu मन्भर्क वरन। वाषाः Cu(29) = 1s2 2s2 2p6 3s2 3p6 3d10 4s1 ক্রহা পূর্ণ d অরবিটাল (3d10) অধিক স্থিতিশীল হওয়ায় 4s অরবিটাল হতে 1(IA) 2(IIA) 14(IVA) 13(IIIA) পর্যায় ]টি ইলেকট্রন 3d অরবিটালে প্রবেশ করে। 2 Li(3) C(6)Be(4) B(5) কান সৌলটি প্যারাম্যাগনেটিক? य ला. १३। 3 Cr (4) Mn 3 Na(11) Mg(12) AJ(13) 1 Ti (P) Zn উত্তর: 🕲 Cr, 🕲 Mn, 🕦 Ti ১৭। নিচের কোনটি রম্ভিন যৌগ? ব্যাখ্যা: ফেরোম্যাগনেটিক পদার্থ: Fe, Co, Ni [কু. বো. ২০, ২১, ১৫; ঢা. বো. ১১; সখিণিত বো. ১৮] প্যারাম্যাগনেটিক পদার্থ: যাদের সর্ববহিঃস্থ স্তবের ইলেকট্রন বিন্যাস ③ ScC/₁ ③ MgCl₂ অয়গা ইলেকট্রন থাকে। ( CoCl2 1 Cu<sub>2</sub>Cl<sub>2</sub> **जाराभागतिक शर्मार्थः व्यमा दैलक्ट्रिन धादक ना ।** উন্তর: 🖲 CoCl2 ব্যাখ্যাঃ অবস্থান্তর ধাতুসমূহ রঙিন যৌগ গঠন করে। অবস্থান্তর ধাতুর এখানে, আয়নের সাধারণ ইলেকট্রন বিন্যাস  $(n-1) d^{1-9} 4s^{1-2}$  এখানে,  $_{24}Cr \rightarrow [Ar]$ 1 1 Sc3+ ---> [Ar] 3d0 -> \*Jना d जातविंगम।  $Mg^{2+}$   $\longrightarrow 1s^2 2s^2 2p^6 3s^0$   $\rightarrow d$  অরবিটাল নেই।

t.me/admission stuffs

| ьо                                                                        |                                      |                 |                                    | ACS, > Chemistry 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Paner Chanter         |
|---------------------------------------------------------------------------|--------------------------------------|-----------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 6টি অযুগল ইলেকট্রন আছে তাই                                                |                                      |                 |                                    | কম অনুসারে প্রথম অবস্থার                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | রর মৌল কোনটি <b>?</b> |
| $_{25}$ Mn $\rightarrow$ [Ar]                                             |                                      |                 | 324 CAU                            | 2023 AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (সি. বো. ২)           |
| 1 1 1                                                                     | 11 11                                |                 | ⊕ Ti                               | ⊕ Cr     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □ |                       |
| 3d                                                                        | 48                                   | -               | ⑨ Fe                               | ® Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| 5টি অযুগল ইলেকট্রন আছে তাই                                                | ই প্যারাম্যাগনেটিক।                  |                 | :⊕ Ti                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | न चरित्रक कागरस्य ।   |
| $_{22}\text{Ti} \rightarrow [\text{Ar}]$                                  | 11                                   | ব্যাৰ,          | অরবিটাল আংশিকভারে                  | ব্লকের যেসব মৌলের কো<br>ব (d <sup>1-9</sup> ) ইলেকট্রন দ্বারা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                   |
| 3d                                                                        | 4s                                   |                 | অবস্থান্তর মৌল বলা হ               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CD:                   |
| 2টি অযুগল ইলেকট্রন আছে তাই                                                | ই প্যারাম্যাগনেটিক।                  |                 |                                    | ্স্থিত Ti³⁺ আয়নে, 3d¹ ত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ারবিটাল অপূর্ণ থাকে   |
| $_{30}$ Zn $\rightarrow$ [Ar] $\boxed{11}$ $\boxed{11}$ $\boxed{11}$      |                                      |                 | তাই এটি প্রথম অবস্থা               | ন্তর মৌল।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| 3d                                                                        | 111                                  | ২৬।             | নিচের কোন আয়নটির                  | জ্লীয় দ্রবণ বর্ণহীন?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | কু. বো. ১৭            |
| কোনো অযুগল ইলেকট্রন নেই।                                                  | সুতরাং ডায়াম্যাগনেটিক।              |                 |                                    | <sup>③</sup> Ni <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|                                                                           |                                      |                 | ⊕ Cu <sup>2+</sup>                 | <sup>®</sup> Fe <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| $44 \mid M^{2+} = [(n-1)d^6, (n=4)],$                                     | M মৌলটির বৈশিষ্ট্য হলো-              |                 | :                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2201                  |
|                                                                           | [ঢা. বে                              | . ২২৷ ব্যাখ     |                                    | মায়নটি বর্ণহীন। কারণ d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | অরবিটাল সম্পূর্ণরূপে  |
| (i) প্রভাবক হিসাবে কাজ করে                                                |                                      |                 | <b>शृ</b> र्ष ।                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| (ii) দুটি হ্যালাইড যৌগ গঠন ক                                              |                                      | ২৭ ৷            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [রা. বো., য. বো. ২২]  |
| (iii) ডায়াম্যাগনেটিক ধর্ম প্রদ <del>র্</del> শন                          | া করে <u> </u>                       |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181, 641, 4, 641, 40  |
| নিচের কোনটি সঠিক?                                                         | 15                                   | 1               | ক্রন্থ →                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                    |
| ⊕ i ⊌ ii                                                                  | iii છ iii                            |                 | शर्याय़ ↓                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| ரு i ७ iii                                                                | (T) i, ii v iii                      |                 | _2                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| উত্তর: 🚳 i ও ii                                                           |                                      | =               | 3                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                     |
| ব্যাখ্যা: $n = 4$ হলে $M^{2+} = 3d^6$ অর্থাৎ                              | মৌলটি Fe <sup>2+</sup> । M মৌলটি অবং | হান্তর          | U, V এবং W মৌলের                   | র<br>র প্রতীক নয়।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| মৌল হওয়ায় এটির প্রভাবন                                                  | ক্ষমতা আছে। Fe হ্যালাইড              | য <b>ৰ্থা</b> ৎ | উদ্দীপকের U,V ও W                  | / মৌলের ক্ষেত্রে-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| ক্লোরিনের সাথে বিক্রিয়া করে                                              | FeCl2 এবং FeCl3 গঠন ব                | রতে             | (i) U এর ক্লোরাইড ত                | নার্দ্র বিশ্লেষিত হয় না                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| পারে। সুতরাং Fe পরিবর্তনশীল                                               |                                      |                 | (ii) W পরিবর্তনশীল                 | যোজনী দেখায়                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| d অরবিটালের ইলেকট্রন বিন্যাস:                                             | 119 15 Tr                            | EE              | (iii) U ও W এর ভৌ                  | ত ধর্মে সাদৃশ্য বিদ্যমান                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| d অরবিটালে 4 টি অযুগা ইলেক্                                               |                                      | t sta           | নিচের কোনটি সঠিক?                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                                           |                                      |                 | ⊕ i ७ ii                           | ii 🛭 ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
| প্রকটভাবে আকর্ষিত হওয়ার                                                  | আঢ় প্যারাম্যাগণোচক ব্য অ            | N-IN            | 1 i v iii                          | (1) i, ii s iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| করবে।                                                                     |                                      | উত্তর           | i ® i ® ii                         | 19713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
|                                                                           |                                      | ব্যাখ           | াঃ পর্যায় সারণি হতে,              | , U, V, W যথাক্রমে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | কার্বন, সিলিকন ও      |
| ২৩। নিচের কোন যৌগের ক্ষারীয় মূল                                          |                                      |                 | ফসফরাস। U এর                       | ক্লোরাইড হচ্ছে CCI4 ।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCI4 এর কেন্দ্রীয়    |
| 0.00                                                                      | কু. বে                               | . 231           | পরমাণুর C এর d ত                   | মরবিটাল নেই ফলে অর্দ্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | বিশ্লেষিত হয় না। F   |
|                                                                           | ③ TiCl₄                              |                 | ক্লোরিনের সাথে PCI                 | ₃ এবং PCI₅ যৌগ গঠন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | করায় এর যোজনী        |
| © CrSO₄                                                                   | ® CaSO₄                              |                 | যথাক্রমে 3 ও 5। U                  | ও W ভিন্ন গ্রুপের মৌল                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | হওয়ায় এদের ভৌত      |
| টন্তর: 例 CrSO₄                                                            | I NAA ROHAAN                         |                 | ধর্মের সাদৃশ্য নেই।                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| য়াখ্যা: যৌগগুলোর ক্যাটায়ন বা ক্ষারীয়                                   | । শূলক ব্যাঞ্নে—                     | N.              | AICI Gilizata milizan              | A Sue Order Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | व्यक्ति 🗁 🛨 ::        |
| Sc <sup>3+</sup> , Ti <sup>4+</sup> , Cr <sup>2+</sup> , Ca <sup>2+</sup> |                                      | 1               |                                    | রে মুক্ত জোড় ইলেকট্রন ক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ম্মটি? (কু. বো. ১৬    |
| $_{24}\text{Cr}^{2+} \rightarrow [\text{Ar}] 3\text{d}^4$                 |                                      |                 | <ul><li>⊕ 6</li><li>⊕ 12</li></ul> | (1) 10<br>(2) 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| $_{21}\text{Sc}^{3+} \rightarrow [\text{Ar}] 4\text{s}^{0} 3\text{d}^{0}$ |                                      | प्रताम          | ⊕ 12<br>: ⊕ 16                     | ҈ 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| $_{22}\text{Ti}^{4+} \rightarrow [\text{Ar}] 4\text{s}^0 3\text{d}^0$     |                                      | 10000           |                                    | (A1C1) लामा करान                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | क्शि गांग             |
| $_{20}\text{Ca}^{2+} \rightarrow [\text{Ar}] 4\text{s}^0 3\text{d}^0$     |                                      | 40140           |                                    | ট (Al₂Cl₀) লক্ষ্য করলে (<br>••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| ৪। কোনটি ফেরোম্যাগনেটিক মৌল?                                              | [ব. বো. ২১]                          |                 | :Ċ/: \ /                           | Ċι: \ Cι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :                     |
| ⊕ Co                                                                      | ҈ Ti                                 |                 | Al'                                | AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| ① Cu                                                                      | ℚ Zn                                 |                 | :CI:                               | :ç/ \ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı:                    |
| দিক্তবং ক্রি Co                                                           |                                      |                 | ्यान व्यापे साम्यकार है।           | <del>वर्गे।</del> २।२।२।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |

#### Rhombus Publications

ব্যাখ্যা: Fe, Co, Ni এরা ফেরোম্যাগনেটিক মৌল

= 16 টি

মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ACS/ FRB Compact Suggestion Book................৮১

#### নিচের উদ্দীপকটি পড় এবং প্রশ্ন দৃটির উত্তর দাও:

| र्थान→ भर्याग्र↓ | 15 | 16 |
|------------------|----|----|
| ২য়              | X  | Y  |
| • য়             | Z  | Q  |

[X, Y, Z এবং O মৌলের প্রচলিত প্রতীক নয়]

#### ২৯। উদ্দীপক অনুসারে কোন উক্তিটি সঠিক?

চি. বো. ২৩)

- 'Y' এবং 'O' হেক্সাহ্যালাইড গঠন করে
- 'Z' মৌলটি চ্যালকোজেন নামে পরিচিত
- গ্য কক্ষ তাপমাত্রায় মৌলগুলো দ্বিপরমাণুক
- ত্ব 'Y' এর আয়নিকরণ বিভবের মান 'X' অপেক্ষা কম

উত্তর: ত্ত 'Y' এর আয়নিকরণ বিভবের মান 'X' অপেক্ষা কম ব্যাখ্যা: উদ্দীপকের X ও Y হলো যথাক্রমে N ও O।

 $_7N \rightarrow 1s^2 2s^2 2p^3$ 

 $_8O \rightarrow 1s^2 2s^2 2p^4$ 

N এর বহিঃস্থ স্তরের p অরবিটাল অর্ধপূর্ণ হওয়ায় ইলেকট্রন অপসারণে অধিক শক্তির প্রয়োজন হয়। তাই N এর আয়নিকরণ শক্তি বেশি।

৩০। উদ্দীপক মতে-

[চ. বো. ২৩]

- (i) X2Y5 যৌগটি অমুধর্মী
  - (ii)  $Z_2Y_5$  একটি নিরুদক
  - (iii) QY2 এর ক্ষারকত্ব-3

নিচের কোনটি সঠিক?

- (4) i, ii
- (1) ii, iii
- (1) i, iii (2) i, ii, iii

উত্তর: 奪 i, ii

ব্যাখ্যা: পর্যায় সারণির অবস্থান অনুসারে,

- X → নাইটোজেন (N)
- Y → অক্সিজেন (O)
- $Z \rightarrow$  ফসফরাস (P)
- $Q \rightarrow$  সালফার (S)
- (i) X<sub>2</sub>Y<sub>5</sub> অর্থাৎ N<sub>2</sub>O<sub>5</sub> অমুর্থমী কেননা এটি পানির সাথে বিক্রিয়া করে এসিড উৎপন্ন করে।
- (ii)  $Z_2Y_5$  অর্থাৎ  $P_2O_5$  যৌগটি জলগ্রাহী হওয়ায় এটি একটি নিরুদক।  $P_2O_5 + H_2O \to H_3PO_4$  (হাইড্রোস্কোপিক যৌগ যা পানি শুষে নেয়)
- (iii) QY অর্থাৎ SO<sub>2</sub> এর ক্ষারকত্ব 3 নয়, বরং 2। কেননা 1 mol SO<sub>2</sub> 2 mol NaOH কে প্রশমিত করে।
  - $SO_2 + 2NaOH \rightarrow Na_2SO_3 + H_2O$
- ৩১। ক্যালসিয়াম কার্বাইড পানির সাথে বিক্রিয়া করে কোন গ্যাসটি উৎপন্ন করে? (ব. বো. ২২)
  - ⊕ CO₂
- (4) CO
- (9) C<sub>2</sub>H<sub>4</sub>
- (1) C2H2

উত্তর: 🕲 C2H2

ব্যাখ্যা:  $CaC_2 + H_2O \longrightarrow HC \equiv CH + H_2O$ 

- ক্যালসিয়াম
- ইথাইন বা
- কাৰ্বাইড
- অ্যাসিটিলিন

৩২। ওয়াটার গ্যাসের সংকেত কোনটি?

বি. বো. ২২)

- ⊕ H<sub>2</sub>O + CO
- (4) H<sub>2</sub> + CO
- 9 H2O + NH3
- (1) H<sub>2</sub> + NO<sub>2</sub>

উত্তর: <a>@</a> H<sub>2</sub> + CO

ব্যাখ্যা:  $F_2$ ,  $Cl_2$  এর ক্ষুদ্র আকারের জন্য এর ডাইপোল ডাইপোল আকর্ষণ (ভ্যানডার ওয়ালস আকর্ষণ) কম। তাই এরা কক্ষ তাপমাত্রায় গ্যাসীয় অবস্থায় থাকে।

 ${\rm Br}_2$  এর আকার তুলনামূলক বড় হওয়ায় এতে ভ্যানডার ওয়ালস আকর্ষণও বেশি তাই  ${\rm Br}_2$  তরল অবস্থায় থাকে।  ${\rm I}_2$  এর ভ্যানডারওয়ালস বল অনেক বেশি বলে কক্ষ তাপমাত্রায় এটি কঠিন অবস্থায় থাকে।

৩৩। কক্ষ তাপমাত্রায় কোনটি তরল?

মি, বো, ২২

⊕ F₂

- ® Br2
- 1 I2

উত্তর: প্র Br2

ব্যাখ্যা:  $F_2$  ও  $Cl_2$  কক্ষ তাপমাত্রায় গ্যাসীয়,  $Br_2$  তরল ও  $I_2$  কঠিন অবস্থায় বিরাজ করে।

৩৪। নিম্নের কোনটি বৃহদাকার অণু গঠন করে?

[দি. বো. ২১]

- ⊕ HI
- HBr
- ⊕ HCI
- (1) HF

উত্তর: 🚳 HI

#### মৌলের পর্যায়বৃত্ত ধর্ম

৩৫ 1 F, Ne, Na $^+$ , Mg $^{2+}$  এর ব্যাসার্ধের সঠিক ক্রম কোনটি?

যি. বো. ২৩; অনুত্রপ দি. বো. ১৯

- (3) Mg2+ < Na+ < Ne < F
- $\mathfrak{G} F^- < Ne < Na^+ < Mg^{2+}$

উত্তর: ③ Mg<sup>2+</sup> < Na<sup>+</sup> < Ne < F<sup>-</sup>

ব্যাখ্যা: 11Na+ → 1s2 2s2 2p6

 $_{12}\text{Mg}^{2+} \rightarrow 1\text{s}^2 2\text{s}^2 2\text{p}^6$ 

 $_{9}F^{-} \rightarrow 1s^{2} 2s^{2} 2p^{6}$ 

 $_{10}$ Ne  $\rightarrow 1s^2 2s^2 2p^6$ 

প্রত্যেকটিতে 10টি করে ইলেকট্রন থাকলে যার প্রোটন সংখ্যা বেশি

তার ব্যাসার্ধ সবচেয়ে কম।

 $Mg^{2+} < Na^{+} < Ne < F^{-}$ 

#### ৩৬। আকারের ক্ষেত্রে কোনটি সঠিক?

দি. বো. ২২

- ⊕ Be < B
  </p>
- Mg < Al
   A
- F > Ne
- ® Mg > Na

ব্যাখ্যা: আকারের পর্যায়ভিত্তিক সম্পর্ক: একই পর্যায়ের বাম থেকে ডানে গেলে আকার কমে।

আকারের গ্রুপভিত্তিক সম্পর্ক: একই গ্রুপের উপর থেকে নিচে গেলে আকার বাড়ে।

F ও Ne একই পর্যায়ের বাম থেকে ডানে হওয়ায় আকারের ক্রমঃ F > Ne

৩৭। আকারের ক্ষেত্রে কোন সম্পর্কটি সঠিক?

[কু. বো. ২১]

- Na > Na<sup>+</sup>
- (₹) F > F<sup>-</sup>
- (1)  $Al^{3+} > Mg^{2+}$
- (4) O > O2-

উত্তর: 🚳 Na > Na+

...... ACS, > Chemistry 1st Paper Chapter-3

ব্যাখ্যা: Na পরমাণুতে 11টি Proton এবং 11টি ইলেকট্রন থাকে এবং এতে 8১। আয়নিকরণ বিভবের সঠিক ক্রম কোনটি? প্রধান শক্তিন্তর সংখ্যা 3টি। অন্যদিকে Na<sup>+</sup> পরমাণুতে 11টি Proton 10টি ইলেকট্রন কে আকর্ষণ করে এবং শক্তিন্তর সংখ্যা 2টি হওয়ায় নিউক্লিয়ার আকর্ষণ বৃদ্ধি পায়। ফলে Na<sup>+</sup> এর আকার Na অপেক্ষা কম হয়।

৩৮। কোন আয়নটি আকারে বড়?

[য. বো. ২১; অনুরূপ রা. বো. ১৯]

(4) N3-

(₹) O<sup>2</sup>-

1 F

Na<sup>+</sup>

উত্তর: 📵 N<sup>3</sup>

ব্যাখ্যা: N³-, O²-, F⁻ ও Na⁺ প্রত্যেকের 10টি ইলেকট্রন আছে কিন্তু এদের প্রোটন সংখ্যা ভিন্ন।

N³- এর প্রোটন সংখ্যা

= 7

O<sup>2-</sup> এর প্রোটন সংখ্যা

=8

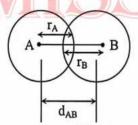
F এর প্রোটন সংখ্যা

=9

Na<sup>+</sup> এর প্রোটন সংখ্যা

= 11

প্রোটন সংখ্যা যত বেশি নিউক্লিয়াস শক্তিস্তরকে ততবেশি আকর্ষণ করে। N<sup>3</sup> এর প্রোটন সংখ্যা সবচেয়ে কম হওয়ায় ইলেকট্রন সর্বাপেক্ষা দুর্বলভাবে আকর্ষিত হয় কেন্দ্রের দিকে। তাই N<sup>3-</sup> এর আকার সবচেয়ে বড়।


৩৯। দুটি মৌল  ${f A}$  ও  ${f B}$  । এদের পারমাণবিক ব্যাসার্ধ যথাক্রমে  ${f r}_{{f A}}$  ও  ${f r}_{{f B}}$ এবং সমযোজী বন্ধন দূরত্ব dab । নিচের কোনটি সঠিক? ।য. বো. ১৭

ত্ব অনুমান অযোগ্য

উত্তর: 📵 r<sub>A</sub> + r<sub>B</sub> > d<sub>AB</sub>

ব্যাখ্যা: সমযোজী যৌগে পরমাণুসমূহের ওভারলেপিং হওয়ায় এর সমযোজী বন্ধন দূরত্ব (d<sub>AB</sub>) অবশ্যই প্রমাণুসমূহের পারমাণবিক ব্যাসার্ধের

(rA + rB) সমষ্টির চেয়ে ছোট হবে।



8০।  $X(g) o X^+(g) + e^-$ ; বিক্রিয়াটি সংঘটনে নিচের কোনটি প্রয়োজন? [ঢা. বো. ২৩]

ক্তি আয়নিকরণ শক্তি

থে) স্ব-প্রভাবক

গ্ৰ) ইলেকট্ৰন শক্তি

ভিডৎ ঝণাত্মকতা

উত্তর: 🚳 আয়নিকরণ শক্তি

ব্যাখ্যা: এক মোল আধান নিরপেক্ষ পরমাণু থেকে একক ধনাত্মক চার্জবিশিষ্ট এক মোল আয়ন সৃষ্টির জন্য প্রয়োজনীয় শক্তিকে প্রথম আয়নিকরণ বিভব বলা হয়।

সুতরাং,  $X(g) \to X^{+}(g) + e^{-}$  বিক্রিয়াটি সংঘটনে আয়নিকরণ শক্তি প্রয়োজন।

কু. বো. ২৩

@ N>O>F

8 Br < Cl < F

(1) K < N < Li

® Bc > Mg >C

উম্ভর: (ৰ) Br < Cl < F

ব্যাখ্যাঃ একই গ্রুপের উপর থেকে নিচের দিকে মৌলসমূহের আকার বৃদ্ধির সাথে আয়নিকরণ বিভবহ্রাস পায়।

সঠিক ক্রমটি নিম্নরূপ: Br < Cl < F

#### ৪২। নিচের মৌলগুলোর ১ম আয়নকরণ বিভবের সঠিক ক্রম কোনটি?

[সি. বো. ২৩; দি. বো. ১৭; অনুরূপ ব. বো. ১৯; দি. বো. ১৯]

Be>B>N>O

(1) N > O > Be > B

O > N > B > Be

(1) B > Be > N > O

উত্তর: (ৰ) N > O > Be > B

ব্যাখ্যা: পর্যায় সারণিতে একই পর্যায়ে বাম থেকে ডানে গেলে মৌলের আয়নিকরণ বিভব বৃদ্ধি পায়। তদানুযায়ী ২য় পর্যায়ের মৌল চারটির ক্রম হওয়া উচিত:

Be(4) < B(5) < N(7) < O(8)

কিন্তু প্রকৃতপক্ষে Be > B কারণ Be এর ১ম ইলেকট্রন 2s² অরবিটাল থেকে মুক্ত হয় যা পূর্ণ বলে  ${f B}$  এর  $2{f p_x}^1$  এর চেয়ে অধিকতর স্থিতিশীল হয়।

আবার, N > O হয় কেননা N এর অর্ধপূর্ণ p অরবিটাল অধিকতর স্থিতিশীল বলে ইলেকট্রন অপসারণে O এর চেয়ে বেশি শক্তি প্রয়োজন হয়। অর্থাৎ, প্রকৃত আয়নিকরণ বিভবের ক্রমটি হবে: B<Be<O<N

### ৪৩। কোনটি থেকে একটি ইলেকট্রন সরাতে সবচেয়ে বেশি শক্তি লাগে?

সি. বো. ২২

® Ne

Na<sup>+</sup>

例 Mg<sup>2+</sup>

উত্তর: (ম) Al3+

ব্যাখ্যা: Na<sup>+</sup>, Mg<sup>2+</sup>, Al<sup>3+</sup>, Ne প্রত্যেকের ইলেকট্রন সংখ্যা 10। কিন্ত প্রোটন সংখ্যা যথাক্রমে 11, 12, 13, 10 । তাই  $Al^{3+}$  এ প্রোটন সংখ্যা বেশি হওয়ায় আকর্ষণ অত্যধিক তাই ইলেকট্রন অপসারণ করা সবচেয়ে কঠিন।

#### ৪৪। কোনটির আয়নিকরণ শক্তি বেশি?

দি. বো. ২থ

® Be

(1) B

1 Mg

(1) A!

উত্তর: 奪 Be

ব্যাখ্যা: একই পর্যায়ের বাম থেকে ডানে গেলে আয়নিকরণ শক্তি বাড়ে। একই গ্রুপের উপর থেকে নিচে গেলে কমে।

সাম্ম্রিক আয়নিকরণ শক্তির ক্রম: Be > B > Al > Mg

#### ৪৫। কোনটির প্রথম আয়নিকরণ বিভব অধিক?

মি. বো. ২থ

N

(1) C

1 B

(P)

উন্তর: 📵 N

মৌটেনর পর্বায়রবৃত্ত ধর্ম ও রাসারনিক বন্ধন > ACS) FRB Compact Suggestion Book.....

ব্যাশ্যা: একই পর্ব্যন্তের বাম দিক হতে ভান দিকে ক্রমণ মৌলওলোর আকার ক্রাস পার এবং আরুনিকরণ বিচব বাড়তে থাকে। তাই আরুনিকরণ বিতবের বিকেচনায়

O>N>C>B ट्रजात कथा; किस अरकत्य नामाना वाठिकम तरहारह।

 $N(7) = 1s^2 2s^2 2p^3$ 

 $O(8) = 1s^2 2s^2 2p^4$ 

এন্দেনে, N এর  $e^{-}$  বিন্যাসে অর্ধপূর্ণ জরবিটাল থাকারা স্থিতিশীলতা বেশি। তাই জায়নিকরণ বিতব O এর তুলনার বেশি।

সূতরাং, সঠিক আয়নিকরণ বিভবের বিবেচনায় ক্রম:

N > O > C > B

🙉 । निচের কোন মৌলটির প্রথম আয়নিকরণ শক্তি সর্বনিদ্র?

(রা. বো. ২১; জনুরণ ব. বো. ১১)

3 Rb

RЬ

(1) K

(F) Li

िंखतः ॐ Rb

ব্যাখ্যা: একই গ্রুপে উপর থেকে নিচে আরনিকরণ বিভবের মান হ্রাস পেতে থাকে। অর্থাৎ Li > Na > K > Rb > Cs > Fr।

৪৭। नিচের কোন আয়নিকরণে সবচেয়ে কম শক্তি লাগে?

[কু. বো. ২১]

 $\textcircled{3} \text{ K} \rightarrow \text{K}' + \text{e}^-$ 

1 Ca  $\rightarrow$  Ca<sup>†</sup> + e<sup>-</sup>

 $Mg \rightarrow Mg^{\dagger} + e^{-}$ 

**টি ব্র**: 🔞 K → K<sup>+</sup> + e<sup>-</sup>

ব্যাখ্যা: পরমাণুর আকার বৃদ্ধিতে আয়নিকরণ শক্তি হ্রাস পায়।

আকার এর ক্রম: K > Ca > Na > Mg

K এর আকার সবচেয়ে বড় হওয়ার K এর আরনিকরণে সবচেরে কম ধ২।
শক্তি লাগে।

৪৮।  $M + \Delta H \rightarrow M^{+} + e^{-}$  এপানে  $\Delta H$  কোনটি?

Jan (27 44)

ইলেক্ট্রন আসন্তি

আয়নিকরণ শক্তি

গ্ৰ তড়িৎ ধনাত্মকতা

ত্তি খণাত্মকতা

উন্তর: খি আয়নিকরণ শক্তি

ব্যাখা: গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল বিচ্ছিন্ন পরমাণু থেকে একটি করে ইলেকট্রন সরিয়ে একে গ্যাসীয় বিচ্ছিন্ন এক মোল একক ধনাত্মক আয়নে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন হয়, তাকে সেই মৌলের আয়নিকরণ শক্তি বা বিভব বলা হয়।

 $M + \Delta H \rightarrow M^{+} + e^{-}$ 

M মৌলটিতে  $\Delta H$  পরিমাণ তাপশক্তি প্রদান করলে তা একটি ইলেকট্রন ছেড়ে দিয়ে ধনাত্মক  $M^{\star}$  আয়ন তৈরি করে। অর্থাৎ  $\Delta H$  হচ্চেং M মৌলের আয়নিকরণ শক্তি।

৪৯। কোনটির ১ম আয়নিকরণ শক্তি বেশি?

কু. বো. ১৯

B

⊗ C

1 N

(F) (F)

উন্তর: 🔊 N

ব্যাখ্যা: একই পর্যায়ের বাম দিক হতে ডান দিকে ক্রমশ মৌলগুলোর আকার হ্রাস পায় এবং আয়নিকরণ বিভব বাড়তে থাকে। তাই আয়নিকরণ বিভবের বিবেচনায়, O > N > C > B হওয়ার কথা:

 $N(7) = 1s^2 2s^2 2p^3$ 

 $O(8) = 1s^2 2s^2 2p^4$ 

কিন্তু N এর e' বিন্যাসে অর্ধপূর্ণ অরবিটাল থাকায় স্থিতিশীলতা বেশি। ডাই আয়নিকরণ বিভব O এর ভূদনায় বেশি।

সঠিক আয়নিকরণ বিভবের বিবেচনায় ক্রম:

N>0>C>B

৫০। নিচের কোন মৌলের দিতীয় আয়নিকরণ শক্তির মান বেশি? । कु. বে. ১৬।

3 Mg

(1) K

(1) Ca

(R)

উন্তর: 🗨 K

ব্যাখা: K মৌলের বিঠীয় আয়নিকরণ শক্তির মান বেশি। কেনন্য প্রথম ইলেকট্রন অপসারণের পর এটি K' আয়নে পরিণত হয় যা নিদ্রিনা গ্যাস Ar এর অনুরূপ। এ অবস্থা অধিক স্থিতিশীল বলে K² আয়নে পরিণত হতে অনেক শক্তি লাগে। তাই K এর বিতীয় আয়নিকরণ শক্তির মান বেশি।

৫১। নাইট্রোজেন ও জন্মিজেনের ক্ষেত্রে কোন পর্যায়বৃত্ত ধর্মের ব্যতিক্রম দেখা যায়?

🔞 ইলেকট্রন আসক্তি

আয়নিকরণ শক্তি

গ্ৰ তড়িং খণাত্মকতা

খি পারমাণবিক ব্যাসার্ধ

উত্তর: 🕫 আয়নিকরণ শক্তি

ব্যাখ্যা: একই পর্বায়ে বাম থেকে ডানে আয়নিকরণ শক্তি বৃদ্ধি পেলেও N >

া হয়। N এর 3p অরবিটাল অর্ধপূর্ণ থাকায় এটি অধিক স্থিতিশীল

হয়ে থাকে। ফলে N এর আয়নিকরণ বিভব O এর চেয়ে অধিক হয়।

हर्ष्य पारक । करण IV यत्र आज्ञानकत्रम । वजव () यत्र (ठर्स्य आवक रत्र । वि. ला. २०।

| 1         |         |     |   | 11-12-0-12-7-1 |
|-----------|---------|-----|---|----------------|
| श्यांग्र↓ | শ্রেণি→ | 1   | 2 | 17             |
| 2         |         | х   | Y | Z              |
| 3         |         | Q M | R | T              |

উদ্দীপকের ক্ষেত্রে-

(i) QT এর গলনাচ XT অপেকা বেশি

(ii) T এর ইলেক্ট্রন আসন্তি Z অপেন্সা বেশি

(iii) Y অপেক্ষা R অধিক তড়িং ঋণাত্মক নিচের কোনটি সঠিক?

(₹) i, ii

(Ti, iii

(1) i, iii

(1) i, ii, iii

উন্তর: 🚳 i, ii

ব্যাখ্যা: উদ্দীপকের X, Q, Y, R, Z ও T মৌলওলো হলো Li, Na, Be, Mg, F ও C/।

- NaC/ এর গলনাল্প LiC/ অপেক্ষা বেশি কারণ Li<sup>+</sup> এর আকার Na<sup>+</sup> হতে কম এবং পোলারায়ন বেশি হওয়ায় সমবোলী বৈশিট্য বেশি। তাই LiC/ এর গলনাল্প কম।
- CI এর ইলেকট্রন আসঙি F অপেক্ষা বেশি কারণ CI এর চার্জ ঘনত F অপেক্ষা কম। তাই আগত ইলেকট্রন সহজেই জায়গা দিতে পারে
- একই গ্রুপের উপর হতে নিচে গেলে তড়িং ঝণাত্মকতা কমে।
  তাই Be অপেক্ষা B এর তড়িং ঝণাত্মকতা কম।

৫৩। কোনটির ইলেকট্রন আসক্তি সর্বনিমুং

N

(4) P (P) O

1 S উত্তর: 🕲 P

ব্যাখা: ২য় পর্যায়ের O এর আকার N অপেক্ষা কম। তাই ইলেকট্রন আসন্ডির ক্রম O > N। আবার তৃতীয় পর্যায়ের S এর আকার P অপেক্ষা কম। তাই ইলেকট্রন আসক্তির ক্রম S > P। আবার ২য়

পর্যায় হতে ৩য় পর্যায়ের আকার বড় হওয়ায় O > N > S > P

৫৪। কোনটির ইলেকট্রন আসজি বেশি?

[ঢা. বো., ব. বো. ২১]

⊕ F

( Cl

1 Br

(P)

উত্তর: 📵 CI

ব্যাখ্যা: একই গ্রুপের যত উপর থেকে নিচে নামা যায় মৌলের ইলেকট্রন আসক্তি তত হ্রাস পায়। তবে হ্যালোজেন গ্রুপের ক্ষেত্রে ফ্লোরিনের আকার খুব ছোট হওয়ায় এবং ২য় শক্তিস্তরে ইলেকট্রন ঘনত্বের আধিক্য থাকায় ইলেকট্রনের মধ্যে বিকর্ষণ প্রভাব CI অপেক্ষা অধিক কার্যকর থাকে। তাই ফ্লোরিনের ইলেকট্রন আসজি Cl পরমাণুর তুলনায় কম।

∴ ইলেকট্রন আসজির ক্রম: Cl > F > Br > I.

৫৫। সর্বাধিক তড়িৎ ঋণাত্মক মৌলের সর্বশেষ শক্তিস্তরের ইলেকট্রন বিন্যাস কোনটি? ঢা, বো, ২৩

9 5s<sup>2</sup> 5p<sup>5</sup>

3 4s2 4p5

(9) 3s<sup>2</sup> 3p<sup>5</sup>

(1) 2s2 2p5

উত্তর: (ব) 2s<sup>2</sup> 2p<sup>5</sup>

ব্যাখ্যা: পর্যায় সারণির সর্বাধিক তড়িৎ ঋণাত্মক মৌলটি হলো ফ্লোরিন (F)। ফ্রোরিনের ইলেকট্রন বিন্যাস নিমুরূপ:

 $F(9) \rightarrow 1s^2 2s^2 2p^5$ 

৫৬। নিচের কোনটি তড়িৎ ঋণাত্মকতার সঠিক ক্রম?

[ঢা. বো. ২৩]

(3) Li>Na>K>Rb>Cs

(1) Li > Na > K > Cs > Rb

例 Li > Na > K > Rb > Rb

(1) Li > K > Na > Rb > Cs

উত্তর: কি Li > Na > K > Rb > Cs

ব্যাখ্যা: পর্যায় সারণির কোনো গ্রুপে উপর থেকে নিচে গেলে মৌলের পারমাণবিক আকার বৃদ্ধির সাথে সাথে তড়িৎ ঋণাত্মকতার মান হ্রাস পায়। তড়িৎ ঋণাত্মকতার সঠিক ক্রমটি হবে: Li > Na > K > Rb > Cs

৫৭। A, B এবং C এ তিনটি মৌলের তড়িৎ ঋণাত্মকতা যথাক্রমে 2.1, 3.5 এবং 4.0 হলে, তখন-[ঢা. বো. ২৩]

(i) A2B একটি পোলার সমযোজী যৌগ

(ii) AC ট্রাইমার গঠন করে

(iii) BC2 এর আকৃতি সরলরৈখিক

নিচের কোনটি সঠিক?

( i, ii

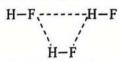
(a) ii, iii

1, iii

(1) i, ii, iii

উত্তর: 📵 i, ii

কু. বো. ২২৷ ব্যাখ্যা: তড়িৎ ঋণাত্মকতার মানের ভিত্তিতে মৌল তিনটি হলো-


..... ACS, > Chemistry 1<sup>st</sup> Paper Chapter-3

A(2.1) → হাইড্রোজেন (H)

B(3.5) → অক্সিজেন (O)

ও  $C(4) \rightarrow$  ফ্লোরিন (F)

- क्षभ्रानुत्रादा, A2B योगिं श्ला भानि (H2O)। अख्रिष्कन ७ হাইড্রোজেনের তড়িৎ ঝণাত্মকতার বেশ পার্থক্যের (3.5-2.1=1.4) জন্য এদের থেকে সৃষ্ট  $H_2O$  একটি পোলার সমযোজী যৌগ।
- AC তথা হাইড্রোজেন ফ্লোরাইড শক্তিশালী হাইড্রোজেন বন্ধনের মাধ্যমে স্থায়ী ট্রাইমার গঠন করে।



■ BC₂ অর্থাৎ, অক্সিজেন ডাইফ্লোরাইড (OF₂) এর আকৃতি সরলরৈথিক নয় বরং মুক্তজোড় ইলেকট্রনের উপস্থিতির জন্য ত্রিভুজাকৃতি বিশিষ্ট হয়। OF2 এর বন্ধন কোণের মান 103°।



৫৮। নিচের কোনটির জলীয় দ্রবণের pH সর্বাধিক?

কু. বো. ২২)

® NH<sub>3</sub>

(1) PH3

(9) HF

(T) H2S

উত্তর: 📵 NH3

ব্যাখা: NH3 ও PH3 এ ফসফরাসের তড়িং ঋণাত্মকতা (2.1) এর চেয়ে নাইট্রোজেনের তড়িৎ ঋণাত্মকতা (3) বেশি।

PH3 এর P এর তুলনায় NH3 এর N পরমাণু কর্তৃক প্রোটন গ্রহণ বা ইলেকট্রন প্রদান ক্ষমতা বেশি হয়। তাই NH3, PH3 এর তুলনায় তীব্র ক্ষার। HF একটি হ্যালোজেনো এসিড। এটি তীব্র এসিড হওয়ায় এর pH অনেক কম। H,S দুর্বল এসিড তাই এর pH এর মান কিছুটা বেশি তবে NH1, PH1 অপেকা কম।

∴ pH এর ক্রম NH₃ > PH₃ > H₂S > HF

৫৯। তড়িৎ ঋণাত্মকতার সঠিক ক্রম কোনটি?

রো. বো. ২১

③ F > O > Cl

例 F>Cl>O

(1) N > I > Br

উত্তর: ﴿ F > O > Cl

ব্যাখ্যা: তড়িৎ ঋণাত্মকতার পর্যায়ভিত্তিক সম্পর্ক: বামে থেকে ডানে গেলে বাড়ে। গ্রুপ ভিত্তিক সম্পর্ক: উপর থেকে নিচে গেলে কমে।

∴ সামগ্রিক তড়িৎ ঋণাত্মকতার ক্রম: F > O > Cl

৬০। কোনটি সর্বাধিক তড়িৎ ঋণাত্মক মৌল?

চি. বো. ২১

® Cl

(4) O

1 N

® F

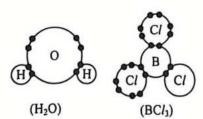
উত্তর: (ম) F

ব্যাখ্যা: আকারের ক্রম: Cl > N > O > F

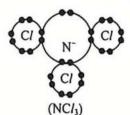
তড়িৎ ঝণাতাকতার ক্রম: F > O > N > Cl

মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ১৫১০ FRB Compact Suggestion Book......৮৫ পোলারায়ন ক্ষমতা আরো বেশি। তাই এসব আয়নের যৌগসমূহ ৬১। নিচের কোনটির তড়িৎ ঋণাত্মকতা সবচেয়ে কম? [দি. বো. ২১] সমযোজী ধর্ম ক্রমানুসারে বৃদ্ধি পায় এবং যৌগসমূহের গলনাল্প (এবং He @ O (T) F ক্ষুটনদ)াঙ্ক) ক্রমশ হ্রাস পায়। যেমন- NaCl (গলনাঙ্ক 801°C) > উ**ডর:** 📵 He MgCl<sub>2</sub> (গলনান্ধ 714°C) > AlCl<sub>3</sub> (গলনান্ধ 190°C)। **ব্যাখ্যাঃ নিদ্রি**য় মৌলের তড়িৎ ঋণাত্মকতা শূন্য। ৬৭। হীরকের গলনাঙ্ক কত °C? ৬২। কোন মৌলটির তড়িং ঋণাত্মকতা বেশি? কু. বো. ২২ **1063** ¶ 1540 **(9)** 3900 **9** 3600 @ O N (P) উত্তর: প্র 3600 উন্তর: 🕸 Cl **ব্যাখ্যা:** হীরকের গলনাঙ্ক 3600 °C। ব্যাখা: একই পর্যায়ের বাম থেকে ডানে তড়িং ঝণাতাকতা বৃদ্ধি পায় ও একই গ্রুপের উপর থেকে নিচে তড়িৎ ঋণাত্মকতা হ্রাস পায়। সে ৬৮। নিচের কোনটির গলনাঙ্ক সবচেয়ে কম? অনুযায়ী Cl > Br > O > N হয়ে থাকে। MgCl<sub>2</sub> AlCl<sub>3</sub> 1 NaCl ৬৩। নিচের কোনটি সবচেয়ে কম তড়িৎ ধনাত্মক? 9 SiCl4 [ঢা. বো. ২৩] উত্তর: 🕦 SiCl4 Na Na (3) Mg ব্যাখ্যাः  $SiCl_4$  যৌগে পোলারায়ন সবচেয়ে বেশি হয়। ফাজানের নীতি (1) K (1) Ca উন্তর: 🕲 Mg অনুযায়ী যৌগের ক্যাটায়নের চার্জ যতো বেশি ঐ যৌগের সমযোজী ব্যাখ্যাঃ পর্যায় সারণিতে একই পর্যায়ে বাম থেকে ডানে তড়িৎ ধনাত্মকতা ততো বেশি হবে পোলারায়ন বেশি হওয়ার দরুণ। সমযোজী বৈশিষ্ট্য হ্রাস পায় ও একই গ্রুপে উপর থেকে নিচে তড়িৎ ধনাত্মকতা বৃদ্ধি সবচেয়ে বেশি হওয়ার কারণে SiCl4-এ গলনাঙ্ক সবচেয়ে কম হয়-পায়। এজন্য এখানে Mg সবচেয়ে কম তড়িৎ ধনাত্মক। SiCl4-এর ক্যাটায়ন Si4+  $AlCl_3$ -এর ক্যাটায়ন  $Al^{3+}$ ৬৪। নিষ্ক্রিয় গ্যাসসমূহের ইলেকট্রন আসজি- $MgCl_2$ -এর ক্যাটায়ন  $Mg^{2+}$ ক বেশি NaCl-এর ক্যাটারন Na প্ৰ শূন্য ত্বি কোনোটিই নয় উত্তর: গ্র শূন্য ৬৯। আয়নিক যৌগের স্ফুটনাঙ্ক সমযোজী যৌগের চেয়ে– ব্যাখ্যা: নিদ্রিয় গ্যাসমূহের ইলেকট্রন কাঠামো স্থিতিশীল। এজন্য নিদ্রিয় ক্তি খুব কম খুব বেশি গ্যাসমূহের ইলেকট্রন আসক্তি শূন্য। গ) মাঝামাঝি (ছ) কোনোটিই নয় ৬৫। কোন সমযোজী যৌগের অণুতে দুটি ভিন্ন ইলেকট্রন যুগলকে একটি উত্তর: ২ খুব বেশি পরমাণু নিজের দিকে বেশি আকর্ষণ করার ক্ষমতাকে সেই মৌলের কী ব্যাখ্যা: আয়নিক যৌগের ক্লুটনাঙ্ক সমযোজী যৌগের চেয়ে খুব বেশি। বলা হয়? কেননা আয়নিক বন্ধন সমযোজী বন্ধন অপেক্ষা অধিক শক্তিশালী। ক্তি আয়নিকরণ বিভব ৭০। পর্যায় সারণির বাম দিক থেকে ডান দিকের মৌলসমূহে ধাতব ধর্মে ইলেকট্রন আসজি কোন ধরনের পরিবর্তন ঘটে? তিড়িৎ ঋণাত্মকতা ক্ত হ্রাস পায় বৃদ্ধি পায় ত্বি তড়িৎ ধনাত্মকতা প্রিবর্তিত থাকে থি ধারাবাহিকতা থাকে না উন্তর: গ্র তড়িৎ ঋণাত্মকতা উত্তর: 🕸 হ্রাস পায় ব্যাখ্যা: একই পর্যায়ের বাম থেকে ডানে ইলেকট্রন আসক্তির মান বৃদ্ধি পায়। ব্যাখ্যা: একই পর্যায়ে বাম থেকে ডানে ধাতব ধর্ম হ্রাস পায় ও অধাতব ধর্ম ৬৬। NaCl-এর গলনাংক কত? [ঢা. বো. ১৬] বৃদ্ধি পায়। ₱ 776°C <sup>®</sup> 801°C ৭১। কোনটি অমুধর্মী অক্সাইড? ⑨ 626°C ® 862°C [য. বো. ২৩] ⊕ CO₂ ℚ ZnO উত্তর: 🕲 801°C 1 B2O3 ব্যাখ্যা: পর্যায় সারণির যেকোনো পর্যায়ে বামদিক থেকে যতই ডানদিকে (1) Al2O3 উত্তর: 📵 CO2 যাওয়া যায়, ক্যাটায়নসমূহের ধনাত্মক চার্জ তত বৃদ্ধি পায়; ফলে ব্যাখ্যাঃ যে সকল অক্সাইড পানির সাথে বিক্রিয়া করে এসিড উৎপন্ন করে অধিক চার্জযুক্ত ক্যাটায়নের পোলারায়ন ক্ষমতাও ততই বৃদ্ধি পায়। এবং ক্ষারের সাথে বিক্রিয়ায় লবণ ও পানি উৎপন্ন করে তাদের অশ্লীয় ফলে যৌগটিতে সমযোজী বৈশিষ্ট্য বৃদ্ধি পায়। তাই সংশ্লিষ্ট যৌগের অক্সাইড বলা হয়। উদাহরণস্বরূপ-গলনাঙ্ক হ্রাস পায়। তৃতীয় পর্যায়ের Na<sup>+</sup> আয়ন এর চেয়ে Mg<sup>2+</sup>

Rhombus Publications


P<sub>2</sub>O<sub>5</sub>, P<sub>2</sub>O<sub>3</sub>, SO<sub>3</sub>, SO<sub>2</sub>, Cl<sub>2</sub>O<sub>7</sub> প্রভৃতি।

আয়নের পোলারায়ন ক্ষমতা বেশি।  $Mg^{2+}$  আয়ন অপেক্ষা  $Al^{3+}$  আয়নের


| <b>№</b> |                                                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | . ACS, > Chemistry 1 tl Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-----------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| १२ ।     | কোন অক্সাইডটি ক্ষারধর্মী?                                                         |                                  | [ব, বো. ১৯]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ৭৬। সর্বাপেক্ষা শক্তিশালী               | ক্ষার কোনটি?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | हि. त्वा. २०                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                                                                                   | MgO                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ⊕ SiO <sub>2</sub>                                                                | $ P_2O_5 $                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CsOH                                    | ҈ № ВЬОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | : ® MgO                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | উন্তর: 🚳 NaOH                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ব্যাখ্য  | া: ক্ষারীয় অক্সাইডসমূহ এসিয়ে                                                    | <b>৬র সাথে বিক্রিয়া</b> য় ল    | বিণ ও পানি উৎপন্ন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N. W                                    | থেকে নিচে গেলে ক্ষারকড়ু হ্রা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The Control of the Co |
|          | করে। উদাহরণস্বরূপ-<br>Li <sub>2</sub> O, Na <sub>2</sub> O, K <sub>2</sub> O, MgO | , CaO, CuO, FeO                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rb, Cs একই গ্রুপে<br>ক্ষার।             | ার উপর থেকে নিচে হওয়ায় 🗅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VaOH শক্তিশার্টী                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 901      | কোনটি উডধর্মী অক্সাইড?                                                            |                                  | [সি. বো. ২৩]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ৭৭। কোনটি উভধর্মী অক্স                  | ইড?[ম. বো. ২২৷ কু. বো. ১৭: ব. ০                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | वा. ১७। ह. व्वा. ১५।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                   | Na₂O₂                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ⊕ Li <sub>2</sub> O                     | ⊕ BeO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ⑨ KO <sub>2</sub>                                                                 | ® Fe <sub>2</sub> O <sub>3</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ⊕ CO <sub>2</sub>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| উত্তর    | : <b>③</b> Al <sub>2</sub> O <sub>3</sub>                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | উন্তর: ﴿ BeO                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ব্যাখ    | াঃ উভধৰ্মী অক্সাইডসমূহ এসিং                                                       | ড ও ক্ষার উভয়ের স               | াথে বিক্রিয়ায় লবণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ব্যাখ্যা: Na2O পানির সাথে               | বিক্রিয়া করে তীব্র ক্ষার NaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H উৎপন্ন করে।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | ও পানি উৎপন্ন করে। উদাহর                                                          | ণস্বরূপ–                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | তাই এটি ক্ষারধর্মী।                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Al <sub>2</sub> O <sub>3</sub> , ZnO, SnO <sub>2</sub> , PbO                      | , PbO <sub>2</sub>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Na_2O + H_2O \rightarrow 2$            | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _        | উদ্দীপকের আলোকে ৭৪ ও ৭                                                            | ০০ নাং প্রায়ের টাকর ভ           | ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Li₂O ও ক্ষারধর্মী, C                    | O₂ অম্লধর্মী, কিন্ত BeO এসিড                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ও ক্ষার উন্তরের                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | क्षानात्क्य्र जात्नात्क पठ उ                                                      | १८ गर व्यव्यक्ष ७७५ म            | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | সাথে বিক্রিয়া করে ত                    | াই এটি উভধর্মী অক্সাইড।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | भर्याग्र ↓                                                                        | 13                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ৭৮। কোন অক্সাইডটি ক্ষার                 | ধর্মী?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | বি. বো. ১৯)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | भवाश 🗸                                                                            | X                                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ③ Al <sub>2</sub> O <sub>3</sub>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14. 041. 313)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | [X ও Y মৌলের প্রচলিত ও                                                            |                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n SiO <sub>2</sub>                      | (a) P <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00 1     | X মৌলের অক্সাইডের অম্লুড়                                                         |                                  | রো. বো. ২২                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | উন্তর:                                  | G 1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| וסר      | 3 2                                                                               | <b>®</b> 4                       | [sir. cqi. <b>4</b> -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | <b>9</b> 6                                                                        | ® 8                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ৭৯। অক্লাইডের সংকেত বে                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ব. বো. ২৩]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| উত্তর    | ÷ <b>⊚</b> 6                                                                      | Q 0                              | DMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>③</b> O₂                             | <b>④</b> O <sup>2−</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | া: X গ্রুপ- 13 এবং পর্যায়                                                        | -3 এ অবস্থান করার                | তা অ্যালমিনিয়াম                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¶ 2O <sub>2</sub>                       | ⊙ O <sub>2</sub> <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | (AI)। স্যালুমিনিরাম সম্রাই                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | উন্তর: <b>ব্ড</b> O <sup>2-</sup>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ক্ষারক। কোন ক্ষারক যত মে                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bo । कान त्योत्ति क्रमीस प              | বেণের pH মান বিল্ডদ্ধ পানির p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H অপেক্ষা কয                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | প্রশমিত করে তাকে তার অস্ত্রু                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | व्दवः                                   | facta bir alatta ar may b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | বি. বো. ২২                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70       | $Al_2O_3 + 6HCI \rightarrow 2AICI$                                                | •                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11. 01. 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | Al₂O₃ থেছেড় 6 mol HCl বে                                                         |                                  | সূতরাং অম্রত্ব 6।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | © CO<br>© CaO                           | (a) CO₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 961      | X ও Y মৌল ঘারা গঠিত যৌ                                                            | াগটি-                            | ারা. বো. ২২                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>উ</b> खतः <b>(९)</b> CO <sub>2</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | (i) ডাইমার গঠন করে                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ৮১। কোনটি প্রশম অক্সাইড                 | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [সি. বো. ২৩]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | (ii) তাপ প্রয়োগে উর্ধ্বপাতিত                                                     | <b>र</b> ग्र                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | N₂O₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | (Hi) জলীয় দ্রবণ অম্লুধর্মী                                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ® NO₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | নিচের কোনটি সঠিক?                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | উন্তর: 🕲 NO                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | i № i 🚳                                                                           | iii v ii 🕞                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | এসিড বা ক্ষার কোনটির সাৎে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | াই বিক্রিয়া করে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | ⑨ i ાii છ                                                                         | ii v ii 🕝                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ना। यमन- CO, N <sub>2</sub>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| উভর:     | (n) i, ii v iii                                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0,110,1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ব্যাখ্য  | াঃ (i) উদ্দীপকের X ও Y ঘারা                                                       | গঠিত যৌগ হলো A                   | ICI3. AICI3 এর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | AI পরমাণুর যোজ্যতান্তরে 6টি                                                       | देलक्षेन थाकारा वर्ष             | ট অষ্টক সংকোচন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | রাসায়ানক বঞ্চন (ত                      | ায়নিক, সমযোজী, সন্লিটে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | বশ বন্ধন)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | ঘটে এবং পার্শবর্ডী AICI3 অং                                                       | াুর C/ পরমাণুর মুক্ত             | ভোড় ইলেকট্রনকে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ৮২। কেন্দ্রীয় পরমাণুর অষ্টব            | <b>ক পূর্ণ হচ্ছে-।কু. বো. ২৩।</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | থ্রহণ করে ডাইমার অপু Al2CI                                                        |                                  | Market Committee of the | (i) H <sub>2</sub> O                    | Colonia de la colonia de la esta della vida della colonia |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | (ii) AICI3 व नगरपाथी देव                                                          | 176                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ii) BCl <sub>3</sub>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ল্যাটিস শক্তি থাকে না তাই সহ                                                      |                                  | - San Carlotte Commence of the | (iii) NCI <sub>3</sub>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | (iii) AICI3 অপীয় দ্রবণে শক্তি                                                    |                                  | UNI 1871 - 1787 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | নিচের কোনটি সঠিক?                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | এর অপ্লীয় দ্রবণ অম্লুধর্মী হয়।                                                  | ,,                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ⊚ i, ii                                 | ҈ ii, iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $A/Cl_3 + NaOH \longrightarrow A/(Cl_3 + NaOH)$                                   | OH) <sub>3</sub> + 3HC/          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) i, iii                              | ® i, ii, iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                   | শর সবল এসিড                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | উত্তর: প i. iii                         | O -,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ACS) FRB Compact Suggestion Book......৮৭

ব্যাখ্যা:







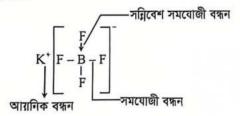
চিত্র হতে H2O অণুতে O এর বহিঃস্তরে ৪টি ইলেকট্রন BCl3 এর B এর বহিস্তরে 6টি ইলেকট্রন এবং NCI, এর N এর বহিস্তরে 8টি ইলেকট্রন রয়েছে। তাই BCl3 এ অষ্টক সংকোচন ঘটে।

৮৩। অষ্টক অসম্পূর্ণ যৌগ কোনটি?

রা. বো. থা

- ® NH₁
- @ BF1
- @ PC/3
- (1) PCIs

उँ स्त्रः अ BF1


ব্যাখা: BF3 এর ক্ষেত্রে অষ্টক সংকোচন ঘটে। BF3 এর ক্ষেত্র, B- এর সর্বশেষ বা ঘোজাতা ইলেকট্রন ৩টি এবং ৩টি F পরমাণ্র সাথে ৩টি दैल्कियुन भारात करत पाँछ ७७ देलकियुन नाज करत। या पाउँक সংকোচন। NH3 ও PC/3 এ অষ্টক পূর্ণ ও PC/5 এর ক্ষেত্রে অষ্টক সম্প্রসারণ ঘটে।

**७८। कान योग जाम्रिक, नययां अ अनिदर्भ नययां** বন্ধণ বিদ্যমান? যি. বো. ২৩]

- 3 KBF4
- @ HC/O4
- ® H2SO4

हिंडब: ③ KBF4

द्मार्थाः KBF₄ योणে जारानिक, সমযোজी ও সন্নিবেশ সমযোজी वक्षन



िट । PH₄C/ त्यारा विमामान वक्तन-

বু. বো. ২৩

- (i) সায়ণিক
- (H) সমবোজी
- (III) সন্নিবেশ

নিচের কোনটি সঠিক?

@ i, ii

- (1) ii, iii
- (9) i, iii
- (1) i, ii, iii

🕏 हनः 🕲 i, ii, iii

3ि সমযোজी (P - H), 1ि সিন্নবেশ বন্ধন (P  $\rightarrow$  H) ও 1ि आग्रानिक वन्नन (PH + CI) विमायान ।

নিচের উদ্দীপক পড় এবং প্রশ্নের উত্তর দাও।

| श्रमारा ↓ | 1 | 15 | 17 |
|-----------|---|----|----|
| 1         | Х |    |    |
| 2         |   | Y  |    |
| 3         |   |    | Z  |

৮৬। YX₄Z योरा कग्न धत्रत्मत वन्नामान?

मि. ला. २०।

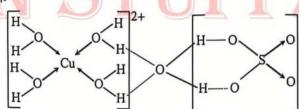
- (9) 3
- **9** 4

উন্তর: 🔊 3

बार्थाः भर्यारा সাत्रित जवञ्चान जनुসात्त, X, Y ७ Z त्रोन जिनि रतना যথাক্রমে হাইড্রোজেন (H), নাইট্রোজেন (N) ও ক্লোরিন (Cl)। সুতরাৎ, YX4Z যৌগটি হচ্ছে NH4Cl তথা অ্যামোনিনাম ক্লোরাইড। NH4C/ এর মধ্যে তিন প্রকার বন্ধন আছে, যথা: (i) সমযোজী বন্ধন, (ii) সন্নিবেশ বন্ধন ও (iii) আয়নিক বন্ধন।



৮৭। CuSO4.5H2O योगा कग्र धत्रत्वत वन्नन विमामान?


(রা. বো. ২২: দি. বো. ১৭)

- @ 2
- **1** 4

**3 (9)** 5

উন্তর: 🗿 4

ব্যাখা:



CuSO<sub>4</sub>. 5H<sub>2</sub>O

এখানে 4 প্রকারের বন্ধন রয়েছে

- (i) সমযোজী বন্ধন সংখ্যা = 120
- (ii) সন্নিবেশ বন্ধন সংখ্যা = 6টি
- (iii) হাইড্রোজেন বন্ধন = 4টি
- (iv) आरागिक वन्ना = 1 ि

৮৮। ক্লোরিন অণুতে কোন ধরনের বন্ধন বিদ্যমান?

বি. বো. ১৯]

- তারানিক বন্ধন
- অপোলার সমযোজী বন্ধন
- (१) (भागात अभारताकी वक्षन
- প্রান্থেশ বন্ধন

উত্তর: 📵 অপোলার সমযোজী বন্ধন

ব্যাষ্যা:  $Cl_2$  অণুতে দুটি Cl পরমাণুর মাঝে ডড়িৎ ঋণাজ্মকতার পার্থক্য  $\Delta E_N = 3 - 3 = 0$  হওয়ায় এটি একটি অপোলার সমযোজী যৌগ।

দি বো. ১৬। ৯৩। নিচের কোন বন্ধনটি সবচেয়ে বেশি শক্তিশালী? ৮৯। SO, যৌগে বিদ্যমান বন্ধন হলো बित, दबा. २३] (i) 3 টি সমযোজী বন্ধন পাই-বন্ধন পি সিগমা-বন্ধন (ii) 2 টি সন্লিবেশ বন্ধন ছি ভ্যানডার-ওয়ালস বল ডাইড্রোজেন-বন্ধন
 (iii) 1 ि সমযোজী বন্ধन উন্তর: (ব) সিগমা-বন্ধন নিচের কোনটি সঠিক? ৯৪। অ্যাসিটিলিনের অণুতে কোন বন্ধনসমূহ রয়েছে? (ड. ट्ला. म्या (3) i (1) ii ③ 1σ, 2π (1) ii e iii 3σ, 2π (B) i, ii vs iii উন্তর: 何 ii ও iii 9 3σ, 1π (B) lσ, lπ ব্যাখ্যা: S ও O এর ইলেকট্রন বিন্যাস: উত্তর: 🕸 3ত, 2π  $S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^4$ ব্যাখ্যা: অ্যাসিটিলিনের সংকেত C<sub>2</sub>H<sub>2</sub>।  $O(8) \rightarrow 1s^2 2s^2 2p^4$ এর গাঠনিক সংকেত,  $H - C \equiv C - H$ XQX সূতরাং, 3টি σ এবং 2টি π বন্ধন বিদ্যমান। ৯৫। निरुत्र কোন অরবিটালটি পাই বন্ধন গঠনে অংশগ্রহণ করে? দি. ব্যে ২১। (ৰ) p-অরবিটাল ক s-অরবিটাল প) d-অরবিটাল (ম) f-অরবিটাল ∴ SO₃ যৌগে 2 ि সন্নিবেশ বন্ধন ও 1ि সমযোজী বন্ধন বিদ্যমান। উত্তর: 🕲 p-অরবিটাল নিচের উদ্দীপকের পড় এবং ১০ ও ১১ নং প্রশ্নের উত্তর দাও: ৯৬। Cl অণুর মুক্ত জোড় ইলেকট্রন কত জোড়? চি. বো. ২২ মৌল ইলেকট্রন বিন্যাস তড়িৎ ঋণাত্মকতা **(4)** 0 (4) 1 ns2 (F) 3 L **1** 2 উত্তরঃ 🕲 3  $(n+1)s^2$ M ব্যাখ্যা: দূটি ক্লোরিন পরমাণুর মধ্যে একক বন্ধন বিদ্যমান। একক বন্ধন দুটো ns2 np5 3.0 N ইলেকট্রন ধারণ করে তাই দুটো ইলেকট্রন আদান প্রদানের জন্য থাকে। এখানে, n = 3 তাই প্রত্যেকটি ক্লোরিন পরমাণুতে 3টি মুক্ত জোড় ইলেকট্রন থাকে। ৯০। N2 অণুর ক্ষেত্রে কোনটি প্রযোজ্য? [কু. বো. ২৩] মুক্ত জোড় ইলেকট্রন একটি
 অপোলার সমযোজী :ČI - ČI: পালার সমযোজী (ছ) sp সংকরণ বিশিষ্ট উত্তর: (ব) অপোলার সমযোজী ৯৭। ক্লোরিন অণুতে কোন ধরনের বন্ধন বিদ্যমান? বি বো ১৯ ব্যাখ্যা: n=3 হলে, N মৌলটি হলো ক্লোরিন (Cl)। তাহলে,  $N_2$  হচেছ ক্ত আয়নিক বন্ধন অপোলার সমযোজী বন্ধন ক্লোরিন অণু (Cl2); যা প্রকৃতপক্ষে একটি অপোলার সমযোজী অণু। পালার সমযোজী বন্ধন সিরবেশ বন্ধন উত্তর: খি) অপোলার সমযোজী বন্ধন ৯১। LN2 এবং MN2 এর মধ্যে MN2 অধিক-[কু. বো. ২৩] ব্যাখ্যা: Cl2 অণুতে Cl – Cl সমযোজী বন্ধন গঠন করে। এক্ষেত্রে বন্ধন (i) গলনান্ধবিশিষ্ট জোড় e থাকে 1টি। এক্ষেত্রে দুটি পরমাণুই একই। যার ফলে তড়িৎ (ii) পানিতে দ্রবণীয় ঝণাত্মকতার পার্থক্য শূন্য। ফলশ্রুতিতে পোল বা মেরু তৈরি হওয়ার (iii) সমযোজী নিচের কোনটি সঠিক? ' প্রবণতা নেই। @ i, ii (ii, iii ৯৮। NH3BF3 যৌগে বিভিন্ন পরমাণুর মধ্যে বন্ধন আছে-[দি. বো. ২১] 1, iii (1) i, ii, iii (i) আয়নিক উত্তর: 🕸 i, ii (ii) সমযোজী ব্যাখ্যা: LN2 ও MN2 হলো যথাক্রমে MgCl2 এবং CaCl2। MgCl2 (iii) সন্নিবেশ অপেক্ষা  $CaCl_2$  এর ক্যাটায়নের আকার বড় হওয়ায় এতে পোলারায়ন কম তাই আয়নিক বৈশিষ্ট্য যেমন: গলনাঙ্ক, দ্রাব্যতা বেশি নিচের কোনটি সঠিক? i vi  $MgCl_2$  এর পোলারায়ন বেশি হওয়ায় সমযোজী বৈশিষ্ট্য বেশি । (a) ii e iii ति i ७ iii (1) i, ii v iii ৯২। কোনটিতে সমযোজী বন্ধন অনুপস্থিত? [ঢা. বো. ২১] উত্তর: ﴿ ii ও iii (4) HBr H F H F 1 BeCl2 ♥ CaF<sub>2</sub> উত্তর: 🕲 CaF2 ব্যাখা: H - N: + B - F - $\rightarrow H - N : \rightarrow B - F$ ব্যাখ্যা: ধাতু + অধাতু = আয়নিক যৌগ অধাতু + অধাতু = সমযোজী যৌগ H Be –এর আকার ক্ষুদ্র ও উচ্চ আয়নিকরণ শক্তির জন্য ক্যাটায়ন তৈরি দেখা যাচ্ছে যে, সমযোজী বন্ধন এবং সন্নিবেশ সমযোজী বন্ধন এর

করতে পারে না।

মাধ্যমে H<sub>3</sub>N: → BF<sub>3</sub> গঠিত হয়।

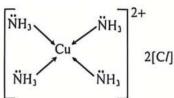
মৌলের পর্যায়নৃত ধর্ম ও রাসায়নিক নন্ধন > ACS/ FRB Compact Suggestion Book...... ৮%

#### ৯৯। [Cu(NH3)4]C/2 বৌগে মোট কয়টি বন্ধন বিদ্যাসন?

গিদিখিত সোর্ছ, সো, ১৮।

**3** 6

(P) 8


(¶) 14

(1) 18

উন্তর: 🕲 18

ব্যাখ্যা: [Cu(NH<sub>3</sub>)<sub>4</sub>]C/<sub>2</sub> বৌগটিতে বিদ্যমান বন্ধনলমূহ-

- (i) 12ि शमरपाखी वन्नन
- (ii) 40 সहिरवन সমযোজী वन्नन
- (iii) 20 जाग्रनिक वन्नन
- মোট 18টি বন্ধন বিদ্যামান।



\_

সংকরায়ন, যৌগের আকৃতি ও বন্ধন কোণ

- ১০০।sp² সংকরণ সংঘটিত হয়–
  - (I) CO<sub>2</sub>
  - (II) SO<sub>2</sub>
  - (III) BF<sub>3</sub>

নিচের কোনটি সঠিক?

- @ i, ii
- @ ii, iii
- 1, iii

(1) i, ii, iii

উন্তর: @ ii, iii

ব্যাখ্যা: সংকরায়ন =  $\frac{1}{2}$  (V + M – C + A)

$$CO_2$$
 এর সংকরণ =  $\frac{1}{2} \times (4 + 0 - 0 + 0) = 2 \rightarrow sp;$ 

$$SO_2$$
 अत সংকরণ =  $\frac{1}{2} \times (6 + 0 - 0) = 3 \rightarrow 6p^2$ ;

BF<sub>3</sub> এর সংকরণ = 
$$\frac{1}{2} \times (3 + 3 - 0) = 3 \rightarrow sp^2$$
;

১০১। sp² হাইব্রিডাইজেশনে ক্যাটি হাইব্রিড অরবিটাল ডৈরি হয়? ারা. লো. ২২

**③** 2

(9) 3

(9) 4

**9** 5

উন্তর: (ব) 3

ব্যাখা: কোনো পরমাণুর যোজ্যতাস্তরের একটি s এবং দুইটি p অরবিটাল সংকরিত হয়ে ডিনটি সমশক্তিসম্পন্ন অরবিটাল উৎপন্ন করার প্রক্রিয়াকে sp<sup>2</sup> হাইব্রিডাইজেশন বলে।

- ১০২। কোনটির কেন্দ্রীয় পরমাণুর সংকরায়ন ভিন্ন?
- म. ला. २०।

3 PH3

- @ CO2
- @ NH'

উত্তর: (ৰ) CO2

ব্যাখ্যা: কেন্দ্রীয় পরমাণুর সংকরণ অবস্থা নির্ণয়:

$$H = \frac{1}{2} [V + M - C + A]$$

- PH, 细哥 の中の田, H 1/2 [6+3 0+0] 4
- ं. PH1 वान क्रिकीस जनगान P op' गरमविज
- CO, यह का का मि 1/2 |4+0 0+0|-2
- ं, CO2 धन राज्यीय नम्मान् C op.नश्मितिक।
- B সাধারণত জনস্থার Si(14) → 10' 20' 25° 30' 3p' 6/814 উচেটিক জনস্থায়।

- NH' अत *एक*रत, H 1/2 (5 + 4 1) 4
- ∴ NII, এর দেন্দ্রীয় পরাদাপু S sp¹ সমেরিভ। অভএব, এদের মধ্যে CO₂ এর দেন্দ্রীয় পরাধাপুর সমেরায়ন ভিন্ন।

১০০ INH वाज्ञात । अन्त जल्मत्तम कामणि १

नि, जा, १९। नि, जा, १३। ह. जा, ५५: अनुक्रम न, जा, ५५।

@ ap

[मि. जा. **२**०]

(D op 1

- (9 sp)
- @ op'd

राभाः x = 1/2 (V + M − C + A

$$-\frac{1}{2}(5+4+1+0)$$

$$-\frac{1}{2} \times 8 = 4 - 90^{1}$$

১০৪।কোন হাইব্রিডাইজেশন দ্বারা H<sub>1</sub>O জপু গঠিত হন্ন?

जि. जा. बड़ी

@ sp

9 5p

- @ sp'
- @ sp'd

উন্তর: இ sp¹
ব্যাখ্যা: x = ½ (V + M – C + A)

$$-\frac{1}{2}(6+2-0+0)$$

- $-\frac{1}{2} \times 8 4$
- 🗅 🛮 উদ্দীপকের স্বালোকে ১০৫ গ্র ১০৬ দং প্রস্নের উন্তর দাওঃ

17A, 13D, 8Y

১০৫। D ও Y দারা গঠিত বৌদের ক্ষেত্রে-

**酒, 四, 99** 

- (1) সাধারণ অবস্থার ডরল
- (॥) जान्ननिक धर्म विमामान
- (III) উন্তধর্মী

गिरुत कागणि निरुक्

- @ivi
- M fi & fii
- @ i viii
- (1) i, H. & HI
- **উउतः** ﴿ ii ७ iii

...... ACS, > Chemistry 1<sup>st</sup> Paper Chapter-3

ব্যাখ্যা: D এর পারমাণবিক সংখ্যা 13 হওয়ায় তা অ্যালুমিনিয়াম এবং Y এর ১০৯। C₂H₄ অণুতে C – H বন্ধনন্তলো নিচের কোন অরবিটালঘয়ের পারমাণবিক সংখ্যা 8 হওয়ায় তা অক্সিজেন (O)। D ও Y দ্বারা গঠিত যৌগ Al<sub>2</sub>O<sub>3</sub>।

অম্লরপে:  $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$ ফারকরপে:  $Al_2O_3 + 6 HCI \rightarrow 2AlCl_3 + 3H_2O$ 

সূতরাং, এটি অমু ও ক্ষার উভয় হিসেবে ক্রিয়া করে। Al<sub>2</sub>O<sub>3</sub> এ অ্যালুমিনিয়াম ধাতু ও অক্সিজেন অধাতু হওয়ায় এদের মধ্যে আয়নিক ধর্ম বিদ্যমান। Al<sub>2</sub>O<sub>3</sub> সাধারণ তাপমাত্রায় সাদা কঠিন বর্ণের পদার্থ।

১০৬। D ও A দারা গঠিত যৌগে 'D' এ কী ধরনের সংকরায়ন ঘটে?

কু. বো. ২২)

| <b>(4)</b> | $sn^3d$ |
|------------|---------|
| 0          | sp u    |

উত্তর: 何 sp²

ব্যাখ্যা: A এর পারমাণবিক সংখ্যা 17 হওয়ায় তা ক্লোরিন (CI)। D ও A দ্বারা গঠিত যৌগ AICI3

$$x = \frac{1}{2} (V + M - C + A)$$

$$= \frac{1}{2} (3 + 3 - 0 + 0)$$

$$= \frac{1}{2} \times 6$$

$$= 3$$

$$= sp^{2}$$

| □ মৌল |   | বহিঃস্তরের ইলেক্ট্রন বিন্যাস |
|-------|---|------------------------------|
|       | A | $(n-1)s^{1}$                 |
|       | В | ns²np⁴                       |
|       | X | $(n+1)s^2(n+1)p^4$           |

উদ্দীপকের আলোকে ১০৭ ও ১০৮ নং প্রশ্নের উত্তর দাও:

১০৭।  $A_2B$  ও  $A_2X$  এর ভৌত অবস্থা ভিন্নতার কারণ–

[চ. বো. ১৯]

- আয়নিক বন্ধন
- সমযোজী বন্ধন
- গ্ৰ হাইড্ৰোজেন বন্ধন
- ছি সন্নিবেশ বন্ধন

উত্তর: প্র হাইড্রোজেন বন্ধন

ব্যাখ্যা: লক্ষ্যণীয়,  $A \rightarrow (n-1)s^1 \rightarrow (2-1)s^1 \rightarrow 1s \rightarrow H$ 

 $B \rightarrow ns^2 np^4 \rightarrow 1s^2 2s^2 2p^4 \rightarrow O$ 

 $X \to (n+1)s^2 (n+1)p^4 \to 1s^2 2s^2 2p^6 3s^2 3p^4 \to S$ 

অর্থাৎ,  $A_2B$  ও  $A_2X$  প্রকৃতপক্ষে  $H_2O$  ও  $H_2S$ .

 $\mathrm{H}_2\mathrm{O}$  ও  $\mathrm{H}_2\mathrm{S}$  এর ভৌত অবস্থা ভিন্নতার কারণ হাইড্রোজেন বন্ধন। অক্সিজেন উচ্চ তড়িৎ ঋণাত্মক মৌল হওয়ায় H বন্ধন গঠন করে।

১০৮।A₂X যৌগের ক্ষেত্রে–

[চ. বো. ১৯]

- (i) sp<sup>3</sup> সংকরণ ঘটে
- (ii) বন্ধন কোণ 104.5°
- (iii) অণুতে 2টি মুক্ত জোড় ইলেকট্রন বিদ্যমান

নিচের কোনটি সঠিক?

- i v i
- ৰ i ও iii
- প্র ii ও iii
- (T i, ii (S iii

উত্তর: 🕲 i ও iii

ব্যাখ্যা:  $A_2X$  যৌগটি হলো  $H_2S$ .

 $m H_2S$  এর  $m sp^3$  সংকরণ ঘটে যেখানে m 2D মুক্তজোড় ইলেকট্রন বিদ্যমান।  $H_2S$  অণুর H-S-H বন্ধন কোণের মান  $109.5^\circ$  হতে হ্রাস পেয়ে 92° হয়ে থাকে।

অধিক্রমণের ফলে গঠিত হয়?

যি. বো. ২৩; অনুরূপ য. বো. ১৯]

- $(sp^2) + H(1s)$
- (1)  $C(sp^2) + H(2s)$
- $(sp^3) + H(1s)$

উত্তর: 📵 C(sp²) + H(1s)

ব্যাখ্যা:  $C(6) \rightarrow 1s^2 \underbrace{2s^1 2p_x^1 2p_y^1 2p_z^1}_{[sp^2 সংকরিত]} 2p_z^1$ 

 $H(1) \rightarrow 1s^1$ 

 $C_2H_4$  অণুতে C-H বন্ধনগুলো কার্বনের সংকরিত  $sp^2$  অরবিটান্স এবং হাইড্রোজেনের s-অরবিটালের অধিক্রমণের ফলে গঠিত হয়।

১১০। হাইব্রিডাইজেশন ও বন্ধন কোণ উভয়ই সঠিক কোনটিতে? [চ. বো. ২৩]

- **Theorem 3.1**  $\Rightarrow$  PH<sub>3</sub>(sp<sup>3</sup> 90°)
- NH<sub>3</sub>(sp<sup>3</sup> 120°)
- $\mathfrak{I}_2O(sp^3-107^\circ)$
- $BF_3(sp^2 120^\circ)$

উত্তর: 📵 BF<sub>3</sub>(sp<sup>2</sup> – 120°)

ব্যাখ্যা:  $NH_3 \rightarrow sp^3 \rightarrow 107^\circ$ 

 $H_2\ddot{O} \rightarrow sp^3 \rightarrow 104.5^\circ$ 

 $PH_3 \rightarrow No hybridization \rightarrow 93.5^{\circ}$ 

১১১। বন্ধন কোণ বৃদ্ধির সঠিক ক্রম কোনটি?

রা. বো. ২৩; সি. বো. ১১|

- NH<sub>3</sub> < CH<sub>4</sub> < H<sub>2</sub>S < H<sub>2</sub>O
- 3 H<sub>2</sub>S < H<sub>2</sub>O < NH<sub>3</sub> < CH<sub>4</sub>
- TH4 < H2S < H2O < NH3</p>

উত্তর: <a>ৰ H<sub>2</sub>S < H<sub>2</sub>O < NH<sub>3</sub> < CH<sub>4</sub></a>

ব্যাখ্যা: বন্ধন কোণ বৃদ্ধির সঠিক ক্রম হবে:

 $H_2S(92^\circ) < H_2O(104.5^\circ) < NH_3(107^\circ) < CH_4(109^\circ28^\prime)$ 

১১২। বন্ধন কোণের কোন ক্রমটি সঠিক?

- 3 BF<sub>3</sub> > BeC $l_2$  > H<sub>2</sub>O > NH<sub>3</sub>
- $\mathfrak{G}$  BeC $l_2 > NH_3 > BF_3 > H_2O$
- $\textcircled{BeC}l_2 > BF_3 > NH_3 > H_2O$

উত্তর: 📵 BeCl<sub>2</sub> > BF<sub>3</sub> > NH<sub>3</sub> > H<sub>2</sub>O

ব্যাখ্যাঃ মৌল চারটির বন্ধন কোণের ক্রমটি হবেঃ

 $BeCl_2(180^\circ) > BF_3(120^\circ) > NH_3(107^\circ) > H_2O(104.5^\circ)$ 

১১৩। PCI₅ অণুতে বিদ্যমান বন্ধন কোণের মান কত?

[ঢা. বো. ২২; অনুরূপ সম্মিপিত বো. ১৮]

- ⊕ 90°
- (4) 105°
- 107°
- ₹ 109°

উত্তর: 📵 90°

ব্যাখ্যা: PCl₅ এর সংকরায়ন sp³d এবং এর আকৃতি নিমুরূপ:



CIPCI সমতলে কোণ 120° এবং CIPCI উলম্ব তলে 90°

মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ১৫১, FRB Compact Suggestion Book.....

20

#### ১১৪। পানির অণুতে ∠HOH এর মান কত?

ক্. বো. ২২, ১৯: ব. বো. ১৭: চা. বো. ১৫)

**③** 109°

@ 107°

⑨ 104.5°

উব্তর: 🕲 104.5°

ব্যাখ্যাঃ



#### ১১৫। H<sub>2</sub>S অণুর বন্ধন কোণ কত?

চি. বো. ২২

**③** 109°

@ 107°

92°

(9) 72°

উত্তর: গ 92°

ব্যাখ্যা: H<sub>2</sub>S এ sp<sup>3</sup> সংকরায়ন হয়। ফলে বন্ধন কোণ 109.5° হওয়ার কথা থাকলেও *l.*p – *lp* > *l.*p – b.p > b.p – bp বিকর্যণে বন্ধন কোণ কমে 92° হয়।

১১৬। CO2 যৌগের কেন্দ্রীয় মৌলের সংকরায়ন হলো-

[য. বো. ২১]

⊕ sp
 □

sp²

⑨ sp³

® sp3d

উত্তর: 🚳 sp

ব্যাখ্যা:  $CO_2$  এর সংকরায়ন =  $\frac{1}{2}(4+0-0+0)=2$ ; (sp)

১১৭। কোন অণুটির বন্ধন কোণের মান সর্বোচ্চ?

বি. বো. ২২ঃ নি. বো. ২২১

⊕ H₂S

@ PH<sub>3</sub>

@ NH<sub>3</sub>

@ BCl3

উত্তর: 🕲 BCl<sub>3</sub>

ব্যাখ্যা: BCl<sub>3</sub> তে sp<sup>2</sup> সংকরায়ন হয়। ফলে এর বন্ধন কোণ হবে 120° যা সর্বোচ্চ। NH<sub>3</sub>, H<sub>2</sub>S ও PH<sub>3</sub> তে বন্ধন কোণ যথাক্রমে 107°, 92° ও 93°।

১১৮। নিচের কোন যৌগটির বন্ধন কোণ সবচেয়ে স্কুদ্র?

বি. বো. ২১

- ③ H₂O
- ① PH<sub>3</sub>
- ® BH<sub>3</sub>

উত্তর: গ PH3

ব্যাখ্যা: BH<sub>3</sub>, NH<sub>3</sub>, H<sub>2</sub>O, PH<sub>3</sub> এর বন্ধন কোণ যথাক্রমে 120°, 107°, 104.5°, 93°।

১১৯। কোনটির গঠন ত্রিকোণাকার দ্বি-পিরামিডীয়?

বি. বো. ২৩

- @ PCls
- @ PCl3
- \[
   \text{XeF}\_4
   \]
- ® XeF6

উত্তর: @ PCIs

ব্যাখ্যাঃ

| যৌগ              | গঠন                            | সংকরণ             | िख   |
|------------------|--------------------------------|-------------------|------|
| PCI <sub>5</sub> | ত্রিকোণাকার<br>দ্বি-পিরামিডীয় | sp <sup>3</sup> d | ClCl |
| PCl <sub>3</sub> | ত্রিভূজাকার<br>পিরামিডীয়      | sp <sup>3</sup>   | CI—P |

| যৌগ              | গঠন                    | সংখ্যাপ           | विव   |
|------------------|------------------------|-------------------|-------|
| XeF <sub>4</sub> | বর্গাকার               | sp¹d²             | P. Xe |
| XeF <sub>6</sub> | অষ্টগুলকীয়<br>(বিকৃত) | sp'd <sup>J</sup> | F     |

১২০। কোন জ্যোড়ার মধ্যে আকৃন্ডি বৈসাদৃশ্য বিদ্যমান?

क्षि. व्या. यह

- 3 BF, 4 SO,
- ③ H₂O ♥ H₂S
- 1 POC/3 8 BF4
- 9 SO2 4 CO2

উন্তর: 🕲 SO2 ও CO2

ব্যাখ্যা: সংকরিড অরবিটাল,  $H = \frac{1}{2} \times (V + S \pm ion)$ 

वर्षात्न,

V = যোজ্যতা স্তরে ইলেকট্রন সংখ্যা (কেন্দ্রীয় পরমাণুর)

S = কেন্দ্রীয় পরমাণুর সাথে যুক্ত একযোগ্রী মৌলের সংখ্যা

ion = (+vc) আয়ন থাকলে (-vc) চিহ্ন নিতে হয়, (-ve) আয়ন থাকলে (+vc) চিহ্ন নিতে হয়।

$$BF_3 = \frac{1}{2}(3+3+0) = (sp^2)$$

$$SO_3 = \frac{1}{2}(6+0+0) = 3 \text{ (sp}^2)$$

$$H_2O = \frac{1}{2}(6+2+0) = 4 \text{ (sp}^3)$$

$$H_2S = \frac{1}{2}(6+2+0) = 4(sp^3)$$

$$POCl_3 = \frac{1}{2}(5+3+0) = 0 \text{ (sp}^3)$$

$$BF_4 = \frac{1}{2}(3+4+1) = 4(sp^3)$$

$$SO_2 = \frac{1}{2} (6 + 0 + 0) = 3 (sp^2)$$

$$CO_2 = \frac{1}{2}(4+0+0) = 2$$
 (sp)

এখানে, SO2 ও CO2 জোড়াটির মধ্যে বৈসাদৃশ্য বিদ্যামান।

#### ১২১। SF6 অণুটির আকৃতি কিরূপ?

णि. व्या. २२)

- পিরামিডীয়া
- क्छलकीग्र
- (ग) व्यिष्ट्रजीरा
- ত্বি অষ্টডলকীরা

উন্তর: (ছ) অষ্টতলকীয়

ব্যাখ্যা: 
$$SF_6$$
 এর সংকরায়ন  $=\frac{1}{2} \times (6+6+0)$ 

$$=\frac{1}{2}\times 12$$

 $ightharpoonup SF_6$  এর সংকরায়ন হবে  ${\sf sp}^3{\sf d}^2$  या অষ্টভলকীয় আকার নির্দেশ করে।

১২২। কোনটির জ্যামিতিক আকৃতি সরলরৈখিক? [কু. বো. ২২, ১৭; সম্মিলত বো. ১৮]

- ⊕ CO₂
- <sup>®</sup> H₂O
- 1 H2S
- ® SO<sub>2</sub>

উত্তর: 📵 CO2

ব্যাখ্যা:  $CO_2$  এর সংকরায়ন =  $\frac{1}{2} \times (4 + 0 + 0)$ 

= 2

∴ CO2 এর সংকরায়ন sp या সরলরৈখিক আকার নির্দেশ করে।

$$O = C = O$$
  
(সরলরৈখিক  $CO_2$ )

১২৩।  $M_3N_2+H_2O 
ightarrow A+B(g),$  B-এর জন্য প্রযোজ্য, এটি-

াে বাে. ২২

- (i) ক্ষার ধর্মীতা প্রদর্শন করে
- (ii) ত্রিকোণীয় পিরামিডীয়
- (iii) সন্নিবেশ বন্ধন গঠন করে

[এখানে, M একটি মৃৎক্ষার ধাতুা

নিচের কোনটি সঠিক?

- ⊕ i vii
- iii 🕏 iii
- 1ii vii
- (B) i, ii (S) iii

উত্তর: ত্ত্ত i, ii ও iii

ব্যাখ্যাঃ বিক্রিয়াটি,

 $M_3N_2 + 6H_2O \rightarrow 3M(OH)_2 + 2NH_3(g)$  অর্থাৎ, B যৌগটি অ্যামোনিয়া (NH3)।

- (i) লইস এসিড ক্ষার তত্ত্ব মতে  $NH_3$  মুক্ত জোড় ইলেকট্রন দান করতে পারে। অর্থাৎ লুইস তত্ত্ব মতে  $NH_3$  একটি ক্ষার।
- (ii) NH<sub>3</sub> এর সংকরায়ন =  $\frac{1}{2}$  (5 + 3 + 0) = 0 (sp<sup>3</sup>) NH<sub>3</sub> এর সংকরায়ন sp<sup>3</sup> হলেও এটি ত্রিকোণাকার পিরামিড হয়।



(iii) NH3 এর মধ্যে Lone Pair বা মুক্ত জোড় ইলেকট্রন থাকে।
তাই এটি সহজেই সন্নিবেশ বন্ধন গঠন করতে।

১২৪।  ${
m H_2S}$  অণুর আকৃতি কৌণিক হওয়ার কারণ–

যি. বো. ২২

- (i) অণুতে হাইড্রোজেন বন্ধন নাই
- (ii) সালফারের দুইটি মুক্তজোড় নাই
- (iii) বন্ধন কোণ 180° এর চেয়ে কম

নিচের কোনটি সঠিক?

- ® i vii
- (1) ii v iii
- ரு i பiii
- (1) i, ii (2) iii

উত্তর: 例 i ও iii

- ব্যাখ্যা: (i)  $H_2S$  একটি গ্যাসীয় যৌগ। H-বন্ধন না থাকার জন্য এটি গ্যাসীয় অবস্থায় বিরাজ করে। H-বন্ধন সাধারণত N, O এবং F সমৃদ্ধ হাইড্রোজেন যৌগে গঠন হয়।
  - (ii)  $H_2S$  এর মুক্তজোড় ইলেকট্রন =  $\frac{1}{2}$  (যোজাতা ইলেকট্রন যোজনী  $\pm$  ion)  $=\frac{1}{2}\times(6-2\pm0)$   $=\frac{1}{2}\times4=2$

...... ACS, > Chemistry 1st Paper Chapter-3

H<sub>2</sub>S এ S এর ২টি মুক্তজোড় ইলেকট্রন বিদ্যমান।

(iii)  $H_2S$  এর বন্ধন কোণ 92°। যদিও  $H_2S$  এর সংকরায়ন  $\mathfrak{sp}^5$ , তবুও ২টি মুক্তজোড় ইলেকট্রন এর জন্য বন্ধন কোণ 92° হয়।

১২৫। sp সংকরিত হলে অণুর আকৃতি কী হবে?

[ण. व्या. ०५]

- পিরামিডিয়
- অিকোনাকার ত্রিভুজ
- ণ্য সরলরৈখিক
- ত্ব চতুস্তলকীয়

উত্তর: গ্র সরলরৈখিক

ব্যাখ্যা: CO2, C2H2 (ইথাইন) সরলরৈথিক যৌগ যাদের sp সংকরায়ন হয়।

১২৬। NH 4 এর আকৃতি কোনটি?

[व. वा. २५; जनुक्रभ म. वा. २১]

- ক্ত অষ্টতলকীয়
- খি) দ্বি-পিরামিডীয়
- গ্ৰ চতুন্তলকীয়
- ত্ব পিরামিডীয়

উত্তর: গ্র চতুন্তলকীয়

ব্যাখ্যা:  $NH_4^+$  এর সংকরণ  $=\frac{1}{2} \times (5+4-1)$ 

$$=\frac{1}{2}\times 8$$

= 4

∴ NH₄ বকটি sp³ সংকরিত যৌগ।

∴ NH₄<sup>+</sup> এর আকার চতুন্তলকীয়।

উদ্দীপকটি লক্ষ্য কর এবং ১২৭ ও ১২৮ নং প্রশ্নের উত্তর দাও:

| ट्यिणि — | 2 | 13 | 14 | 17  |
|----------|---|----|----|-----|
| ২য়      | K |    | N  |     |
| ৩য়      | L | M  |    | Y X |

[K, L, M, N ও X মৌলের প্রচলিত প্রতীক নয়]

১২৭। NX₄ অণুর আকৃতি-

[য. বো. ২১]

- ক্ত ত্রিভূজাকৃতি
- চতুন্তলকীয়
- প্রসমতলীয় বর্গাকার
- ত্ত ত্রিকোণ দ্বি-পিরামিডীয়

উত্তর: (২) চতুস্তলকীয়

ব্যাখ্যা: NX4 যৌগটি হচ্ছে CC14

$$CCl_4$$
 এর সংকরায়ন =  $\frac{1}{2} \times (4 + 4 + 0) = 4$ 

 $\therefore CCl_4$  একটি  $\mathrm{sp}^3$  সংকরিত যৌগ যার আকৃতি চতুস্তলকীয়।

১২৮।উদ্দীপকের যৌগসমূহ–

[য. বো. ২১]

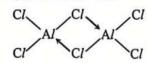
- (i)  $LX_2$  ও  $MX_3$  এর মধ্যে  $MX_3$  এর সমযোজী বৈশিষ্ট্য বেশি
- (ii) KX2 যৌগে sp সংকরায়ন ঘটে
- (iii) MX3 যৌগটি ডাইমার গঠন করতে পারে নিচের কোনটি সঠিক?
- ⊕ i vii
- ii v ii
- 1ii viii
- (B) i, ii v iii

উত্তর: 🕲 i, ii ও iii

মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ACS, FRB Compact Suggestion Book......

 $KX_2 \rightarrow BeCl_2$ 

(i) আকারের ক্রম: Mg<sup>2+</sup> > Al<sup>3+</sup>


∴ পোলারায়ন: Al³+ > Mg²+

∴ AICl3 বেশি সমযোজী

(ii) BeCl<sub>2</sub> এর সংকরায়ন =  $\frac{1}{2} \times (2 + 2 + 0) = 2$ 

∴ BeCl2, sp সংকরিত যৌগ।

(iii) AICl3 ডাইমার গঠন করতে পারে।



১২৯। নিচের কোন যৌগে মুক্তজোড় ইলেকট্রন সর্বাধিক?

3 IF7

⑨ XeF<sub>2</sub>

(9) H<sub>2</sub>O

উত্তর: **1** XeF<sub>2</sub>

ব্যাখ্যা: মুক্তজোড় ইলেকট্রন সংখ্যা-

মুক্তজোড় ইলেকট্ৰন =  $\frac{1}{2}$  × (যোজ্যতা ইলেকট্ৰন – যোজনী  $\pm$  Charge)

$$\therefore SF_6 = \frac{1}{2} \times (6 - 6 \pm 0) = 0$$

$$\mathbf{IF}_7 = \frac{1}{2} \times (7 - 7 \pm 0) = 0$$

$$XeF_2 = \frac{1}{2} \times (8 - 2 \pm 0) = 3$$

$$H_2O = \frac{1}{2} \times (6 - 2 \pm 0) = 2$$

∴ সর্বাধিক মুক্তজোড় e আছে XeF2 এর।

১৩০।কোনটিতে মুক্তজোড় ইলেকট্রনের প্রভাব সবচেয়ে বেশি? [ব. বো. ২১]

- (3) H₂O
- 1 NH4
- (1) H3O+

উত্তর: ﴿ H2O

ব্যাখা: মুক্তজোড় ইলেকট্রন সংখ্যা-

$$NH_3 = \frac{1}{2} \times (5 - 3 \pm 0) = 1$$

$$H_2O = \frac{1}{2} \times (6 - 2 \pm 1) = 2$$

$$NH_4^+ = \frac{1}{2} \times (5 - 3 - 1) = \frac{1}{2} \approx 0$$

$$H_3O^+ = \frac{1}{2} \times (6-2-1) = 1.5 \approx 1$$

∴ H₂O তে মুক্তজোড় ইলেকট্রন বেশি, অতএব, H₂O তে মুক্তজোড় ইলেকট্রন এর প্রভাব বেশি।

১৩১। কোন যৌগের মুক্তজোড় ইলেকট্রন সংখ্যা সর্বোচ্চ? ।ম. বো. ২১; সি. বো. ১৭।

- NH<sub>3</sub>
- ③ H₂O
- 1 HC/
- (T) H2S

উত্তর: গ্র HCl

ব্যাখ্যা: মুক্তজোড় ইলেকট্রন সংখ্যা:

$$NH_3 = \frac{1}{2} \times (5 - 3 \pm 0) = 1$$

$$H_2O = \frac{1}{2} \times (6 - 2 \pm 0) = 2$$

$$HCI = \frac{1}{2} \times (7 - 1 \pm 0) = 3$$

$$H_2S = \frac{1}{2} \times (6 - 2 \pm 0) = 2$$

:. HCl এ মুক্তজোড় ইলেকট্রন সর্বোচ্চ



১৩২।ফসফরাস ট্রাই ক্লোরাইড এর কেন্দ্রীয় পরমাণুর যোজ্যতান্তরে মুক্ত ও ক্রি. বো. ১৯)

বন্ধন ইলেকট্রন জোড কয়টি?

- 3 2, 4
- **3** 2, 3 (T) 1, 3
- 1,4
- উত্তর: 🕲 1, 3

যি, বো. ২৩

ব্যাখ্যা: PCI3 এর ক্ষেত্রে,

মুক্তজোড় ইলেকট্রন 
$$=\frac{1}{2} \times (5-3\pm 0)$$

$$= 1$$

PCl<sub>3</sub> এর ক্ষেত্রে ইলেকট্রন শেয়ারের পর P এর শেষ কক্ষপথে ইলেকট্রন থাকে 4 জোড়া। এর মধ্যে 1 জোড়া মুক্ত থাকে।

- ∴ বন্ধন জোড় ইলেকট্রন = (4 1)

১৩৩ ।XeF, যৌগে Xe এর কোন ধরনের সংকরণ ঘটে?

[म. त्वा. २२; मि. त्वा. ১१]

**मि.** (वा. २२)

- $\mathfrak{P}^3 d^2$
- Sp²d (1) sp3d

উত্তর: 🖲 sp³d

ব্যাখ্যাঃ Xe-এর সংকরায়ন =  $\frac{1}{2}$  × (8 + 2 ± 0)

∴ XeF₂ এর সংকরায়ন sp³d।

১৩৪ Iπ বন্ধন গঠিত হয়−

(i) দুটি p অরবিটালের মধ্যে

- (ii) একটি p ও একটি s অরবিটালের মধ্যে
- (iii) দুটি সংকর অরবিটালের মধ্যে

নিচের কোনটি সটিক?

(T) i

- (a) ii
- (9) iii

(T) i, ii & iii

উত্তর: 🚳 i

ব্যাখ্যা: π-বন্ধন হলো অসংকরিত p অরবিটালের পাশাপাশি অধিক্রমণ। অন্যদিকে সংকরায়নের ফলে যা তৈরি হয় তা o-বন্ধন।

১৩৫।হীরক ও গ্রাফাইট-

- i. উভয়েই কার্বন দ্বারা গঠিত
- ii. উভয়ের কার্বন sp3 সংকরিত
- iii. উভয়ের বিদ্যুৎ পরিবাহিতা ভিন্ন
- নিচের কোনটি সঠিক?
- [ম. বো. ২৩]
- ( i, ii

- (1) i, iii
- ® ii, iii
- (1) i, ii (3) iii

উত্তরঃ 🕲 i, iii

PDF Credit - Admission Stuffs .... ACS/ > Chemistry 1st Paper Chapter-3

ব্যাখ্যা: (i) হীরক বা Diamond এবং গ্রাফাইট দুটিই কার্বন দারা গঠিত।

(ii) হীরকে কার্বন-কার্বর্ন একক বন্ধনের মাধ্যমে সংযুক্ত হয়ে হীরক গঠন করে। ফলে এর সংকরায়ন sp³।

অন্যদিকে গ্রাফাইটে কার্বন-কার্বন একটি দ্বি-বন্ধন উপস্থিত থাকে। অর্থাৎ গ্রাফাইটের সংকরায়ন sp2।

(iii) দুটির গঠন ভিন্ন হওয়ায় এবং তাদের মধ্যে সংকরায়ন ভিন্ন হওয়ায় বিদ্যুৎ পরিবহিতা, গলনাঙ্ক, স্ফুটনাঙ্ক ভিন্ন হয়।

#### ১৩৬। H2S যৌগে বিদ্যমান বিকর্ষণ বল হল-

[য. বো. ২১]

- (i) b.p b.p
- (ii) b.p l.p
- (iii) l.p l.p

নিচের কোনটি সটিক?

- ⊕ i vii
- (a) ii (s iii
- n i v iii
- (1) i, ii v iii

উত্তর: 🕲 i, ii ও iii

ব্যাখ্যা:  $H_2S$  এর মুক্ত জোড় ইলেকট্রন =  $\frac{1}{2} \times (6 - 2 \pm 0)$ 

H<sub>2</sub>S এ ইলেকট্রন শেয়ারের পর শেষ কক্ষ পথে ইলেকট্রন থাকে 8টি বা 4 জোড় এর মধ্যে 2টি মুক্ত জোড় হলে, বাকি 2টি বন্ধন জোড় ইলেকট্রন। অর্থাৎ,  $H_2S$  যৌগে lp-lp, bp-lp এবং bp-bpবিকর্ষণ বিদ্যমান।

### পোলারিটি, পোলারায়ন, ফাজানের নীতি

১৩৭। নিচের কোনটি অধিক পোলার?

বি. ৰো. ২৩

- THF
- ③ H₂S
- 1 CO2
- ® NH<sub>3</sub>

উত্তর: 🚳 HF

ব্যাখ্যা: সমযোজী যৌগে তড়িৎ ঋণাত্মকতার পার্থক্য যত বেশি হয়. পোলারিটি তত বেশি হয়।

HF  $\rightarrow$  ∆EN = 4 – 2.1 = 1.9  $\rightarrow$  অধিক পোলার

 $H_2S \rightarrow \Delta EN = 2.5 - 2.1 = 0.4 \rightarrow$  অপোলার

 $NH_3 \rightarrow \Delta EN = 3 - 2.1 = 0.9 \rightarrow$  পোলার

 $CO_2 \rightarrow \Delta EN = 3.5 - 2.5 = 1 \rightarrow$  অপোলার যদিও তড়িৎ ঋণাত্মকতার পার্থক্য > 0.5 হলে এর সরলরৈখিক ও প্রতিসম গঠন কাঠামোর জন্য CO2 পোলারিটি প্রদর্শন করে না।

১৩৮।কোনটি অপোলার দ্রাবক?

[ঢা. বো. ২১; চ. বো. ১৭]

- ⊕ CCl₄
- (1) NH<sub>3</sub>

(F) I

উত্তর: 🕸 CCI4

ব্যাখ্যা: C ও CI-এর তড়িৎ ঋণাত্মকতার পার্থক্য, 3 – 2.5 = 0.5। তাই CC14 অপোলার যৌগ।

১৩৯। "পোলারায়নের" সাথে সম্পর্কিত যৌগ কোনটি?

[সি. বো. ১৭]

- হাইড্রোজেন বন্ধনযুক্ত যৌগ
   সমযোজী যৌগ
- গ্য সন্নিবেশ যৌগ
- (ছ) আয়নিক যৌগ

উত্তর: ত্বি আয়নিক যৌগ

ব্যাখ্যা: পোলারায়ন হলো আয়নিক যৌগের সমযোজী বৈশিষ্ট্য।

#### Rhombus Publications

১৪০।পোলারাইজেশন ধর্ম কোনটির সবচেয়ে বেশি? ারা. বো. ২২ঃ ম. বেয়ে হথ

- (4) Be2+
- Mg<sup>2+</sup>
- 例 Ca2+
- (1) Ba2+

উত্তর: 🚳 Be<sup>2+</sup>

Ca, Ba। ফাজানের নীতি অনুসারে ক্যাটায়নের আকার যত ছোট

হবে, পোলারায়ন ক্ষমতা তত বৃদ্ধি পাবে।

আকারের ক্রম: Be<sup>2+</sup> < Mg<sup>2+</sup> < Ca<sup>2+</sup> < Ba<sup>2+</sup>

পোলারাইজেশন ধর্মের ক্রম:  $Be^{2+} > Mg^{2+} > Ca^{2+} > Ba^{2+}$ 

১৪১। কোন যৌগটিতে অধিক পোলারায়ন ঘটে?

বি. বো. ২২

- MgO MgO
- (1) Na<sub>2</sub>O
- Al<sub>2</sub>O<sub>3</sub>
- (9) CaO

উত্তর: ﴿ Al<sub>2</sub>O<sub>3</sub>

ব্যাখ্যা: MgO,  $Na_2O$ ,  $Al_2O_3$ , যৌগ গুলোর ক্যাটায়ন  $Na^+$ ,  $Mg^{2+}$ ,  $Al^{2+}$ একই পর্যায়ের বাম থেকে ডানে অবস্থিত। ফলে আকারের ক্রম:

 $Na^{+} > Mg^{2+} > Al^{3+}$ 

পোলারায়ন ক্ষমতা: Na<sup>+</sup> < Mg<sup>2+</sup> < A*I*<sup>3+</sup>

Mg<sup>2+</sup> ও Ca<sup>2+</sup> একই গ্রুপের উপর নিচে অবস্থিত।

পোলায়ন ক্ষমতা: Mg<sup>2+</sup> > Ca<sup>2+</sup>

: পোলারায়নের সামগ্রিক ক্ষমতার ক্রম:

 $Al^{3+} > Mg^{2+} > Na^{+} > Ca^{2+}$ 

১৪২। কোনটি সবচেয়ে বেশি আয়নিক?

মি. বো. ২৩

- AIF3
- (9) A/Br3
- (1) All<sub>3</sub>

উত্তর: 🕸 A/F3

ব্যাখ্যাঃ ফাজানের নীতি অনুসারে, ক্যাটায়নের আকার ছোট এবং আনায়নের ञाकात वर्ष रत ञायनिक योगित लानातायत्न माजा वृद्धि भाय। ফলে যৌগটিতে আয়নিক ধর্মহ্রাস পায় এবং সমযোজী ধর্ম বৃদ্ধি পায়।

 $\Gamma > Br^- > Cl^- > F^-$ 

তাহলে, পোলারায়নের ভিত্তিতে মৌল চারটির ক্রম হবে-

 $A/I_3 > A/Br_3 > A/Cl_3 > A/F_3$ 

উল্লেখ্য আয়নিক বৈশিষ্ট্যের ভিত্তিতে এদের ক্রম সম্পূর্ণ বিপরীত হবে তথা,

 $A/F_3 > A/Cl_3 > A/Br_3 > A/I_3$ 

সুতরাং সবচেয়ে বেশি আয়নিক যৌগটি হলো AIF3

১৪৩। নিচের কোনটি অধিক সমযোজী বৈশিষ্ট্য প্রদর্শন করে?

ঢা. বো. ২২; অনুরূপ চ. বো., ব. বো. ১৯)

- AgF
- AgCl
- AgBr
- (1) AgI

উত্তর: 🕲 AgI

ব্যাখ্যা: AgF, AgCl, AgBr, AgI যৌগের হ্যালাইড আয়নের আকার

বৃদ্ধির ক্রম হলো: F-< CI-< Br-< I-

ফলে AgI, AgBr, AgCl ও AgF যৌগের সমযোজী বৈশিষ্ট্য নিম্নের ক্রম অনুসরণ করবে-

AgI > AgBr > AgCl > AgF

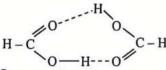
মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন > ACS) FRB Compact Suggestion Book..... [ति. त्वा. २७] । ५० । कान योगित क्षमीय प्रवर्ण विम्राप्त शतिवारिका त्विन? ১৪৪।কোনটি অধিকতর সমযোজী? (1) LiC! (1) NaCl ® NaCl (1) BeCl2 (9) CaCl2 (F) CC/4 ® KCI (1) MgCl<sub>2</sub> উত্তর: পি CaCl2 উত্তর: (ৰ) BeCl<sub>2</sub> ব্যাখ্যাः পোলারায়ন বেশি হলে সমযোজী বৈশিষ্ট্য বেশি হয়। ফলে দ্রাব্যতা ব্যাখ্যা: যৌগগুলোর অ্যানায়ন একই হওয়ায় পোলারায়ন ক্ষমতা ক্যাটায়নের কমে যায় এবং আর্দ্র বিশ্লেষণ প্রবণতা হ্রাস পায়। আকারের উপর নির্ভর করবে। এদের মধ্যে Be<sup>2+</sup> এর আকার ১৫১। পোলার দ্রাবকে দ্রাব্যতার সঠিক ক্রম কোনটি? मि. त्वा. ३३। সবচেয়ে ছোট। অর্থাৎ BeCl2 অধিকতর সমযোজী। SiC $l_4 > A/Cl_3 > MgCl_2 > NaCl$ (1) NaCl > MgCl<sub>2</sub> > AlCl<sub>3</sub> > SiCl<sub>4</sub> ১৪৫।কোনটিতে পোলারায়ন বেশি ঘটবে? [কু. বো. ২৩] 9 MgCl2 > AlCl3 > NaCl > SiCl4 (3) BeCl ③ MgCl₂ (1) AICl<sub>3</sub> > SiCl<sub>4</sub> > MgCl<sub>2</sub> > NaCl 何 LiCI ( NaCl উন্তর: ﴿ NaCl > MgCl2 > AlCl3 > SiCl4 উত্তর: @ BeCl2 ১৫২। কোনটি পানিতে অধিক দ্রবণীয়? ব্যাখ্যা: সমঅ্যানায়নযুক্ত যৌগসমূহে ক্যাটায়নের আকার যত ছোট হবে मि. ता. २२; जनुक्रभ मि. त्वा. २५; त्रा. त्वा. ५१] পোলারায়ন তত বৃদ্ধি পাবে। NaCl যৌগগুলোর ক্যাটায়নের আকারের ক্রম: <sup>♠</sup> MgCl₂ (1) CaCl2  $Be^{2+} < Mg^{2+} < Na^{+} < Li^{+}$ উত্তর: ক) KCI পোলারায়নের ক্রম: ব্যাখ্যা: ক্যাটায়নগুলোর আকারের ক্রম:  $K^+ > Ca^{2+} > Na^+ > Mg^{2+}$  $BeCl_2 > LiCl > MgCl_2 > NaCl$ পোলারায়ন ক্ষমতার ক্রম: Mg<sup>2+</sup> > Na<sup>+</sup> > Ca<sup>2+</sup> > K<sup>+</sup> সূতরাং MgCl2 বেশি সমযোজী এবং KCl সবচেয়ে বেশি আয়নিক। ১৪৬। নিচের কোন আয়নিক যৌগটির সবচেয়ে বেশি পোলারায়ন ঘটে? KC! বেশি আয়নিক হওয়ায় পানিতে অধিক দ্রবণীয়। [ঢা. বো. ২১; য. বো. ২১; কু. বো. ১৫] ♠ LiCl (1) BeCl<sub>2</sub> ১৫৩।পানিতে দ্রাব্যতার সঠিক ক্রম কোনটি? মি. বো. ২৩ 1 NaCl ® MgCl₂ NaCl > MgCl2 > SiCl4 > AlCl3 AlCl<sub>3</sub> > MgCl<sub>2</sub> > NaCl > SiCl<sub>4</sub> উত্তর: 🕲 BeCl2  $\mathfrak{G}$  SiCl<sub>4</sub> > AlCl<sub>3</sub> > MgCl<sub>2</sub> > NaCl NaCl > MgCl2 > AlCl3 > SiCl4 ১৪৭। নিচের কোন যৌগে ধাতুর পোলারায়ন ক্ষমতা বেশি? উত্তর: ত্ত্ NaCl > MgCl<sub>2</sub> > AlCl<sub>3</sub> > SiCl<sub>4</sub> CsCl ব্যাখ্যা: অ্যানায়নের চার্জ স্থির থাকলেও ক্যাটায়নের চার্জের পরিমাণ বৃদ্ধির (9) CaCl<sub>2</sub> (9) MgCl2 সাথে সাথে পোলারয়নের মাত্রা তথা সমযোজী বৈশিষ্ট্য বৃদ্ধি পায়। উত্তর: 🕦 MgCl<sub>2</sub> NaCl, MgCl<sub>2</sub>, AlCl<sub>3</sub> ও SiCl<sub>4</sub> যৌগ চারটি চার্জের পরিমাণের বৃদ্ধির ক্রম হবে, ১৪৮। কোন যৌগটির গলনাংক সবচেয়ে বেশি? [রা. বো. ২১, ১৬; ব. বো. ১৫] Na+ < Mg2+ < Al3+ < Si4+ (4) CaCl (1) CaBr<sub>2</sub> তথা পোলারায়নের ক্রম হবে (7) CaF2 ( Cal2  $NaCl < MgCl_2 < AlCl_3 < SiCl_4$ তাহলে পানিতে দ্রাব্যতার সঠিক ক্রমটি হবে, উত্তর: প্র CaF2  $NaCl > MgCl_2 > AlCl_3 > SiCl_4$ ব্যাখ্যা: সমক্যাটায়নযুক্ত যৌগে অ্যানায়নের আকার যত ছোট হবে তার পোলারায়ন তত কম এবং আয়নিক বৈশিষ্ট্য যেমন- গলনাল্ক বেশি ১৫৪। আয়নের পোলারায়ন বেশি হলে সংশ্লিষ্ট যৌগের-মি. বো. ২১) (i) সমযোজী বৈশিষ্ট্য বেশি হয় হবে। পর্যায় সারণিতে গ্রুপ-17 এর হ্যালোজেনসমূহের আকারের ক্রম: (ii) পানিতে দ্রাব্যতা কম হয়  $F^- < C\Gamma < Br^- < \Gamma$ (iii) আর্দ্র বিশ্লেষণ প্রবণতা বৃদ্ধি পায় সুতরাং, আয়নিক বৈশিষ্ট্যর ক্রম: নিচের কোনটি সঠিক?  $CaF_2 > CaCl_2 > CaBr_2 > CaI_2$ i vi (1) i & iii (T) i, ii v iii त्र ii ७ iii ১৪৯। নিম্নের কোন যৌগটি সবচেয়ে কম তাপমাত্রায় বিয়োজিত হবে?।কু. বো. ১৯। উত্তর: 📵 i ও ii <sup>(3)</sup> K₂CO₃ Na<sub>2</sub>CO<sub>3</sub> ব্যাখ্যা: ফাজানের নীতি অনুসারে পোলারায়ন যত বেশি ঘটবে সমযোজী ® BaCO<sub>3</sub> MgCO<sub>3</sub> বৈশিষ্ট্য তত অধিক হয়। উত্তর: গ MgCO3 পোলারায়নের পরিমাণ বৃদ্ধির সাথে সাথে আয়নিক যৌগের বিভিন্ন ব্যাখ্যা: Mg<sup>2+</sup> এর আকার সবচেয়ে ছোট তাই পোলারায়ন বেশি এবং ধর্মের (যেমন- গলনাঙ্ক, স্কুটনাঙ্ক, উদ্বায়িতা, দ্রবণীয়তা প্রভৃতি) ক্রম সমযোজী বৈশিষ্ট্য বেশি তাই বিয়োজন তাপমাত্রা কম। হ্রাস ও সমযোজী যৌগের বৈশিষ্ট্যের ক্রম বৃদ্ধি ঘটে।

হাইড্রোজেন বন্ধন, ভ্যানডার ওয়ালস বন্ধন

১৫৫। হাইড্রোজেন বন্ধন গঠনকারী যৌগ কোনটি?

[য. বো. ২৩]

বি. বো. ১৯]


⊕ CH₃CN

⊕ CH₃OCH₃

**®** НСООН

উত্তর: 🕲 HCOOH

ব্যাখ্যা: HCOOH আন্তঃআণবিক H বন্ধন গঠনের মাধ্যমে ডাইমার গঠন করে থাকে।

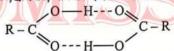


H বন্ধন গঠনকারী আরও কিছু যৌগ:  $H_2O$ , HF,  $NH_3$ , ইথানল  $(CH_3CH_2OH)$ , ফেনল  $(C_6H_5OH)$ , ইথানয়িক এসিড  $(CH_3COOH)$ , অর্থোনাইট্রো ফেনল, মেটা নাইট্রোফেনল, প্যারা নাইট্রোফেনল, পারক্রোরিক এসিড  $(HCIO_4)$ , বোরিক এসিড  $(H_3BO_3)$ , স্যালিসাইলিক এসিড, অ্যামিন, অর্থোহাইড্রব্রি বেনজালডিহাইড প্রভৃতি।

১৫৬। H বন্ধনের কারণে যৌগের-

- (i) স্ফুটনাঙ্ক বৃদ্ধি পায়
- (ii) পানিতে দ্রাব্যতা বৃদ্ধি পায়
- (iii) ডাইমার গঠন সম্ভব হয় নিচের কোনটি সঠিক?
- ⊕ i v ii

ાii છ i છ


পু ii ও iii

(1) i, ii હ iii

উত্তর: ৩ i, ii ও iii ব্যাখ্যা:

H বন্ধনের প্রভাব:

- (i) উচ্চ গলনাব্ধ ও ক্ষুটনাব্ধ। যেমনঃ  ${
  m H_2O}$  এর গলনাব্ধ  ${
  m H_2S}$  এর চেয়ে বেশি।
- (ii) পানিতে দ্রাব্যতা বৃদ্ধি। সাধারণত জৈব যৌগ ও সমযোজী যৌগসমূহ পানিতে অদ্রবণীয় কিন্তু চিনি  $(C_{12}H_{22}O_{11})$ , গ্লুকোজ  $(C_6H_2O_6)$  প্রভৃতিতে H-বন্ধনের কারণে পানিতে দ্রবণীয়।
- (iii) ডাইমার, ট্রাইমার, পলিমার ইত্যাদি সংযোজিত অণু গঠন। যেমন:



জৈব এসিডের ডাইমার গঠন

(iv) অম্লের তীব্রতা<u>হা</u>স।

১৫৭। স্ফুটনাঙ্কের সঠিক ক্রম কোনটি? দি. বো. ২২; অনুরূপ চ. বো. ২৩)

- ® NH<sub>3</sub> < HF < H<sub>2</sub>O < CH<sub>4</sub> ® CH<sub>4</sub> < NH<sub>3</sub> < HF < H<sub>2</sub>O
- ① CH<sub>4</sub> < NH<sub>3</sub> < H<sub>2</sub>O < HF ② NH<sub>3</sub> < CH<sub>4</sub> < H<sub>2</sub>O < HF

উত্তর: 🕲 CH<sub>4</sub> < NH<sub>3</sub> < HF < H<sub>2</sub>O

ব্যাখ্যা: যতবেশি H-বন্ধন, তত বেশি গলনাস্ক, স্ফুটনাস্ক এখানে  $CH_4$  এ কোনো H-বন্ধন হয় না,  $NH_3$  এ 1টি, HF এ 2টি,  $H_2O$  এ 4টি H-বন্ধন গঠিত হতে পারে। তাই কক্ষ তাপমাত্রায়  $H_2O$  তরল এবং বাকি সব গ্যাস হয়। সুতরাং স্কুটনাস্কের ক্রম  $CH_4 < NH_3 < HF < H_2O$ 

১৫৮। শরীরের মেটাবলিজমে অংশগ্রহণ করে কোন বন্ধন? [য. বো. ২১]

- ক সমযোজী
- খ হাইড্রোজেন
- গু সিগমা
- খি পাই

উত্তর: 🕲 হাইড্রোজেন

Rhombus Publications

ব্যাখ্যা: মেটাবলিজম হলো জীবদেহে সংঘটিত রাসায়নিক বিক্রিয়া যা খাবারকে শক্তিতে রূপান্তরিত করে। কার্বোহাইড্রেট, প্রোটিন ও নিউক্লিক এসিড (DNA, RNA) জীবদেহের ক্রিয়া বিক্রিয়া নিয়ন্ত্রণ করে। আর এগুলোর গঠনে ভূমিকা রাখে H-বন্ধন।

১৫৯। সবচেয়ে দুর্বল বন্ধন কোনটি?

চি. বো. ২১/

- কি সিগমা বন্ধন
- পাই বন্ধন

...... ACS, > Chemistry 1st Paper Chapter-3

- গ্ৰ হাইড্ৰোজেন বন্ধন
- ত্য আয়নিক বন্ধন

উত্তর: 🕦 হাইড্রোজেন বন্ধন

ব্যাখ্যাঃ বন্ধনের সবলতার ক্রমঃ

আয়নিক > সমযোজী > আয়ন-ডাইপোল বন্ধন > H বন্ধন > ডাইপোল-ডাইপোল > আয়ন-আবিষ্ট ডাইপোল > ডাইপোল-আবিষ্ট ডাইপোল > লন্ডন বল

১৬০। নিচের কোনটি অধিক পোলার?

বি. বো. ২৩]

- ⊕ HF
- <sup>③</sup> H₂S
- <sup>®</sup> CO₂
- ® NH<sub>3</sub>

উত্তর: 🚳 HF

ব্যাখ্যা: একটি সমযোজী যৌগে তড়িং ঋণানাত্মকতার পার্থক্য নির্দেশ করে যৌগটিতে পোল (মেরু, আংশিক ধনাত্মক ও আংশিক ঋণাাত্মক মেরু) তৈরি হবে কিনা। যদি তড়িং ঋণাত্মকতার পার্থক্য 0.5 থেকে 1.9 এর মধ্যে হয়, তবে যৌগটি পোলার হবে। এক্ষেত্রে তড়িং ঋণাত্মকতার পার্থক্য যত বেশি হয়, যৌগটি তত বেশি শক্তিশালী পোল বা মেরু তৈরি করে।

তড়িৎ ঋণাত্মকতার পার্থক্য,

HF = 4 - 2.1 = 1.9 (পোলার)

 $H_2S = 2.56 - 2.2 = 0.36$  (অপোলার)

NH<sub>3</sub> = 3.04 - 2.2 = 0.84 (পোলার)

 $CO_2 = 3.5 - 2.5 = 1$  (অপোলার)

উল্লেখ্য  $CO_2$  এর তড়িৎ ঋণাত্মকতার পার্থক্য 0.5 থেকে 1.9 এর মধ্যে থাকলেও তার প্রতিসম সরলরৈখিক গঠনের জন্য পোল তৈরি করে না। অর্থাৎ, তার প্রতিসম গঠনটি কার্বন ও অক্সিজেনের মাঝে শেয়ারকৃত ইলেকট্রন কে কোনো একটি নির্দিষ্ট দিকে অধিক বলে টানতে দেয় না। ফলে pole বা মেরু তৈরি হয় না।

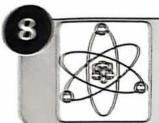
১৬১। কোন যৌগটিতে অধিক পোলারায়ন ঘটে?

বি. বো. ২২

- MgO
   MgO
- <sup>③</sup> Na₂O

  <sup>⑤</sup> CaO

পী Al<sub>2</sub>O<sub>3</sub>
 উত্তর: পী Al<sub>2</sub>O<sub>3</sub>


ব্যাখ্যা: পোলারায়ন মূলত ক্যাটায়ন কর্তৃক অ্যানায়নের আকারকে বিকৃত করা বোঝায়। একটি আয়নিক যৌগ কতোটা সমযোজী বৈশিষ্ট্য ধারণ করে, তার নির্দেশক একটি মাত্রা হলো পোলারায়ন।

ফাজানের নীতি অনুযায়ী পোলারায়ন বৃদ্ধি পাবে যদি-

- (i) ক্যাটায়নের আকার ছোট হয়
- (ii) অ্যানায়নের আকার বড় হয়
- (iii) ক্যাটায়ন ও অ্যানায়নের চার্জ যত বেশি হয়
- (iv) ক্যাটায়নের ইলেক্ট্রন বিন্যাস  $d ext{ '8 f}$  অরবিটালে উপস্থিত থাকলে। ক্যাটায়নের আকারের ক্রম:  $Ca^{2+} > Na^+ > Mg^{2+} > Al^{3+}$
- ∴ পোলারায়ন ক্রম:  $Al^{3+} > Mg^{2+} > Na^+ > Ca^{2+}$

| মৌলের পর্যায়বৃত্ত ধর্ম ও ব্যাসাদ্যনিক বন্ধন ➤ ACS, FRB Compact Sugge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stion Book 3A                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| ১৬২। নিচের কোনটি অধিক সমযোগ্রী প্রদর্শন বৈশিষ্ট্য করে?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ১৬৭।ইখানত্ত্বিক এসিডের ভাইঘাত্রে ক্যটি হাইয়েয়াচ্ছল বন্ধল বিন্যমান্য                                                    |
| [ग्र. तर. २२: वमुतन व. तर., र. तर. ३३]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | विरा जार भ्या                                                                                                            |
| ③ AgF ④ AgCl ⑤ AgBr ⑤ AgI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ⊚ 1                                                                                                                      |
| ঊरुक्: © AgI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | © 3                                                                                                                      |
| ব্যাখাঃ অ্যান্যয়নের আকাবের ক্রম:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | উत्तरः 🕲 2                                                                                                               |
| F < C / < Br <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ব্যাখা:                                                                                                                  |
| ফাজ্যনের নীতি অনুসারে পোদাবায়তার ক্রম:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ব্যাখা: CH,—C C—CH,                                                                                                      |
| Г > Br -> CI > F [व्यानवाटाव प्राकाव वर्ष रटन लगमावायान दिन रव]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 11 0                                                                                                                   |
| ∴ AgI > AgBr > AgC/ > AgF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ন্বর্দাৎ ইথানক্রিক এদিনেচর ভাইমারে 2টি H বন্ধনা বিন্যমান।                                                                |
| ১৬০।পোলারাইজেশন ধর্ম কোনটির সবচেয়ে বেশি? ।বা. বে. ২২; ব. বে. ২২।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |
| ® Be²'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | জটিল দৌচোর নামকরণ, সংক্রায়ন                                                                                             |
| Best @ Be2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ১৬৮। K.[Fe(CN), বাঁটোর কেন্দ্রীনা পরমাণুতে কী ধনদোর সংকন্যন ঘটেয                                                         |
| ব্যাখ্যা: ক্যাটারনের আকারের ক্রম:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | चिर व्या अध                                                                                                              |
| $Ba^{2+} > Ca^{2+} > Mg^{2+} > Be^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (⊚ sp) (                                                                                                                 |
| ফ্টোনের নীতি অনুযায়ী কাটায়ন বতো ছোট হবে, পোলারায়ন ততো                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⊕ sp¹d¹ ⊕ sp¹d¹                                                                                                          |
| বেশি হবে।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>উव</del> बः <b>(1)</b> sp³d³                                                                                        |
| ∴ পোলারান্তনের ক্রম: Be²⁺ > Mg²⁺ > Ca²⁺ > Ba²⁺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ব্যাখ্যা: K.[Fe(CN)] যৌগটিতে কেন্দ্রীনা পরমানু Fe এব সাথে 🕼                                                              |
| AVAIL TENNING AS A CONTROL TO A CONTROL OF A | নিগ্যাত সন্থিবেশ সমব্যোদী বন্ধদের মাখ্যমে যুক্ত। অর্থাৎ Fe এর রিট                                                        |
| ১৬৪। স্বায়ানের পোলারায়ন বেশি হলে সংশ্লিষ্ট বৌগের—   । ছে বে ২১।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | orbital সংকরান্ত্রিত হবে। অর্থাৎ ঝৌণটিতে d <sup>1</sup> sp <sup>1</sup> সংকরান্ত্রন ঘটবে।                                |
| (i) সম্বোদ্ধী বৈশিষ্ট্য বেশি হয়                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | উল্লেখ্য, d <sup>1</sup> sp <sup>3</sup> এবং sp <sup>3</sup> d <sup>1</sup> এর ক্লেন্তে একই ল্লামিডিক রূপ                |
| (ন্ন) পানিতে দ্রাব্যতা কম হয়                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (অট্তলকীয়), একই সংখ্যক অর্বিটাল একই পরিমাপে সংব্যামিত                                                                   |
| (iii) আর্দ্র বিশ্লেষণ প্রবণতা বৃদ্ধি পায়                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | হয়ে গঠন তৈত্ৰি কৰা বোখায়। সেই হিসেবে d <sup>1</sup> sp <sup>1</sup> এবং sp <sup>1</sup> d <sup>1</sup> এক <del>ই</del> |
| লিচের কোনটি সঠিক?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [ 전 ] D                                                                                                                  |
| @ i e ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ∴ K₄[Fe(CN)₅] এর সংকরায়ন sp³d²।                                                                                         |
| (9 ii 4 iii (§ i, ii 4 iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |
| <b>উस्तः ®</b> । ७ ।।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ১৯। [Zn(NH <sub>3</sub> )] <sup>1*</sup> এ Zn এর সংকরণ কোনটি? দি মে ২য়                                                  |
| ব্যাখ্যা: ব্যান্তানের নীতি অনুযায়ী কোনো আয়নিক বৌগের পোলারায়ন বেশি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊕ sp³d                                                                                                                   |
| হলে তার মধ্যে সমযোজী বৈশিষ্ট্য বেশি প্রকট হয়।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ⊕ sp³d² ⊕ sp²d                                                                                                           |
| সমবোজী বৌগ পানিতে কম পরিমাণে দ্রবণীয় এবং একে পানি ছারা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |
| অর্দ্র বিশ্রেষণ করা বার না।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ব্যাখ্যা: [Zn(NH3)4]2 এ নিত্যতের সংখ্যা 4। অতথব, নটি orbittal                                                            |
| অভএব, (i) এবং (ii) শং option টি সঠিক।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | সংকরায়িত হবে। উপরেব option এ sp³ তেই শুমান এটি arbinы                                                                   |
| ১৮৫। কোন বৌগের জলীয় দ্রবণে বিদ্যুৎ পরিবাহিতা বেশি? । प. ব্য. ২১।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ঘারা সংকরায়ন বোঝায়।                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |
| ● CaCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ১৭০।[Cu(NH3)4] <sup>14</sup> এর আকৃতি কোনটি?                                                                             |
| िंखः ⊕ CaCl₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>সরল ব্রৈষিক</li> <li>প্রচ্নতের ক্রিক</li> </ul>                                                                 |
| ব্যাখ্যাঃ কোনো আন্তনিক যৌগের পরিবাহিতা সমযোজী যৌগ অপেকা বেশি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ক্রিকোণাকার     ত সমতনীয় বর্ণাকার                                                                                       |
| হয়। আবার বলা যায় যে, যে আয়নিক যৌগে সমঘোজী বৈশিষ্ট্য যত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | উত্তর: 🕲 সমতদীয় বর্ণাকার                                                                                                |
| বেশি ভার বিদ্যুৎ পরিবাহিতা ততো কম হয়।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ব্যাখ্যা: [Cu(NH3)4]³r এ sp³ সংকরায়ন হয় এবং এর আকৃতি সমতনীয়                                                           |
| পরমাণুর আকারের ক্রম:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | বর্গাকার।                                                                                                                |
| $\mathrm{Li}^* < \mathrm{Na}^* < \mathrm{Ca}^{2^*}$ [CC/ $_4$ সমযোজী যৌগ, তাই এটির পরিবাহীতা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                          |
| নেই বললেই চলে]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ১৭১। [Fe(CN) <sub>6</sub> ] <sup>←</sup> এর কেন্দ্রীয় পরমানুর কী ধরণের সংকরন ঘটে?                                       |
| ্ৰ কাজানের নীতি অনুযায়ী পোলারায়নের ক্রম হবে-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ात. स्या ५ <b>१</b> ।                                                                                                    |
| $Li^+ < Na^+ > Ca^2^-$ [ক্যাটায়ন বড় হলে পোলারায়ন কমে]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⊗ sp³d²                                                                                                                  |
| $\therefore \text{ LiC} / > \text{NaC} / > \text{CaC} /_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) 2b,q,                                                                                                                |
| ∴ বিদ্যুৎ পরিবাহিতা ক্রম: CaCl₂ > NaCl > LiCl > CCl₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | উন্তর: © d²sp³                                                                                                           |
| ৯৬৬। কোন বৌগটির গলনাংক সবচেয়ে বেশি? ।রা. বো. ২১, ১৬; ব. বো. ১৫।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ব্যাখ্যা: [Fe(CN)6] <sup>+</sup> এর কেন্দ্রীয় পরমানু Fe <sup>2</sup> ' এর ইলেবট্রন বিন্যাস:                             |
| ③ CaC/ <sub>2</sub> ④ CaBr <sub>2</sub> ⑨ CaF <sub>2</sub> ⑤ Ca/ <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ls <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>6</sup>                          |
| © CaC <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3d 4s 4p                                                                                                                 |
| न्यार्थाः F आराज्यत व्याकात क्रुप्त ए७ त्यारा (भागाताराग कम व्यवस् व्याद्यनिक                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |
| বৈশিষ্ট্য বেশি হয়। কলে আয়নিক বৈশিষ্ট্য বেশি হওয়ায় গদনান্ত বেশি।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CN CN CN CN CN CN CN To বুল কেন্দ্রীয় পরমাণুতে d² sp³ সংকরান্ত্রন হয়।                                                  |
| בנו ואין פון ויוין ונוונים בו וויין ניין וויין פון דיין ביו דיין ביון פון דיין פון דיין פון דיין                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tand Irofort/9] an earling harifee of 2b account of                                                                      |

PDF Credit - Admission Stuffs নিজেকে যাচাই করো ক্রটনাঙ্কের সঠিক ক্রম কোনটি? ১১।  $F^-$ , Ne, Na $^+$ , Mg $^{2+}$  এর ব্যাসার্ধের সঠিক ক্রম কোনটি? 3 Mg2+ < Na+ < Ne < F Mg<sup>2+</sup> > Ne > Na<sup>+</sup> > F (1)  $F < Ne < Na^+ < Mg^{2+}$ (1) Ne > F > Na' > Mg2 1 CH4 < NH3 < H2O < HF (1 NH3 < CH4 < H2O < HF ১২। নিচের মৌলগুলোর ১ম আয়নীকরণ বিভবের সঠিক ক্রম কোনটি? ২। [Fe(CN)6]⁴- अत्र किसीम श्रत्यापुत की ध्रतापत সংকরণ ঘটে? (a) sp3d (1) sp<sup>3</sup>d<sup>3</sup> (9)  $d^2sp^3$ 3 Be > B > N > O (1) N > O > Be > B (1) B > Be > N > O 1 O>N>B>Be ৩। কোনটির মধ্যে কর্ণ সম্পর্ক রয়েছে? ১৩। কোনটি প্রশম অক্সাইড? Mg, Ca Na, K 1 B, Si (9) P, S (7) NO N₂O₂ 9 N2O3 (1) NO<sub>2</sub> ৪। নিচের কোনটি রঙিন যৌগ? ১৪। কোন যৌগে আয়নিক, সমযোজী ও সন্নিবেশ সমযোজী বন্ধন বিদ্যমান? 1 Cu<sub>2</sub>Cl<sub>2</sub> CoCl<sub>2</sub> ③ HC/O₄ (9) H<sub>2</sub>SO<sub>4</sub> <sup>(1)</sup> H<sub>3</sub>O 01 নিচের উদ্দীপক পড় এবং প্রশ্নের উত্তর দাও: গ্রুগ → 14 15 1 পৰাত্ৰ পর্যায় ↓ 17 1 15 পর্যায়↓ 2 U X W 2 U, V এবং W মৌলের প্রতীক নয়। 3 Z উদ্দীপকের U,V ও W মৌলের ক্ষেত্রে-১৫। YX₄Z যৌগে কয় ধরনের বন্ধন বিদ্যমান? (i) U এর ক্লোরাইড আর্দ্র বিশ্লেষিত হয় না @ 2 **9** 4 (ii) W পরিবর্তনশীল যোজনী দেখায় ১৬। CuSO4.5H2O যৌগে কয় ধরনের বন্ধন বিদ্যমান? (iii) U ও W এর ভৌত ধর্মে সাদৃশ্য বিদ্যমান **(4)** 2 (T) 5 নিচের কোনটি সঠিক? (4) 3 (F) 4 இ i G ii (a) ii v iii n i s iii n i i s iii ১৭। নিচের কোনটির গলনাম্ভ সবচেয়ে কম? ৬। চ্যালকোজেন গ্রুপ কোনটি? (4) MgCl<sub>2</sub> AlCl<sub>3</sub> (1) NaCl (A) 15 গ) 14 (F) 11 ১৮। কোনটি উভধর্মী অক্সাইড? ৭। পর্যায় সারণির কোন শ্রেণির মৌলসমূহ মুদ্রাধাতু নামে পরিচিত? ⊕ Li₂O ® BeO 例 CO<sub>2</sub> (1) Na2O (f) 16 (T) 17 **④** 11 **(4)** 12 ১৯। পোলার দ্রাবকে দ্রাব্যতার সঠিক ক্রম কোনটি?  $b \mid M + \Delta H \rightarrow M^+ + e^-$  এখানে  $\Delta H$  কোনটি? SiCl<sub>4</sub> > AlCl<sub>3</sub> > MgCl<sub>2</sub> > NaCl ইলেকট্রন আসক্তি আয়নীকরণ শক্তি NaCl > MgCl2 > AlCl3 > SiCl4 গ্) তড়িৎ ধনাত্মকতা ছে তড়িৎ ঋণাত্মকতা  $\mathfrak{G}$  MgCl<sub>2</sub> > AlCl<sub>3</sub> > NaCl > SiCl<sub>4</sub> (1) AlCl3 > SiCl4 > MgCl2 > NaCl শ্ৰেণি→ ২০। NH, আয়নে N এর সংকরণ কোনটি? 17 পর্যায়↓ ⊕ sp (₹) sp² (1) sp<sup>3</sup> (1) sp3 d X Z ২১।  $C_2H_4$  অণুতে C-H বন্ধনগুলো নিচের কোন অরবিটালদুয়ের 3 Q R অধিক্রমণের ফলে গঠিত হয়? উদ্দীপকের ক্ষেত্রে-⊕ C(sp) + H(1s)  $(3) C(sp^2) + H(1s)$ (i) QT এর গলনাঙ্ক XT অপেক্ষা বেশি  $\P$  C(sp<sup>3</sup>) + H(1s)  $\mathfrak{T}$  C(sp<sup>2</sup>) + H(2s) (ii) T এর ইলেকট্রন আসজি Z অপেক্ষা বেশি ২২। বন্ধন কোণ বৃদ্ধির সঠিক ক্রম কোনটি? (iii) Y অপেক্ষা R অধিক তড়িৎ ঋণাত্মক নিচের কোনটি সঠিক?  $\P$  NH<sub>3</sub> < H<sub>2</sub>O < CH<sub>4</sub> < H<sub>2</sub>S  $\P$  CH<sub>4</sub> < H<sub>2</sub>S < H<sub>2</sub>O < NH<sub>3</sub> (7) i, ii (a) ii, iii (9) i, iii (T) i, ii, iii ২৩। কোন জোড়ার মধ্যে আকৃতি বৈসাদৃশ্য বিদ্যমান? ১০। A, B এবং C এ তিনটি মৌলের তড়িৎ ঋণাজ্মকতা যথাক্রমে 2.1, ③ BF₃ ⑤ SO₃ (1) H2O & H2S 3.5 এবং 4.0 হলে, তখন-1 POCI3 & BF ® SO2 & CO2 (i) A<sub>2</sub>B একটি পোলার সমযোজী যৌগ ২৪। XeF2 যৌগে Xe এর কোন ধরনের সংকরণ ঘটে? (ii) AC ট্রাইমার গঠন করে Sp²d sp³d² ⊕ sp (T) sp'd (iii) BC2 এর আকৃতি সরলরৈখিক নিচের কোনটি সঠিক? ২৫। [Cu(NH3)4]Cl2 যৌগে মোট কয়টি বন্ধন বিদ্যামন? ( i, ii (1) ii, iii 1, iii ( i, ii, iii (4) 8 **(1)** 14 **(9)** 18 উত্তরপত্র (1) (9) 1 (9) 0 **(4) (4)** 9 **(4)** 3 **(4)** 22 4 (1) 2 20 9 **(4)** 9 16 39 9 24 (3) 46 (४) २० (१) २५ अ (1) **P** 30 3 38 30 22 २७ वि 28 (9)



# রাসায়নিক পরিবর্তন **Chemical Change**



#### Bourd Questions Analysis

#### म्बङ्गनीम श्राम

| म्सामा | प्तासम् | मसमानिसम् | न्नाफ्लांवी | कृतिसा | यामात | क्रीणाम | वस्त्रिमान | শিলেট | <b>बिलाग्रागृ</b> ज |
|--------|---------|-----------|-------------|--------|-------|---------|------------|-------|---------------------|
| \$1050 | 2       | 2         | *           | Ą      | •     | •       | •          | 2     | ٦                   |
| DIEG.  | Ą       | 2         | 2           | ¥      | 2     | ર       | ٥          | 2     | 0                   |

#### क्क्निमीति शहा

| ्रता <b>र्ड</b><br>माम | जामा | 'मारावान/निः <del>शह</del> ् | <u>ज्ञाध्मभांची</u> | क्षिता | याण्यात | <b>ह्याम</b> | वतियान | নিচ্চেট | निनाछन्त्रुत |
|------------------------|------|------------------------------|---------------------|--------|---------|--------------|--------|---------|--------------|
| सञ्चल                  | lb   | P                            | lt                  | 6      | M       | 9            | ь      | ٩       | ь            |
| राज्य                  | ٩    | 9                            | ٩                   | 8      | 9       | 9            | 9      | ٩       | 6            |

# এই অধ্যায়ের গুরুত্বপূর্ণ ধারণা ও সূত্রাবনি

#### डाामाडांनिक विधिन्या e चिन किपिस्मि

#### चिन उर्गिकिः

- দ্রীন বেমিদিট্রর মান লক্ষ্য কলো উৎপদ্র ক্ষতিবর বর্জ্য পরার্থ যাধাসমূব ব্রান করে নতুন ও উল্লাভতর পরিবেশবামার পদতি উদ্যাবন
- 🔪 च्याना क्यानि वी६८ हर्कोचीव वाजाइ।

#### □ विषय दें।दिनानिवः

- > বেগালো ব্যানাবনিক বিভিন্যাৰ ক্ষেত্ৰে উৎপত্ৰ কাঞ্চিত উৎপাদেৱ ভৱ এনাং উৎপদ্ম স্বল উৎপাদের ভরের অনুপাতের 100 গুলিতক गाः शामानात्क वारेन इंटिंगनिन राम ।
- ব্যান্তিকত উৎপাহেদর মোট তর মোট উৎপাহেদর তর
- > যে পদ্মতিতে %AE সর্বোচ্চ সে পদ্যতি তত বেশি মিনার বা পবি। दिश्यामान्य क्या ।

#### □ व्रै-म्मिकितः

- > ज्वारमा शिव्र इंडिनिक्रि एएक छैरशानन शक्तियात वारिक्ट छैरशास्त्र एटतन जुननान की अनिमान वर्धा छे९भन्न दरा ठान वनुभाठर च-म्माइन (E-Factor)।
- थितनाव प्राप्ति रदर्धात च्य (kg)
- ই-ক্যাক্টর = কাঞ্চিক উৎপাদের মোট তর (kg)
- > নে পদ্ধতিতে ই-ফ্যাষ্ট্র যত কম হয়, সেই পদ্ধতি তত বেশি মিন্সর বা পত্ৰিবেশবান্ধৰ হয়।
- > ज्यानर्भ दे-काईिख मान 0।

### বিক্রিয়ার দিকমূখিতা, তাপোৎপাদী ও তাপহারী

- वक्युपी विक्रिशात देविगिष्टाः
- একসুনী বিক্রিয়া কোনো না কোনো সময়ে খিয়ে স-পূর্ণতা লাত
- (ii) वक्ष्मची रिक्रिया मन्पूर्नटा नाएड काराप कारना ना कारना मण्य जुना श्रीत्रमान चरुग्र्यस्नमङी। रिक्रियक्षकाना निश्चम स्या যার। বিক্রিয়ক সম্পর্ণরূপে উৎপাদে পরিণত হয়।
- (iii) একমুখী বিক্রিয়ার মৃক্তশক্তির হ্রাস ঘটে। মর্থাৎ ১G < 0 হয় चेनाव्यनः

 $CH_{4}(g) + 2O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(g)$ 

 $N\nu Cl(2q) + AgNO_3(2q) \rightarrow AgCl(s)\downarrow + NnNO_3(2q)$ 

 $2KCIO_3(s) \xrightarrow{\Delta} 2KCI(s) + 3O_2(g)$ 

#### উভযুগী বিঞিন্তার বৈশিষ্ট্য:

- এ বিক্রিরাওলো উচ্বাদিক থেকে ডরু করা ঘায়।
- (ii) व रिक्रिडाएला मन्ध्रनं इस ना।
- (iii) এ বিক্রিয়াওগোর সাম্যাবস্থায় আসার প্রবণতা আছে।
- (iv) এ বিফ্রিরাকে সমীকরণ আকারে লিখতে উভমুখী (⇒) চিহ্ন ব্যবহার করা হয়।
- (v) এ धतानत विक्रिप्तारा সমুখ विक्रिप्तात दात পশ্চাৎসুখী विक्रिप्तात হাবের সমান হলে বিক্রিয়াটি সাম্যাবস্থায় উপনীত হয়।
- (vi) সাম্যাবস্থায় মুক্তণক্তির পরিবর্তন শূন্য।

উদাহরণ: 2SO<sub>1</sub>(g) + O<sub>2</sub>(g) = 2SO<sub>3</sub>(g)

 $PCI_5(g) = PCI_5(g) + CI_2(g)$ 

উভমুখী বিক্রিয়াকে একমুখী বিক্রিয়ায় রূপান্তর করার প্রক্রিয়া:

- (i) কোন উভমুখী বিক্রিয়া হতে উৎপাদকে অপসারণ করলে বিক্রিয়াটি আর পেছনের দিকে অগ্রসর হতে পারে না। অর্ধাৎ বিক্রিয়াটি একমুখী হয়।
- (ii) উভমুখী বিক্রিয়ায় একটি উৎপাদ যদি দ্রবণ থেকে অধ্যক্ষিপ্ত হয় তবে বিক্রিয়াটি একমুখী হয়। যেমন:

 $NaCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) \downarrow + NaNO_3(aq)$ 

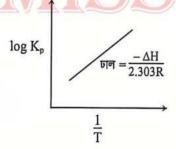
(iii) খোলা পাত্রে উভমুখী বিক্রিয়া সংঘটিত হলে এবং উৎপাদ গ্যাসীয় रल विकियां ि वक्यू शे रय ।

$$CaCO_3 \Rightarrow CaO + CO_2$$
 (বদ্ধ পাত্রে)  
 $CaCO_3 \rightarrow CaO + CO_2$  (খোলা পাত্রে)

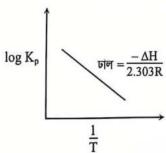
- তাপোৎপাদী বিক্রিয়া:
  - ▶ বিক্রিয়া সংঘটিত হলে তাপ উৎপন্ন হয়।
  - > △H এর মান ঋণাত্মক।

উদাহরণ: CaO + H2O → Ca(OH)2 + Heat

- তাপহারী বিক্রিয়া:
  - ▶ বিক্রিয়য়র তাপ শোষিত হয়।
  - ▶ △H এর মান ধনাত্মক।


উদাহরণ: CaCO<sub>3</sub> → CaO + CO<sub>2</sub> - Heat

### রাসায়নিক সাম্যাবস্থা, লা-শাতেলিয়ার নীতি


ভ্যান্ট-হফ সমীকরণ:

$$\ln K_p = \frac{-\Delta H}{R} \times \frac{1}{T} + C; \log K_p = \frac{-\Delta H}{2.303R} \times \frac{1}{T} + C$$

- ভ্যান্ট হফ সমীকরণ সামধ্রেবকের ওপর তাপমাত্রার প্রভাব ব্যাখ্যা করে। সাম্যঞ্রবকের মান শুধুমাত্র তাপমাত্রার উপর নির্ভরশীল।
- তাপোৎপাদী (ΔH = ve) বিক্রিয়ার ক্লেত্রে log K<sub>p</sub> বনাম + এর

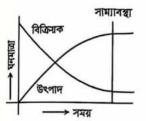


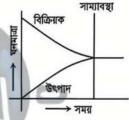
লেখচিত্র:

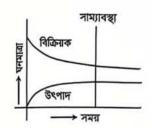


...... ACS, > Chemistry Ia Paper Chapter-4

पृि ि छित्र जाश्रमाजात नामाध्यक् क अत्र खना छान्छ रएक्त नमीकत्रमः


$$\log \frac{K_{p_2}}{K_{p_1}} = \frac{\Delta H}{2.303R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right);$$


$$\ln \frac{K_{p_2}}{K_{p_1}} = \frac{\Delta H}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right)$$


त्रां त्रां त्रां त्रां निक नामग्रावद्याः

कात्ना উভযুখी विकियात সমুখযুখी विकियात হার এবং পশ্চাৎসুদ্ধী বিক্রিয়ার হার সমান হলে, তাকে রাসায়নিক সাম্যাবস্থা বলে।









- সাম্যাবস্থায় সম্মুখমুখী ও পদ্চাৎমুখী বিক্রিয়ার বেগ সমান হয়।
- সাম্যাবস্থায় উপনীত হওয়ার পর বিক্রিয়ক ও উৎপাদের ঘনমাত্রা ব্রুবক হয়ে যায় (অপরিবর্তিত)।
- রাসায়নিক সাম্যাবস্থা একটি গতিশীল অবস্থা। এই অবস্থায় বিক্রিয়ক থেকে উৎপাদ এবং উৎপাদ থেকে বিক্রিয়ক তৈরির

প্রক্রিয়া চলমান থাকে।

রাসায়নিক সাম্যাবস্থার প্রকারভেদ:

রাসায়নিক সাম্যাবস্থা ২ প্রকার।

- (i) সমসত্ত সাম্যাবস্থা;(ii) অসমসত্ত সাম্যাবস্থা
- সমসত্ত সাম্যাবস্থা: উভমুখী বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়ক ও উৎপাদ পদার্থসমূহ একই ভৌত অবস্থায় থাকে। যেমনः

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

অসমসত্ত সাম্যাবস্থা: উভমুখী বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়ক ও উৎপাদ পদার্থসমূহ ভিন্ন ভৌত অবস্থায় থাকে। যেমনः

$$3Fe(s) + 4H_2O(g) = Fe_3O_4(s) + 4H_2(g)$$

আয়নিক সাম্যাবস্থাঃ সমসত্ত্ব ও অসমসত্ত্ব সাম্যাবস্থা ব্যতীত আরেক ধরনের বিশেষ সাম্যাবস্থা রয়েছে যা আয়নিক সাম্যাবস্থা। যেমন:

$$NH_4OH(aq) = NH_4^+(aq) + OH^-(aq)$$

ज्ञागायिनक পরিবর্তন ➤ ACS, FRB Compact Suggestion Book....

DIE

- ব্যাসায়নিক সাম্যাবস্থার শর্ত বা বৈশিষ্টাঃ
  - (1) সাম্যের স্থায়িত
  - (ii) উভ্যাদিক থেকে সুগম্যভা
  - (iii) বিক্রিয়ার অসম্পূর্ণতা
  - (iv) প্রভাবকের ভূমিকাহীনভা



- কোনো উভমূপী বিক্রিয়া সাম্যাবস্থায় স্থিত হয়েছে কিলা তা বোঝায় উপায়:
  - (i) উৎপাদ ও বিক্রিয়কের বর্ণ পরিবর্তনের স্থিত অবস্থা
  - (ii) অধঃক্ষেপের বর্ণের গাচ্তু ছিরকরণ
  - (iii) উত্ত্যা দিকের গতি নির্ণ্যা
- লা শাতেলিয়ারের নীতি:

"কোনো উত্যুখী বিক্রিয়া সাম্যাবস্থায় থাকাকালে যদি ঐ অবস্থায় একটি নিয়ামক, ষেমন- তাপমাত্রা, চাপ অথবা ঘনমাত্রা পরিবর্তন করা হয়, তবে সাম্যের অবস্থান ডালে বা বামে এমনভাবে পরিবর্তিত হবে, যাতে নিয়ামক পরিবর্তনের ফলাফল প্রশ্নিত হয়।"

তাপমাত্রার প্রভাব:

| বিক্রিয়ার ধরন     | তাপমাত্রা | সাম্যঞ্জবক   | সায্যাবস্থা |
|--------------------|-----------|--------------|-------------|
| তাপোৎপাদী          | বাড়ালে   | হ্রাস পায়   | -           |
| $\Delta H = (-)ve$ | কমালে     | বৃদ্ধি পায়  | DM          |
| তাপহারী            | বাড়ালে   | বৃদ্ধি পায়  | <b>→</b>    |
| $\Delta H = (+)ve$ | কমালে     | হ্রাস পায় 🌑 | SET         |

- চাপের প্রভাব:
  - 🗲 চাপের প্রভাব কঠিন বিক্রিয়কের ক্লেত্রে প্রযোজ্য নয়।
  - > বিক্রিয়ক ও উৎপাদের মোলসংখ্যা সমান হলে চাপের প্রভাব ধাকবে না, মোলসংখ্যা সমান না হলে চাপের প্রভাব বিদ্যামান।
  - ▶ চাপ বাড়ালে বিক্রিয়ার গতি সেদিকে অগ্রসর হয় যেদিকে মোলসংখ্যা কম। চাপ কমালে বিক্রিয়ার গতি সেদিকে অগ্রসর হয় যেদিকে মোলসংখ্যা বেশি।
  - Δn = 0 হলে সাম্যাবস্থায় নিদ্ধিয় গ্যাসের প্রভাব নেই (P এবং V ফ্রবক)
  - চাপ ধ্রুবক কিন্তু ∆n ≠ 0 হলে, সাম্যাবস্থায় নিদ্রিয় গ্যাসের প্রভাব বিদ্যমান। এক্লেত্রে সাম্যাবস্থা low molecule থেকে high molecule এর দিকে যায়।
- ঘনমাত্রার প্রভাব:

| বিক্রিয়কের ঘনমাত্রা | সাম্যাবস্থা   |  |  |
|----------------------|---------------|--|--|
| বাড়ালে              | $\rightarrow$ |  |  |
| কমালে                | ←             |  |  |

### स्त्राचित्रात मृत्यु मायाध्यतस्य (अहे ह स्त्रि)

छ्त्रविमाति त्रुवाः

निर्मित्रं काश्यावामा निर्मित्रं मधावा द्ववाचा सामागित्रं निकियास वसत्तं से मधाव विश्वविद्यास वसत्तं से मधाव विश्वविद्यास वसत्तं क्षां काश्याका वा वाश्यिक जापा मधावन । स्थानितः व्यापाला

- > 1864 माण निवासी एष्ट्यार्थ ('Guldharg) क मि.साल (स्वास श्यक्ट) स्नाविमा। मृत्र केंग्रानन नम्यतन।
- > সামাান্ত বা সামান্ত্ৰতক ব্ৰ'ফাকানা।
  - (1) व्यामाल नायाधन्यक (1)
  - (ii) আংশিক চাপে সামাধ্রুবক (Kr)
- > व्यक्गी रिविजात मंदीकानः

$$aA(g) + bB(g) = cO(g) + dD(g)$$

$$\therefore \mathbb{K}_{\epsilon} = \frac{[C]^{\epsilon} \times [D]^{\delta}}{[A]^{2} \times [B]^{\delta}}$$

সামাবিছায় উৎপানসমূহের আংশিক চাপের উপযুক্ত ঘাতদহ ৩৭ফল স্যানাবিছায় বিক্রিক্যকসমূহের আংশিক চাপের উপযুক্ত ঘাতদহ ৩৭ফল

$$K_p = \frac{P_C^c \times P_D^c}{P_A^c \times P_B^b}$$

$$X_C^c \times X_D^d$$

$$K_1 = \frac{X_C \times X_D^2}{X_A^3 \times X_D^6}$$
 [X = মোন ত্যাংশ]

K<sub>c</sub> এর একক = (ঘনমান্রার একক)<sup>55</sup> = (mol L<sup>-t</sup>)<sup>55</sup>

= (mol dm 3) 2n

- > K<sub>p</sub> এর একক = (চাণের একক)<sup>১১</sup> = (ntm)<sup>১১</sup>
- K<sub>p</sub> এর ক্রেরে Δn এর গণনায় ভধুমার গাাদীয় বিক্রিরাক ও উৎপাদ
  থাকবে। K<sub>c</sub> এর ক্রেরে Δn এর গণনায় গাাদীয় এবং জ্বনীয় দ্রুবন
  এ থাকা বিক্রিয়ক ও উৎপাদ থাকবে। কয়েন কয়িন এবং বিভে
  তরলের মোলার ঘনয়ারার মান । হয়।

$$C_BCO_3(s) = C_BO(s) + CO_3(g)$$
  
উপরের বিক্রিয়ায়,  $K_c = [CO_2]$  এবং  $K_p = P_{CO_3}$ 

K, ও K, এর মধ্যে সম্পর্ক:

$$K_p = K_c(RT)^{\Delta n}$$

যেখানে, K<sub>p</sub> = আংশিক চাপে সামঞ্ৰেবক

Kc = মোলার ঘনমাত্রায় সামন্ত্রেক

 $\Delta n =$  গ্যাসীয় উৎপাদের মোট মোল সংখ্যা  $(n_2)$  — গ্যাসীয় বিক্রিয়কের মোট মোল সংখ্যা  $(n_1)$ 

 $R = 0.0821 \text{ L atm } \text{K}^{-1} \text{ mo} \Gamma^{1}$ 

T = কেলভিন এককে তাপমাত্রা

> ∆n = 0 হলে, K<sub>p</sub> = K<sub>c</sub>

 $> \Delta n = (+) \text{vo RM}, K_p > K_c$ 

> ∆n = (-)vo \( \overline{\chi \eta}, \( K\_p < K\_o \)

### বিত্রিন্যা অনুপাত:

যেকোনো সময় একটি বিক্রিনার উৎপাদসমূহের সক্রিয় ভরের উপযুক্ত ঘাতসহ গুণফল এবং বিক্রিয়কসমূহের সক্রিয় ভরের উপযুক্ত ঘাতসহ গুণফলের অনুপাতকে বিক্রিয়া অনুপাত বলে। একে Q দ্বারা প্রকাশ করা হয়।

একটি বিক্রিয়া:  $aA(g) + bB(g) \Rightarrow cC(g) + dD(g)$  হলে,

$$Q_c = \frac{[C]^c \times [D]^d}{[A]^a \times [B]^b}, \quad Q_p = \frac{P_C^o \times P_D^d}{P_A^o \times P_D^b}$$

- বিক্রিয়ার দিক সম্পর্কে ধারণাঃ
  - ho  $Q_c < K_c$  বা,  $Q_p < K_p$  হলে বিক্রিয়াটি সাম্যাবস্থা অর্জনের জন্য সম্মুখ দিকে অগ্রসর হবে।
  - $ightarrow Q_c > K_c$  বা,  $Q_p > K_p$  হলে সাম্যাবস্থা অর্জনের জন্য পশ্চাৎ দিকে অর্থসর হবে।
  - $ightarrow Q_{c} = K_{c}$  বা,  $Q_{p} = K_{p}$  হলে বিক্রিয়াটি সাম্যাবস্থায় আছে।
- সামাধ্রুবক K, এর তাৎপর্য:

সামাঞ্ছবক বিক্রিয়ার ব্যাপ্তি সম্বন্ধে ধারণা দেয়।

| K, এর মান                             | বিক্রিয়ার ব্যাপ্তি                                                                                                         |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| 10 <sup>-3</sup> থেকে 10 <sup>3</sup> | সাম্যমিশ্রণে বিক্রিয়ক ও উৎপাদ গণনাযোগ্য<br>পরিমাণে থাকে।                                                                   |  |
| $K_c > 10^3$                          | সামামিশ্রণে বিক্রিয়কের চেয়ে উৎপাদ বেশি হয়।                                                                               |  |
| $K_c < 10^{-3}$                       | সাম্যমিশ্রণে উৎপাদের চেয়ে বিক্রিয়ক বেশি হয়।  K <sub>c</sub> এর মান খুব কম হলে সম্মুখমুখী বিক্রিয়া  ঘটতে চায় না বোঝায়। |  |

### বিভিন্ন শুরুত্বপূর্ণ বিক্রিয়ার Kp, Kc রাশিমালাः

| বিক্রিয়া              | K <sub>c</sub>                               | Kp                                                       |
|------------------------|----------------------------------------------|----------------------------------------------------------|
| $PCl_5 = PCl_3 + Cl_2$ | $K_c = \frac{\alpha^2}{(1-\alpha)V}$         | $K_p = \frac{\alpha^2 P}{(1 - \alpha^2)}$                |
| $N_2O_4 = 2NO_2$       | $K_c = \frac{4\alpha^2}{(1-\alpha)V}$        | $K_p = \frac{4\alpha^2 P}{(1 - \alpha^2)}$               |
| $H_2 + I_2 = 2HI$      | $K_c = \frac{4\alpha^2}{(1-\alpha)^2}$       | $K_p = \frac{4\alpha^2}{(1-\alpha)^2}$                   |
| $N_2 + 3H_2 = 2NH_3$   | $K_c = \frac{4\alpha^2 V^2}{27(1-\alpha)^4}$ | $K_p = \frac{16\alpha^2(2-\alpha)^2}{27P^2(1-\alpha)^4}$ |

α = বিয়োজন মাত্রা, V = পাত্রের আয়তন এবং P = মোট চাপ

......... ACS, > Chemistry 1ª Paper Chapter-4

- সামধ্রেবক সম্পর্কিত কিছু গুরুত্বপূর্ণ তথ্য:
  - কোনো বিক্রিয়ার সামধ্রেবককে inverse করলে বিপরী তয়ুকী বিক্রিয়ার সামধ্রেবক পাওয়া যাবে।

 $A(g) \Rightarrow B(g)$ ; বিক্রিয়ার সাম্প্রেবক  $K_1$ 

B(g) = A(g); विकिशात সামাঞ্চবক  $K_2$ 

$$\therefore K_2 = \frac{1}{K_1}$$

কোনো বিক্রিয়াকে m দ্বারা গুণ করলে যদি ২য় বিক্রিয়া পাওয়া
 যায় তবে, ১য় বিক্রিয়ার সামধ্রেবক (K₁) এর স্চক m দিলে ২য়
 সামধ্রেবক (K₂) পাওয়া য়য় । অর্থাৎ, K₂ = (K₁)<sup>m</sup>

$$A \Rightarrow B; K_1 = \frac{[B]}{[A]}$$

যদি বিক্রিয়াকে m দ্বারা গুণ করা হয় তবে, mA = mB

$$K_2 = \frac{[B]^m}{[A]^m} = \left(\frac{[B]}{[A]}\right)^m = (K_1)^m$$

দুটি বিক্রিয়াকে যোগ করলে নতুন বিক্রিয়ার সাম্প্রেবক আগের
দুটি বিক্রিয়ার সাম্প্রেবকের গুণফলের সমান।

(i) 
$$A = B$$
;  $K_1 = \frac{[B]}{[A]}$ 

(ii) B = C; 
$$K_2 = \frac{[C]}{[B]}$$

(i) ও (ii) নং সমীকরণ যোগ করলে,

$$A \Rightarrow C; K_3 = \frac{[C]}{[A]} = \frac{[C]}{[B]} \times \frac{[B]}{[A]}$$
$$\Rightarrow K_3 = K_2 \times K_1$$

## অম্ল-ক্ষারক সাম্যাবস্থা

# পানির আয়নিক গুণফল

- পানির আয়নিক গুণফল (K<sub>w</sub>):
  - পানি হলো একটি অতি দুর্বল তড়িৎ বিশ্লেষ্য পদার্থ। পানির অণু নিজেই অতি স্বল্পমাত্রায় আয়নিত হয়ে ধনাত্মক আয়ন ও ঋণাত্মক আয়ন য়েমন হাইজ্রোনিয়াম আয়ন (H₃O⁺) ও হাইজ্রপ্রিল আয়ন (OH⁻) উৎপন্ন কয়ে। একে পানির আয়নিক গুণফল (K๗) বা পানির অটো-আয়নীকরণ বলে।

$$2H_2O = H_3O^+ + OH^-$$

- $\succ K_w = [H_3O^+] \times [OH^-]$
- $ightarrow 25^{\circ}$ C তাপমাত্রায় পানির আয়নিক গুণফল,  $K_{\rm w}=10^{-14}$ 
  - :. 25°C তাপমাত্রায় বিশুদ্ধ পানিতে,

$$[H_3O^+] = [OH^-] = \sqrt{K_w} = \sqrt{10^{-14}} = 10^{-7} \text{ M}$$

- ▶ 25°C তাপমাত্রায় 1 L বিশুদ্ধ পানির মোলার ঘনমাত্রা
  - = 55.56 M

### রাসায়নিক পরিবর্তন > ACS, FRB Compact Suggestion Book.....

▶ 25°C তাপমাত্রায় বিয়োজিত ও অবিয়োজিত পানি অণুর অনুপাত = 1 : 5555 × 10<sup>5</sup>

 $= 1.8 \times 10^9 : 1$ 

- ightharpoonup অস্ত্রীয় দ্রবণে,  $[H_3O^+] > \sqrt{K_w} > [OH^-]$  নিরপেক্ষ দ্রবণে,  $[H_3O^+] = \sqrt{K_w} = [OH^-]$  ক্ষারীয় দ্রবণে,  $[H_3O^+] < \sqrt{K_w} < [OH^-]$
- পানির আয়নিক শুণফলের (K<sub>w</sub>) উপর তাপমাত্রার প্রভাব:
  - পানির আয়নিক গুণফল গুধুমাত্র তাপমাত্রার উপর নির্ভরশীল।
  - > পানির অটো আয়নীকরণ একটি তাপহারী প্রক্রিয়া। তাপমাত্রা বৃদ্ধি করলে পানির বিয়োজন বৃদ্ধি পায় ফলে K<sub>w</sub> বৃদ্ধি পায়।

Temp 
$$\uparrow K_w \uparrow$$
 Temp  $\downarrow K_w \downarrow$ 

➤ 100°C তাপমাত্রায় পানির আয়নিক গুণফল, K<sub>w</sub> = 8.7 × 10<sup>-14</sup>
 ∴ 100°C তাপমাত্রায় বিশুদ্ধ পানিতে,

$$[H_3O^+] = [OH^-] = \sqrt{K_w} = \sqrt{8.7 \times 10^{-14}} = 2.95 \times 10^{-7} M$$

□ পানির আয়নিক গুণফলের (K<sub>w</sub>) ও পানির স্ব-আয়নীকরণ ক্রবক (K<sub>d</sub>) এর সম্পর্ক:

পানির বিয়োজন বিক্রিয়া:  $2H_2O = H_3O^+ + OH^-$ 

ভরক্রিয়া সূত্র মতে,  $K_d = \frac{[H_3O^+] \times [OH^-]}{[H_2O]^2}$ 

 $\Rightarrow$  [H<sub>3</sub>O<sup>+</sup>] × [OH<sup>-</sup>] = K<sub>d</sub> × [H<sub>2</sub>O]<sup>2</sup>

 $\Rightarrow K_w = K_d \times [H_2O]^2$ 

## অম্ল-ক্ষারকের শক্তিমাত্রা ও বিয়োজন

#### ব্র অস্ত্র-ক্ষারক মতবাদ:

| মতবাদ      | Acid                     | Base                     |
|------------|--------------------------|--------------------------|
|            | জলীয় দ্রবণে             | জলীয় দ্রবণে             |
| আরহেনিয়াস | $\mathrm{H}^{+}$ দান করে | OH দান করে               |
| ব্রনস্টেড  | III sala ara             | III ded                  |
| ও লাউরি    | H <sup>+</sup> দান করে   | H <sup>+</sup> গ্রহণ করে |
| লুইস       | ইলেকট্রন জোড় গ্রহণ      | ইলেকট্রন জোড় ত্যাগ      |
|            | করে                      | করে                      |

- অম্রের শক্তিমাত্রার নির্ভরশীলতা:
  - ▶ অম্রের বিয়োজন ধ্রুবক (K₂) যত বেশি হয় এসিডটি তত শক্তিশালী
    হয়। তীব্র এসিড (HCl, HNO₃, H₂SO₄) জলীয় দ্রবণে প্রায়
    সম্পূর্ণরূপে আয়নিত হয় বলে এদের K₂ এর মান খুবই বেশি।
    অপরদিকে দুর্বল এসিড (CH₃COOH) জলীয় দ্রবণে মাত্র
    6 10% বিয়োজিত হয়। এদের K₂ এর মান কম।

- ▶ কেন্দ্রীয় পরমাণুর ধনাত্মক জারণ সংখ্যা সমান হলে যার কেন্দ্রীয় পরমাণুর আকার ছোট সেই এসিডের তীব্রতা বেশি হয়।

> হাইদ্রাসিড (H এর সাথে হ্যালোজেন যুক্ত হয়ে যে এসিত হয়) এর ক্লেত্রে অ্যানায়নের আকার বড় হলে হাইদ্রাসিতের শক্তি বৃদ্ধি পায়।

HI > HBr > HC/ > HF

- ৯ দ্রাবকের ক্ষারকত্ব বেশি হলে সেই দ্রবণে এসিত শক্তিশালী হিসেবে আচরণ করে।
- ক্ষারকের শক্তিমাত্রার নির্ভরশীলতা:

ক্ষারকের তীব্রতা বা শক্তিমাত্রা নিম্নোক্ত ৩টি বিষয়ের ওপর নির্ভর করে।

- (i) ধাতুর অক্সাইড ও হাইড্রোক্সাইডের পানিতে দ্রবদীয়তা
- (ii) ক্ষারকের বিয়োজন ধ্রুবক (Kb)
- (iii) যৌগের নিঃসঙ্গ ইলেকট্রন প্রদানের ক্ষমতা
- অম্রের ক্ষারকত্ব:

এক মোল কোনো অস্ত্র দারা যত মোল এক অশ্রীয় ক্লারক (যেমন: NaOH, KOH) পূর্ণ প্রশমিত হয়, ক্লারকের ঐ মোল সংখ্যাকে ঐ অস্ত্রের ক্লারকত্ব বলে।

| অস্ত্র                         | ক্ষারকত্ব |  |
|--------------------------------|-----------|--|
| FS HC/                         | 1         |  |
| H <sub>2</sub> SO <sub>4</sub> | 2         |  |
| H <sub>3</sub> PO <sub>4</sub> | 3/10/     |  |
| H <sub>3</sub> PO <sub>3</sub> | 2         |  |
| H <sub>3</sub> PO <sub>2</sub> | 1         |  |
| CO <sub>2</sub>                | 2         |  |
| P <sub>2</sub> O <sub>5</sub>  | 6         |  |

#### কারকের অমুত্ব:

এক মোল কোনো ক্ষারক দ্বারা যত মোল এক ক্ষারকীয় অস্ত্র (যেমন: HCl) পূর্ণ প্রশমিত হয়, অম্লের ঐ মোল সংখ্যাকে ঐ ক্ষারকের অম্লুত্ব বলে।

| ক্ষারক                         | অম্লুফ্ |
|--------------------------------|---------|
| NaOH                           | 1       |
| CaO                            | 2       |
| A/(OH) <sub>3</sub>            | 3       |
| Al <sub>2</sub> O <sub>3</sub> | 6       |

১০৪ ..... তা অশ্রের বিয়োজন প্রবক (K.):

এসিডের জলীয় দ্রবণকে নিচের বিক্রিয়ার মাধ্যমে লেখা যার:

HA + H<sub>2</sub>O = H<sub>3</sub>O<sup>+</sup> + A<sup>-</sup>
आभाग्याग, K<sub>c</sub> = 
$$\frac{[H_3O^+][A]}{[HA][H_2O]}$$

⇒ K<sub>c</sub> ×  $[H_2O] = \frac{[H_3O^+][A]}{[HA]}$ 

∴ K<sub>a</sub> =  $\frac{[H_3O^+][A]}{[HA]}$ 

্র কারকের বিয়োজন ধ্রুবক ( $K_b$ ):  $A^- + H_2O \Rightarrow HA + OH^-$ 

সাম্যাবস্থায়, 
$$K_c = \frac{[HA][OH]}{[A][H_2O]}$$

$$\Rightarrow K_c \times [H_2O] = \frac{[HA][OH]}{[A]}$$

$$\therefore K_b = \frac{[HA][OH]}{[A]}$$

- $K_a \times K_b = K_w = 10^{-14}$ >  $pK_a + pK_b = pK_w = 14$
- ্র দুর্বল এসিড ও দুর্বল কারকের বিরোজন মাত্রা ও বিরোজন প্রবর্কত বিয়োজন মাত্রা, α = অসিত বা কারের মেতি মোল সংব্যা
- অসৎয়ান্ডের লয়ুকরণ সূত্র:
  লয়ু দ্রবলে মৃদু তড়িং বিশ্রেষ্য বেমন মৃদু অল্ল ও ক্ষারকের বিদ্রোজন মাত্র
  ঐ অল্ল ও ক্ষারকের দ্রবলের মোলার ঘনমাত্রার বর্গমূলের ব্যক্তনুপাতিক
  অর্থাং, α ∞ 1/√C
  - ightharpoonup অন্তের বিয়োজন ধ্রুবক,  $K_a = \alpha^2 C$  বা,  $\alpha = \sqrt{\frac{K_a}{C}}$
  - $\Rightarrow$  ফারন্কের বিয়োজন ধ্রুবক,  $K_b = \alpha^2 C$  বা,  $\alpha = \sqrt{\frac{K_b}{C}}$
  - $\Rightarrow$  এসিভ দ্রবণে,  $[H_3O^*] = \alpha C = \sqrt{K_a \times C}$
  - > ক্ষার দ্রবণে,  $[OH^-] = \alpha C = \sqrt{K_b \times C}$
  - মৃদু অয়, মৃদু ক্ষারক ও মৃদু তড়িং বিশ্রেষ্য পদার্থের দ্রবদের বেলার অসওয়ান্ডের লত্ত্বরদ সূত্র প্রযোজ্য। দ্রবদের লত্ত্বরদের সাথে ঐ সব পদার্থের বিয়োজন মাত্রা বাড়তে থাকে।
  - > অসীম লঘুতায় মৃদু অল্ল/কারক সম্পূর্ণরূপে বিয়োজিত হয়, ফলে তখন অসওয়াল্ডের লঘুকরণ সূত্র প্রয়োজ্য হয় না।

## HOq & Hq

- □ pH % pOH:
  - কোনো দ্রবদের হাইড্রোজেন আয়নের (H') মোলার ছনমাত্রার ক্ষান্ত্রক লগারিদমকে ঐ দ্রবদের pH বলে।

$$pH = -\log [H^{+}]$$

$$\Rightarrow [H^{+}] = 10^{-pH}$$

ACS, > Chemistry 1st Paper Chapter ...

 কোনো প্রবাদর ঘটাফ্রাক্সাইড আরানের (OHT) সোলার কলনারাক্র গুলাঞ্চক লগারিদমকে ঐ প্রবাদর pOH বলে :

$$pOH = -log \{OH'\}$$
  
=  $[OH'] = 10^{-pCa)}$ 

- 🔾 द्वरापंत्र pH यान ६ pH (फार):
  - এসিড-ফারক বিভিনার যে সমন্ত দ্রকা বাবহার করা হার সেলালেন্দর ঘনমাত্রা সাধারণত 10<sup>4</sup> হেকে 10<sup>-14</sup> mol L<sup>-1</sup> হরে পারেক
  - >  $K_{**} = [H^{*}] [OH^{*}] = 10^{-64}$   $\Rightarrow -\log K_{**} = -\log [H^{*}] - \log [OH^{*}] = -\log (10^{-68})$  $\therefore pK_{**} = pH + pOH = 14$
  - 25°C তাপমাত্রার বিকল্প পালির pH = pOH = 7
  - তবে তাপনাত্রা বারুলে pH + pOH < 14 হতে বার: কালা তাপনাত্রা বারুলে K, এর নান বারে:
  - > দুৰ্বল এসিডের, pH = log (αC)
- ধুব কম ঘনমানার এসিত ও ক্ষরেকর pH ও pOH নির্বাহ
  - ২ বখন এবিত দ্রবনের pH 7 বা তর তেরে বেশি হয় তখন ুর্দ্ধ । বা খনমারের বামে 10<sup>-7</sup> মোগ তরতে হয়। বেশন: 1.5 × 10<sup>-9</sup> M HC/ 4.

pH = 
$$-\log [H^{-}]$$
  
=  $-\log (1.5 \times 10^{-4} + 10^{-3}) = 6.399$ 

- > অনুস্থপতারে করে দ্রবনের pH 7 বা তর তেরে কম আনতে ্টেল
  - ্র ক্রম্মর সাধে 10<sup>-7</sup> যেস ব্যক্তে হয়।
- नदलंद वर्ज दिख्यन (Salt Hydrolysis)=
  - অন্তর্গন্তির হল ও জরত থেতে উংগ্র করণের কাটারন বা আন্দরন পানির সাথে ভিত্তা করে বয়াজনে হলুবারী বা জরবারী জনীয় দ্রুল তৈরি করে। একে করণের কর্ম বিশ্রেমণ বার
  - (i) ফুটার দ্রবদ: সবল ফুল নুর্বল করক → CmSO... N=.Cl.
     NH,NO<sub>3</sub>, AgNO<sub>3</sub>, ZmCl<sub>2</sub>
  - (ii) कारीत द्वरूप: नरन कारूक + मूर्रन क्य → Na<sub>2</sub>CO<sub>2</sub>, Na<sub>2</sub>S.
     Na<sub>2</sub>PO<sub>4</sub>, K<sub>2</sub>CO<sub>3</sub>, KCN, CH<sub>2</sub>COON<sub>2</sub>
- কিছু প্রয়োজনীর পদার্মের pH:

| পদার্থ                       | pH        | শূৰ্ব               | Eliq        |
|------------------------------|-----------|---------------------|-------------|
| মাটি                         | 3-95      | ক্ষেত্ৰৰ            | 6-8         |
| অণুজীব বৃদ্ধির সহারক<br>মাটি | 6.6 - 7.3 | চেৰে শনি            | 6.6 - 7.6   |
| মৃথনিয়ে কানামটি             | 6-65      | स्कृ                | 6.2 - 7.4   |
| চামড়া ট্যানিং               | 4-45      | মত্দুৰ              | 6.6-6.9     |
| তৃক (প্রাপ্তবয়ক)            | 4-55      | <u>ধ্</u> যুৰ       | 4.5-8       |
| কুক (শিণ্ড)                  | 55-65     | रङ                  | 7.35 - 7.45 |
| ব্যাকটেরিয়া মৃক্ত কৃক       | 4-55      | পাকসুদী             | 15-35       |
| খোদন করার সাবান              | 7-8       | क्टाव               | 7.4-8       |
| AU2.                         | 5-7       | টুবলেস্ট্র<br>বিশাস | 8           |

রাসায়নিক পরিবর্তন > ১৫১ FRB Compact Suggestion Book.....

### ক্যালকুলেটর ব্যতীত pH নির্ণয়:

ক্যালকুলেটর ব্যতীত pH নির্ণয়ে কিছু গুরুত্বপূর্ণ log এর মান:

| log 1 = 0      | $\log 2 = 0.3$ | $\log 3 = 0.5$ | $\log 4 = 0.6$ |
|----------------|----------------|----------------|----------------|
| $\log 5 = 0.7$ | log 6 = 0.8    | log 7 = 0.85   | log 8 = 0.9    |

### বাফার দ্রবণ ও এর ক্রিয়াকৌশল

#### বাফার দ্রবণ:

যে দ্রবণে অল্প পরিমাণ এসিড বা ক্ষারক যোগ করলে দ্রবণের pH অপরিবর্তিত থাকে তাকে বাফার দ্রবণ (Buffer solution) বলে।

- বাফার দ্রবণ দুই প্রকার।
  - (i) অম্লীয় বাফার দ্রবণ: CH3COOH + CH3COONa
  - (ii) ক্ষারীয় বাফার দ্রবণ: HCO3 + Na2CO3
- বাফার দ্রবণ লা-শাতেলিয়ারের নীতি ও সম-আয়ন নীতির উপর
   ভিত্তি করে কাজ করে ৷
- কার্যকর বাফারের ক্ষেত্রে log [salt] এর মান 0 এর কাছাকাছি।

### বাফার দ্রবণের pH নির্ণয়:

ightharpoonup অম্লীয় বাফার দ্রবণের জন্য,  $pH = pK_a + log \frac{[salt]}{[acid]}$ 

$$= pK_a + \log \frac{n_{\text{salt}}}{n_{\text{acid}}}$$

▶ ক্ষারীয় বাফার দ্রবণের জন্য,  $pOH = pK_b + log \frac{[salt]}{[base]}$ 

$$= pK_b + \log \frac{n_{\text{salt}}}{n_{\text{base}}}$$

## ্বতিরিক্ত এসিড বা ক্ষার যোগে বাফার দ্রবণে pH নির্ণয়:

| অশ্লীয় বাফার                                            | ক্ষারীয় বাফার                                            |  |
|----------------------------------------------------------|-----------------------------------------------------------|--|
| অতিরিক্ত এসিড যোগ করলে,                                  | অতিরিক্ত এসিড যোগ করলে,                                   |  |
| $pH = pK_a + \log \frac{n_{salt} - n_A}{n_{acid} + n_A}$ | $pOH = pK_b + \log \frac{n_{salt} + n_A}{n_{base} - n_A}$ |  |
| অতিরিক্ত ক্ষার যোগ করলে,                                 | অতিরিক্ত ক্ষার যোগ করলে,                                  |  |
| $pH = pK_a + \log \frac{n_{salt} + n_B}{n_{acid} - n_B}$ | $pOH = pK_b + log \frac{n_{salt} - n_B}{n_{base} + n_B}$  |  |

 ${f n}_A=$  বাফার দ্রবণে যোগকৃত অতিরিক্ত এসিডের মোল সংখ্যা  ${f n}_B=$  বাফার দ্রবণে যোগকৃত অতিরিক্ত ক্ষারের মোল সংখ্যা

### 🗖 বাফার ক্ষমতা (Buffer Capacity):

#### বাফার বেঞ্চ:

- কোনো বাফার দ্রবণের বাফার রেগু বলতে বাফার দ্রবণের সেই pH সীমার পরিসর বোঝায়, যে pH পরিবর্তন সীমার মধ্যে ঐ বাফার দ্রবণের বাফার ক্রিয়া সুষ্ঠভাবে কার্যকর থাকে।
- > অখ্লীয় বাফারের বেলায় [লবণ]/(অখ্ল) এর অনুপাত = 10 গুণ অথবা ঐ অনুপাত = 0.1 গুণ পরিমাণের মধ্যে থাকলে তবেই বাফার ক্ষমতা কার্যকর থাকে।
- > ক্ষারীয় বাফারের বেলায় [লবণ]/ক্ষার] এর অনুপাত = 10 গুণ থেকে 0.1 গুণ এর মধ্যে থাকতে হয়। নতুবা ঐ সব বাফার দ্রবণের বাফার ক্রিয়া সুষ্ঠভাবে কার্যকর হয় না।
- >  $pH = pK_a + log \ 0.1 = pK_a 1$ । তাই বাফারে ঈন্সিত pH মান ব্যবহৃত দুর্বল অপ্রটির  $pK_a$  এর মান থেকে  $\pm 1$  pH ব্যবধানে রাখা হয়।

### □ মানুষের রক্তের pH:

- শভাবিক অবস্থায় রক্তের pH = 7.4 । pH রেঞ্ব: (7.35 7.45) ।
- ▶ 0.1 pH ইউনিট পরিবর্তন সীমার মধ্যে থাকলে রক্ত দ্বারা O₂ পরিবহন সুষ্ঠুভাবে ঘটে।
- pH 0.5 এর বেশি পরিবর্তিত হলে জীবন সংকটাপন্ন হয়।
- ▶ pH 7.45 এর বেশি হলে অ্যালকালিসিস্ ও pH 7 এর কম হলে এসিডোসিস্ হয়।
- ডায়বেটিক রোগীর pH এর মান 6.82 পর্যন্ত নেমে আসলে জ্ঞান হারিয়ে ফেলে।

### মানুষের রক্তের কার্বনেট বাফার সিস্টেম:

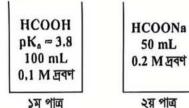
- ➤ মানুষের রক্তে তিন ধরনের বাফার সিস্টেম দেখা যায়।
  - (i) বাইকার্বনেট বাফার
  - (ii) আন্তঃকোষীয় ফসফেট বাফার
  - (iii) প্রোটিন বাফার
- রক্তের pH নিয়ন্ত্রণে বাইকার্বনেট বাফারের ভূমিকা সর্বপ্রধান।
- শ্বসনক্রিয়ায় উৎপন্ন H₂CO₃ এর বিয়োজন সাম্যাবস্থায় সৃষ্ট কার্বনেট বাফার সিস্টেমের pH হলো−

$$CO_2 + H_2O \Rightarrow H_2CO_3$$
  
 $H_2CO_3(aq) \Rightarrow H^+(aq) + HCO_3^-(aq)$ 

$$\begin{split} K_{a} &= \frac{[H^{+}] [HCO_{3}^{-}]}{[H_{2}CO_{3}]} \\ \Rightarrow [H^{+}] &= K_{a} \frac{[H_{2}CO_{3}]}{[HCO_{3}^{-}]} \end{split}$$

$$\therefore pH = pK_a + log \frac{[HCO_3]}{[H_2CO_3]}$$

- শ্বাভাবিক রক্তে বাইকার্বনেট ও কার্বনিক এসিডের অনুপাত = 20 : 1


50 mL

২য় পাত্র

# 🚻🗬 পরীক্ষার্থীদের জন্য বাছাইকৃত সুজনশীল প্রশ্নোত্তর

98# " .....

## ल्ड 🔰 🌶 विश्वाक्ष भाग्ने 🧗



मुश्रीक्ष-२।

25°C তাপমাত্রার 1L একটি পাত্রে বিয়োজন বিক্রিয়াটি নিম্নরূপ:

X(g) 2Y (g) । X-এর বিয়োজন মাত্রা 40%।

- (ক) ঘান কেমিন্ট্রি কাকে বলে? [ঢা. বো. অনুরূপ প্রশ্ন: ২৩; দি. বো. ২৩; क्. त्वा. २७। य. त्वा. २२; त्रि. त्वा. २२; त्रि. त्वा. ১५; व. त्वा. ১৯]
- (র্থ) N<sub>2</sub>(g) + O<sub>2</sub>(g) \( \infty 2NO(g) বিক্রিয়াটির সাম্যাবস্থার উপর চাপের প্রভাব আছে কি? ব্যাখ্যা কর। [রা. বো. ২৩]
- (१) 🕽 नर পाव्य विमामान प्रत्वत्र विराग्नाजन मावा श्रिमांव कत्र ।
- (ঘ) বিক্রিয়া পাত্রের আয়তন দ্বিগুণ বা অর্ধেক করলে বিয়োজনমাত্রা পরিবর্তিত হয় কী না? গাণিতিকভাবে বিশ্রেষণ কর। [য. বো. ২৩]

#### সমাধান:

- ক্ পৃথিবীব্যাপী রসায়নবিদেরা শিল্প ক্ষেত্রে তাত্তিক ও ব্যবহারিক প্রয়োগে ক্ষতিকর বর্জ্য পদার্থ উৎপন্ন যথাসম্ভব হ্রাস করে নতুন ও উন্নতত্তর পরিবেশবান্ধব পদ্ধতি উদ্ভাবনে সচেষ্ট রয়েছেন। পরিবেশবান্ধব এরূপ রাসায়নিক পদ্ধতিকে ত্রিন কেমিষ্ট্রি বা সবুজ রসায়ন বলা হয়।
- রাসায়নিক বিক্রিয়ায় সাম্যাবস্থায় লা-শাতেলিয়ারের নীতি অনুযায়ী যেসব গ্যাসীয় বিক্রিয়ার উভয়দিকে বিক্রিয়ক ও উৎপাদের মোল সংখ্যা সমান থাকে, তাদের ক্ষেত্রে সাম্যাবস্থার উপর চাপের কোন প্রভাব নেই। প্রদত্ত বিক্রিয়াটিঃ

N2(g)  $+ O_2(g) \Longrightarrow 2NO(g)$ 1 mol মোলসংখ্যা: 1 mol 2 mol

সুতরাং, বিক্রিয়াটিতে বিক্রিয়ক ও উৎপাদের মোলসংখ্যা সমান, বিক্রিয়কে 2 mol এবং উৎপাদে 2 mol। ফলে বাহ্যিক চাপে বিক্রিয়ার উৎপাদের কোন পরিবর্তন ঘটবেনা। তাই বিক্রিয়াটির সাম্যাবস্তায় চাপের কোন প্রভাব নেই।

#### গ্র আমরা জানি,

$$pK_a = -\log K_a = 3.8$$
  
⇒  $K_a = 10^{-3.8}$   
∴  $K_a = 1.58 \times 10^{-4}$   
∴ বিয়োজন মাত্রা,

$$\alpha = \sqrt{\frac{K_a}{C}}$$

$$= \sqrt{\frac{1.58 \times 10^{-4}}{0.1}}$$

$$= 0.039$$

 $\simeq 0.04 = 4\%$ 

∴ ১ম পাত্রে দ্রবের বিয়োজন মাত্রা = 0.04 = 4% (Ans.)

... ACS, > Chemistry 1st Paper Chapter-4

X(g)2Y(g) घ প্রাথমিক অবস্থায়: = 1mol 0 mol

সাম্যাবস্থায়:  $(1-\alpha)$  mol 2a mol

X এর ঘনমাত্রা,  $[X] = \frac{1-\alpha}{V}M$ 

Y এর ঘনমাত্রা,  $[Y] = \frac{2\alpha}{V} M$ 

$$\begin{split} K_c &= \frac{\left[Y\right]^2}{\left[X\right]} \\ &= \frac{4\alpha^2}{V^2} \times \frac{V}{1-\alpha} = \frac{4\alpha^2}{V(1-\alpha)} \end{split}$$

$$V = 1 L$$

$$\alpha = 40\% = 0.40$$

$$K_c = \frac{4 \times (0.40)^2}{1 \times (1 - 0.40)} = 1.07 \text{ mol } L^{-1}$$

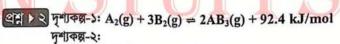
আমরা জানি, নির্দিষ্ট তাপমাত্রায় Kc এর মান ধ্রুবক থকে।

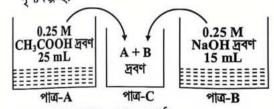
$$V = 2 L$$
 হলে,

$$K_c = \frac{4\alpha^2}{2(1-\alpha)}$$

$$\Rightarrow 1.07 = \frac{2\alpha^2}{(1-\alpha)}$$

$$\Rightarrow \alpha = 0.51$$


$$V = \frac{1}{2} L \overline{2}$$


$$1.07 = \frac{4\alpha^2}{1}$$

$$\Rightarrow 1.07 = \frac{8\alpha}{(1-\alpha)}$$

$$\Rightarrow \alpha = 0.3$$

় বিয়োজন মাত্রা পরিবর্তিত হবে।





 $[CH_3COOH \text{ } 43 \text{ } K_a = 1.8 \times 10^{-5}]$ 

(ক) pOH কী?

(রা. বো. ২৩)

(খ) তাপমাত্রা বৃদ্ধিতে পানির আয়নিক গুণফলের মান বৃদ্ধি পায় কেন? রা. বো. ২৩; অনুরূপ প্রশ্ন: চা. বো. ২২

(গ) উদ্দীপকের বিক্রিয়াটির  $\mathbf{K}_P$  এর রাশিমালা প্রতিপাদন কর।

রা. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২৩; সি. বো. ২৩, ২২; কু. বো. ২১; চ. বো. ২১; म. বো. २५; ता. বো. ১৯; मि. বো. ১৯; ग. বো. ১৭; त्रा. व्वा. ১৭; व. व्वा. ১৭)

(ঘ) C-পাত্রের দ্রবর্ণে সামান্য এসিড বা ক্ষার যোগ করলে দ্রবর্ণের pH এর পরিবর্তন ঘটবে কিনা? বিশ্রেষণ কর। অনুরূপ প্রশ্ন: ঢা. বো. ২৩, ২২, ২১, ১৯, ১৭; কু. বো. ২৩। ম. বো. ২৩, ২২।

> त्रा. त्वा. २७, २२, ১**१; ह. त्वा. २२, ১৯, ১**৭; मि. त्वा. २२, २১; म. त्वा. २১। मि. (वा. २১, ১৭; সম্মি**গিত** (वा. ১৮) व. (वा. ১৭)

রাসায়নিক পরিবর্তন > ১৫১ FRB Compact Suggestion Book.....

- ক কোন দ্রবণের হাইড্রোক্সাইড আয়নের (OH) মোলার ঘনমাত্রার ঋণাত্মক লগারিদমকে ঐ দ্রবণের pOH বলে।
- পানির বিয়োজনের বিক্রিয়াটি নিম্নরূপ:  $2H_2O \Longrightarrow H_3O^+ + OH^- \Delta H = + (ve)$  যেহেত্ এটি একটি তাপহারী বিক্রিয়া ফলে লা-শাতেলিয়ার নীতি অনুসারে বিক্রিয়াটির সাম্যাবস্থায় তাপমাত্রা বৃদ্ধি করলে বিক্রিয়া সামনের দিকে অগ্রসর হবে এবং  $[H_3O^+]$  ও  $[OH^-]$  এর ঘনমাত্রার পরিমাণ বৃদ্ধি পাবে। পানির আয়নিক গুণফলের  $(K_w)$  সূত্র অনুসারে,  $[H_3O^+]$  ও  $[OH^-]$  আয়নদ্বয়ের ঘনমাত্রা বৃদ্ধি পেলে আয়নিক গুণফল

বৃদ্ধি পাবে। K<sub>w</sub> = [H₃O<sup>+</sup>] [OH<sup>-</sup>] অতএব, তাপমাত্রা বৃদ্ধিতে পানির আয়নিক গুণফলের মান বৃদ্ধি পায়।

ত্রু উদ্দীপকের বিক্রিয়াটিকে নিম্নোভভাবে লেখা যায়-

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$
  
প্রাথমিক অবস্থায়:  $1 \text{ mol} 3 \text{ mol} 0$   
সাম্যাবস্থায়:  $(1-\alpha) \text{ mol } 3(1-\alpha) \text{ mol } 2\alpha \text{ mol}$   
সাম্যবস্থায় মোট মোল সংখ্যা =  $(1-\alpha+3-3\alpha+2\alpha) \text{ mol}$   
=  $(4-2\alpha) \text{ mol}$ 

ধরি, মোট চাপ = P

$$\therefore$$
 N<sub>2</sub> এর আংশিক চাপ,  $P_{N_2} = \frac{1-\alpha}{4-2\alpha} P$ 

$$\therefore$$
  $H_2$  এর আংশিক চাপ,  $P_{H_2} = \frac{3-3\alpha}{4-2\alpha}$   $P_{H_3} = \frac{3-3\alpha}{4-2\alpha}$ 

 $\therefore$  NH<sub>3</sub> এর আংশিক চাপ,  $P_{NH_3} = \frac{2\alpha}{4-2\alpha} P = \frac{\alpha}{2-\alpha} P$ 

$$\therefore K_{P} = \frac{(P_{NH_3})^2}{P_{N_2} \times (P_{H_2})^3} = \frac{\left(\frac{\alpha}{2 - \alpha}P\right)^2}{\left(\frac{1 - \alpha}{4 - 2\alpha}P\right)\left(\frac{3 - 3\alpha}{4 - 2\alpha}P\right)^3}$$
$$= \frac{16\alpha^2 (2 - \alpha)^2}{16\alpha^2 (2 - \alpha)^2}$$

যদি  $\alpha << 1$  হয় তবে  $1-\alpha = 1$  এবং  $2-\alpha = 2$ 

সুতরাং, উদ্দীপকের বিক্রিয়ার জন্য প্রাপ্ত  $K_p$  হলো  $\frac{64\alpha^2}{27P^2}$  (Ans.)

ঘ এসিডের মোল সংখ্যা,

$$n_A = S_A V_A$$

 $= 0.25 \times 25 \times 10^{-3}$ 

= 0.00625 mol

ক্ষারের মোল সংখ্যা,

 $n_B = S_B V_B$ 

 $= 0.25 \times 15 \times 10^{-3}$ 

= 0.00375 mol

CH<sub>3</sub>COOH(aq) + NaOH(aq) → CH<sub>3</sub>COONa(aq) + H<sub>2</sub>O(*l*)
∴ 0.00375 mol NaOH 0.00375 mol CH<sub>3</sub>COOH এর সাথে
বিক্রিয়া করে 0.00375 mol লবণ উৎপন্ন করে।

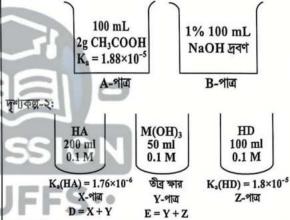
মিশ্রণে দুর্বল এসিড অবশিষ্ট তাই এটি অম্লীয় বাফার দ্রবণ হবে।

 $CH_3COOH(aq) = CH_3COO^{-}(aq) + H^{+}(aq)$ 

 $CH_3COONa(aq) \rightarrow CH_3COO^-(aq) + Na^+(aq)$ ন্য এসিড যোগে উৎপন্ন  $H^+$  আয়ন দ্রবণের  $CH_3COO^-$  এর স

সামান্য এসিড যোগে উৎপন্ন  $H^+$  আয়ন দ্রবণের  $CH_3COO^-$  এর সাথে বিক্রিয়া করে  $CH_3COOH$  উৎপন্ন করে যা প্রায় অবিয়োজিত অবস্থায় থাকে।

 $H^{+}(aq) + CH_{3}COO^{-}(aq) \rightarrow CH_{3}COOH(aq)$  ফলে pH পরিবর্তন হয় না ।


সামান্য ক্ষার যোগে উৎপন্ন  $OH^-$  আয়ন বাফার দ্রবণের  $H^+$  আয়নের সাথে বিক্রিয়া করে  $H_2O$  উৎপন্ন করে ফলে দ্রবণে  $H^+$  এর ঘাটতি দেখা যায়। পরবর্তীতে  $CH_3COOH$  বিয়োজিত হয়ে  $H^+$  আয়নের ঘাটতি পূরণ করে।

 $OH^-(aq) + H^+(aq) \rightarrow H_2O(1)$ 

 $CH_3COOH(aq) = CH_3COO^-(aq) + H^+(aq)$ 

তাই pH অপরিবর্তিত থাকে।

প্রশ্ল ১৩ দৃশ্যকল্প-১:



(ক) বিক্রিয়ার হার ধ্রুবক কাকে বলে?

[য. বো. ২৩]

(খ) pH সীমা 0 – 14 ধরা হয় কেন? ব্যাখ্যা কর।

যি. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২৩; য. বো. ২৩)

- (গ) A-পাত্রের দ্রবণের pH নির্ণয় <mark>কর</mark>। কু. বো. ২৩; অনুরূপ প্রশ্ন; চা. বো. ২৩; চ. বো. ২৩, ২১, ১৭; ব. বো. ২৩; য. বো. ২২, ২১; কু বো. ২২, ২১, ১৯; সি. বো. ২১, ১৯, ১৭; সম্মিলিত বো. ১৮; দি. বো. ১৭)
- (घ) D ও E এর মধ্যে কোনটি বাফার দ্রবণ হিসেবে কাজ করবে? গাণিতিকভাবে বিশ্লেষণ কর। বি. বো. ২৩; অনুরূপ প্রশ্ল: সি. বো. ১৯] সমাধান:
- ক একক মোলার ঘনমাত্রার বিক্রিয়কসমূহের বিক্রিয়ার হারকে সে বিক্রিয়ার হার ধ্রুবক বলে।
- কোন জলীয় দ্রবণের অস্ত্রুত্ব বা ক্ষারত্ব নির্ণয়ের উদ্দেশ্যে দ্রবণে H<sup>†</sup> ও OH আয়নের মোলার ঘনমাত্রার দশভিত্তিক ঝণাত্মক লগারিদমই pH। সাধারণত কোন দ্রবণে H<sup>†</sup> আয়নের ঘনমাত্রা 1 M এর বেশি হলে pH এর মান ঝণাত্মক হয়। আবার OH আয়নের ঘনমাত্রা 1 M এর বেশি হলে pH এর মান 14 এর থেকে বেশি হয়ে যায়, কারণ এক্ষেত্রে H<sup>†</sup> এর ঘনমাত্রা 10<sup>-14</sup> M এর কম হয়, ফলে উভয় ক্ষেত্রে অস্ত্র বা ক্ষারের ঘনমাত্রা পুব বেশি হয়। কিস্তু যেহেতু স্বাভাবিক অবস্থায় আমরা অপেক্ষাকৃত লঘুদ্রবণ নিয়ে কাজ করি, তাই pH কেলটি কেবল লঘুদ্রবণের ক্ষেত্রেই প্রযোজ্য। তাই pH ক্ষেলের সীমা 0 থেকে 14 ধরা হয়।

 $C = \frac{1000 \times W}{MV}$  CH3COOH এর আণ্টিক ভার 60  $= \frac{1000 \times 2}{60 \times 100} = 0.33 \text{ M}$   $\text{pH} = -\log \sqrt{K_o \times C}$ 

pH = 
$$-\log \sqrt{K_a \times C}$$
  
=  $-\log \sqrt{1.88 \times 10^{-3} \times 0.33}$   
= 2.603 (Ans.)

X भाज्यत्र विगिट्धत स्मान गरधाा.

 $n_X = S_X V_X$ = 0.1 × 200 × 10<sup>-3</sup> = 0.02 mol

Y भारतत कारतत स्माल मरथा।

n<sub>Y</sub> = S<sub>Y</sub>V<sub>Y</sub>
= 0.1 × 50 × 10<sup>-3</sup>
= 0.005 mol
Z পাত্রের এসিডের মোল সংখ্যা,

 $n_z = S_z V_z$ = 0.1 × 100 × 10<sup>-3</sup> = 0.01 mol

X ও Z পাত্রের এসিডগুলো দুর্বল ও Y পাত্রের ক্ষারটি তীব্র হওয়ায় D

ও E এর মিশ্রণ অম্রীয় বাফার হতে পারে। D এর ক্ষেত্রে,

 $3HA + M(OH)_3 \rightarrow MA_3 + 3H_2O$ 

3 mol HA ≡ 1 mol M(OH)<sub>3</sub>

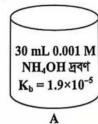
∴ 0.005 mol M(OH)<sub>3</sub> = 0.015 mol HA

∴ এসিড অবশিষ্ট থাকবে।

:. D বাফার দ্রবণ হবে।

E এর কেতে,

 $3HD + M(OH)_3 \rightarrow MD_3 + 3H_2O$ 


 $3 \text{ mol HD} \equiv 1 \text{ mol M(OH)}_3$ 

 $\therefore 0.005 \text{ mol M(OH)}_3 \equiv 0.015 \text{ mol HD}$ 

এক্ষেত্রে এসিড অবশিষ্ট না থাকায় E বাফার দ্রবণ হবে না।

## প্রশা ▶ ৪ দৃশ্যকল্প-১:

 $A_2(g) + 3B_2(g) = 2AB_3(g); \Delta H = -ve$  দুশ্যকল্ল-২:





(ক) লবণ কাকে বলে?

ক্রি. বো. ২৩

(খ) HF ও HCl এর মধ্যে কোনটি তীব্র এসিড? ব্যাখ্যা কর।

[কু. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২৩; ম. বো. ২৩]

(গ) উদ্দীপকের দৃশ্যকল্প-১ বিক্রিয়াটির  $\mathbf{K}_{\mathrm{p}}$  এবং  $\mathbf{K}_{\mathrm{c}}$  এর মধ্যে সম্পর্ক স্থাপন কর। কি. বো. ২৩; জনুরূপ প্রশ্ন: দি. বো. ২২; দি. বো. ১৯

(ঘ) উদ্দীপকের 'A' ও 'B' পাত্রের মিশ্রিত দ্রবণের বাফার ক্রিয়া আছে কী? ব্যাখ্যা কর। সি. বো. ২৩; জনুরূপ প্রশ্ন: य. বো. ২৩; দি. বো. ২৩।

সমাধান।

ক্র অপ্ল ও ক্ষারের মধ্যে সংঘটিত প্রশমন বিক্রিয়ার মাধ্যমে উৎপন্ন আয়দিক বৌগকে লবণ বলে।

যে এসিডের ভালীয় দ্রনণে আয়নিত হয়ে H দান করার প্রবর্পতা বেশি, সেই এসিড তত বেশি তীব্র। HF ও HC/ এর মধ্যে HF এ হাইড্রোজেন ও ফ্রোরনের মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য (ΔΕ<sub>N</sub> = 4.1 – 2.1 = 1.9) অনেক বেশি হওয়ার H – F বন্ধনে ডাইপোল সৃষ্টি করে, যা জালীয় দ্রবণে পানির সাথে হাইড্রোজেন বন্ধন গঠন করে। ফলে HF ভালীয় দ্রবণে স্বন্ধ আয়নিত থাকে। কিন্তু HCl এর তড়িৎ ঋণাত্মকতার পার্থক্য (ΔΕ<sub>N</sub> = 3 – 2.1 = 0.9) অপেক্ষাকৃত কম হওয়ায় পানির সাথে হাইড্রোজনে বন্ধন গঠন করে না এবং আয়নিত অবস্থায় থাকতে পারে। তাই অমুদ্বয়ের মধ্যে HCl তুলনামূলকভাবে তীব্র।

ক্র উদ্দীপকের বিক্রিয়াটি নিম্নুরূপ-

 $A_2(g)+3B_2(g)\leftrightharpoons 2AB_3(g);$   $\Delta H=-$  ve বিক্রিয়াটির ক্ষেত্রে 1 mol  $A_2$  গ্যাস ও 3 mol  $B_2$  গ্যাস মিলে 2 mol  $AB_3$  গ্যাস উৎপন্ন করে ।

$$K_{P} = \frac{P_{AB_{3}}^{2}}{P_{A_{2}}P_{B_{2}}^{3}}$$

$$\Rightarrow K_{P} = \frac{\left(\frac{n_{AB_{3}}}{V}RT\right)^{2}}{\left(\frac{n_{A_{2}}}{V}RT\right)\left(\frac{n_{B_{2}}}{V}RT\right)^{3}}$$

$$\Rightarrow K_{P} = \frac{(C_{AB_{3}} RT)^{2}}{C_{A_{2}} RT \times (C_{B_{2}} RT)^{3}}$$
$$\Rightarrow K_{P} = \frac{[AB_{3}]^{2}}{[A_{2}] [B_{2}]^{3}} (RT)^{-2}$$

 $\Rightarrow K_P = K_C (RT)^{-2}$ 

যা উদ্দীপকের বিক্রিয়ার ক্ষেত্রে  $K_P$  ও  $K_C$  এর মধ্যে সম্পর্ক।

ফ ক্ষারের মোল সংখ্যা,

$$n_B = S_B V_B$$

$$= 0.001 \times 30 \times 10^{-3}$$

$$= 3 \times 10^{-5} \text{ mol}$$

এসিডের মোল সংখ্যা.

$$n_A = S_A V_A$$

$$= 1 \times 10^{-4} \times 15 \times 10^{-3}$$

$$= 1.5 \times 10^{-6} \text{ mol}$$

 $NH_4OH + HCI \rightarrow NH_4CI + H_2O$ 

 $\therefore~1.5 \times 10^{-6}~{
m mol~HC}{\it l},~1.5 \times 10^{-6}~{
m mol~NH_4OH}$  এর সাথে বিক্রিয়া করে  $1.5 \times 10^{-6}~{
m mol~NH_4C}{\it l}$  উৎপন্ন করে ।

অবশিষ্ট ক্ষার = 
$$(3 \times 10^{-5}) - (1.5 \times 10^{-6})$$

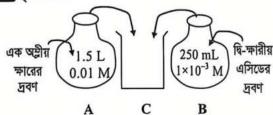
$$= 2.85 \times 10^{-5} \text{ mol}$$

যেহেতু, দ্রবণে দুর্বল ক্ষার অতিরিক্ত আছে;

সুতরাং, ক্ষারীয় বাফার দ্রবণ তৈরি হবে।

 $NH_4OH \Longrightarrow NH_4^+ + OH^ NH_4Cl \to NH_4^+ + Cl^-$ 

রাালারানিক পরিবর্তন > ACS, FRB Compact Suggestion Book......


সামান্য এদিডযোগে উৎপন্ন H<sup>†</sup> বাফার দ্রবণের OH<sup>−</sup> এর সাথে বিক্রিয়া করে H<sub>2</sub>O উৎপন্ন করে। যা NH<sub>4</sub>OH বিয়োজিত হয়ে OH<sup>−</sup> এর ঘাঁটিডি পূরণ করে।

$$H^{+}(aq) + OH^{-}(aq) \rightarrow H_2O(1)$$

সামান্য ক্ষার যোগ করলে  $OH^-$  দ্রবণে বিদ্যমান  $NH_4^+$  আয়নের সাথে বিক্রিয়া করে  $NH_4OH$  উৎপন্ন করে, যা মৃদু ক্ষার বিধায় pH এর মান অপরিবর্ডিত থাকে।

$$OH^{-}(aq) + NH_{4}^{+}(aq) \rightarrow NH_{4}OH(aq)$$

### वान ▶ ৫ मृश्यकन्न->ः



$$K_b = 1.8 \times 10^{-5}$$

দুশ্যকল-১:  $AX_5(g) \rightleftharpoons AX_3(g) + X_2(g)$ ;  $K_p = 1$  atm; P = 10 atm

(ক) বিক্রিয়ার হার ধ্রুবক কাকে বলে?

- य. वा. २०
- (पं) CuSO4 अत्र ष्ट्रणीय प्रवन जयभर्मी कन? वर्गापा कत ।
- [য. বো. ২৩]
- (গ) 'A' পাত্রের দ্রবণে  $\mathbf{H}^+$  এর ঘনমাত্রা হিসাব কর।

[য. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২৩]

(ঘ) তাপমাত্রা স্থির রেখে উদ্দীপকের বিক্রিয়ায় 1.2 atm চাপ প্রয়োগ করলে AX5 এর বিয়োজনমাত্রা কতটুকু পরিবর্তিত হবে? গাণিতিকভাবে বিশ্লেষণ কর।

ঢ়া. বো. ২২; অনুরূপ প্রশ্ন: কৃ. বো. ২২; य. বো. ২২; সি. বো. ১৯)

#### সমাধান:

- ক একক মোলার ঘনমাত্রার বিক্রিয়কসমূহের বিক্রিয়ার হারকে সে বিক্রিয়ার হার ধ্রুবক বলে।
- থা  $CuSO_4$  মূলত দুর্বল ক্ষারক  $Cu(OH)_2$  ও সবল অস্ত্র  $H_2SO_4$  এর লবণ। সাধারণত যেসব লবণ দুর্বল ক্ষারক এবং সবল অস্ত্র থেকে উৎপন্ন হয়, তারা জলীয় দ্রবণে আর্দ্র বিশ্লেষিত হয়ে অস্ত্রীয় দ্রবণ উৎপন্ন করে। জলীয় দ্রবণে  $CuSO_4$  প্রথমে আয়নে বিভক্ত হয়। পরবর্তিতে  $Cu^{2+}$  আয়ন পানির সাথে বিক্রিয়া করে হাইড্রোনিয়াম আয়ন  $(H_3O^+)$  বৃদ্ধি করে, ফলে অস্তুত্বৃদ্ধি পায়।

$$\text{CuSO}_4 + \text{H}_2\text{O} \rightarrow \text{Cu}^{2+}(\text{aq}) + \text{SO}_4^{2-}(\text{aq})$$

 $Cu^{2+}(aq) + 4H_2O(I) \rightleftharpoons Cu(OH)_2(aq) + 2H_3O^+(aq)$ 

γ pOH = 
$$-\log \sqrt{K_b \times C}$$
  
=  $-\log \sqrt{1.8 \times 10^{-5} \times 0.01}$   
= 3.372

$$pH + pOH = 14$$

$$\Rightarrow$$
 pH = 14 - 3.372

$$\Rightarrow$$
 pH = 10.628

$$\Rightarrow -\log [H^{\dagger}] = 10.628$$

$$\Rightarrow$$
 [H<sup>+</sup>] = 2.35 × 10<sup>-11</sup> M (Ans.)

 $AX_5(g) \Longrightarrow AX_3(g) + X_2(g)$ 

প্রাথমিক অবস্থা: 1 mol 0 mol 0 mol

সাম্যাবস্থায় :  $(1-\alpha)$  mol  $\alpha$  mol  $\alpha$  mo

সাম্যাবস্থায় মোট মোল সংখ্যাঃ =  $1-\alpha+\alpha+\alpha$ 

$$= (1 + \alpha) \text{ mol}$$

ধরি, মোট চাপ= P

$$AX_5$$
 এর আংশিক চাপ =  $\frac{1-\alpha}{1+\alpha}$  P

$$AX_3$$
 এর আংশিক চাপ =  $\frac{\alpha}{1+\alpha}$  P

$$X_2$$
 এর আংশিক চাপ =  $\frac{\alpha}{1+\alpha}$  P

$$\therefore \ K_P = \frac{\frac{\alpha}{1+\alpha} \, P \cdot \frac{\alpha}{1+\alpha} \, P}{\frac{1-\alpha}{1+\alpha} \, P}$$

$$\Rightarrow K_P = \frac{\alpha^2}{1 - \alpha^2} P$$

P = 10 atm এর জন্য

$$\Rightarrow 1 = \frac{\alpha^2}{1 - \alpha^2} \times 10$$

$$\Rightarrow \alpha = \sqrt{\frac{1}{11}}$$

এখন, P = 1.2 atm এর জন্য

$$\Rightarrow 1 = \frac{\alpha^2}{1 - \alpha^2}$$
 1.2

$$\Rightarrow \frac{5}{6} = \frac{\alpha^2}{1 - \alpha^2}$$

$$\Rightarrow 5 - 5\alpha^2 = 6\alpha^2$$

$$\Rightarrow \alpha = 0.674$$

$$\Rightarrow \alpha = 67.4\%$$
 (Ans.)

🕂 চাপ 1.2 atm করলে বিয়োজন মাত্রা বেড়ে যাবে

$$=(67.4-30)=37.4\%$$

#### প্রশা > ৬ (i) N<sub>2</sub>(g) + 3H<sub>2</sub>(g) = 2NH<sub>3</sub>(g) + জাপ

(ii) 
$$N_2(g) + O_2(g) = 2NO(g) - 43.0 \text{ kCa}$$

- (क) ভরক্রিয়া সূত্রটি বিবৃত কর। । । । । । বো. ২৩; অনুরূপ প্রশ্ন: চা. বো. ২১; ব. বো. ২৩, ১৭; রা. বো. ২২, ২১; কু. বো. ২১; ব. বো. ২১;
  - সম্মিলিত বো. ১৮; দি. বো. ২১, ১৭
- (খ) সাম্যক্রবক K, এর মান শূন্য হয় না কেন?

দি. বো. ২০; অনুরূপ প্রশ্ন: চ. বো. ২০; কৃ. বো. ২২

- (গ) 400°C তাপমাত্রায় ও 10 atm চাপে সাম্যাবস্থায় (i) নং বিক্রিয়ায় 3.85% NH<sub>3</sub> থাকলে K<sub>P</sub> নির্ণয় কর। বি. বে. ২৩; অনুরূপ প্রশ্ন: দি. বে. ১৭
- (घ) (i) নং ও (ii) নং বিক্রিয়ায় উৎপাদ বৃদ্ধির শর্তসমূহ বিশ্লেষণ কর। বি. বো. ২৬; অনুত্রপ প্রশ্ল: ব. বো. ২১; কৃ. বো. ১১।

#### সমাধান:

ক "নির্দিষ্ট তাপমাত্রায়, নির্দিষ্ট সময়ে যে কোনো বিক্রিয়ার হার ঐ সময়ে উপস্থিত বিক্রিয়কণ্ডলোর সক্রিয় ভরের (অর্থাৎ মোলার ঘনমাত্রা বা আংশিক চাপের) সমানুপাতিক হয়"।

স্থা ভরক্রিয়ার সূত্র অনুযায়ী কোন উভমুখী বিক্রিয়ার উৎপাদসমূহের ও বিক্রিয়কসমূহের ঘনমাত্রার গুণফলের অনুপাতকে ঐ বিক্রিয়ার

ঘনমাত্রার সামধ্রুক (Kc) বলে।

$$A + B \Longrightarrow C + D$$

$$K_{c} = \frac{[C] \times [D]}{[A] \times [B]}$$

ফলে, K<sub>c</sub> এর মান শৃন্য হতে হলে উৎপাদসমূহের ঘনমাত্রার গুণফল শূন্য হবে, অথবা বিক্রিয়কসমূহের ঘনমাত্রার গুণফল অসীম হতে হবে। যা উভমূখী বিক্রিয়ার ক্লেত্রে সম্ভব নয়। তাই সাম্যঞ্রবক Kc এর মান শূন্য হয় না।

ব (i) নং বিক্রিয়ায়-

 $\Rightarrow$  2NH<sub>3</sub>(g)  $3H_{2}(g)$  $N_2(g)$ 0 mol প্রাথমিক অবস্থায়: 1 mol 3 mol সাম্যাবস্থায়:  $(1-\alpha)$  mol  $(3-3\alpha)$  mol 2a mol প্রশ্নমতে,  $2\alpha = 3.85\%$ 

$$\Rightarrow 2\alpha = 3.85\%$$

$$\Rightarrow \alpha = \frac{3.85}{2 \times 100}$$

$$= 0.01925$$

∴ সাম্যাবস্থায় N₂ এর মোল সংখ্যা = 1 – 0.01925

= 0.98075 mol

সাম্যাবস্থায়  $H_2$  এর মোল সংখ্যা  $= 3 - 3 \times 0.01925$ = 2.94225 mol

সাম্যাবস্থায় NH<sub>3</sub> এর মোল সংখ্যা = 0.0385 mol সাম্যাবস্থায় মোট মোল সংখ্যা = (0.98075 + 2.94225 + 0.0385)

$$P_{N_2} = \frac{0.98075}{3.9615} \times 10$$
$$= 2.48$$

$$P_{H_2} = \frac{2.942}{3.9615} \times 10$$
= 7.43

$$P_{NH_3} = \frac{0.0385}{3.9615}$$
$$= 0.097$$

$$K_{P} = \frac{P_{NH_3}^2}{P_{N_2}^2 P_{H_2}^3}$$

 $K_P = 9.3 \times 10^{-6} \text{ atm}^{-2} \text{ (Ans.)}$ 

ঘ উদ্দীপকের (i) নং বিক্রিয়াটি হেবার-বস পদ্ধতিতে NH3 উৎপাদনের সংশ্লিষ্ট বিক্রিয়া। যা নিমুরূপে সংঘটিত হয়-

 $N_2(g) + 3H_2(g) = 2NH_3(g) + 92.38 \text{ kJ}$ উপরোক্ত বিক্রিয়ার ক্ষেত্রে লা-শাতেলিয়ারের নীতির আলোকে সর্বোচ্চ উৎপাদ প্রাপ্তি তথা উৎপাদ বৃদ্ধির শর্তসমূহ নিম্নে আলোচনা করা হলো–

- তাপোৎপাদী বিক্রিয়া হওয়ায় তাপমাত্রা কমালে উৎপাদ বৃদ্ধি পাবে।
- ২. প্রভাবক যোগ করলে বিক্রিয়া দ্রুত সাম্যাবস্থায় পৌছাবে।
- ৩. উৎপাদ সরিয়ে নিলে উৎপাদের উৎপাদন বৃদ্ধি পাবে।
- ৪. চাপের প্রভাব বিদ্যমান। চাপ বৃদ্ধি করলে সাম্যাবস্থা ডান দিকে সরে আসে এবং NH₃ এর উৎপাদন বৃদ্ধি পাবে।

...... ACS, > Chemistry I Paper Chapter-4

আবার, (ii) নং বিক্রিয়াটি নিম্নুরূপ–

 $N_2(g) + O_2(g) = 2NO(g) - 43.0 \text{ kCal}$ বিক্রিয়াটি একটি তাপহারী উভমুখী বিক্রিয়া। এন্দেবে, উৎপাদ বৃঞ্চিন্ত শর্তসমূহ লা-শাতেলিয়ারের নীতির আলোকে নিম্নে দেয়া হলো–

- তাপহারী বিক্রিয়া হওয়ায় তাপমাত্রা বাড়ালে উৎপাদন বৃদ্ধি পাবে।
- ২. প্রভাবক যোগ করলে বিক্রিয়া দ্রুত সাম্যাবস্থায় পৌছবে।
- উৎপাদ সরিয়ে নিলে উৎপাদের উৎপাদন বৃদ্ধি পাবে।
- চাপের কোনো প্রভাব নেই। যেহেতু, বিক্রিয়ক ও উৎপাদের য়োল সংখ্যা সমান।

প্রমা ১ ৭ 0.5 L আয়তনের একটি ফ্লান্কে 0.105 mol PC/5, 0.045 mol Cl<sub>2</sub> এবং 0.045 mol PCl<sub>3</sub> মিশ্রিত করা হলো। 25°C তাপমাত্তায়  $PCl_5(g) \to PCl_3(g) + Cl_2(g)$  विकिसात  $K_C = 4.2 \times 10^{-2} \text{ mol/L}$ 

- (ক) লবণ কাকে বলে? कि. ला. १०।
- (খ) Al<sub>2</sub>O<sub>3</sub> এর অম্লুড় 6 বলতে কী বোঝ? नि. जा. ५०।
- (গ) সাম্যমিশ্রণে PCI₅ এর ঘনমাত্রা 0.2065 mol/L হলে অণ্য দুটি উপাদানের ঘনমাত্রা নির্ণয় কর।
- (ঘ) উদ্দীপকের বিক্রিয়াটি কোন দিকে অগ্রসর হবে? বিশ্লেষণ কর। বি. তে. ২০। সমাধানঃ
- क अञ्च ७ क्षांत्रत याथा সংঘটिত প্रশयन विक्रियात याथाट्य <sup>हि९</sup>श्रम আয়নিক যৌগকে লবণ বলে।

হা কোন ধাতৰ অঝ্লাইড বা ক্ষারক যত মোল একটি হাইদ্রোখোন নিশিষ্ট অপ্রকে প্রশমিত করতে পারে, তা দারা তার অস্ত্রত্ব নির্বারিত হয়। এবন,  $Al_2O_3$  কে এক ক্ষারীয় অস্ত্র HCl এর সাথে বিক্রিয়া করে পাই:

 $Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + H_2O$ 

সূতরাং উপরের সমতাকৃত বিক্রিয়া থেকে প্রতীয়মান যে, 1 mol Al<sub>2</sub>O<sub>3</sub>, 6 mol HCl এর সাথে বিক্রিয়া করে লবণ ও পানি উৎপ্র করে। তাই Al<sub>2</sub>O<sub>3</sub> এর অম্লুত্ব 6।

ক্র উদ্দীপকে উল্লিখিত বিক্রিয়াটি হলো:

$$t = 0;$$
  $PCI_5(g) \rightarrow PCI_5(g) \rightarrow PCI_5(g)$ 

$$PCl_3(g) + Cl_2(g)$$
  
0.045 0.045

$$t = t$$
;  $0.105 - \alpha$   $0.045 + \alpha$   $0.045 + \alpha$ 

 $PCl_5$  এর প্রাথমিক ঘনমাত্রা =  $\frac{0.105}{0.5}$  = 0.21 mol L<sup>-1</sup>

সাম্যাবস্থায় ঘনমাত্রা = 0.2065 mol L<sup>-1</sup>

ঘনমাত্রার পরিবর্তন = (0.21 – 0.2065) mol L<sup>-1</sup>

$$= 3.5 \times 10^{-3} \text{ mol L}^{-1}$$

∴ মোল সংখ্যার পরিবর্তন = 3.5 × 10<sup>-3</sup> × 0.5

$$\therefore \alpha = 1.75 \times 10^{-3} \text{ mol}$$

∴ সাম্যাবস্থায় [PC
$$I_3$$
] =  $\frac{(0.045 + 1.75 \times 10^{-3})}{0.5}$ 

 $= 0.0935 \text{ mol L}^{-1}$ 

$$[Cl_2] = \frac{(0.045 + 1.75 \times 10^{-3})}{0.5}$$
$$= 0.0035 \text{ mol L}^{-1} (Arg.)$$

 $= 0.0935 \text{ mol L}^{-1}$  (Ans.)

ঘ উদ্দীপকের বিক্রিয়াটি নিম্নরপ্রপ

$$PCl_5(g) = PCl_3(g) + Cl_2(g)$$

এ বিক্রিয়ার শুক্ততে উপাদানগুলোর ঘনমাত্রা

$$[PCI_5] = \frac{0.105 \text{ mol}}{0.5 \text{ L}} = 0.21 \text{ mol/L}$$

ব্রাসায়নিক পরিবর্তন > ACS, FRB Compact Suggestion Book.....

$$[PCI_3] = \frac{0.045 \text{ mol}}{0.5 \text{ L}} = 0.09 \text{ mol/L}$$

$$[Cl_2] = \frac{0.045 \text{ mol}}{0.5 \text{ L}} = 0.09 \text{ mol/L}$$

তাহলে বিক্রিয়া অনুপাত

$$Q_{C} = \frac{[PCI_{3}] [CI_{2}]}{[PCI_{5}]}$$
$$= \frac{0.09 \times 0.09}{0.21}$$

 $= 3.857 \times 10^{-2} \text{ mol/L}$ 

উদ্দীপকের বিক্রিয়ার সাম্প্রেবক,  $K_C = 4.2 \times 10^{-2} \text{ mol/L}$ কিন্ত  $Q_C = 3.857 \times 10^{-2} \text{ mol/L}$  এখানে,  $K_C > Q_C$ 

তাই বিক্রিয়াটি সম্মুখদিকে অগ্রসর হবে।

### প্রশ্ন ৮৮ দৃশ্যকল্প-১:

X° সে. তাপমাত্রায় এবং 1 atm চাপে 30 লিটার আয়তনের একটি পাত্রে PCI5 এর বিয়োজন বিক্রিয়ার সাম্যাবস্থায় PCI5 20% বিয়োজিত অবস্থায় থাকে। উক্ত তাপমাত্রায় বিক্রিয়াটির  $K_p = 0.0417$  atm।

দৃশ্যকল্প-২:

একটি বিক্রিয়া হলো:  $X_2Y_4(g) \Rightarrow 2XY_2(g)$ ;  $\Delta H = + ve$ ; উক্ত বিক্রিয়া নিম্নুরূপ দুটি অবস্থায় বিয়োজিত হয়-

- (i) 25°C তাপমাত্রায় ও 2.0 atm চাপে;
- (ii) 80°C তাপমাত্রায় ও 6 atm চাপে।
- (ক) পানির আয়নিক গুণফল কাকে বলে?

[সি. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২৩; ঢা. বো. ২১]

(খ) রাসায়নিক সাম্যাবস্থা গতিশীল
 ব্যাখ্যা কর।

াশে পাশ্যাশহা পাওশাপাশ ব্যাখ্যা কর। [সি. বো. ২৩; জনুরূপ প্রশ্ন: দি. বো. ২২; ঢা. বো ২১; রা. বো. ২১, ১৯, ১৭;

व. त्वा. २५; त्र. त्वा. २५; त्व. त्वा. २५; म. त्वा. २५]

(গ) উদ্দীপকের X এর মান নির্ণয় কর।

(घ) উদ্দীপকের (i) नং অবস্থা এবং (ii) नং অবস্থার মধ্যে কোন ক্ষেত্রে উৎপাদের পরিমাণ সর্বাধিক হবে? মূল্যায়ন কর।

- ক নির্দিষ্ট তাপমাত্রায় বিশুদ্ধ পানিতে হাইড্রোনিয়াম আয়নের ঘনমাত্রা (H<sub>3</sub>O<sup>+</sup>) ও হাইড্রোক্সিল আয়নের ঘনমাত্রার (OH) গুণফল ধ্রুবক হয়। এ গুণফলকে পানির আয়নিক গুণফল বলা হয়।
- বা কোন উভমুখী বিক্রিয়ায় সাম্যাবস্থার শর্ত হচ্ছে সম্মুখ বিক্রিয়ার হার ও পশ্চাতমুখী বিক্রিয়ার হার সমান হতে হবে। সেক্ষেত্রে একক সময়ে যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হবে, ঐ একইভাবে সে পরিমাণ উৎপাদকে বিক্রিয়কে পরিণত হতে হবে। তাই আপাত দৃষ্টিতে সাম্যাবস্থাকে স্থির মনে হলেও আসলে বিক্রিয়াটি গতিশীল। তাই বলা যায়, রাসায়নিক সাম্যাবস্থা গতিশীল।
- ব বিয়োজন মাত্রা, α = 20% = 0.2

$$PCl_5 = PCl_3 + Cl_2$$

প্রাথমিক অবস্থায়: 1 mol

সাম্যাবস্থায়: (1 – 0.2) mol 0.2 mol 0.2 mol

= 0.8 mol

পাত্রের আয়তন, V = 30 L

সাম্যাবস্থায়,

$$[PC/_5] = \frac{0.8}{30} = 0.027 \text{ M}$$

$$[PCl_3] = \frac{0.2}{30} = 0.0067 \text{ M}$$

$$[Cl_2] = \frac{0.2}{30} = 0.0067 \text{ M}$$

$$\therefore K_{c} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}$$
$$= \frac{0.0067 \times 0.0067}{0.027}$$

= 0.00166 mol/L

$$K_p = K_c(RT)^{\Delta n}$$

$$\Rightarrow 0.0417 = 0.00166 \times (0.0821 \times T)^{\Delta n}$$

$$\Rightarrow$$
 0.0417 = 0.00166 × 0.0821 × T

$$\Rightarrow$$
 T = 305.9 K

$$\Rightarrow T = (305.9 - 273)^{\circ}C$$

$$= 32.9$$
°C

$$\therefore X = 32.9$$
°C (Ans.)

ঘ উদ্দীপকের বিক্রিয়া,  $X_2Y_4 = 2XY_2$ 

$$t = 0;$$

$$t = t$$
;

$$1-\alpha$$
  $2\alpha$ 

$$= 1 + 6$$

अरकत्व, 
$$K_P = \frac{4\alpha^2 P}{1 - \alpha^2}$$

$$\alpha \ll 1$$
 হলে,  $K_P = 4\alpha^2 P$ 

$$\Rightarrow \alpha = \frac{1}{2} \sqrt{\frac{K_p}{P}}$$
 .....(i)

ভ্যান্ট হফের সমীকরণ মতে.

$$\Delta H = 55.3 \times 10^3 \text{ J}$$
 $T_1 = 25^{\circ}\text{C} = 298 \text{ K}$ 
 $T_2 = 80^{\circ}\text{C} = 353 \text{ K}$ 

$$T_1 = 25^{\circ}C = 298 \text{ K}$$

$$T_2 = 80^{\circ}C = 353 \text{ K}$$

$$\log \frac{K_{P_1}}{K_{P_2}} = \frac{\Delta H}{2.303R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$=\frac{55.3\times10^3}{2303\times8314}\left(\frac{1}{353}-\frac{1}{298}\right)$$

$$\Rightarrow \frac{K_{P_1}}{K_{P_2}} = 10^{-1.51}$$

$$\frac{K_{P_2}}{K_{P_2}} = 0.03...$$
 (ii)

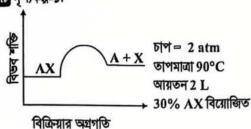
(i) নং হতে, 
$$\alpha_1 = \frac{1}{2} \sqrt{\frac{K_{P_1}}{P_1}}$$

$$\alpha_2 = \frac{1}{2} \sqrt{\frac{K_{P_2}}{P_2}}$$

$$\alpha_2 = \frac{1}{2} \sqrt{\frac{K_{P_2}}{P_2}}$$

$$\therefore \frac{\alpha_2}{\alpha_1} = \sqrt{\frac{K_{P_2}}{K_{P_1}} \times \frac{P_1}{P_2}}$$

$$\Rightarrow \frac{\alpha_2}{\alpha_1} = \sqrt{\frac{1}{0.03} \times \frac{2}{6}}$$


$$P_1 = 2atm$$
  
 $P_2 = 6atm$ 

 $\therefore \alpha_2 = 3.33 \alpha_1$ 

যেহেতু (ii) নং অবস্থায় বিক্রিয়ার বিয়োজনের পরিমাণ (i) নং অপেক্ষা বেশি, সুতরাং (ii) নং অবস্থায় সর্বাধিক উৎপাদ পাওয়া যাবে।

r Dr Cledit - Adillission Staris

প্রশ্ল ১ ৯ দৃশ্যকল্প-১:



(ক) সাম্য ধ্রুবক কী?

[চ. বো. ২৩]

- (খ) HNO3 ও H3PO4 এর মধ্যে কোনটি শক্তিশালী এসিড? ব্যাখ্যা কর। বি. বো. ২৩)
- (গ) উদ্দীপকের বিক্রিয়ার K, নির্ণয় কর। দি. বো. ২৩। অনুরূপ প্রশ্না ঢা. বো. ২১, ১১।
- (ঘ) উদ্দীপকের আলোকে গাণিতিকভাবে ব্যাখ্যা কর চাপ দ্বিশুণ করলে বিয়োজনের পরিবর্তন হবে কি?

সমাধান:

- ক স্থির তাপমাত্রা ও স্থির চাপে একটি উভমুখী বিক্রিয়ায় উৎপন্ন পদার্থসমূহের সক্রিয় ভর যেমন মোলার ঘনমাত্রা বা আংশিক চাপ এর গুণফল এবং বিক্রিয়কসমূহের সক্রিয় ভরের গুণফলের অনুপাত একটি ধ্রুব রাশি। এ ধ্রুব রাশিকে সাম্যোক্রক বলে।
- ত্ব অক্সো-এসিডসমূহের তীব্রতা কেন্দ্রীয় পরমাণুর জারণ সংখ্যা ও আকারের উপর নির্ভর করে। কেন্দ্রীয় পরমাণুর জারণসংখ্যা যত বেনি, ঐ এসিডের তীব্রতা তত বেনি। কিন্তু কেন্দ্রীয় পরমাণুর জারণসংখ্যা সমান হলে, যে এসিডের কেন্দ্রীয় মৌলের আকার ছোট তার তীব্রতা বেনি হয়। এখন HNO3 ও H3PO4 এসিডে উভয়ক্ষেত্রে কেন্দ্রীয় পরমাণুর জারণ সংখ্যা সমান (+5)। কিন্তু P এর তুলনায় N এর আকার ছোট হওয়ায়, HNO3 এসিড H3PO4 অপেক্ষা অবিক শক্তিশালী।
- ক্র উদ্দীপকের বিক্রিয়াটি নিম্নরপঃ

AX = A + Xপ্রাথমিক অবস্থায়: 1 mol 0 mol 0 mol 0 molসাম্যাবস্থায়: (1-0.3) mol 0.3 mol 0.3 mol 0.3 mol 0.3 mol

 $\alpha = 30\% = 0.3$ 

আয়তন, V = 2 L হলে-

AX এর ঘনমাত্রা, =  $\frac{0.7}{2}$  = 0.35 M

A এর মোলার ঘনমাত্রা,  $=\frac{0.3}{2}$  = 0.15 M

এবং X এর মোলার ঘনমাত্রা, =  $\frac{0.3}{2}$  = 0.15 M

∴ মোলার সামধ্রেবক,  $K_c = \frac{[A][X]}{[AX]}$   $= \frac{0.15 \times 0.15}{0.35}$  = 0.0643

সুতরাং, প্রদত্ত বিক্রিয়ার  $K_c$  এর মান  $0.0643~{
m mol~L^{-1}}$ 

ঘ উদ্দীপকের বিক্রিয়াটি নিম্নুরূপ:

AX = A + Xপ্রাথমিক অবস্থায়:  $1 \text{ mol} \quad 0 \text{ mol} \quad 0 \text{ mol}$ সাম্যাবস্থায়:  $(1-\alpha) \text{ mol} \quad \alpha \text{ mol} \quad \alpha \text{ mol}$  ...... ACS. > Chemistry 1<sup>d</sup> Paper Chapter 4

এথানে, α ∞ AX এর বিয়োজন যাত্রা। সাম্যাবস্থায় মোট মোলসংখ্যা = 1 – α + α + α

 $\infty (1 + \alpha) \text{ mol}$ 

বিক্রিয়ায় মোট চাপ = P হলে,

AX এর আংশিক চাপ,  $P_{AX} = \frac{1-\alpha}{1+\alpha}P$ 

A এর আংশিক চাপ  $P_A = \frac{\alpha}{1 + \alpha} P$ 

এবং X এর আংশিক চাপ,  $P_X = \frac{\alpha}{1+\alpha} P$ 

$$K_{p} = \frac{\frac{P_{A} \cdot P_{X}}{P_{AX}}}{\frac{1+\alpha}{1+\alpha}P \times \frac{\alpha}{1+\alpha}P}$$

$$= \frac{\frac{1-\alpha}{1+\alpha}P}{\frac{1-\alpha}{1+\alpha}P}$$

$$= \frac{\alpha^{2}}{1-\alpha^{2}}P$$

 $\therefore K_p = \frac{\alpha^2 P}{1 - \alpha^2} \dots (i)$ 

চাপ, P = 2 atm, বিয়োজন মাত্রা, α = 30% = 0.3 হলে (i) নং সমীকরণ হতে পাই-

 $K_{p} = \frac{(0.3)^{2} \times 2}{1 - (0.3)^{2}}$ = 0.197

এখন, চাপ দ্বিগুণ অর্থাৎ P = 4 atm হলে (ii) নং সমীকরণ হতে পাই

 $0.197 = \frac{\alpha^2 \times 4}{1 - \alpha^2}$   $\Rightarrow 4\alpha^2 = 0.197 - 0.197\alpha^2$   $\Rightarrow 4.197\alpha^2 = 0.197$ 

 $\Rightarrow \alpha^2 = \frac{0.197}{4.197}$ 

উপরের আলোচনা থেকে দেখা যাচ্ছে যে, চাপ দ্বিগুণ করলে বিয়োজন মাত্রাহ্রাস পায়।

প্রম্  $\triangleright$  ১০  $P_2(g) + Q_2(g) \Rightarrow 2PQ(g); \Delta H = -ve$ 

- [P2 ও Q2 এর প্রারম্ভিক মোল সংখ্যা যথাক্রমে 1.0 মোল ও 1.2 মোল।]
- (ক) pH এর সংজ্ঞা লেখ। মি. বো. ২৩; অনুরূপ প্রশ্ন: ম. বো. ২২; দি. বো. ২২
- (খ) "রক্ত একটি বাফার দ্রবণ" ব্যাখ্যা কর? মি. বো. ২৩
- (গ) 2 atm চাপে  $Q_2$  এর 60% বিক্রিয়া করে সাম্যাবস্থায় উপনীত হলে,  $K_P$  হিসাব কর।
- (घ) উদ্দীপকের বিক্রিয়ার সর্বোচ্চ পরিমাণ উৎপাদ তৈরি করতে কী কী পদক্ষেপ নেওয়া প্রয়োজন? বিশ্লেষণ কর। [ম. বো. ২৩; অনুরূপ প্রয়: রা. বো. ২৩, ২২, ২১; ঢা. বো. ২৩, ২১, ১৯, ১৭; ঢ. বো. ২৩, ২১, ১৯; ম. বো. ২১; य. বো. ১৭; সি. বো. ১৭]

সমাধানঃ

ক কোনো জলীয় দ্রবণের হাইড্রোজেন আয়ন  $(H^{+})$  বা হাইড্রোনিয়াম আয়ন  $(H_{3}O^{+})$  এর মোলার ঘনমাত্রার ঋণাত্মক লগারিদমকে ঐ দ্রবণের pH বলা হয়।

ব্যাসায়নিক পরিবর্তন > ACS/ FRB Compact Suggestion Book.....

- া রক্তে তিন ধরনের বাফার পাওয়া যায়, যথাক্রমে:
  - (i) বাইকার্বনেট-কার্বনিক এসিড বাফার
  - (ii) कनरक वाकात
  - (iii) প্রোটিন বাফার।

ফলে খাবারের মাধ্যমে বা অন্য যেকোন মাধ্যমে শরীর সামান্য অন্ত বা ক্ষার প্রবেশ করলে রক্তের বাফার দ্রবণ সমূহ pH পরিবর্তনকে প্রশমিত করে আমাদের সৃস্থ রাখে।

উদাহরণসন্ধপ। বাইকার্বনেট বাফারের ক্ষেত্রে, রক্তে কোন অমুজাতীয় দ্রবণ শোষিত হলে ভা বাইকার্বনেট আয়ন দারা নিমুন্নপ প্রশমিত হয়:

$$HCO_{3}(aq) + H'(aq) \longrightarrow H_{2}CO_{3}(aq)$$

 $H_2CO_3(aq) \longrightarrow H_2O + CO_2\uparrow$ 

অপরদিকে ক্ষারীয় দ্রবণ শোষিত হলে:

$$OH^{-}(nq) + H_2CO_3(nq) \longrightarrow HCO_3^{-}(nq) + H_2O(I)$$

তাই রক্ত একটি বাফার দ্রবণ।

প Q₂ এর 60% বিক্রিয়া করপে, সাম্যমিশ্রদে (1.2 × 0.6) = 0.72 mol Q2 বিক্রিয়াতে অংশ গ্রহণ

উদ্দীপকের বিক্রিয়াটি হলো-

$$P_2(g) + Q_2(g) = 2PQ(g)$$

প্রাথমিক অবস্থায় : 1

সাম্যাবস্থায় : (1-0.72) (1.2-0.72)  $2 \times 0.72$ 

$$= 0.28 = 0.48 = 1.44$$

সাম্যাবস্থায় মোট মোল সংখ্যা = (0.28 + 0.48 + 1.44) mol

$$= 2.2 \text{ mol}$$

মোট চাপ, P = 2 atm

∴ 
$$P_2$$
 এর আংশিক চাপ,  $P_{P_2} = \frac{0.28}{2.2} \times 2 = 0.255$  atm

$$\therefore$$
 Q<sub>2</sub> এর আংশিক চাপ, P<sub>Q2</sub> =  $\frac{0.48}{2.2} \times 2 = 0.4364$  atm

$$\therefore K_{P} = \frac{P_{PQ}^{2}}{P_{P2} \times P_{Q2}} = \frac{(1.3091)^{2}}{0.255 \times 0.4364} = 15.4 \text{ (Ans.)}$$

ঘ উদ্দীপকে উপ্লিখিত বিক্রিয়াটি হলো-

 $P_2(g) + Q_2(g) - 2PQ(g)$ ;  $\Delta H = -vc$ 

বিক্রিয়াটি একটি তাপোৎপাদী উভমুখী বিক্রিয়া, এ বিক্রিয়া হতে সর্বোচ্চ উৎপাদ পাওয়ার জন্য প্রয়োজনীয় পদক্ষেপসমূহ লা-শাতেপিয়ারের নীতির আলোকে ব্যাখ্যা করা হলো:

তাপমাত্রার হ্রাসকরণ: এ বিক্রিয়াটি তাপোৎপাদী বিক্রিয়া।

সুতরাং, তাপমাত্রা বৃদ্ধি করপে লা-শাতেপিয়ার নীতি অনুসারে বিক্রিয়াটি পশ্চাৎ দিকে অগ্রসর হয়। কাজেই তাপমাত্রা হ্রাস করলে তাপমাত্রা হ্রাসের ফলাফল প্রশমিত করার জন্য তাপোৎপাদী সমূখ প্রক্রিয়া বৃদ্ধি शाय । এর ফলে সাম্যাবভার অবভান ডানদিকে সরে যায় এবং PO এর উৎপাদন বৃদ্ধি পায়।

উৎপাদ গ্যাসের ঘনমাত্রা বৃদ্ধিকরণ ও উৎপাদ গ্যাস অপসারণঃ উভমুধী সাম্য বিক্রিয়াটিতে যদি বাইরে থেকে P2 ও Q2 গ্যাসকে বিক্রিয়ক व्यक्तार्छ व्यवम कन्नाता एस ७ विकिसात व्यक्तार्छ (थरक छे९भन्न PQ গ্যাস অপসারিত করা হয় তবে সাম্যাবস্থা ডান দিকে সরে যায়। অর্থাৎ, PQ এর উৎপাদন বৃদ্ধি পায়।

### $AB(g) \Rightarrow A(g) + B(g)$

বিয়োজন মাত্রা  $\alpha = 55\%$ , তাপমাত্রা T = 30°C

(ক) বাফার দ্রবণ কী? রা. বো. ২৩: অনুরূপ প্রশ্ন: य. বো. ২২: দি. বো. ২২:

ম. বো. ২২; সি. বো. ২১; সম্মিলিত বো. ১৮]

(র্থ) K, এর মান শূন্য হতে পারে না কেন?

বি. বো. ২২

(গ) উদীপকের বিক্রিয়াটির সাম্য ধ্রুবক K, এর মান নির্ণয় কর।

চি. বো. ২২; অনুরূপ প্রশ্না য. বো. ২৩)

(ঘ) উদ্দীপকের বিক্রিয়াটির চাপ পরিবর্তন করন্সে বিয়োজন মাত্রা পরিবর্তিত হয়- গাণিতিকভাবে বিশ্লেষণ কর।

সমাধান:

- ক্য যেসব দ্রবণে বাইরে থেকে সামান্য পরিমাণ সবল এসিড বা ক্ষার যোগ कत्रा राज प्रवरणत pH अत्र भारमत्र विरमय পরিবর্তন হয় ना. তাকে বাফার দ্রবণ বলে।
- 📭 ভরক্রিয়ার সূত্র অনুযায়ী কোন উভসুখী বিক্রিয়ার উৎপাদসমূহ ও বিক্রিয়কসমূহের আংশিক চাপের গুণফলের অনুপাতকে, ঐ বিক্রিয়ার সাম্প্রেবক K<sub>p</sub> বলে।

$$A + B \rightleftharpoons C + D$$

$$K_p = \frac{P_o. P_D}{P_A. P_B}$$

ফলে Kp এর মান শ্ন্য হতে হলে উৎপাদসমূহের আংশিক চাপের ভণফল শূন্য বা বিক্রিয়কসমূহের আর্যশিক চাপের গুণফল অসীম হতে হবে, যা উভমুখী বিক্রিয়ায় সাম্যাবস্থার ক্ষেত্রে সম্ভব নয়। তাই Kp এর মান শূন্য **হতে পারে** না।

সাম্যাবস্থায় মোট মোল সংখা =  $1 - \alpha + \alpha + \alpha$ 

$$= 1 + \alpha$$

মোট চাপ, P = 2 atm, a = 0.55

তাহলে,

$$P_{AB} = \frac{1 - \alpha}{1 + \alpha} P$$

$$=\frac{1-0.55}{1+0.55}\times 2$$

$$P_A = P_B = \frac{\alpha}{1 + \alpha} P$$
  
=  $\frac{0.55}{1 + 0.55} \times 2 = 0.71 \text{ atm}$ 

$$K_{p} = \frac{P_{A} \times P_{B}}{P_{AB}}$$
$$= \frac{(0.71)^{2}}{0.58} = 0.87 \text{ atm}$$

এখন, 
$$K_p = K_c$$
.  $(RT)^{\Delta n}$ ;  $\Delta n = 1 + 1 - 1 = 1$   
 $K_n$ 

$$\Rightarrow K_o = \frac{K_p}{RT}$$

$$=\frac{0.87}{0.082\times303}$$

∴ বিক্রিরাটির সাম্প্রেবক K<sub>o</sub> এর মান 0.035 mol L<sup>-1</sup> (Ans.)

...... ACS, > Chemistry 1st Paper Chapter-4

घ প্রাথমিক অবস্থায় (মোল সংখ্যা): 1 সাম্যাবস্থায় (মোলসংখ্যা):  $1-\alpha$ মোট মোল সংখ্যা =  $1 - \alpha + \alpha + \alpha = 1 + \alpha$ মোট চাপ, P হলে,  $P_B = \frac{1-\alpha}{1+\alpha} P$ 

$$P_A = P_B = \frac{\alpha}{1+\alpha} P$$
  
এবং  $P_{AB} = \frac{1-\alpha}{1+\alpha} P$ 

$$\therefore K_p = \frac{P_A \times P_B}{P_{AB}}$$

$$\left(\frac{\alpha}{1 + \alpha} P\right)$$

$$\Rightarrow K_p = \frac{\left(\frac{\alpha}{1+\alpha}P\right)^2}{\frac{1-\alpha}{1+\alpha}P}$$

$$\therefore K_p = \frac{\alpha^2 P}{1 - \alpha}$$

তাহলে, 
$$K_p = \alpha^2 P$$

$$\Rightarrow \alpha = \sqrt{\frac{K_p}{P}}$$

প্রশ্ন > ১২ দৃশ্যকল্প-১:

অর্থাৎ, দেখা যাচ্ছে যে, বিয়োজন মাত্রা চাপের বর্গমূলের ব্যস্তানুপাতিক সূতরাং, চাপের পরিবর্তনে বিয়োজন মাত্রা পরিবর্তিত হয়।

হা যখন কোন উভমুখী রাসায়নিক বিক্রিয়ায় সম্মুখমুখী ও পশ্চাৎমুখী বিক্রিয়ার হার সমান হয়, তখন বিক্রিয়াটি সাম্যাবস্থায় উপনিত হয়। ফলে সাম্যাবস্থা অর্জনে বিক্রিয়ক ও উৎপাদকে বিক্রিয়াস্থলে উপস্থিত থাকতে হয় এবং পারস্পরিক রূপান্তর হতে হয়। খোলা পাত্রে বিক্রিয়া সংঘটিত করলে বিক্রিয়ক বা উৎপাদের কোন একটি বাহিরে উড়ে গেলে विकियांि विक्रमुरी रुख याय । कल উভमुरी विकिया करत नाम्यावञ्चा অর্জন করা সম্ভব হয় না। তাই শুধু বদ্ধ পাত্রে রাসায়নিক সাম্যাবস্থা

গ ১নং দ্রবণে বিদ্যমান এসিডের মোল সংখ্যা,

$$n_a = S_a \times V_a$$

সংঘটিত হয়।

$$=0.15 \times \frac{100}{1000}$$

= 0.015 mol

১নং দ্রবণে পাত্রে সংযোজিত লবণের মোল সংখ্যা,

$$n_{S} = S_{S} \times V_{S}$$

$$=0.1\times x\times 10^{-3}$$

$$= 0.0001 x$$

আমরা জানি,

$$pH = pK_a + \log \frac{n_S}{n_a}$$

$$\Rightarrow$$
 pH =  $-\log(K_a) + \log \frac{n_S}{n_a}$ 

$$\Rightarrow pH = -\log(1.8 \times 10^{-5}) + \log\frac{n_S}{n_a}$$

$$\Rightarrow$$
 5 = 4.74 + log  $\frac{0.0001 \text{ x}}{0.015}$ 

$$\Rightarrow \frac{0.0001 \text{ x}}{0.015} = 10^{0.26}$$

$$\Rightarrow x = \frac{10^{0.26} \times 0.015}{10^{0.26} \times 0.015}$$

 $\Rightarrow x = \frac{10^{0.26} \times 0.015}{0.0001}$ 

x = 273 mL (Ans.)সুতরাং, A পাত্রের দ্রবর্ণে 273 mL 0.1 M HCOOK যোগ করলে দ্রবণের pH এর মান 5 হবে।

দৃশ্যকপ্প-২:

20 ml 0.1 M H<sub>2</sub>SO<sub>4</sub>

6ml 0.025M **NaOH** 

(ক) বাফার ক্ষমতা কাকে বলে?

[य. व्या. २७]

বদ্ধ পাত্রে রাসায়নিক সাম্যাবস্থা সংঘটিত হয়
 – ব্যাখ্যা কর। দি. বো. ২৩।

100 mL

0.15 M **HCOOH** 

১নং পাত্র

- (গ) হিসাব করে দেখাও ১নং পাত্রের দ্রবণে কত mL 0.1 M HCOOK
- দ্রবর্ণ যোগ করলে দ্রবর্ণের pH এর মান 5 হবে?
- (ঘ) (A + B) মিশ্রণের প্রকৃতি কিরূপ হবে তা বিশ্লেষণ কর। দি. বো. ১৭; অনুরূপ প্রশ্ন: দি. বো. ২২; রা. বো. ১৯]

সমাধান:

ক বাফার ক্ষমতা: এক লিটার বাফার দ্রবণের pH এর মান এক একক (1 unit) পরিবর্তন করতে যত মোল সংখ্যার সবল এসিড বা ক্ষার মিশ্রিত বা যোগ করতে হয়, তাকে ঐ বাফার দ্রবণের বাফার ক্ষমতা বলে।

ঘ মিশ্রণে সংঘটিত বিক্রিয়া

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

এসিডের মোল সংখ্যা, 
$$n_A = \left(\frac{20}{1000} \times 0.1\right)$$

$$= 2 \times 10^{-3} \text{ mol}$$

ক্ষারের মোল সংখ্যা, 
$$n_B = \left(\frac{6}{1000} \times 0.025\right)$$

$$= 1.5 \times 10^{-4} \text{ mol}$$

 $2 \text{ mol NaOH} \equiv 1 \text{ mol H}_2SO_4$ 

:. 
$$1.5 \times 10^{-4} \text{ mol NaOH} = 7.5 \times 10^{-5} \text{ mol H}_2\text{SO}_4$$

∴দ্রবণে অবশিষ্ট থাকে = 
$$(2 \times 10^{-3} - 7.5 \times 10^{-5})$$

$$= 1.925 \times 10^{-3} \text{ mol H}_2\text{SO}_4$$

∴ মিশ্রণটি অমুধর্মী হবে।

বাসায়নিক পরিবর্তন > ACS, FRB Compact Suggestion Book.....

প্রমা > ১৩ দৃশ্যকল্প-১:

140 mL 0.1 M HA দ্ৰবণ  $K_n=1.8\times10^{-5}$  30 mL 0.2 M NaOH দ্রবণ B

ASB পাত্রের দ্রবণদ্বয়ের মিশ্রণ C

দৃশ্যকল্প-২:

 $AX_5(g) \xrightarrow{1.5 \text{ atm}} AX_3(g) + X_2(g); \Delta H = (+) \text{ ve.}$ 

(ক) বিয়োজন ধ্রুবক কী?

রা. বো. ২২; অনুরূপ প্রশ্ন: চ. বো. ২২)

রাসায়নিক সাম্যাবস্থার গতিশীলতার সপক্ষে একটি প্রমাণ দাও।

(গ) C-পাত্রে বিদ্যমান মিশ্রণের প্রকৃতি pH গণনার মাধ্যমে নির্ণয় কর। ঢো. বো. ২২; অনুরূপ প্রশ্ন: य. বো. ২২, ১৭; ব. বো. ২২; সি. বো. ২২;

দি. বো. ২২, ২১, ১৭; কু. বো. ১৯)

- (ঘ) উদ্দীপকের দৃশ্যকল্প-২ উল্লিখিত বিক্রিয়ায় সাম্যাবস্থার উপর ক্রিয়াশীল নিয়ামকগুলির সহায়ক প্রভাব বিশ্লেষণ কর। সমাধান:
- ক প্রতি লিটার জলীয় দ্রবণে উপস্থিত কোনো এসিড বা ক্ষারের মোলসংখ্যার যে ভগ্নাংশ বিয়োজিত অবস্থায় থাকে, তাকে ঐ এসিড বা ক্ষারের বিয়োজন ধ্রুবক বলে।
- বা কোন উভমুখী বিক্রিয়ায় সম্মুখমুখী বিক্রিয়ার হার ও পশ্চাতমুখী বিক্রিয়ার হার সমান হলে বিক্রিয়াটি সাম্যাবস্থায় উপনীত হয়। সূতরাং এ অবস্থায় বিক্রিয়াটি বন্ধ হয় না; বরং উভয় পাশের বিক্রিয়া সমান গতিতে চলতে থাকে। প্রমাণস্বরূপ: একটি আবদ্ধ পাত্রে  $H_2$  ও  $I_2$ নিলে, বিক্রিয়ার ফলে HI উৎপন্ন হয়। এখন বিক্রিয়াটি সাম্যাবস্থায় পৌছালে পাত্রে সামান্য পরিমাণ তেজব্রিয় আয়োডিন  $^{128}_{53} {
  m I}_2$  নিলে সাম্যাবস্থার কোন পরিবর্তন হয় না। কিন্তু কিছু পরিমাণ তেজজ্রিয় আয়োডিন বিশিষ্ট (I) HI পাওয়া যায়। সুতরাং কিছু H2 ঐ তেজব্রিয়  $I_2$  এর সাথে সম্মুখমুখী বিক্রিয়ায় HI উৎপন্ন করেছে। তাই, সাম্যাবস্থা একটি গতিশীল অবস্থা।

থা A পাত্রের কেত্রে,

 $n_a = S_a \cdot V_a$ 

 $= 0.1 \times 0.14 = 0.014 \text{ mol}$ 

B পাত্রের ক্ষেত্রে,

 $n_b = S_b \cdot V_b$ 

 $= 0.2 \times 0.03 = 0.006 \text{ mol}$ 

C পাত্রে A ও B দ্রবণের মধ্যে সংঘটিত বিক্রিয়া নিম্নরূপ:

 $HA + NaOH \rightarrow NaA + H_2O$ 

1 mol HA = 1 mol NaOH = 1 mol NaA

অর্থাৎ 0.006 mol NaOH এসিড HA এর সঙ্গে সম্পূর্ণরূপে বিক্রিয়া করে 0.006 mol লবণ NaI উৎপন্ন করবে। দ্রবণে অবশিষ্ট এসিড = (0.014 - 0.006) = 0.008 mol 1

যেহেতু দ্রবণে দুর্বল এসিড অবশিষ্ট থাকবে, সুতরাং দ্রবণটি একটি অস্ট্রীয় বাফার।

pH = pKa + 
$$\log \frac{n_{\text{salt}}}{n_{\text{acid}}}$$
  
=  $-\log (1.8 \times 10^{-5}) + \log \frac{0.006}{0.008} = 4.62$ 

দ্রবণের pH < 7 সূতরাং, মিশ্রণের প্রকৃতি অস্লীয়। ঘ উদ্দীপকের বিক্রিয়াটি নিম্নরূপ:

$$AX_5(g) \rightleftharpoons 1.5 \text{ atm} AX_3(g) + X_2(g); \Delta H = (+) \text{ vc.}$$

তাপমাত্রা পরিবর্তনের ফলাফল: বিক্রিয়াটিতে  $\Delta H$  এর মান ধনাত্মক অর্থাৎ বিক্রিয়াটি তাপহারী। যেহেতু বিক্রিয়াটিতে তাপের পরিবর্তন ঘটে তাই সাম্যাবস্থায় তাপমাত্রা পরিবর্তন করলে উৎপাদের পরিমাণের পরিবর্তন ঘটবে। লা-শাতেলিয়ারের নীতি অনুসারে তাপমাত্রার পরিবর্তন করলে সাম্যের অবস্থান এমনভাবে পরিবর্তিত হবে যাতে তাপমাত্রা পরিবর্তনের ফলাফল প্রশমিত হয়। উদ্দীপকের বিত্রিনাটি তাপহারী। তাই তাপমাত্রা বৃদ্ধি করলে সাম্যের অবস্থান ডানে সরে ণিয়ে উৎপাদ  $AX_3$  ও  $X_2$  এর পরিমাণ বৃদ্ধি করবে এবং তাপমাত্রা পরিবর্তনের ফলাফল প্রশমিত করবে।

আবার তাপমাত্রা হ্রাস করলে সাম্যের অবস্থান বামে সরে গিয়ে AX3 এর পরিমাণ বৃদ্ধি করবে এবং তাপমাত্রা পরিবর্তনের ফলাফল প্রশমিত করবে।

**চাপ পরিবর্তনের ফলাফল:** বিক্রিয়াটি গ্যাসীয় সাম্যাবস্থায় আছে এবং উৎপাদ ও বিক্রিয়কের মোল সংখ্যা সমান নয়। তাই বিক্রিয়াটিতে চাপের পরিবর্তন ঘটলে উৎপাদের পরিমাণের পরিবর্তন ঘটবে।

উদ্দীপকের বিক্রিয়ায় উৎপাদের মোল সংখ্যা বেশি। তাই আবন্ধ পাত্রের একই আয়তনে চাপ বাড়ে। তাই চাপ বৃদ্ধি করলে লা-শাতেলিয়ারের नीिं जनुयासी नामगावञ्चा वारम नरत्न निराप्त উৎপाদ AX3 ७ X2 अन পরিমাণ হ্রাস করবে। আবার চাপ কমালে সাম্যাবস্থা ডানে সরে গিয়ে উৎপাদ AX3 ও X2 পরিমাণ বৃদ্ধি করবে।

ঘনমাত্রার প্রভাব: বিক্রিয়কের ঘনমাত্রা বাড়লে উৎপাদ বাড়বে, ঘনমাত্রা কমলে উৎপাদ কমবে। অর্থাৎ AXs এর ঘনমাত্রা বাড়লে AXs ভেঙ্গে AX3 ও X2 উৎপন্ন হয়ে AX3 ও X2 এর ঘনমাত্রা বৃদ্ধি করবে। AX3 ७ X2 अत घनमाजा वाफ्रल AX5 अत घनमाजा वृक्ति शारव।

### 의취 ▶ 38

দুশ্যকল-১: $A(g) \Rightarrow B(g) + Z(g) + তাপ;$  এখানে  $K_p = 1$  atm.





(ক) এটম ইকোনমি কাকে বলে?

ক্ মো. ২২

- (খ) Na<sub>2</sub>CO<sub>3</sub> এর জ্ঞপীয় দ্রবণ ক্ষারধর্মী কেন? ব্যাখ্যা কর। বি. বো. ২৩
- (গ) উদ্দীপকের বিক্রিয়ার সাম্যাবস্থায় 20% বিক্রিয়ক বিয়োঞ্জিত হলে थायाजनीय हार्यात्र यान निर्पय कर ।

াদ. বো. ২৩। অনুরূপ প্রশ্ন। দা. বো. ২২, ম. বো. ২২। সি. বো. ১৯।

(ঘ) দ্রবণ দৃটির মিশ্রণের pH মানের সমান pH এর 1 শিটার HCl দ্রবণ কীভাবে প্রস্তুত করা যায়? বর্ণনা কর। বি. বো. ১১)

সমাধান:

क कारना तामारानिक विकियात स्फव्य छै९भन्न काष्ट्रिक छै९भारमत छत ७ উৎপন্ন সকল উৎপাদের ভরের অনুপাতের 100 গুণিতক সংখ্যামানকে এটম ইকোনমি বলে।

کاف....... کاف > Chemistry 1<sup>st</sup> Paper Chapter 4

- Na<sub>2</sub>CO<sub>3</sub> মূলত সবল ক্ষার NaOH ও দুর্বল অম্প  $H_2$ CO<sub>3</sub> এর প্রশামন বিক্রিয়ার উৎপন্ন লবণ। সাধারণত যে লবণ সবল ক্ষার ও দুর্বল অম্প থেকে উৎপন্ন, সেটি জলীয় দ্রবণে আর্দ্রবিশ্লেষিত হয়ে ক্ষারীয় দ্রবণ উৎপন্ন করে। Na<sub>2</sub>CO<sub>3</sub> জলীয় দ্রবণে আয়নে বিভক্ত হয়ে পড়ে। পরবর্তীতে উৎপন্ন আয়ন  $CO_3^{2-}$  পানির সাথে বিক্রিয়া করে  $OH^-$  এর পরিমাণ বৃদ্ধি করে, ফলে দ্রবণের ক্ষারকতা বৃদ্ধি পায়। Na<sub>2</sub>CO<sub>3</sub>(s) +  $H_2O \rightarrow 2Na^+$ (aq) +  $CO_3^{2-}$ (aq)  $CO_3^{2-}$ (aq) +  $H_2O(I) \rightarrow HCO_3^-$ (aq) +  $OH^-$ (aq)  $HCO_3^-$ (aq) +  $H_2O(I) \rightarrow H_2CO_3$ (aq) +  $OH^-$ (aq)
- উদ্দীপকের বিক্রিয়াটি

$$A(g) = B(g) + Z(g)$$
প্রাথমিক অবস্থায়:  $1 \quad 0 \quad 0$   
সাম্যাবস্থায়:  $(1-\alpha) \quad \alpha \quad \alpha$   
ধরি,  $A(g)$  এর প্রাথমিক চাপ  $P$  ও বিয়োজন মাত্রা,  $\alpha=0.2$   
অতএব, সাম্যাবস্থায় মিশ্রণের মোট মোল সংখ্যা,

$$=1-\alpha+\alpha+\alpha=1+\alpha$$
 :: মিশ্রণে A গ্যাসের আংশিক চাপ,  $P_A=\frac{1-\alpha}{1+\alpha}P$ 

মিশ্রণে B গ্যানের আংশিক চাপ, 
$$P_B = \frac{\alpha}{1+\alpha} P$$

$$Z$$
 গ্যাসের আংশিক চাপ,  $P_Z = \frac{\alpha}{1+\alpha} P$ 

$$K_P = \frac{P_B \times P_Z}{P_A} = \frac{\frac{\alpha^2}{(1+\alpha)^2} P^2}{\frac{1-\alpha}{1+\alpha} P}$$

$$\Rightarrow 1 = \frac{\alpha^2}{1 - \alpha^2} P$$

$$\Rightarrow 1 = \frac{0.2^2}{1 - 0.2^2} P$$

⇒ P = 24 atm. (Ans.)
অতএব, 20% বিক্রিয়ককে সাম্যাবস্থায় বিয়োজিত করতে প্রয়োজনীয়
চাপের মান 24 atm।

च HCOOH এবং HCOONa দ্রবণ দুটির মিশ্রণ একটি অশ্লীর বাফার দ্রবণ।

যেহেতু লবণ ও অদ্রের ঘনমাত্রা সমান কিন্তু আয়তন 1:2 সেহেতু লবণ ও অদ্রের ঘনমাত্রার অনুপাত হবে  $\frac{[ \text{লবণ}]}{[ \text{ज्ञष्ट]}} = \frac{5 \times 0.1}{10 \times 0.1} = \frac{1}{2}$ 

∴ pH = pKa + 
$$\log \frac{[\sigma | \sigma|]}{[\omega | \sigma|]}$$

$$pH = -\log(1 \times 10^{-4}) + \log(\frac{1}{2}) = 3.7$$

শর্তানুসারে, HCl-এর pH হয় 3.7 অর্থাৎ,

pH = 3.7

বা,  $-\log [H^{+}] = 3.7$ 

বা,  $\log [H^{+}] = -3.7$ 

 $\overline{q}$ ,  $[H^{+}] = \log^{-1}(-3.7)$ 

বা,  $H^+ = 2.0 \times 10^{-4}$ 

 $\therefore$  HCl দ্ৰবণে H<sup>+</sup> এর ঘনমাতা =  $2 \times 10^{-4}$  M  $W = \frac{\text{SVM}}{1000}$   $= \frac{2 \times 10^{-4} \times 1000 \times 36.5}{1000}$   $= 7.3 \times 10^{-3}$  g  $= 7.3 \times 10^{-3}$  g

∴ বাফার দ্রবণের সমান pH বিশিষ্ট 1 লিটার HC/ দ্রবণ তৈরির আল্লে 7.3 × 10<sup>-3</sup> HC/ যোগ করতে হবে।

- প্রাম্ন ১ ১৫  $A_2(g) + 3B_2(g) \Rightarrow 2AB_3(g); \Delta H = -ve$ 25°C তাপমাআয়  $K_p = 0.425 \text{ atm}^{-2}$ .
- (খ) অশ্লীয় বাফার দ্রবণ তৈরিতে দুর্বল এসিড ব্যবহারের প্রয়োজনীয়ক্তর ব্যাখ্যা কর। ঢা. রে. এই
- (ग) विकियांिज K, अत्र मान निर्पय कत्र।

[त. ता. २२; जनुक्रन बद्मः नि. ता. २२; य. त्स. २२]

- (ঘ) উদ্দীপকের বিক্রিয়াটিতে তাপমাত্রা, চাপ ও ঘনমাত্রা পরিবর্তন করতে সাম্যাবস্থার কি কোনো পরিবর্তন ঘটবে – বিশ্লেষণ কর। বি. বো. ২২৯ অবরপপ্রয়: কু. বো. ২৩, ২১, ১৭; সি. বো. ২৩, ২১; য়. বো. ২১ দি. বো. ১৯; য়. বো. ১৭র্ট সমাধান:
- কান উভমুখী বিক্রিয়ার সাম্যাবস্থায় ডরক্রিয়ার সূত্র মতে উৎপাদসমূহ্ত্রে মোলার ঘনমাত্রার গুণফল ও বিক্রিয়কসমূহের মোলার ঘনমাত্রার গুণফলের অনুপাতকে মোলার সাম্যুক্তবক বলা হয়।
- আমীর বাফার প্রস্তুত করার জন্য একটি অম্রের নির্দিষ্ট ঘনমাত্রার দ্রবণের সাথে ঐ অম্রের থেকে তৈরি লবণ মিথিত করা হর। ফলে উৎপদ্ধ বাফার দ্রবণে ঐ অম্র আংশিক আয়নিত হয়ে সাম্যাবস্থা সৃষ্টি করে। এ সাম্যাবস্থার জন্য বাফার দ্রবণে সামান্য এসিড বা ক্লার যোগ করলে সাম্যাবস্থাটি বামে বা ডানে স্থানান্তরিত হয়ে pH এর মান অপরিবর্তিত রাখে। কিন্তু দুর্বল অম্রের পরিবর্তে সবল অম্র ব্যবহার করলে অধিক বিয়োজনের ফলে উক্ত সাম্যাবস্থা সৃষ্টি হয় না এবং pH ও স্থির রাখ্য যায় না। তাই, অম্রীয় বাফার প্রস্তুত করতে দুর্বল অম্র ব্যবহার করা হর।
- ত্র উদ্দীপকের বিক্রিয়া:

$$A_2(g) + 3B_2(g) = 2AB_3(g)$$
আমরা জানি,

 $K_p = K_C (RT)^{\Delta n}$ 
 $\Rightarrow K_c = \frac{K_P}{(RT)^{\Delta n}}$ 
 $= \frac{0.425}{(0.0821 \times 298)^{-2}}$ 
 $\therefore K_c = 254.39 \text{ (mol L}^{-1})^{-2} \text{ (Ans.)}$ 
 $\Delta n = 2 - 4$ 
 $= -2$ 
 $T = 25^{\circ}C$ 
 $= 298 \text{ K}$ 
 $K_p = 0.425 \text{ atm}$ 

ত্ত উদ্দীপকের বিক্রিয়াটি:

 $A_2(g) + 3B_2(g) = 2AB_3$  (g);  $\Delta H = -ve$   $\Delta H = -ve$  হওয়য় বিক্রিয়াটি তাপোৎপাদী। বিক্রিয়াটিতে তাপমাত্রা, চাপ ও ঘনমাত্রার পরিবর্তনে সাম্যাবস্থার পরিবর্তন নিচে ব্যাখ্যা করা হলোঃ তাপমাত্রার প্রভাবঃ বিক্রিয়াটি তাপোৎপাদী হওয়য় বিক্রিয়া সম্মুখ দিকে অগ্রসর হলে তাপ নির্গত হয় এবং পশ্চাৎদিকে অগ্রসর হলে তাপ শোবিত হয়। সুতরাং বিক্রিয়ার তাপমাত্রা বৃদ্ধি করা হলে পশ্চাৎমুখী বিক্রিয়া অগ্রসর হয় এবং তাপমাত্রা বৃদ্ধির ফলাফল প্রশমিত হয়ে যয়॥

विनशीकत्वात छानवाता ग्राम भगता छानवाता ग्राम भगता समित्र भगत भाग भारवात अवस्थात सात्रितक मत्त यात्र धवर जिमिक छैदनांग रिस्टि देता।

हास्मस क्षेष्ठामः विकिनािएक स्मिए ४ स्मिल निक्तिम्म एवसः २ स्मिल छिरुपाम छेरुपाम छेरुपाम छात्रास्य । अवीर ५ विक्तिमाम छान क्षरााण कमा छान क्षरााणकमा छान क्षरााणकमा छान क्षरााणकमा छान क्षरा नात्माम अवस्थान छान पित्म गता मात्म, मामल क्षराम्य नामावस्थान छान मित्म नाता व्यवस्थान छान क्षराणकमा छान क्षराणक छान क्षराणक क्षरा ।

খণমাত্রার প্রস্তাব্য বিক্রিয়াটিডে বিক্রিয়কের খনসাত্রা বৃদ্ধি করলো ঘনসাত্রা বৃদ্ধির ফলাফল এশগিড করার জন্য সাম্যের জবদ্বান ভানদিকে সম্রে যাবে এবং জমিক উৎপাদ উৎপাদ করবে।

### **ा १ १ १ १ मानम् । पृ**ष्ठि छित्र शास्त्र मरपिङ विकिगा निष्नुस्रशः

(i)  $N_1 + 3H_2 \Rightarrow 2NH_{21} \Delta H = -93 \text{ kJ}$ 

(II)  $2NH_3 \approx N_2 + 3H_3$ ;  $\Delta H = +93 \text{ kJ}$ 

দৃশাকল্প-২। অনিক 4-ভিজিট ব্যাদেলে  $1.0589~{
m g}$   ${
m Na}_2{
m CO}_3$  এবং তুগি 2- ডিনিট ব্যাদেলে  $1.62~{
m g}$   ${
m K}_2{
m Cr}_2{
m O}_7$  নিমে পৃথকভাবে  $100~{
m mL}$  আয়তনমিতিক ফ্রান্সে নিমে প্রমোজনীয় পরিমাণ গানি মিশিমে দ্রবণ তৈরি করে।

(ক) লা-শাভেলিয়ার নীডিটি লিখ?

(ग. ला. २), जनुक्तन बमाः ह. ला. २)। गि. ला. २२, २)। पि. ला. २)।

- (ব) দ্রবণের H<sub>3</sub>O' স্নায়নের খনমাত্রা 1.0 M এর বেশি হলে pH ফেল স্বকার্যকর হয় কেল?
- (গ) (ii) নং সমীকরণে NH3 এর বিয়োজন হার 20% হলে, প্রমাণ চাপে Kp কড?

ক কোনো উভমুখী বিক্রিয়া সাম্যাবস্থায় থাকাকালে যদি ঐ অবস্থার একটি
নিয়ামক, যেমন ভাপমাত্রা, চাপ অথবা ঘনমাত্রা পরিবর্তন করা হয়,
তবে সাম্যের অবস্থান ডানে বা বামে এমনভাবে পরিবর্তিত হবে, যাতে
নিয়ামক পরিবর্তনের ফলাফল প্রশমিত হয়।

- শাভাবিক অবস্থায় বিভিন্ন ক্ষেত্রে আমরা স্বল্প ঘনমাত্রার অন্ধ বা ফারক ব্যবহার করায়, pH এর ধারণাটি শুধু স্বল্প ঘনমাত্রার দ্রবণের জন্য প্রযোজ্য যেখালে pH ক্ষেলের পরিধি 0 থেকে 14 পর্যন্ত। সংজ্ঞানুসারে, pH = log[H¹] হওয়ায়, কোন দ্রবণে H₃O¹ বা H¹ এর ঘনমাত্রা 1M হেলে pH এর মান শূন্য হয়। H₃O¹ এর ঘনমাত্রা 1M থেকে কম হলে, pH এর মান ধনাত্রাক হয়, pH = log(0.1) = 1। আবার H₃O¹ এর ঘনমাত্রা 1M থেকে বেশি হলে pH এর মান 0 এর কম বা ঝণাত্মক হয়ে যায়, pH = log2 = 0.3। যেহেছে pH ক্ষেলের পরিধি 0 থেকে 14 পর্যন্ত, ভাই H₃O¹ এর ঘনমাত্রা 1M এর থেকে বেশি হলে ক্ষেলটি অকার্যকর হয়।
- 7 NH<sub>3</sub> এর বিয়োজন মাত্রা, α = 20% = 0.2

(ii) মং বিক্রিয়া- 
$$2NH_3$$
  $\Rightarrow$   $N_2$  +  $3H_2$   
 $t = 0; 2$  0 0  
 $t \Rightarrow t; 2 - 2\alpha$   $\alpha$   $3\alpha$   
 $(2 - 2 \times 0.2)$  0.2  $3 \times 0.2$   
 $\Rightarrow$  1.6 mol = 0.2 mol = 0.6 mol

भोगामिश्वास अिं (जाणगरभा = (1.0 + 0.2 + 0.6)

= 2.4 FIIO

$$P_{N|1}$$
,  $-\frac{1.6}{2.4} \times 1 \approx \frac{2}{3}$ 
 $P_{N_2} - \frac{0.2}{2.4} \times 1 = \frac{1}{12}$ 
 $P_{H_2} - \frac{0.0}{2.4} \times 1 = \frac{1}{4}$ 
 $P_{H_3} = \frac{0.0}{2.4} \times 1 = \frac{1}{4}$ 

$$K_P - \frac{P_{N_7} \times (P_{II_7})^3}{(P_{NII_1})^3}$$

$$-\frac{\left(\mathbb{P}_{N|I_{1}}\right)^{2}}{\left(\frac{2}{3}\right)^{2}}$$



:. Kp - 0.003 (Ans.)

আ যেকোন দ্রবদের ঘনমাত্রা সঠিকভাবে জানা থাকদে ডাকে প্রমাণ দ্রবণ বলে। উদ্দীপদে উদ্যেখিত Na2CO<sub>3</sub> ও K2Cr2O<sub>7</sub> উভয়ের দ্রবপে দ্রবের পরিমাণ জালা আছে। তাই তাদের ঘনমাত্রা হিসাব করা যাবে। দেওয়া আছে,

$$Ne_2CO_3$$
 ঘনমানো S  $-\frac{1000 \text{ w}}{MV} - \frac{1000 \times 1.0589}{100 \times 100} = 0.099 \text{ M}$ 

K2Cr2O7 धत जत - 1.62 g

জায়তন - 100 mL

K₂Cr₂O7 এর আণ্যিক ভর ≈ 40 × 2 + 52 × 2 + 16 × 7 = 296

Na<sub>2</sub>CO<sub>3</sub> ও K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> দৃটি প্রাইমারি স্টান্ডার্ড পদার্থ। উন্ডয় দ্রবপ দারা প্রমাণ দ্রবণ তৈরি করা যাবে।

তবে অনিক 4-ডিঞ্জিট ব্যালেলে  $Na_2CO_3$ -এর এবং তুলি 2-ডিঞ্জিট ব্যালেলে  $K_2Cr_2O_7$  এর পরিমাণ নির্ণয় করেছে। 2-ডিঞ্জিট ব্যালেল দারা 0.01 g পর্যস্ত আর 4-ডিঞ্জিট ব্যালেল দারা 0.0001 g পর্যস্ত সঠিকভাবে পরিমাণ করা যায়। 4-ডিঞ্জিট ব্যালেল দারা অধিক সৃদ্ধভাবে দ্রবের পরিমাণ পরিমাণ করা যায় তাই অনিকের  $Na_2CO_3$  এর দ্রবণ প্রমাণ দ্রবণ হিসাবে অধিক প্রহণযোগ্য।

### 47 > 39 1.5% H<sub>2</sub>PO<sub>3</sub>, HNO<sub>3</sub>, HClO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>.

(ক) অম্বের বিয়োজন শ্রুবক (Ka) কী?

দি. বো. ২২

(थ) 'উভমুখী विक्रिय़ा कथरना त्थय रग्न ना कन?

ারা. বো. ২২

(গ) উদ্দীপকের প্রথম এসিডটির pH গণনা কর।

সি. বো. ২১।

জনুরণ প্রশ্না ব. বো. ২২১ ম. বো. ২৬, ২২১ কু. বো. ১১। স্থিণিত বো. ১৮। না. বো. ১৭:।
(ঘ) উদ্দীপকের এসিডগুলোর তীব্রতার ক্রম বিশ্লেষণ কর।

ন্যাধান

- ব্য প্রতি দিটার জলীয় দ্রবণে উপস্থিত কোনো অম্রের মোল সংখ্যার যে ভন্নাংশ বিয়োজিত অবস্থায় থাকে তাকে ঐ অম্রের বিয়োজন ধ্রুবক (K<sub>a</sub>) বলে।
- ভরক্রিয়ার সূত্র অনুসারে, সাধারণত বিক্রিয়কের ঘনমাত্রা বৃদ্ধি পেলে বিক্রিয়ার হার বেশি হয়। কোন উভমুখী বিক্রিয়ার শুরুতে বিক্রিয়কের ঘনমাত্রা বেশি থাকায় সম্মুখমুখী বিক্রিয়ার শুরুতে বিক্রিয়কের ঘনমাত্রা

> Chemistry 1st Paper Chapter-4

ভেশ থাকায় সদ্যুখ্যুখী বিক্রিয়ার হার বেশি থাকে। ধীরে ধীরে উৎপাদের পরিফান কৃতি পেলে পশ্চাৎসুখী বিক্রিয়ার হার বৃতি পায় এবং সন্মুখ্যুখী বিক্রিয়ার হার কৃতি পায় এবং সন্মুখ্যুখী বিক্রিয়ার হার কহতে থাকে। একসময় সন্মুখ্যুখী ও পশ্চাৎমুখী বিক্রিয়ার হার সফান হয়ে ধায়, স্কলে বিক্রিয়ার সাম্যাবছার উপনীত হয়। বিক্রিয়ার সাম্যাবছার একক সফরে যে পরিমান বিক্রিয়াক উৎপাদে পরিশত হয়, ঠিক সেই পারিফান উৎপাদে বিয়োজিত হয়ে বিক্রিয়াক পরিশত হয়। সেই কারণে উত্যুখী বিক্রিয়া কখনো শেষ হয় না।

্য 1.5% 
$$H_3PO_3$$
 প্ৰব্ন ঘন্তমন্ত্ৰ,  $S = \frac{10x}{M}$ 

$$= \frac{10 \times 1.5}{79}$$

$$= 0.189 M$$

$$H_3PO_3 \rightarrow 2H^2 + HPO_3^-$$
  
∴  $pH = -\log [H^4]$   
=  $-\log (2 \times 0.189)$   
= 0.423 (Ans.)

দ্ব অন্ত্রো-এনিত সমৃহের ঝর্থাং ব্রব্লিজেন পরমাণুষ্ক এসিডসমূহের কেন্দ্রীর পরমাণুর ধনাজ্বক জারণ সংখ্যা বত বেশি ঐ এসিডের তীব্রতা তত বেশি।

ভন্দীপকের এসিভন্তলো হলো  $H_3PO_3$ ,  $HNO_3$ ,  $HC/O_4$ ,  $H_3PO_4$  এদের কেন্দ্রীর পরমাণুর জারণ সংখ্যা হবক্তমে +3, +5, +7 ও +5। -5 এবানে  $HNO_3$  ও  $H_3PO_2$  এর মধ্যে  $HNO_3$  অপেন্দাকৃত শক্তিশালী এদিত। অব্য়ে এসিভসমূহের কেন্দ্রীর পরমাণুর জারণ সংখ্যা সমান হলে তথন বেটির কেন্দ্রীর পরমাণুর আকার ছোট হবে, চার্জ ঘনতের ক্রম কৃত্তি অনুসারে সে এসিভের তীব্রতা বেশি হর।  $HNO_3$  ও  $H_3PO_4$  উভর এসিভের কেন্দ্রীর পরমাণুর জারণ সংখ্যা সমান (+5) তবে ২য় পর্যারভুক্ত N-পরমাণুর আকার ৩র পর্যারভুক্ত P পরমাণুর আকারের তিরে ছোট বলে P পরমাণুর ভুলনার N-পরমাণুর চার্জ ঘনত বেশি। কলে প্রিসভ্রব্রের তীব্রতার ক্রম হলো  $HNO_3 > H_3PO_4$ ।

:. প্রসিতসমূহের সঞ্জিরতার ক্রম-+7 -5 +5 HClO<sub>4</sub> > HNO<sub>3</sub> > H<sub>3</sub>PO<sub>4</sub> > H<sub>3</sub>PO<sub>3</sub>

প্রশা ১৮

0.002 M H<sub>2</sub>CO<sub>3</sub> 0.025 M HCO<sub>3</sub>

যানুষের রক্ত

 $[H_2CO_3 \text{ erg } K_a = 3.98 \times 10^{-7}]$ 

- (ক) রাসারনিক সাম্যাবস্থা কী? হি. বো. ২২; অনুরূপ প্রস্ন: ঢা. বো. ২১; কু. বো. ২১; দি. বো. ১১]
- (বঁ) 25°C-এ বিজ্ঞ পানির pH এর মান 7 হর কেন? [দি. বো. ২২; ব্দুরুল প্রদ্ধ: ম. বো. ২১; হ. বো. ২১; গ. বো. ২১; গ. বো. ২১; দি. বো. ১৭]
- (গ) রভের pH গর্দনা কর। মি. বো. ২১; অনুরূপ গুল্ল: य. বো. ১১।
- (घ) উন্দীপক দ্রবদে সামান্য এসিড বা ক্ষারক যোগ করলে pH এর মান পরিবর্তিত হবে কিনা− বিশ্লেষণ কর। ।ম. বো. ২১; অনুরপ প্রদ্ন: ব. বো. ১১]

ক একটি নির্দিষ্ট বিক্রিয়াকাদীন শর্ডে কোনো উভদুবী ব্রাসায়নিক বিক্রিয়য় সন্মুখ বিক্রিয়ার গতিবেগ যখন বিপরীত বিক্রিয়ার গতিবেগের সমান হস্ত্র তথন সেই অবস্থাকে রাসায়নিক সাম্যাবস্থা বলে।

বিজন্ত পানির বিরোজনে, এক অণু পানি ক্ষেকে 1ট H<sub>3</sub>O ও 1 की OH পাওরা যার। ফলে বিজ্ঞ পানিতে তাসের ঘনমাত্রা সমান ব্যক্ত ধ তাছাভা 25°C তাপমাত্রায় পানির আয়নিক গুণফল (K<sub>∞</sub>) কে 1 ⊕ার্ম বরা হয়।

সুত্রাং

$$2H_2O \rightleftharpoons H_3O^+ OH^-$$

$$[H_3O] = [OH]$$

$$K_{\infty} = [H_3O^{-1}][OH^{-1}] = 10^{-14}$$

$$\Rightarrow [H_3O^+]^2 = 10^{-14}$$

$$\Rightarrow [H_3O^{\uparrow}] = 10^{-7}$$

$$= -\log[10^{-7}]$$

অতএব বিশুদ্ধ পানিতে pH এর মান 7।

্বা দেওয়া আছে,

$$[\Xi] = [H_2CO_3] = 0.002M$$

$$pH = pK_2 + \log \frac{[\pi 4 \eta]}{[\Xi]}$$

$$= -\log (3.98 \times 10^{-7}) + \log \frac{(0.025)}{(0.002)}$$

বা উদ্দীপকের দ্রবণটি একটি বাফার দ্রবণ। এটি একটি অস্ট্রীর বাফার। এ
অস্ট্রীয় বাফার দ্রবণে অল্প মাত্রায় এসিড অথবা ক্লার দ্রবণ সংযোগের
কলে বাফার দ্রবণের মান প্রার স্থির থাকে। নিস্নে তা ব্যাখ্যা করা হলোঃ
অল্পমাত্রায় এসিড সংযোগ অর্থাৎ H আয়ন এ বাফার দ্রবণে যোগ করা
হর, তথন প্রদন্ত H আয়নগুলো দ্রবণে বিদ্যমান HCO3 আরনের
সাথে যুক্ত হয়ে নিমুরূপ মৃদু তড়িৎ বিশ্লেষা H2CO3 অণু উৎপন্ন করে।

 $H^{T}(aq) + HCO_{3}^{-}(aq) \rightarrow H_{2}CO_{3}(aq)$ 

যেহেত্ কার্বনিক এসিড মৃদ্ তড়িৎ বিশ্লেষ্য, তাই কার্বনিক এসিড অতি সামান্য পরিমাণে বিরোজিত হয়; সেহেত্ ঐ বাফার দ্রবণে pH এর মান প্রায় অপরিবর্তিত থাকে।

অন্ন মাত্রায় ক্ষার সংযোগ অর্থাৎ OH আয়ন এ বাফার দ্রবণটিতে যোগ করলে প্রদন্ত OH আয়নগুলো দ্রবণে বিদ্যামান  $H^+$  এর সাথে বিক্রিরা করে অতীব মৃদু তড়িৎ বিশ্লেষ্য পানি অণু  $(H_2O)$  সৃষ্টি করে। তবন কার্বনিক এসিডের সাম্যাবস্থা ডানদিকে সরে গিয়ে  $H^+$  আয়ন তৈরি করে বিক্রিয়ারত  $H^-$  আয়নের অভাব পূরণ করে।

$$OH^-(aq) + H^-(aq) \rightarrow H_2O(1)$$

$$H_2CO_3(aq) = HCO_3(aq) + H^{\dagger}(aq)$$

অতএব দেখা যায় যে, বাফার দ্রবণে সামান্য পরিমাণ তীব্র এসিড বা ক্ষার হিসেবে যথাক্রমে  $H^{+}$  আয়ন অথবা  $OH^{-}$  আয়ন এর যে কোনো একটি যোগ করা হোক না কেন, তা বাফার দ্রবণের উপাদানের আন্তঃক্রিয়ার ফলে অপসারিত হয় এবং কোনো ক্ষেত্রেই  $H^{+}$  আয়নের ঘনমাত্রা তথা pH এর মান বিশেষ পরিবর্তিত হয় না।

রাসায়নিক পরিবর্তন > ACS, FRB Compact Suggestion Book.....

### ব্রা ১১৯

ইথানল উৎপাদনের দৃটি পদ্ধতি নিম্নুরূপ:

(ii) 
$$C_2H_5Br + KOH \xrightarrow{50-60^{\circ}C} C_2H_5OH + KBr$$

#### প্রথম অংশ

 $A_2(g) + B_2(g) \Rightarrow 2AB(g); 2$  L আয়তনের পাত্রে  $450^{\circ}C$  তাপমাত্রায় বিক্রিয়াটি সাম্যাবস্থায় আছে। সাম্যাবস্থায় মোট মোলের 10.5% AB রয়েছে।

### দ্বিতীয় অংশ

- (ক) ক্ষারের বিয়োজন ধ্রুবক (Kb) কী?
- [ण. ला. थ)
- (খ) পানি একটি উডধর্মী পদার্থ-ব্যাখ্যা কর?
- ারা. লো. ২২
- (গা) উদ্দীপকের দ্বিতীয় অংশের বিক্রিয়াটির K<sub>c</sub> এর মান নির্ণয় কর। বি. নো. ১১।
- ইথানল উৎপাদনের কোন পদ্ধতিটি মিন কেমিস্ট্রির সাথে সামগ্র্যপূর্ণ
   ব্যাখ্যা কর।

#### সমাধান:

- ক প্রতি লিটার জলীয় দ্রবণে উপস্থিত কোনো ক্ষারকের মোল সংখ্যার যে ভগ্নাংশ বিয়োজিত অবস্থায় থাকে, তাকে ঐ ক্ষারকের বিয়োজন ক্রবক (K<sub>b</sub>) বলা হয়।
- বা পানি একটি উভধর্মী পদার্থ কারণ এটি একইসাথে অস্ত্র ও ক্ষারের সাথে বিক্রিয়া করে যথাক্রমে প্রোটন গ্রহণ ও দান করতে পারে। ফলে পানি ক্ষারীয় ও অশ্লীয় ধর্ম প্রকাশ করে।

क्षांत्रीग्न धर्मः H₂Ö: + HCl === Cl⁻ + H₃O⁺ 📥

**षद्वीग्र धर्मः** H₂O + N̈H₃ <del>===</del> NH₄ + OH⁻

ব উদ্দীপকের দ্বিতীয় অংশের বিক্রিয়াটি-

$$A_2(g) + B_2(g) = 2AB(g)$$

প্রাথমিক: 1mol 1 mol 0

সাম্যাবস্থা:  $(1 - \alpha)$  mol  $(1 - \alpha)$  mol  $2\alpha$  mol

সাম্যাবস্থায় মোট মোল সংখ্যা:  $1-\alpha+1-\alpha+2\alpha=2$  সাম্যাবস্থায় মোট মোলের 10.5% AB আছে  $=2\times\frac{10.5}{100}$ 

= 0.21

∴ AB এর মোল সংখ্যা, 2a = 0.21

 $\alpha = 0.105$ 

 $A_2$  ও  $B_2$  এর মোল সংখ্যা,  $1-\alpha=1-0.105$ 

= 0.895

পাত্রের আয়তন = 2L

সুতরাং, [AB] =  $\frac{0.21}{2}$  = 0.105 M

$$[A_2] = \frac{0.895}{2} = 0.4475 \text{ M}$$

$$[B_2] = \frac{0.895}{2} = 0.4475 \text{ M}$$

- $\therefore K_{c} = \frac{[AB]^{2}}{[A_{2}][B_{2}]}$  $= \frac{(0.105)^{2}}{0.4475 \times 0.4475}$
- $K_C = 0.055$  (Ans.)
- বা কোনো একটি শিল্প ইউনিটের উৎপাদনের ক্ষেত্রে ঐ শিল্প কট্টুকু পরিবেশ বাদ্দব এবং মিন কেনিস্ট্রির নীতি কোন মারার অনুসরণ করেছে তা প্রকাশ করা হয় ই-ফ্যাষ্টর এর মান দারা। ই-ফ্যাষ্টরের মান যত কম হয় শিল্প ইউনিট টি তত মান সম্মত ও গ্রীন কেমিস্ট্রি সম্মত পদ্ধতি।

ই-কার্ট্রর = প্রক্রিয়ার মোট সৃষ্ট বর্জোর ভর উৎপাদের মোট ভর

देशानण छे९शामरात रक्तव्य थ्रथम विक्रिनािं

 $C_6H_{12}O_6 \xrightarrow{\overline{\text{mid}}\overline{\text{CNF}}} 2C_2H_5OH + 2CO_2$ 

মোট উৎপাদের ভর.

 $= 2(12 \times 2 + 1 \times 5 + 16 + 1) + 2(12 + 16 \times 2)$ 

= 180 g

মোট বর্জ্যের ভর = 2 × (12 + 16 × 2)

= 88 g

∴ ই-ক্যাষ্ট্রর =  $\frac{88}{180}$  = 0.48

ইথানল উৎপাদনের ২য় বিক্রিয়াটি,

C2H5Br + KOH -> C2H5OH + KBr

যোট উৎপাদের ভব = (12 × 2 + 5 + 16 + 1) + (39.1 + 80)

= 165.1 g

মোট বর্জ্যের ভর = 39.1 + 80

= 119.1 g

∴ ই-ফার্টর =  $\frac{119.1}{165.1}$  = 0.72

সূতরাং ইথানল উৎপাদনের প্রথম পদ্ধতি মিন কেমিস্ট্রির সাথে সামঞ্জসাপূর্ণ।

### প্রশ্ন > ২০

0.1 M HCOOH 0.1 М СН<sub>3</sub>СООН

A-পাত্ৰ

 $K_{HCOOH} = 1.8 \times 10^{-4}$ 

B-পাত্র $K_{CH_{1}COOH} = 1.8 \times 10^{-5}$ 

(क) विस्रांखन मांवा की?

বি. বো. ২১; অনুরূপ প্রস্ন: রা. বো. ১১)

- (খ) PCI<sub>5</sub>(g) ≠ PCI<sub>3</sub>(g) + CI<sub>2</sub>(g) বিক্রিয়াটির K<sub>c</sub> এর একক নির্ণয় কর। ।সি.রে.২২১
- (গ) কক্ষ তাপমাত্রায় ১ নং পাত্রের যৌগটি 10% আর্বনিত হলে এর K<sub>4</sub> হিসাব কর।
- (घ) A ও B পাত্রের দ্রবণ মিশ্রিত করলে pH এর মানের কোনো ভিন্নতা দেখা যাবে কিনা− গাণিতিকভাবে বিশ্লেষণ কর।

का कात्ना পদার্থের যত ভগ্নাংশ বিয়োজিত হয় সেই সংখ্যাকে ঐ পদার্থের विरम्राजन भावा वरन।

र विकिग्रािः

$$PCI_5(g) \Longrightarrow PCI_3(g) + CI_2(g)$$
 $\therefore$  বিক্রিয়া অনুসারে,  $K_o = \frac{[PCI_3][CI_2]}{[PCI_5]}$ 

$$= \frac{\text{mol } L^{-1} \times \text{mol } L^{-1}}{\text{mol } L^{-1}}$$

$$= \text{mol } L^{-1}$$

ব ১ নং পাত্রের দ্রবণটি নিম্নরূপ আয়নিত হয়,

$$K_{a}=rac{lpha^{2}C}{1-lpha}$$
 এখানে, 
$$=rac{0.1^{2}\times0.15}{1-0.1}$$
 ঘনমাত্রা,  $\alpha=10\%=0.1$  ঘনমাত্রা,  $C=0.15$  M

HA দ্রবণের  $K_a = 1.67 \times 10^{-3}$ .

ঘ A-পাত্রে,

$$pH = -\log \sqrt{K_a \times C}$$
  
= -\log \sqrt{1.8 \times 10^{-4} \times 0.3}  
= 2.37

 $= -\log \sqrt{1.8 \times 10^{-4} \times 0.1}$ 

B-পাত্রে,

$$pH = -\log \sqrt{K_a \times C}$$
= -\log \sqrt{1.8 \times 10^{-3} \times 0.01}
= 3.37

এখানে,

এখানে,

এসিড বিয়োজন ধ্রুবক,

এসিড বিয়োজন ধ্রুবক,

ঘনমাত্রা, C = 0.1 M

 $K_a = 1.8 \times 10^{-5}$ ঘনমাত্রা, C = 0.01 M

 $K_0 = 1.8 \times 10^{\circ}$ 

A ও B পাত্র মিশ্রিত করলে,

$$HCOOH(aq) = HCOO^- + H^+$$

প্রাথমিক অবস্থা:

 $C(1-\alpha)$ সাম্যাবস্থায়:

Ca

আমরা জানি,

 $K_0 = \alpha^2 C$ 

বা,  $\alpha = \sqrt{\frac{Ka}{C}}$ 

HCOOH এর বিয়োজন ধ্রুবক,  $K_a = 1.8 \times 10^{-4}$ 

ঘনমাত্রা, C = 0.1 M

 $\alpha = 0.0424$ 

আবার,  $[H^{\dagger}] = \alpha C$ 

 $= 0.0424 \times 0.1$  $= 4.24 \times 10^{-3} \text{ M}$ 

আবার, CH3COOH = CH3COO- + H+

Rhombus Publications

...... ACS, > Chemistry 1st Paper Chapter-4

$$\alpha = \sqrt{\frac{Ka}{C}}$$

$$= \sqrt{\frac{1.8 \times 10^{-3}}{0.01}}$$

CH₁COOH এর বিয়োজন ধ্রুবক,  $K_n = 1.8 \times 10^{-5}$ ঘনমাত্রা, C = 0.01 M

= 0.0424

$$∴ [H+] = αC$$
= 0.0424 × 0.01  
= 4.24 × 10<sup>-4</sup> M

সুতরাং,

দ্রবর্গে  $H^+$  আয়নের ঘনমাত্রা =  $(4.24 \times 10^{-3} + 4.24 \times 10^{-4})$  M  $= 4.66 \times 10^{-3} \text{ M}$ 

আমরা জানি,  $pH = -\log [H^{\dagger}]$  $= -\log (4.664 \times 10^{-3})$ = 2.3312

সূতরাং A ও B পাত্র মিশ্রিত করলে pH মানের ভিন্নতা দেখা যাবে।

প্রশা ২১

দৃশ্যকল-১:  $AB_5(g) \Rightarrow AB_3(g) + B_2(g)$ ;  $\Delta H = + (ve)$ ; 225°C তাপমাত্রায় 3 atm চাপে AB<sub>5</sub>(g) 40% বিয়োজিত হয়।

দুশ্যকন্ত-২: 20°C তাপমাতার 1.5 atm চাপে নিম্নের বিক্রিয়াটির Ke এর মান 1.815 × 10<sup>-3</sup> mol L<sup>-1</sup>.

 $AB_5(g) \Rightarrow AB_3(g) + B_2(g); \Delta H = +40 \text{ kJmol}^{-1}$ [কু. বো. ২১]

(ক) বিক্রিয়ার হার কাকে বলে? [কু. বো. ১৯; অনুরূপ প্রশ্ন: চ. বো ১৯; সি. বো. ১৭]

 অসওয়াল্ড-লঘুকরণ সূত্রটি গাণিতিক রূপসহ লেখ। [সি. বো. ২২]

(গ) উদ্দীপকের বিক্রিয়াটির বিয়োজন মাত্রার মান নির্ণয় কর। [কু. বো. ২১]

(ঘ) উদ্দীপকের বিক্রিয়াটির সাম্যঞ্চবকের উপর তাপমাত্রার প্রভাব ব্যাখ্যা কর। মি. বো. ২২

সমাধান:

ক্র প্রতি একক সময়ে বিক্রিয়কের ঘনমাত্রা, হ্রাস বা বিক্রিয়ায় সৃষ্ট উৎপাদের ঘনমাত্রা বৃদ্ধির হারকে বিক্রিয়ার হার বলে।

অসওয়ান্ডের লঘুকরণ সূত্র মতে, লঘু দ্রবণে মৃদু তড়িৎ বিশ্লেষ্য যেমন মৃদু অমু বা ক্ষারের বিয়োজন মাত্রা ঐ অমু বা ক্ষারের দ্রবণের ঘনমাত্রার বর্গমূলের ব্যান্তানুপাতিক। এখন, কোন অস্ত্র বা ক্ষারের বিয়োজন মাত্রা  $\alpha$  এবং ঘনমাত্রা C হলে, অসওয়ান্ডের লঘুকরণ সূত্র অনুযায়ী,  $\alpha \propto \frac{1}{\sqrt{C}}$ 

 $\Rightarrow \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{K_b}{C}}$ , যেখানে  $K_a$  ও  $K_b$  যথাক্রমে অস্ত্র বা ক্ষারের বিয়োজন ধ্রুবক

@AdmissionStuffs

গু উদ্দীপকের বিক্রিয়াটি

 $AB_5(g) \Rightarrow AB_3(g) + B_2(g)$  $K_c = 1.815 \times 10^{-3} \text{ mol L}^{-1}$ 

 $R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$ 

वानाधीय अधिकार्य > VCS EKB Compact Supposition Book.....

Nn क फेल्गारम्स त्याम जल्पा। – चिकिसारमम त्याम कल्पा।

03-101

Kr TK (RT)

4 1 815 × 10.3 (0 0821 × 298)

~ 0 0111

क्रिमीानारका विक्रिसाहिक 💃 वासिजागर

$$K_{\eta} \simeq \frac{\alpha^2 P}{1 - \alpha^2}$$
 (খিনোঞ্চল মান্রা  $\alpha$  খান্রা)

$$\overline{\alpha} = \frac{\alpha^2 P}{K_h}$$

P = 1.5 at

হা
$$\sqrt{\frac{1}{\alpha^2}} - 1 = \frac{P}{K_p} [o^2$$
 জনা ভাগ কছে]  $K_p = 0.014$ 

$$\operatorname{ER}\left(\frac{1}{\alpha^2} = \frac{P}{K_p} + 1 = \frac{K_p + P}{K_p}\right)$$

$$\overline{v} |_{L} \alpha^{2} = \frac{K_{r}}{K_{r} + P}$$

$$\overline{V} = \sqrt{\frac{K_{P}}{K_{P} + P}}$$

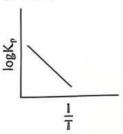
$$= \sqrt{\frac{0.044}{0.044 + 1.5}}$$

$$= 0.170$$

. a = 1796 [Ams.)

### ন্দ্র উদ্দীপকের থিক্রিরাটি নিম্নেপঃ

AB (g) → AB (g) + B (g); ΔH = + vo त्यारक् विकिनात ΔH = (+ ve) मुक्ताः विकिसाि कारगार्थामी। स्मािक रावन भगीक्यानत भारात्य भागात्यवात्मा केणा काणपामात शासाव स्मापा कमा यात्र।


खागमा खानि,  $\log K_p = -\frac{\Delta H}{2.303 \text{ R}} \times \frac{1}{T} + ध + ध + 4 \pi$ 

त्यपाट्न ΔH = वानथामनित नित्रवर्ठन

T = ভাগ্যান্তা

IR = ठार्थक्रनीन प्राञ धन्यक

গ্রাদন্ত কাপঘ্যসী বিক্রিসার ক্ষেত্রে কাপসারা বাদ্বালো ফলে  $\frac{1}{T}$  এর মাল ক্ষমে বার কলে  $\log K_p$  এর মাল বাড়ে ঘোষেকু সামান্ত্রেমক এর মাল বাড়ে সুকরাং বিক্রিয়াটি সমূব লিকে অল্লসর ছবে। অর্থাৎ উৎগানের পরিয়াণ কৃত্রি পাবে। কাপমারা কমানে  $\frac{1}{T}$  এর মাল বাড়ুতে থাকে ফ্রান্সে  $\log K_p$  এর মাল কমতে থাকে। মুকরাং বিক্রিয়াটি পোছনের দিকে অল্লসর ছওয়ায় উৎপান কমবে।



असा र न्यायक्रकः २५°८ व्हार्यनियाम खाषणाणाण ११० व्यास अन्य ग्याय ९ व्याम छ- पाणमा गाएप मिकिता कव्य मायायक्ता ७ व्यास अस्त व्यास छर्षन कव्य । चिकितास असि = − वक्ष अस्त व्यास्त्र

नुगायस्म-रः

MID + CULTURE = CELET + CELA (I)

MIT - (I)LOAL = (I)LOC + (I)LA (I)

(क) यासमा विला। सीए

भिय उस्स असी

अ। अने सी एक मार्थ के निर्माण मार्थ के स्वापित का त्या मार्थ के स्वापित कर स्वापित कर स्वापित कर स्वापित कर साथ कर स्वापित कर स्वापित कर स्वापित कर स्वापित कर साथ कर स्वापित कर साथ कर

(N) केमीथारका मुभागसा-३ विकिलाम्बागाळ 🗠 वाग मान निर्मात करा ।

मि व्य का ल्यान र व्या का

(च) (1) ७ (1) विधिनाम जाभागामा गंतिवर्धतन्त्र मध्य नामाछ स्ट्र अस निवर्धन कार्यनिकाम मायास्या स्तर्थाच ।

विच व्या ३१६ क्लुका बन्ना ग एवा ३मी

সমাধাৰ:

ত্ব সাসামনিক विज्ञा। १क्वेशस्त्रा। माधास्य १कारमा बग्धन क्रवन ऋह आक्राक्ष এসিত बा च्हारक क्रपन मिथिए ब्ह्यास १४४७ ध्या प्राप्त निकर्षन धिकरणस् कृष्ट्य कारक साम्यस्य विज्ञा यहा।

जायामगढ । बिकार क्वीमा स्वयत्व छेशिए षाट्या १मि स्प्रांनिस्पा १घ विद्यास्य विद्यांबिक कवम् स्वयत्व पारक, कारक से घट्या विद्याङ्क क्षम्पक (15) यहां ।

(tall  $R + (tal) O(H \leftarrow O(O(H + AH))$ 

जयन वाद्या क्यां क्यां

क्ता हेगीगराना विकिसा.

(山田) - (山田 + (田) A

थार्थनिक व्यक्ताः a and b and O and

जान्नाग्रामाः (a - a) mol (b - a) a a b

्र सिक्रिसामा कागागिरामा

AB  $\overline{A}$   $\overline{A}$ 

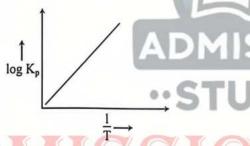
Standard Sample Standard

کې ➤ Chemistry 1<sup>st</sup> Paper Chapter-4

$$K_{o} = \frac{[AB]^{2}}{[A_{2}][B_{2}]} = \frac{\left(\frac{7}{V}\right)^{2}}{\left(\frac{7.5}{V}\right)\left(\frac{5.5}{V}\right)}$$
$$= \frac{7^{2}}{7.5 \times 5.5}$$
$$= 1.187$$

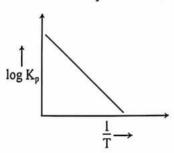
বিত্রিন্মক ও উৎপাদের মোল সংখ্যা সমান, সেহেতু,  $K_c = K_\rho = 1.187$   $\therefore K_\rho$  এর মান 1.187 [Ans.]

য (1) নং বিক্রিয়াটি A<sub>2</sub> + 3H<sub>2</sub> 


⇒ 2AH<sub>3</sub> + তাপ যা তাপোৎপাদী বিক্রিয়া।

> (2) নং বিক্রিয়াটি A<sub>2</sub> + O<sub>2</sub> = 2AO<sub>2</sub> – তাপ ষা তাপহারী বিক্রিয়া।

সাম্যক্রবকের উপর তাপমাত্রার প্রভাব ভ্যান্ট হফ সমীকরণের সাহায্যে ব্যাখ্যা করা যায়। ভ্যান্ট হফ সমীকরণটি নিম্নরপ–


$$\log K_p = -\frac{\Delta H}{2.303 \text{ R}} \cdot \frac{1}{T} + \text{GFG}$$

(i) নং তাপোৎপাদী বিক্রিয়ার ক্ষেত্রে  $\frac{1}{T}$  বনাম  $\log K_p$  লেখঃ



এক্ষেত্রে তাপমাত্রা বৃদ্ধির সাথে সাথে সাম্যাঙ্কের মান হ্রাস পার। অর্থাৎ তাপোৎপাদী বিক্রিয়ায় তাপমাত্রা বৃদ্ধি করলে সাম্যাঙ্কের মান হ্রাস পায় ও উৎপাদন কমে যায় এবং তাপমাত্রা হ্রাস কলে সাম্যাঙ্কের মানও উৎপাদন উভয়ই বৃদ্ধি পায়।

(ii) নং তাপহারী বিক্রিয়ার ক্ষেত্রে  $\frac{1}{T}$  বনাম  $\log K_p$  লেখ:



তাপহারী বিক্রিয়ায় তাপমাত্রার বৃদ্ধির সাথে সাথে সাম্যাঙ্কের মান বৃদ্ধি পায়। অর্থাৎ তাপহারী বিক্রিয়ার ক্ষেত্রে তাপমাত্রা বৃদ্ধি করলে সাম্যাঙ্কের মান ও উৎপাদ উভয়ই বৃদ্ধি পায় এবং হ্রাস করলে উভয়েই হ্রাস পায়।

## প্রশ্ল ১ ২৩ দৃশ্যকল্প-১:

0.023 M
50 mL
Formic
Acid

7 mL
5% Na<sub>2</sub>CO<sub>3</sub>
Solution

A B C

দৃশ্যকল্প-২:

 $MA_5(g)$   $\Longrightarrow$   $MA_3(g) + A_2(g) -$  তাপ। [সন্দিদিত বোর্ড ১৮] বিক্রিয়াটি 25°C তাপমাত্রায় 1 atm চাপে 10% বিয়োজিত হয়।

- (ক) অসওয়ান্ডের লঘুকরণ সূত্রটি লিখ।
- (খ) পানির আয়নিক গুণফল থেকে কীরূপে pH ক্ষেল তৈরি করা হয়?

মি. বো. ২২১

- (গ) B পাত্রের দ্রবণের pH নির্ণয় কর। বি. বো. ২১; অনুরূপ প্রস্তু: ঢা. বো. ১৭]
- বিক্রিয়াটির সাম্যাবস্থায় তাপমাত্রা ও চাপের পরিবর্তন ঘটলে উৎপাদের
   উপর কিরূপ প্রভাব ফেলে? বিশ্লেষণ কর।

সমাধানঃ

ক্র লঘু দ্রবণে মৃদু তড়িৎ বিশ্লেষ্য যেমন মৃদু অস্ত্র ও ক্ষারকের বিয়োজন-মাত্রা ঐ অস্ত্র ক্ষারকের দ্রবণের মোলার ঘনমাত্রার বর্গমূলের ব্যস্তানুপাতিক।

হা যেহেতু 25°C তাপমাত্রায় পানির আয়নিক গুণফল 10<sup>-14</sup> হয়।

সুতরাং, K<sub>w</sub> = [H<sub>3</sub>O<sup>+</sup>] [OH<sup>-</sup>] = 10<sup>-14</sup>

 $\Rightarrow \log([H_3O^+][OH^-]) = \log 10^{-14}$ 

 $\Rightarrow \log[H_3O^+] + \log[OH^-] = -14$ 

 $\Rightarrow -\log [H_3O^+] - \log[OH^-] = 14$ 

 $\Rightarrow$  pH + pOH = 14 ......(i)

উপরোক্ত সমীকরণ কোন লঘু দ্রবণের (max 1M ঘনমা<mark>আ) জন্য pH</mark> বা pOH এর মান বের করলে তা 0 থেকে 14 পরিধিতে সীমাবদ্ধ থাকে, তাই 0 – 14 পর্যন্ত মান নিয়ে pH স্কেল তৈরি হয়।

5% Na<sub>2</sub>CO<sub>3</sub> দ্রবণে Na<sub>2</sub>CO<sub>3</sub> সম্পূর্ণরূপে আয়নিত থাকে।
5% Na<sub>2</sub>CO<sub>3</sub> বলতে বোঝায়,

$$S = \frac{10 \text{ x}}{M} = \frac{10 \times 5}{106} = 0.472 \text{ M}$$

জলীয় দ্রবণে Na<sub>2</sub>CO<sub>3</sub> নিম্নরূপে আয়নিত হয়,

 $Na_2CO_3 + H_2O \rightarrow Na^+ + CO_2 + 2OH^-$ যেহেতু  $Na_2CO_3$  একটি দ্বি-এসিডিয়/দ্বি-অন্নীয় ক্ষার,

∴ 0.472 M Na<sub>2</sub>CO<sub>3</sub> দ্রবণে OH আয়নের ঘনমাত্রা

 $= 2 \times 0.472 = 0.944 \text{ M}$ 

 $\therefore$  pOH =  $-\log [OH^-]$ 

$$= -\log [0.944] = 0.026$$

 $\therefore pH = 14 - pOH$ 

$$= 14 - 0.026 = 13.974$$
 [Ans.]

अव्यक्तानिक अधिरार्कन > भट्टा, हिस्सी Cionquicii Suggestiani Blook

### ाणा हिन्दीभारमस विविचनाहि निस्तार्भाः

ov + = Ha 1(g) A + (g) AM (Z) AM काभावाचा भिरार्विजार विभावकाः निविजातिएठ अप वात वात भनाव्यक कार्यार मिविनापि जामवासी। व्यायक् विविनापिक कारभर बार्क बार्के

खर्डि जावान्स्यता नाभमावा बतिनर्धन कनाम छेरपातना पतिमासित र्णासियर्धन घोरिय। ना-भारविनाातिता मीठि छानुमाति वराशमावाति असियर्छन कताएन माध्यात करुषान वायानासाहि अतिबर्सिक वार्व गाउ कारायाचा अफ़िर्राताना कमायम थार्भिक व्या। धिनीनातना रिकिगारि कामधारीी। जाई नाभगावा दृष्टि बनाम नात्मात बतशान जात नाता निरात चिएगान MA, व A, वाद निर्मान वृद्धि कनात्व कवर वानमावा

ঘাৰাৰ অংখ্যান্তা ব্ৰাস কৰালে সামোৰ অবস্থান বামে সামে নিয়ে MA, अस प्रतिमान दिख कर्कार करार ठापामाता प्रक्रिक्ट्रिव ममायम धन्मिठ सनाद ।

**छात्र निवर्कत्नव यम्मायनः** रिक्तिग्रांकि ग्रानीना नाष्ट्रांना वाटर क्यर फेल्पान ७ रिकिन्यरके प्रान गर्था। नमान नम् । ठाउँ रिकिनािकेट চ্যাপের পরিবর্তন ঘটলে উৎপাদের পরিমাণের পরিবর্তন ঘটবে। উদ্দীপকের বিক্রিয়ায় উৎপাদের মোল সংখ্যা বেশি। তাই আবন্ত পাটের একই আয়তনে চাপ ব্যত়ে। তাই চাপ বৃদ্ধি করলে লা-শাতেলিয়াত্রের লীতি অনুযায়ী সাম্যাবস্থা যামে সবে নিয়ে উৎপান NIA, ও A, এর পরিমাণ ক্রাস করবে। অথার চাপ কমালে সাফাবন্থা তানে সরে নিজে উৎপাদ MA, ও A, পরিমাণ বৃত্তি করবে।

প্রশ্লা > ২৪ দৃশ্যক্ষ্র-১: উদ্বীপকটি লক্ষ কর:

निवार्धात्वा यमायम शर्थिय राजार ।

(i)  $PCI_5(g) \Rightarrow PCI_3(g) + CI_2(g)$ ;  $\Delta H = + ve$ 

(ii)  $N_2(g) + 3H_1(g) \Rightarrow 2NH_3(g); \Delta H = -ve$ 

দৃশ্যক্ষ-২:

X<sub>1</sub>CO<sub>3</sub> YMnO. 2.6575 g পাত্ৰ-০১

[X ও Y এর পারমাণবিক সংখ্যা यथाक्रमে 11 ও 19]

- (ক) আসিডোসিস কী?
- (ব) সাম্প্রেকর মান কথনো খূন্য বা অসীম হর না কেন?

[ण. त्वा. २); ष्वनुत्रभ क्षम्नः य. त्वा २); त्रि. त्वा. २); य. त्वा. ५५; ह. त्वा. ५०]

(গ) 450K তাপমাত্রায় 1.5 atm চাপে (i) নং সাম্য বিক্রিয়াটির বিক্রিয়ক 25% विद्यांकिত रूल K, निर्णग्न कन्न ।

[দি. বো. ২১; অনুরপ প্রশ্ন: দি. বো. ২১; কৃ. বো. ১৭; সম্ফিলিড বোর্ড ১৮; চ. বো. ১৯]

(ঘ) পাত্র-১ ও পাত্র-২ এর বিকারকদ্বয়ের মধ্যে কোনটি মাটির pH পরিবর্তনে ভূমিকা রাখে? বিশ্লেষণ কর। াতা, বো. ১৯

সমাধান:

ক স্বাভাবিক অবস্থায় রক্তের pH সাধারণত 7.35 থেকে 7.45 এর মধ্যে थारक। यमि कान कान्नर्श नरङन pH 7 अन्न निर्फ करन यात्र जाररन তাকে অ্যাসিডোসিস বলা হয়।

कानी केंद्रमुनी निरित्नाक्त नाम क्षणायक मान कार्याकी वित्ति केंद्र कार्याक कार षामा निम्नह्म निर्मन ग्रना यामा ०

चापना मामाधना ह = ₹0

नाम्बर् निकिनाफिरठ मायाधन्यक भूना घरू पाम सिर्शापनर चनपावा सा पाएमिक तान भूगा स्ट स्या।

वारामा विक्रिमारिट नामाधन्त्र कमीय चट एक विक्रिमारक्व क्यामा या चार्शिक हान भूना एएक दस् या रमान छेठपुरी निविधाम नामाएसान हाना बाहर्न्ज्य ना। काएन मायाप्यप्ता मनुष ७ नकान्युची चिक्रिगाम एवा ज्ञान रूट ह्या। कई माइधिगरम बान भुना सा क्रीय स्या मा।

वा छेक्तीशाक (i) नार विकिमार्कि-

PCI(Q) = PCI=(Q) + CI/QK DH = + TO

Can O গ্রাথমিক অবস্থারা: I mol O mod जाष्गावश्वाः

1-025 025 mal 025 mal

= 0.75 EDOJ

रिकिंगाणि. विधाल,

PFCI, × PCI Pros

गायाविद्यात व्यक्ति व्यान गर्पा। =

0.75 + 0.25 + 0.25 = 1.25

P = 1.5 atm

আংশিক চাপ = মোল ব্যাংশ × মোট চাপ

 $P_{PCI_3} = \frac{0.25}{1.25} \times 1.5 = 0.3 \text{ atm}$ 

 $P_{CI_2} = \frac{0.25}{1.25} \times 1.5 = 0.3 \text{ atm}$ 

 $P_{FCI_5} = \frac{0.75}{1.25} \times 1.5 = 0.9 \text{ atm}$ 

ত্ত্বীপকের X ও Y এর পারমাণবিক সংখ্যা যধাক্রমে 11 ও 19।

সূতরাং X ও Y মৌলবয় যথাক্রমে Na ও K।

অর্থাৎ পাত্রন্তরের মধ্যে পাত্র-১ এ রাখা আছে Na2CO3 এবং পাত্র-২ এ রাখা আছে KMnO4। কৃষি উৎপাদনে মাটির pH নিয়ন্ত্রণ গুরুত্বপূর্ণ। মাটির pH একটি সুনির্দিষ্ট সীমার মধ্যে হলেই গাছপালা মাটি থেকে প্রয়োজনীয় খাদ্য গ্রহণ করতে পারে, নতুবা নয়। pH এর মান 3 এর **क्रिया क्रम इट्ल जर्थाए माणि ज**र्धिक जम्मीय इटल गाष्ट्रशाला मदा याय। যেমন− এসিড বৃষ্টির ফলে pH এর মান হাস পাওয়ায় অনেক স্থানে গাছপালা মরে গিয়ে মরু প্রক্রিয়া সৃষ্টি হয়। Na2CO3 লবদটি ক্লারীয় প্রকৃতির লবণ। ফলে Na<sub>2</sub>CO<sub>3</sub> মাটিতে ব্যবহার করলে মাটির pH বৃদ্ধি পায়। মাটির অণুজীব বৃদ্ধির সহায়ক pH হলো 6.6 – 7.3। বিভিন্ন অণুজীব মাটির উর্বরতা বৃদ্ধির উপাদান N, S, P মৌল যোগান দেয়। সুতরাং, কৃষি জমিতে মাটির pH এর পরিসর কৃষি কাজের অবস্থানভেদে বিভিন্ন অঞ্চলে 3 – 4.5 এর মধ্যে রাখা হয়। তাই অম্লধর্মী মাটির pH বাড়াতে Na<sub>2</sub>CO<sub>3</sub> ভূমিকা রাখতে পারে। মাটির pH পরিবর্তনে KMnO4 এর কোনো ভূমিকা নেই।

358

ACS, > Chemistry 1st Paper Chapter-4

প্রশ্ন ১ ২৫ মনির ল্যাবরেটরিতে 4.35 pH এর অশ্লীয় বাফার দ্রবণ তৈরি করার উদ্যোগ নিল। এ উদ্দেশ্যে সে 0.05 M ফরমিক এসিডের দ্রবণে প্রয়োজনীয় পরিমাণ 0.1 M সোডিয়াম ফরমেট দ্রবণ যোগ করল। [HCOOH এর pK4 = 3.8]

- (ক) সমস্তু সাম্যাবস্থা কাকে বলে?
- (খ) কার্বনেট (CO<sub>3</sub><sup>2-</sup>) একটি ক্ষারক- ব্যাখ্যা কর।
- (গ) মনিরের অম্লীয় বাফার দ্রবণটির H<sup>+</sup> আয়নের ঘনমাত্রা বের কর।
- (ঘ) মনির ফরমিক এসিডটির 60 cm³ কত cm³ সোভিয়াম ফরমেট দ্রবণে যোগ করলে উক্ত বাফার দ্রবণ পাবে?

সমাধান:

- ক সমসত্ত সাম্যাবস্থা: যে উভমুখী বিক্রিয়ায় বিক্রিয়ক ও উৎপাদসমূহ একই ভৌত অবস্থায় যেমন– গ্যাস অথবা তরল বা দ্রবণে থাকে, তাকে সমসত্ত বা সুষম সাম্যাবস্থা বলা হয়।
- ব্রনস্টেড লাউরীর তত্ত্ব অনুযায়ী যেসব যৌগ বা আয়ন অমু হতে প্রোটন গ্রহণ করে তাদেরকে ক্ষারক বলে। যেহেতু  ${\rm CO}_3^{2-}$  আয়ন নিম্নন্ধপে দুইটি প্রোটন (H<sup>+</sup>) গ্রহণ করে অমু তৈরি করে তাই  ${\rm CO}_3^{2-}$  একটি ক্ষারক।

$$CO_3^{2-} + 2H^+ \rightarrow H_2CO_3$$

গু হ্যাভারসন হ্যাসেলবাধ সমীকরণ মতে,

$$pH = pK_a + log \frac{[eqq]}{[এসিড]}$$

$$41, pH = 3.8 + \log \frac{[0.1]}{[0.05]}$$

$$\therefore -\log[H^{+}] = 4.101$$

$$\therefore [H^{+}] = 7.92 \times 10^{-5} M$$

ঘ আমরা জানি,

$$pH = pK_a + log \frac{[eqq]}{[a]}$$

বা,  $\log \frac{[eqn]}{[arghered]} = pH - pK_a$ 

এখানে, pH = 4.35 এবং pK<sub>a</sub> = 3.8

$$\therefore \log \frac{[ \overline{\text{eqe}} ]}{[ \underline{\text{uসe}} ]} = 4.35 - 3.8 = 0.55$$

বা,  $\frac{\text{লবণের আয়তন} \times [\text{লবণ}]}{\text{এসিডের আয়তন} \times [\text{এসিড}]} = \frac{3.55}{1}$ 

এখানে, [লবণ]= 0.10 M এবং [এসিড] = 0.05

বা, 
$$\frac{\text{লবণের আয়তন} \times 0.10 \text{ M}}{60 \text{ cm}^3 \times 0.05 \text{ M}} = \frac{3.55}{1}$$

∴ লবণের আয়তন = 
$$\frac{60 \times 0.05 \times 3.55}{0.1}$$
 cm<sup>3</sup> = 106.5 cm<sup>3</sup>

∴ দ্রবণে 106.5 cm³ সোডিয়াম ফরমেট দ্রবণে যোগ করলে উক্ত বাফার দ্রবণ প্রস্তুত হবে।

# গুরুত্বপূর্ণ জ্ঞানমূলক প্রশ্নোত্তর

১। মিন কেমিন্টি কাকে বলে? [ঢা. বো. অনুদ্ধপ প্রশ্ন: ২৩; দি. বো. ২৩; ক্. বো. ২৩; ব. বো. ২২; দি. বো. ২২; দি. বো. ১৭; ব. বো. ১৯] উত্তর: পৃথিবীব্যাপী রসায়নবিদেরা শিল্প ক্ষেত্রে তাত্ত্বিক ও ব্যবহারিক প্রয়োগে ক্ষতিকর বর্জ্য পদার্থ উৎপন্ন যথাসম্ভব হ্রাস করে নতুন ও উন্নততর পরিবেশবান্ধব পদ্ধতি উদ্ভাবনে সচেষ্ট রয়েছেন। পরিবেশবান্ধব এরূপ রাসায়নিক পদ্ধতিকে মিন কেমিষ্টি বা সবুজ রসায়ন বলা হয়।

২। এটম ইকোনমি কাকে বলে?

[ৰু. বো. ২২]

- উত্তর: কোনো রাসায়নিক বিক্রিয়ার ক্ষেত্রে উৎপন্ন কাঞ্চিত উৎপাদের ভর ও উৎপন্ন সকল উৎপাদের ভরের অনুপাতের 100 গুণিতক সংখ্যামানকে এটম ইকোনমি বলে।
- ত। বিক্রিয়ার হার কাকে বলে? (কু. বো. ১৯; অনুরূপ প্রশ্ন: চ. বো ১৯; नि. বো. ১৭)
   উত্তর: প্রতি একক সময়ে বিক্রিয়কের ঘনমাত্রা হ্রাস বা বিক্রেয়ায় সৃষ্ট
  উৎপাদের ঘনমাত্রা বৃদ্ধির হারকে বিক্রিয়ার হার বলে।

8। বিক্রিয়ার হার ধ্রুবক কাকে বলে?

[য. বো. ২৩]

উত্তর: একক মোলার ঘনমাত্রার বিক্রিয়কসমূহের বিক্রিয়ার হারকে সে বিক্রিয়ার হার ধ্রুবক বলে।

ए। এकम्बी विकिया कारक वरण?

উত্তরঃ কোন বিক্রিয়ায় সমস্ত বিক্রিয়ক পদার্থ যখন উৎপাদে পরিণত হয় অর্থাৎ বিক্রিয়াটি ওধু সম্মুখ দিকে ঘটতে থাকে, তখন ঐ বিক্রিয়াটিকে একমুখী বিক্রিয়া বলা হয়।

৬। উভমুখী বিক্রিয়া কাকে বলে?

উত্তর: যদি কোন রাসায়নিক বিক্রিয়া একই সাথে সম্মুখদিক ও পশ্চার্থদিক থেকে সংঘটিত হয়, তবে সে বিক্রিয়াকে উভমুখী বিক্রিয়া বলা হয়।

৭। তাপোৎপাদী বিক্রিয়া কাকে বলে?

উত্তর: যে রাসায়নিক পরিবর্তনের ফলে তাপশক্তির বর্জন এবং বিক্রিয়া অঞ্চলের তাপমাত্রা বৃদ্ধি পায় তাকে তাপোৎপাদী বিক্রিয়া বলে।

৮। তাপহারী বিক্রিয়া কাকে বলে?

উন্তর: যে রাসায়নিক পরিবর্তনের ফলে তাপশক্তির শোষণ এবং বিক্রিয়া অঞ্চলের তাপমাত্রা,হ্রাস পায় তাকে তাপহারী বিক্রিয়া বলে।

১। লা-শাতেলিয়ার নীতিটি লিখ?

থি. বো. ২১, অনুষ্কপ প্রশ্ন: চ. বো. ২১; সি. বো. ২২, ২১; দি. বো. ২১।
উত্তর: কোনো উভমুখী বিক্রিয়া সাম্যাবস্থায় থাকাকালে যদি ঐ অবস্থার একটি
নিয়ামক, যেমন তাপমাত্রা, চাপ অথবা ঘনমাত্রা পরিবর্তন করা হয়,
তবে সাম্যের অবস্থান ডানে বা বামে এমনভাবে পরিবর্তিত হবে, যাতে
নিয়ামক পরিবর্তনের ফলাফল প্রশমিত হয়।

১০। রাসায়নিক সাম্যাবস্থা কী?

াম. বো. ২২; অনুরূপ প্রশ্ন: ঢা. বো. ২১; কু. বো. ২১; সি. বো. ১৯]
উত্তর: একটি নির্দিষ্ট বিক্রিয়াকালীন শর্তে কোনো উভমুখী রাসায়নিক
বিক্রিয়ায় সম্মুখ বিক্রিয়ার গতিবেগ যখন বিপরীত বিক্রিয়ার গতিবেগের
সমান হয় তখন সেই অবস্থাকে রাসায়নিক সাম্যাবস্থা বলে।

রাসার্যনিক পরিবর্তন > MCS/ FRB Compact Suggestion Book.....

১১। গতিশীল সাম্যাবস্থা কী?

चि ता २०

ভিত্তর: একটি উভত্বনী বিভিন্না কখনো সম্পূর্ণক্রপে শেব হয় না বরং এক সমর <del>সম্বাহনী ও পদাত্যুখী বিক্রি</del>দার হার সমান হারে তা সাম্যাবস্থার পৌছার ভাই প্রকে গভিদীল সাম্যাবস্থা বলে।

#### ১২ দেমদন্ত দাখাবস্থা কাকে বলে?

**টিটর: সমসর সাম্যাবস্থা:** বে <del>উ</del>ত্তবৃদ্ধী বিক্রিরার বিক্রিরক ও উৎপাদসমূহ **बक्टे** स्टोंक क्वरहाड़ क्रम्म- गाम अपना उन्नम वा प्रदर्ग बीट्न, चाट्न नमम् स नुवय नामावश दना रहा।

১৩। বিভ্রোছন দারা কী?

বি. বে. ২১; বনুরূপ প্রশ্ন: রা. বে. ১১)

**७**ड्ड कात्म ननार्खन का स्त्राह्म विद्याक्ति वन प्राह्म नार्याक थे निपार्द्धव दिरवासन माद्धा दरन ।

#### ৯৪। ভরক্রিয়া সূত্রটি বিবৃত কর।

चि. टर. २७; <del>यनुक्र</del>म क्र<del>द्र</del>ः च. ट्य. २५; र. ट्य. २०, ১१; ब्र. ट्य. २२, २५; कु. त्व. २४; र. त्व. २४; निक्किक त्व. ४४; नि. त्व. २४, ४९]

উন্তব্ধ: "নির্দিষ্ট তাপনাঞার, নির্দিষ্ট সনরে বে কোনো বিক্রিরার হার ঐ সমরে উপস্থিত বিক্রিত্রকণ্ডলোর বক্রিয় ভরের (স্কর্বাৎ মোলার ঘনমাত্রা বা অংচশিক চাপের) সমানুপাতিক হরু"।

३८। नामा क्ष्यक की?

চি. ব্যে. ২৩

উল্ভব্ন: স্থির ভাপনাত্রা ও স্থির চাপে একটি উভনুখী বিক্রিয়ার উৎপন্ন পদার্থনমূহের সক্রিয় ভর বেমন মোলার ঘনমাত্রা বা আংশিক চাপ এর গুলব্ব এবং বিক্রিরকনমূহের সক্রিয় ভরের গুলকলের অনুপাত একটি গ্রুব রাশি। এ গ্রুব রাশিকে সাম্যক্রবক বলে।

৯৬। সাম্যক্রবক (K,) কাকে বলে?

वृ. (वा. २२, नि. (वा. २२)

উভয়: কোন উভদুৰী বিক্রিয়ার সাম্যাবস্থার তর ক্রিরার সূত্র মতে উৎপাদসমূহের মোলার ঘনমাত্রার গুণফল ও বিক্রিয়কসমূহের মোলার দ্রনাত্রার গুণকলের অনুপাতকে মোলার সাম্যক্রবক বলা হয়।

३९। pH अत्र निष्का जिर्व। वि. त्वा. २७; यनुद्रल बङ्गः म. त्वा. २२; नि. त्वा. २२) ভিত্ত কোনো জুলীর দ্রবণের হাইছ্রোছেন আয়ন (H) বা হাইছ্যোনিরাম স্মারন (H3O) এর মোলার ঘনমাত্রার খণাত্রক লগারিদমকে ঐ प्रदापन pH वना रत।

अर । pH त्रम की? श्रि. वा. २५: मि. वा. २५: म. वा. २५: म. वा. ५१: वा. वा. ५१ ভিতর: কোন জলীর দ্রবণের অন্ন (HT) ও ক্ষার (OHT) আরনের ঘনমাত্রা প্রকাশের জন্য একটি স্কেল প্রকাশ করা হয় যা pH স্কেল নামে পরিচিত।

28 I pOH की?

(রা. বো. ২৩)

ভিভন্ন: কোন দ্রবপের হাইছ্রোপ্সাইড স্নান্ননের (OH) মোলার ঘনমাত্রার স্থণাজ্বক লগারিদমকে ঐ দ্রবণের DOH বলে।

२०। विख्राखन क्षरक की?

রা. বো. ২২; অনুরূপ এদ: চ. বো. ২২)

উন্তর: প্রতি লিটার জলীয় দ্রবণে উপস্থিত কোনো এসিড বা ক্ষারের *মোলসংখ্যার যে ভ*গ্নাংশ বিয়োজিত অবস্থার থাকে, তাকে ঐ এসিড বা ক্ষারের বিয়োজন ধ্রুবক বঙ্গে।

২১। অম্বের বিয়োজন ধ্রুবক (K3) কী?

मि. वा. २२)

উব্রু: প্রতি পিটার জলীয় দ্রবণে উপস্থিত কোনো অন্তর মোল সংব্যার যে স্প্রাপে বিয়োজিত অবস্থায় থাকে তাকে ঐ অন্তের বিয়োজন ধ্রুবক (K\_) বলে।

২২। ক্লারের বিয়োজন ধ্রুবক (Kb) কী?

[দা. বো. ২১]

উন্তর: প্রতি লিটার জলীয় দ্রবপে উপস্থিত কোনো ক্লারকের মোল সংখ্যার যে ভগ্নাংশ বিদ্যোজিত অবস্থার থাকে, তাকে ঐ ক্মারকের বিয়োজন ধ্রুবক (Ka) दना रुवा।

#### २७। यांत्रिष्डानिन की?

উন্তর: স্বাভাবিক অবস্থায় রক্তের pH সাধারণত 7.35 থেকে 7.45 এর মধ্যে थाक । यनि कान कान्नर्प नरङन pH 7 अन निर्फ करन याग्र जार्रा তাকে অ্যাসিডোসিস বলা হয় ।

২৪। লবণ কাকে বলে?

কু. বো. ২৩]

উন্তর: অন্ত ও ক্লারের মধ্যে সংঘটিত প্রশমন বিক্রিয়ার মাধ্যমে উৎপন্ন আর্রনিক বৌগকে লবণ বলে।

#### ২৫। অসওয়ান্ডের লঘুকরণ সূত্রটি লিখ।

উত্তর: লঘু দ্রবণে মৃদু তড়িৎ বিশ্লেষ্য যেমন মৃদু অস্ত্র ও ক্ষারকের বিয়োজন-মাত্রা ঐ অমু ক্ষারকের দ্রবণের মোলার ঘনমাত্রার বর্গমূলের ব্যস্তানুপাতিক।

২৬। বাকার দ্রবণ কী?

রা. বো. ২৩; অনুরূপ প্রদ্ন: ব. বো. ২২; নি. বো. ২২;

म. (वा. २२; नि. (वा. २); निपनिङ (वा. ১৮)

উত্তর: বেসব দ্রবণে বাইরে থেকে সামান্য পরিমাণ সবল এসিড বা ক্ষার যোগ করা হলে দ্রবণের pH এর মানের বিশেব পরিবর্তন হর না, তাকে বাকার দ্রবণ বলে।

২৭। বাকার ক্ষতা কাকে বলে?

বি. বো. ২৩]

উত্তরঃ বাফার ক্ষমতাঃ এক লিটার বাফার দ্রবণের pH এর মান এক একক (1 unit) পরিবর্তন করতে যত মোল সংখ্যার সবল এসিড বা ক্লার মিশ্রিত বা যোগ করতে হয়, তাকে ঐ বাফার দ্রবণের বাফার ক্রমতা

২৮। বাফার ক্রিয়া কী?

[त्रा. त्वा. ১৭]

উম্ভব্ন: যে রাসায়নিক ক্রিয়া কৌশলের মাধ্যমে কোনো বাফার দ্রবণ স্বল্প মাত্রায় এসিড বা ক্ষারক দ্রবণ মিশ্রিত করার পরও এর pH পরিবর্তন প্রতিরোধ করে তাকে বাকার ক্রিয়া বলে।

२ । পानित्र जाग्रनिक छनकन कांक वरन?

[দি. বো. ২৩; জনুরূপ প্রশ্ন: দি. বো. ২৩; ঢা. বো. ২১]

উত্তর: নির্দিষ্ট তাপমাত্রায় বিশুদ্ধ পানিতে হাইড্রোনিয়াম আয়নের ঘনমাত্রা  $(H_3O^-)$  ও হাইড্রোব্রিল আয়নের ঘনমাত্রার  $(OH^-)$  ওণফল ধ্রুবক रुत्र । এ গুণফলকে পানির আয়নিক গুণফল বলা হয় ।

৩০।বিক্রিয়ার আণবিকত্ব বলতে কি বোঝায়?

উত্তরঃ কোনো রাসায়নিক বিক্রিয়ায় অংশগ্রহণকারী সর্বোচ্চ সংখ্যক যে অণু পরমাণু বা আয়ন বিক্রিয়া করে উৎপাদে পরিণত হয় তাকে বিক্রিয়ার আণবিকত্ব বলে।

#### ৩১। সবুজ দ্রাবক কাকে বলে?

উন্তরঃ ফসলের প্রক্রিয়াজাতকরণের মাধ্যমে প্রাপ্ত পরিবেশ বান্ধব জৈব দ্রাবককে সবুজ দ্রাবক বলে।

#### ৩২।ই-ফ্যাষ্ট্রর কাকে বলে?

উন্তর: কোনো শিল্প ইউনিট থেকে উৎপাদন প্রক্রিয়ায় মোট উৎপাদের ভরের তুলনায় কী পরিমাণ বর্জা উৎপন্ন হয় তার অনুপাতকে ই-ফ্যাক্টর বলে।

SUE

# ड्यम्ब्रभून व्यापातानास्मान थात्योहत

। 'रिष्युमी निकिया रायका भाग सक्त वा दवन। 1 玩玩料 क्षितः धर्मक्रभाउ नवा अपुनाध्यः, नाभावमार निकिगटच्ये ननपावा निक्त अपर विकिशाय संद अभि क्षा । व्याना किस्प्रीर विकिशात ग्राप्ट विकिशास्त्र त्रामामा अभि बात्यच राष्ट्रापुरी निकिशांत धनाण्य निकिशान्तर गममामा लिंद वास्त्रम नमुम्बूभी निकियान बातः लिंग वापन । नीएउ मीएन भिराधाव र्वातपाम विसे वराण वरतास्त्री विक्रियान बात विसे वाण कार त्रपूमपुर्भी निक्किशत बन रूपछ शास्त्र । वनामाग्र त्रापुनपुर्भी क रूप्रान्तुषी निक्किशत बाह्य नपान द्वार नाम, न्यान निक्किपारि नामानखाच 15aHire बरा । निकियान नाप्रानिक्षंस वन्त्रन्व नपटा जा शतिपान निवित्रगण

करणा कहने कारमामार स्वीमकीति (अ)(अ) 🖚 (अ)(४) + (अ) १४ क्षणत षाण्य किए नामा क्स । क्षेत्रकः राजापनिकः निक्रियाच जापानसाच बाध्यप्टिनिचादन नैप्टि प्रनुपाधी क्रमत शामीए निकागुए छिस्प्रमिट्न निकिएन व धित्राप्तर जाण नाना

क्षात्राप्ट बराए का धीन वर्षे बरिपान भिजापा निर्पाणिक व्यव

निक्रियार र्नेतार भ्रम । वर्षः बात्तप्र रिप्पार्धः विक्रिया गणपा वान मा ना ।

त्रपाम पाएक, यक्तव काव्य नापातिस्त्रव दिनव पाएनव क्यान शासन

ाष्ट्रे । बागक निवामाणिः

KAN OAN = THORN

and -- 2 mil + I mul -- 2 mil गुण्ताए, निकिशिपिङ निकिशनः ७ छेप्ताप्ततः वाणवात्राति नेपान निकिग्रंटक 2 mul क्यार छित्राप्त 2 mul । नन्छा नाधिनः गाप्त निकिग्रंड छात्राफ्य त्यान श्रीतार्क श्रीप्रमा। सर्व विक्रिमापित रामानस्य प्राप्तव त्यान श्राप्त तारे।

 वस नाम जानावितन नामानिका निकासिक वस-नामा निकासिक नाम अन्त्र। फेक्काः नामम त्याम छरपुत्री नामान्नमिन निक्किनाच रूपुनपुत्री व शताज्ञी निधिगात दात नपान दत्त, जनम निधिगापि नापान द्वाप हेनिमण दत्ता। করে বাদ্যানতা মর্ছনে বিজিন্তন ও উপোদসে বিভিন্তাত্তা উপস্থিত शाम्द्रङ इत अत्रर शाद व्यक्तिक अनाख्य इत्र इत्य । त्याणा शादव निक्रिया त्राप्ति ह क्वाप्त विक्रियक वा छिरवाद्य ज्यान क्वारि वाहित छेट् जाद्य निकियाणि अऋषुकी इस्त नाय । नप्टा छेडपुनी निकिया नप्टा नामानहा वार्धम क्या तक्षत हत गा। सारे छन् कह नाम तानाविक नामाप्त हा স্থানটিত হল।

श्रात्राधिक त्रापाक्ट्र विभीकि नामिम वस्ता ।

र्षित ता. १५% वमुक्त वर्षः वि. ता. १४% वा. ता १३% वा. ता. १३, ३७, ३५: म ला थः मि ला थः [ ला थः म ला थ]

केंद्रकः जाम केप्पनी निक्रिनाम नापाएन हाउ गर्छ दर्स्य नचान निक्रिमान दान व वर्षणारमुत्री नितिरगात स्तत नमाम स्टर स्ट्र जालाच्य धनाना नम्ह्य ज পরিমাদ সিত্রিক্তন উৎপাসে পরিন্তত হসে, ঐ এসাইভাসে সে পরিমাদ উৎপাদতক বিজিন্তাকে পরিণত হতে হতে। ভাই আগাদে। ছিলে त्राजात्र हाटक हिन्न बाटन हटकर आवाटन नितिवाचारि वरिसेनीक । सार्थ नामा বাজ, রাদায়নিক সাদ্যাবস্থা পতিশীল।

 तानायिक नामानिक्वत पश्चिमीक्यात मनत्क वनपि विमान नाउ । कि. ता. ३८। উচ্চাঃ সেন্দ উভযুগী বিজিয়ায় সম্মুদমুগী বিজিয়ার হার ও পণ্যাভযুগী নিজিনাম হার নমাদ হলে নিজিনাটি নান্যানস্থার উপনিত হয়। সুতরাং क अबहार निहिताणि नक्ष दव गाः नक्षः छिएत भारमद निहिता ननाम

....... ANCES & Chuntines II Paper (Chapter 4 निष्णिक प्रवास्त व्यवका अपाक । अमागनस्थान वासी सामाप्त नावा भी, स 1 निरम्, निविषाता काव्य श्रा छेन्यन क्या । वश्रेन निविषािक गामान्यप्रीर ंत्रीपाएन भारत नामाना निर्मान एकाष्ट्रिय बाताविन वर्ग किया नामातज्ञता द्यान गतिनार्धन साः ना । निष्क निष्टु गतिमान व्याणतिस्ता प्राच्चा किन निर्मिष्ट (ए) HU शावार नाए । गुननार निष्ट्र भि, वे व्यवस्थितः lla पतः नामा न्यमुनी निक्रियाम kill छित्रक नम्बाम । सर्वे, नामानाभ क्रामी परिस्थान चलाम ।

७। मनमाना नुस्तिए निविजात गत नुसि नाम उत्तना नामा। उन्त । रि कर व्या किस्ताः स्मिक्तगात न्यानानान कान निकिनात का निकिनाएक गामपात्रान त्रप्रामु शिवकः । त्रप्रता वाविकायात त्राण्यं त्राण्यं तिवित्रप्रक्व पानपासा स्थान शास्त, नरफा निक्किपान सतार नरूर गाम । नाताय नामाप्रसिक्त निक्किया प्रतित घागारकः गर्र रक्का विकिनन्ननात्रतः यद्याः वस्तर्भ परिद्य यद्या । दसार निक्किगत ननपाला निकटन निक्किगत बनुनाना नृष्टि भाग, सर्वि नागरात्ता गावा त्यप्रह गाम वतार निक्किंग तुन्छ सम्भूच वत ।

१ । 'खाभगावा नाष्ट्राप्न निक्किगत भिन्न नापक जनर

छैदताः त्वादना नामात्तानिन्व निक्तिगतः वाशमावा वृक्ति वनएन निक्तिनन बानुनामुद्रतः निष्ठाम गृप्ति शत वनाः चनुष्ठमात गएता नागर्यान वात नुकि श्राप्त । कुछन चिक्तिक्टित नाभाक निक्तिगुक चनु निक्तिगात छाना वरताधनीच रिकाम भक्ति गांठ बरत निक्रिमाच चारभपार्य कात भारत निवामी बार्क्डनिवान वर्ष्यावा रुद्धित राठा र्राव्यग्न गिक ७ निविमात ব্যবের বৃদ্ধি প্রকাশক নিমুক্তাণ সমীকরাণ উল্লাক্তন

चिनि जनान जः, चापमाता थिंठ 10°C वृद्धिर धात्र ठवन निक्रिगाता বার 2 - 3 কণ বৃদ্ধি পার।

७। PC/नष्ट) = PC/नष्ट) + C/नष्ट) निविनानि K, वन वनक निर्ना

केंद्रतः निक्किगाहिः

 $PCI_{f}(g) \Longrightarrow PCI_{f}(g) + CI_{f}(g)$ 

ি বিজিয়া অনুসাসে,  $K_s = \frac{|PCI_1|[CI_2]}{|CCI_2|}$ 

 $= \frac{\text{nool } \Gamma_{-1}}{\text{nool } \Gamma_{-1}} = \text{cool } \Gamma_{-1}$ 

IFL OIL WALL

७। नामाधालक ४८ वत मान भूमा रख मा त्रना?

मि. जा. २०; पनुरुष ध्यः ठ. जा. २०; स. जा. श्री छिटाः च्य क्रियान मृत चनुमानी त्यान छेरुपुनी विक्रियान छेरुपाननप्राद्धन । निध्यितकरमम्प्रत परामावात ७१४एमत वनुशावरक वे निक्रिताल দলনাানার সামাপ্রদক (K,) বলে।

$$A + B \rightleftharpoons C + D$$

$$K_c = \frac{[C] \times [D]}{[A] \times [B]}$$

कप्ज, K. क्त मान भूना ६८० ६८० हि९भाननमृद्दत घनमावात्र ७५४न भूगा दत्त, थंपना निद्धित्तरुगम्दन पंगमावात ७५एम अनीम २०० दत्त । ন্য উভত্ননী নিজিনার ক্ষেত্রে সম্ভব নর। তাই সাম্প্রেবক K, এর মান भूगा दरा मा।

রাসায়নিক পরিবর্তন > ACS FRB Compact Suggestion Book.....

১০। Kp এর মান তন্য হতে পারে না কেন?

উক্তর: ভরক্রিয়ার সূত্র অনুযায়ী কোন উভমূখী বিক্রিয়ার উৎপাদসমূহ ও বিক্রিয়কসমূহের আর্থশিক চাপের গুণফলের অনুপাতকে, ঐ বিক্রিয়ার সাম্ঞেবক K, বলে।

 $A + B \rightleftharpoons C + D$ 

$$K_p = \frac{P_c. P_D}{P_A. P_B}$$

ফলে K<sub>p</sub> এর মান শূন্য হতে হলে উৎপাদসমূহের আংশিক চাপের গুণফল শূন্য বা বিক্রিয়কসমূহের আংশিক চাপের গুণফল অসীম হতে হবে, যা উভমৃথি বিক্রিয়ায় সাম্যাবস্থার ক্লেত্রে সম্ভব নয়। তাই Kp এর মান শূন্য হতে পারে না।

#### ১১। সাম্প্রেবকের মান কখনো শূন্য বা অসীম হয় না কেন?

[ঢা. বো. ২১; অনুরূপ প্রশ্ন: য. বো ২১; সি. বো. ২১; য. বো. ১৯; চ. বৌ. ১৭] উব্তর: একটি উভমূখী বিক্রিয়ায় সাম্প্রেবকের মান ঘনমাত্রা এবং আংশিক চাপ দ্বারা নিম্নরূপ নির্ণয় করা যায়।

$$A \Longrightarrow B$$

সুতরাং, সাম্ধ্রুবক  $K_c = \frac{[B]}{[A]}$ 

অথবা, সামধ্রেবক  $K_p = \frac{P_B}{P_A}$ 

ফলে, বিক্রিয়াটিতে সাম্প্রেবক শূন্য হতে হলে উৎপাদের ঘনমাত্রা বা আংশিক চাপ শূন্য হতে হয়।

আবার, বিক্রিয়াটিতে সাম্ঞেবক অসীম হতে হলে বিক্রিয়কের ঘন্মাত্রা বা আংশিক চাপ শূন্য হতে হয়, যা কোন উভমূখী বিক্রিয়ায় সাম্যাবস্থার জন্য বাস্তবসন্মত নয় কারণ সাম্যাবস্থায় সন্মুখ ও পশ্চাৎসূখী বিক্রিয়ার হার সমান হতে হয়। তাই সাম্যধ্রুবকের মান শূণ্য বা অসীম হয় না।

১২। পানির আয়নিক গুণফল ব্যাখ্যা কর। [দি. বো. ২১; <u>রা. বো. ১</u>৭] উব্তর: নির্দিষ্ট তাপমাত্রায় বিশুদ্ধ পানিতে হাইড্রোজেন আয়নের ঘনমাত্রা [H<sup>\*</sup>] ও হাইড্রব্রিল আয়নের ঘনমাত্রার [OH] গুণফল ধ্রুবক হয়। এ গুণফলকে পানির আয়নিক গুণফল বলা হয়

 $H_2O \rightleftharpoons H^+ + OH^-$ 

K = [H+] [OH] [H<sub>2</sub>O]

 $K \times [H_2O] = K_w$  ধরলে

 $K_w = [H^+] \times [OH^-]$ 

 $K_w$  কে পানির আয়নিক গুণফল বলা হয়।

১৩। পানি একটি উভধর্মী পদাথ-ব্যাখ্যা কর?

[রা. বো. ২২] উন্তর: পানি একটি উভধর্মী পদার্থ কারণ এটি একইসাথে অস্ত্র ও ক্ষারের সাথে বিক্রিয়া করে यথাক্রমে প্রোটন গ্রহণ ও দান করতে পারে। ফলে পানি ক্ষারীয় ও অশ্লীয় ধর্ম প্রকাশ করে।

कात्रीग्र धर्मः H2Ö: + HC/ === Cl<sup>-</sup> + H3O<sup>+</sup>

**ष**द्वीग्र धर्मः H<sub>2</sub>O + NH<sub>3</sub> = NH<sub>4</sub> + OH⁻

১৪। তাপমাত্রা বৃদ্ধিতে পানির আয়নিক গুণফলের মান বৃদ্ধি পায় কেন? রা. বো. ২৩; অনুরূপ প্রশ্ন: ঢা. বো. ২২

উত্তর: পানির বিয়োজনের বিক্রিয়াটি নিম্নরূপ:

 $2H_2O \Longrightarrow H_3O^+ + OH^- \Delta H = + (ve)$ 

যেহেতু বিক্রিয়াটি একিট তাপহারী বিক্রিয়া ফলে লা-শাতেলিয়ার নীতি অনুসারে বিক্রিয়াটির সাম্যাবস্থায় তাপমাত্রা বৃদ্ধি করলে বিক্রিয়া সামনের দিকে অগ্রসর হবে এবং  $[H_3O^{\dagger}]$  ও  $[OH^{-}]$  এর ঘনমাত্রার পরিমাণ বৃদ্ধি পাবে। পানির আয়নিক গুণফলের (Kw) সূত্র অনুসারে,  $[H_3O^+]$  ও  $[OH^-]$  আয়নদ্বয়ের ঘনমাত্রা বৃদ্ধি পেলে আয়নিক গুণফল বৃদ্ধি পাবে।

 $K_w = [H_3O^{\dagger}][OH^{\dagger}]$ 

অতএব তাপমাত্রা বৃদ্ধিতে পানির আয়নিক গুণফলের মান বৃদ্ধি পায়।

১৫। পানির আয়নিক গুণফল থেকে কীরূপে pH স্কেল তৈরি করা হয়? মি. বো. ২২

উত্তরঃ যেহেতু 25°C তাপমাত্রায় পানির আয়নিক গুণফল 10<sup>-14</sup> হয়।

সূতরাং, K<sub>w</sub> = [H<sub>3</sub>O<sup>+</sup>] [OH<sup>-</sup>] = 10<sup>-14</sup>

 $\Rightarrow \log([H_3O^+][OH^-]) = \log 10^{-14}$ 

 $\Rightarrow \log[H_3O^+] + \log[OH^-] = -14$ 

 $\Rightarrow$  - log [H<sub>3</sub>O<sup>†</sup>] - log[OH<sup>-</sup>] = 14

 $\Rightarrow$  pH + pOH = 14 ...... (i)

উপরোক্ত সমীকরণ কোন লঘু দ্রবণের (max 1M ঘনমাত্রা) জন্য pH বা pOH এর মান বের করলে তা 0 থেকে 14 পরিধিতে সীমাবদ্ধ থাকে, তাই 0 – 14 পর্যন্ত মান নিয়ে pH স্কেল তৈরি হয়।

১৬। 🕻 এর মান বেশি হলে এসিডের শক্তির অধিক ব্যাখ্যা করপ্রদি, বো. ২২: অনুরূপ প্রশ্ন: ম. বো. ২১; কৃ. বো. ২১; চ. বো. ২১; সমিলিত-১৮; দি. বো. ১৭ উত্তর: সাধারণত 1 লিটার জলীয় দ্রবণে উপস্থিত অম্রের মোট মোলসংখ্যা যে ভগ্নাংশ বিয়োজিত অবস্থায় থাকে, তাকে ঐ অম্রের বিয়োজন ধ্রুবক (Ka) वरन।

 $HA + H_2O(I) \rightarrow H_3O^+(aq) + A^-(aq)$ 

সূতরাং,  $K_a = \frac{[H_3O^{\dagger} \times [A^{\dagger}]]}{[H_3O^{\dagger} \times [A^{\dagger}]]}$ 

সবল অম্লের ক্ষেত্রে, জলীয় দ্রবণে এসিড প্রায় সম্পূর্ণ বিয়োজিত হয়ে যায় অর্থাৎ [H3O+] = [HA], এক্ষেত্রে Ka >> 1 হয়। কিন্তু দুর্বল অম্রের ক্ষেত্রে, অধিকাংশ অম্রের অণু অবিয়োজিত হয়ে যায় ফলে [H₃O<sup>+</sup>] << [HA] হয়, ক্ষেত্রে K₃ <<1 হয়। তাই K₃ এর মান বেশি হলে তা শক্তিশালী এসিড নির্দেশ করে।

১৭। Al<sub>2</sub>O<sub>3</sub> এর অমুত 6 বলতে কী বোঝ?

উত্তর: কোন ধাতব অক্সাইড বা ক্ষারক যত মোল একটি হাইড্রোজেন বিশিষ্ট অমুকে প্রশমিত করতে পারে, তা দ্বারা তার অমুত্ব নির্বারিত হয়। এখন, Al2O3 কে এক ক্ষারীয় অম্ল HCl এর সাথে বিক্রিয়া করে পাই:

 $Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + H_2O$ 

সুতরাং উপরের সমতাকৃত বিক্রিয়া থেকে প্রতীয়মান যে, 1 mol  $Al_2O_3$ , 6 mol HCl এর সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে। তাই Al<sub>2</sub>O<sub>3</sub> এর অম্লত্ব 6।

১৮। HF ও HCI এর মধ্যে কোনটি তীব্র এসিড? ব্যাখ্যা কর।

কু. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২৩; ম. বো. ২৩] উত্তরঃ যে এসিডের জলীয় দ্রবণে আয়নিত হয়ে H<sup>+</sup> দান করার প্রবণতা বেশি, সেই এসিড তত বেশি তীব্র। HF ও HC/ এর মধ্যে HF এ হাইড্রোজেন ও ফ্লোরিনের মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য ( $\Delta E_N =$ 4.1 - 2.1 = 1.9) অনেক বেশি হওয়ার H - F বন্ধনে ডাইপোল সৃষ্টি करत, या जनीय प्रवर्ण পानित সাথে হাইড্রোজেন বন্ধন গঠন করে। ফলে HF জলীয় দ্রবণে স্বল্প আয়নিত থাকে। কিন্তু HCl এর তড়িং ঝণাত্মকতার পার্থক্য ( $\Delta E_N = 3 - 2.1 = 0.9$ ) অপেক্ষাকৃত কম হওয়ায় পানির সাথে হাইড্রোজনে বন্ধন গঠন করে না এবং আয়নিত অবস্থায় থাকতে পারে। তাই অমুদ্বয়ের মধ্যে HCl তুলনামূলকভাবে তীব্র।

SAL TANO & R. BO. 102 MAIL SALES AREAS WELL

১৯। HNO3 ও H3PO4 এর মধ্যে কোনটি শক্তিশালী এসিড? ব্যাখ্যা কর। বি. বো. ২৩

উত্তর: অক্সো-এসিডসমৃহের তীব্রতা কেন্দ্রীয় পরমাণুর জারণ সংখ্যা ও আকারের উপর নির্জর করে। কেন্দ্রীয় পরমাণুর জারণসংখ্যা যত বেশি. ঐ এসিডের তীব্রতা তত বেশি। কিন্তু কেন্দ্রীয় পরমাণুর জারণসংখ্যা সমান হলে, যে এসিডের কেন্দ্রীয় মৌলের আকার ছোট তার তীব্রতা বেশি হয়। এখন HNO<sub>3</sub> ও H<sub>3</sub>PO<sub>4</sub> এসিডে উভয়ন্দেত্রে কেন্দ্রীয় পরমাণুর জারণ সংখ্যা সমান (+ 5)। কিন্তু P এর তুলনায় N এর আকার ছোট হওয়ায়, HNO<sub>3</sub> এসিড H<sub>3</sub>PO<sub>4</sub> অপেক্ষা অধিক শক্তিশালী।

২০। CuSO4 এর জলীয় দ্রবদ অমুধর্মী কেনা ব্যাখ্যা কর। । যে. বো. ২৩। উত্তর: CuSO4 মূলত দুর্বল ক্ষারক Cu(OH)2 ও সবল অমু H2SO4 এর লবণ। সাধারণত যেসব লবণ দুর্বল ক্ষারক এবং সবল অমু থেকে উৎপন্ন হয়, তারা জলীয় দ্রবণে আর্দ্র বিশ্লেষিত হয়ে অম্লীয় দ্রবণ উৎপন্ন করে। জলীয় দ্রবণে CuSO4 প্রথমে আয়নে বিভক্ত হয়। পরবর্তিতে Cu²+ আয়ন পানির সাথে বিক্রিয়া করে হাইড্রোনিয়াম আয়ন (H3O+) বৃদ্ধি করে, ফলে অমুতু বৃদ্ধি পায়।

$$CuSO_4 + H_2O \rightarrow Cu^{2+}(aq) + SO_4^{2-}(aq)$$
  
 $Cu^{2+}(aq) + 4H_2O(I) \rightleftharpoons Cu(OH)_2(aq) + 2H_3O^{+}(aq)$ 

২১। ফরমিক এসিডের  $K_a=1.8\times 10^{-4}$  বলতে কী বোঝ? বি. বো. ২১। উত্তর: ফরমিক এসিড (HCOOH) এর  $K_a=1.8\times 10^{-4}$  বলতে বোঝায় প্রতি লিটার জলীয় দ্রবণে উপস্থিত এসিডটির মোট মোল সংখ্যার মধ্যে  $1.8\times 10^{-4}$  অংশ বিয়োজিত অবস্থায় থাকে।

২২। H<sub>3</sub>PO<sub>3</sub> ও H<sub>3</sub>PO<sub>2</sub> এর মধ্যে কোনটি অধিক অশ্লীর? ব্যাখ্যা কর।

উত্তর: অক্সো-এসিডসমূহের তীব্রতা এসিডসমূহের কেন্দ্রীয় পরমাণুর জারণ সংখ্যার উপর নির্ভর করে। যার জারণমান যত কম সেটি তত দুর্বল এসিড। এখানে  $H_3PO_3$  ও  $H_3PO_2$  এর মধ্যে  $H_3PO_3$  এর কেন্দ্রীয় পরমাণু (P) এর জারণমান + 3 ও  $H_3PO_2$  এ জারণ মান + 1 ।  $H_3PO_3$  এর কেন্দ্রীয় পরমাণুর জারণমান  $H_3PO_2$  অপেক্ষা বেশি। সূতরাং  $H_3PO_3$  এর তীব্রতা  $H_3PO_2$  অপেক্ষা বেশি।

২৩। HOCl একটি এসিড ব্যাখ্যা কর। 
তি বো. ১৭ উত্তর: ব্রনস্টেড লাউরির মতবাদ অনুসারে যে যৌগ বা আয়ন জলীয় দ্রবণে প্রোটন দান করতে পারে, তাকে অস্ত্র বলে। HOCl একটি এসিড কারণ এটি জলীয় দ্রবণে আয়নিত হয়ে প্রোটন দান করে।

 $HOCl = H^{+} + ClO^{-}$  যৌগটির নাম হাইপোক্রোরাস এসিড।

২৪।  $Na_2CO_3$  এর জলীয় দ্রবণ ক্ষারধর্মী কেন? ব্যাখ্যা কর। বি. বো. ২৩। উত্তর:  $Na_2CO_3$  মূলত সবল ক্ষার NaOH ও দুর্বল অমু  $H_2CO_3$  এর প্রশমন বিক্রিয়ার উৎপন্ন লবণ। সাধারণত যে লবণ সবল ক্ষারক ও দুর্বল অমু থেকে উৎপন্ন, সেটি জলীয় দ্রবণে আর্দ্রবিশ্লেষিত হয়ে ক্ষারীয় দ্রবণ উৎপন্ন করে।  $Na_2CO_3$  জলীয় দ্রবণে আয়নে বিভক্ত হয়ে পড়ে। পরবর্তীতে উৎপন্ন আয়ন  $CO_3^2$  পানির সাথে বিক্রিয়া করে  $OH^-$  এর পরিমাণ বৃদ্ধি করে, ফলে দ্রবণের ক্ষারকতা বৃদ্ধি পায়।  $Na_2CO_3(s) + H_2O \rightarrow 2Na^+(aq) + CO_3^2(aq)$   $CO_3^2(aq) + H_2O(I) \rightarrow HCO_3^2(aq) + OH^-(aq)$   $HCO_3^2(aq) + H_2O(I) \rightarrow H_2CO_3(aq) + OH^-(aq)$ 

উত্তর: প্রতি লিটার জলীয় দ্রবণে কোন অম্লের মোট মোলসংখ্যার যত মোল বিয়োজিত অবস্থায় থাকে, তাকে ঐ অম্লের বিয়োজন ধ্রুবক  $(K_a)$  বলে। যে অম্লের  $K_a$  যত বেশি, সেটি তত বেশি শক্তিশালী।  $H_2SO_4$  জলীয় দ্রবণে প্রায় সম্পূর্ণরূপে (99 – 100%) বিয়োজিত থাকে, ফলে এর  $K_a$  এর মান বেশি থাকে। কিম্ব  $CH_3COOH$  জলীয় দ্রবণে খুব অল্প বিয়োজিত হয়, ফলে এর  $K_a$  এর মান খুব কম থাকে। উদাহরণসক্রপ: 0.1M  $CH_3COOH$  দ্রবণের  $K_a = 1.8 \times 10^5$ । তাই  $H_2SO_4$  তীব্র হলেও  $CH_1COOH$  দুর্বল হয়।

২৬। কার্বনেট (CO1 ) একটি ক্ষারক- ব্যাখ্যা কর।

উত্তর: ব্রনস্টেড লাউরীর তত্ত্ব অনুযায়ী যেসব যৌগ বা আয়ন অস্ত্র হতে প্রোটন গ্রহণ করে তাদেরকে ক্ষারক বলে। যেহেতু  ${
m CO}_3^{2^-}$  আয়ন নিম্নরূপে দুইটি প্রোটন  $({
m H}^+)$  গ্রহণ করে অস্ত্র তৈরি করে তাই  ${
m CO}_3^{2^-}$  একটি ক্ষারক।

$$CO_3^{2-} + 2H^+ \rightarrow H_2CO_3$$

২৭। HSO ু আয়নটি উভধর্মী কেন? ব্যাখ্যা কর।

[য. বো. ২৩]

উন্তরঃ ব্রনস্টেড লাউরীর মতবাদ অনুসারে, অসু হল এমন একটি যৌগ বা আয়ন যা অন্য পদার্থকে প্রোটন দান করতে পারে এবং ক্ষারক হল এমন একটি যৌগ বা আয়ন যা অসু হতে প্রোটন গ্রহণ করতে পারে।  $HSO_4^7$  একটি উভধর্মী আয়ন, কারণ এটি  $NH_3$  ও HCl কে যথাক্রমে প্রোটন দান ও গ্রহণ করতে পারে:

অন্তর্থম: 
$$HSO_4^- + \ddot{N}H_3 = NH_4^+ + SO_4^{2-}$$
  
ক্ষার্থম:  $HSO_4^- + HCI = H_2SO_4 + CI$ 

২৮। NH4Cl এর জলীয় দ্রবণের pH < 7 কেন?

মি. বো. ২৩

উত্তর: NH<sub>4</sub>Cl হল দুর্বল ক্ষার (NH<sub>4</sub>OH) ও সবল অম্ল(HCl) এর একটি লবণ। সাধারণত যেসব লবণ সবল অম্ল ও দুর্বল ক্ষার থেকে উৎপন্ন হয়, তারা জলীয় দ্রবণে আর্দ্রবিশ্লেষিত হয়ে অম্লীয় দ্রবণ উৎপন্ন করে। এখন, NH<sub>4</sub>Cl জলীয় দ্রবণে NH<sub>4</sub>OH ও NH<sub>4</sub>OH ও HCl এ বিভক্ত হয়। উৎপন্ন NH<sub>4</sub>OH আংশিক বিয়োজিত হয়ে কম OH প্রদান করলেও HCl শক্তিশালী হওয়ায় এটি জলীয় দ্রবণে বেশি H<sup>+</sup>প্রদান করে। তাই দ্রবণটি অম্লীয় হয় এবং pH < 7 হয়।

$$NH_4Cl(aq) + H_2O \longrightarrow NH_4OH(aq) + HCl(aq)$$
 $NH_4OH(aq) \xrightarrow{H_2O} NH_4^+ + OH^-(aq)$  (আংশিক)

$$HCI(aq) \xrightarrow{H_2O} H^+(aq) + CI^-(aq)$$
 (সম্পূর্ণ)

২৯। MgO অপেক্ষা Na2O অধিক ক্ষারীয় কেন? ব্যাখ্যা কর। [य. বো. ১৭] উত্তর: Na2O ও MgO যৌগদ্বরে Na ও Mg এর চার্জ যথাক্রমে + 1 ও + 2। ফলে ফাযানের নীতি অনুসারে MgO এর চেয়ে Na2O বেশি আয়নিক। Na গ্রুপ-I এ ক্ষারধাতুর অন্তর্ভুক্ত এবং Mg গ্রুপ-II এ মৃৎক্ষার ধাতুসমূহের অর্ভভুক্ত। সাধারণত যে মৌল যত বেশি ধাতব বা সক্রিয় তার অক্সাইড তত বেশি ক্ষারীয় হয়। তাই যেহেতু Mg অপেক্ষা Na অধিক সক্রিয় ও ধাতব প্রকৃতির তাই MgO এর চেয়ে Na2O বেশি ক্ষারীয়।

ব্যাসার্যনিক পরিবর্ত্তন > ACS/ FRB Compact Suggestion Book....................১২৯

🕏০। NH4OH ও NaOH এর মধ্যে কোনটি শক্তিশালী ক্ষার? ব্যাখ্যা কর। ৩৪। অসওয়ান্ড-লঘুকরণ সূত্রটি গাণিতিক রূপসহ লেখ। 👺 জরঃ প্রতি লিটার জলীয় দ্রবণে উপস্থিত কোন কানকের মেটি মোপ সংখ্যার ट्रम भित्रभाग निर्पाक्षिक अवस्थाता पारक कारक से कातरकत निरामक्रम ধ্রুৰক (K<sub>b</sub>) বলে। যে ক্ষারের বিয়োজন ধ্রুবক থক্ত বেশি, সে ক্ষার ভক্ত विन जिक्स । धर्मन, NH,OH धनीय प्रवर्ग भूव अब्र (बारा 5%) विद्याञ्चिष्ट एम फरन अत Kb कम एम (1.79 × 10<sup>-5</sup>)। अनतिन्दिक NaOH बाग मञ्जूर्वज्ञरण विरम्राष्ट्रिक बरम बाग, जॉर्ड धर्षि NH4OH হ্মপেক্ষা স্থীব্র ক্ষারক।

😊 🕽 । pH श्रीमा 0 – 14 ध्रता रग्न कम? व्याध्या कत ।

😇 🕃 द्वार ख़नीय प्रवर्णत अप्रुङ्ग वा काव्रक्न निर्मरात উদ्मर्सा प्रवर्ण H 🕏 उ OH व्याराज्यत त्यांनात पगमायात नगिष्ठिक स्ववाञ्चक नगातिनगरे pH । शाक्षात्रपञ्च रकान ख़ुनरण H र् जारारनत घनभावा 1 M यत्र रानि M এর বেশি হলে pH এর মান 14 এর থেকে বেশি হয়ে যায়, কারণ यटक्रा H े अत्र धनमाया 10<sup>-14</sup> M अत्र कम रस, करन छेखा टक्राय ব্দম্ল বা ক্ষারের ঘনমাত্রা ধুব বেশি হয়। কিন্তু যেহেতু সাভাবিক অবস্থায় স্সামরা অপেক্ষাকৃত লঘুদ্রবণ নিয়ে কাজ করি, তাই pH ক্ষেলটি কেবল लपुप्तवरंपत्र एक्टवरे व्ययाका रहा। जरे pH त्कलात नीमा 0 व्यव्क 14 थता दय।

🖘 । 25°C-५ विषक्ष शानित्र pH धत्र गांग ७ रग्न कन? कि. ला. २२१ श्रमुख्रभ बद्भः म, त्वा. २); क्, त्वा. २); ह. त्वा. २); मिषिनिष्ठ-५৮; नि. त्वा. ५२। 👺  $oldsymbol{e}$ র বিয়োজনে, এক অণু পানি থেকে 1টি  $oldsymbol{\mathrm{H}_{3}}\mathrm{O}^{+}$  ও 1টি

OH- পाওন্না यात्र। कल्न तिरुद्ध পानिए जाएनत घनमात्रा नमान पारक। ভাছাড়া 25°C ডাপমাত্রায় পানির আয়নিক গুণকল (K,,) কে  $10^{-1}$ थता হয়।

সূত্রাং,

 $2H_2O \rightleftharpoons H_3O^+ + OH^-$ 

 $[H_3O^1] = [OH^-]$ 

 $K_{W} = [H_{3}O'][OH] = 10^{-14}$ 

 $\Rightarrow [H_3O^1]^2 = 10^{-14}$ 

 $\Rightarrow [H_3O^{\dagger}] = 10^{-7}$ 

এখানে, pH = – log [H<sub>3</sub>O<sup>†</sup>]  $= -\log[10^{-7}]$ 

প্রাক্তএব বিশুদ্ধ পানিতে pH এর মান 7।

 $\mathfrak{S}$ । দ্রবণের  $\mathbf{H}_3\mathrm{O}^+$  আয়নের ঘনমাত্রা  $1.0~\mathrm{M}$  এর বেশি হলে  $\mathrm{pH}$  কেল ভাকার্যকর হয় কেন? [রা. বো. ২২]

উত্তর: পাভাবিক অবস্থায় বিভিন্ন ক্ষেত্রে আমরা সম্ম ঘনমাত্রার অচু বা ক্ষারক बारवात कतारा, pH अत धातनाि ७५ यद्य घनमाजात प्रवरनत जना लाट्याका त्यथाचा pH त्यत्यात भतिथि 0 थ्याक 14 भर्यस्र । मश्कानुमातत,  $pH = -\log[H^{+}]$  হওয়ায়, কোন দ্রবণে  $H_{1}O^{+}$  বা  $H^{+}$  এর ঘনমাত্রা 1M হলে pH এর মান শুন্য হয়।  $H_1O^+$  এর ঘন্যাত্রা 1M থেকে কম হঙ্গে, pH এর মান ঝণাতাক হয়, pH = - log(0.1) = 1। আবার H3O' अत धनमाजा 1M (थटक दिश एटल pH अत मान 0 अत कम ता भाषाञ्चक रूरा याग्र, pH = - log2 = - 0.3। य्यर्क् pH स्करनत श्रतिधि () (श्रुटकः 14 श्रयंख, जाँरे H<sub>3</sub>O\* धन्न घनमाजा 1M धन स्थरक বেশি হলে মেলটি অকার্যকর হয়।

উম্ভরঃ প্রসম্ভয়াচ্ছের লঘুকরণ সূত্র মতে, লঘু দ্রবণে মৃদু তড়িৎ বিশ্লেষ্য যেমন घृष् अष्ट वा कारतत विस्त्राद्धन याजा बै अष्ट वा क्वास्त्रब्र प्रवरणत घनयाजात्र বর্গমৃচ্ছের ব্যাস্তানুপাতিক। এবন, কোন অচ্চ বা ক্ষারের বিয়োজন মাত্রা  $\alpha$  এবং ঘনমাত্রা C হঙ্গে, অসওয়ান্ডের গদুকরণ সূত্র জনুযায়ী, lpha  $\propto \frac{1}{\sqrt{C}}$ 

 $\Rightarrow \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{K_b}{C}}$ , যেখানে  $K_a$  ও  $K_b$  যথাক্রনে স্বস্তু বা

৩৫।সম্ভীয় বাফার দ্রবগ তৈরিতে দুর্বল এসিভ ব্যবহারের প্রয়োজনীয়তা

উন্তর: অশ্রীয় বাফার প্রস্তুত করার জন্য একটি অস্ট্রের নির্দিষ্ট ঘনমাত্রার দ্রবণের गायে ঐ जय्पद व्यक्त रेजित नवन मिथिज कता হয়। कल उँ९भद्व वास्मात <u>ज</u>ुवरण ঐ अप्न आर्शनक आरानिङ रहा नामा।वञ्चा नृष्टि करत। এ সাম্যাবস্থার জন্য বাফার দ্রবণে সামান্য এসিড বা ক্ষার যোগ করলে সাম্যাবস্থাটি বামে বা ছাদে স্থানাস্তরিত হয়ে pH এর মান অপরিবর্তিত রাথে। কিন্তু দুর্বল অম্রের পরিবর্তে সবল অম্র ব্যবহার করলে অধিক विज्ञाबरनत करन উक्ट সাম্যাবস্থা সৃष्टि रग्न गा এবং pH ও স্থির রাখা याद्र না। তাই, অশ্লীয় বাফার প্রস্তুত করতে দুর্বল অম্ল ব্যবহার করা হয়।

৩৬। "রক্ত একটি বাফার দ্রবণ" ব্যাখ্যা কর?

মি. বো. ২৩]

উछतः तटक िन धतापत वाकात भाउता यात्रा, यथाकारः

(i) वार्कार्वतां कार्वनिक अनिष्ठ वाकात्र

(ii) कनकि वाकात

(iii) প্রোটিন বাফার।

कल थावात्वव प्राथास्य वा जना त्यत्कान भाषास्य भन्नीत्र नामाना जप्न वा শ্চার প্রবেশ করলে রক্তের বাফার দ্রবণ সমূহ pH পরিবর্তনকে প্রশমিত করে আমাদের সৃস্থ রাথে।

উদাহরনসর্মপ: বাইকার্বনেট বাফারের ক্ষেত্রে রক্তে কোন অস্তুজাতীয় দ্রবণ শোযিত হলে তা বাইকার্বনেট আয়ন দ্বারা নিম্নরূপ প্রশমিত হয়ঃ

 $HCO_1(aq) + H^{\dagger}(aq) \longrightarrow H_2CO_3(aq)$ 

 $H_2CO_3(aq) \longrightarrow H_2O + CO_2\uparrow$ 

অপরদিকে ক্ষারীয় দ্রবণ শোষিত হলে:

 $OH^{-}(aq) + H_2CO_3(aq) \longrightarrow HCO_3(aq) + H_2O(l)$ 

তাই রক্ত একটি বাফার দ্রবণ।

৩৭।রক্তে  ${
m CO_2}$  ও  ${
m HCO_3}$  এর আনুপাতিক ভারসাম্য রক্ষার কার্বনেট বাফারের গুরুত্ব ব্যাখ্যা কর। [কু. বো. ১৯]

উত্তর: রক্তে  ${
m CO_2}$  ও  ${
m HCO}_3^-$  এর আনুপাতিক ভারসাম্য রক্ষার কার্বনেট বাফার (HCO - H2CO3) অনেক গুরুত্বপূর্ণ। কারণ রক্তে কোন অম্রজাতীয় দ্রবণ শোষিত হলে তা বাইকার্বনেট আয়ন দ্বারা প্রশমিত হয়।

 $HCO_1(aq) + H^{\dagger}(aq) \rightarrow H_2CO_3(aq)$ 

উক্ত  $\mathrm{H_{2}CO_{3}}$  বিয়োজিত হয়ে পানি ও  $\mathrm{CO_{2}}$  উৎপন্ন করে। তাই  $\mathrm{H^{1}}$ वत चन्यावा वार्ष् मा।

অপরদিকে ক্ষারীয় দ্রবণ শোষিত হলে, তা  $H_2CO_3$  এর সাথে বিক্রিয়া করে নিমুরূপে প্রশমিত হয়:

 $OH^- + H_2CO_3 \rightarrow HCO_1 + H_2O$ 

णारे OH" এর ঘনমাআও বৃদ্ধি পায়না। ফলে CO₂ ও HCO¸ এর আনুপাতিক ভারসাম্য বজায় থাকে।

# HSC পরীক্ষার্থীদের জন্য বাছাইকৃত বহুনির্বাচনি প্রশ্নোত্তর

## ত্রিন কেমিন্টি ও রাসায়নিক বিক্রিয়া

উভমুখী বিক্রিয়ার বৈশিষ্ট্য হলো~

াল. বো. ২৩

- বিক্রিয়াটি শেষ হয়
- উভয়দিকের বিক্রিয়ার হার সমান হয় না
- প্রি সাম্যাবস্থায় আসার প্রবর্ণতা
- 📵 প্রভাবকের ভূমিকা আছে

ম্বন কেমিস্ট্রিতে অধিক তাৎপর্যপূর্ণ নীতি কোনটি?

[ঢা. বো. ২৩]

- ক) প্রভাবকের ব্যবহার
- নিরাপদ দ্রাবক ব্যবহার
- প্রত্যান্তম এটম ইকোনমি
- पूर्योग প্রতিরোধ

উত্তর: 🕅 সর্বোত্তম এটম ইকোনমি

- ৩। CH3COOH (aq) + NH4OH (aq) → উৎপাদ (X) + H<sub>2</sub>O(I); বিক্রিয়াটির উৎপাদের (X) প্রকৃতি কী? কু. বো. ২৩]
  - ক) অমুধর্মী
- (ঝ) ক্ষারধর্মী
- ল) উভধর্মী
- (च) নিরপেক্ষ

উত্তর: 🕲 নিরপেক্ষ

ব্যাখ্যা: CH3COOH (aq) + NH4OH (aq) →

 $CH_3COONH_4(X) + H_2O(I)$ 

দুর্বল এসিড ও দুর্বল ক্ষারকের বিক্রিয়ায় উৎপত্ন লবণ নিরপেক্ষ হয়। তাই (X) নিরপেক্ষ।

৪। খ্রিন কেমেস্ট্রির সূচনা কত সালে হয়েছিল?

- **1991**
- **3** 1990
- **1891**
- **1890**

উত্তর: 🚳 1991

- ৫। সবুজ রসায়নের য়ৄলনীতি কয়ি? त्रा. त्वा. २२; य. त्वा. २२)
  - 4 10
- (4) 12
- **14**
- **16**

উত্তর: 🕲 12

৬। সবুজ রসায়নে-

বি. বো. ২২

- (i) দ্রাবক হিসাবে CCI4 ব্যবহৃত হয়
- (ii) বর্জ্য উৎপাদন সর্বনিম্ন রাখা হয়
- (iii) বিষঞ্জিয়ামুক্ত দ্রব্যাদি ব্যবহৃত হয়
- নিচের কোনটি সঠিক?
- 爾 i, ii
- (1) ii, iii
- 1, iii
- (1) i, ii, iii

উত্তর: 🕲 ii, iii

ব্যাখ্যা: CCl4 একটি উদ্বায়ী পদার্থ। এটি বায়ুতে ছড়িয়ে পড়ে এবং নিঃশ্বাসের সাথে শরীর প্রবেশ করে কিডনি ক্ষতিগ্রস্থ করে। ফলে CCI4 क जावक शिरमत वावशत कता श्र ना।

- ...... ACS, > Chemistry 1 Paper Chapter 4 मनुष्ण त्रमाग्राज्नत्र व्यक्षक्क । मि. त्वा. ०२। वमुत्रन वर्दाः म. त्वा. ३७। मि. त्वा. ३७।
- (I) কক্ষ তাপমাত্রা ও চাপে বিক্রিয়া সংঘটনের চেষ্টা করা
- (II) নবায়নযোগ্য কাঁচামাল কম ব্যবহার করা
- (III) মাধ্যমিক গৌপ উৎপাদহাস করা

নিচের কোনটি সঠিক?

- @ i, ii
- (1) i, iii
- @ ii, iii
- (T) i, ii, iii

উত্তর: 何 ii, iii

 $\forall I \quad CH_3 - CH_2 - OH + CH_3 - COOH \longrightarrow$ 

 $CH_3 - COO - CH_2 - CH_3 + H_2O$ 

যৌগটির এটম ইকনমি কড? চি. বো. ১৯; অনুরূপ প্রশ্ন রা. বো. ১৬; য. বো. ১৬ট

- **3** 65%
- **@** 78%
- **(9)** 83%
- (T) 100%

উত্তর: গে ৪3%

ব্যাখ্যা: এখানে, CH<sub>3</sub> – CH<sub>2</sub> – OH এর ভর

$$= 12 + 3 + 12 + 2 + 16 + 1$$

CH<sub>3</sub> - COOH এর ভর = 12 + 3 + 12 + (16 × 2) + 1

CH<sub>3</sub> - COO - CH<sub>2</sub> - CH<sub>3</sub> এর ভর

কাঞ্চ্চিত উৎপাদ CH3 – COO – CH2 – CH3।

. এটম ইকোনমি

CH3 - COO - CH2 - CH3 এর ভর

= CH<sub>3</sub> - CH<sub>2</sub> - OH এর ভর + CH<sub>3</sub> - COOH এর ভর × 100%

 $= \frac{88}{46+60} \times 100\%$ 

= 83%

বদ্ধপাত্রে CaCO3 নিম্নরূপে বিয়োজিত হয়-

 $CaCO_3(s) \stackrel{\Delta}{\rightleftharpoons} CaO(s) + CO_2(s)$ 

- ১। বিক্রিয়াটিকে একমুখী করতে হলে- ।দি. বো. ১৬; অনুরূপ প্রশ্ন: চ. বো. ২২]
  - (i) পাত্রের ঢাকনা খুলে দিতে হবে
  - (ii) উৎপাদকে কস্টিক সোডা দ্রবণে চালনা করতে হবে
  - (iii) প্রভাবক ব্যবহার করতে হবে

নিচের কোনটি সঠিক?

- @ i gii
- iii vii
- (A) i & iii
- (F) i, ii v iii

উত্তর: 🚳 i ও ii

ব্যাখ্যাঃ উপরোজ বিক্রিয়াটিকে একমুখী করতে পাত্রের ঢাকনা খুলে দিতে হবে। ফলে CO2 উড়ে যাবে এবং পশ্চাৎমুখী বিক্রিয়া করে CaCO3 উৎপন্ন করতে পারবে না।

তাছাড়া, উৎপাদকে কস্টিক সোডা চালনা করলে তা CO2 এর সাথে বিক্রিয়া করে NaHCO3 এর অদ্রবণীয় অধঃক্ষেপ তৈরি করে। ফলে विकियाणि धकमुत्री रय ।

রাসায়নিক পরিবর্তন > ১৫১/ FRB Compact Suggestion Book..... ১০। তাপহারী বিক্রিয়া হলো-দি. বো. ২৩৷ অনুরূপ প্রশ্না ঢা. বো. ২৩ ব্যাখ্যা: N<sub>2</sub> + O<sub>2</sub> = 2NO; ∆H = 180.75 kJ (i) X + Y + তাপ → উৎপাদ অপরদিকে,  $N_2 + 3H_2 = 2NH_3$ ;  $\Delta H = -92 \text{ kJ}$ S ଓ O2 अत विकिशा अवर C2H6 ଓ O2 अत विकिशा महन विकिशा। (ii)  $R + Z \longrightarrow$  উৎপাদ;  $\Delta H = + ve$ তাই বিক্রিয়াগুলো তাপোৎপাদী। (iii) L + T ----> উৎপাদ + তাপ নিচের কোনটি সঠিক? N<sub>2</sub> + O<sub>2</sub> = 2NO বিক্রিয়াটি তাপহারী। কারণ ΔΗ ধনাত্মক। ii vi 🖈 iii e ii (P) ১৬। কোনটি প্রভাবক বিষ? [मि. ला. ১b; मि. ला. ১b] (9) i v iii (1) i, ii v iii (1) A/2O1 (4) As<sub>2</sub>O<sub>1</sub> উত্তর: ক) i ও ii Ni 1 MnO<sub>2</sub> ব্যাখ্যা: তাপহারী বিক্রিয়াতে তাপ গৃহীত হয় এবং তাপহারী বিক্রিয়ার AH উত্তর: 📵 As<sub>2</sub>O<sub>3</sub> ধনাত্মক। ব্যাখ্যা: যে সব পদার্থ প্রভাবকের প্রভাবন ক্ষমতা হ্রাস বা বন্ধ করে দেয় তাদেরকে প্রভাবক বিষ বলে। সাধারণত ধূলাবালি, সালফার চুর্ণ,  $CH_2 = CH - CH_2CI + H_2O \rightarrow CH_2 = CH - CH_2OH +$ As2O3 थङ्ि थङावक विष ट्रिंग्स्व काङ करत । HCI বিক্রিয়া  $CH_2 = CH - CH_2OH$  উৎপাদ এবং HCI বর্জ্য। বিক্রিয়াটির 'E' ফ্যান্টর কত? ১৭। अञ्जीय KMnO4 এবং अक्रानिक এসিড দ্রবণের রিডক্স বিক্রিয়ায় (a) 0.36 **@** 0.58 কোনটি অটো প্রভাবক হিসাবে কাজ করে? ব্রা, বো, ১৭] (A) 0.63 (T) 0.72 <sup>3</sup> Mn<sup>2+</sup> উন্তর: 何 0.63 (9) CrO (1) K ১২ ৷ নিচের কোনটি একমুখী বিক্রিয়ার শর্ত? রো. বো. ২১) উত্তর: ③ Mn<sup>2+</sup> বিক্রিয়া বদ্ধ পাত্রে সংঘটিত হওয়া ১৮। হেবার পদ্ধতিতে NH3 উৎপাদনকালে নীচের কোনটি প্রভাবক হিসেবে অধঃক্ষেপ সংঘটিত হওয়া ব্যবহৃত হয়? কু. বো. ১৭; অনুরূপ প্রশ্ন: ম. বো. ২১] গ) বিক্রিয়ার অসম্পর্ণতা MO MO (1) Fe বিক্রিয়া সাম্যাবস্থায় বিরাজ করা 1 Ni (T) Cr উত্তর: খি) অধঃক্ষেপ সংঘটিত হওয়া উত্তর: (ব) Fe ১৩। কোন পরিবর্তনটি তাপোৎপাদী? [मि. त्वा. ১৫]  $\lambda b$ । স্পর্শ পদ্ধতিতে  $m H_2SO_4$  উৎপাদনের জন্য কোন প্রভাবক ব্যবহার করা 3  $H_2O(I) \rightarrow H_2O(g)$ [ঢা. বো. ১৬]  $\mathfrak{T} H_2O(s) \rightarrow H_2O(l)$  $\P$   $H_2O(s) \rightarrow H_2O(g)$ Fe Ni (1) উত্তর: ③ H<sub>2</sub>O(g) → H<sub>2</sub>O(l) 1 Al2O3 (1) V2O5 উত্তর: খি V2O5 প্রভাবক ও এর ব্যবহার ১৪। অনুঘটক-রাসায়নিক সাম্যাবস্থা ও লা-শাতেলিয়ারের নীতি [দি. বো. ২১] (i) বিক্রিয়ার গতি বাড়ায় ২০। রাসায়নিক সাম্যাবস্থার শর্ত নয় কোনটি?(ব. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২২) (ii) বিক্রিয়ার গতি কমায় কাম্যের স্থায়িত্ব উভয় দিকের সৢগয়য়ৢতা (iii) দ্রুততর সাম্যাবস্থায় নিয়ে আসে গ্র বিক্রিয়ার সম্পূর্ণতা থি প্রভাবকের ভূমিকাহীনতা নিচের কোনটি সঠিক? উত্তর: 🕦 বিক্রিয়ার সম্পূর্ণতা (a) i v ii (a) ii & iii ব্যাখ্যা: রাসায়নিক সাম্যাবস্থার শর্ত: ரு i ଓ iii (F) i, ii & iii ১. সাম্যের স্থায়িত উত্তর: 🕲 i, ii ও iii ২. উভয়দিক থেকে সুগম্যতা ব্যাখ্যাঃ রাসায়নিক বিক্রিয়ায় প্রভাবক ব্যবহারের ফলে বিক্রিয়ার সক্রিয়ন ৩. বিক্রিয়ার অসম্পূর্ণতা শক্তি হাস/বৃদ্ধি করা যায়, ফলে বিক্রিয়ার গতিবেগ বৃদ্ধি/হাস পায়। ৪. প্রভাবকের ভূমিকাহীনতা ১৫। কোন বিক্রিয়ায় তাপ শোষিত হয়? [ব. বো. ১৯] ২১। রাসায়নিক সাম্যাবস্থার বৈশিষ্ট্য কোনটি? 9 N<sub>2</sub> + 3H<sub>2</sub>  $\rightarrow$  2 NH<sub>3</sub> সি. বো. ২৩; অনুরূপ প্রশ্ন: কু. বো. ২১; ঢা. বো. ১৬] 3  $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$  ক) বিক্রিয়ার সমাপ্তি (ঝ) বিক্রিয়ার একমুখীতা  $\mathfrak{P} S + O_2 \rightarrow SO_2$ গ্রে প্রভাবকের প্রয়োজনীয়তা ত্ব সাম্যের স্থিতিশীলতা 

উত্তর: খি N<sub>2</sub> + O<sub>2</sub> → 2 NO

উত্তর: 🕲 সাম্যের স্থিতিশীলতা

ব্যাখ্যা: রাসায়নিক সাম্যাবস্থার বৈশিষ্ট্য:

- ১. উভমুখিতা
- ২. বিত্রিনাার অসম্পূর্ণতা
- ৩. সাম্যের স্থিতিশীলতা
- 8. নিয়ামকের প্রভাব
- ৫. অনুঘটকের প্রভাব
- ২২। M₂(g) + D₂(g) = 2MD(g); ΔH = + ve এই বিক্রিয়ায়lai. বো. ২৩। অনুরূপ প্রশ্না ঢা. বো. ২৩, ২২। য. বো. ২২। ম. বো. ২২, ২১। দি. বো. ২১)
  - (i) তাপমাত্রা বৃদ্ধিতে উৎপাদ বৃদ্ধি পায়
  - (II) সাম্য क्षुत्रक K, ७ K, এর মান সমান नয়
  - (III) সাম্যাবস্থার উপর চাপের প্রভাব নেই নিচের কোনটি সঠিক?

@ i e ii

(ii e ii

(ii v i (f)

(1) i, ii (9 iii

উভর: ① i ও iii

ব্যাখ্যাঃ উপরোক্ত বিত্রিন্যাটি তাপহারী হওয়ায় তাপমাত্রা বৃদ্ধিতে বিক্রিয়াটি ভানে সরে যাবে এবং উৎপাদের পরিমাণ বৃদ্ধি পাবে। এবং বিক্রিয়াটিতে উৎপাদ ও বিত্রিনাকের মোলসংখ্যা সমান হওয়ায়  $K_o = K_p$  হবে এবং সাম্যাবস্থায় চাপের কোন প্রভাব থাকবে না।

- $20 \cdot 2AB_2(g) + C_2(g) \Rightarrow 2A(g) + 2B_2(g); \Delta H = -X \text{ kJmol}^{-1}$ বিক্রিন্মাটির-বি. বো. ২৩]
  - (i) চাপ বৃদ্ধি করলে উৎপাদ হ্রাস পাবে
  - (ii) তাপমাত্রা বৃদ্ধি করলে উৎপাদক্রাস পাবে
  - (iii) বিক্রিয়াটির উভয় দিকের সুগম্যতা আছে নিচের কোনটি সঠিক?

(B) i (B)

(ii 8 i

fii e ii 🕝

(1) i, ii v iii

উত্তর: 📵 i, ii ও iii

ব্যাখ্যা: উপরোক্ত বিক্রিয়াটিতে বিক্রিয়কের তুলনায় উৎপাদের মোল সংখ্যা विन करन हान श्राता विकियां विक पा पिरक मत याद ववर উৎপাদের পরিমাণ হ্রাস পাবে। বিক্রিয়াটি তাপোৎপাদী হওয়ায় তাপ প্রয়োগে সাম্যাবস্থা বামে সরে যাবে এবং উৎপাদ হ্রাস পাবে। এছাড়া বিক্রিয়াটিতে সাম্যাবস্থা থাকায় বিক্রিয়াটিতে বিক্রিয়ক ও উৎপাদের উভয় দিকের সুগম্যতা আছে।

- $8 \mid PCI_5(g) \Rightarrow PCI_3(g) + CI_2(g); \Delta H = + 124 \text{ k.Jmol}^{-1}$ বিক্রিয়াটিতে চাপঞাস করলে-[দি. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২১]
  - (i) Cl2 এর পরিমাণ বৃদ্ধি পায়
  - (ii) विकिया ममुषम्षी रय
  - (iii) K<sub>p</sub> এর মান বৃদ্ধি পায়

নিচের কোনটি সঠিক?

i vi

iii e ii

(A) i & iii

iii vii, i

উন্তর: 📵 i ও ii

চাপ হ্রাসে সাম্যাবস্থা ভানে সরে যাবে এবং উৎপাদ বৃদ্ধি পাবে। বিক্রিয়ার K, এর উপর চাপের কোন প্রভাব নেই।

#### Rhombus Publications

...... ACS, > Chemistry 1<sup>st</sup> Paper Chapter-4

२(१ |  $X_2(g) + 3Y_2(g)$  ⇒  $2XY_3(g)$ ;  $\Delta H = -$  ve विकिसािक সাম্যাবস্থায় X2, Y2 व्यवर XY3 वज चनमावा यथाकरम 0.18, 0.56 व्यवर 0.12 molL<sup>-1</sup>। উमीপকে উक्किचिक विक्रियात XY₃ धत्र উৎপাদন বৃদ্ধিতে গৃহীত পদক্ষেপ–

রা. বো. ২৩। অনুরূপ প্রশ্ন: চ. বো. ২৩, ১৬। ম. বো. ২২)

- (I) তাপমাত্রা বাড়াতে হবে
- (II) চাপ বাড়াতে হবে
- (iii) XY3 বিক্রিয়া পাত্র থেকে সরিয়ে দিতে হবে নিচের কোনটি সঠিক?

ii 🕑 i 📵

iii & ii (F)

mi viii

ii vii i

উন্তর: 📵 ii ও iii

নিচের সাম্যাবস্থার চিত্রটি লক্ষ কর এবং ২৬ ও ২৭ নং প্রশ্নের উত্তর দাও:



২৬। সাম্যাবস্থায় নিচের কোনটি সঠিক?

চি. বো. ২২

- প্রভাবকের প্রভাব আছে
- পশ্চাৎমুখী বিক্রিয়ার হার বেশি
- প্রস্থাপমুখী বিক্রিয়ার হার বেশি
- ত্বি কখনো বিক্রিয়া সম্পূর্ণ হয় না
- উত্তর: (ছ) কখনো বিক্রিয়া সম্পূর্ণ হয় না
- এবং বিক্রিয়াটি কখনো সম্পূর্ণরূপে শেষ হয় না।
- ২৭। সাম্যাবস্থায় বিক্রিয়কের ঘনমাত্রা বৃদ্ধি করলে-

চি. বো. ২২; অনুরূপ প্রশ্ন: ঢা. বো. ১৭]

- (i) সাম্যাবস্থার পরিবর্তন ঘটে
- (ii) সাম্যঞ্রবকের মানের কোনো পরিবর্তন ঘটে না
- (iii) সাম্যাবস্থা ডান দিকে সরে যায়

নিচের কোনটি সঠিক?

( i, ii

(1) i, iii

1i, iii

(1) i, ii, iii

উত্তর: (খ i, ii, iii

ব্যাখ্যাঃ সাম্যাবস্থায় ঘনমাত্রা বাড়ালে লা-শাতেলিয়ার নীতি অনুসারে সাম্যাবস্থা ডান দিকে সরে যায় ফলে সাম্যাবস্থার পরিবর্তন ঘটে। সামধ্রুবক তাপমাত্রার উপর নির্ভরশীল।

২৮। নিচের কোন পদ্ধতিটি তাপোৎপাদী?

[দি. বো. ১৯]

ঘনীভবন

(ৰ) বন্ধন বিভাজন

গ) গলন

(ছ) বাষ্পীভবন

উত্তর: 🚳 ঘনীভবন

ব্যাখ্যাঃ বিক্রিয়াটিতে বিক্রিয়কের থেকে উৎপাদের মোলসংখ্যা বেশি, তাই ব্যাখ্যাঃ বন্ধন বিভাজন, গলন ও বাষ্পীভবন সবগুলোতে তাপীয় শোষণ হওয়ায় এরা তাপহারী। অপরদিকে ঘনীভবন প্রক্রিয়ায় বস্তু পরিবেশে তাপ বন্ধর্ন করে, তাই এটি তাপোৎপাদী প্রক্রিয়া।

বাসায়নিক পরিবর্তন > ACS, FRB Compact Suggestion Book.....

 $\gtrsim b + 2SO_2(g) + O_2(g) \xrightarrow{450 - 550^{\circ}C} 2SO_3(g);$ 

 $\Delta H = -198 \text{ kJ/mol}$ 

বিক্রিয়াটির বৈশিষ্ট্য হলো-

[রা. বো. ২৩]

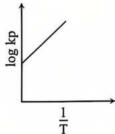
- (i) সম্মুখ বিক্রিয়ার আয়তনের সংকোচন ঘটে
- (ii) অধিক পরিমাণ O2 যোগে বিক্রিয়ার সাম্যাবস্থা বামে সরে যাবে।
- (iii) পক্তাৎমুখী বিক্রিয়াটি তাপহারী হবে

নিচের কোনটি সঠিক?

(4) ii

- (a) ii e iii
- (1) i v iii
- (T) i, ii (F)

উত্তর: প i ও iii


ব্যাখ্যা: উপরোক্ত বিক্রিয়ায় বিক্রিয়ক সমূহের মোল সংখ্যার তুলনায় উৎপাদের মোল সংখ্যা কম। তাই বিক্রিয়াটিতে সম্মুখ বিক্রিয়ার ফলে আয়তনের সংকোচন ঘটে। আবার বিক্রিয়াটিতে সাম্যাবস্থায় বিক্রিয়কের ঘনমাত্রা (O2 বা SO2) বৃদ্ধি করলে সাম্যাবস্থাটি ডানে সরে যাবে, সুতরাং সম্মুখ বিক্রিয়ার হার বৃদ্ধি পাবে। এবং বিক্রিয়াটি তাপোৎপাদী হওয়ায় বিপরীতমুখী বা পশ্চাৎমুখী বিক্রিয়াটি তাপহারী হবে।

৩০। 2AB<sub>2</sub> + B<sub>2</sub> = 2AB<sub>3</sub>, ∆H = - 192.46 kJ विकिसांगिर७ সর্বোচ্চ উৎপাদনের শর্ত কোনটি? क्. त्वा. ५४)

- উচ্চ তাপমাত্রা ও উচ্চচাপ
- বিল্ল তাপমাত্রা ও উচ্চচাপ
- ন্য উচ্চ তাপমাত্রা ও নিমুচাপ
- ছে নিমু তাপমাত্রা ও নিমুচাপ

উত্তর: থি নিমু তাপমাত্রা ও উচ্চচাপ

৩১। একটি বিক্রিয়ার ক্ষেত্রে তাপমাত্রার সঙ্গে সাম্যাক পরিবর্তনের লেখচিত্রটি নিমুরূপ-[কু. বো. ১৬]



- (i) বিক্রিয়াটি তাপ উৎপাদী
- (ii) বিক্রিয়াটি তাপহারী
- (iii) তাপমাত্রা ও সাম্যাঙ্ক ব্যস্তানুপাতিক

নিচের কোনটি সঠিক?

( i, ii

( ii, iii

- 1, iii
- (T) i, ii, iii

উত্তর: 📵 i, iii

গ্রাম্যবস্থায় কোনো বিক্রিয়া—

(ब्रा. त्वा. ५०)

- (i) সিস্টেম অপরিবর্তনে কখনো শেষ হয় না
- (ii) সর্বদা গতিশীল
- (iii) উৎপাদ উৎপন্ন হয় না

নিচের কোনটি সঠিক?

- 3 i, ii
- (1) i, iii
- (1) ii, iii
- ii vii i

উন্তর: 🚳 i, ii

৩৩। নিম্নের লেখচিত্রটিতে দেখানো হয়েছে–

বি. বো. ২২



- (i) তাপোৎপাদী বিক্রিয়া
- (ii) বিক্রিয়া তাপ,  $\Delta H = E_3 E_1$
- (iii) সক্রিয়ন শক্তি,  $E_a = E_2 E_1$

নিচের কোনটি সঠিক?

- (1) i, ii
- (1) i, iii
- 1i, iii
- (T) i, ii, iii

উত্তর: 🕲 i, ii, iii

ব্যাখ্যাঃ লেখচিত্রানুসারে, বিক্রিয়কে (R) এর স্থিতিশক্তি অপেক্ষা উৎপাদের

(P) স্থিতিশক্তি কম হওয়ায়, বিক্রিয়াটি তাপোৎপাদী, যেখানে বিক্রিয়া

তাপ,  $\Delta H = E_3 - E_1$  বিক্রিয়াটির সক্রিয়ন শক্তি,  $E_a = E_2 - E_1$ 

## ভরক্রিয়ার সূত্র ও সাম্প্রেবক (K, এবং K,)

৩৪।  $AB_2(g) + \frac{1}{2}B_2(g) \Rightarrow AB_3(g)$  বিক্রিয়াটিতে  $K_p$  এবং  $K_c$  এর

মধ্যে সম্পর্কের সমীকরণ কোনটি?

অনুরূপ প্রশ্ন: ঢা. বো. ২৩, ২২, ১৫; সি. বো. ২৩, ২২, ১৬; ব. বো. ২৩; य. (वा. २७; ह. (वा. २२, ४४; म. (वा. २२; मि. (वा. ४७; क्. (वा. ४৫)

- 4  $K_p = K_c$
- (4)  $K_n = K_c (RT)$
- (1)  $K_p = K_c (RT)^{-\frac{1}{2}}$
- T  $K_p = K_c (RT)^2$

উত্তর: গ্র  $K_p = K_c (RT)^{-\frac{1}{2}}$ 

ব্যাখ্যা: প্রদন্ত বিক্রিয়া:

$$AB_2(g) + \frac{1}{2}B_2(g) = AB_3(g)$$

$$\therefore \Delta n = 1 - \left(1 + \frac{1}{2}\right) = -\frac{1}{2}$$

$$K_p = K_c (RT)^{\Delta n}$$

$$K_p = K_c (RT)^{\Delta n}$$

$$\therefore K_p = K_c (RT)^{-\frac{1}{2}}$$

### 308 ...... 804 ৩৫। নিচের কোন বিক্রিয়ায় ∆n > 0?

- $\textcircled{9} 2SO_2(g) + O_2(g) = 2SO_3(g)$
- $\mathfrak{T} H_2(g) + I_2(g) = 2HI(g)$

উত্তর: <a>®</a> N<sub>2</sub>O<sub>4</sub>(g) = 2NO<sub>2</sub>(g)

ব্যাখ্যা: ∆n = উৎপাদের মোল সংখ্যা − বিক্রিয়কের মোল সংখ্যা

- ∴ 'ক' এর ক্ষেত্রে, ∆n = 2 − 1 = 1 > 0
- ∴ 'খ' এর ক্লেত্রে, ∆n = 2 3 = 1 < 0
- ∴ 'গ' এর ক্ষেত্রে, ∆n = 2 2 = 0
- ∴ 'ঘ' এর ক্লেতে, ∆n = 2 4 = 2 < 0</p>

### ৩৬। সাম্য ধ্রুবকের মান-

[ঢা. বো. ২৩; অনুরূপ প্রশ্ন: ব. বো. ২৩, ১৯; ম. বো. ২২; কু. বো. ২১]

- (i) তাপমাত্রার উপর নির্ভরশীল
- (ii) প্রভাবক দারা প্রভাবিত হয় না
- (iii) ক্ষুদ্র হলে মিশ্রণে বিক্রিয়ক বেশি থাকে নিচের কোনটি সঠিক?
- @ j g ii
- જો ં હ įįį
- ரு ii e iii
- (F) i, ii & iii
- উত্তর: 🕲 i ও iii

ব্যাখ্যা: সাধারণত তাপোৎপাদী (তাপহারী) বিক্রিয়ার ক্ষেত্রে তাপমাত্রা বৃদ্ধির ফলে সাম্যঞ্রবকের মানের হাস (বৃদ্ধি) ঘটে। প্রভাবকের উপস্থিতিতে উভয়দিকে বিক্রিয়ার গতি একইভাবে পরিবর্তিত হওয়ায় সাম্প্রেবকের কোন পরিবর্তন হয় না। সাম্প্রেবকের মান ক্ষুদ্র অর্থ উৎপাদকের মোলসংখ্যা বিক্রিয়কের তুলনায় কম।

- নিচের উদ্দীপকটি পড় এবং ৩৭ ও ৩৮ নং প্রশ্নের উত্তর দাও:
  - PCl<sub>5</sub>(g) ⇒ PCl<sub>3</sub>(g) + Cl<sub>2</sub>(g) বিক্রিয়ার 25°C তাপমাত্রায় এবং 3 atm চাপে PCI5(g) 80% বিয়োজিত হয়।
- ৩৭। উদ্দীপকের বিক্রিয়ায় K, এর মান কত?

[সি. বো. '২৩]

- (a) 2.33 atm
- 3.33 atm
- (9) 4.33 atm
- ® 5.33 atm
- উত্তর: 📵 5.33 atm

ব্যাখ্যা: 
$$K_p = \frac{\alpha^2}{1 - \alpha^2} \times P$$

$$= \frac{(0.8)^2}{1 - (0.8)^2} \times 3$$
= 5.33 atm

### ৩৮। উদ্দীপকের ক্ষেত্রে-

[সি. বো. ২৩]

- (i) Cl2 এর আংশিক চাপ 1.332 atm
- (ii) PCI₅ এর মোল ভগ্নাংশ 0.111
- (iii) চাপ বৃদ্ধি করলে PCI3 এর উৎপাদন কমে নিচের কোনটি সঠিক?
- i e i
- (1) ii v iii
- 1 i s iii

উত্তর: 🕲 i, ii ও iii

(1) i, ii (9 iii

দি. ৰো. ২৩ ব্যাখ্যা: প্ৰদন্ত বিক্ৰিয়া: PC/5(g) ≈ PC/3(g) + C/2(g)

- প্রাথমিক অবস্থা:

- সাম্যবস্থায়:
- $1-\alpha$

সাম্যাবস্থায় মোট মোল সংখ্যা  $= 1 - \alpha + \alpha + \alpha$ 

$$-1+\alpha$$

∴  $Cl_2$  এর আংশিক চাপ  $-\frac{\alpha}{1+\alpha}$  × P

$$=\frac{0.8}{1+0.8}\times 3=1.33$$
 atm

∴ PC/<sub>5</sub> এর মোল ভন্নাংশ =  $\frac{1-\alpha}{1+\alpha}$ 

$$=\frac{1-0.8}{1+0.8}=0.111$$

यেट्ज् विकिय़ात्र উৎপাদের মোল সংখ্যা विकिग्रकের মোল সংখ্যা থেকে বেশি, তাই চাপ বৃদ্ধি করলে উৎপাদ  $PCI_3$  ও  $CI_2$  উৎপাদন হ্রাস পাবে।

🔲 নিচের উদ্দীপকটি পড় এবং ৩৯ ও ৪০ নং প্রশ্নের উত্তর দাও:

একটি বন্ধপাত্রে 2.5 মোল HI কে 400°C তাপমাত্রায় উত্তপ্ত করা হল। সাম্যাবস্থায় 25% HI বিয়োজিত হয়।

 $2HI(g) \Rightarrow H_2(g) + I_2(g); \Delta H = -ve$ 

৩৯। উদ্দীপকের বিক্রিয়াটির Kp এর মান কত?

[দি. বো. ২৩]

- ₹ 0.16
- (4) 0.0277
- **1** 0.0177
- (T) 0.0123

উত্তর: 📵 0.0277

- ব্যাখ্যা: প্রদন্ত বিক্রিয়া:
- 2HI(g)  $H_2(g) + I_2(g)$
- প্রাথমিক অবস্থা:

সাম্যাবস্থায়:

- 2.5-2.5×0.25
- 2.5×0.25

= 1.875

- = 0.3125 = 0.3125

বদ্ধ পাত্রের আয়তন = V

$$\therefore K_{C} = \frac{[H_{2}][I_{2}]}{[HI]}$$

$$= \frac{\frac{0.3125}{V} \times \frac{0.3125}{V}}{\left(\frac{1.875}{V}\right)^{2}}$$

যেহেতু বিক্রিয়ার  $K_p = K_c$  [∵  $\Delta n = 0$ ] তাই K<sub>p</sub> = 0.0277।

৪০। উদ্দীপকের বিক্রিয়াটির ক্ষেত্রে–

দি. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২২; য. বো. ২২

- (i) তাপমাত্রা বৃদ্ধি পেলে সাম্যের অবস্থান বামদিকে সরে যায়
- (ii) চাপ বাড়লে K<sub>p</sub> এর মান বাড়বে
- (iii) K<sub>p</sub> ও K<sub>c</sub> এর মান সমান

निरुग्न कानिए मठिक?

(T) I e ii

11 B 11 (P)

ili BI (1)

( i, ii 9 H

iii e i (চ) কেটা

৪১। K, এর মানের ক্ষেত্রে কোনটি সঠিক?

ाज, व्या, २२

- क वन मान। एक शास
- अ अस मान क्षणायकत छेशत निर्वत करत
- গে এর মান চাপের উপর নির্ভর করে
- থ এর মান অসীম হতে পারে

উত্তরঃ 🕲 এর মান। হতে পারে

ব্যাখ্যা ধরি, একটি বিক্রিনা

 $A + B \Leftrightarrow C + D$ 

উৎপাদের ঘনমাত্রা বিত্রিন্যকের ঘনমাত্রার সমান হলে

[A] [B] = [C] [D] তখন, K<sub>o</sub> = <u>[C] [D]</u> = 1

Ke এর মান কখনো প্রভাবক, চাপ ইত্যাদির উপর নির্ডর করে না । Ke এর মান অসীম হতে হলে বিক্রিয়কের পরিমাণ শূন্য হওয়া লাগবে যা সাম্যাবস্থায় উভমুখী বিক্রিনার ক্ষেত্রে সম্ভব নয়।

8 २। N₂(g) + 3H₂(g) ⇒ 2NH₂(g) বিক্রিয়ার Kp এর একক কোনটি? श्वा. त्वा. २२। जनुक्तभ क्षम्रा य. त्वा. २२। क्. त्वा. २२। म. त्वा. २२। ह. त्या. २১, ১৯, ১७। मि. त्या. ১৯। कृ. त्या. ১৯, ১१। हा. त्या. ১৫।

- @ atm
- (1) atm2
- @ atm-1
- 1 atm-2

উভর: (ব) atm<sup>-2</sup>

ব্যাখ্যাঃ K<sub>p</sub> = P<sub>N2</sub>.(P<sub>H2</sub>) (atm)2 (atm).(atm)  $= (atm)^{-2}$ 

Shortcut:  $(atm)^{\Delta a} = (atm)^{-2}$ 

80। A2+B2 

⇒ 2AB; বিত্রিন্যাটির 25°C তাপমাত্রায় ও 1.5 atm চাপে 89। নিচের কোন বিত্রিন্যায় Kp = Kc?  $\mathbf{K}_{\mathrm{p}}$  এর মান 5.6 হলে  $\mathbf{K}_{\mathrm{c}}$  এর মান কত্যাচ, বো. ২২৷ অনুরপপ্রশ্না দি. বো. ১৬৷

**3** 7.5

- (T) 5.6
- **@** 3.6

**(9)** 2.8

উত্তর: 🕲 5.6

ব্যাখ্যা: A2 + B2 = 2AB

আমরা জানি,  $\Delta n = 2 - 2 = 0$ 

 $K_n = K_c(RT)^{\Delta n}$ 

- $\Rightarrow K_p = K_o(RT)^0$
- $K_p = K_o$
- $K_0 = 5.6$

88। कान विक्रिगाणित K, जन अपने 1.mel-17

ए. ला. ००। जावन गा। र. ला. २०, ५० ति. ला. १६ ज. ला. ५६ स. ला. ५४

- @ N2O4 ~ 2NO3
- @ 2NH2 = N2 + 3H2
- 1 2NO + O1 = 2NO1
- (1) N2 + 3H2 = 2NH3

উত্তরঃ 🕣 2NO + O₂ 🕶 2NO₂

ব্যাখ্যা: N2O4 → 2NO2 বিক্রিয়ায় Δn = 2 - 1 - 1

∴ একক (molL<sup>-1</sup>)<sup>1</sup> - molL<sup>-1</sup>

2NH<sub>2</sub> ≈ N<sub>2</sub> + 3H<sub>2</sub> विकिशास, Δn = 4 - 2 = 2

∴ একক (molL<sup>-1</sup>)² - mol²L<sup>-2</sup>

2NO + O2 \$\imp 2NO2 विकिशास, \Dan = 2 - 3 = - 1

= (molL-)-1 = Lmol-1

 $N_2 + 3H_1 \Rightarrow 2NH_1$  विकिसास,  $\Delta n = 2 - 4 = -2$ 

 $\sim (\text{molL}^{-1})^2 = L^2 \text{mol}^2$ 

৪৫। মোপার ঘনমাত্রায় প্রকাশিত সমশ্রেবক কোনটি?

M. जा. २**६**)

- @ K,
- (1) K.
- 9 K.
- ® K.

ख्याः (च) K

৪৬। 450°C তাপমাত্রায় HI 35% বিয়োজিত হলে K, এর মান কত?

ापि. जा. २**२**।

- @ 0.8250 atm
- @ 0.7250 atm
- 1 0.0825 atm
- ® 0.0725 atm

উত্তর: 🕲 0.0725 atm

ব্যাখ্যা: HI এর বিয়োজন বিক্রিয়া:

2HI = H2 + I2

 $K_p = \frac{1}{(2-2\alpha)^2}$ 

 $0.35^{2}$ 

 $=\frac{(2-2\times0.35)^2}{}$ 

=0.0725

মি. বো. ২২৷ অনুদ্রশ প্রশ্ন: চ. বো. ২৩, ২১৷ দি. বো. ২১/

- $A_2 + B_2 = 2AB$
- 1  $A_2 + 3B_2 = 2AB_1$
- (1) C+2D = A
- (1) C+D = 3A

উত্তর: ③ A<sub>2</sub> + B<sub>2</sub> = 2AB

ব্যাখ্যা: A<sub>2</sub> + B<sub>2</sub> ≈ 2AB বিক্রিয়ায়, Δn = 0

 $K_p = K_o(RT)^{\Delta n}$ 

- $K_0 = K_0(RT)^0$
- $K_p = K_o$

উদীপকটি পঢ় এবং পরবর্তী দুটি প্রস্লের উত্তর দাও:

$$A_1 + B_2 = 2AB \xrightarrow{300^{\circ}} 300^{\circ} C$$

थर्गाम, AB, A, B अत व्याममर्ग्या माम्यावसास वर्गाकव्य 13, 8, 10

৪৮। বিটিন্যাটির সামাদ্রেখকের মান কত্য

[সি. বে. ২২]

शिर त्या थी

1.763

® 0.473

**ए स्ताः** क 2.112

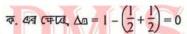
ব্যাখা: সামাবস্থা: A₁ + B₁ ⇒ 2AB

$$K_{c} = \frac{\begin{bmatrix} AB \end{bmatrix}^{3}}{\begin{bmatrix} A_{1} \end{bmatrix} \times \begin{bmatrix} B_{1} \end{bmatrix}}$$

$$\Rightarrow K_{c} = \frac{\left(\frac{13}{2}\right)^{3}}{\left(\frac{8}{2}\right) \times \left(\frac{10}{2}\right)}$$

: K = 21125

৪৯। নিছের কোন বিটিন্যার Ka> Ke?


$$\odot \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) = NH_3(g)$$

$$PCI_5(g) = PCI_5(g) + CI_2(g)$$

$$(9) 2SO_2(g) + O_2(g) = 2SO_3(g)$$

**छैं** छ PCI₂(g) = PCI₂(g) + CI₂(g)

ব্যাখাা: মোন সংখ্যার পার্থকা (১০) ধনাব্রক হলে, K, এর মান বড় হয়। উন্তর: 🕲 An = উৎপাদের আেল সংখ্যা - বিক্রিসকের আেল সংখ্যা



$$\sqrt[4]{4}$$
 ( $\sqrt[4]{2}$ )  $\sqrt[4]{2}$   $\sqrt[4]{2}$ 

可. 4目 C年12、An = 2-1=1

**및 43 (年12 △n = 2 - 3 = - 1** 

□ নিচের উদ্দীপকটি পড়ে ৫০ নং প্রশুটির উত্তর দাও।

$$MX_5 = MX_1 + X_2$$

विद्याधन भावा a e व्यक्ति हान l eaten]

৫०। फिरीभात्वत रिक्रिगाव Kp थाव मान- (इ. ट्य. २); क्युक्न ध्य: इ. ट्य. ३३)

$$(1)\frac{\alpha^2}{1-\alpha}$$

$$(\overline{B})\frac{\alpha^1}{1-\alpha^1}$$

(画) K, (RT)

নিচের কোনটি সমিক?

- @ i e i
- @iem
- ® m ∈ m
- ि दं तें व वा

<del>ऍडवः</del> € 🖬 ७ 📶

Situations Rublications

..... ACS, > Chemistry 1st Paper Chapter-4

$$K_{P} = \frac{P_{NOX_{3}} \cdot P_{X_{2}}}{P_{NOX_{5}}}$$

$$= \frac{\frac{\alpha}{1 + \alpha} \cdot \frac{\alpha}{1 - \alpha}}{\frac{1 - \alpha}{1 + \alpha}}$$

$$= \frac{\alpha^{2}}{1 - \alpha^{2}}$$

$$K_P = K_c (RT)^{\Delta a}$$

$$\therefore K_P = K_c(RT) \ [\because \Delta n = 2 - 1 = 1]$$

নিচের উদ্দীপকের আলোকে ৫১ ও ৫২ নং প্রশ্নের উত্তর দাও :

 $N_1O_4(g) \Rightarrow 2NO_2(g)$  বিক্রিয়াটির সাম্যাবস্থায় বিয়োজন মাত্রা  $\alpha$ হলে এবং গ্যাস মিশ্রণের মোট চাপ P.

সাম্যাবস্থায় NO2 এর আংশিক চাপ হলো-

[চ. বো. ১৯]

$$\frac{2\alpha P}{1-\alpha}$$

 $\Im \frac{2\alpha P}{1+\alpha}$ 

ব্যাখা:

সাম্যাবস্থায় মোলসংখ্যা: (1 – α)

সাম্যমিশ্রণের মোট মোলসংখ্যা =  $1 - \alpha + 2\alpha$ 

$$= 1 + \alpha$$

∴ NO<sub>2</sub> এর আংশিক চাপ = 
$$\frac{2\alpha}{1+\alpha}$$
 P

৫২। সক্রিয় ভর বলতে বোঝায়–

[সনিদিত, রো. ১৮; কু. বো. ১৭; ষ. বো. ১৫; অনুরূপ প্রশ্ন: ঢা. বো. ২০]

- (1) 'আংশিক চাপ
- (ii) সাণবিক ভর
- (iii) व्यामात चनमावा

নিচের কোনটি সঠিক?

- @ i e ii
- (1) ii 8 iii
- (1) i e iii
- જો દું દું હું હું

উল্ভর: (গ i e iii

ব্যাখা: সক্রিয় ভর: রাসায়নিক সাম্যাবস্থায় বিক্রিয়কের সক্রিয় ভর বলতে বিক্রিয়কের মোদার ঘনমাত্রা বা আংশিক চাপকে নির্দেশ করা হয়।

ব্রাসায়নিক পরিবর্ডন > ACS, FRB Compact Suggestion Book.....

1/2 N₂(g) + 3/2 H₂(g) ∞ NH₃(g) সমীকরণটির সামাঞ্রবক K₂

चि. व्या. ३९। जपुत्रन धर्मा हो, व्या. २३)

 $K_2 = \frac{1}{\sqrt{K_1}}$ 

(1) K2 - K1

 $\P K_2 = \sqrt{K_1}$ 

 $\mathfrak{V} K_2 = \frac{1}{2} K_1$ 

জিভার: পি K<sub>2</sub> = √K<sub>1</sub>

व्याभाः  $N_2(g) + 3H_2(g) = 2NH_3(g)$ 

$$K_1 = \frac{[NH_3]^2}{[H_2]^3 \times [N_2]}$$
....(1)

$$\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \approx NH_3(g)$$

$$K_2 = \frac{[NH_1]}{\frac{1}{2} \frac{1}{[N_2]^2}}$$

$$\begin{array}{c} \underset{\text{res}}{\sim} \sqrt{\frac{\left\lceil NH_{1}\right\rceil^{2}}{\left\lceil H_{2}\right\rceil^{3}\left\lceil N_{2}\right\rceil}} \\ \underset{\text{res}}{\sim} \sqrt{K_{1}} \\ \therefore K_{2} \overset{\text{res}}{\sim} \sqrt{K_{1}} \end{array}$$

निटित উদीপकि १५ अवर ८८ ४ ८८ नर बट्नत छैछत पाउ 25°C তাপমাত্রায় 1.5 atm চাপে সাম্যাবস্থায় 15.6% PCl5 विरामिक रम । PCI3 वर CI2 गारान वार्थनक मण पर्याकरम णि. বো. ১৭। অনুরূপ প্রশ্ন। ব. বো. ২১।

1.095 এবং 0.202 atm. ৫৪। Kp এর মান কড?

3 2.74 × 10<sup>-2</sup> atm

 $\odot$  2.84 ×  $10^{-2}$  atm

① 3.73 × 10<sup>-2</sup> atm

5.74 × 10⁻² atm

উত্তর: 📵 3,73 × 10<sup>-2</sup> atm

व्याप्ताः PC/3 == PC/3 + C/2

দেওয়া আছে, Prc/s = 1.095 atm

 $P_{Cl_2} = 0.202$  atm

উৎপাদ Cl2 ও PCl3 अत মোল সংখ্যা সমান হওয়ায় আংশিক চাপ

$$\therefore K_{P} = \frac{P_{PCI_{1}} \times P_{CI_{2}}}{P_{PCI_{3}}}$$

$$= \frac{0.202 \times 0.202}{1.095}$$

$$= 3.73 \times 10^{-2} \text{ atm}$$

जामग्रावञ्चाग्र X2, Y2 व्यवश् XY3 व्यत्र घनमावा यथाकरम 0.18, 0.56 এবং 0.12 molL<sup>-1</sup>। বিক্রিয়াটির K<sub>c</sub> এর মান হলো-

রা. বো. ২০। জনুরূপ প্রশ্ন। চ. বো. ২৩।

(P) 0.45

(9) 1.19

(T) 2.2

(T) 2.9

উন্তরঃ @ 0.45

 $\text{Then } K_c = \frac{[XY_3]^2}{[X_2][Y_2]^3} = \frac{(0.12)^2}{0.18 \times (0.56)^3} = 0.45$ 

৫৩। N₂(g) + 3H₂(g) ← 2NH₂(g) नमीकन्नपणित्र नामास्थवक K₁ वाल, विश्व। W + X № Y + Z नामानश्चात्र विवित्यात निष्युधमूखी विवित्यात হার্দ্রবক K, ও পশ্চাত্মধী বিঞিমার হার্দ্রবক K, হলে নাম্যানক,

K. = क्ড7

3 K1 K2

@ K1 K2

1 K1K2-1

3 K1 K2

উত্তরঃ প্র K1K2-1

वाषााः नामावशाः,

 $R_1 - R_0$ 

 $\Rightarrow K_1[W][X] = K_2[Y][Z]$ 

 $\Rightarrow \frac{K_1}{K_2} - \frac{[Y][Z]}{[W][X]}$ 

 $\Rightarrow \frac{K_1}{K_2} = K_0$ 

 $K_{c} = K_{1}K_{2}^{-1}$ 

৫१। 2SO₂(g) + O₂(g) = 2SO₃(g) + 44.8 KCal विक्रिगािंग्रिक তাপমাত্রা বৃদ্ধি করলে- |রা. নো. ২থ অনুত্রপ প্রশ্না ব. নো. ২থ সি. নো. ১৭|

(I) SO1 এর পরিমাপক্রান পায়

(II) K, धत्र मान होन लात्र

(।।।) विकिया পकाष्म्रवी दग्र

निटिंग कानि निठिक?

3 i, ii

(9 ii, iii

(1) i, iii

(1) i, ii, iii

উত্তর: ব্য i, ii, iii

वाभाः विकितारि जाल्लामी रजाता जान बताता विकितारि नकार मित्क অগ্রসর হবে অর্থাৎ উৎপাদ SO3 এর পরিমাণ কমবে।

वाषाल विकिशात नामाधन्वक K. ज्ञान भारव।

নুডরাং (ii) নং সঠিক।

 $\mathfrak{C}$ ৮।  $\mathsf{CaCO_3}(\mathfrak{s}) \iff \mathsf{CaO}(\mathfrak{s}) + \mathsf{CO_2}(\mathfrak{g})$  विकियाणित  $\mathsf{K}_{\mathfrak{s}}$  अत রাশিমালা হলো-वा. व्या. ३६।

 $K_c = \frac{[CaO]}{[CaCO_3]}$ 

 $(3) K_c = \frac{[CaO] [CO_2]}{[CaCO_3]}$ 

 $\P$   $K_c = [CO_2]$ 

(1) K<sub>c</sub> = [CnO]

উন্তর: প K<sub>c</sub> = [CO<sub>2</sub>]

## পানির আয়নিক গুণফল

৫৯। কক্ষ তাপমাত্রায় পানির আয়নিক তণফপের মান কত?

ए. जा. २०। जनुरूप वक्षा म. जा. २०। ए. जा. २२। ता. जा. २३। ति. जा. २३। সখিপিত বো, ১৮: ব. বো. ১৭

ⓑ 0.114 × 10<sup>-14</sup>

(1.0 × 10-14

1.4 × 10-14

(1)  $1.0 \times 10^{-7}$ 

উম্বর: 🔇 1.0 × 10<sup>-14</sup>

ACI) > Cheminary 1" Paper Chapter-4 | वा. वा. २) | ७७। निकित तमम विनिधित सैतारा चिनिक? हिरे ता. १० व्यापन वक्षा हि. ता. १०० ७०। 25°C डाणमालास लानित pk., धरा माग करु 更 OTL QUI TL OTL QUI EL OTL 44, 400 Z OTL 400 TL OTL 40, 141 (m) 7 (P) 10 3 HNO 3 H1500 12 (R) 14 1 HC10 ( HIPO **एयाः** (प) 14 वााचा। शागित जारानिक धनकरा, K. = 10-14 वााचाः HNO, HIPO, HISO, HC/O  $\Rightarrow pK_w = -\log(K_o)$  $\therefore pK_w = -\log(10^{-14}) = 14$ जिंदर् HC/O4 अत खाउप मान नर्नाषिक नुस्ताः HC/O4 षिकि ७১। कान जानपायारा भाभित आराभिक छनकलात मान गर्नाधिक? कि. ला. ১১। ७१। जनकिसा मुर्नम विनिष्ठ त्यानिष्ट? ® 10°C (¶) 25°C शि. ता. २३; वनुक्र वर्षः कृ. ता. २०; हा. ता. 11b; व. ता. 14l എ 30°C @ 100°C 3 HNO ⊕ H₂SO₄ উন্তন্য (জ 100°C 9 HC/O4 (9) H<sub>1</sub>PO<sub>1</sub> ব্যাখ্যা: পানির আয়নিক গুণফল: উত্তর: 🖲 H<sub>1</sub>PO<sub>2</sub> K, 5 [H'] [OH] ব্যাখ্যা: নেহেকু আকারের ক্রম: P > N प्पटर्फ् 100°C এ शानित वित्ताखन नर्वाधिक रत्त, ठाँरे आग्रनिक সুতরাং তীব্রতার ক্রম: HNO1 > H1PO1 थपरुण (K, ) अत मान नर्वाधिक । ७৮। निक्रत द्यान धिनाउँ निकास भक्तिमामी? र ता २२; वनुत्रन वमः कृ. ता अश ৬২। 25°C ডাপমাত্রায় পানির স্বায়নিক গুণবল 1 × 10<sup>-14</sup> হলে [H₃O\*] 3 HF @ HCI এর মান নিচের কোনটি? णि. ता. २०: वमुद्धन वद्यः ए. ता. ३६। (1) HI HBr (3) 10<sup>-14</sup> @ 10<sup>-7</sup> उदाः (ग) HI @ 107 1014 ব্যাখা।: হাইভাগিতের তীব্রতার ক্রম হল- HI > HBr > HC/। এতে উত্তর: (ব) 10<sup>-7</sup> ঝণাত্মক আয়নের আকার বড় হলে এসিতের স্থিতিশীলতা কমে ও ব্যাখ্যাঃ পানির বিয়োজন নিমুরূপঃ वित्तालन नरस्य घटि ।  $2H_2O^+ \Rightarrow H_3O + OH^-$ ७ । पद्भ वा कारतत विद्याजन माजात मार्प प्रवर्णत घनमाजात मन्भर्क  $[H_3O^*] \times [OH] = 10^{-14}$ কোনটি? वि. ला. २२: चनुस्त्र धर्मः कृ. ला. २)।  $\Rightarrow [H_3O^*]^2 = 10^{-14} : [H_3O^*] = [OH_3]$ ক্তানুপাতিক বিংগ্যালিক
 বিংগ্যালিক  $\therefore [H_1O^{\dagger}] = 10^{-7}$ গ্ৰ সমানুপাতিক ছি বর্ণামূলের ব্যন্তানুপাতিক উন্তর: 📵 বর্গমূলের ব্যস্তানুপাতিক ७७। विचक्त পानिष्ठ करत्रक खेंगेंगे HCl यांग कत्रल K, अत्र मान रूद ব্যাখ্যা: অসওরান্ডের লঘুকরণ সূত্র মতে কোন দুর্বল অম্র বা হ্নারের বিয়োজন কু. বো. ২০ ③ 1 × 10<sup>-16</sup> @ 1 × 10<sup>-14</sup> মাত্রা ঘনমাত্রার বর্গমূলের ব্যাস্তানুপাতিক। (9) 1 × 10<sup>-13</sup> (1) 1 × 107 উखन्नः **ख** 1 × 10<sup>-14</sup> 90 । H2O এর অনুবন্ধী অম্ল কোনটি? णि. त्वा. २५; ष्रनुक्रन क्षम्नः मि. त्वा. २५; ता. त्वा. ५६; व. त्वा. ५६; व. त्वा. ५८) এসিড ক্ষারের শক্তিমাত্রা ও বিয়োজন 3 OH (1) H ৬৪। Al<sub>2</sub>O<sub>3</sub> এর অমুডু কড? 9 O2-[রা. বো. ২৩] (1) H<sub>3</sub>O<sup>+</sup> ® 2 (4) 3 উন্তর: (দ) H<sub>1</sub>O<sup>+</sup> **9** 4 (T) 6 ব্যাখা: H2O এর অনুবন্ধী অম H3O+ উত্তর: (ঘ) 6 H2O এর অনুবন্ধী ক্বার OH व्याथाः এक भाग काता कात्रक षात्रा यका भाग थक-कात्रकीरा अप्र वा  $H_2Q + H_2Q = H_3Q^+ + QH^-$ মনোপ্রোটিক এসিড (যেমন HCI) পূর্ণ প্রশমিত হয়, অস্ত্র বা এসিডের ঐ মোল সংখ্যাকে ঐ ক্ষারকের অমুত বলে। 9)। একটি 1.0 মোলার NH4OH দ্রবণের বিয়োজন মাত্রা 1.34%। উষ্ণ Al<sub>2</sub>O<sub>3</sub> এর অমুত্ব হলো 6। দ্রবণটির Kbএর মান কত? বি. বো. ২১; অনুদ্রপ প্রশ্ন: চ. বো. ২১] ③ 1.659 × 10<sup>-4</sup> (1.975 × 10<sup>-6</sup> ७৫। HCO पत्र जन्दकी कात्रक कोनिए? | क्. ता. २७; जन्त्रभ क्षप्तः ग. ता. ১७। (f) 1.567 × 10<sup>-6</sup> ® 1.795 × 10<sup>-4</sup> ⊕ H₂CO₃ উত্তর: খি 1.795 × 10<sup>-4</sup> 1 CO2 (9) HCO, উত্তর: @ CO2 ব্যাখা: α = 1 ব্যাখা: HCO3 - $\rightarrow CO_3^2 + H^+$ অনুবন্ধী ক্ষারক প্রোটন  $=(0.0134)^2 \times 1 = 1.795 \times 10^{-4}$ 

রাসায়নিক পরিবর্তন > ACS/ FRB Compact Suggestion Book..... ৭২। কোনটি ক্ষারকের তীব্রতার সঠিক ক্রম? সি. বো. ২১] ৭৬। এসিডের শক্তির কোন ক্রমটি সঠিক? মি বো ২৩ TiOH < NaOH < KOH < CsOH Type H2SO3 > HC/O > HNO3 > H3PO4 (1) NaOH < LiOH < KOH < CsOH 1 HNO<sub>3</sub> > H<sub>3</sub>PO<sub>4</sub> > H<sub>2</sub>SO<sub>3</sub> > HC/O 1 HC/O > HNO3 > H3PO4 > H2SO3 KOH < CsOH < LiOH < NaOH
</p> (1) LiOH < KOH < CsOH < NaOH  $\P$  H<sub>3</sub>PO<sub>4</sub> > H<sub>2</sub>SO<sub>3</sub> > HNO<sub>3</sub> > HC/O উত্তর: (ব) HNO<sub>3</sub> > H<sub>3</sub>PO<sub>4</sub> > H<sub>2</sub>SO<sub>3</sub> > HC/O উন্তর: 🚳 LiOH < NaOH < KOH < CsOH ব্যাখ্যা: ক্ষার ধাতুসমূহের অক্সাইড ও হাইড্রোক্সাইড যৌগের ক্ষারধর্মীতা ব্যাখা: HNO3, H3PO4, H2SO3, HCIO উপর থেকে নিচের দিকে বৃদ্ধি পায়। ক্ষার ধাতুসমূহের ক্ষেত্রে একই N ও P এর মধ্যে N এর আকার ছোট তাই HNO, শক্তিশালী গ্রুপের ক্রম হলো-Li < Na < K < Rb < Cs < Fr.৭৭। 0.1 M NH4OH দ্রবণের pH মান কত? তাই তাদের হাইড্রোক্সাইডে যৌগের ক্ষারধর্মীতা হবে- $(K_b = 1.8 \times 10^{-5})$ াতা. বো. ২২ LiOH < NaOH < KOH < RbOH < CsOH < FrOH. (a) 11.12 (A) 2.87 সূতরাং, প্রদত্ত অপশনগুলোর মধ্যে LiOH < NaOH < KOH < **1.00** ® 1.12 RbOH < CsOH ক্রমটি সঠিক। উত্তর: 🚳 11.12 নিচের উদ্দীপকটি পড়ে ৭৩ নং প্রশ্নটির উত্তর দাও। ব্যাখা: pOH = – log √K<sub>b</sub> × C কতগুলো এসিডের Pkn মান হলো:  $= -\log \sqrt{1.8 \times 10^{-5} \times 0.1}$ = 2.972A = 4.7, B = 3.25, C = 6.4, D = 1.8 $\therefore pH = 14 - pOH$ ৭৩। শক্তিশালী এসিড কোনটি? [রা. বো. ২১] = 14 - 2.972 = 11.12(4) D (1) B (1) A (1) C উত্তর: 🚳 D ৭৮। 0.3 M CH3COOH দ্রবণের pH কত? ব্যাখ্যা: PKa এর মান কম হলে বিয়োজন মাত্রা বেশি হয় এবং এসিডের বি. বো. ২২; অনুরূপ প্রশ্ন: ব. বো. ২৩; চ. বো. ২১; দি. বো. ১৭; ব. বো. ১৬) তীব্রতাবৃদ্ধি পায়।  $[Ka = 1.8 \times 10^{-5}]$ (a) 3.62 **2.63** ৭৪। কোন অক্সাইডটি সবচেয়ে বেশি অমুধর্মী? রা, বো. ১৯] (A) 1.34 ® 2.87 P<sub>2</sub>O<sub>3</sub> (1) Cl2O2 何 SO<sub>3</sub> (1) CO2 উত্তর: 📵 2.63 উন্তর: 🕲 Cl<sub>2</sub>O<sub>7</sub> ব্যাখ্যা: আমরা জানি, ব্যাখ্যা: যে অক্সাইডের কেন্দ্রীয় পরমাণুর জারণ সংখ্যা যত বেশি, সে দূর্বল এসিডের অক্সাইড তত বেশি অমুধর্মী।  $pH = -\log \sqrt{Ka \times C}$ P2O3 এ P এর জারণ সংখ্যা + 3  $= -\log \sqrt{1.8 \times 10^{-5} \times 0.3}$  $Cl_2O_7$  এ Cl এর জারণ সংখ্যা +7SO3 এ S এর জারণ সংখ্যা + 6 ৭৯। ডেসিমোলার মিথানয়িক এসিডের বিয়োজন মাত্রা 10% হলে এর pH CO2 এ C এর জারণ সংখ্যা + 4 মান কত? [সি. বো. ১৯] : অমুতের ক্রমানুযায়ী, (a) 1 **1.5**  $Cl_2O_7 > SO_3 > CO_7 > P_2O_3$ (A) 2 (T) 2.5 সুতরাং, Cl2O2 সবচেয়ে বেশি অমুধর্মীয় অক্সাইড। উত্তর: 🕦 2 ৭৫। H<sub>3</sub>PO<sub>2</sub> এর ক্ষারকত্ব কত? [দি. বো. ১৭] ৮০। দুর্বল অম্রের বিযোজন মাত্রা– মি. বো. ২২; অনুরূপ প্রশ্ন: রা. বো. ২২; य. বো. ২২ @ > (a) 2 图 8 (A) O উত্তর: 📵 ১ ব্যাখ্যা: কোন এসিডের এক মোল দ্বারা এক অম্রীয় ক্ষারকের যত মোলকে পূর্ণপ্রশমিত করা যায় তাকে ঐ এসিডের ক্ষারকত্ন বলে। যেহেতু H<sub>3</sub>PO<sub>2</sub> এর অণুতে মাত্র একটি H পরমাণু OH মূলকরূপে যুক্ত আছে যা থেকে H<sup>+</sup> আয়ন পানিতে আয়নিত হয়। তাই এর ক্ষারকতু 1। উত্তর: গ্র ৮১। কোন বিক্রিয়াতে পানি একটি ব্রনস্টেড লাউরি অস্ত্র হিসেবে ক্রিয়া করে? [य. त्वा. ১१] 3  $\text{H}_2\text{O} + \text{HC}l \rightarrow \text{H}_3\text{O}^+ + \text{C}l^-$ H H  $\textcircled{1} H_2O + NH_3 \rightarrow NH_4 + OH_4$  $\mathfrak{I}_2O + SO_3 \rightarrow H_2SO_4$  $\P$   $H_2O + CO_2 \rightarrow H_2CO_3$ 

Rhombus Publications

উত্তর: <a>③</a> H<sub>2</sub>O + NH<sub>3</sub> → NH<sub>4</sub> + OH<sup>-</sup>

.. ACS/ > Cluematry I Paper Chapter-4 ७२। निष्युत्र विरामधीनतः मारता निष्यामी विराम द्वानिष् 68 1 1% (W/V) H,SO4 म्र व्यापन pH करा HARAME OIL SIT OIL SOL DE BE OIL SO! D. OIL 200 पमुक्त वार्षः हर OIL 20, 30, 30; तर तर ठार 20, 36; मि. OIL 20, 36; B HMO R HION रि ता भः ग ता थ, ४५ द ता थ, ४६ ४६ ह ता ४५ विभिन्न ता ४५ & HIFO. @ HICIO. € 0.31 @ 0.69 节班: (3) HCNO。 ® 0.99 @ 1.00 **धंस्तः २** 0.69 bo। विनायन भिन्न त्यान वस्पि मिना बाग्भारः  $C = \frac{10 \text{ x}}{M} = \frac{10 \times 1}{98} = 0.102 \text{ M}$ मिर कर कर कम्मिन वहाः ज का कार हि जा कर हि जा का @ H2002 > HC10 > HX102 > H2007  $\textcircled{T} HD00_{1} > H_{1}PO_{4} > H_{2}SO_{1} > HC00$  $H_1SO_4 = 2H' + SO_4^3$ @ HC10 > HNO1 > H1FO4 > H1507  $\therefore$  [H] = 0.102 × 2 = 0.204 M @ HFO, > H\_SO, > HNO, > HC/O  $\therefore pH = -\log [H] = -\log (0.204) = 0.69$ THERE & HINDO > HINDO > HISO > HICHO ৮৪। ব্যবিদ্যানিতন্দ্রাবের বীলুতা কিনোর উপর নির্ধর করে? 20 1 5.0 g/L चनमावाच Za(OH)₁ प्रचरन OH यद्य त्यामाद्य घनमावा मि ता अ चनाग वधः मि ता भी কতা [Zn(OH)] এর আণবিক তর 99.4] 屁 双初 त्वनीम भनगानु द्यानन मध्या। द त्वनीम भनगानु नार्ष चनक् **3** 0.02 @ 0.05 (9) 0.10 ত্ত্ব ক্যামিয়ানের আকার ति चाानगणन चानान <del>फेंस्तः</del> **(च)** 0.10 स्तिः हो जानगण्यतः चारातः ব্যাখাা=  $Z_{\rm L}({\rm OH})_2$  এর ঘনমারা = 5.0 g/L =  $\frac{5.0}{\rm QQ~4}$  = 0.050  ${\rm molL}^{-1}$ be । नियन कानी केंस्पर्मी? THE OIL YEL 3 NH @ HCO,  $Z_{II}(OH)_2 = Z_{II}^2 + 2OH^-$ @ co, 1 H20 :. Zn(OH) मुक्प OH अब चनभाता,  $[OH] = (2 \times 0.05) = 0.1 \text{ mo/L}^{-1}$ 世丽: 图 HCO, bb। त्रानि वनुर्गि चनुर्गि चहु कात्रक गुग्रा TE COIL 391 কোনো দ্ৰবণের pH = 12 হলে OH স্বারনের ঘনমানা কত? @ H=0". H=0 3 HCL NEIOH मि ता २०; वनुतन धर्मः वृ. ता २४ प ता २४ € O2 H-O @ H, C/ ③ 1 × 10<sup>-2</sup> M (1) 1 × 10-10 M 世紀: 图 H70, H-O (1) I × 10-12 M © 1 × 10-14 M ਹੋਰਾ: ⊚ 1 × 10 <sup>3</sup> M ७१। P<sub>2</sub>O<sub>3</sub> + H<sub>2</sub>O → X; निकिगांिट X यह दश्च धाराधाः (E) <del>यातका</del> 3 वाएपा: वामना सानि, pH + pOH = 14 (वा) कातन्त्र 2  $\Rightarrow$  12 + pOH = 14 (111) शीं व्यापिक वितिष्ठ  $\Rightarrow$  pOH = 14 - 12 নিত্রের বেগুনটি নিটক?  $\Rightarrow pOH = 2$ 3 Li 3 i, iii  $\Rightarrow -\log [OHT] = 2$ (T) mi, nu ( L IL III  $: [OH] = 1 \times 10^{-1} M$ सिंस्ताः सि म् 🔟 ১২। মাটির ভট্টু বৃদ্ধি পেলে pH নিয়দ্রণ করার জন্য কোনটি যোগ করতে PH & DOH হর? पि त्या २०; वनुष्य वर्षः उर त्या ३३] ७७। ज्यान व्यवधित प्रत्रीच प्रवणत p.H. मान ७ वन काज जिमित्र (a) [F] কসফেট कि या ने वस्तान वस र या ने र या ने हि या ने नागद्वि व गार्टकि 3 MaiCI 3 Zniso, <del>पेंस्तः</del> 📵 ट्रा 1 KyCO, @ PHICI ব্যাখা: মাটির অহুত্ব বৃদ্ধি পেলে pH নিয়ন্ত্রণ করার জন্য চুন, ক্যানসিয়াম ও Feet 1 KICO, মাগণনেশিয়ামের বিভিন্ন ক্ষার ব্যবহৃত হয়। MUCI de TIA NOOH AR वा।भाः चैत्र विग्रह HC/ वत धनामा नागन । टाई pH = 7.0 । ৯০। पुणि ज्हीत प्ररापंत pH यथाकरम 3.0 ७ 6.0 राज क्षथम प्रस्पित Znco, नुर्ग चात Zn(OH)न बिठीप्र দ্রবণ অপেকা কত তপ বেশি অশ্রীর? वना रीज विमिष्ठ HaSO4 वन नगर । राष्ट्र eH < 7.0 । ना. जा. २२३ व. जा. २२३ वन्तम वन्नः व. जा. ३४५ मि. जा. ४४। K2CO2 दीत कात KOH कवर **ত্ত** 20 ওণ @ 50 gq जुर्नम वाधिष्ठ HrCO1 वता नजान । साई pH > 7.0 । @ 100 89 PH\_C/ नुनीन मान PH\_OH क्वार 1000 তল
 त्रनाम अभिक्त भारा अस वानान । यहि तभ < 7.0 ।

Rismithus Philillications

बाञारानिक পরিবর্তন > ACS, FRB Compact Suggestion Book..... 初切1 邓, HCL(ag) -> 打(asi) + Cl'(asi) ৰ্যাখ্যা: ২্যা দ্ৰবপে, pH - - log [H'] M 2 01 = [11] " MINU ⇒ 6 = - log [H'] ⇒ [H'] > 10.0 : pH = - log[10] = 2 ১ম প্রবণে, pH = log [H']  $\forall$ .  $H_2SO_d(xy) \rightarrow 2H^*(xy) + SO_d^2(xy)$ and. [H] = 2 × 5 × 10-2 M = 0.1 M ⇒ 3 ~ - log [H'] ⇒ [H'] = 10<sup>-3</sup> :.  $pH = -\log (0.1) = 1$ ১ম দ্রবপে হাইজ্রোজেন জায়নের ঘনমাত্রা =  $\frac{10^{-3}}{10^{-6}}$  গুপ (pa) HO + (pa) all + (pa)HOBN .P क्षाज, [OH] = 10-1 M - 1000 59 :  $pOH = -log(10^{-1}) = 1$ ∴ pH == 14 - 1 == 13 28 । 3.3% Na2CO3 जनरात pH क्ष्ण । जि. व्य. २२। व्यायन वाहः ति. व्या २२ ব. NazCO;(24) = 2Na\*(24) + CO1(24) म. त्या. २६। प. त्या. २७, २১, ३४; मि. त्या. २८, ३८: क्. त्या. ३५। चा. त्या. ১१, ১६। ए।. त्या. ১६। य. त्या. ১८। भाज, [OH] = 2 × 10.4 M 3 13.8 **12.7** :  $pOH = -log(2 \times 10^{4}) = 3.69$ @ 11.5 (T) 10.5  $\therefore pH = 14 - 3.69 = 10.31$ উন্তর: 📵 13.8 घेट । 2.5% H₂SO₄ प्रवरणंत OH धव प्राणावा दल? याचाः Na2CO3 = 2Na + CO2 नि. ला. धा पत्रक्षत्र एक के ला. ४०।  $CO_1^2 + H_2O \Rightarrow HCO_1 + OH$  3.92 × 10⁻⁻¹  $(3) 1.95 \times 10^{-7}$  $93.92 \times 10^{-14}$ ③ 1.95 × 10<sup>-14</sup>  $HCO_1 + H_2O = H_2CO_3 + OH$ উত্তর: 🕲 1.95 × 10<sup>-14</sup> অর্থাৎ 1 mol Na<sub>2</sub>CO<sub>3</sub> জলীয় দ্রবদে 2 mol OH আয়ন সরবরাহ করে ব্যাখ্যা: 2.5% H<sub>2</sub>SO<sub>4</sub> এর ঘনঘাত্রা, S = 1000 × W  $\therefore [OH7 = 2 \times .330 = 0.660]$  $pOH = -\log[OH]$  $=\frac{1002}{98 \times 100}$  $= -\log(0.66) = 0.1804$ আবার, pH = 14 – pOH = 0.255 M= 14 - 0.1804 = 13.81 $H_2SO_4 = 2H' + SO_4^2$ 🏕 । 5 mL 0.02 M H<sub>2</sub>SO<sub>4</sub> ज्ञवर्ष 15 mL शानि त्यांग कवर्ष मिद्येर्पत  $\therefore$  [H<sup>+</sup>] = (0.255 × 2) M = 0.510 M pH কত হবে? বি. বো. ২২ pOH = 14 - pH = 14 + log(0.510) = 13.708 $[OH] = 10^{-13.708} = 1.95 \times 10^{-14}$ **(4)** 1.85 **3** 2.00 **@** 2.15 **(9)** 2.30 ৯৯। কোন অক্সাইডের ভাগীয় দ্রবণের pH এর মান 7 এর বেশি? াহু. লে. ১৯। উম্বর: 📵 2.00 @ C1207 ব্যাখ্যা: S<sub>1</sub>V<sub>1</sub> = S<sub>2</sub>V<sub>2</sub> @ SiO2 (9) SO7 উত্তর: <a>® Na2O</a> ব্যাখা: Na<sub>2</sub>O হলো স্মারীয় অক্সাইড। অপরদিকে SiO<sub>2</sub>, Cl<sub>2</sub>O<sub>7</sub>, SO<sub>7</sub>  $\Rightarrow$  S<sub>2</sub> =  $\frac{0.02 \times 5}{20}$ অথ্লীয় অক্সাইড। যেহেডু Na2O ক্ষারীয় অক্সাইড, তাই pH এর মান 7 এর চেরে বেশি।  $S_2 = .005 \text{ M}$ ১০০।কোন লবণটির জলীয় দ্রবণের pH > 7? म. ला. थ)  $H_2SO_4 = 2H^+ + SO_4^{2-}$ NaCl ( CuSO<sub>4</sub>  $\therefore$  [H<sup>+</sup>] = (2 × 0.005) = 0.01 M ® NH<sub>4</sub>CI <sup>®</sup> Na<sub>2</sub>CO<sub>3</sub>  $pH = -\log[H^{\dagger}] = -\log(0.01) = 2$ উত্তর: প্র Na<sub>2</sub>CO<sub>3</sub> ৯৬। নিচের কোনটির H<sup>+</sup> এর ঘনমাত্রা সর্বাধিক? ব্যাখ্যা: NaOH + H2CO3 -> NaCO3 + H2O [সি. বো. ২২; অনুরূপ প্রশ্ন: ম. বো. ২১; ঢা. বো. ১৫] ১০১। বিঙদ্ধ পানির pH এর মান কড? **③** pH = 11.5 বি. বো. ২১: অনুরূপ প্রস্ন: চ. বো. ১৬; চা. বো. ২১] ① pH = 2.5 $\P$  pH = 13.5 ক 7 এর সমান থ 7 এর বেশি উত্তর: গ pH = 2.5 প) 7 এর কাছাকাছি বি) 7 এর কম ব্যাখ্যা: যার pH এর মান কম তার H<sup>+</sup> এর ঘনমাত্রা সর্বাধিক। উত্তর: (ক) 7 এর সমান ৯৭। নিচের কোন দ্রবণের pH মান সবচেয়ে বেশি? ১০২।মাটির pH বৃদ্ধির জন্য ব্যবহৃত হয়-বি. বো. ১৯] রা. বো. ২১; অনুরূপ প্রশ্ন: চ. বো. ২৩, ১৭: কু. বো. ১৫) चे देउतिया অ ডলোমাইট ⊕ 10<sup>-2</sup> M HC/ 3 5 × 10<sup>-2</sup> M H<sub>2</sub>SO<sub>4</sub> গ্ৰ ডিএপি থে টিএসপি 10-4 M Na<sub>2</sub>CO<sub>3</sub> 10<sup>-1</sup> M NaOH উত্তর: 🕲 ডলোমাইট

Rhombus Publications

**উত্তর:** গু 10<sup>-1</sup> M NaOH

...... ACS, > Chemistry 1<sup>et</sup> Paper Chapter-4 ১০৩। 100 mL 0.1 M HC/ এর মধ্যে 100 mL 0.3 M NH4OH যোগ ১১০। মানব রক্ষে কোন বাফার দ্রবণ বিদ্যমান? করলে উৎপদ্ম দ্রবণের ক্ষেত্রে কোন তথ্যটি সঠিক নয়?

🚳 দ্রবণটির pH > 7

- প্রবণটি লাল লিটমাসকে নীল করবে
- প্রবণটি অমুধর্মী হবে
- খ্য দ্রবণটিতে এসডি বা ক্ষার যোগ করলে তার pH পরিবর্তন হবে না

উত্তর: 🕦 দ্রবণটি অমুধর্মী হবে

১০৪।মানুষের রক্তের pH হলো-কু. বো. ২৩; অনুরূপ প্রশ্না ব. বো. ২১, ১৭। সি. বো. ১৮; কু. বো. ১৭; ঢা. বো. ১৬, ১৫; চ. বো. ১৬; য. বো. ১৬; व. त्वा. ১७। मि. त्वा. ১৫।

**7.4** 

**@** 6.4

(9) 8.4

(T) 5.4

উত্তর: ক) 7.4

১০৫। অ্যাসিডোসিস মানুষের কোন কোষকে দুর্বল করে ফেলে? [य. বো. ২১]

ক) রক্তকোষ

ৰ) স্নায়ুকোষ

প) চোখের কোষ

ত্ব আবরণী কোষ

উত্তর: 🕲 স্নায়ুকোষ

১০৬। মাটির pH 11 হলে ফসল ফলানোর জন্য নিম্নের কোনটি প্রয়োজন?

[সি. বো. ১৭]

ক্তি টি.এস.পি

প্ৰ চুন

গে ডলোমাইট

গ্ৰ আমোনিয়াম কার্বনেট

উত্তর: 🚳 টি.এস.পি

বি. বো. ২১ ১০৭।উর্বর মাটির জন্য অত্যানুকৃল pH কত?

**③** 5 − 6

9 7-8

উত্তর: (গ) 7 - 8

# বাফার দ্রবণ ও বাফার দ্রবণের ক্রিয়াকৌশল

১০৮। নিচের কোন যৌগটি দিয়ে বাফার দ্রবণ তৈরি হয়?

[ঢা. বো. ২৩; অনুরূপ প্রশ্ন: রা. বো. ২৩; কু. বো. ২১]

(1) HCl & KCl

⊕ HNO<sub>3</sub> 
⊌ NH<sub>4</sub>NO<sub>3</sub>

(9) NaOH & Na2CO3

উত্তর: 🚳 HNO2 ও NaNO2

ব্যাখ্যা: HNO2 একটি দুর্বল এসিড এবং NaNO2 এই এসিডের লবণ। তাই HNO2 ও NaNO2 এর দ্রবণ হচ্ছে বাফার দ্রবণ।

১০৯। কোনটি অশ্লীয় বাফার দ্রবণ?

वि. वा. २७; जनुकार्थ क्षद्माः त्रा. वा. २७, २२; य. वा. २२)

- 30 mL 0.1 M HCl + 20 mL 0.1 M NaOH
- 30 mL 0.1 M CH₃COOH + 30 mL 0.1 M NaOH
- <sup>®</sup> 30 mL 0.1 M CH<sub>3</sub>COOH + 20 mL 0.1 M NaOH
- ② 20 mL 0.1 M CH<sub>3</sub>COOH + 20 mL 0.1 M NaOH

উত্তর: গ্র 30 mL 0.1 M CH<sub>3</sub>COOH + 20 mL 0.1 M NaOH

ব্যাখ্যা:  $n_{CH_3COOH} = 30 \times 10^{-3} \times 0.1 = 3 \times 10^{-3} \text{ mol}$ 

 $n_{N_0OH} = 20 \times 10^{-3} \times 0.1 = 2 \times 10^{-3} \text{ mol}$ 

এখানে বিক্রিয়া শেষে এসিড অতিরিক্ত থাকবে।

তাই অশ্লীয় বাফার দ্রবণ তৈরি হবে।

मि. जा. २०। ण. जा. २२। चनुद्रम बन्ना ह. जा. २১। नि. जा. ४४५ र. जा. ४८)

- <sup>®</sup> CH<sub>3</sub>COONa + CH<sub>3</sub>COOH
- 1 Na2HPO4 + H3PO4
- NaHCO<sub>3</sub> + H<sub>2</sub>CO<sub>3</sub>

উন্তর: 

® NaHCO<sub>3</sub> + H<sub>2</sub>CO<sub>3</sub>

777 1 [7. OIL '20] HA NA 0.01 M 50 mL 0.01 M 35 mL  $Ka = 6.8 \times 10^{\circ}$ দ্ৰবণ-১ দ্ৰবণ-২

দ্রবণ-1 ও দ্রবণ-2 পরস্পর মিশ্রিত করলে-

- (i) HA এর দ্রাব্যতাক্রাস পাবে
- (ii) মিশ্রণটির প্রকৃতি অশ্লীয় হবে
- (iii) মিশ্রণটি pH পরিবর্তনে বাধা দিতে সক্ষম নিচের কোনটি সঠিক?

@ i G ii

(a) i viii

iii viii

(1) i, ii v iii

উত্তর: 🕲 i, ii ও iii

ব্যাখ্যা: দ্রবণ-1 এর মোল সংখ্যা,

 $n_a = S_a V_a = 0.01 \times 50 \times 10^{-3}$  $= 5 \times 10^{-4} \text{ mol}$ 

<u> जुवन-2</u> थत स्थान मःখ्या,

 $n_a = S_b V_b = 0.01 \times 35 \times 10^{-3}$ = 3.5 × 10<sup>-4</sup> mol

দ্রবণ-1 ও দ্রবণ-2 এর মিশ্রণে বাফার দ্রবণ তৈরি হবে যা অশ্রীয় বাফার। কারণ HA দুর্বল এসিড এবং NaA সেই দুর্বল এসিডের লবণ। যেহেতু মিশ্রণে এসিড থাকরে তাই মিশ্রণটি অশ্লীয়। আবার NaA এর A<sup>-</sup> আয়নের প্রভাবে HA এর দ্রাব্যতাহ্রাস পাবে। যেহেত্ মিশ্রণটি বাফার দ্রবণ তাই দ্রবণে সামান্য এসিড বা ক্ষার যোগ করলে pH পরিবর্তনে বাধা দিতে পারবে ।

১১২। নিম্নের কোনটি সম-আয়তন 1 M NaOH দ্রবণের সাথে বাফার গঠন করবে? কু. বো. ২২

⊕ 0.1 M CH₃COOH

® 0.2 M CH₃COOH

<sup>®</sup> 1.0 M CH₃COOH

® 2.0 M CH<sub>3</sub>COOH

উত্তর: © 2.0 M CH₃COOH

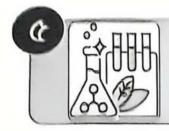
ব্যাখ্যা: দ্রবণে দুর্বল অম CH₃COOH এর ঘনমাত্রা অবশ্যই ক্ষার NaOH এর চেয়ে বেশি হতে হবে।

১১৩। নিচের কোনটি ক্ষারীয় বাফার দ্রবণ?

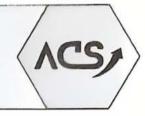
[সি. বো. ২২; অনুরূপ প্রশ্ন: দি. বো. ২২, ২১; কু. বো. ২১, ১৯, ১৬]

- ⊕ CH<sub>3</sub>COOH + CH<sub>3</sub>COONa
- NaOH + NaCl
- Na<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>SO<sub>4</sub>
- ® NH<sub>4</sub>Cl + NH<sub>4</sub>OH

উত্তর: 📵 NH<sub>4</sub>Cl + NH<sub>4</sub>OH


রাসায়নিক পরিবর্তন > ১৫১/ FRB Compact Suggestion Book..... ১১৪ । 100 mL 0.01 M HCl এবং 70 mL 0.02 M NH₄OH দ্রবর্ণ ব্যাখ্যা: উদীপকের দ্রবণে– একত্রে মিশালে মিশ্রণের প্রকৃতি হবে-[কু. বো. ২১] NH₄OH এর মোল সংখ্যা,  $n_b = S_b V_b = 0.15 \times 80 \times 10^{-3} = 0.012 \text{ mol}$ ক্তি অশ্রীয় বাফার (ৰ) ক্ষারীয় বাফার HC/ এর মোল সংখ্যা. (ছ) অম্বীয় নিরপেক্ষ  $n_a = S_a V_a = 0.25 \times 40 \times 10^{-3} = 0.01 \text{ mol}$ উত্তরঃ 🕲 ক্ষারীয় বাফার অবশিষ্ট NH₄OH এর পরিমাণ = 0.012 - 0.01 ব্যাপ্যা: 100 mL 0.01 M HC/ = 1 mL 1 M HC/ = 0.002 mol NH4OH 70 mL 0.02 M NH<sub>4</sub>OH = 1.4 mL 1 M NH<sub>4</sub>OH = 2 भिनियान NH4OH  $NH_4OH + HCI = NH_4CI + H_2O$  এখানে, ক্ষার এর আয়তন [∴ 1 মোল = 1000 মিলিমোল] বেশি। অর্থাৎ ক্ষার অবশিষ্ট থাকবে তাই মিশ্রণ ক্ষারীয় বাফার হবে। ১১৮। বাফার দ্রবণের কৌশলের সাধে সম্পর্কিত নিচের কোনটি? (রা. বো. ২১) ১১৫। কোনটি অশ্রীয় বাফার নয়? [मि. वा. २১] क) ना-भारिनयात नीठि TypO4 + Na2HPO4 অারহেনিয়াস সমীকরণ HS + Na<sub>2</sub>S গ্র অসওয়ান্ড লঘুকরণ নীতি 1 CO3 + HCO3 থে ফাজানের নীতি ® CH3COOH + CH3COONa উত্তর: (গ) অসওয়াল্ড লঘুকরণ নীতি উত্তর: (ব) CO<sub>3</sub><sup>2</sup> + HCO<sub>3</sub> ১১৯। ज्य्यीय वांकांत्र प्रवरांत्र pH निर्वायत क्वा निर्मायत निर्माय विकास वित ব্যাখ্যা: CO3- + HCO3 একটি ক্ষারীয় বাফার। বাকীগুলো অশ্লীয় বাফার। কারণ, মৃদু ক্ষার + অনুবন্ধী ক্ষারক = অশ্লীয় বাফার মৃদু ক্ষার + অনুবন্ধী অম্ল = ক্ষারীয় বাফার (ब) pH = pK + log [न्तर् H<sub>3</sub>PO<sub>4</sub> (দুর্বল এসিড) + Na<sub>2</sub>HPO<sub>4</sub> (অনুবন্ধী ক্ষারক) = অশ্রীয় বাফার HS-(দুর্বল এসিড)+ Na2S (অনুবন্ধী ক্ষারক) = অপ্রীয় বাফার CO<sub>3</sub><sup>2-</sup> (দুর্বল ক্ষারক) + HCO<sub>3</sub> (অনুবন্ধী অম্ল) = ক্ষারীয় বাফার CH3COOH (দুর্বল এসিড) + CH3COONa (অনুবন্ধী **কা**রক) = **অ**শ্লীয় বাফার ১১৬। হেভারসন- হ্যাসেলবাখ সমীকরণ দ্বারা করা যায়-(রা. বো. ১৭) (i) বাফার দ্রবণের pH গণনা ১২০। একটি বাফার দ্রবণে 0.2 মোল মনোবেসিক এসিড  $(pK_a = 4.8)$ (ii) বিয়োজন ধ্রুবক নির্ণয় এবং 0.02 মোল উক্ত এসিডের পটাশিয়াম লবণ আছে। এর pH (iii) জ্ঞাত pH এর বাফার দ্রবণ তৈরি কোনটি? সি. বো. ১৯ নিচের কোনটি সঠিক? **a** 2.8 (1) 3.8 @ i Gii (a) ii (s iii @ 4.8 (T) 5.8 ला i ଓ iii (1) i, ii G iii উত্তর: 🕲 3.8 উত্তর: 🕲 i, ii ও iii ১২১ | 50 mL 0.175 M HCOOH (Ka = 1.8 × 10<sup>-1</sup>) দ্রবদের মধ্যে ব্যাখ্যা: হেন্ডারসন- হ্যাসেলবাখ সমীকরণটি হলো-50 mL 0.09 M NaOH দ্রবণ যোগ করলে সৃষ্ট দ্রবণের pH কত  $pH = pKa + log \frac{}{|Q_{H}|}$ হবে? [मि. **(वा. )**9] **10.2305** (a) 5.9673 সমীকরণটি দ্বারা: বাফার দ্রবণের pH গণনা করা যায়। (9) 5.6957 ® 3.7695 \* নির্দিষ্ট pH এর বাফার প্রস্তুত করার জন্য কত অনুপাতে লবণ ও উত্তর: 🕲 3.7695 অস্ত্র মিশ্রিত করা দরকার তা জানা যায়। ১২২। হ্যান্ডারসন হ্যাসেলবাখ সমীকরণ দ্বারা করা যায়- কিরোজন ধ্রুবক নির্ণয় করা যায়। ব্রা. বো. ১৭ i. বাফার দ্রবণের pH গণনা ১১৭। 80 mL 0.15 M NH<sub>4</sub>OH দ্রবর্ণে 40 mL 0.25 M HC/ দ্রবর্ণ ii. বিয়োজন ধ্রুবক নির্ণয় যোগ করা হলো। উদ্দীপক মিশ্রণে কোনটি অতিরিক্ত থাকবে? iii. জ্ঞাত pH এর বাফার দ্রবণ তৈরি মি. বো. ২৩; অনুরূপ প্রশ্ন: দি. বো. ২২ নিচের কোনটি সঠিক? (ৰ) 20 মিলিমোল HCI (ক) 40 মিলিমোল NH₄OH @ i, ii (1) ii, iii (च) 2 भिनिस्मान NH₄OH (न) 2 भिनिस्भान HCI 1, iii iii vii, i

Rhombus Publications


উত্তর: © 2 মিলিমোল NH₄OH

উত্তর: 🕲 i, ii ও iii

...... ACS, > Chemistry 1st Paper Chapter-4 নিজেকে যাচাই করো ১। কোনটি অম্লীয় বাফার নয়? ১১। সাম্য ধ্রুবকের মান-⊕ H<sub>3</sub>PO<sub>4</sub> + Na<sub>2</sub>HPO<sub>4</sub> HS<sup>-</sup> + Na<sub>2</sub>S (i) তাপমাত্রার উপর নির্ভরশীল 1 CO3 + HCO3 <sup>®</sup> CH<sub>3</sub>COOH + CH<sub>3</sub>COONa (ii) প্রভাবক দারা প্রভাবিত হয় না २। 80 mL 0.15 M NH₄OH দ্রবণে 40 mL 0.25 M HC/ দ্রবণ যোগ করা (iii) ক্ষুদ্র হলে মিশ্রণে বিক্রিয়ক বেশি থাকে হলো। উদ্দীপক মিশ্রণে কোনটি অতিরিক্ত থাকবে? নিচের কোনটি সঠিক? (ক) 40 মিলিমোল NH₄OH থ 20 মিলিমোল HC/ i vi iii & i (F) M ii 8 iii (i, ii e iii প) 2 মিলিমোল HCI ® 2 मिनियान NH₄OH ১২। নিম্নের কোন বিক্রিয়ার Kp > Kc? ৩। M<sub>2</sub>(g) + D<sub>2</sub>(g) ⇒ 2MD(g); ΔH = + ve এই বিক্রিয়ায়-(i) তাপমাত্রা বৃদ্ধিতে উৎপাদ বৃদ্ধি পায় ⓐ  $\frac{1}{2}$  H<sub>2</sub>(g) +  $\frac{1}{2}$  I<sub>2</sub>(g)  $\Rightarrow$  HI(g) (ii) সাম্য क्ष्विक K, ७ K, এর মান সমান नय (iii) সাম্যাবস্থার উপর চাপের প্রভাব নেই  $\P$  PC $l_5(g) = PCl_3(g) + Cl_2(g)$  $\textcircled{3} 2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$ নিচের কোনটি সঠিক? ১৩। X<sub>2</sub>(g) + 3Y<sub>2</sub>(g) = 2XY<sub>3</sub>(g); △H = - ve বিক্রিয়াটির সাম্যাবস্থায় X<sub>2</sub>, @ivi (ii & ii mi viii (B) i, ii (S) iii  $Y_2$  এবং  $XY_3$  এর ঘনমাত্রা যথাক্রমে  $0.18,\,0.56$  এবং  $0.12\,\,{
m molL^{-1}}$ ।  $8 \mid 2AB_2(g) + C_2(g) \Rightarrow 2A(g) + 2B_2(g); \Delta H = -XkJ \text{ mol}^{-1}$ বিক্রিয়াটির K, এর মান হলো-বিক্রিয়াটির-**3** 0.45 @ 1.19 1 2.2 **3** 2.9 (i) চাপ বৃদ্ধি করলে উৎপাদ হ্রাস পাবে ১৪। কোন তাপমাত্রায় পানির আয়নিক গুণফলের মান সর্বাধিক? (ii) তাপমাত্রা বৃদ্ধি করলে উৎপাদ হ্রাস পাবে (iii) বিক্রিয়াটির উভয় দিকের সুগম্যতা আছে <sup>(3)</sup> 25°C ⑨ 30°C ® 100°C নিচের কোনটি সঠিক? ১৫। নিচের কোন এসিডটি সবচেয়ে শক্তিশালী? (a) i v ii (1) i (8) iii vii ( i, ii G iii HF @ HCI 1 HBr (1) HI ৫ | PCl<sub>5</sub>(g) = PCl<sub>3</sub>(g) + Cl<sub>2</sub>(g); ΔH = + 124 k.Jmol<sup>-1</sup> বিক্রিয়াটিতে ১৬। তাম বা ক্ষারের বিয়োজন মাত্রার সাথে দ্রবণের ঘনমাত্রার সম্পর্ক কোনটি? চাপত্রাস করলে- বর্গের ব্যস্তানুপাতিক ক) ব্যস্তানুপাতিক (i) Cl2 এর পরিমাণ বৃদ্ধি পায় (ii) বিক্রিয়া সম্মুখমুখী হয় গ্ৰ সমানুপাতিক বর্গমৃলের ব্যস্তানুপাতিক (iii) K, अत्र मान वृक्ति शाय ১৭ | H<sub>3</sub>PO<sub>2</sub> এর ক্ষারকত্ব কত? নিচের কোনটি সঠিক? ரு i பே (R) 8 @ i vii (1) 2 (A) O iii e iii (1) i, ii (9 iii ৬। নিচের কোন পদ্ধতিটি তাপোৎপাদী? ১৮। এসিডের শক্তির কোন ক্রমটি সঠিক? ঘনীভবন বিষ্ণান বিভাজনবিষ্ণান বিজ্ঞানবিষ্ণান বিজ্ঞানবিষ্ণান বিজ্ঞানবিষ্ণান বি ম্বি বাস্পীভবন (a) H<sub>2</sub>SO<sub>3</sub> > HC/O > HNO<sub>3</sub> > H<sub>3</sub>PO<sub>4</sub> 450 - 550°C (1) HNO3 > H3PO4 > H2SO3 > HC/O 9 |  $2SO_2(g) + O_2(g) =$ 2SO3(g); HC/O > HNO<sub>3</sub> > H<sub>3</sub>PO<sub>4</sub> > H<sub>2</sub>SO<sub>3</sub>  $\Delta H = -198 \text{ kJ/mol}$ (1) H<sub>2</sub>PO<sub>4</sub> > H<sub>2</sub>SO<sub>3</sub> > HNO<sub>3</sub> > HC/O বিক্রিয়াটির বৈশিষ্ট্য হলো-১৯। উদ্দীপকের বিক্রিয়াটির ক্লেত্রে-(i) সম্মুখ বিক্রিয়ার আয়তনের সংকোচন ঘটে (i) তাপমাত্রা বৃদ্ধি পেলে সাম্যের অবস্থান বামদিকে সরে যায় (ii) অধিক পরিমাণ O2 যোগে বিক্রিয়ার সাম্যাবস্থা বামে সরে যাবে। (ii) চাপ বাড়লে K<sub>p</sub> এর মান বাড়বে (iii) পশ্চাৎমুখী বিক্রিয়াটি তাপহারী হবে (iii) Kp ଓ Kc এর মান সমান নিচের কোনটি সঠিক? (7) ii Tii viii নিচের কোনটি সঠিক? (1) ii viii ( i, ii v iii ৮। উভমুখী বিক্রিয়ার বৈশিষ্ট্য হলো-@ivii iii e ii (F) (P) i v iii বিক্রিয়াটি শেষ হয় ২০। 450°C তাপমাত্রায় HI 35% বিয়োজিত হলে Kp এর মান কত? উভয়দিকের বিক্রিয়ার হার সমান হয় না @ 0.7250 atm @ 0.0825 atm @ 0.0725 atm 3 0.8250 atm পাম্যাবস্থার আসার প্রবণতা ২১। বিক্রিয়াটির সাম্প্রেবকের মান কত? থ্য প্রভাবকের ভূমিকা আছে ⊚ 2.112 (a) 1.763 ® 0.473 (9) 1.256 ১। সবুজ রসায়নে-২২। কোন বিক্রিয়াতে পানি একটি ব্রনস্টেড লাউরি অম্র হিসেবে ক্রিয়া করে? (i) দ্রাবক হিসাবে CCI4 ব্যবহৃত হয়  $\textcircled{1} H_2O + NH_3 \rightarrow NH_4 + OH_4$ (ii) বর্জ্য উৎপাদন সর্বনিমু রাখা হয় ⊕ H<sub>2</sub>O + HCI → H<sub>3</sub>O<sup>+</sup> + CI (iii) বিষক্রিয়ামুক্ত দ্রব্যাদি ব্যবহৃত হয় 1  $H_2O + SO_3 \rightarrow H_2SO_4$  $\textcircled{9} \text{ H}_2\text{O} + \text{CO}_2 \rightarrow \text{H}_2\text{CO}_3$ নিচের কোনটি সঠিক? ২৩। মাটির অম্রত্ব বৃদ্ধি পেলে pH নিয়ন্ত্রণ করার জন্য কোনটি ঘোগ করতে হয়? 3 i, ii ( ii, iii 1, iii (1) i, ii, iii ৰ ফসফেট গ্ৰ সালফেট 🕲 চুন বি) নাইট্রেট ১০। তাপহারী বিক্রিয়া হলো-২৪। 3.3% Na2CO3 দ্রবণের pH কত? চি. বো. ২২; অনুরূপ প্রশ্ন: সি. বো. ২২ (i) X + Y + তাপ → উৎপাদ ○ 13.8 (12.7) @ 11.5 ® 10.5 (ii)  $R + Z \longrightarrow$  উৎপাদ;  $\Delta H = + ve$ ২৫। 5 mL 0.02 M  $H_2SO_4$  দ্রবণে 15 mL পানি যোগ করলে মিশ্রণের pH (iii) L + T → উৎপাদ + তাপ কত হবে? নিচের কোনটি সঠিক? @ 1.85 (a) 2.00 @ 2.15 **3** 2.30 @i vii @ i v iii (1) i, ii v iii (1) ii (9) iii 9 (4) 9 (3) উত্তরপত্র (9) 2 (4) 0 9 8 (F) ¢ **(4)** 4 9 b 8 30 **3** 22 (1) 25 1 (1) (4) (1) 50 23 (4) (1) **(4)** 38 (1) 30 26 20 20 22 (1) ২৩ (4) 28 20



# কর্মমুখী রসায়ন Vocational Chemistry



#### **Board Questions Analysis**

#### गुष्कामीन क्षप्त

| বোর্ড<br>সাল | ঢাকা | ময়মনসিংহ | রাজশাহী | কৃমিল্লা | যশোর | চট্টথাম | বরিশাল | সিলেট | দিনাজপুর |
|--------------|------|-----------|---------|----------|------|---------|--------|-------|----------|
| ২০২৩         | ۷    | ٥         | ٥       | ٥        | ٥    | ٥       | ۵      | ૨     | ٥        |
| २०२२         | ١    | ٥         | ۲       | ۵        | ٥    | -       | ۵      | ١     | ٥        |

#### বহুনিৰ্বাচনি প্ৰশ্ন

| বোর্ড<br>সাল | ঢাকা | ময়মনসিংহ | রাজশাহী | ক্মিল্লা | যশোর | চট্টগ্রাম | বরিশাল | সিলেট | <u> </u> |
|--------------|------|-----------|---------|----------|------|-----------|--------|-------|----------|
| ২০২৩         | 8    | v         | 8       | 2        | e    | 2         | 8      | 9     | 9        |
| ২০২২         | 0    | ર         | 9       | 2 =      | 0    | 2         | 9      | 8     | 9        |

# এই অধ্যায়ের গুরুত্বপূর্ণ ধারণা ও সূত্রাবলি

🗖 বিভিন্ন প্রকার থাদ্য উপাদান ও তাদের কাজ:

খাদ্য নিরাপত্তা, খাদ্য উপাদান

- বাদ্য নিরাপত্তা নীতি তিনটি ভিত্তির উপর প্রতিষ্ঠিত:
  - (i) পর্যান্ত থাদ্য প্রান্তি
  - (ii) খাদ্যের সহজ্বভাতা/খাদ্য গ্রহণের সামর্থ্য
  - (iii) থাদোর সঠিক বাবহার
- বিভিন্ন প্রকার সার, এদের উৎস ও ব্যবহার:

| সার                     | উদাহরণ                                                                                                                                                                                   | ব্যবহার                            |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| নাইট্রোজেন<br>যুক্ত সার | ইউরিয়া (H <sub>2</sub> N – CO – NH <sub>2</sub> )<br>অ্যামোনিয়াম নাইট্রেট (NH <sub>4</sub> NO <sub>3</sub> )<br>অ্যামোনিয়াম সাপফেট [(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> ] | উদ্ভিদের বৃদ্ধিতে<br>সহায়ক        |
| ফসফরাস<br>যুক্ত সার     | টিএসপি [Ca(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub> ]<br>ডাই অ্যামোনিয়ায কসফেট<br>[(NH <sub>4</sub> ) <sub>2</sub> HPO <sub>4</sub> ]                                              | উদ্ভিদের মৃদের<br>বৃদ্ধিতে সহায়ক  |
| পটাশিয়াম<br>যুক্ত সার  | মিউরেট অব পটাস (KCI)<br>পটাশিয়াম নাইট্রেট (KNO <sub>3</sub> )                                                                                                                           | উডিদের ফুল ও<br>ফল ধারণে<br>সহায়ক |

থাদ্য উপাদান (i) শেতসার ও শর্করা (i) দেহে শক্তি সরবরাহ করে জাতীয় পদার্থ (কার্বোহাইড্রেট) (ii) আমিৰ বা প্ৰোটিন (ii) দেহের বৃদ্ধি সাধন ও ক্লয়পূরণ করে (iii) তেল ও চর্বি বা (iii) শক্তি সরবরাহ করে স্লেহজাতীয় পদার্থ (iv) ভিটামিন (iv) রোগ প্রতিরোধ ক্ষমতা বৃদ্ধি করে খনিজ লবণ (v) দেহের গঠন, ক্ষয়পুরণ রক্ষণাবেক্ষণ করে (vi) আঁশজাতীয় পদার্থ (vi) কোষ্ঠকাঠিন্য জনিত রোগ থেকে রক্ষা (শাকসবজি) করে (vii) দেহের গঠন, রাসায়নিক/মেটাবলিক (vii) পানি পরিবর্তনের মাধ্যমে কাজের সমন্বয় সাধন করে

Rhombus Publications

# t.me/admission\_stuffs

বিচিন্ন প্রকার ভিটামিনের নাম, উৎস এবং এর অভাবে সৃষ্ট রোগ:

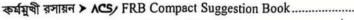
| দ্ৰাণীন্যতা      | চিট/মিল                      | অভাবচ্চনিত রোগ     |
|------------------|------------------------------|--------------------|
|                  | A (ব্রটিন্দ)                 | রাতকানা            |
| চৰ্বিতে দ্ৰবনীয় | D (ক্যাদসিফেরল)              | <u>রিকেটস</u>      |
| (Fat soluble)    | E (উকোহকরদ)                  | মাংসপেশিতে টান     |
|                  | K (खिरना-कृरेनन)             | दक्चद्रप           |
|                  | B <sub>1</sub> (খ্যুন্নামিন) | বেরিবেরি           |
| -6               | B <sub>2</sub> (নিবোক্লাভিন) | <b>ট্রো</b> নাইটিস |
| পালিতে দ্রবন্টার | Bu (লিন্ডিডকুল)              | ভারমাটাইটিস        |
| (Water soluble)  | B <sub>12</sub> (ফলিক এসিচ)  | <b>ब</b> ङ्ग्नाजा  |
|                  | C (প্ৰসক্ৰবিক এসিড)          | <u>ক্</u> বার্ভি   |

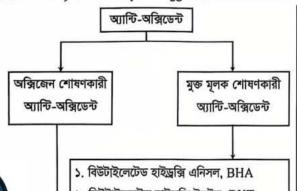
#### বাদ্য সংরক্ষণ প্রক্রিয়া, প্রিজারভেটিভস

- 🛘 দ্রিজারাভেটিতস প্রবানত দুই প্রকার। বেমন:
  - (i) প্রাকৃতিক কুড জিলারাভটিতস
  - (a) কৃত্রিম কৃত প্রিচারতেটিতন
- প্রাকৃতিক কৃত প্রিজারতেটি চন:
  - (i) খদ্য লবদ
- (ন) ভিনেগার
- (回) 配闸
- (iv) व्यानदारन
- (৮) দরিবার তেল
- খাদ্যবন্ধর শুহুররাণ পরাতি:
  - লিদিষ্ট অনুমান্ত্রের বাদ্যাবস্ত্রতে বাকা পানি বা জলীর বাস্পের পরিমাদ এবং বাদ্যাবস্তুর চারপাশের পরিবেশে থাকা জলীর বাস্পের পরিমাশের অনুপারকে 'পার্টন-সক্রিরতা' (a<sub>2</sub>) বা water প্রযোগান্ত্র বলা হর।'
  - > পानि-निष्टिक्टा (au) अब मान 0 1.0 अब मार ४वा इत ।
  - খাদ্যবস্তুতে ব্যক্তেরিরা বৃদ্ধির জন্য 2, > 0.90; ঈন্ট জন্মানোর জন্য 2, > 0.88 হবং ছব্রাক জন্মানোর জন্য 2, > 0.80 হতে হর।
  - শাল্যবস্তুর কোঁটাক্তহতকরদের কেত্রে পানি-সক্তিরতার (a, ) মান
     0.6 জ্বর কম রংল হর।
  - প্রবর দূর্ব তাপে পচনদীল খাল্যবস্তুকে ভকানো হলে ঐ দব খাল্যবস্তুর বহির্তুক রা উপরিতল শক্ত হয়ে থাকে। কলে পরিবেশ খেকে ফলীর কম্প বল্ল্যবস্তুর ভেতরে প্রবেশে বাধা পার, একে খাল্যবস্তুর কেন্-হার্টেনিং (case bardening) কলে।
- বাদ্যবন্তর শীত্রকরণ পদ্ধতি:
  - ভিজিং বা শীতনকরণ:

    এ ক্তরে 0°C 4°C দিল্ল তাপনাক্রার সাধারণ জ্রিজে খাদ্যবস্তু
    সংরক্ষণ করা হর।

Amornous Publications


- > ভিপক্রিজিং বা হিমায়ন:
  এ স্তরে 5°C ক্ষেকে 18°C নিম্ন তাপমাজার ক ভিপ জিকিং এ
  খাদ্যবস্তু সংরক্ষণ করা হয়।
- ভিপ ক্রিজিং অবস্থার ব্যাকটেরিয়া 5°C ধ্বেক 10°C
   তাপমাত্রার সম্পূর্ণভাবে নিষ্ক্রিয় হয়ে পড়ে।
- 🛘 কৃত্রিম কৃত প্রিজারভেন্টিভসঃ


আন্তর্জাতিকভাবে অনুযোলিত রাসায়নিক কৃত প্রিক্সারভেটিতসমূহ তিন শ্রেণিভুক্ত। যথা:

- (i) আন্টি মাইক্রোবিরাল এজেন্ট
- (ii) जानि-विद्वाहरू अरङ्गे
- (iii) কিলেটিং এক্লেউ
- 🗖 স্থান্টি মাইক্রোবিন্নাল এজেন্ট (Anti Microbial Agent):
  - 🗲 খাদ্যদ্রব্যের ব্যাকটেরিয়া, দোল্ড ও ঈস্টের বৃদ্ধি প্রতিহত করে।
  - এসব রাসারনিক পদার্ষ মাইক্রো বর্গানিজয় কোবের সেমব্রেন
     ফাটিয়ে সের এবং এনজাইয়ের ক্রিয়া রোধ করে থাকে।
  - > এসব প্রিজারভেটিভস অন্তর্ধর্মী হর।
  - च्यान्वि महिद्याविवान विक्वनिमृदः

| অ্যান্টি মাইজোবিয়াল পদাৰ্থ                                                          | কার্যকরী pH | অনুমোদিত মাত্রা |
|--------------------------------------------------------------------------------------|-------------|-----------------|
| <ul> <li>(i) সোভিয়ায় বেনজোয়েট</li> <li>C<sub>6</sub>H<sub>5</sub>CO₂Na</li> </ul> | pH < 4.5    | 200 ррт         |
| (ii) সোভিয়াম সরবেট<br>C₅H <sub>7</sub> CO₂Na                                        | pH < 6.5    | 200 ppm         |
| (iii) অ্যাসিটিক এসিড                                                                 | pH < 4.8    | 6 – 10%         |
| (iv) প্রোপানয়েটসমূহ<br>(CH₃CH₂CO₂)₂Ca                                               | pH < 4.9    | 0.1 – 0.3%      |
| (v) KHSO <sub>3</sub> , SO <sub>2</sub>                                              | -           | 200 ppm         |
| (vi) সাইট্রিক এসিড<br>C₅H§O <sub>7</sub>                                             | pH < 4.5    | 200 – 350 ррп   |
| (vii) NaNO <sub>3</sub> , NaNO <sub>2</sub>                                          | -           | 120 ppm         |

- 🗖 অ্যান্টি-অক্সিডেন্ট এক্সেন্ট (Anti-Oxidant Agent):
  - > চর্বি বা লিপিড অণুর জারণ-বিযোজনে অংশ্যহণকারী O₂ অণু ও
     লিপিড অণু বেকে সৃষ্ট মুক্ত মূলককে শোবণ করে চেইন বিক্রিরাকে
     প্রতিহত করে দেয় এবং অণুজীবকে ধ্বংস করে খাদ্যের পচন রোধ
     করে।





- ADMISSION
  --STUFFS--
- ২. বিউটাইলেটেড হাইড্রব্সি টলুইন, BHT
- ৩. টারসিয়ারি বিউটাইল হাইড্রকুইনোন, TBHQ
- 8. প্রোপাইল গ্যালেট (Propyl gallate)
- ১. ভিটামিন-C ২. ভিটামিন-E ৩. সালফাইট লবণ OH OH C(CH<sub>3</sub>)<sub>3</sub> C(CH<sub>3</sub>)-(CH<sub>3</sub>)<sub>3</sub>C O-CH3 BHA (C<sub>11</sub>H<sub>16</sub>O<sub>2</sub>) BHT (C<sub>15</sub>H<sub>24</sub>O) OH C(CH<sub>3</sub>)<sub>3</sub>  $0 = C - 0 - C_3H_7$ OH Propyl gallate (C<sub>10</sub>H<sub>12</sub>O<sub>5</sub>) TBHQ (C<sub>10</sub>H<sub>14</sub>O<sub>2</sub>)
- আন্টি-অক্সিডেন্টসমূহ দুই শ্রেণিতে বিভক্ত:
  - (i) প্রাকৃতিক অ্যান্টি-অক্সিডেন্ট
  - (ii) অনুমোদিত কৃত্রিম অ্যান্টি-অক্সিডেন্ট
- প্রাকৃতিক অ্যান্টি-অক্সিডেন্টসমূহ:

| প্রাকৃতিক অ্যান্টি-অক্সিডেন্ট | খাদ্যবস্তুর উৎস                                                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------|
| ভিটামিন-C বা এসকরবিক এসিড     | টক ফল, বিভিন্ন শাকসবজি, কাঁচা<br>মরিচ ইত্যাদি                                                    |
| ভিটামিন-E বা টকোফেরল          | সবুজ শাক-সবজি, শস্য-দানা বা<br>বীজ, গমের অংকুর, উদ্ভিজ্জ তৈল<br>(সয়াবিন তৈল, সরিষা তৈল) ইত্যাদি |
| বিটা (β) ক্যারোটিন            | মিষ্টি কুমড়া, মিষ্টি আলু, টমেটো,<br>গাজর, বিভিন্ন ফল যেমন তরমুজ,<br>জাম, এপ্রিকট ইত্যাদি        |
| অধাতু সেলেনিয়াম, Se(34)      | মাছ, মুরগির মাংস, ডিম, রসুন<br>ইত্যাদি                                                           |

কৃত্রিম আন্টি-অক্সিডেন্টসমূহ: আন্তর্জাতিক খাদ্য সংস্থা কর্তৃক
অনুমোদিত কৃত্রিম আন্টি-অক্সিডেন্টসমূহ হলো BHA, BHT,

 TBHQ ও প্রোপাইল গ্যালেট।

#### ☐ কিলেটিং এজেন্ট (Chelating Agent):

- ➢ খাদ্যবস্তুর মধ্যে থাকা অবস্থান্তর ধাতুর আয়ন (Fe²+, Fe³+, Co²-,
  Cu²-) তৈল-চর্বির জারণ-বিযোজন ক্রিয়ায় প্রভাবকরপে ক্রিয়া
  করে এবং বিভিন্ন ভিটামিনকে নট করে।
- খাদ্যবস্তুর মধ্যস্থ এসব অবস্থান্তর ধাতৃর আয়নকে দুই বা ততোধিক সন্নিবেশ বন্ধন দ্বারা আবদ্ধ করতে যে রাসায়নিক যৌগ ব্যবহৃত হয়, এদেরকে কিলেটিং এজেন্ট বলে।
- ➤ খাদ্যবস্তুর সংরক্ষণে শিল্পক্ষেত্রে সবচেয়ে বেশি ব্যবহৃত কিলেটিং এজেন্ট হলো EDTA (Ethylene Diamine Tetra Acetate)

$$\ddot{N} - CH_2 - CH_2 - \ddot{N} - CH_2 - CH_2 - \ddot{N}$$
 $CH_2 - COO$ 
 $CH_2 - COO$ 

#### ভিনেগার

#### ভিনেগার:

- স্ব্যাসিটিক এসিড (CH₃COOH) এর (6 10)% জলীয় দ্রবণ হলো ভিনেগার। এতে শতকরা (90 – 94)% প্রান্থি থাকে।
- ভিনেগারের pH মান 4.74।
- ভাঁখ অথবা খেজুরের রসে (16 20)% সুক্রোজ চিনি
   (C₁₂H₂₂O₁₁) থাকে।
- ঈয় থেকে নিঃসৃত ইনভারটেজ ও জাইমেজ এনজাইমের প্রভাবে সুক্রোজের ফার্মেন্টেশন বা গাঁজন ঘটে।
- ➢ (NH<sub>4</sub>)₂SO<sub>4</sub> এবং (NH<sub>4</sub>)₃PO<sub>4</sub> লবণ দুইটি ঈল্টের বৃদ্ধিতে
  সহায়তা করে।
- মল্ট ভিনেগার পদ্ধতিতে ভিনেগার প্রস্তুতি:

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\overline{c}_{10}} C_6H_{12}O_6 + C_6H_{12}O$$
চিনি (সুক্রোজ)  $C_6H_{12}O_6 + C_6H_{12}O_6$ 

$$2C_6H_{12}O_6$$
 জাইমেজ  $20^{\circ}C - 24^{\circ}C$  ইথানল  $20^{\circ}C - 24^{\circ}C$  তা সাসিটো ব্যাকটর  $2CH_3CH_2OH(10\%) + O_2$   $CH_3COOH + H_3COOH +$ 

CH₃COOH + H₂O অ্যাসিটিক এসিড (6%)

প্রিজারভেটিভরপে ভিনেগারের ক্রিয়াকৌশল:

 $CH_3COOH = CH_3COO^- + H^+$ জীবস্ত ক্ষতিকর ব্যাকটেরিয়া  $+ H^+ \rightarrow \gamma$ ত/নিদ্ধিয় ব্যাকটেরিয়া

#### ভিনেগারের ব্যবহার:

- খাদ্যবস্তুকে ব্রাইন বা গাঢ় লবণের পানিতে ভুবিয়ে নিলে খাদ্য থেকে পানি দ্র হয় । এরপর ঐ খাদ্যবস্তুকে ভিনেগারের মাধ্যমে সিক্ত করে নেয়া হয় । এরপ প্রক্রিয়াকে পিকলিং (Pickling) বলে ।
- সবিজি (যেমন: শসা), মাছ ও মাংস ভিনেগারে পিকলিং করে
   সংরক্ষণ করা যায়।
- ▶ এসিড মাধ্যমে পিকলিং বা আচার তৈরিতে ভিনেগারের গুরত্ব সবচেয়ে বেশি।

Rhombus Publications

# t.me/admission\_stuffs

784

#### HSC পরীক্ষার্থীদের জন্য বাছাইকৃত সূজনশীল প্রশ্নোন্তর

# প্রস্কান্ত $+ H_1O$ $\xrightarrow{\overline{c} + 61 \text{ grid } \overline{C} \text{ W}} A + B$ $A + B \xrightarrow{\overline{en} \overline{c} \overline{c} \overline{v} \overline{v}} C + D$ $C + O_1 \xrightarrow{\overline{en} \overline{b} \overline{c} \overline{c} \overline{v}} M + H_1O$

- (क) मण्डे वित्तगांत कारक वरण? । म. त्य. २०: ता. ता. २२, २): च त्य. २): म. त्य. २)।
- (খ) খাদ্য সন্তাক্ষণে লবণের ভূমিকা ব্যাখ্যা কর।

मि. त्य. २०: इ. त्य. २०: द त्य. २०: य त्य. २०।

(গ) উদ্দীপকের M যৌগটির উৎপাদন পদ্ধতি বর্শনা কর।

| जा. त्य. २०: कनुत्रन धक्षः च. त्य. २०, २२, २): जू. त्या. २०, २२, २): इ. त्या. २०, २), ७३, ७२: नि. त्या. २०, २): नि. त्या. २०, २२, २), ७२: च. त्या. २०, २२, २): इ. त्या. २२, २): च. त्या. २२, २): इ. त्या. २)

(ঘ) M যৌগটি থাদ্য সংব্রহ্মণে তুমিকা রাখে কিনা? বিশ্রেষণ কর।

| हा. त्या. २०: चनुत्रण क्षप्तः कृ. त्या. २०, २२: य. त्या. २०, २२: नि. त्या. २०, २२: नि. त्या. २२: हा. त्या. २२: व. त्या. २२: य. त्या. २२:

সমাধান:

- আফুরিত বার্লি বা অন্য কোনো শস্যের দানা ফারসেন্টেশনের মাধ্যমে উৎপদ্ধ ইখানোরিক এসিতের (6-10)% ফদীয় দ্রবণকে মন্ট তিনেগার কলে।
- খাদ্য লবণ (NaCI) ঘরা খাদ্য সংবক্ষণ করা যায়। পচসনীল খাদ্যবিষ্কাক খাদ্য লবণ (NaCI) বা এর গাড় দ্রবণ ঘারা সংরক্ষণ প্রক্রিয়াকে কিউরিং (Curing) বলা হয়। NaCI খাদ্যবিষ্কর পানি অসমোসিস প্রক্রিয়ার শোষণ করে নেয়, ফলে খাদাদ্রবের মধ্যে অণুজীব জন্মনের অনুভূল পরিবেশ পায় না। মাচ, মাংস, কাঁচা ফল ও সবজিকে কিউরিং পত্ততিকে সংরক্ষণ করা যায়। এক্ষেত্রে (7-8)% NaCI বা এর অবিক (15-20)% গাঢ় দ্রবণ বাবহার করে কাঁচা আম, আমলকি, চালতা, জলপাই, গাজর, কাঁচামরিচ ইত্যালিকে সংবক্ষণ করা হয়। অপরুদিকে সামুদ্রিক ইনিশ মাছ সংরক্ষণেও লবণের ভূমিকা রয়েছে।
- ট্রদ্দীপকের M যৌগটি ভিনেগার যা ইখানোরিক এসিতের (6 10)% জনীর দ্রবণ। নিতে এর উৎপাদন প্রবৃতি বর্ণনা করা হলো:
  চিনি বা সূত্র্কাজ (C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>) ইন্চারটেজ এনজাইমের উপস্থিতিতে আর্দ্র বিশ্রেবিত হরে গ্লুকোজ ও ফ্রুট্রোজের সম্মোলার মিশ্রণ (ইনচার্ট চিনি) তৈরি করে।

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\overline{37^{\circ}C}} C_6H_{12}O_6 + C_6H_{12}O_6$$
(সুকোজ)

ইনতার্ট চিনি

উৎপন্ন ইনভার্ট চিনি জাইমেজ এনজাইমের প্রভাবে বিয়োজিত হয়ে ইথানল ও কার্বন-ভাই-অক্সাইত এ পরিণত হয়।

প্রস্তুত ইধানলের 10% জলীয় দ্রবণ 'অ্যাসিটো ব্যাকটর' এর উপস্থিতিতে বারুর অক্সিজেন ঘারা ভারিত হয়ে লঘু অ্যাসিটিক এসিতে পরিণত হয়।

 $CH_3CH_2OH~(10\%) + O_2 \xrightarrow{\mbox{sulfattin-distrib}} CH_3COOH + H_2O$  ইথানল  $\mbox{sulfattin} (C_{12}H_{22}O_{11})$  থেকে 'M' বা  $CH_3COOH$  উৎপাদন করা হয়।

Rhombus Publications

ত ক্দীপক্ষে M যৌগটি হুণো ভিদেশার যা একটি সহন্তলতা, উৎকৃষ্ট ও উদ্দুত্র্যাদের প্রিঞ্জার দেটিভস। এটি খাদদ্রেয়ে অ্ট্রীর পরিবেশ সৃষ্টির মাধ্যমে ব্যাকটেবিয়ার বৃত্তি প্রতিহত করে। ভিনেশায়ের ইখাদোরিক এসিত H' আয়াল উৎপন্ন করে। সামান্য H' জায়নের উপস্থিতি ব্যাকটিবিয়ার Activo Sito কে প্রশমিত করে।

 $CH_1COOH(aq) \rightleftharpoons CH_1COO^*(aq) + H^*(aq)$ 

জীবন্ত কবিকর ব্যাকটেয়য় + H — সৃত/নিজিয় ব্যাকটেয়য়া ভিনেশার ভাগে বৃত্তিকর ও অল্লভারম্ব ছওয়ায় বিধিন্ন ফণের আচায় সংলক্ষেনে, সাপের ভাগ বৃত্তি করতে, মাছ-মাংস ক্সন্নার কাজে ব্যবদ্ধত হয়। কিনেগারের সংস্পর্শে শ্রোটিন অণুতে বিযোজন সহজে ঘটে। মাছ-মাংসে উপস্থিত তেল ও চর্বির জারণ ক্রিরার মাধ্যমে মাছ-মাংস নট হয়ে টক ভান ও দুর্শন্ধ্যক্ত হয়। মাছ-মাংসকে ভিনেগারের সাধ্যেরে প্রক্রিয়াজাত করতে মাছ-মাংস অণুজীব দারা আক্রান্ত হয় লা এবং এয় পুটি মানেরও তেমন কোনো পরিবর্তন ঘটে লা। একট সাথে মাছ-মাংসের সঠিক বর্ণও অপরিবর্তিত থাকে।

সাদান তৈরিতে তিনেগার বাবহার করা হয়। পৌয়াজ, রসুন, কাঁচামন্ত্রিচ, শীতের বিভিন্ন সবজি, মাসে প্রতৃতি তিনেগারে তুকিয়ে সংরক্ষণ করা হায়। তিনেগারসহ খানাবস্তুকে তাপ নিয়ে ফুটিয়ে নিদে বিভিন্ন জণুজীব বা ব্যাকটেরিয়া মরে যায়। এ অবস্থায় খান্যবস্তু দীর্ঘকাদ সংরক্ষণ করা যায়।

চাটনির মতো রেসিমোস নামক বিভিন্ন মিশ্র সবজি থেকে মুখরোচক থান্য তৈরি করা যায়। যেমন: ফুলকপি, মুলা, শালগম, গাজর, বরবটি, শসা, কাঁচা পেগে, কামরালা ইত্যাদি সবজিকে টুকরা করে চিনি, লবণ ও তিনেগারসহ জৃতিয়ে নিলে রেসিমোস তৈরি হয়। এ মিশ্র সবজিকে বাস্কুরোধী করে কাচের বড়েমে তর্তি করে রাখা হয়। পরবর্তী মৌসুমে তা খাওয়া যায়।

উপর্বুক্ত আলোচনার প্রেক্ষিতে বদা যায় যে, খাদ্য সংরক্ষণে ভিনেগারের ভূমিকা অনবীকার্য।

(i) সমূদ্রের গানি — বাস্গীতবন সাদা দানা (A)

বাস্গীতবন সাদা দানা (B)

তিনেগার

(ii)

(ক) আন্টি-অক্সিডেন্ট কাকে বদে?

[ह. त्रा. २०; हा. त्रा. २२; य. त्रा. २२, ১३; मचिमिठ त्या. ১৮]

- (খ) খাদ্যবস্তু সরেহ্নণে কেনু-হার্ডেনিং এর দুমিকা ব্যাখ্যা কর। । ছ. বে. ২২
- (গ) উদ্দীপক (ii) এর সরেক্ষকটির জীবাণুরোধী ক্রিয়াকৌশদ ব্যাখ্যা কর।
   । বা. বে. ২০; অনুরূপ গ্রয়: হ. বে. ২০, ২১, ১৭র দি. বে. ২০, ২২, ২১;

म. त्या. २०, २२: घा. त्या. २२: व. त्या. २२: वि. त्या. २२: वा. त्या. २३:

ू ह. ता. २५; य. त्य. २১]

(घ) খাদ্য সংরক্ষণে উদ্দীপক (i) এর A ও B এর কৌশলের তুলনা কর।
 (ব. বে. ২০; বনুরুপ গ্রন্থ: দি. বে. ১৭)

সমাধানঃ

চর্বি বা লিপিত অণুর জারণ-বিযোজনে অংশগ্রহণকারী O<sub>2</sub> অণু ও লিপিত অণু থেকে সৃষ্ট মৃক্ত মূলককে শোষণ করে কিছু রাসায়নিক পদার্থ চর্বিষুক্ত খাদাবম্ভর পচন রোধ করে। এসব রাসায়নিক পদার্থকে আন্টি-অক্সিতেন্ট বলে।

কর্মমুখী রসায়ন > ১CS/ FRB Compact Suggestion Book.....

- 🔏 প্রখর সূর্যতাপে পচনশীল খাদ্যবস্তুকে তকানো হলে ঐসব খাদ্যবস্তুর 🛜 চর্বি বা লিপিড ব্রুদুর জারন-ব্রিক্সভ্রনে ব্রংশত্তহণকারী 🔾 অপু ও বহির্তৃক বা উপরিডল শব্দ হরে থাকে। ফলে পরিবেশ থেকে জ্লীয়বাদ্প খাদ্যবস্তুর ভেতরে প্রবেশে বাধা পায়, একে খাদ্যবস্তুর কেস্-হার্ডেনিং (case hardening) বলে। এতে খাদ্যবন্তুর আরতন সংকৃচিত হর এবং পর্যাপ্ত পানির অভাবে খাদ্যবস্তুর উপর ব্যাকটেরিয়া, ঈস্ট ও ছত্রাকের আক্রমণ ঘটে না। যেমন: কিসমিস, স্তটকি ইত্যাদিতে কেন্-হার্ডেন্থি ঘটে। এভাবে খাদ্য সংরক্ষণে কেস্–হার্ডেনিং ভূমিকা রাখে।
- জ উদ্দীপক (ii) এর খাদ্য সংরক্ষকটি হলো ভিনেগার। এর গড় pH মান 2.5 হওয়ার খাদাদ্রব্যে ভিনেগার যোগ করলে খাদ্যের উপাদানের pH মান হুষে 4 থেকে 3 এর নিচে নেমে আসে। খাদ্যদ্রব্য পচনের ক্লেত্রে অধিকাংশ জ্বজীবের বংশবিস্তারের জ্বুকূল pH পরিসর 6.5-7.5 হওয়ায় অ্টীর মাখ্যমে ব্যাকটেরিয়া জন্মতে পারে না। সাধারণত খাদ্যদ্রব্যকে ব্যাকটেরিয়া নিজেদের খাবার হিসাবে গ্রহণ করে এবং বংশবিক্তার ঘটার। এর ফলে খাদ্যের পচন শুরু হয়। এক্লেত্রে সামান্য মৃদু এসিড (যেমন: ভিনেগার বা অ্ট্রীয় লবণ) ব্যবহার করে খাদ্যের pH যত কম রাখা যায় ততই ক্ষতিকর ব্যাকটেরিয়ার বংশ বিস্তার হ্রাস করানো যার। ভিনেগারের ইত্বানোয়িক এসিড H আরন উৎপন্ন করে। সামান্য H আরনের উপস্থিতি ব্যাকটেরিয়ার Active Site কে প্রশমিত করে।

 $CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{-}(aq)$ জীব্ড ক্ষতিকর ব্যাকটেরিয়া + H<sup>+</sup> — সৃত/নির্দ্রির ব্যাকটেরিয়া তাছাড়াও ভিনেগার পানির অণুর সাথে হাইড্রোজেন বন্ধন গঠন করার ফলে সর্বত্র সুষম ঘনমাত্রা বজায় রেখে অণুজীবের বিরুদ্ধে শব্জ প্রতিরোধ গড়ে তোলে। এভাবে ভিনেগার খাদ্য সংরক্ষণ করে।

च উদ্দীপকের A ও B যথাক্রমে লবণ (NaCl) ও চিনি, যা ভভরই প্রাকৃতিক খাদ্য সংরক্ষক। খাদ্য সংরক্ষণে যে কয়টি প্রাকৃতিক প্রিজারভেটিভ ব্যবহৃত হয় তার মধ্যে লবণ সবচেয়ে সহজ্বভা ও ব্যাপক ব্যবহৃত। লবণের গাঢ় দ্রবণে খাদ্য সংরক্ষণকে কিউরিং বলে। এক্ষেত্রে 7 - 8% NaCl বা এর অধিক (15 – 20)% গাঢ় দ্রবর্ণ ব্যবহার করে কাঁচা মাহু, মাংস, শাক-সবজি ও ফলমূল (যেমন: আম, জলপাই, আমলকি, চালতা প্রভৃতি) লবণ ঘারা সংরক্ষণ করা যায়। অর্দ্র খাদ্য থেকে লবণ অসমোসিস প্রক্রিয়ায় জলীয়বাদ্প শুষে নেয়। ফলে আর্দ্রতার অনুপস্থিতিতে অণুজীব 🔄 জন্মাতে বা বংশবৃদ্ধি করতে পারে না। তাই খাদ্যের পচন রোধ হয়। অপরদিকে, চিনির গাঢ় দ্রবণকে খাদ্য সংরক্ষণে প্রিজারভেটিভ হিসেবে ব্যবহারের পদ্ধতিকে "সুগারিং" বলে। এক্ষেত্রে খাদ্যবস্তু সংরক্ষণ চিনির ঘনমাত্রার ওপর নির্ভর করে। শর্করা (যেমন: আটা বা চালের গুঁড়া দিয়ে তৈরি খাদ্য) এবং বিভিন্ন ফল যেমন: আপেল, পেরারা, পিচ, আনারস প্রভৃতির জ্যাম, জেলি, আচার তৈরি করে এদের সংরক্ষণ করা হয়। চিনির সিরাপ বা (65 – 70)% চিনির দ্রবণের সংস্পর্শে ব্যাকটেরিয়া কোষের মধ্যস্থ জলীয় অংশকে চিনির গাঢ় দ্রবণ অসমোসিস প্রক্রিয়ায় ন্তবে নের। ফলে ব্যাকটেরিয়া বিনষ্ট হয়। এ প্রক্রিয়ায় অধিক পরিমাণ চিনির প্রয়োজন হওয়ায় এটি অধিকতর ব্যয়বহুল।

জারণ প্রক্রিয়া রোধকরণ (ii) চর্বিযুক্ত খাদ্য + জৈব সংরক্ষক -

সংরক্ষিত খাদ্য

- (ক) ভিনেগার কী? ।রা. বো. ২৩; ঢা. বো. ২২; কু. বো. ২১; চ. বো. ২১; সম্মিলিত বো. ১৮)
- (খ) BHT একটি অ্যান্টি অক্সিডেন্ট-ব্যাখ্যা কর। [সি. বো. ২৩]
- (গ) উদ্দীপক (i) এর 'X' একটি প্রাকৃতিক খাদ্য সংরক্ষক-ব্যাখ্যা কর। मि. (वा. ১৯)
- (ঘ) খাদ্য সংরক্ষণে উদ্দীপক (ii) এর সংরক্ষকটির ভূমিকা বিশ্লেষণ কর।

ক ইথানোয়িক এসিড বা অ্যাসিটিক এসিডের (6 – 10)% জলীয় দ্রবণকে ভিনেগার বলা হয়।

নিপিড অণু থেকে সৃষ্টি মৃক্ত ফুলককে স্থেবল করে কিছু ব্রুস্ময়নিক পদার্থ চর্বিযুক্ত খাদ্যবস্তুর পচন রোধ করে। শ্রসব হাস্ট্রানিক প্রত্যেজ্ঞ व्यास्टि वक्रिएन्टे दरन ।

BHT (Butylated Hydroxy Toluene) এর স্তীত্র জারণ প্রতিরোব ক্রমন্ডা ভক্রের এটি এক্টি আ:ন্টি বরিভেন্ট। BHT নিপিভ वपुत छाज्ञा-विछाइए। जल्क्टर्स्ट्स्से O2 অণু ও লিপিড অপু থেকে সৃষ্ট মৃক্ত মূলকক শোষণ করে খাদ্যবস্তুর লিপ্টিভর জরেণ জেব করে। ফলে বাদ্যবন্তর পচন রেধে হর।

- ও ক্ষারের প্রশমন বিক্রিয়া ছাড়াও সমৃদ্রের পর্নে বাস্ট্রতব্যনর হাধ্যমে ব্যাপকভাবে প্রাকৃতিক উপারে NaCl পাওয়া বরে: ৰঙ্গ্যা লবৰ (NaCI) এর গাঢ় দ্রবদে (7-8)% খাদ্য সংহ= করার গ্রহ্রিদ্যাকে কিউরিং বলে। এ প্রক্রিরায় খাদ্যদ্রব্য থেকে লবশ বদমেনিস প্রক্রিরার পানি শোষণ করে নের। কলে খাদ্যদ্রব্যের মধ্যে অপুজ্ঞীব জন্মনোর অনুকূল পরিবেশ পায় না। তাই খাদ্য নষ্ট হন্ত না। কিউরিং প্রক্রিরাত माष्ट्र, मार्ट्न ७ रुनमृन नर्द्रक्रम कड़ा याद्र । ইनिम माष्ट्र नर्द्रक्रम नर्द्र ব্যবহার করা হয়। ইলিশ মাছকে প্রথমে ভালোভাবে পরিষ্কার করে অতিরিক্ত পানি নরম ও ওকনা কাপড় হারা অপসারণ করা হর। ফালি করা মাছকে (7-8)% NaCl দ্রবদের মধ্যে 10 মিনিট ভূবিরে রাখ্য হয়। দ্রবণ থেকে মাছকে পুনরায় তারজালির উপর 10-15 মিনিট রাখা হর। ফলে অতিরিক্ত পানি ঝরে যার। প্রতি চার কেজি ইলিশ মাহ প্রক্রিয়াভাতবরণের জন্য এক কেজি লবন ব্যবহার করা হর। দীর্ঘ সম্বর সংরহ্মণের জন্য লবণের দ্রবণে সামান্য ল্যাক্টিক এসিভ ব্যবহার করা হয় যা ব্যাকটেরিয়ার উৎপাদন ও বংশবিস্তারে প্রতিভূল পরিবেশ সৃষ্টি করে। কাঁচা মাংস, ফল ও শাক্সবজিকে এই পদ্ধতিতেও সম্ব্রক্স করা হয়। তাই NaCl একটি প্রাকৃতিক খাদ্য সংরক্তক।
- উদ্দীপকের (ii) এর খাদ্য সংরহ্নকটি অ্যান্টি-অক্সিভেন্ট। চর্বি বা লিপিড অণুর জারণ-বিযোজনে অংশগ্রহণকারী 🔾 ব্লু ও লিপিড ব্লু ক্লেক সৃষ্ট মৃক্ত মৃলককে শোষণ করে কিছু রাসায়নিক পদার্থ চর্বিবৃক্ত খাদ্যবস্তুত্ত পচন রোধ করে। চর্বি বা লিপিড অণু (L – H) সমূহ O2 এর সংস্পর্শে সমযোজী বন্ধন ভেঙ্গে বিজ্ঞোড় ইলেকট্রনযুক্ত লিপিড ফ্লক বা মুক্ত মূলক (L·) সৃষ্টি করে, যা পরে চেইন বিক্রিয়ার মাধ্যমে পচন ঘটার। ফলে খাদ্যবস্তুতে কালো দাগ ও দুর্গদ্ধের সৃষ্টি হয়।

(i) লিপিড অণু ও O₂ এর বিক্রিয়া মুক্ত মূলক সৃষ্টিঃ

$$L-H+O_2 \longrightarrow L+H-O-O$$

(ii) O2 সহ পারঅক্সিলিপিড মুক্তমূলক সৃষ্টি:

$$L \cdot + O_2 \longrightarrow L - O - O \cdot$$

(iii) অস্থায়ী হাইড্রোপারঅক্সাইড অণু গঠন:

(iv) প্রাথমিক অতীব সক্রিয় মুক্ত মূলক সৃষ্টি:

$$\Gamma - OOH \longrightarrow \Gamma + HOO$$

অ্যান্টি-অক্সিডেন্ট অণু (A − H) লিপিড মুক্ত মূলক (L·) এর সার্ছে বিক্রিয়া করে লিপিড অণু (L – H) ও অধিক স্থায়ী কম সক্রিয় অ্যান্টি-অক্সিডেন্ট মূলক (A·) সৃষ্টি করে। ফলে পচনের মূল কারণ "জারণ-বিজারণ চেইন বিক্রিয়া" বন্ধ হয়।

 $A - H + L \cdot \longrightarrow L - H + A \cdot (অধিক স্থায়ী মূলক)$ এভাবেই অ্যান্টি-অক্সিডেন্ট চেইন বিক্রিয়া প্রতিহত করে দেয় এবং অণুজীবকে ধ্বংস করে খাদ্যের পচন রোধ করে।

...... ACS, > Chemistry 1st Paper Chapter-5

# ওরুতপূর্ণ জ্ঞানমূলক প্রশ্নোত্তর

#### थामा मिन्नाभेखा कांक वर्णि?

जि. त्वा. २०। वृ. त्वा. २०। मि. त्वा. २०, ১१, ১०। म. त्वा. ১৯। व. त्वा. ১৯। 🗓 🖽 ११ वर्षात प्रव प्रभा प्रकल मानितिकत पृञ्च ७ कर्भक्रम जीवन धात्रास्त्र জনা পরিমাণে পর্যান্ত, সাস্থ্যবিধিগত, নিরাপদ ও সঠিক পুষ্টিমানসম্মত थालात्त यापान ना मत्तनसारदत निक्तग्रजात वावञ्चा कतारक थाना निताथला वल।

২। দিন্নাপদ খাদ্য কাকে বলেগ

উন্তর। যে খাদ্য দেহের साना ক্ষতিকর নয় বরং দেহের বৃদ্ধি, ক্ষয়পূরণ ও तांश क्षेठिताध करत ठारक निताशम चामा चल ।

৩। পাদ্য সংরক্ষক কী?

[সি. বো. ২৩: চ. বো. ২২: রা. বো. ১৯]

উন্তর৷ যেসব ন্নাসায়নিক পদার্থ অল্প পরিমাণে খাদ্যবস্তুর সাথে মিশিয়ে খাদ্যবস্তুকে ফাংগাস ও ব্যাকটেরিয়ার আক্রমণ অথবা খাদ্যবস্তুর এনজাইমের প্রভাবে পচন রোধ করা যায়, সেসব পদার্থকে ফুড প্রিজারভেটিভস বা খাদ্য সংরক্ষক বলা হয়।

8। প্রাকৃতিক থাদ্য সংরক্ষক কী?

[न. त्वा. २১]

উত্তরঃ প্রাকৃতিক উৎস থেকে প্রাপ্ত যেসব রাসায়নিক দ্রব্য যা প্রক্রিয়াজাতকরণে এবং সংরক্ষণে ব্যবহৃত হয়, তাদেরকে প্রাকৃতিক খাদ্য সংরক্ষক বলে। যেমন: সরিষার তেল, চিনির দ্রবণ, খাদ্য লবণের দ্রবণ প্রভৃতি।

৫। शिकनिश कांक वरन?

मि. ता. २२; य. ता. २२)

উত্তর: ব্যাকটেরিয়ারোধক তরল পদার্থ যেমন: ভোজ্য সরিষার তেল, ভিনেগার ও মরিচ মসল্লার মিশ্রণে সিদ্ধ করা কাঁচা ফলের সংরক্ষণ ১৭। ফুড ল্যাকার কী? প্রক্রিয়াকে পিকলিং বলে।

७। किউत्रिश कारक वरन?

[ঢা. বো. ১৯]

উত্তর: পচনশীল খাদ্যবস্তুকে খাদ্য লবণ (NaCI) বা এর গাঢ় দ্রবণ দ্বারা সংরক্ষণ প্রক্রিয়াকে কিউরিং বলা হয়।

৭। কৃত্রিম ফুড প্রিজারভেটিভস কাকে বলে?

উত্তর: খাদ্যবস্তুর পচনরোধকরূপে নির্দিষ্ট স্বল্প মাত্রায় ব্যবহৃত রাসায়নিক পদার্থসমূহকে কৃত্রিম বা রাসায়নিক ফুড প্রিজারভেটিভস বলে।

৮। পানি সক্রিয়তা কী?

উত্তর: নির্দিষ্ট তাপমাত্রায় খাদ্যবস্তুতে থাকা পানি বা জলীয়বাস্পের পরিমাণ এবং খাদ্যবস্তুর চারপাশের পরিবেশে থাকা জলীয়বাস্পের পরিমাণের অনুপাতকে 'পানি সক্রিয়তা' (aw) বলা হয়।

১। অসমোসিস কাকে বলে?

উত্তর: অর্বভেদ্য পর্দা দ্বারা আলাদা রাখা দুটি ভিন্ন ঘনমাত্রার দ্রবণের বেলায় লঘু দ্রবণ থেকে দ্রাবক গাঢ় দ্রবণে প্রবেশ করার প্রক্রিয়াকে অসমোসিস বলে।

১০। টব্ধিন কাকে বলে?

উত্তর: ক্ষতিকর জীবাণু বা ছত্রাকের দেহ থেকে নিঃসৃত উৎসেচকে বিদ্যমান এক ধরনের বিষাক্ত উপাদানকে টক্সিন বলে।

১১। অ্যান্টি মাইক্রোবিয়াল এজেন্ট কী?

উত্তর: যেসব রাসায়নিক পদার্থ খাদ্যদ্রব্যের ব্যাকটেরিয়া, মোল্ড ও ঈস্টের বৃদ্ধি প্রতিহত করে এবং অর্গানিজম কোষের মেমব্রেন ফাটিয়ে দিয়ে অণুজীবকে ধ্বংস করে তাদেরকে অ্যান্টি-মাইক্রোবিয়াল এজেন্ট বলে।

#### ১২। অ্যান্টি-অক্সিডেন্ট কাকে বলে?

[ह. त्वा. २७; त्रा. त्वा, २२; य, त्वा. २२, ১৯; मियमिङ त्वा, ১৮] উত্তর: চর্বি বা লিপিড অণুর জারণ-বিযোজনে অংশগ্রহণকারী O2 অণু ও লিপিড অণু থেকে সৃষ্ট মুক্ত মূলককে শোষণ করে কিছু রাসায়নিক পদার্থ চর্বিযুক্ত খাদ্যবম্ভর পচন রোধ করে। এসব রাসায়নিক পদার্থকে অ্যান্টি-

১৩। কিলেটিং এজেন্টের সংজ্ঞা দাও।

অব্রিডেন্ট বলে।

বি. বো. ২৩: চ. বো. ২২।

উত্তর: খাদ্যবস্তুর মধ্যস্থ বিভিন্ন অবস্থান্তর ধাতুর আয়নকে দুই বা ততোধিক সন্নিবেশ বন্ধন দ্বারা আবদ্ধ রাখতে যে রাসায়নিক যৌগ ব্যবহৃত হয়. তাদেরকে কিলেটিং এজেন্ট (Chelating Agent) বলে।

১৪। ভিনেগার কী?

রো. বো. ২৩; ঢা. বো. ২২; কু. বো. ২১; চ. বো. ২১; সম্মিদিড বো. ১৮) উত্তর: ইথানোয়িক এসিড বা অ্যাসিটিক এসিডের (6 – 10)% জলীয় দ্রবণকে ভিনেগার বলা হয়।

১৫। মল্ট কী?

ঢা. বো. ২২

উত্তর: অংকুরিত বার্লির বীজকে শুকিয়ে গুড়া করে নিয়ে যা পাওয়া যায়, তাকে মল্ট বলে।

১৬। মল্ট ভিনেগার কাকে বলে?

[ज. त्वा. २७; त्रा. त्वा. २२, २১; य. त्वा. २১; म. त्वा. २১] উওর: অভুরিত বার্লি বা অন্য কোনো শস্যের দানা ফারমেন্টেশনের মাধ্যমে উৎপন্ন ইথানোয়িক এসিডের (6 – 10)% জলীয় দ্রবণকে মল্ট ভিনেগার वल।

উত্তর: কোনো কোনো খাদ্যের উপরিভাগকে উজ্জ্বল ও চাকচিক্যময় করার জন্য খাবার উপযোগী পদার্থ দিয়ে যে আস্তরণ দেওয়া হয় তাকে ফুড ল্যাকার বলে।

১৮। EDTA এর পূর্ণরূপ লিখ।

উত্তর: EDTA এর পূর্ণরূপ হলো: Ethylene di-amine tetra acetic

১৯। BHA ও BHT এর পূর্ণরূপ লিখ।

উত্তর: BHA এর পূর্ণরূপ হলো: Butylated hydroxy anisole. BHT এর পূর্ণরূপ হলো: Butylated hydroxy toluene.

২০। ব্লাঞ্চিং কী?

উত্তর: সংরক্ষণের কতিপয় পদ্ধতিতে ফল অথবা সবজিকে নির্দিষ্ট সময়ের জন্য ফুটন্ত পানি বা স্টিমে প্রায় অর্বসিদ্ধ করা হয়। এ ধরনের তাপনকে ब्राक्षिश् वरन ।

২১। মল্ট ভিনেগারের পাস্তরায়ন কী?

উত্তর: মল্ট ভিনেগার 75-80°C তাপমাত্রায় 20 মিনিট উত্তপ্ত করে অ্যাসিটোব্যাক্টর নষ্ট করা হয়। একে মল্ট ভিনেগারের পাস্তুরায়ন বলে।

২২। ইথানলের জারণ বিক্রিয়াটি লিখ।

উত্তর: ইথানলের জারণ বিক্রিয়া:

 $CH_3 - CH_2OH + O_2 \xrightarrow{\text{Single of Single of Parts}} CH_3COOH$ 

কর্মমুখী রসায়ন > ACS/ FRB Compact Suggestion Book.....

#### গুরুত্বপূর্ণ অনুধাবনমূলক প্রশ্নোত্তর

উত্তর: খাদ্য উৎপাদন থেকে গুরু করে খাদ্য গ্রহণ, খাদ্য সংরক্ষণ ইত্যাদি বিভিন্ন পর্যায়ে খাদ্যের নিরাপত্তা ব্যবস্থায় রসায়নের ভূমিকা বিদ্যমান। খাদ্যের উৎপাদন বৃদ্ধি ও খাদ্যদ্রব্য দীর্ঘকাল সংরক্ষণে রসায়নের ভূমিকা রয়েছে। কৃষি জমিতে অধিকতর পরিমাণে ফসল উৎপাদন খাদ্য নিরাপত্তার প্রধান শর্ত। অধিক উৎপাদনের জন্য উন্নতমানের বীজ্প সরবরাহ, উদ্ভিদের সুষম বৃদ্ধি ও ফুল-ফল ধারণের জন্য প্রয়োজনীয় সার সরবরাহ করা-এসব কিছুতেই রসায়নের অবদান অনেক। তাছাড়াও জমির ফসলকে যেন পোকামাকড় নষ্ট না করতে পারে এজন্য রসায়নবিদরা পোকামাকড় ধ্বংসকারী কীটনাশক উদ্ভাবন করছেন। এভাবে খাদ্য নিরাপত্তার প্রতিটি ক্ষেত্রই রাসায়নের ভূমিকা অনেক।

২। খাদ্য সংরক্ষণে প্রজারভেটিভস ব্যবহৃত হয় কেন? ।দি. বো. ২৩। য়. বো. ১৫। উত্তরঃ জীবাণু দ্বারা পচন, O2 এর উপস্থিতিতে এনজাইমের প্রভাবে খাদ্যবস্তর জারণ এবং তৈল বা চর্বিযুক্ত খাদ্যবস্তুতে অ্যান্টি-অক্সিডেন্টের অভাবে জারণ-বিজারণ বিক্রিয়া খাদ্যবস্তু পচনের প্রধান কারণ। যেসব রাসায়নিক পদার্থ অল্প পরিমাণে খাদ্যবস্তুর সাথে মিশিয়ে খাদ্যবস্তুকে ফাংগাস ও ব্যাকটেরিয়ার আক্রমণ অথবা খাদ্যবস্তুর এনজাইমের প্রভাবে পচন রোধ করা যায়, সেসব পদার্থকে কৃড প্রিজারভেটিভস বলা হয়। প্রিজারভেটিস সমূহ খাদ্যে অল্পীয় পরিবেশ সৃষ্টি এবং জারণ-বিযোজন বিক্রিয়া প্রতিহত করার মাধ্যমে খাদ্যবস্তুর পচন রোধ করে এবং দীর্ঘকাল খাদ্য সংরক্ষণে সহায়তা করে।

ত। সংরক্ষণের জন্য খাদ্যকে বায়ুমুক্ত রাখতে হয়-ব্যাখ্যা কর। কু. বো. ২২ উত্তর: বিভিন্ন খাদ্য উপাদানে অণুজীবের প্রভাবে বায়ুর  $O_2$  দারা জারণ-বিযোজন বিক্রিয়া ঘটে এবং খাদ্যে পচন ঘটে। অক্সিজেন মুক্ত থাকলে খাদ্যবস্তু জারিত হতে পারে না। তাই খাদ্যকে পচনমুক্ত রাখতে ও দীর্ঘদিন সংরক্ষণ করতে  $O_2$  এর উপস্থিতি রোধ করা অত্যন্ত জরুরি। তাই খাদ্য সংরক্ষণের জন্য খাদ্যকে বায়ুমুক্ত রাখতে হয়।

৪। খাদ্য সংরক্ষণে লবণের ভূমিকা ব্যাখ্যা কর।

[ঢা. বো. ২৩; ঢ. বো. ২৩; ব. বো. ২৩; ব. বো. ২৩]

উত্তর: খাদ্য লবণ (NaCl) দ্বারা খাদ্য সংরক্ষণ করা যায়। পচনশীল খাদ্যবস্তুকে খাদ্য লবণ (NaCl) বা এর গাঢ় দ্রবণ দ্বারা সংরক্ষণ প্রক্রিয়াকে কিউরিং (Curing) বলা হয়। NaCl খাদ্যবস্তুর পানি অসমোসিস প্রক্রিয়ার শোষণ করে নেয়, ফলে খাদ্যদ্রব্যের মধ্যে অণুজীব জন্মানোর অনুকৃল পরিবেশ পায় না। মাছ, মাংস, কাঁচা ফল ও সবজিকে কিউরিং পদ্ধতিতে সংরক্ষণ করা যায়। এক্ষেত্রে (7-৪)% NaCl বা এর অধিক (15-20)% গাঢ় দ্রবণ ব্যবহার করে কাঁচা আম, আমলকি, চালতা, জলপাই, গাঁজর, কাঁচামরিচ ইত্যাদিকে সংরক্ষণ করা হয়। অপরদিকে সামুদ্রিক ইলিশ মাছ সংরক্ষণেও লবণের ভূমিকা রয়েছে।

৫। চিনি একটি প্রাকৃতিক খাদ্য সংরক্ষক-ব্যাখ্যা কর। (চ. রো. ২২) উত্তর: প্রকৃতি থেকে সরাসরি প্রাপ্ত কিছু রাসায়নিক বস্তু রয়েছে যারা খাদ্যবস্তুর পচন রোধ করে। এসব প্রাকৃতিক রাসায়নিক বস্তুকে প্রাকৃতিক খাদ্য সংরক্ষক বলা হয়। চিনিকে ইক্ষু, খেজুরের রস ইত্যাদি প্রাকৃতিক উৎস থেকে পাওয়া যায় এবং চিনির দ্রবণ ব্যবহার করে জ্যাম, জেলি, আচার, কার্বোহাইডেট জাতীয় খাদ্যদ্রব্য সংরক্ষণ করা যায়। তাই চিনি একটি প্রাকৃতিক খাদ্য সংরক্ষক।

৬। খাদ্যবস্তু সংরক্ষণে কেস্-হার্ডেনিং এর ভূমিকা ব্যাখ্যা কর। যে. বে. ২২ উত্তর: প্রখর সূর্যতাপে পচনশীল খাদ্যবস্তুকে ওকানো হলে ঐসব খাদ্যবস্তুর বহির্তুক বা উপরিতল শক্ত হয়ে থাকে। ফলে পরিবেশ থেকে জলীয়বাদ্প খাদ্যবস্তুর ভেতরে প্রবেশে বাধা পায়, একে খাদ্যবস্তুর কেস্-হার্ডেনিং (case hardening) বলে। এতে খাদ্যবস্তুর আয়তন সংকুচিত হয় এবং পর্যাপ্ত পানির অভাবে খাদাবস্তুর উপর ব্যাকটেরিয়া ঈন্ট ও ছক্রেকের আক্রমণ ঘটে না। যেমনঃ কিনমিন, তাঁকি ইত্যাদিতে কেন্-হার্কেন্থি ঘটে। এভাবে খাদ্য সংরক্ষণে কেন্স-হার্ডেনিং ভূমিকা রাগে।

৭। খাদ্যদ্রব্য সংরক্ষণে ভিনেগারের ভূমিকা কী? (কু. নে. ০১; রু. নে. ১১) উত্তর: আাসিটিক এসিড (CH<sub>3</sub>COOH) এর 6 – 10% জ্ঞাীর দ্রবদ হলের ভিনেগার। এর গড় pH মান 2.5 হওয়ার বাদ্যদ্রেরে ভিনেগার সোপ করলে থাদ্যের উপাদানের pH মান কমে 4 থেকে 3 এর নিচে ন্যেম আসে এবং এই অল্লীয় মাধ্যমে ব্যাকটোরিয়া জন্মাতে পারে ন্য়। ভিনেগারের ইথানোয়িক এসিড H' আয়ন উৎপন্ন করে। সামান্য H' আয়নের উপস্থিতি ব্যাকটোরয়ার Active Site কে প্রশ্নিষ্ঠ করে।

CH₁COOH(aq) ⇒ CH₃COO⁻(aq) + Ҥ (aq) জীবস্ত ক্ষতিকর ব্যাকটেরিয়া + Ҥ → মৃত/নিষ্ক্রিয় ব্যাকটেরিয়া

৮। শাক-সবজি সংরক্ষণে ভিনেগারের ভূমিকা উল্লেখ কর।

উত্তর: শাক-সবজি দ্রুত পচনশীল। বিভিন্ন মৌসুমে উৎপাদিত বিভিন্ন শাক-সবজিকে টাটকা ও পুষ্টিমানসম্পন্ন রাখার ক্ষেত্রে প্রিজারভেটিস্তন হিসেবে ভিনেগার ব্যবহার করা হয়। ভিনেগারে শাক-নবজি নংরক্ষণ করলে দীর্ঘ সময় পর্যন্ত ব্যবহার করা যায় এবং এর বর্ণ, পুষ্টি ও ভিটামিন অন্দুন্ন থাকে। ভিনেগার শাক-নবজিতে বিদ্যামান ক্যালনিয়াম, লোহা, ফসফরাস প্রভৃতিকে মুক্ত করে শরীরে গ্রহণের উপরোগী করে ভোলে। তাই শাক-সবজি সংরক্ষণে ভিনেগার ব্যবহার করা হয়।

৯। খাদ্য সংরক্ষণে অ্যান্টি অক্সিডেন্ট এর ভূমিকা লেখ।

বি. বো. ২৩; অনুত্রপ প্রস্ন: রা. বো. ২৩]

উন্তরঃ চর্বি বা লিপিড অণুর জারণ-বিযোজনে অংশ্ঘহণকারী  $O_2$  অপু ও লিপিড অণু থেকে সৃষ্ট মৃক্ত মূলককে শোষণ করে কিছু রাসায়নিক পদার্থ চর্বিযুক্ত খাদ্যবম্ভর পচন রোধ করে। এসব রাসায়নিক পদার্থকে অ্যান্টি-অক্সিডেন্ট বলে।

চর্বি বা লিপিড অণু (L-H) সমূহ  $O_2$  এর সংস্পর্শে সমবোজী বন্ধন ডেঙ্গে বিজ্ঞাড় ইলেকট্রনযুক্ত লিপিড মূলক বা মুক্ত মূলক  $(L^*)$  সৃষ্টি করে, বা পরে চেইন বিক্রিয়ার মাধ্যমে পচন ঘটার। ফলে বাদ্যবস্তুতে কালো দাগ ও দুর্গন্ধের সৃষ্টি হয়। অ্যান্টি-অক্সিডেন্ট অণু (A-H) লিপিড মুক্ত মূলক  $(L^*)$  এর সাথে বিক্রিয়া করে লিপিড অণু (L-H)ও অবিক স্থায়ী কম সক্রিয় অ্যান্টি-অক্সিডেন্ট অণু  $(A^*)$  সৃষ্টি করে। ফলে পচনের জারণ-বিযোজন চেইন বিক্রিয়া বন্ধ হয়। এভাবে খাদ্য সংরক্ষণে অ্যান্টি-অক্সিডেন্ট ভূমিকা রাখে।

১০। BHT একটি আন্টি অক্সিডেন্ট-ব্যাখ্যা কর। দি. বো. ২৩। উত্তর: চর্বি বা লিপিড অণুর জারণ-বিযোজনে অংশগ্রহণকারী  $O_2$  অণু ও লিপিড অণু থেকে সৃষ্টি মৃক্ত মূলককে শোষণ করে কিছু রাসায়নিক পদার্থ চর্বিযুক্ত খাদ্যবস্তুর পচন রোধ করে। এসব রাসায়নিক পদার্থকে অ্যান্টি অক্সিডেন্ট বলে।

BHT

BHT (Butylated Hydroxy Toluene) এর তীব্র জারণ প্রতিরোধ ক্ষমতা থাকায় এটি একটি অ্যান্টি অক্সিডেন্ট। BHT লিপিড অণুর জারণ-বিজারণে অংশ্র্যাহণকারী  $O_2$  অণু ও লিপিড অণু থেকে সৃষ্ট মুক্ত মূলককে শোষণ করে থাদ্যবম্ভর লিপিডের জারণ রোধ করে। কলে খাদ্যবম্ভর পচন রোধ হয়।

Rhombus Publications

t.me/admission\_stuffs

988

ACE > Chamany I" Paper Chapter 5

- १। ११७१ भाग अधिक अस्त्राधिक जानाधिक
  - TO [CALLIPOUS 2CALTIO]]
  - 去 (以11/1)下 ~ O
  - 例 Cally PO4);
  - 40 03119111000

も聞い 名 Cally POch

#### आजा जिलागडा छ समाहान आजा जिलागडा भीकि करारी विक्रित छेगां अधिकिछ?

।।।५८ नहीकानीरमन बना नामान्य करनेनीर्या धराहा छ

(35 Z

(31) 3

例 6

190 5

發腳(名) 5

स्मामा भागा निभावसा मीचि किति खिला है जा खिलिए।

- (1) भर्माङ भागा श्राक्षिः अरमत नाष्ट्रात कनाजाना नर्माङ नारमात श्रानाम् प्रिर्धान भरत ।
- (৪) ঝাদা প্রবৃদ্ধের সামর্থার সেন্দের প্রস্কোক বাফির পুটিম্নাসাল্পর আদা ক্রন করার ক্ষাবিভিক্ত সামর্থা ও নাদা প্রবৃদ্ধের শারীক্ষিক্ত সামর্থা প্রকাশ ফরো।
- (財) খাসোর সঠিক কাদ্যার। প্রমোজ্ঞানির পুষ্টিমাসসম্পদ্ধ দাসা পরিমাণমন্ড এইসে স্থান্তির স্কান ও সাস্থ্যসিধির অনুসরণকে নির্দেশ করে।

#### थाण निज्ञागस्त्रत ख्राम भर्ड त्यामिश

- (§) খাদা সভাক্রন
- (प्रे) श्रापिक अतिभारम स्ट्रमण छे९शाभन
- (म) अधिक नामा छ(ग) मन
- (এ) ফোদোটিট নর

উদ্ধা। (प) জদিক পরিগ্রানে ফগল উৎপাদন

ষাাখ্যা। খাদোর উৎপাদন বৃদ্ধিতে রসায়নের জুনিকা রসেতে। কৃষি জমিতে 
জাধিক পরিচালে ফসল উৎপাদন খাদ্য নিরাপন্তার প্রধান শর্ত।

#### ७। WHO चामा निवाशखास खना कराणि मिक गिर्पणना मितारहा

(F) 3(D)

(F) 4(D)

(d) 5 (d)

**তা** 6িট

एका। कि उप

याचा। WHO (World Health Organization) चामा नितायदात जना

- ५० भिक निदम्भना भितारह । এ दला दलाः
- (i) দ্বণমুক্ত খাদ্য
- (il) कांंग ७ जाता कता चामा १ धक जाचा
- (ili) यथाचथ ताता
- (iv) थामा गरतकम
- (v) निताशम शानि

#### ৪। খাদ্য নিরাপন্তার সাথে সম্পৃক্ত কোনটি?

नि. ला. २०

- অধিক খাদ্য উৎপাদন
- 📵 উচ্চ ফলনশীল ফসল উৎপাদন
- (৭) খাদ্য সংরেক্ষণ
- छ चामा विभगन

**উछतः** (१) चामा मरतक्ष

ব্যাখ্যা: WHO (World Health Organization) প্রদত্ত খাদ্য নিরাপন্তার জন্য ১টি দিক নিদের্শনার মধ্যে খাদ্য সংরক্ষণ অন্যতম।

#### Rhombus Publications

| न्यान(एउ | মদনাত নানুদা সাপ্ত            | <b>সাত্রণি</b> |  |  |
|----------|-------------------------------|----------------|--|--|
|          | Triple Super Pheophale (TSP)  | Carthopoop     |  |  |
|          | ডাই জ্যামোদিয়া'ন কলকেট (DAP) | CIVIL)-FIEV.   |  |  |

#### DDT क्त श्रम्तान जममणि?

- क ४,४-एविद्वादना सिरिनापारिन प्रीविद्वारका रीयाम
- ন) 4.4-খাইবোগো এইবিলাইন ঘাইকোবো প্রোপেন
- (ম) 4.A-ছাইলোলো ভাইনিলাইল ট্রাইলেনেরা ইসোদ
- নে) 4.4-ছাইক্রেকো ভাইনিখাইণ ট্রাইক্রেকো গোলেন

উন্তর: নি) 4,4-ভাইক্রেনরো ভাইরিজাইল ট্রাইক্রেবো ইসেন

ন্যাদ্যা: DDT একটি নীটিনাশক হিসেনে ব্যবহৃত হর। এর IUPAC নাম 4.4- ভাইন্ডোনো ভাইনিসাইল ট্রাইন্ডোনো ইসেন।

#### ৭। সহের বৃদ্ধিনাধন ও ক্ষরপুরণ করে কোন গাস্য উপাস্যান?

- कि नर्मना
- द) घानिन

মি পলি ছ লবণ

- ति स्मितिंगशिक्तः ति यानिन
- ন্যাপ্যা: শর্কনা: সেহে শক্তি উৎসাসনে সহায়তা করে।

जामिम वा (धार्णमः प्राटन्त दुन्तिनाशम धनः सम्बन्न करतः।

ষ্টিটামিন: পৃষ্টি ও সেহ সরেক্ষণ করে, বোগ প্রতিবোপ শক্তি নাঢ়ান্ত এবং নিন্দ্যি নাসাম্যাক নিক্রিনায় উদ্দীপসা সোগায়।

पंगिष जनगः निस्ति ठेवनिक काटव यहम जात ।

ए। त्यागि नागनपाद व्याधिजत हादिपा व्यक्षातः?

T. OIL YE

- कि छाउ
- वि भाक-गनिष
- (त) शागि

- कि गाए
- िछतः भि गाए
- कि नाह

ব্যাখ্যা: গ্রোটিন বা আনিন এর উৎস হলো মাছ, মাংস, চিম, দুদ্দাঘ্যত খানার গ্রন্থতি। গ্রোটিন সেহের বৃদ্ধিসাধন ও ক্ষরপুরণ করে থাকে।

#### ১। ভিটানিন A কী নামে পরিচিত?

- **७** त्रिंगग
- (व) a-छटलाय्याम
- (त) किलाकुंदेणाग
- (च) तिर्ताङां हिन

**७ उताः** 🐵 त्ति पिगण

ব্যাখ্যা: Vitamin-A --- রেটিনদ

Vitamin-C --- এসক্রবিক এসিড

Vitamin-D - क्राणिनिटक्तण

Vitamin-E → টকোকেরল

 $Vitamin-B_1 \longrightarrow थातामिन$ 

Vitamin-B₂ → রিবোক্লভিন

Vitamin-B₀ —→ शिति उद्यल

Vitamin-B<sub>12</sub> —→ ফলিক এগিড

Vitamin-K ---- किलाक्टेलान



১০। নিচের কোনটির অভাবে বেরিবেরি রোগ হয়?

B<sub>1</sub>

@ B2

1 B6

® B<sub>12</sub>

উত্তর: 🚳 B

ব্যাখ্যা: ভিটামিনের নাম, উৎস ও অভাবজনিত রোগ:

| ভিটামিন         | নাম          | উৎস                                 | অভাবজনিত রোগ                    |  |
|-----------------|--------------|-------------------------------------|---------------------------------|--|
| A               | রেটিনল       | মাছ, ডিম, মাখন,<br>পনির, কলিজা      | রাতকানা                         |  |
| D               | ক্যালসিফেরল  | কডলিভার তেল                         | রিকেটস                          |  |
| Е               | α-টোকাফেরল   | সবুজ সবজি                           | মাংসপেশিতে টান                  |  |
| K               | ফিলোকুইনোন   | সবুজ সবজি                           | রক্তক্ষরণ                       |  |
| В               | থায়ামিন     | বাদাম, দুধ                          | বেরিবেরি                        |  |
| B <sub>2</sub>  | রিবোফ্লাভিন  | দুধ, মাংস, কলিজা,<br>ডিম, মাছ, মরদা | ভারমাটাইটিস<br>(জিহ্বার প্রদাহ) |  |
| B <sub>6</sub>  | পিরিডক্সল    | ডিম, মন্তর, সবুজ<br>সবজি            | ডারমাটাইটিব                     |  |
| B <sub>12</sub> | ফলিক এসিড    | কলিজা, মন্তর সবুজ<br>সবজি           | রভশ্ন্যতা                       |  |
| С               | এসকরবিক এসিড | কমলা, টমেটো,<br>কাঁচা মরিচ          | <b>কা</b> ৰ্ভি                  |  |

#### খাদ্য সংরক্ষণ প্রক্রিয়া, প্রিজারভেটিভস

১১। খাদ্যদ্রব্য পচনে অন্যতম সহায়ক কোনটি?

@ N2O

9 NO2

(1) O2

উত্তর: খি 🔾

ব্যাখ্যা: খাদ্যদ্রব্য পচনের প্রধান কারণ মূলত তিনটি। যেমন:

- (i) জীবাণু দ্বারা পচন।
  - (ii) এনজাইম বা উৎসেচকের প্রভাবে O<sub>2</sub> এর উপস্থিতিতে খাদ্যবস্তুর রাসায়নিক জারণ বিযোজন।
  - (iii) ধাতব আয়নের প্রভাবে তৈল ও চর্বিযুক্ত খাদ্যবস্তুতে জারণ-বিযোজন বিক্রিয়া।

 $SO_2$  খাদ্যকে জারিত হওয়া থেকে রক্ষা করে এবং অণুজীবকে ধ্বংস করতে পারে। নাইট্রোজেন এর অক্সাইডদ্বর জারণে সহায়ক নয়।

১২। অণুজীবের বৃদ্ধির জন্য কোনটি প্রয়োজন?

াল. বো. ২৩

- অশ্রীয় পরিবেশ
- জলীয় পরিবেশ
- গ্রি ক্ষারীয় পরিবেশ
- ত্বি অ্যালকোহলীয় পরিবেশ

উত্তর: খি জলীয় পরিবেশ

व्याणाः निर्मिष्ठ जाशमायारा णामावाहर्त्त भागमा शामि मा स्पीत्रायारम्भव अधिप्राप्तव এবং খাদাবস্তুর চারপাশের পরিবেশে পাঞ্চা स्प्रीययारम्भव পরিप्राप्तव অনুপাতকে 'পানি সক্রিনাতা' (a.) বলা হত, ন্য অদানত্তে এনজাইমের ক্রিনা সংখিটনের জন্য একটি প্রয়োজনীয় দ্যাস্টর। খাদাবস্তুতে বিদ্যান এরূপ ছাদীর পরিবেশই খাদ্যে অণুদ্রীব বৃদ্ধির অন্য দায়ী।

১৩। খাদ্যের কোন উপাদানটি র্গত পঢ়নের ভান্য দায়ী?

ि ला अस

चिग्निग

(व) गगप

গ্ৰ পিপিড

গানি

উত্তরঃ ত্ব পানি

ব্যাখ্যা: খাদ্যবস্তুতে পানির উপস্থিতি ব্যাকটেরিয়ার বৃদ্ধি এবং এদের উদ্যোচকর ক্রিয়া তুরাম্বিত করে, যা খাদ্যবস্তুকে দ্রুত পঢ়নে প্রভাবিত করে।

১৪। খাদ্যদ্রব্য পচনের কারণ-

- (I) সোডिगाम विगठ्यादां में
- (ii) খাদ্যের ভারণ
- (Ш) আন্টি-অক্সিডেন্টের অভাব

নিতের কোনটি সঠিক?

भि. ता. २६: निमित तर VH

3 i e ii

(1) i d iji

Tii viii

(ij 8 ij (P

উন্তরঃ (ম) ii ও iii

ব্যাখ্যা: জীবাণু দ্বারা পচন, O2 এর উপস্থিতিতে এনভাইতের প্রভাবে খাদ্যবম্ভর জারণ এবং তৈল বা চর্বিযুক্ত খাদ্যবম্ভতে জ্যান্টি-জক্সিডেন্টের অভাবে জারণ-বিজ্ঞারণ বিক্রিয়া খাদ্যবম্ভ পচনের প্রথান কারণ। সোজিয়াম বেনজোয়েট (C6H3COONa) একটি কৃত্রিম ক্ষৃত প্রিজ্ঞারডেটিভস। এটি খাদ্যদ্রবা সংরক্ষণে ব্যবস্কৃত হয়।

১৫। কোনটি কৃত্রিম খাদ্য সংরক্ষক?

রা. বো. ২০; ব. বো. ২০; সন্দিশিত বো. ১৮; চা. বো. ১৭; দি. বে. ১৬, ১৫।

ক) সরিষার তেল

প্রাতিরাম বেনভোরেট

जि विनि

সোতিয়াম ক্লোরাইড

উखतः (व) त्नािष्ताम विनक्षाता

- ব্যাখ্যা: > প্রাকৃতিক চ্দুড প্রিজারডেটিভস: খাদ্য লবণ (NaCl), চিনি, ভিনেগার, ইথাইল অ্যালকোহল, হলুদ, রসুন, সরিষার তেল ইত্যাদি।
  - কৃত্রিম কুড প্রিঞ্জারভেটিডস: সোভিয়াম বেনজোরেট, বেনজোরিক এসিড, সরবেট লবণ, সাইট্রিক এসিড, অ্যাসিটিক এসিড, ক্যালসিয়াম প্রোপানয়েট, নাইট্রেট ও নাইট্রাইট লবণ, ভিটামিন-C, ভিটামিন-E, সালফাইট লবণ, BHA, BHT, TBHQ, PG, EDTA ইত্যাদি।

১৬। নিচের কোনটি প্রাকৃতিক খাদ্য সংরক্ষক?

[ह. त्वा. २०; हा. त्वा. २२, ३9; म. त्वा. २३; हि. त्वा. ३७, ३६]

- সালফার ডাই অক্সাইড
- প্রাডিয়াম বেনজোয়েট
- গ্র সোডিয়াম ক্রোরাইড
- चेथिनिन ग्राइकन

উন্তর: 🕦 সোডিরাম ক্লোরাইড

| 768     |                                                            |                                                  | •••••         |                                       |                                         | ACS, > (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemistry 1 <sup>st</sup> Pa                   | per Chapter-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|------------------------------------------------------------|--------------------------------------------------|---------------|---------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 191     | কোনটি উত্তম খাদ্য সংরক্ষক?                                 |                                                  | কু. বো. ২৩)   | २२। च                                 | াদ্য সংরক্ষণে বে                        | চানটির ব্যবহার                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | नियिक?                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ক্ত ভিনেগার                                                | <ul><li>অ্যাকুয়াস অ্যামোনি</li></ul>            | য়া           | (3                                    | ্র বেনজোয়িক ব                          | এসিড                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                            | <sup>®</sup> C <sub>6</sub> H <sub>5</sub> COONa |               | (                                     | ) বেনজোয়েট ল                           | াবণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| উত্তর   | : 🚳 ভিনেগার                                                |                                                  |               |                                       | ) ক্যালসিয়াম ব                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ব্যাখ   | াঃ ভিনেগারের গড় pH মান 2                                  | 2.5। তাই খাদ্যদ্রব্যে ভিয়ে                      | নগার যোগ      |                                       | ) সরবিক এসিড                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | করার ফলে তা খাদ্য উপাদানের                                 | ī pH মানকে কমিয়ে দেয়।                          | এই অশ্লীয়    |                                       | ্র) ক্যালসিয়াম ব                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | পরিবেশে ব্যাকটেরিয়া জন্মাতে                               | পারে না এবং এদের বংশ                             | বৃদ্ধি ব্যাহত |                                       |                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | য়েট লবণ এবং                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | হয়। তাই প্রাকৃতিক খাদ্য সংর                               | ক্ষিক হিসেবে ভিনেগার সব                          | চেয়ে বেশি    |                                       | -                                       | The second secon | ভেটিভস । প্রিজার।<br>ঢ়ার দীর্ঘমেয়াদি ব্য     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ব্যবহৃত হয়।                                               |                                                  |               |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | গৃত্য গাব্দের্যাণ ব্য<br>গৃত্য খাদ্যদ্রব্য সংর |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                            |                                                  |               |                                       | ানা আত্রন জনা।<br>যবহার নিষিদ্ধ।        | 0111 0121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 11 12 17                                    | 101 0002 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 741     | প্রাকৃতিক খাদ্য সংরক্ষক–                                   |                                                  |               |                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | (i) NaCl দ্ৰবণ                                             |                                                  |               | ২৩। খ                                 | াদ্যবস্তুতে ব্যাক                       | টেরিয়ার বৃদ্ধির ভ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | দ্য পানি সক্রিয়তা                             | র (a <sub>w</sub> ) মান কত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | (ii) C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> দ্রবণ |                                                  |               | হ                                     | তে হয়?                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | (iii) CH₃COOH দ্রবণ                                        |                                                  |               |                                       | > 0.80                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ③ > 0.90                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | নিচের কোনটি সঠিক?                                          |                                                  | মি. বো. ২২    |                                       | 0 > 0.88                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>(9)</b> > 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ⊕ i ⊌ ii                                                   | ® ii ⊌ iii                                       |               | - 500 A MOST POSS                     | 0.90                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | - A-Contab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | ரு i ⊌ iii                                                 | ® i, ii ® iii                                    |               |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | াকা পানি বা জলীয়<br>বশে থাকা জলীয়বা          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| উত্তর   | r 🕲 i, ii ଓ iii                                            |                                                  | 1             |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | वना হয়। পানি-স                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                            | 100                                              |               |                                       |                                         | 10 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | হয়। খাদ্যবস্তুতে ব                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 186     | কোনটি খাদ্য সংরক্ষক নয়?                                   |                                                  | চি. বো. ১৬    | -                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ার জন্য a <sub>w</sub> > 0                     | and the state of t |
|         | ক চিনি                                                     | <ul><li>করমালিন</li></ul>                        |               | 1                                     | 1000                                    | > 0.80 হতে হ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 200     | গ্র ভিনেগার                                                | খ্য লবণ                                          |               |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ে 🕲 ফরমালিন                                                | a AD                                             | MIS           | २८। ८                                 | গ্রানটি অতিরিজ                          | অর্দ্রতা শোষণ ব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | চরে খাদ্যকে সংরক্ষ                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ব্যাখ   | ্যাঃ খাদ্য লবণ (NaCl), ভিনেগার                             |                                                  |               | G                                     | চিনি                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | াল. <i>ত</i><br>(ৰ) মসলা                       | বা. ২৩; ব. বো. ২৩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | কাজ করে। অন্যদিকে মিথান্যাল                                |                                                  | ায় দ্রবণকে   | 1000                                  | ) তেল                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ত্ত মধ্য                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ফরমালিন বলা হয়। এটি খাদ্য                                 | সংরক্ষক নয়।                                     | IU            | উত্তর: ব্                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>V</b> 18                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ফরমালিনে কী পরিমাণ মিথান্যান                               | e oltere                                         |               |                                       |                                         | স্থিত ব্যাকটেরি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | য়ার কোষের মধ্যহ                               | জলীয় অংশকে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 201     | <ul><li>उट%</li></ul>                                      | <b>3</b> 40%                                     | রা. বো. ২১]   | ि                                     | নির গাঢ় দ্রবণ                          | অভিস্ৰবণ প্ৰত্ৰি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | याय ७८४ त्नय । य                               | দলে ব্যাকটেরিয়া                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T       | ① 20%                                                      | <b>3</b> 8%                                      |               |                                       | E (A)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ম্বর অতিরিক্ত আর্ট                             | তা শোষণ করে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| উত্তর   | € 1 40%                                                    | G 670                                            |               | <b>ચ</b>                              | দ্যবস্তুকে সংরক্ষ                       | ণ করে থাকে।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | <b>O</b>                                                   |                                                  |               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | দেব কোন টুঞা                            | নন দাবা খাদে হ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ংরক্ষণ পদ্ধতিকে বি                             | केटिकि नरस्क                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| २५।     | প্রিজারভেটিভ হিসেবে ব্যবহৃত হ                              | য়ে–                                             |               | ן עניו ויי                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | २२: जन् <i>जभ धन्नः व. ६</i>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | (i) CH <sub>3</sub> COOH                                   |                                                  |               | <b>@</b>                              | সরিষার তেল                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ৰ চিনি                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | (ii) BHA and BHT                                           |                                                  |               | প্                                    | ) খাদ্য লবণ                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ত্ম ভিনেগার                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | (iii) CH <sub>3</sub> OH                                   |                                                  |               |                                       | ) খাদ্য লবণ                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | নিচের কোনটি সঠিক?                                          |                                                  | [চ. বো. ১৭]   |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ণ (NaC <i>l</i> ) বা এর                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ⊕ i v ii                                                   | iii & i                                          |               | 0.000                                 | The 1877 Sec. 2008                      | দ্বারা সংরক্ষণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | করার পদ্ধতিকে বি                               | <b>চডীরং বা সলটিং</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _       | ii ७ iii                                                   | (T) i, ii (S) iii                                |               | 40                                    | লে।                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | : ⊕ i ⊌ ii                                                 |                                                  |               | ২৬। স                                 | বজি সংরক্ষণের                           | জন্য নিচের কো                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | নটিতে ডুবিয়ে রাখ                              | হয়? বি. বো. ১৭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ব্যাখ্য | t: ➤ CH <sub>3</sub> COOH এর (6 – 1                        |                                                  | াগার বলে।     |                                       | চিনির দ্রবণ                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul><li>ক্রবণর দ্রবণ</li></ul>                 | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | এটি প্রাকৃতিক ফুড প্রিজার                                  |                                                  | 6             | প্                                    | ) ফরমালিন                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ত্ব তৈল                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ➤ BHA এবং BHT হলে                                          | া অ্যান্ড-আক্সডেন্ট, যা                          | কৃত্রিম ফুড   | উত্তরঃ স্থ                            | ) লবণের দ্রবণ                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | প্রিজারভেটিভস।                                             |                                                  |               |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | কে কিউরিং পদ্ধতি                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ➤ মিথানল (CH₃OH) বি                                        |                                                  | ারভোটভস       |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ার গাঢ় দ্রবণের ম                              | ধ্যে সবজি ডুবিয়ে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | হিসেবে ব্যবহার করা হয় ন                                   | 41.1                                             |               | ে                                     | াখে একে সংরদ্ধ                          | ণ করা হয়।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

কর্মমুখী রসায়ন > ACS/ FRB Compact Suggestion Book .....

২৭। কোনটি অ্যান্টি-ব্যাকটেরিয়াল এজেন্ট নয়?

পায়ায়িন

গ্য সোডিয়াম বেনজোয়েট

সরবিক এসিডসাইট্রিক এসিড

উত্তর: 🚳 থায়ামিন

ব্যাখ্যাঃ অ্যান্টি-ব্যাকটেরিয়াল এজেন্টসমূহঃ

- (i) সাইট্রিক এসিড
- (ii) সরবিক এসিড
- (iii) সোডিয়াম বেনজোয়েট
- (iv) অ্যাসিটিক এসিড
- (v) ক্যালসিয়াম প্রোপানোয়েট
- (vi) নাইট্রেট ও নাইট্রাইট লবণ
- (vii) সালফাইট, SO₂ গ্যাস

২৮। সরবিক এসিড হলো-

- (i) স্যান্টি-মাইক্রোবিয়াল প্রিজারভেটিভ
- (ii) 2, 4-হেক্স-ডাইইন-1-ওয়িক এসিড
- (iii) আন্টি-অক্সিডেন্ট

নিচের কোনটি সঠিক?

[রা. বো. ১৭]

a i v ii

(a) i & iii

例 ii S iii

( i, ii v iii

উত্তর: 📵 i ও ii

ব্যাখ্যা: সরবিক এসিড ( $C_6H_8O_2$ ) একটি অ্যান্টি-মাইক্রোবিয়াল প্রিজারভেটিভস। এর গাঠনিক সংকেত হলো:

6 CH<sub>3</sub> - CH = CH - CH = CH - COOH

IUPAC নাম: 2, 4-হেক্স-ডাইইন-1-ওয়িক এসিড

২৯। খাদ্য সংরক্ষণে ব্যবহৃত অ্যান্টি-অক্সিডেন্ট এজেন্ট কোনটি? [য. বো. ২৩; দি. বো. ১৯; জনুরূপ প্রশ্ন: চ. বো. ২৩; সি. বো. ২২; দা. বো. ১৬]

® BHA

⑦ C<sub>6</sub>H<sub>5</sub>COOH

® SO2

উত্তর: 🕸 BHA

ব্যাখ্যা: খাদ্য সংরক্ষণে ব্যবহৃত অ্যান্টি-অক্সিডেন্টসমূহ:

BHA, BHT, TBHQ, Propyl gallate, ভিটামিন-C, ভিটামিন-E, সালফাইট লবণ, বিটা ক্যারোটিন, অধাতু সেলেনিয়াম Se(34) ইত্যাদি।

৩০। প্রাকৃতিক অ্যান্টি-অক্সিডেন্ট কোনটি?

[চ. বো. ২২; অনুরূপ প্রশ্ন: সি. বো. ২৩; ব. বো. ১৯; রা. বো. ১৬]

বিটা ক্যারোটিন

ভিনেগার

® BHT

® BHA

উত্তর: 📵 বিটা ক্যারোটিন

ব্যাখ্যা:

| প্রাকৃতিক অ্যান্টি-অক্সিডেন্ট | কৃত্রিম অ্যান্টি-অক্সিডেন্ট |
|-------------------------------|-----------------------------|
| ভিটামিন-C বা এসকরবিক এসিড     | ВНА                         |
| ভিটামিন-E বা টোকোফেরল         | ВНТ                         |
| বিটা (β) ক্যারোটিন            | твно                        |
| অধাতু সেলেনিয়াম, Se(34)      | প্রোপাইল গ্যালেট            |

৩১। মুক্ত মূলক শোষণকারী অ্যান্টি অক্সিডেন্ট-

(৯) ভিটামিল-C

(ৰ) ভিটামিল-E

গ্ৰ সালফাইট লবণ

® TBHQ

উত্তর: (গ TBHQ

ব্যাখ্যা: মুক্ত মূলক শোষণকারী অ্যান্টি-অক্সিচেন্ট:

(i) বিউটাইলেটেড হাইদ্রব্দ্নি এনিসল (BHA)

(ii) বিউটাইলেটেড হাইদ্রব্নি টলুইন (BHT)

(iii) টারসিয়ারি বিউটাইল হাইদ্রকুইলোন (TBHQ)

(iv) প্রোপাইল গ্যালেট (Propyl gallate) অক্সিজেন শোষণকারী অ্যান্টি-অক্সিডেন্ট:

- (i) ভিটামিন-C
- (ii) ভিটামিন-E
- (iii) সালফাইট লবণ

৩২। প্রাকৃতিক পচন রোধকের মধ্যে কোনটি অ্যান্টি-অক্সিডেন্ট?

🗟 খাদ্য লবণ

সরিষার তেল

গু হলুদ

(च) ििन

উত্তর: প্র হলুদ

ব্যাখ্যা: হনুদ একটি প্রাকৃতিক খাদ্য সংরক্ষক; যা অ্যান্টি-অক্সিডেন্টরূপে কাজ করে।

৩৩। খাদ্যবস্তুর লিপিডের জারণ রোধ করার জন্য কোনটি ব্যবহার করা হয়? (য. বে. ২০)

⊕ SO<sub>2</sub>

③ CH₃CHO

CH₃COOH

® H<sub>2</sub>SO<sub>4</sub>

উত্তর: 🕸 SO2

ব্যাখ্যা: SO<sub>2</sub> বা, সালফাইট লবণ অ্যান্টি-অক্সিডেন্ট হিসেবে ক্রিয়া করে লিপিড অণুর জারণ-বিজারণে অংশগ্রহণকারী O<sub>2</sub> অণু ও লিপিড অণু থেকে সৃষ্ট মুক্ত মূলককে শোষণ করে খাদ্যবস্তুর লিপিডের জারণ রোষ করে। ফলে খাদ্যবস্তুর পচন রোধ হয়।

৩৪। BHA ও BHT দারা কোন ধরনের খাদ্য সংরক্ষণ করা হয়?

यि. वा. २०; वनुक्रण धर्मः म. वा. २०।

- ক্টে টক জাতীয় ফল
- মিট্টি জাতীয় ফল
- গ্ৰ মাংস জাতীয় খাদ্য
- ত্তি তৈল ও চর্বি জাতীয় খাদ্য

উত্তর: 📵 তৈল ও চর্বি জাতীয় খাদ্য

ব্যাখ্যা: তৈল ও চর্বি জাতীয় খাদ্যে অ্যান্টি-অক্সিডেন্টসমূহ (BHA, BHT, TBHQ ইত্যাদি) চর্বি বা লিপিড অণুর জারণ-বিজারণ বিক্রিয়ায় অংশগ্রহণকরী O<sub>2</sub> অণু এবং এদের মুক্ত মূলককে শোষণ করে চেইন বিক্রিয়াকে প্রতিহত করে দেয় এবং অণুজীবকে ধ্বংস করে খাদ্যের পচন রোধ করে।

৩৫। BHT এর পূর্ণরূপ কোনটি?

- Butylated Hydro Toluene
- (1) Butylated Hydroxy Toluene
- Butahydrated Hydroxy Thiamine
- ® Butahydrated Hydro Thiamine

উত্তর: ﴿ Butylated Hydroxy Toluene

ব্যাখ্যা: কৃত্রিম আন্টি-অক্সিডেন্টসমূহ:

BHT ---- Butylated Hydroxy Toluene

BHA ---- Butylated Hydroxy Anisole

TBHQ - Tertiary Butyl Hydroquinone

PG ---- Propyl gallate

৩৬। আন্টি-অক্সিডেন্টের কাজ হলো-

- (i) জারণ-ক্রিয়াকে মছর করা
- (ii) তাপমাত্রা নিয়ন্ত্রণ করা
- (iii) পানি শোষণ করা

নিচের কোনটি সঠিক?

[সি. বো. ১৯]

(7) i (T) i S iii (1) ii

(F) ii S iii

উন্তর: 奪 i

ব্যাখ্যা: অ্যান্ট-অক্সিডেন্টসমূহ চর্বি বা লিপিড অণুর জারণ-বিজারণ বিক্রিয়ায় অংশ্যাহণকরী O, অণু এবং এদের মুক্ত মূলককে শোষণ করে চেইন বিক্রিয়াকে প্রতিহত করে দেয় এবং অণুজীবকে ধ্বংস করে খাদ্যের পচন রোধ করে। তবে খাদ্যের তাপমাত্রা নিয়ন্ত্রণ এবং পানি শোষণে অ্যান্টি-অক্সিভেন্টসমূহ কোনো ভূমিকা পালন করে না।

- ৩৭। यास्य मस्त्रक्रापं वाववण थागा मस्त्रक्रक कांनिए? (कू. वा. ১৯; नि. वा. ১৭)
  - ক্রি সোভিয়াম সরবেট
  - সরবিট এসিড
  - গ্র সোভিব্লাম নাইট্রাইট
  - বি) সালকার ভাই অক্সাইড
- উন্তর: পি সোভিয়াম নাইট্রাইট

ব্যাখা: মাংন ও মাংনজাত খাদ্য সংরক্ষণে অ্যান্টি-মাইক্রোবিরাল এজেন্ট হিসেবে নাইট্রাইট ও নাইট্রেট লবণ ব্যবহার করা হয়। এসব লবণ মাংসের মধ্যে ব্যাকটেরিরা বিশেবত ক্লুসট্টিভিয়াম বটুলিনামের কোব মেমব্রেন ফাটিরে দের এবং এনজাইমের ক্রিয়া রোধ করে।

😊 । খাদ্যে নিম্নের কোন প্রিঞ্চারডেটিডটির অতিযাত্রার উপস্থিতি মানবদেহে ক্যাপার সৃষ্টিতে সহায়ক? कि. त्वा. ५७]

- ক) সোডিরায় বেনজোরেট
- থে সাইট্রিক এসিড
- গ্র সোভিয়াম নাইট্রাইট
- পটাসিয়ায় সরবেট
- উব্দর: প্র সোভিরাম নাইট্রাইট

ব্যাখ্যা: মাংস ও মাংসজাত খাদ্য সংরহ্ণণে অ্যান্টি-মাইক্রোবিয়াল এজেন্ট হিসেবে নাইট্রাইট ও নাইট্রেট লবণ ব্যবহার করা হয়। এরা জারকরূপে ক্রিরা করে। এসব জারণধর্মী লবণ মাংসের প্রোটিনের সাথে বিক্রিয়া করে নাইট্রোসো অ্যামিন তৈরি করে; যা ক্যান্সার সৃষ্টির কারণ হতে পারে।

**Rhombus Publications** 

াদি. বো. ১৬। ৩৯। চিপস, চানাচুর ইত্যাদিতে কোন রাসায়নিক খাদ্য সংরক্ষক ব্যবহৃত হয়?

- সোডিয়াম বেনজোয়েট
- পে সোডিয়াম নাইট্রাইট
- গ্ ক্যালসিয়াম কার্বাইড
- ত্ব ক্যালসিয়াম প্রোপানোয়েট

উত্তর: ক্ত সোডিয়াম বেনজোয়েট

ব্যাখ্যা: প্রক্রিয়াজাত খাবার যেমন: চানাচুর, চিপস, বিভিন্ন পনির, সালাদ, বিভিন্ন ফলের আচার, টমেটো সস ইত্যাদিতে অনুমোদিত 0.1% পরিমাণে রাসায়নিক খাদ্য সংরক্ষক সোডিয়াম বেনজোয়েট মিশানো হয়।

- ৪০। প্রিজারভেটিভরূপে ব্যবহৃত সাইট্রিক এসিডের pH মান কত থাকে?
  - **4.74**

**4.50** 

(T) 3.14

(T) 3.01

উত্তর: 🕦 3.14

ব্যাখ্যা: সাইট্রিক এসিড একটি আদর্শ অ্যান্টি-মাইক্রোবিয়াল এজেন্ট হিসেবে খাদ্য সংরক্ষণের কাজ করে। এর কার্যকরী pH মান 3.14।

- 8১। খাদ্যে প্রিজারভেটিভ হিসেবে বেনজোয়েটের সর্বোচ্চ অনুমোদিত মাত্রা কত?
  - ₹ 0.1%

@ 0.2%

@ 0.31%

(T) 1%

উত্তর: ক্তি 0.1%

ব্যাখ্যা: সোডিয়াম বেনজোয়েট ও বেনজোয়িক এসিডের অ্যান্টি-মাইক্রোবিয়াল কার্যকারিতা pH 4.5 এর নিচে বেশি থাকে এবং প্রিজারভেটিভসরূপে এদের অনুমোদিত ব্যবহারযোগ্য সর্বাধিক মাত্রা হলো 0.1%।

- কোনটি শিশু খাদ্যে ব্যবহৃত হলে তাদের মধ্যে হাইপার অ্যাষ্টিভিটি প্রদর্শন করার প্রবর্ণতা দেখা যায়?
  - ® BHT
  - থ সালফার ভাই অক্সাইড
  - গ সোভিয়াম বেনজোয়েট
  - ছি সোডিয়াম বাইসালফাইট
- উত্তর: গি সোভিয়াম বেনজোয়েট

ব্যাখ্য

| প্রিজারভেটিভ                                                         | পাৰ্শ্ব প্ৰতিক্ৰিয়া         |  |  |
|----------------------------------------------------------------------|------------------------------|--|--|
| BHT, BHA, প্রোপাইল গ্যালেট,<br>NaNO <sub>2</sub> , NaNO <sub>3</sub> | ক্যান্সার সৃষ্টি             |  |  |
| KHSO <sub>3</sub> , SO <sub>2</sub> , NaHSO <sub>4</sub>             | এলার্জি, চর্মরোগ             |  |  |
| সোভিয়াম বেনজোয়েট                                                   | শিন্তদের হাইপার অ্যান্টিভিটি |  |  |
| <u>সালফাইট</u>                                                       | শ্বাস-প্রশ্বাসে সমস্যা       |  |  |

- ৪৩। কোন pH এ খাদদ্রেব্য ব্যাকটেরিয়া দ্বারা নষ্ট হয় না?
  - (a) > 4.5

倒 < 5.5

**何 < 4.5** 

(T) > 5.5

উত্তর: (গ) < 4.5

ব্যাখ্যা: অধিকাংশ অণুজীবের বংশবৃদ্ধির pH মাত্রা 6.5 – 7.5 পরিসরে থাকে। এজন্য অদ্রীয় পরিবেশে খাদ্য সংরক্ষণ করা হয়। pH < 4.5 এর অন্ত্রীয় অবস্থায় খাদ্যে ব্যাকটেরিয়ার কোনো প্রভাব থাকে না।

কর্মন্দ্রী রুসারান > ACS, FRB Compact Suggestion Book.....

#### ৪৪। সাইট্রিক এসিডের অনুমোদিত যাত্রা কত?

- ® 100 ppm
- (150 ppm)
- ① 200 350 ppm
- (9) 120 ppm

উজ্জা ① 200 - 350 ppm

ব্যাখ্যা: সাইট্রিক এসিড (C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>) স্যান্টি-মাইক্রোবিয়াল এজেন্ট হিসেবে খাদ্য সংরক্ষণে ব্যবহৃত হয়। এর অনুমোদিত মাত্রা 200 – 350 ppm

#### ८८ । नित्तत्त कानि किलिए थएडने विस्त्रत्व वावकृष्ट व्याः

ঢ়া. বো. ২২। অনুরূপ প্রশ্ন। ব. বো. ২৩]

- @ BHT
- (1) HCHO
- (1) EDTA

উম্বর: 🕲 EDTA

ব্যাখ্যা: থাদ্যবম্ভর মধ্যস্থ বিভিন্ন অবস্থান্তর ধাতৃর আয়নকে দুই বা ততোধিক সন্নিবেশ বদ্দন দ্বারা আবদ্ধ রাখতে যে রাসায়নিক যৌগ ব্যবহৃত হয়, এদেরকে কিলেটিং এজেন্ট বলে। খাদ্যবস্তু সংরক্ষণে শিল্পক্ষেত্রে সবচেয়ে বেশি ব্যবহৃত কিলেটিং এজেন্ট হলো EDTA (Ethylene Diamine Tetra Acetate)। এছাড়াও EDA, ফিনাইল হাইড্রাজিন, ম্যালিক এসিড, সাইট্রিক এসিড ইত্যাদি কিলেটিং এজেন্ট হিসেবে উত্তর: ন) মন্ট কাজ করে।

#### ৪৬। EDTA কীভাবে খাদ্য সংরক্ষণ করে?

- পানি নিরুদনের মাধ্যমে
- বিজারণ প্রক্রিয়ার মাধ্যমে
- জারণ প্রক্রিয়ার মাধ্যমে
- কিলেট গঠনের মাধ্যমে

উত্তর: (ত্য কিলেট গঠনের মাধ্যমে

ব্যাখ্যা: কিলেটিং এজেন্টসমূহ খাদ্যদ্রব্যে অবস্থান্তর ধাতুর আয়নকে (Fe<sup>2+</sup>, Fe<sup>3+</sup>, Co<sup>3+</sup>, Cu<sup>2+</sup>) কিলেট যৌগ গঠনের মাধ্যমে তাদের প্রভাবন ক্ষমতা বিনষ্ট করে।

#### 8 9 । EDTA আয়নে কতটি নিঃসল ইলেকট্রন যুগল আছে?

**3** 2

(1) 3

(A) 4

(T) 6

উত্তর: 🕲 6

ব্যাখা: EDTA (Ethylene Diamine Tetra Acetate) অণুতে 4টি অক্সিজেন ও 2টি নাইট্রোজেন পরমাণুস্থ মোট 6 জোড়া মুক্ত ইলেকট্রন দিয়ে অবস্থান্তর ধাতুর ( $Fe^{2+}$ ,  $Fe^{3+}$ ,  $Co^{3+}$  প্রভৃতি) আয়নের সাথে 6টি সন্নিবেশ বন্ধন দ্বারা যুক্ত হয়ে কিলেটিং এজেন্টরূপে ক্রিয়া করে এবং তেল-চর্বির পচন রোধ করে।

-OOC - CH<sub>2</sub> - 
$$\ddot{N}$$
 - CH<sub>2</sub> - CH<sub>2</sub> -  $\ddot{N}$  CH<sub>2</sub> - COO -  $\ddot{N}$ 

#### ভিনেগার ও ভিনেগারের ক্রিয়াকৌশল

৪৮। নিচের কোনটি ভিনেগার?

রা. বো. ২৩; কৃ. বো. ২৩; সি. বো. ২৩;

অনুরূপ প্রশ্ন: ম. বো. ২৩, ২২; ব. বো. ২৩, ২১; ঢা. বো. ২২, ২১, ১৭;

রা. বো. ২২; য. বো. ২২; চ. বো. ১৬; কৃ. বো. ১৬; সি. বো. ১৬)

- 6 − 10% C<sub>2</sub>H<sub>5</sub>OH + 90 − 94% H<sub>2</sub>O
- (1) 6 10% CH<sub>3</sub> CHO + 90 94% H<sub>2</sub>O
- <sup>®</sup> 6 10% CH<sub>3</sub>COOH + 90 94% H<sub>2</sub>O
- (9) 6 10% HCOOH + 90 94% H<sub>2</sub>O

উত্তর: ① 6 – 10% CH<sub>1</sub>COOH + 90 – 94% H<sub>2</sub>O

ব্যাখ্যা: ইথানোয়িক এসিড বা অ্যাসিটিক এসিডের 6 – 10% জলীয় দ্রবণকে ভিনেগার বলে।

ভিনেগারের সংযুক্তি: 6 - 10% ইথানোয়িক এসিড ও 90 - 94% পানি।

৪৯। অদ্ধুরিত বার্লি হতে প্রস্তুতকৃত ভিনেগার কোনটি?

য. বো. ২১]

- ক) সাইডার
- (ব) স্পিরিট
- গ্ৰ মল্ট
- ভার্টভার্ট

ব্যাখাঃ অদ্ধুরিত বার্লি বা অন্য কোনো শস্যের দানা ফারমেন্টেশন দারা উৎপন্ন ভিনেগারকে মল্ট ভিনেগার বলা হয়।

৫০। মল্ট মিশ্রণে কত শতাংশ ইথানল বিদ্যমান?

দি. বো. ২৩

- **3** 6%
- (a) 10%
- 16%
- **(9)** 20%

ব্যাখ্যা: মল্ট মিশ্রণে 10% ইথানল থাকে। এই মল্ট মিশ্রণের জলীয় দ্রবণকে 'মাইকোডার্মা-অ্যাসিটি বা অ্যাসিটো-ব্যাক্টর' নামক ব্যাকটেরিয়ার উপস্থিতিতে বায়ুর অক্সিজেন দারা জারিত করে মল্ট ভিনেগার প্রস্তুত করা যায়।

৫১। নিচের কোনটি ইনভারটেজ ব্যবহার করে প্রস্তুত করা হয়? fu. বো. ২০।

- 🕸 সুক্রোজ
- ইউরিয়া
- গ্র ভিনেগার
- (च) कत्र्याणिन

উত্তর: 🕦 ভিনেগার

ব্যাখ্যা: ইনভারটেজ এনজাইমের প্রভাবে সুক্রোজ অর্দ্র বিশ্রেষিত হয়ে সমমোলার গ্লুকোজ ও ফ্রস্টোজ এর মিশ্রণ তৈরি করে যা ইনভার্ট চিনি নামে পরিচিত। এই ইনভার্ট চিনি জাইমেজ এনজাইমের প্রভাবে ইথানলে পরিণত হয়।

$$C_{12}H_{22}O_{11} + H_2O$$
  $\xrightarrow{\overline{2}$ নভারটেজ  $C_6H_{12}O_6 + C_6H_{12}O_6}$  (সুকোজ)  $\overline{2}$  সুকোজ  $\overline{2}$  সুকোজ  $\overline{2}$  সুকোজ  $\overline{2}$  সুকোজ  $\overline{2}$ 

2C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> জাইমেজ
2C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> — 8াইমেজ
20° - 24°C → 4CH<sub>3</sub> - CH<sub>2</sub> - OH + 4CO<sub>3</sub>

ইনভার্ট চিনি ইথানল
ইথানলের 10% জলীয় দ্রবণ 'আসিটো-ব্যাকটর' এর উপস্থিতিতে
অক্সিজেন দ্বারা জারিত হয়ে লঘু আসিটিক এসিডে পরিণত হয়।

CH<sub>3</sub>CH<sub>2</sub>OH (10%) + O<sub>2</sub> = আসিটো-ব্যাকটর CH<sub>3</sub>COOH + H<sub>3</sub>O
ইথানল স্যাসিটিক এসিড (6%)

- ৫২। মন্ট ভিনেগার প্রস্তুতিতে সুক্রোজের আর্দ্র বিশ্লেষণে কোন এনজাইম ব্যবহৃত হয়? রি. বো. ২৩। দি. বো. ১৭। অনুরুগ প্রশ্না দি. বো. ২৩।
  - ইনভারটেজ
- ৰ ম্যাপেজ
- ণ ভাইমেজ
- (ছ) ভায়াস্টেজ

উত্তর: 📵 ইনভারটেজ

- শেত। সমমোলার গ্রকোজ ও ফুর্টোজের মিশ্রণকে কী বলে?
   কু. বো. ২১।
  - ক্ত সুক্রোজ
- ইনভার্ট সুগার

- গ্ৰ মন্ট
- ৩ ম্যান্টেজ

উত্তরঃ 📵 ইনভার্ট সুগার

- ৫৪। কোন এনজাইম এর প্রভাবে ইনভার্ট চিনি হতে ইথানল তৈরি হয়?
  - [मि. त्वा. २२; त. त्वा. २১; मि. त्वा. २১]
  - ক্ত মম্টেজ
- ইনভারটেজ
- গে জাইমেজ
- (ছ) ডায়াস্টেজ

উত্তর: 例 জাইমেজ

৫৫। মল্ট ভিনেগার তৈরির ক্ষেত্রে কোনটি সঠিক?

[ম. বো. ২৩; অনুরূপ প্রশ্ন: চ. বো. ২২]

- জাইমেজ সুক্রোজকে গ্রকোজ ও ফ্রুক্টোজে পরিণত করে
- বি) ইনভারটেজ প্রকোজ ও ফ্রক্টোজকে ইথানলে পরিণত করে
- গ্রি অ্যাসিটো-ব্যাকটর ইথানলকে ইথানোয়িক এসিডে পরিণত করে
- গ্র ঈস্ট যোগ করা হয় অবাঞ্ছিত ব্যাকটেরিয়া রোধ করার জন্য
- উত্তর: (१) অ্যাসিটো-ব্যাকটর ইথানলকে ইথানোয়িক এসিডে পরিণত করে
- eu। ভিনেগার প্রস্তুতিতে ঈস্টের বৃদ্ধিতে সহায়তা করতে ব্যবহৃত হয়-
  - (i) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>
  - (ii) (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>
  - (iii) NH<sub>4</sub>NO<sub>3</sub>

নিচের কোনটি সঠিক? [রা. বো. ২৩; অনুরূপ প্রশ্ন: সি. বো. ২৩, ২১; ব. বো. ১৬]

- i v ii
- જો ii જ iii
- இ i ७ iii
- (T) i, ii v iii

উত্তর: 🚳 i ও ii

ব্যাখ্যা: ভিনেগার প্রস্তুতির সময় কাঠের গুঁড়ার উপর প্রয়োজনীয় অ্যামোনিয়াম সালফেট  $[(NH_4)_2SO_4]$  ও অ্যামোনিয়াম ফসফেট  $[(NH_4)_3PO_4]$  লবণের মিহি দানাগুলোকে ছিটিয়ে দেওয়া হয়। এরা ঈস্ট বৃদ্ধিতে সহায়ক হিসেবে কাজ করে।

Rhombus Publications

- ৫৭।  $\Lambda + O_2 \xrightarrow{\text{SUIJACCI-4JIФ <math>G}_3} CH_3COOH;$  বিঞ্জিয়াটিতে ' $\Lambda$ '

  যৌগটি হলোG।চ. ব্যে. ২২১
  - ক) মিথানল
- থি ইণানল

...... ACS > Chomistry 1st Paper Chapter-5

- ① মিথান্যাল
- (ত্ব) ইথান্যাল

উম্বন। (ৰ) ইথানল

٨

: A यৌगि ट्रांगि ट्रिशनन ।

নিচের উদ্দীপকটি পড় এবং ৫৮ ও ৫৯ নং প্রশ্নের উত্তর দাও:

$$A + H_2O \xrightarrow{} \overline{37^{\circ}C}$$
 যুকোজ  $+$  ফুকৌজ

গ্রকোজ — জাইমেজ  $B + CO_2$ 

স্ঞাসিটো–ব্যাকটর → অ্যাসিটিক অ্যাসিড

৫৮। A-এর সংকেত কোনটি?

[য. বো. ২৩]

- C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>
- @ C6H12O6
- (1) C12H12O11
- (1) C6H10O5

উত্তর: 🚳 C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>

ব্যাখ্যা: উদ্দীপকের বিক্রিয়াগুলো পূর্ণ করে পাই,

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\overline{2}$$
নভারটেজ  $C_6H_{12}O_6 + C_6H_{12}O_6$  (সুক্রোজ)  $C_6H_{12}O_6 + C_6H_{12}O_6$ 

इनजार्छ हिनि

ইনভার্ট চিনি

ইথানল

$$CH_3CH_2OH\ (10\%) + O_2 \xrightarrow{\text{SUIPAGE}} CH_3COOH + H_2O$$
ইথানল স্থাসিটিক এসিড (6%)

∴ A যৌগটি C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>

৫৯। B থেকে ভিনেগারের মূল উপাদান কোন প্রক্রিয়ায় উৎপন্ন করা হয়?

যি, বো, ২৩

- ক্ত জারণ
- থ) অর্দ্র বিশ্লেষণ
- নে) বিজারণ
- (ঘ) গাজন

উত্তর: 🚳 জারণ

ব্যাখ্যা: মল্ট মিশ্রণের ইথানল অ্যাসিটো-ব্যাকটরের প্রভাবে বায়ুর অক্সিজেন দ্বারা জারিত হয়ে লঘু অ্যাসিটিক এসিডে পরিণত হয়।

কর্মমুখী রসায়ন > ACS) FRB Compact Suggestion Book ......................১৫৯

৬০। কোনটি থেকে ভিনেগার প্রস্তুতি অপেক্ষাকৃত সহজ হবে? [রা. বো. ২১] ৬৫। ভিনেগার কীভাবে ব্যাকটেরিয়া ধ্বংস করে?

ক্ক আলু

📵 খেজুরের রস

গু ইথানল

ন্থ গ্লুকোজ

উত্তর: 例 ইথানল

ব্যাখ্যা: আলু, খেজুরের রস বা গ্রুকোজ থেকে ভিনেগার প্রস্তুতিতে প্রথমে ইথানল তৈরি করে তারপর ভিনেগার প্রস্তুত করা হয়। তবে ইথানল থেকে সরাসরি এক ধাপে ভিনেগার প্রস্তুত করা সম্ভব। তাই ইথানল থেকে ভিনেগার প্রস্তুতি অপেক্ষাকৃত সহজ।

৬১। ভিনেগারের গড় pH মান কত?

**3** 4.74

**3.82** 

(9) 2.5

**3.05** 

উত্তর: 何 2.5

ব্যাখ্যা: ভিনেগারের pH মান 2.2 - 2.73 হয়। এর গড় pH মান 2.5।

৬২। ভিনেগার-

(i) ব্যাকটেরিয়া ধ্বংস করে

(ii) হাইড্রোজেন বন্ধন গঠন করে

(iii) তীব্ৰ অম্ল

নিচের কোনটি সঠিক?

[ম. বো. ২২]

⊕ i

(a) iii

@isii

(F) i, ii & iii

উত্তর: 羽 i ও ii

ব্যাখ্যা: > ভিনেগার H<sup>+</sup> প্রোটন দান করে যা খাদ্যে উপস্থিত ক্ষতিকর ব্যাকটেরিয়া ধ্বংস করে।

> $CH_3COOH \Longrightarrow CH_3COO^- + H^+$ জীবস্ত ক্ষতিকর ব্যাকটেরিয়া + H<sup>+</sup> → মৃত/নিদ্রিয় ব্যাকটেরিয়া

 CH<sub>3</sub>COOH একটি দুর্বল এসিড এবং এই যৌগে হাইড্রোজেন বন্ধন বিদ্যমান

চিত্র: CH3COOH যৌগে বিদ্যমান H-বন্ধন

৬৩। ভিনেগার দ্বারা খাদ্য সংরক্ষণের পদ্ধতিটি কী নামে পরিচিত? াদি. বো. ২২১

ক্ত কিউরিং

(ৰ) ক্যানিং

গ্র ব্লাঞ্চিং

খি পিকলিং

উত্তর: ত্ব পিকলিং

ব্যাখ্যা: খাদ্যবস্তুকে ব্রাইন বা গাঢ় লবণের পানিতে ডুবিয়ে নিয়ে খাদ্য থেকে পানি দূরীভূত করে ভিনেগারে সিক্ত করে সংরক্ষণ করা হয়। এই প্রক্রিয়াকে পিকলিং বলে।

৬৪। ভিনেগার কীরূপে খাদ্য সংরক্ষণ করে?

[ঢা. বো. ২৩]

ಈ H<sub>2</sub>O প্রদানের মাধ্যমে

③ OH প্রদানের মাধ্যমে

উত্তর: 🕲 H<sup>+</sup> প্রদানের মাধ্যমে

[य. त्वा. २১]

প্রোটিনের গঠন ভেকে দিয়ে

প্রবরণে গ্রুকোজের মান কমিয়ে

প্রবর্ণ pH এর মান কমিয়ে দিয়ে

ভ দ্রবণে pH এর মান বৃদ্ধি করে

উত্তর: 🕦 দ্রবণে pH এর মান কমিয়ে দিয়ে

ব্যাখ্যা: ভিনেগারের গড় pH মান 2.5। তাই খাদ্যদ্রব্যে ভিনেগার যোগ করার ফলে তা খাদ্য উপাদানের pH মানকে কমিয়ে দেয়। এই অখ্লীয় পরিবেশে ব্যাকটেরিয়া জন্মাতে পারে না এবং এদের বংশবৃদ্ধি ব্যাহত হয়। খাদ্যের pH যতই কম রাখা যায় ততই খাদ্যে ক্ষতিকর ব্যাকটেরিয়ার বংশবিস্তার হ্রাস করা যায়।

৬৬। ভিনেগারের বৈশিষ্ট্য-

(i) ব্যাকটেরিয়ার জন্য প্রতিকূল পরিবেশ সৃষ্টি করে

(ii) পিকলিং প্রক্রিয়ায় সবজি সংরক্ষণ করে

(iii) তেল ও চর্বির জারণ প্রতিরোধ করে

নিচের কোনটি সঠিক?

াসি. বো. ২৩

@ i g ii

iii vii

1ii vii

(1) i, ii (9 iii

উত্তর: 📵 i ও ii

ব্যাখা: 🕨 ভিনেগারের গড় pH মান 2.5। এরূপ অম্লীয় মাধ্যম ব্যাকটেরিয়া বৃদ্ধিতে বাধা দেয়।

 খাদ্যবস্তুকে ব্রাইন বা গাঢ় লবণের দ্রবণে ভূবিয়ে নিলে খাদ্য থেকে পানি দূর হয়। এরপর ঐ খাদ্যবস্তুকে ভিনেগারে সিজ করে নেয়া হয়। এরূপ সমগ্র প্রক্রিয়াকে পিকলিং (Pickling) বলে। সরজি যেমন: শসা, গাজর, বরবটি ইত্যাদি ভিনেগারে পিকলিং করে সংরক্ষণ করা যায়।

৬৭। ভিনেগার খাদ্য সংরক্ষণ করে-

(i) অম্লীয় পরিবেশ সৃষ্টির মাধ্যমে

(ii) ব্যাকটেরিয়ার অ্যাকটিভ সাইট নষ্ট করার মাধ্যমে

(iii) কিলেটিং এজেন্ট হিসেবে

নিচের কোনটি সঠিক?

রা. বো. ২২; য. বো. ২২; ব. বো. ১৯; অনুরূপ প্রশ্ন: চ. বো. ২১]

i vi

(a) ii e iii

त्र i ७ iii

(T) i, ii v iii

উত্তর: 📵 i ও ii

ব্যাখ্যা: > ভিনেগার অশ্লীয় পরিবেশ সৃষ্টি করে যা অণুজীবের জন্য অনুকূল

▶ जित्नगात विद्यािकिं इद्य H<sup>+</sup> वा প्राप्टेन जिल्ला कदत्र या ব্যাকটেরিয়ার "Active Site" নষ্ট করে। ফলে ব্যাকটেরিয়া বিনষ্ট হয়।

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ 

জীবন্ত ক্ষতিকর ব্যাকটেরিয়া + H<sup>+</sup> → মৃত/নিদ্ধিয় ব্যাকটেরিয়া

किलिण्डिः এজেन्छ दिस्त्रात ভित्निशात वावविक दय ना ।

250 . . सिखांक नापंडे कजा े। श्रीष्ठ क्रानामक क्री माणि यविष्ठाप्र-अकार एक याद ।। हा रूकारीक न्यीमार वरायात एक्टरिक्कारायो ।। स्प CO DENDING 民 他的 的 让 B AJA 份月50 91 7111 S I IIU अपराधाम अ OF THEFT 20 विषयि क्रिक नीया नामक क्या कायन म्या मिश्री माणिकी र्भ। भी निर्वेद्धः भएर तागरन्त्रः त्रागा क्यागठे पानिः निर्वाणके। भारत नासर च्यापक भारत न्त्राप स्थान भी नेवत जातिह हे गाएम गुद्धाः ध्री 的何 व्यायाय वास व्यापाद वि ILLIA B ON DITH A MITT OFFICE क व्यक्तिम गामगामा की व्यक्तियाम हमाप्याप्यक का विकास THEY BUT THE वागान गण ह निर्मातक नामाने वीधक नगणा भागत जाया। धार न्यारङ्कायस्यो भि ए किलामिका 用了 -गाउन उरायक तिसासिक । क ामकार मारू कारपाति साह राजाकार स्वानिक मार्गिक विद्यापा ा विद्याम व्यापामार्क्ष नागपार गा। सः भाषासः स्वभा चारियाह ते जायियार्थ के न वाष्ट्रवाव स वागाणीव मि। भाषि सविद्यामेर भाषर नायक साप्त सरिद्याचीय-विभाव । चर विकार व्यापि विकार ६ षाणाः क्रिगाध्यः नपरः बनाः Bich Bi CHi 生の出 仍儿出西州 से. खागाता विषण स्टा छ। सामुद्धिक गागा नाजकार-सा विम लागण नना 115、これで、1 नियान ज्यागि नियान 雨 Co.Ha Clo Em (3 i THE WOODS HIS TH 可力的 大加至曲 अभागाम विधार ज्याम दिशावरण्यिक विभागात विशिष्टि नामनप्राप्ट गिएक खाणि मिका 多中市由 付りを出 罗山山车册 नगागाज गुणिष्ट गणान्तः th to th @ भूग सामामिक के निवास विभागाम विच्छि के जान्जिए क गान्जीक क न गणित व्यविष TE SIL हा मार्टि of DIFE का व्यक्तिप गया पड क् व्यापियाम व्यक्ति का भिषान्यक्रिय क्रियान नामक्रय व्यान कि । किसानि क्षािक कैरिक नैक्टर नवास्ता नन्दर नामार स्त-IL CTIL CTX AH EWATHO. A HATTLE SIND BHATT HI MILLIAND. 斯 CHICH CONTINE THE मियान जामि रिकार मियान जाएडि नियम டு ம்சிய விட்டிரிய 也口丘市 री । इसी Ti om 玩市生曲 @ JE din 何 止由 田曲 क सार (१.८) सणस्क्रीर मोन मान उत्तर हात काम मान स्वामायान । स १प्रीमाक अफ्याह का-४.। ८२ स्पष्ट स्मार & CALAU & CHILL & CALAU & CALA ण्या है । प्राप्त क माराप्त त 🕸 । IB जाएन विद्यागाएक वृत्य दिनामान ज्याम बिक्याय विश्वम नजा स्वराप शण्ट क्षियात गाण्डोपिकार स्थाप दीपाछ । ५ छ जाग र पार्च निकार कु निज्ञान कु नीजन স্ত পাতাতিক कि न्थित समिछ व वाल्याम क्लानार्य व्ययोग ऋणियः १८ -गीभोक्ति च्यागायकी। थ्र %। नशिक वार्याः नशिकः। २४ iL नामधीरेपार समा दिन्सम ॰िएम र्री रहत १८ शामि वाणक्यितिवान निहासक्कि सं मितियाः ब्रियाः स्तिष्ठ ताएकम् रख्ड HI P. 1 SEE WITH THE MADE सिं व्या ह अर्ति जाता इक्तिता राज 川川町田町面町 निपान जगापि निपान विधित्र व्याचि त्रिक्त To i o 医面重曲 A i Ciii A Lhedi thon & dhoi B 的 市全市 可止的年前 शायक कि नगणानि संस्थाधिक के सारक्षक रागायात । धार श्वीपक्त कथात क्याता. मिता जमात स्वरूप स्पान । ११ ह भएकि गाउ ल गार्फ ট ব্রক্তাত ल गाएमाछ माराम क Cillipa D e CHICOUN 95 EO, शक्तीह वीभक्त व्यक्त क्वीर्क सामारको क्षेट । अह इच्छलाये प्रकारणये बार्च वीहरू वाक रातमाध्ये वाम (अप १५ १५ क नाहित्र नाहित्र के नाम के मानाम के मानाम के 够 顺 का जि 101. D क्षेत्र वार्ष हर गानि । णामहं रागिति र गानि विकत्त हो । क्रियाक चित्राह महीह का पारा । इर हाक जाकि॰ व्ययोध मधी।यारह क्याजारह रहवार त्रीयये।क भि 多 医判别性力中。 瓦利及公司 の=コか別の多 (१) अर्क जाम क्या हार बनाहिन्ट बार्क्यिका खार क्यात बना @ Callity Pront OF WHITH HALL 刑 05 6 43 3 OC 비 FI ED 190 मीर 1,00 (2) SHI 5 38

#### मिल्सिया स्थापित स्थापित



# অভাবনীয় সাফল্য























**PDF Credit - Admission Stuffs** STATE SEST Approach ১ম পত্ৰ क्ष्रेचक्षप्रप्रि भदीकाद्व पूर् ACS/ RHOMBUS ··STUFFS··